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ABSTRACT

Traffic safety poses a persistent challenge for society and public policy. Conventional law enforcement
by human police is often cost-ineffective due to information asymmetry and negative externalities of
unsafe driving behaviors. Automated enforcement, in the form of traffic cameras on the road, has gained
prominence in recent decades, yet its effectiveness and underlying mechanisms remain debated. This
study examines the impact of traffic cameras on road safety using longitudinal data from a metropolitan
city in China. We distinguish between advanced cameras, which use machine learning to detect various
traffic violations and constantly record video, and conventional cameras, which rely on triggered image
capture for a limited number of violations. Using an event study design with staggered camera
installations at road intersections, we observe a significant and sustained reduction in accidents near
advanced cameras, compared to locations with no cameras or only conventional cameras. Further
analysis identifies three key mechanisms driving the effects of advanced cameras: (i) automated
detection effect—superior technical capabilities to automate violation detection; (ii) real-time recording
effect— continuous monitoring and recording capability to augment accident cause identification; and
(iil) driver learning effect—technology-enabled deterrence to increase driver awareness of these
cameras and encourage behavioral adjustments to mitigate accident risks. This study contributes to
information systems, transportation economics, and criminology, offering policy insights into the
effective design and deployment of automated enforcement to improve traffic safety.
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1. Introduction

According to a recent Global Status Report on Road Safety by the World Health Organization (2023),
1.19 million people died in road crashes worldwide in 2021. Strikingly, road traffic injury is the
leading cause of death for children and young people aged 5-29 years. The global macroeconomic
cost of road traffic injuries is estimated at U.S. $1.8 trillion, or roughly 10-12% of the global gross
domestic product (GDP). This issue also intensifies regional inequality, as 92% of the traffic fatalities
occur in middle- and low-income countries and the risk of death is 3 times higher in low-income
countries than in high-income ones. Enhancing traffic safety has, therefore, been considered a
significant endeavor for policymakers, especially in developing countries.

Since the 1950s, various traffic safety measures have been introduced, including engineering
innovations (e.g., airbags), product design regulations (e.g., child restraint laws), and behavioral
mandates (e.g., speed limits). However, their effectiveness remains debated (Burris et al. 2013). For
example, Pelzman (1975) proposed the “risk compensation hypothesis,” suggesting that safety
measures (e.g., seatbelts) might inadvertently lead drivers to drive more carelessly, as the measures
make them feel safer. This increases the likelihood of crashes and transfers risks to unprotected
individuals such as pedestrians. Enforcing traffic safety regulations is also challenging. The most
common approach, the presence of human police, is often costly and ineffective. Limited officer
coverage leads drivers to perceive low odds of being caught, encouraging riskier driving. Moreover,
gathering clear evidence and determining accident causes is difficult when accidents occur, further
incentivizing unsafe driving. As a result, conventional law enforcement is often cost-ineffective due
to information asymmetry and negative externalities (Edlin and Karaca-Mandic 2006).

In recent decades, automated enforcement, such as speed checkers and red-light cameras, has
been deployed on roads. Automated enforcement, increasingly driven by machine learning
algorithms, differs from conventional methods in several key ways. First, traffic cameras detect
violations automatically and operate 24/7. Second, unlike police officers, whose availability and
deployment change constantly, traffic cameras are fixed and always active, making unsafe driving
costly. Lastly, traffic cameras continuously gather evidence during accidents, reducing uncertainty in
cause and liability identification. Therefore, the advantages of automated enforcement—monitoring
road traffic, detecting violations, and recording evidence—address information asymmetry and
negative externalities, improving traffic safety more effectively than conventional law enforcement.

Nevertheless, prior research has shown mixed results on the effectiveness of traffic cameras
in improving road safety (see a brief review in Table A-1 in Appendix A). Most studies indicate
positive effects. Blais and Carnis (2015) found that the automated speed enforcement program
(ASEP) in France was associated with a decrease of 19.7% in road crashes. Llau et al. (2015) reported
that in a U.S. county, sites with red light cameras experienced a decrease in all types of injury crashes.
Wang et al. (2020) found that traffic cameras were associated with a decrease in regional crash risk.

In contrast, several studies documented negative or adverse effects. Lee et al. (2015) found that red



light cameras increase fatal crashes by 2% and injury crashes by 53% in a South Korean city,
attributing this increase to higher average speeds on arterial roads. Likewise, Claros et al. (2017)
observed that rear-end crashes increased by 16.5% after the installation of red-light cameras.
Furthermore, several recent studies presented null or mixed effects. For example, De Pauw et al.
(2014) found no statistical evidence of changes in injury crashes after the installation of fixed-speed
cameras, although there was a significant decrease in deaths and serious injuries. Gallagher and Fisher
(2020) found no evidence that red light cameras in Houston, Texas, reduced the total number of
accidents or injuries, though they did change the composition of accidents.

Given the mixed findings in the literature, uncertainty remains regarding the effectiveness of
traffic cameras in enhancing road safety. A careful review of these studies reveals several gaps: First,
most studies in transportation and safety literature mainly focused on the presence of traffic cameras,
without unpacking the nuanced interplays among technical capabilities of automated enforcement,
drivers’ risk-taking behaviors, and traffic safety outcomes. This presents an opportune direction for
information systems (IS) scholars to theorize the role of technologies, particularly machine learning
applications, in traffic safety. Second, most studies either used city-level aggregate accident data or
selected a limited number of road intersections to estimate the effect of camera installation. Third,
many studies focused solely on cameras that detect only one type of violation (e.g., running a red
light), rather than those capable of simultaneously detecting various types of violations. Lastly,
existing research primarily examined conventional cameras triggered by separate sensors (e.g.,
speeding radar) to capture violation images, with limited attention given to a new generation of
automated enforcement that leverages the recent development in machine learning algorithms.

Our work is hence well positioned to tackle the scholarly and policy challenges, including (i)
the ever-increasing concerns about traffic safety, (ii) the touted promises of the traffic enforcement
cameras juxtaposed with mixed assessment outcomes, (iii) the lack of granular data for deeper
insights, and (iv) limited understanding of nuanced mechanisms in prior research. As IS scholars, we
recognize the imminent importance of assessing the roles of automated enforcement enabled by
machine learning and pattern recognition algorithms with a solid theoretical understanding and more
rigorous empirical analyses. Thus, we ask the following research questions: (i) What is the impact of
traffic enforcement cameras on road safety? (i1) To what extent can their deployment reduce human
and economic costs of traffic accidents? (iii) How can we explain their potential effects?

To answer these questions, we study dynamic changes in traffic accidents at road
intersections in a metropolitan city in China, comparing locations with and without traffic cameras.
We focus on two types of cameras: advanced cameras, which detect various traffic violations via
constant video capture and real-time pattern recognition enabled by embedded machine learning
algorithms, and conventional ones, which detect a limited number of violations via electromagnetic

devices that trigger temporary image capture. We consolidate a panel dataset of traffic camera



installations and local police reports of road accidents in the vicinity of comparable road intersections
of this city in the mid-2010s.

Econometrically, we first employ the event study method to exploit the staggered installation
of cameras across road intersections over time. We identify a statistically significant and persistent
decrease in total accidents by an average of 8.3% near the road intersections installed with advanced
cameras, compared to the locations without cameras or with only conventional cameras. The
estimates remain consistent across a battery of robustness tests, such as leveraging different sets of
covariates, changing the sampling strategies for the control intersections, and conducting a
falsification test with randomly assigned pseudo treatments. Second, we use newly developed event
study estimates in the econometrics literature (e.g., de Chaisemartin and D’Haultfeeuille 2020,
Borusyak et al. 2021, Sun and Abraham 2021) to relax the assumption of homogeneous treatment
effects across space and time. The consistent results from these analyses lend credence to the
downward trends in accidents at the intersections with advanced camera installations.

What explains this baseline effect? We theorize the role of automated enforcement, drawing
on the deterrence literature that originated from Becker (1968) on crime and punishment, which
highlighted how monitoring resources and publishment severity deter violations. Unlike prior studies
that focused on publishment severity (e.g., Hansen 2015, Goncalves and Mello 2017), our work
emphasizes (i) monitoring resources, (ii) automated enforcement, including its technical features and
presence, and (iii) aggregate-level deterrence and traffic safety outcomes. Specifically, we argue that
the technical features of advanced cameras (automated violation detection and real-time recording)
substantially improve traffic enforcement capabilities in violation identification and detection,
establishing a technology-enabled deterrence. This, in turn, leads to drivers’ learning of the presence
and functions of the traffic enforcement cameras, ultimately influencing their driving behaviors in a
way to avoid violations and mitigate accident risks.

To empirically test the technical capabilities and driver learning, we categorize accidents
according to the cameras’ functions (i.e., either proactively or passively capturing violations; see §5).
Our analyses yield statistically significant evidence not only supporting the proposed mechanisms but
also explaining the differing effects of the two types of cameras. Compared to conventional cameras,
advanced cameras (i) significantly reduce both the variety and incidence of accidents due to ML-
enabled automated detection, evident in the extensive margin (i.e., reduction in more types of
accidents; see Figure 3) and the intensive margin (i.e., greater reduction within the same accident

types; see Figure 4);' (ii) have a unique impact on accidents by real-time video recording, helping

! The extensive margin captures the breadth of the impact, referring to the reduction in the number of different
types of accidents (e.g., rear-end collisions, running a red light, etc.), while the intensive margin measures the
depth of the impact, referring to the extent of reduction within the same type of accidents (e.g., a 30% reduction
in rear-end collisions). These metrics together comprehensively capture how advanced cameras outperform
conventional cameras in improving traffic safety.



identify accident causes (Figure 5); and (iii) create a driver learning effect, making drivers more
aware of the cameras’ presence and functions and extending deterrence to areas even without these
cameras (Figure 6). These findings highlight the superior technological and psychological deterrence
of advanced cameras, explaining the significant reduction in total accidents nearby.

Additional findings further support these mechanisms and rule out alternative explanations:
First, the effect of automated enforcement is more pronounced for whom and where risky driving is
more likely to occur, further corroborating the technology-enabled deterrence. Second, the effect of
automated enforcement does persist over time but does not transfer to locations without cameras,
demonstrating the absence of a displacement effect and further mitigating information asymmetry
concerns over deterrence in non-camera areas. 7#ird, accident risks are not transferred to other road
users (e.g., pedestrians) after camera installations, failing to support the risk compensation hypothesis
(Peltzman 1975) and mitigating potential negative externalities beyond motor-and-motor collisions.

This work makes notable contributions to the IS literature and related disciplines. First, our
investigation of Al-enabled solutions for traffic safety and their mechanisms enriches the scholarship
on the societal impact of IT, particularly within the emerging IS literature on IT in transportation (see
a brief review in Table A-2 in Appendix A). Specifically, (i) the IS literature has rarely addressed the
critical topic of traffic safety, with exceptions such as Greenwood and Wattal (2020) on alcohol-
related vehicle fatalities. Our study expands this area by exploring the role of automated law
enforcement on various accident outcomes and leveraging IS domain knowledge to unpack human-
technology interactions driving these effects. (ii) While prior studies have predominantly focused on
ride-hailing platforms and their consequences (e.g., Barbar and Burtch 2020, Liu et al. 2021, Rhee et
al. 2023), our work shifts attention to automated enforcement, specifically advanced cameras as an Al
application in the public domain. (iii) Most IS studies on transportation emphasized the unintended
consequences of digital platforms on traffic demands, with limited focus on IT-enabled interventions
aimed at traffic management. Notable exceptions include Cheng et al. (2020) on federally-supported
intelligent transportation systems and Zhang et al. (2020) on GPS-related driver learning. Addressing
this gap, our study explores the intended impact of automated enforcement on traffic safety, focusing
on its nuanced technical functions and behavioral implications. This focus is essential, as technology-
driven transportation solutions often produce mixed or unintended effects (Table A-1, Appendix A).
By employing fine-grained data and rigorous methods, we analyze whether traffic enforcement
cameras deliver their safety promises and how their effect arises via technical capabilities and
behavioral deterrence. In doing so, this work responds to recent calls for IS research on smart mobility
interventions (Ketter et al. 2023) by advancing the understanding of IT/Al-enabled solutions for safer
and more sustainable transportation systems.

Second, our findings align with and contribute to the economics of traffic safety (e.g., Hansen
1997, Makowsky and Stratmann 2009). This literature has examined various traffic safety

interventions that either decrease personal and social costs during an accident (e.g., seat belts, airbags)



or increase the cost of unsafe driving (e.g., speeding tickets) before an accident (Edlin and Karca-
Mandic 2006). Nevertheless, the literature has shown mixed evidence for the efficacy of these
interventions due to concerns such as risk compensation and negative externalities. Without rigorous
analyses, one might assume that traffic cameras share similar concerns with conventional safety
interventions and may not necessarily reduce accident risks. To address this, we theorize the roles of
automated enforcement and offer credible evidence that the installation of traffic cameras does not
shift risks from reckless or careless drivers to other road users (e.g., pedestrians), thereby mitigating
the concerns of risk compensation and negative externalities. This is because the functions and
presence of such technology help reduce information asymmetry in monitoring and enforcement,
preventing risk-taking behaviors and their associated accidents.

Third, this work extends criminology literature (Becker 1968, Chalfin and McCrary 2017),
which has primarily focused on police deployment and its deterrent effect (Welsh and Farrington
2009, Priks 2015). Human police deployment is costly and temporal and may not systematically
reduce crimes due to spatial displacement (to areas with police absence) and temporal displacement
(to a later time when police presence diminishes). Our findings highlight key differences between
human police and traffic enforcement cameras—such as real-time constant monitoring, permanent
deployment, and fewer cognitive errors and biases, demonstrating the comparative advantages of
automated enforcement, such as cost reduction and enhanced monitoring and enforcement
capabilities, in improving traffic safety. Additionally, this study emphasizes that the deterrence of
automated traffic law enforcement arises from its technical capabilities in automated detection and
real-time recording, an underexplored mechanism in criminology literature.

Finally, our findings provide important policy insights. Given that ensuring traffic safety is
one of the primary responsibilities of governments (Hansen 1997, World Health Organization 2023),
we aim to influence transportation policy and its enforcement by deepening the understanding of
automated enforcement on the road. This is largely due to the economic significance and societal
benefits of deploying traffic enforcement cameras. Notably, our conservative estimates indicate that,
on average, the studied city could have reduced 1,190 accidents (including 379 casualty cases), saved
496 people involved in fatal and injury cases, and saved ¥6,298,780 property loss from vehicular
damage per year had the city installed advanced cameras in all of its signal-controlled intersections.

The remainder of the paper is organized as follows: Section 2 provides background on
automated enforcement, the empirical context, data, and descriptive statistics. Section 3 outlines the
empirical strategy, main results, robustness checks, and economic significance. Section 4 explores
mechanisms and presents empirical tests. Section 5 examines heterogeneous effects, and Section 6

discusses implications and concludes.



2. Background, Data, and Descriptive Analysis

2.1. Research Background

Automated enforcement, in the form of traffic cameras such as speed checkers and red-light cameras,
has seen widespread adoption across various countries, known as automated enforcement in the
United States (U.S.), electronic police in China, and traffic enforcement cameras in the United
Kingdom and several other European nations. This technology executes automated traffic law
enforcement by detecting violations and collecting evidence. Utilizing state-of-the-art ML algorithms,
some traffic cameras can recognize license plate numbers and characters within 0.7 milliseconds after
detecting a speeding vehicle. The predictive accuracy of such algorithms often exceeds 97% (Tang et
al. 2022). In regions such as China, Europe, and the U.S., ML techniques have reached a high level of
maturity, particularly in identifying common violations such as running red lights or speeding. This
could even result in automatic penalty issuance via text messages, with offenders retaining the right to
contest violations and access evidence.

While automated enforcement has been implemented to address traffic violations and their
ramifications, evidence of its effectiveness in reducing traffic accidents has been mixed (See Table A-
1 in Appendix A for a brief review). Furthermore, the underlying mechanisms—how automated
enforcement, through its functions and present, affect drivers’ behaviors and subsequent accident
risk—remain inadequately explained in the literature. To comprehensively investigate this
increasingly prevalent monitoring technology in the public domain, our study conducts rigorous
empirical identification and mechanism tests.

2.2. Empirical Context

Our study is conducted in a metropolitan city in Southern China with a population of approximately
13.3 million as of 2024. Over the past decade, this city has experienced two major waves of traffic
camera deployment. In the initial wave of 2010-2016, the city installed conventional cameras capable
of capturing violation images and transmitting data to a central database. The ongoing second wave,
commencing in 2014 and continuing to the present, involves the deployment of advanced cameras
equipped with ML-enabled computer vision algorithms for real-time pattern recognition, video
analytics, and automatic traffic violation detection.

Our investigation focuses on the period from 2014 to 2016, when both conventional and
advanced cameras were concurrently deployed throughout the city. We analyze two types of cameras:
conventional traffic cameras that only detect limited violations based on temporary image capture and
advanced cameras that employ constant video capture and pattern recognition to identify a broader
range of violations. See more details below and in Table B-3 and Figure B-5 in Appendix B. Notably,
during this period, the replacement of conventional cameras with advanced ones in the same locations
was rare due to the former’s durability (lasting at least 5-10 years) and the impracticality of

dismantling them.



Two notable differences exist between conventional and advanced cameras: (i) the range of
violations to detect and (ii) the detection methods. First, conventional cameras only detect running red
lights or retrograde (moving backward), whereas advanced ones detect as many as thirty traffic
violations, such as speeding, failure to follow traffic signs/signals, and driving in the wrong lane.
Second, conventional cameras detect and capture violations only when triggered. Specifically, an
electromagnetic device (a physical sensor) equipped below the ground (often below the crossroad)
detects moving, or reversed-moving, objects when a red light is on and triggers conventional cameras
nearby to capture the scene when a vehicle runs the red light. These cameras often take several
images—capturing both the red light and the moving vehicle with a clear license plate—to document
the violation. In contrast, advanced cameras constantly detect violations because the detection is
based on real-time video capture and analytics. As the advanced camera is constantly in operation,
most violations nearby are captured in real-time video streams. Therefore, all advanced cameras are
much more capable than any conventional ones of detecting more violations.

Despite these differences, conventional and advanced cameras share similar appearances,
with advanced cameras typically accompanied by lighting devices. Moreover, violations captured by
both are automatically written into a backend database, automatically generating text messages to
notify offenders of the breach and associated fines. Hereafter, throughout this study, we
interchangeably refer to advanced and conventional cameras as “new” and “old,” respectively.

To better understand local traffic safety measures, we conducted field interviews with senior
officials from the traffic surveillance unit, the accident unit, and the IT unit of the city police
department. These interviews provided valuable insights, revealing that police officer deployment—
including staffing and patrol schedules—was independent of traffic camera installations during the
sample period (2014-2016). This separation existed because distinct units were responsible for
different aspects of enforcement deployment, with minimal coordination between the two units.
According to the interviewees, coordination “only exists when the traffic surveillance unit detects a
large accident and calls for dispatching more police officers to the accident site.” Such coordination
is, hence, unlikely to affect police officer deployment prior to the accidents or the schedule of camera
installations. Additionally, during our sample period, the local police department lacked the capability

to utilize data analytics to analyze accident locations and times for planning camera placements.

2 Instead, the camera installation at a location was often planned long in advance (even years before the
installation) and determined mainly by two criteria: (a) a road network density and (b) a prior camera
installation status. Regarding (a), camera installations were prioritized in the road- or population-dense areas to
achieve relatively full coverage of traffic surveillance in the city’s core districts. Regarding (b), while it is
common to have multiple traffic cameras in the same area, cameras (either conventional or advanced) were
more likely to be installed at the road intersections without cameras installed before. In our analysis, we account
for the first criterion by using the road-intersection time-varying covariates and time-invariant fixed effects, and
to test and account for the second criterion, we use the number of previously installed cameras nearby (0-300
meters near a focal intersection) as a time-varying covariate.



2.3. Data

Our analyses rely primarily on three data sources. The first data source is local police reports of road
accidents, with accident information and characteristics. The second provides the time and location in
which each traffic enforcement camera was installed. The third consists of characteristics related to
each road intersection.

Accident Data. We obtain a proprietary dataset of road accidents from the police department.
The dataset records detailed information on all reported traffic accidents (237,255) in 2014-2016. It
includes the specific time and location of each accident, the number of injuries and deaths involved,
the accident causes (e.g., associated traffic violations), and driver characteristics, such as age, gender,
and years of driving experience, among others. For the main analyses, we restrict our sample to
accidents close to road intersections within a radius of 0-100 meters. This is because (i) these accident
locations were more accurately recorded, and (ii) the accidents near the road intersections were more
likely influenced by traffic cameras (the majority of which are located at the intersections). Accidents
far away (e.g., 100-300 meters) from cameras are beyond the effective monitoring range; thus, their
changes may not be attributed to the direct treatment effect of automated enforcement. However,
these distant accidents allow us to measure the spatial displacement effect, which we will discuss
below in §4.3. The restriction to accidents in the 0-100m radius results in a sample of 51,364
accidents, and 43.3% of them are involved with casualties (deaths and/or injuries).

The accident data has several key features. First, all accidents were documented by traffic
police after they occurred. Second, 99.4% of these accidents resulted from specific traffic violations.
Third, the dataset does not include violations that did not lead to accidents, though some may have
been captured by traffic cameras. This is because the accident data comes from police reports, not
camera recordings that capture violations. For more details, see Figures B-1, B-2, and Table B-1 in
Appendix B and descriptive statistics in Table C-1 in Appendix C.

Traffic Camera Installation Data. We manually collect the information on all traffic
cameras installed until September 2021 from the city website. The data includes the location and time
of each installation, as well as the functions (i.e., traffic violations designed to detect) of each camera.
Two aspects of camera installation data are worth noting: First, the data includes not only the
installations during the sample period but also those between January 2017 and September 2021. In
our main analyses, we use road intersections installed with cameras after 2016 as our control group
because both control and treatment intersections “need” camera installations, thereby being relatively
comparable to each other. This is akin to a “lookahead matching” approach (e.g., Bapna et al. 2018),
which matches the treatment group at time ¢ to a comparable control group in which units are
eventually treated at ¢ + k. Second, we exclude cameras installed at non-intersection locations (e.g., in
the middle of a road segment) because, in such cases, the locations of camera installations and
accidents nearby are less likely to be accurate. See the details of camera installation data in Figures B-

3, B-4, B-5, and Table B-2 in Appendix B.



Road Intersection Data. We obtain road intersection-level features from Baidu Map API, a
web mapping application in China. Its features include the average traffic congestion level (measured
between 0 and 100), the road types (e.g., state, provincial, or urban roads that require different levels
of engineering to accommodate varying speed limits and vehicles of different weights passing through
the intersections), and the coordinates of educational institutions (including elementary and secondary
schools), bus stops, train stations, subway stations (in operation or under construction), residential
areas, commercial buildings, food shops (e.g., restaurants), tourist spots, parking spaces, and
government agencies. We consider these facilities as they may affect both camera installations and
accident propensities for a given location. We count the number of these facilities within a 0-500m
radius to capture their effects (except for train stations and tourist spots, for which we use a 0-1000m
radius to accommodate heavier traffic near them). See the detailed measurements of road intersection
covariates in Table C-2 in Appendix C.

After mapping and compiling the above data (see more details in Appendix B), we obtain a
balanced longitudinal panel dataset of 1,564 road intersections over 36 months. The total number of
intersections in our sample was 2,522 before the “lookahead matching,” and in a robustness check
later, we use all intersections for analysis. The time unit of analysis is a month, rather than a week or a
day, so that we can accommodate random errors of temporal distance between the actual camera
installation date and the announcement date that we manually collect from the city website.®. Also, it
would be a sparse dataset of accidents (many zeros) if aggregated to the week or day level, posing a
statistical challenge. Hence, we use a month as a more accurate unit to not only measure the camera
installation times more accurately but also accumulate a stable aggregation of accidents.

Our empirical context has a few advantageous properties in identifying the effects of camera
installations. First, camera installations were rolled out with both geographical and temporal
variations, offering us a quasi-experimental setup (Figures B-6 in Appendix B). Second, we are able
to use location fixed-effects to tease out time-invariant confounding effects from, for example, road
complexity, bus traffic, and other traffic safety measures. We also control for location-specific time-
varying factors, such as the changes in nearby public and private facilities (See Table C-2 in
Appendix C). Third, camera installations were not anticipated by drivers ex ante, reducing the
endogeneity of the treatment. Fourth, we control for potential interferences among road intersections.
Specifically, we account for the number of cameras installed at neighboring road intersections and
segments (within 0-300 meters of a focal intersection). Additionally, standard errors are clustered at
the block level to account for correlated unaccounted factors due to geographical connections. Lastly,
the presence of cameras is made visible and noticeable to drivers (Figure B-7), as required by traffic

safety laws in China. Also, all sampled cameras are located at road intersections so that drivers can

3 Sometimes the announcement was one or two weeks late; but usually, it was issued on the same week of camera
installation, according to our field interviews.



easily notice them when waiting for a green light. It is still possible that drivers passing through the
green light at speed may not be aware of the cameras. Nevertheless, if we are able to identify any
measurable effect of these cameras, it would serve as the lower bound of the true treatment effect, as
the cameras would become more effective when they are more visible.

2.4. Descriptive Statistics

Using raw statistics, we conduct a non-parametric comparison of accidents near intersections treated
and untreated (control) with installations during the sample period, as well as a comparison of
accidents at the treated intersections before and after camera installations. The model-free
comparisons yield several observations (see Table C-4 in Appendix C). First, before any camera
installation, on average, the road intersections later treated with advanced cameras had experienced
more accidents, whereas intersections later treated with conventional cameras had experienced fewer
accidents than the control interventions. Second, at the treated intersections, on average, accidents
decrease after advanced camera installation. Third, at treatment intersections, on average, accidents
increase after conventional camera installation. These observations can hardly be causal evidence for
the effects of camera installation, but they reveal at least two identification challenges: (i) the city
might have selected locations to install advanced and conventional cameras for unobserved reasons,
and (ii) time-varying confounders may explain the accident dynamics following their installations.
We address these concerns through various empirical strategies detailed in §3 below.

3. Empirical Strategy and Results

3.1. Event Study Design

To obtain estimates that can be more credibly interpreted as causal, we leverage the staggered
installation of traffic cameras across road intersections over time. The quasi-experimental variation
allows us to estimate the effect of traffic cameras on road accidents using an event study design. This
strategy compares accident trends at treated road intersections before and after the treatment (i.e.,
camera installation) with those at control intersections over the same timeframe.

The event study design offers several advantages over the conventional two-way fixed-effects
difference-in-differences (TWFE-DiD) design. First, it captures the dynamic effects of traffic
cameras, discerning whether effects are persistent or temporal and providing more transparent
estimates than DiD. Second, it avoids issues like the assumption of constant treatment effect within
treated units over time, which often arise in staggered DiD designs (Goodman-Bacon 2021). Third, it
visualizes parallel pre-intervention trends in accidents, allowing us to intuitively assess if there are
any selection biases over time. This, to a large extent, addresses challenges identified in the

descriptive analysis (§2.4). We implement the event study using an OLS estimator below:
Accident;; = Y 1iPreCamera;(j) + Xy wPostCamera;. (k) + X,y + u; + v + &, (Eq. 1)

where Accident;, is the log-transformed number of total accidents within the 0-100m range at road

intersection i in month ¢. PreCamera;;(j) and PostCamera;; (k) denote pre-treatment placebos and
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post-treatment variables, respectively, that are equal to 1 if the temporal distance between month ¢ and
the month before (or after) the camera installation at intersection i is j (or k) months, respectively. We
incorporate intersection-specific time-varying covariates (X;;), including the nearby public and private
facilities, such as educational institutions, bus stops, train/subway stations, residential and commercial
areas, parking spaces, and government agencies, as well as confounding changes in traffic safety
regulations (e.g., a ban on riding electric bicycles in the studied city; see Panels (i) and (ii) in Table C-
2 in Appendix C). In addition to time-varying covariates, we account for road intersection (u;) and
year-month fixed-effects (v;). We cluster standard errors at the block level to account for both serial
correlations within a block and potential spatially correlated factors among intersections clustered in
the same block. The vector w), represents the estimate of interests; a negative and statistically
significant w; would indicate that a camera installation at the focal intersection reduces accidents
nearby. Notably, the validity of event study estimates relies on the parallel trend assumption, where
the intersections in the treatment and control groups do not differ in accident trends prior to a camera
installation (i.e., the series of 7; is statistically indifferent from zero).

We first use Eq. | to estimate the effect of advanced camera installations (relative to no
installations) in a sample of road intersections that were installed with only advanced cameras and
those without any camera installations during the sample period. We then replicate this estimate for
the effect of conventional cameras (relative to no installations, advanced or conventional). Finally, we
present both estimates (i.e., new vs. null, old vs. null) to compare the effect of advanced cameras with
that of conventional ones on total accidents.

3.2. Main Results
The results from the event study are depicted in Figure 1 (also refer to Table D-1 in Appendix D for
all tabulated point estimates and standard errors).

First, we find that the pre-trend estimates (7;) are not significantly different from zero (at the
95% confidence intervals), supporting the parallel trend assumption. Second, we observe a
statistically significant and persistent decrease in total accidents after the installation of advanced
cameras (in red in Figure 1). However, we do not find a significant decline in total accidents after the
installation of conventional cameras (in blue). This insignificant effect may be attributed to the fact
that conventional cameras detect much fewer types of traffic violations than advanced cameras and
rely on temporal image captures rather than constant video recording. Additional evidence supports
this notion: when we replace the total accidents with accidents caused by “running a red light” or
“retrograde” as the dependent variable, we find that the decrease in such accidents is statistically
significant with conventional cameras, as they are only designed to detect these two violations (See

details below in Figure 4).

4 A block is a broader geographical unit that consists of multiple intersections, and this city has 57 blocks.
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Figure 1. TWFE-OLS Estimates on the Dynamic Effects of Automated Enforcement

Notes: The red (blue) line depicts the accident trend near advanced (conventional) cameras, compared to that at intersections
without cameras (horizontal line at zero). 95% confidence intervals of point estimates are shown.

3.3. Limitations of Baseline Estimates and Corresponding Remedies

Although the TWFE specification similar to Eq. 1 has been widely adopted for staggered-adoption
program evaluations, it has recently been demonstrated to deliver consistent estimates only under
assumptions of homogeneous treatment effect (e.g., de Chaisemartin and D’Haultfeeuille 2020,
Borusyak et al. 2021, Callaway and Sant’ Anna 2021, Goodman-Bacon 2021, Sun and Abraham
2021). An intuitive explanation is that the estimate from a TWFE model is a weighted average of all
possible “2 (before and after) x 2 (treated and untreated units)” DiD comparisons. If the treatment
effects are homogeneous across treated units and times, the TWFE estimator is consistent for the
average treatment effect on the treated (ATT). Conversely, if the effects are heterogeneous across
units and times, the TWFE estimator may not produce consistent ATT estimates.

To estimate the dynamic effects in a stagged-adoption design, we first follow Sun and
Abraham’s (2021) approach, which uses either the untreated cohorts or the last-treated cohorts as
controls. Based on a regression-based method, their approach estimates the share of the cohorts as
weights that are more interpretable than the weights underlying TWFE with staggered adoptions. We
then resort to the imputation estimator proposed by Borusyak et al. (2021), which amounts to fitting a
regression of the outcome on group and time fixed-effects in the sample of untreated observations and
using that regression to predict the counterfactual outcome of treated observations. The estimated
treatment effect of those observations is then merely obtained by subtracting their counterfactual from
their actual outcome, making the estimator more efficient than that in Sun and Abraham (2021). We

also use the estimators in de Chaisemartin and D’Haultfoeuille (2021) to incorporate time-varying
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covariates. This approach assumes that the trends are parallel once the linear effect of time-varying
covariates is accounted for.

Figure 2 presents and compares the event study estimates generated by TWFE-OLS and the
ones based on Sun and Abraham (2021), Borusyak et al. (2021), and de Chaisemartin and
D’Haultfoeuille (2021). All estimates are consistent with our baseline TWFE-OLS results in Figure 1.
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Figure 2. Heterogeneity-Robust Event Study Estimators

Notes: These figures present and compare the event study estimates generated by TWFE-OLS (our baseline event study
estimates) with those based on Sun and Abraham (2021), Borusyak et al. (2021), and de Chaisemartin and D’Haultfoeuille
(2021). The point estimates and 95% confidence intervals are used here.
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3.4. Robustness Checks
In what follows, we conduct a battery of tests to probe the robustness of our baseline event study
estimates, with a summary in Table | and the results reported in Appendix E.

First, we examine if our estimates are sensitive to including different sets of covariates (e.g.,
traffic congestion levels, traffic cameras not located at the focal intersection but nearby within the
300-meter range). Results with different covariates indicate that the estimates are consistent (Figure
E-1). Second, we test the sensitivity of our estimates to the sampling strategy. In the baseline
analyses, we use a “lookahead matching” approach to construct the control group from intersections
treated with cameras after the sample period. We consider two alternatives: (i) using all intersections
without camera installation during the sample period as the control group and (ii) applying matching
techniques, specifically coarsened exact matching (CEM) and only including observations
(covariates-)matched to the treatment intersections as the control group (see Table E-1). Results
remain consistent (Figure E-2).

Third, the baseline estimates might be biased when unaccounted time-varying confounders
influence treated and untreated road intersections differently. To address this issue, we employ a
generalized synthetic control (GSC) method (Xu 2017). The results in Figure E-3 corroborate the
validity of the event study. Fourth, advanced cameras might be selected to be installed at intersections
with higher accident risks. We test this possibility using a hazard logit model to predict the camera
installation at the focal intersection using its past accident records. However, we find no statistically
significant evidence for potential reverse causality (see Table E-2).

Fifth, the significant downward trend in accidents might be due to its spurious relations with
camera installation or serial correlations of accidents within intersections. We conduct a falsification
test by applying randomly assigned pseudo treatments to road intersections and months. Results do
not indicate that autocorrelation exists or statistical effects are picked up at random (Figure E-4).
Sixth, the distribution of accidents caters to a count data model, and as such, we apply a Poisson
regression to the TWFE event study model. Results remain qualitatively consistent with the baseline
estimates (Figure E-5).

Seventh, one would still be curious about the overall effect of camera installation, regardless
of camera type. We test it and find that the downward trend in total accidents remains following any
camera installation (Figure E-6). Finally, it is important to test the effect of camera installation
directly on traffic violations. One limitation of our data is that it only records violations associated
with accidents, potentially missing many non-accident violations. To study the changes in violations,
we replace the accidents with punishment for violations as the dependent variable, measured by
penalty points and fines aggregated at the intersection-month level. Our analysis reveals a significant
drop in punishment near advanced cameras, indicating fewer violations, while conventional cameras
show no significant effect (Figure E-7). Although our dataset does not capture all violations, the

estimated decline provides a conservative lower bound for the impact of automated enforcement.
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Table 1. Summary of Robustness Checks

Empirical Challenges | Empirical Tests Results Location
Are the estimates (1) Drop all covariates and all fixed effects Results remain Figure
sensitive to including | (2) Only maintain intersection and year-month consistent E-1
different sets of fixed effects and drop all intersection-specific time-

covariates? varying covariates
(3) Maintain all covariates in the baseline model
and add the interactions between all covariates and
the year-month fixed-effects
(4) Additionally control for the traffic congestion
level of each intersection by interacting it with
year-month fixed-effects
(5) Additionally control for the total accident and
casualty cases in the past three months
(6) Add the counts of old cameras, new cameras, or
other types of cameras within the 300-meter range
of the focal intersection

Are the estimates (1) Use intersections without camera installation Results remain Figure

sensitive to the during the sample period as the control group consistent E-2

sampling strategy? (2) Employ the coarsened exact matching (CEM)
method

Unaccounted time- Employ the generalized synthetic control (GSC) Results remain Figure

varying confounders | method consistent E-3

Advanced cameras Use a hazard logit model to predict the camera No statistically Table

might be selected to installation at the focal intersection using its past significant E-1

be installed at accident records evidence for the

intersections with potential

higher accident risks. selectivity issue.

Spurious correlation? | Conduct a falsification test by applying randomly No evidence for Figure
assigned pseudo treatments to road intersections autocorrelation or | E-4
and months. statistical effects

being picked up
at random

The distribution of Apply a Poisson regression Results remain Figure

accidents caters to a consistent E-5

count data model

The overall effect, Treat all camera installations the same and replicate | The downward Figure

regardless of camera | the baseline analysis with this composite treatment | trend in total E-6

type measure accidents remains

How about the direct | Replace accidents with punishment for violations Results remain Figure

effect of camera as the dependent variable, measured by the penalty | consistent E-7

installation on traffic | points and fines aggregated at the intersection-

violations? month level

Is the TWFE model Use the estimators proposed by Sun Results remain Figure 2

with a stagged- and Abraham (2021), Borusyak et al. (2021), and consistent

adoption design de Chaisemartin and D’Haultfoeuille (2021),

consistent? respectively

3.5. Average Effects and Economic Significance

While the event study design demonstrates the dynamic effects of traffic cameras over time, it does
not capture their overall effect during the sample period. To address this, we estimate the average
treatment effect of traffic camera installation using a conventional TWFE-DiD approach, followed by
a robustness check with Callaway and Sant’Anna’s (2021) method, which mitigates bias in staggered
DiD settings by accounting for treatment effect heterogeneity across installation cohorts (details in

§3.3). These estimates allow for a welfare analysis to assess the economic significance of automated
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enforcement deployment. Specifically, we evaluate the average changes in accident counts, human
costs (e.g., the number of deaths, serious, and minor injuries), and the monetary value of property loss
involved in the accidents near the treated road intersections before and after camera installation.

Table 2 presents TWFE-DiD and Callaway and Sant’ Anna’s (2021) estimates for the effects
of advanced cameras (versus no cameras) in Panel A and the effect of conventional cameras (versus
no cameras) in Panel B. The TWFE-DiD estimates indicate that advanced traffic camera installations
are statistically significantly associated with reductions in total accidents (—8.3%), casualty cases
involving deaths and injuries (—6.3%), and non-casualty cases involving only vehicular damage (—
3.2%). Examining the specific components of human and economic loss involved, we find that
advanced traffic cameras reduce deaths (—0.5%), serious injuries (—0.1%), minor injuries (—6.8%), and
property loss (—31.8%). In contrast, we do not find statistically significant evidence that conventional
camera installations affect accident counts, human loss, or property damage. The estimates using
Callaway and Sant’Anna’s (2021) method are largely consistent with the baseline results, though they
exhibit larger effect magnitudes and inevitably inflated standard errors. Consequently, the TWFE-DiD
estimates can be considered a credible and conservative lower bound for the effects of interest.

Table 2. Estimated Average Effects of Camera Installations on
Road Accidents and Associated Human and Economic Costs

#

# # Non- ” # # ¥
Mase CCael  Cosaly  Deans  EER R PRREY
DV: log(Y+1) Case
1) 2) 3) “) (5) (6) @)
Panel A:
TWEFE-DiD
Advanced cameras -0.083***  .0.063***  -0.032%* -0.005%* -0.0012*  -0.068***  -0.318**

(0.016) (0.016) (0.013) (0.002) (0.0007) (0.018) (0.138)

Callaway and Sant’Anna (2021)
Advanced cameras -0.149%**  -0.096** -0.062* -0.012 -0.002* -0.104** -0.439
(0.044) (0.042) (0.037) (0.009) (0.001) (0.050) (0.293)

Mean of Y w/o cameras 0.474 0.199 0.276 0.005 0.001 0.241 654.490
Panel B:
TWEFE-DiD

Conventional cameras 0.009 -0.005 0.010 0.002 -0.000 -0.006 -0.119

(0.029) (0.017) (0.020) (0.003) (0.001) (0.021) (0.223)

Callaway and Sant’Anna (2021)

Conventional cameras 0.050 -0.004 0.048 0.002 0.001 0.001 0.422
(0.041) (0.026) (0.035) (0.003) (0.002) (0.027) (0.282)

Mean of Y w/o cameras 0.455 0.188 0.267 0.004 0.001 0.228 654.669

Notes: In all specifications, we control for intersection fixed effects, year-month fixed effects, and location-specific time-
varying control variables. Panel A shows the estimated effects of advanced camera installations (relative to no installations)
in a sample of road intersections that were installed with only advanced cameras and those without any camera installations
during the sample period. Panel B shows the estimates for the effect of conventional cameras (relative to no installations) in
a sample of intersections that were installed with only conventional cameras and those without any camera installations. In
each panel, we first implement a TWFE-DiD estimation, followed by a robustness check using Callaway and Sant’Anna
(2021), with both approaches yielding consistent results. Robust standard errors (clustered at the block level) are reported in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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A back-of-the-envelope calculation using TWFE-DIiD estimates suggests that if the city had
installed advanced cameras at all signal-controlled intersections, it could have potentially prevented
1,190 accidents (including 379 casualty cases) annually,’ saving 496 lives involved in fatal and
injury-related incidents, and reducing property loss from vehicular damage by ¥6,298,780 (= US
$969,043). Beyond this counterfactual estimation, we also estimate the incremental economic and
human cost savings associated with the actual installation of advanced cameras during our sample
period. Economic savings are again measured by reductions in property loss from vehicular damage,
while human cost savings are now calculated based on decreased expenses related to bodily injuries
and lost lifetime income due to the installation of advanced cameras. As a result, the total societal
benefits from the actual deployment of advanced cameras amount to ¥426,003 (= $65,538) before
2017, ¥1,438,508 (= $221,308) before 2018, and ¥2,727,687 (=~ $419,644) before 2019 (See detailed
calculations in Appendix G). A note of caution is warranted when interpreting or extrapolating these
estimates. While our analysis focuses on the traffic safety benefits of automated enforcement,
potential costs—such as the negative aspects of increased surveillance—should not be overlooked,

even though they fall outside the scope of this research.

4. Underlying Mechanisms
4.1. Key Explanations
How to explain the overall decline in accidents after the installation of advanced cameras, relative to
conventional ones? We draw upon deterrence literature to discuss the underlying mechanisms.
Traffic cameras, as automated law enforcement tools, naturally connect this study to
criminology and economics literature on monitoring. Becker (1968) argued that crime levels are
determined by individuals’ rational evaluation of costs and benefits, where the expected cost of crime
is shaped by monitoring resources (which increase the probability of apprehension) and punishment
severity (which raises the potential penalty). He further suggested that this framework could be
extended to encompass various types of violations, including traffic offenses (p. 170). This has
inspired research on traffic safety as a matter of law enforcement. For instance, Hansen (2015) found
harsher punishments reduce driving-under-influence offenses, and Goncalves and Mello (2017)
studied the impact of speeding penalties on the future driving behavior of cited drivers. Our work
differs by focusing on (i) monitoring resources rather than punishment severity, (ii) automated
enforcement (including its functions and presence) rather than human police presence, and (iii)
aggregate-level deterrence and traffic safety outcomes rather than individual behaviors.
Drawing on deterrence literature (Chalfin and McCrary 2017), we argue that (i) traffic

cameras’ technical capabilities increase the likelihood of identifying and apprehending traffic

5 The reduction of 1,190 total accidents is computed as 0.474 (mean of total accidents at baseline intersections
without any cameras) x 0.083 (the estimated average effects of advanced cameras) x 12 (months) x 2,522 (the
number of all signal-controlled intersections). 0.474 and 0.083 are from Column 1 in Panel A of Table 2.
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violators, and (ii) drivers’ awareness of these cameras influences their driving behaviors, with both
mechanisms collectively reducing accident risks. Notably, the first mechanism (i) represents the
technological source of deterrence, while the second (ii) is the psychological manifestation of
deterrence. These mechanisms are interdependent, and both are essential to materialize the overall
deterrent effect. To illustrate, if traffic cameras lack sufficient technical capacities (e.g., limited
detection functions in conventional cameras) or are not functioning, drivers may adapt to their
limitations, resulting in weak deterrence. Similarly, if drivers are unaware of the cameras’ presence or
functionality, psychological deterrence is undermined, and violations and accidents are unlikely to
decrease. Recognizing this, we explore the nature of these two factors in our empirical context.

The primary technical capability of traffic cameras lies in their built-in functions with ML to
constantly and automatically detect violations (automated detection effect). Compared to human
police, automated law enforcement increases monitoring visibility and the range of violations to
detect. Traffic cameras not only mimic the presence of human police but also operate more durably
and ubiquitously, providing 24/7 violation detection. Before camera deployment, traffic law
enforcement efficacy was relatively low and could only be improved by allocating more police
officers and checkpoints, a costly endeavor. Even so, some violations, such as non-seatbelt use, are
difficult for officers to detect, especially in heavy traffic or high-speed scenarios. In contrast,
advanced cameras, equipped with ML algorithms, can recognize and detect many more violations
simultaneously in real-time, making them more effective than conventional cameras and police
patrols in deterring violators and preventing accidents.

The other technical capability of traffic cameras is their ability to monitor and record,
providing unambiguous evidence to assist law enforcement in identifying accident causes and liability
(real-time recording effect). This function is more effective in advanced cameras. Conventional
cameras only operate when triggered by separate sensors to detect specific violations (e.g., radar to
detect speeding) and only take a few pictures. In contrast, advanced cameras constantly monitor
traffic and record video. This video may happen to record some violations during an accident as
evidence for the identification of accident cause and liability. Without traffic cameras, evidence for
violations or accidents would often be incomplete. While professional investigators can inspect
accident scenes, they are prone to inaccuracy and subjectivity, relying on post-crash human judgment.
Advanced cameras offer instantaneous, objective facts through images or video footage for accident
scenes. Individuals involved in accidents can request this evidence for an accurate account of the
causes of the accidents. In our sample, some accidents lack the accurate on-site information needed to
specify their causes. Installing advanced traffic cameras can reduce such unclear reports by recording
evidence during accidents.

Finally, due to their automated detection and real-time recording capabilities, traffic cameras
can effectively deter risky driving and traffic violations, thereby reducing road accidents. This

deterrent effect arises from human-technology interactions; drivers become more cautious and
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prioritize safety when they feel deterred by such cameras. Technology-enabled deterrence
materializes when drivers consciously or unconsciously associate the presence of cameras with their
powerful functions of automated enforcement and punishment, rather than their mere presence.
Notably, even if the cameras are not de facto operating or not within their deterrence coverage, drivers
can still be psychologically deterred, as they understand the cameras’ technical capabilities, regardless
of whether they are aware of their functionality. This psychological deterrence leads drivers to learn
where and when cameras are installed and adjust their risk-taking behaviors while driving. In essence,
driver learning channels the deterrent effects from their technical origins to driving behavior changes,
ultimately reducing accident risks.

In summary, the theoretical underpinnings laid out above aim to understand the deterrent
effect of automated enforcement and its technological sources. Drawing on deterrence literature, the
automated detection and real-time recording features of cameras improve the effectiveness of
monitoring and increase the likelihood of violation apprehension, and such technical capabilities lead
to drivers’ learning about the cameras’ presence and functions, which ultimately explains the overall
decline in accidents near the cameras.

4.2. Mechanism Analyses

While the above explanations for the roles of automated enforcement are theoretically elucidated,
empirically demonstrating these mechanisms—(i) technical capabilities (including automated
detection and real-time recording) and (ii) driver learning—is challenging because these individual
mechanisms are intertwined and collectively explain the overall changes in accidents. Next, we
explore these mechanisms empirically using different types of road accidents detailed below.

Table 3. Different Types of Accidents Recorded in the Police Reports

Accident Function | Description Types of cameras | Examples
Type
“driving in the wrong
Al . . . Advanced lane,” or “causin,
Accidents for which associated : g”
. N traffic congestion
Proactive | violations are detectable by cameras
given their design only “running a
A2 Conventional red light” and
“retrograde”
Accidents for which associated “not wearing a
violations cameras are not designed seatbelt,” “texting
B Passive to detect but can capture evidence Advanced while driving,” or
for accident cause identification “other distracted
through video recording driving”
Neither Accidents are due to violations that
. cameras are not designed to detect Neither “drunk driving,”
proactive . . e . .
C and cannot capture evidence to conventional nor driving without a
nor ) ! . . . 5
. identify accident cause even with advanced license
passive :
recording

Notes: Type A2 accidents are a subset of type A accidents and refer to accidents for which the associated
violations could be detected by conventional cameras. On a separate note, we conducted a falsification test to
assess the effects of advanced and conventional cameras on type C accidents. The results in Figure F-1 in
Appendix F are statistically insignificant, indicating that cameras without the necessary technical capabilities
cannot reduce the corresponding accidents.
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We classify road accidents into three classes based on whether they are associated with
violations that cameras can or cannot capture (Table 3): (A) accidents for which associated violations
could have been captured by the proactive (i.e., primarily designed) functions of the cameras (e.g.,
“running a red light”), (B) accidents for which associated violations could have been captured by the
passive and complementary (mainly real-time recording) functions of the cameras (e.g., “improper
motor operation” such as texting while driving, captured by constant video but not designed to
detect), and (C) accidents neither proactively nor passively captured by the cameras (e.g., “drunk
driving” that only other means, such as a breath alcohol test, can help detect and identify the causes).
Taken in sum, Type A accidents can be captured by either advanced or conventional cameras or both,
Type B accidents can only be captured by advanced cameras (due to their constant video recording),
and Type C accidents cannot be captured by either type of camera.

Automated Detection Effect. We explore the effect of the cameras’ automated detection
capability by focusing on accidents linked to violations captured by the cameras’ proactive functions
(i.e., Type A accidents). We separate the analyses for advanced and conventional cameras, as their
proactive functions exhibit different coverage of violations; advanced cameras can detect over 30
types of violations, while conventional cameras detect only 2 (“running a red light” and “retrograde”).
Figure 3 presents the baseline estimates using the number of accidents for which associated violations
could have been captured by advanced cameras’ proactive functions as the dependent variable. The
post-treatment estimates indicate a statistically significant downward trend (in red), empirically
supporting the automated detection effect. Figure 4 presents the estimates using accidents linked to
accidents captured by conventional cameras’ proactive functions. The post-treatment estimates
indicate a similar downward trend after the installation of both conventional cameras (in blue) and

advanced ones (in red), corroborating the automated detection effect.
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Figure 3. Effect of Camera Installation on Traffic Accidents Linked to Violations
Captured by Advanced Cameras’ Proactive Functions

Notes: Examples of accidents nearby for which associated violations captured by the advanced cameras’
proactive functions are “running a red light,” “driving in the wrong lane,” or “causing traffic congestion.”
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Figure 4. Effect of Camera Installation on Traffic Accidents Linked to Violations
Captured by Conventional Cameras’ Proactive Functions

Notes: Accidents nearby for which associated violations could have been captured by the conventional cameras’
proactive functions are only “running a red light” and “retrograde.”

Additionally, advanced cameras outperform conventional ones in reducing two types of
accidents linked to violations both cameras can detect (post-estimates in red vs. those in blue in
Figure 4). Notably, despite their ability to detect more violations and prevent a broader range of
accidents, advanced cameras are also cheaper and easier to install. Unlike conventional cameras,
which require an electromagnetic device embedded beneath the intersection, advanced cameras
operate without this additional infrastructure, reducing costs and streamlining deployment.

Real-time Recording Effect. We explore the effect of the cameras’ real-time recording
capabilities by focusing on accidents for which associated violations could have been captured by
advanced cameras’ passive functions (Type B accidents). We only focus on advanced cameras here,
because conventional cameras barely record accident cause evidence beyond the two violations they
are designed to detect. Figure 5 presents the baseline estimates using the number of accidents for
which associated violations could have been captured by advanced cameras’ passive functions as the
dependent variable. The post-treatment estimates indicate a statistically significant downward trend
(in red), empirically supporting the real-time recording effect. However, we find such accidents
remain statistically unchanged following the conventional camera installation, which serves as
falsification evidence that the real-time recording effect does not arise if a camera is not technically

capable of capturing video evidence to assist with accident cause identification.
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Figure 5. Effect of Camera Installation on Traffic Accidents Linked to Violations
Captured by Advanced Cameras’ Passive Functions

Note: Examples of accidents for which associated violations could have been captured by advanced cameras’
passive functions are “improper motor operation” or ‘“not wearing a seat belt.” Although the post-treatment
estimates (red line) are not all statistically significant, raising concerns about whether the real-time recording
effect is overstated, we find a negative and statistically significant average effect on accidents (-0.046 using
TWFE-DiD estimates and -0.059 using Callaway and Santa’Anna (2021), p < 0.05) (see Table 4).

Driver Learning Effect. Drivers may change their behavior through learning from
technologies (e.g., Zhang et al. 2020). In our context, we investigate whether driver learning arises
from deterrence under ML-enabled automated enforcement. Specifically, we analyze changes in
accidents linked to violations that advanced cameras’ proactive functions could have captured. This
analysis focuses on focal intersections equipped with conventional cameras and examines the impact
of advanced cameras newly installed at neighboring intersections 100-300 meters away (see Figure F-
2 in Appendix F).

For this analysis, we use a subset of the full sample comprising intersections with
conventional cameras installed prior to the installation of advanced cameras in nearby areas. This
setting allows us to observe the behaviors of drivers who are exposed to both limited deterrence from
conventional cameras—capable of detecting only two types of violations—and the broader deterrence
of advanced cameras nearby. The similar appearance of advanced and conventional cameras may lead
drivers to mistakenly attribute past punishments for violations (the experience they learned) fo a
conventional camera at a focal intersection, believing it to be an advanced camera with proactive

detection capabilities, even though the actual advanced camera is located nearby in the broader area.
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Figure 6. Spillover Effect of Advanced Cameras at Nearby Intersections on Accidents (Linked
to Violations Captured by Their Proactive Functions) at the Focal Intersection

Notes: It is important to highlight that both neighboring and focal intersections were installed with conventional
cameras to ensure drivers’ awareness of their presence. The analysis here aims to understand whether the
addition of an advanced camera to the neighboring intersection prompts driver learning and extends deterrence
from the neighboring intersections (100-300m away from the focal one) to the focal intersection beyond the
detection coverage of neighboring cameras. We also examine driver learning by estimating the changes in
accidents for which associated violations could have been captured by advanced cameras’ passive functions and
not captured by any functions, with results in Figure F-3 and Figure F-4 do not yield any significant patterns
(see details in Appendix F).

This deterrence spillover effect arises solely from driver learning for the following reasons. (i)
Advanced cameras at neighboring intersections cannot capture violations occurring 100-300 meters
away. (ii) Conventional cameras at the focal intersections cannot detect certain violations (e.g.,
speeding) that are detectable only through advanced cameras’ proactive functions. (iii) The reduction
in accidents can only be attributed to drivers learning about the presence and function of advanced
cameras nearby, based on past experiences, extending this deterrence to the conventional camera they
encounter at focal intersections.® Figure 6 shows a significant downward trend in accidents at focal
intersections following the installation of advanced cameras nearby, providing notable evidence for
the driver learning effects.

Taken together, advanced cameras more effectively reduce accidents than conventional
cameras through three mechanisms. First, the automated detection effect improves violation
identification, leading to fewer accidents. Advanced cameras not only reduce overall accident

occurrence by detecting a wider range of violations (extensive margin, Figure 3) but also further

¢ One alternative explanation for this spillover effect is GPS alerts notifying drivers of nearby advanced
cameras, even when they are not directly passing them. While standard GPS alerts typically do not cover
cameras beyond 100 meters on urban roads, if they do, such alerts would reinforce rather than contradict the
driver learning effect. In this case, they could further enhance driver awareness, implying that our estimate—
though statistically significant—may represent a conservative lower bound of the driving learning effect. We
appreciate an anonymous reviewer for suggesting this alternative explanation.
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decrease accidents where associated violations could have been proactively captured by conventional
cameras (intensive margin, Figure 4). Second, the real-time recording effect enables passive
monitoring through continuously capturing video, aiding in accident cause identification and
improving post-accident analysis (Figure 5). Finally, the driver learning effect increases driver
awareness over time. Drivers adjust their behavior in response to the presence and functions of
advanced cameras and even extend this awareness to locations without effective deterrence (Figure 6).

Beyond the event study estimates on these mechanisms, we also report the average effects
using both TWFE-DiD and Callaway and Santa’ Anna (2021) estimates in Table 4. The results
indicate substantial effect magnitudes and statistical significance, aligning with the mechanisms
discussed above.” These findings suggest that advanced cameras provide greater technological and
psychological deterrence than conventional ones, further corroborating the baseline result of a
significant reduction in accidents observed near advanced cameras.

Table 4. Estimated Average Effects of the Mechanisms

Camera Accident Corresponding Callaway and
Mechanisms Type Type Event Study TWEFE-DiD Sant’Anna
yP P Estimates (2021)
Advanced Al Fioure 3 -0.055%** -0.096***
Cameras g (0.014) (0.028)
Automated Advanced A2 Fioure 4 -0.057*** -0.050**
Detection Effects Cameras gure (0.013) (0.019)
Conventional . -0.050%** -0.064%*
Cameras A2 Figure 4 (0.018) (0.025)
Real-time Advanced B Fioure 5 -0.046** -0.059**
Recording Effect Cameras g (0.018) (0.026)
Driver Learning Neighboring Fioure 6 0.085% 0.161%*
Effect o g (0.044) (0.069)
ameras

Notes: This table presents the results of the mechanism analysis based on the estimated average effects of
advanced (or conventional) cameras, complementing the event study estimates in Figures 3-6, which may not
fully capture the magnitude and statistical significance of the overall effects. In all specifications, we control for
intersection fixed effects, year-month fixed effects, and location-specific time-varying control variables. Each
analysis begins with a TWFE-DiD estimation, followed by a robustness check using Callaway and Santa’ Anna
(2021), with both approaches yielding consistent results. Robust standard errors (clustered at the block level) are
reported in parentheses. *** p<(0.01, ** p<0.05, * p<0.1.

7 The estimates for driver learning effects (-0.085 for TWFE-DiD estimation and -0.161 for Callaway and
Santa’Anna (2021) method) seemed larger than the main effects of advanced cameras on A1 type accidents (-
0.055 for TWFE-DiD estimation and -0.096 for Callaway and Sant” Anna’s method). This is because the
subsample we used for driver learning effect analysis differs from the ones used for other tests. When using the
same subsample, the main effect of advanced cameras is larger than the estimated driver learning effect. To
further supplement the analysis of accident types (characterized as A, B, and C in Table 3), we also analyze
specific accidents (top 5 in our accident data) and the impact of cameras. The results shown in Table F-2 in
Appendix F are consistent with those from the main mechanism analyses in §4.2.
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4.3. Confounding Explanations

There could be other confounding mechanisms that may obscure the interpretation of the observed
effects. We first discuss one such mechanism—displacement—that would support the deterrent
effects but does not improve the overall traffic safety of the studied city. Then, we explore two other
explanations—distraction and risk compensation—that may increase accident propensities and
potentially offset the deterrent effects.

Temporal and Spatial Displacement. In line with the scholarly debate in criminology on
whether deterrence primarily displaces, rather than reduces, crimes (e.g., Banerjee et al. 2019), we
empirically test the accident displacement effect in our setting. We find no evidence of femporal
displacement, as the effects of cameras are sustained once they are permanently installed (Figures 1
and 2). Spatial displacement is possible if drivers become more strategic in risky driving, especially
when they are not in camera detection range. Yet, we find that it is unlikely either, as there are no
significant changes in accidents within a 100-300m radius of a focal intersection after camera
installation (Figure G-1 in Appendix G).

Distraction. Newly installed cameras may distract drivers when they pass the intersections
where cameras are installed. If a driver suddenly notices the cameras nearby and slams on the break,
the vehicles behind would have to follow suit. If the latter cannot respond as promptly as possible,
rear-end collisions occur. These cases could increase the number of accidents immediately after the
camera installation. To empirically test this possibility, we replicate the baseline estimation but only
focus on rear-end collisions and do not find evidence of such a distraction effect (Figure G-2).

Risk Compensation. Despite the existence of deterrence, there are still cases where a decline
in accidents is not seen, as predicted by the risk compensation effect (Peltzman 1975). Because only
drivers, but not pedestrians or cyclists, are deterred by traffic cameras, the drivers may become more
careful than others on the road. If this is the case, the main effect would be explained only by a
decline in motor-and-motor accidents, but not pedestrian-and-motor accidents or single motor
accidents (non-motor accidents thereafter). It is possible that accident risk is transferred from those
who are under the deterrence (drivers) to—or compensated by—those who are not (pedestrians or
cyclists), thereby increasing the accidents of the latter. If so, such a risk compensation effect would
offset the deterrent effects. To check this possibility, we replicate the analyses but only focus on the
changes in non-motor accidents. We do not find any statistically significant evidence that supports the
risk compensation explanation (Figure G-3).

5. Effect Heterogeneity
We further examine the varying effects of contextual factors to understand for whom and when
advanced cameras improve traffic safety. The results are in Table I-1 in Appendix I.

First, traffic cameras can deter risky driving behaviors more effectively among those who

take more risks. Consistent with traffic safety literature (e.g., Makowsky and Stratmann 2009), our

data shows that male drivers are more accident-prone than female drivers. Additionally, experienced
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drivers have higher accident rates than novice drivers (e.g., 0-3 years post-licensing). These facts in
our context might be due to (i) the higher proportion of male and experienced drivers and/or (ii) these
drivers generally driving more, being over-confident, and less cautious. Consequently, male and
experienced drivers’ behaviors should be more impacted by traffic cameras. Our findings support this,
showing a significant reduction in accidents involving these driver groups post-camera installation.

Second, since accidents are less likely to occur at lower speeds (Peltzman 1975), cameras
should be more effective where traffic speed is higher. Urban traffic speeds are influenced by the
severity of congestion. The speeds are lower during peak hours (7:00-9:00 am and 5:30-7:30 pm in
our setting) but higher during off-peak hours. We classify the accident times into peak and off-peak
hours and find that advanced cameras reduce accidents in off-peak hours, but not in peak hours,
reinforcing their role in deterring risky driving.

Finally, the advantage of automated enforcement over police officers lies in its constant
presence and extensive coverage. Police deployment on the road is often disproportionate across time
in a day — for example, more in the daytime and less at night. In addition, the ability of officers to
detect traffic violations is weaker at night than in the daytime. In contrast, traffic cameras can operate
effectively 24/7 under various light conditions. We analyze the effect of advanced cameras during
daytime (6 am to 6 pm) and nighttime (6 pm to 6 am) separately. Results show that advanced camera
installations lead to a statistically significant reduction in accidents in both periods, with a notably
larger effect at night. These findings further support the benefits of automated enforcement’s constant
and pervasive operations in preventing traffic accidents.

6. Discussion and Conclusion

6.1. Summary of Findings

In this paper, we examine the role of automated enforcement in traffic safety. Using a unique
longitudinal dataset on road accidents and traffic camera installations in a metropolitan city in China
in the mid-2010s, our event study estimates consistently demonstrate a statistically significant and
persistent downward trend in total accidents near advanced cameras. The installation of conventional
cameras does not have a material effect on the total accidents, but it leads to a decrease in a limited
type of accidents because such cameras are designed to detect limited violations.

More importantly, we further theorize the sources of the effect: the technical capability and
driver learning associated with the cameras. Our findings show that the unique technical capabilities
— automated detection enabled by ML techniques and real-time recording — differentiate the trends in
accidents near advanced cameras from those near conventional cameras or no cameras. Compared to
conventional cameras, advanced cameras exhibit larger effects on accidents due to their proactive
functions (i.e., enhanced violation detection). This relative effect is evident in both the extensive
margin (a decrease in more types of accidents) and the intensive margin (a greater reduction in the
same accident types). Furthermore, advanced cameras exhibit a unique effect on reducing more types

of accidents for which associated violations could have been captured by their passive functions (i.e.,
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real-time video recording), an effect not observed for conventional cameras. These capabilities of
advanced cameras help establish a technology-enabled deterrence, wherein drivers are aware of and
learn the presence and functions of advanced cameras. This awareness and learning carry over to
other locations, even where effective deterrence does not exist, by affecting drivers’ behaviors in a
way to avoid violations and reduce their accident risks.

Additional findings from tests of confounding explanations, heterogeneous effects, and
welfare analyses further substantiate the impact of automated enforcement. First, the overall reduction
in accidents persists over time and does not shift to locations further away from cameras, assuaging
concerns about temporal or spatial displacement that is common with human police deployment.
Second, we find no evidence of accident risks transferring to other road users (e.g., pedestrians,
cyclists) after camera installations, addressing concerns about risk compensation and negative
externalities to motor and pedestrian collisions. Third, the effects of advanced cameras are stronger
for male and experienced drivers, as well as during non-peak hours and nighttime, when risky driving
is more likely, corroborating the deterrence mechanism. Finally, the estimated total societal benefit
associated with the advanced cameras is economically significant, with the potential decrease of 1,190
accidents, 496 people involved in fatal and injury cases, and ¥6,298,780 (= US $969,043) in property
loss annually, had they been installed at all signal-controlled intersections in the studied city.

6.2. Contributions to Research and Policymaking

This study makes significant contributions to research and practice. First, it advances research on
traffic safety by distinguishing the capabilities of advanced, Al-driven systems from conventional
interventions. Prior studies have largely focused on conventional cameras, often overlooking their
technical features, and reported mixed or limited effects (De Pauw et al. 2014, Gallagher and Fisher
2020). In contrast, we examine how technical features—such as ML-enabled multi-violation detection
and real-time recordings—reshape road safety. Our findings suggest that advanced cameras address
key limitations of conventional enforcement, including information asymmetry and negative
externalities (Edlin and Karaca-Mandic 2006), while enhancing deterrence and encouraging drivers to
internalize and comply with traffic regulations. By analyzing the interplays between technical
capabilities and behavioral deterrence, we show how advanced cameras reduce accidents and foster
sustained behavioral changes, even beyond monitored areas, bridging critical gaps in the literature on
traffic management and road safety.

Moreover, this study advances criminology and law enforcement scholarship (Becker 1968,
Nagin 2013, Chalfin and McCrary 2017) by exploring the role of automated, Al-enabled enforcement.
Although research has linked public surveillance cameras to crime deterrence (e.g., Priks 2015), the
socio-technical aspects of automated enforcement remain under-theorized. We provide theoretical
insights into how traffic cameras’ automated detection and real-time recording capabilities can evolve
into effective technology-enabled deterrence. Further, our findings advance the debate on deterrence

efficacy in traffic safety (e.g., Banerjee et al. 2019), demonstrating that technology-enabled deterrence
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mitigates concerns over risk displacement or compensation (Pelzman 1975) and highlighting
comparative advantages of automated over conventional law enforcement in improving road safety.

Further, this research enriches the broader discourse on the societal impact of IT (e.g., Chan
and Ghose 2014, Chan et al. 2016, Cheng et al. 2020, 2022, Liu and Bharadwaj 2020, Park et al.
2021). By examining a machine learning application in the public domain, we extend the scope of IS
literature on IT and transportation, offering new insights into the role of emerging technologies in
addressing enduring challenges in road safety and public health.

Finally, the findings of this work hold significant implications for policymakers. To enhance
traffic law enforcement, policymakers and transportation planners should prioritize technology-
augmented policy interventions. More importantly, they must develop a deeper understanding of Zow,
why, and when automated enforcement is most effective. The significant and persistent reduction in
road accidents following the installation of advanced cameras, compared to conventional ones,
delivers a key policy insight; for technology-enabled deterrence to be materially effective, it is
essential to evaluate the technical capabilities, drivers’ behavioral changes, and overall effectiveness
of such systems, rather than narrowly focusing on whether to deploy them or how many to install.
Key questions to consider include: What types of violations can these cameras detect? How effectively
do they apprehend traffic violators? Can they provide constant traffic monitoring and collect
evidence to determine accident causes and liabilities? How do they influence drivers’ learning and
behavioral adjustment toward safe driving? Insights from this study offer a foundation for
policymakers to navigate the complexities of procuring and deploying automated enforcement
systems and to cautiously and dynamically assess their impact on traffic safety.

6.3. Limitations and Future Work

To understand the extent to which our findings on automated enforcement and its effects can inform
real-world considerations and applications, we highlight several important limitations. One key
limitation lies in our focus on traffic safety, measured by changes in road accidents. While this
approach provides valuable insights, a more detailed analysis of traffic violations following camera
deployment could shed light on the underlying deterrence mechanisms. Since our analysis is based on
police accident reports, it does not account for violations that do not result in accidents. A more
comprehensive dataset, including all recorded violations, could reveal a broader deterrent effect, but
such data were not available for this study.

Another constraint is the inability to conduct a complete cost-benefit analysis due to limited
data on camera installation costs. Expenses for camera purchase, installation, and maintenance vary
significantly depending on the contracts between the city government and private vendors. Moreover,
procurement details for traffic cameras in our context were not publicly disclosed. Despite this
limitation, our welfare estimates indicate that the impact of automated enforcement on traffic safety is

both statistically and economically significant.
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A further consideration is the ongoing ethical and societal debate surrounding surveillance
technologies (e.g., Acemoglu 2021, Crawford 2021, Zuboff 2019). We emphasize that the primary
aim of this study is to provide rigorous scientific evidence on the impact of automated enforcement on
traffic safety, rather than addressing broader societal concerns, such as potential privacy violations
associated with surveillance. To achieve this aim, we independently collected and consolidated data
on camera installations and accidents, and we described and analyzed the dataset with due caution. To
gain deeper insights into the context where automated enforcement operates, we also conducted field
interviews with local police officers, drivers, and camera suppliers.

Building on these insights, we propose several directions for future research and practice.
First and foremost, foundational research on deterrence mechanisms and behavioral insights is needed
to better understand the implications of automated enforcement. Future studies can analyze traffic
violations, including those not resulting in accidents, to better assess the effectiveness of Al-based
deterrence. Driver-level analyses with individual-level data could offer more nuanced insights into
behavioral adjustments under deterrence. Longitudinal research can track driver learning over time
using telematics or digital driving records. These insights can inform the development of driver
education programs that complement enforcement technologies.

In addition, actionable frameworks for optimizing automated enforcement deployment are
needed. Comprehensive cost-benefit analyses—accounting for installation, maintenance, and
operational expenses alongside accident reduction benefits—would aid in evaluating economic
feasibility. Additionally, examining the varying impacts of advanced cameras across urban, suburban,
and rural settings, as well as roads with different speed limits, can guide data-driven strategies for
optimal camera placement, maximizing safety benefits and economic efficiency.

Furthermore, exploring synergies between automated enforcement, smart mobility
technologies, and existing infrastructure is crucial. Research on integrated systems—combining
automated enforcement with technological advancements (e.g., cameras to detect violations by non-
motorized vehicles), real-time traffic management, and safety policies—could help urban planners
align enforcement technologies with broader smart city initiatives.

Last but not least, addressing societal implications and fostering public acceptance of
automated enforcement is vital. Future research can investigate public perceptions—including
concerns about surveillance, privacy, and trust in institutions—and compare enforcement
effectiveness across diverse policy environments and cultural contexts. Such studies could inform
transparent communication strategies to build greater public trust and acceptance and provide
comparative insights for global adoption and standardization of automated enforcement. Addressing
these directions allows future research and practice to expand upon our study, advancing traffic

safety, economic efficiency, and societal integration of automated enforcement.
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AUTOMATED ENFORCEMENT AND TRAFFIC SAFETY

Online Supplementary Appendices

Appendix A: Literature Reviews

Table A-1. A Brief Review of Studies on Traffic Enforcement Cameras and Road Accidents (2014-2024)

. . . Technology . . Traffic
? -
Authors (Year) Cameras for multiple violations? behind? Accident measurements Geo-Units safety effect
Blais and Carnis (2015) No (speed cameras) Unspecified Fatal and injury crashes 1 country (France) Positive
Claros et al. (2017) No (red light cameras) Unspecified Rear-end, angle crashes 59 intersections Mixed
De Pauw et al. (2014) Yes, but limited (speed & red light) Unspecified Injury, rear-end, side crashes 253 intersections Mixed
Gallagher and Fisher (2020) No (red light cameras) Unspecified Total accidents and injuries 66 intersections Null
Graham et al. (2019) No (speed cameras) Unspecified Personal injury collisions 771 camera sites Positive
Hu and Cicchino (2017) No (red light cameras) Unspecified Fatal crashes 33 U.S. Cities Positive
Hu and McCartt (2016) No (speed cameras) Unspecified Speed, c.ras.hes 1nV01V§d an 117 U.S. cities Positive
incapacitating or fatal injury
Langland-Orban et al. (2014) No (red light cameras) Unspecified Fatal crashes 62 U.S. Cities Null
Lee et al. (2015) No (red light cameras) Unspecified Fatal and injury crashes 200 intersections Negative
Llau et al. (2015) No (red light cameras) Unspecified injuries 20 intersections Positive
Martinez-Rui et al. (2019) Yes, but h.mlted (e.g., speeding, red Unspecified All crashes, injury and fatal crashes 88 1nt.erven.t10n Positive
light running, blocking crosswalks) areas in a city

Quistberg et al. (2019) No (speed cameras) Unspecified i\;[t(;tsorlst speeds and speed violation jif;hml areas i a Positive

. . . 101 camera .
Tilahun et al. (2022) No (speed cameras) Unspecified Injury and fatal crashes locations in a city Positive

Yes, but limited (e.g., speeding, red- . . .. 49 traffic analysis ..
Wang et al. (2020) light running, illegal lane changing) Unspecified Injury and non-injury crashes zones in a city Positive
Wong (2014) No (red light cameras) Unspecified Red light crashes, injury crashes, all .32 treate.d Mixed
crashes intersections

This paper Yes Specified Total and various accidents 2,522 intersections Positive




Table A-2. A Brief Review of IS Literature on IT in Transportation

Authors (Year) Technology Topic in Intended Key Findings
Transportation effect?
Agarwal et al. (2023) Ride-hailing platform (Uber) Traffic congestion No Uber exit led to a decrease in travel time.
Barbar and Burtch (2020) Ride-hailing platform (Uber) Public transit utilization No Uber entry led to a decrease in bus services but an
increase in commuter rail services.
. Federally-supported intelligent . Government ITS adoption facilitates urban
Cheng et al. (2020) transportation systems (ITS) Traffic congestion Yes mobility and traffic management
Greenwood and Wattal (2017) | Ride-hailing platform (Uber) Traffic safety No gt)aflri t?:Stry reduces alcohol-related motor vehicle
Lietal. (2022) Ride-sharing platform (Uber) Traffic congestion No Uber entry fereases t.rafﬁc congestion in comp act
areas but decreases it in sprawling urban areas.
Liu et al. (2021) Ride-hailing platform (Uber) TaX{ and rldésharlng Yes Platform design increases service efficiency and
service quality reduces moral hazard
. . . o . . Information sharing via ride-hailing apps
Rhee et al. (2023) Information sharing via ride-hailing Taxi .and.o'the? public No effectively allocates traffic demand across
platform transit utilization .
transportation means.
Drivers’ demand Information provided by GPS helps drivers to
Zhang et al. (2020) Global Positioning Systems (GPS) learning and driving Yes learn the distribution of demand and make more
decisions efficient driving decisions.
Taxi and ridesharin The ridesharing platform outperforms (and is
Zhang et al. (2023) Ridesharing platforms (Uber) oL & No more resilient than) taxis under urban anomalies
utilization .
(e.g., terrorist attacks).
Automated enforcement, depending on its
This paper Automated enforcement (in the form Traffic safety Yes technical capabilities, can establish deterrence to

of traffic cameras)

influence driver behaviors, reducing traffic
violations and accident risks.




Appendix B: Data, Sample Construction, and Contextual Properties
B.1. Accident Data

We obtained a proprietary dataset of road accidents from the local police department. The dataset
records detailed information on all reported traffic accidents (237,255) in this city between 2014 and
2016 (accident data before 2014 and after 2017 were not made available to us for security control
reasons). It includes the specific time and location of each accident, the number of injuries and deaths
involved, the cause of each accident, as well as drivers’ characteristics, such as age, gender, and
years of driving experience, among others. Figure B-1 illustrates part of the information collected
from a traffic accident report in our context.
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Figure B-1. An Example of a Traffic Accident Report

Our sample is restricted to accidents that are geographically close to the road intersections within a
radius of 0-100 meters (See Table B-1). This is because (i) these accident locations were more
accurately recorded, and (ii) the accident incidences were more likely influenced by traffic cameras
(the majority of which are located at the road intersections). Accidents far away (e.g., 100-300
meters) from the cameras (thus beyond the effective monitoring coverage) do not contribute to the
direct treatment effect of automated enforcement, but they allow us to measure the spatial
displacement effect discussed in the main text. The restriction to accidents in the 0-100m radius of a
road intersection results in a sample of 51,364 accidents, 43.3% of which were involved with
casualties (deaths and/or injuries). The casualty rate does not differ much across samples, including
accidents with different distances (e.g., 50 meters, 100 meters, 200 meters, or 300 meters) to the
nearest intersections, which indicates the representativeness of our sample for analysis.

Table B-1. Accident Data by Distance from the Sampled Road Intersections

Accidents Casualty Cases Rate

Data 237,255 78,466 0.331
300m 106,371 47,249 0.444

200m 81,382 36,204 0.445

Sample Data 100m 51,364 22,241 0.433
50m 38,011 16,395 0.431




Notably, the monthly accidents in the studied city increased steadily over the sampled period from
January 2014 to December 2016 (Figure B-2). Interestingly, this overall upward trend in accidents
happened in the same timeframe during which the number of traffic camera installations increased.
However, this positively covarying relationship cannot be interpreted as causal, as other confounding
changes co-exist in this period but are not being accounted for. Hence, in the paper (§3), we use
econometrics for formal causal identification.
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Figure B-2. Number of Accidents per Month, Over Time



B.2. Traffic Camera Installation Data

We manually collected information on all traffic cameras installed in this city from the local
government website until September 2021. Such information is required by law to be made available
to the public. The camera data we compiled include the location and time of each camera installation,
as well as the functions (i.e., what types of traffic violations the camera detects) of each camera
installed. Figure B-3 is an exemplary webpage of the local government site from which we collected
the camera installation data.
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Figure B-3. An Example of Local Government Webpage that Regularly Announced Camera
Installations, the Camera Types, and Their Times and Locations

Two aspects of camera installation data are worth noting: First, the installation data we collected not
only covers the sample period (5,969 installations between 2014-2016), but also includes camera
installation information before January 2014 (3,405) and between January 2017 and September 2021
(7,977) (Table B-2). In the analysis, we use the road intersections that were later installed with
cameras after 2017 as our control group, because both control and treatment intersections “need”
camera installations, thereby relatively comparable. Second, we exclude cameras installed at non-
intersection locations, such as those in the middle of a road segment, because, in such cases, locations
of both camera installations and accidents nearby were less accurately recorded in the original dataset.

Table B-2. Accident Data by Distance from the Sampled Road Intersections
before 2017  after 2017

Total Number of Cameras 9,374 7,977
Number of Cameras in the Sample (Installed at the Road Intersections) 5,969




Figure B-4 summarizes the installations of traffic cameras per month over the extended period until
September 2021. It reflects the staggered installation of traffic cameras, creating a quasi-experimental
setting that allows for the use of an event study to examine changes in accidents resulting from the
camera installations (§3.1).
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Figure B-4. Temporal Distribution of Road Intersections
that were Installed with Traffic Cameras per Month

Notably, we study two types of cameras: conventional traffic cameras (which only detect limited
violations based on temporary image capture) and advanced ones (which detect a greater variety of
violations via constant video capturing and real-time pattern recognition). See the illustrations in
Table B-3 and Figure B-5 for their differences and similarities.

There are two notable differences between these two types of cameras: the coverage and method of
violation detection. First, conventional cameras only detect running red lights or retrograde, whereas
advanced ones detect as many as thirty traffic violations, including some common ones such as
speeding, not following traffic signs/signals, and driving in the wrong lane. Second, conventional
cameras detect and capture violations passively. For example, when a vehicle runs a red light, the
electromagnetic device laid below the ground (often below the crossroad) can detect the moving (or
reversed-moving) objects when the red light is on, and the device triggers the cameras nearby to
capture the violation scene. These conventional cameras often take two to three images—capturing
both the red light and the moving vehicle with a clear license plate—to testify to the violation. In
contrast, advanced cameras detect violations proactively because the detection is based on real-time
video capture and analytics. As the advanced camera is constantly in operation, all violations nearby
are captured in this real-time video stream. In practice, whether a type of violation is detected and
recorded depends on whether the ML algorithms embedded in the camera have learned such a
violation before and been programmed to detect it. In the studied context, advanced cameras vary in
their functions (i.e., number of detectable violations), depending on the camera suppliers. Cameras of
different installation cohorts may come from different suppliers. Nevertheless, in all cases, advanced
cameras are much more capable than conventional ones of detecting violations.
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Table B-3. Differences between Conventional and Advanced Traffic Cameras

Conventional Cameras

Advanced Cameras

Violations Detected
(Fewer vs. More)

Running red lights and retrograde

Over 30 common traffic violations.
Besides running red lights and
retrograde, the violations detected
mainly include speeding, illegally
overtaking other vehicles, U-turns in
dangerous areas, not following traffic
signs/signals, and driving in the wrong
lane.

Detection Methods
(Passive vs. Proactive)

The violation can be detected by an
underground electromagnetic device
that triggers the cameras nearby to

capture images of the violated vehicle

with the license plate number.

The violation and the violated vehicle
can be captured in the real-time video
stream and identified by the pattern
recognition algorithms embedded in
the camera.

Despite these differences, conventional and advanced cameras are very similar in appearance, though
the advanced camera is always with a lighting device nearby. Another similarity is that on-site
violations captured by both types of cameras are automatically written into the backend database,
which allows the generation of text messages (as a notice of violation and fine) to offenders. The text
message also informs the offenders of the type of traffic violation as well as when and where the

violation happened.

Throughout this paper, we use “new” and “old” cameras interchangeably for advanced and

conventional cameras,

respectively.



B.3. Road Intersection Data

We obtained the road intersection-level features from Baidu Map API, a web mapping service
application in China. The features include the average traffic congestion levels, road types (e.g., state,
provincial, or urban roads with varying engineering requirements to accommodate speed limits and
vehicles of different weights) passing through the intersection, and the coordinates of all educational
institutes (elementary and secondary schools), bus stops, train stations, subway stations (either in
operation or under construction), restaurants, tourist spots, and government agencies. We consider
these facilities as they might affect both the cameras needed and the accidents near the focal
intersection. To control their effects, we count the number of such facilities within the 0-500 meters
radius, except for train stations and tourist spots, where we use a 1000m radius, given significantly
much heavier traffic of commercial vehicles and pedestrians near them.

To construct a dataset at the intersection-month level, we restricted the sample of road intersections to
signal-controlled ones. This is because (i) in urban areas (and also in our sample), the most likely
location for a traffic accident is the road intersection, and most traffic cameras are installed at the
intersections rather than at the road segments; (ii) per local traffic regulation, all intersection cameras
should be installed at the signal-controlled intersections; and (iii) as different intersections may
exhibit substantial heterogeneity, we restrict the sample in this way to construct a comparable
treatment-control sample for analysis. This restriction results in 2,522 signal-controlled intersections.

We manually matched all the cameras in our dataset with these signal-controlled intersections. We
find that among these intersections, 958 have never installed cameras by September 2021, when data
collection needed. Recall that we use the intersections that installed cameras later (2017-2021) as a
counterfactual for the treated intersections with cameras in the sample period (2014-2016). Thus, we
dropped these 958 less comparable intersections, resulting in 1,564 sampled ones.

Accidents were then matched to the vicinity (0-100 meters) of these intersections. In doing so, we
compiled a dataset of camera installations and accidents to the same referenced map of road
intersections. Among these 1,564 intersections, 990 were treated with cameras (thus the treatment
group), and 574 were not (thus the control group). Within the treatment group, 138 had only advanced
cameras, 765 had only conventional cameras, and 87 had both. We conducted two event study
estimations, comparing (i) new vs. no cameras and (ii) old vs. no cameras. As shown in Figure B-6,
most conventional cameras were installed earlier than advanced cameras, which reflects the transition
from the first wave to the second wave of traffic camera deployment in this city.
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B.4. Contextual Properties

There are a few good properties in this context for identifying the effects of traffic camera installation:
First, camera installations were rolled out with both geographical and temporal variations, which
offers us a quasi-experimental setup. Second, we are able to use location fixed-effects to tease out
time-invariant confounding effects from, for example, population density, road complexity, bus
traffic, and past traffic measures. We also account for location-specific time-varying factors, such as
traffic speed. Third, camera installations are not anticipated ex ante by drivers, which increases the
confidence in the treatment exogeneity. Fourth, we control the potential interference among road
intersections, i.e., the installation of cameras nearby imposes an effect on accidents at the focal
intersection. Specifically, we control the number of cameras installed at neighboring road
intersections and segments (within 0-300 meters of the focal intersection).

We note a valid concern about the non-compliance issue, i.e., whether the presence of cameras at the

focal intersection is noticeable to drivers passing through; if not, this intersection is, de facto, not

treated. Note that “non-compliance” here does not mean that drivers act against the traffic safety
regulations; rather, it is a situation where cameras are too invisible to exert effect. In our setting, the
non-compliance issue is not severe for several reasons.

(1) Traffic cameras in China are recognizable with clear signs next to them (Figure B-7), and de jure,
all drivers have to be able to recognize such signs.

(2) The cameras in our sample were all installed at signal-controlled intersections, and vehicles have
to stop and notice the presence of cameras when the red light switches on. Otherwise, they will
almost be a 100% chance of getting caught, as all cameras can detect running red-light violations.
If drivers get caught, they are essentially affected by the cameras, and then non-compliance is
accounted for by the treatment effect.

(3) When the green light switches on and some drivers passing by at speed are not aware of the
cameras, this is the situation that most likely reduces the effectiveness of the treatment. That said,
if we identify any measurable effect, it will serve as the lower bound of the true effect, because
cameras will surely exert a larger effect when they are more visible. This, however, does not
weaken the informativeness of our estimates.

Figure B-7. Traffic Cameras with the Sign Next to Them



Appendix C: Descriptive Statistics, Covariates, and Camera Installation Prediction

Table C-1 summarizes the statistics of different accidents and associated consequences (e.g., death,
injury, property loss, violation tickets) per intersection per month. Table C-2 presents the construction
of intersection-level covariates that we use in the event study estimation. Table C-3 reports the
exposure analysis where we use past accident levels (one month, two months, three months) and
covariates to predict if a road intersection would be installed with either an advanced traffic camera or
a conventional one. The results indicate that reverse causality might not be a concern, supporting the
parallel trend assumption for the TWFE event study estimation. We also conduct a non-parametric
comparison of accidents near intersections eventually treated (treatment group) and untreated (control
group) with installations during the sample period, as well as a comparison of accidents at treatment
intersections before and after camera installation, and the results are reported in Table C-4.

Table C-1. Summary Statistics of Accidents per Intersection per Month (N=56,304)

Mean S.D. Min. Max.
(@) 2) 3) 4
Within the radius of 0-100 meters of the intersection
# accident cases 0.649 1.153 0 23
# casualty cases 0.278 0.619 0 9
# non-casualty cases 0.371 0.845 0 18
# deaths 0.006 0.081 0 6
# injuries 0.338 0.841 0 49
¥ property loss 753.254  2,630.757 0 200,000
# accidents affected by new cameras’ proactive function 0.272 0.692 0 14
# accidents affected by old cameras’ proactive function 0.099 0.384 0 6
# accidents affected by new cameras’ passive function 0.260 0.604 0 15
# accident not affected by any function 0.062 0.298 0 9
# female driver cases 0.233 0.639 0 17
# male driver cases 0.447 0.938 0 19
# novice driver cases 0.078 0.410 0 17
# experienced driver cases 0.634 1.141 0 23
# daytime cases 0.261 0.612 0 11
# night-time cases 0.387 0.805 0 15
# holiday cases 0.189 0.507 0 15
# workday cases 0.460 0.901 0 16
# peak hour cases 0.102 0.352 0 6
# off-peak hour cases 0.546 1.018 0 22
Within the range of 100-300 meters of the intersection

# accident cases 0.630 1.165 0 22
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Table C-2. Covariates and Definitions

Covariate

Definition

(i) Intersection-specific time-varying variables (yearly updated, lagged for one year)

edu 500m_dum

car park_500m_dum
gov_500m_dum
resid 500m_dum
comm_500m_dum
# catering_500m

# bus stop_500m

=1 if at least one educational institution is located within the radius of 0-500m of the road intersection, =0 otherwise
=1 if at least one car park is located within the radius of 0-500m of the road intersection, =0 otherwise

=1 if at least one government office is located within the radius of 0-500m of the road intersection, =0 otherwise

=] if at least one residential district is located within the radius of 0-500m of the road intersection, =0 otherwise

=1 if at least one commercial building is located within the radius of 0-500m of the road intersection, =0 otherwise
number of food shops within a radius of 0-500m of the road intersection

number of bus stops within a radius of 0-500m of the road intersection

(ii) Intersection-specific time-varying variables (monthly updated)

train station 1000m_dum

subway station 500m_dum

subway station_uc_500m_dum
ban_post

# old cameras_300m

# new cameras_300m

# accident cases in the past 3 months
# casualty cases in the past 3 months

=] if at least one train station is located within the radius of 0-1000m of the road intersection, =0 otherwise

=1 if at least one subway station is located within the radius of 0-500m of the road intersection, =0 otherwise

=1 if at least one subway station under construction is located within 0-500m of the road intersection, =0 otherwise
=1 if there is a ban on riding the electric bicycle on the road, =0 otherwise

number of neighboring conventional cameras within the radius of 0-300m of the road intersection

number of neighboring advanced cameras within the radius of 0-300m of the road intersection

total number of traffic accidents in the past three months

total number of casualty accidents in the past three months

(iii) Intersection-specific time-invariant variables

traffic congestion level 200m
tourist_1000m_dum

road level2 _dum

road level3 dum

distance to district gov
distance to city gov

the traffic congestion level within 0-200m of the road intersection (a lower value represents severer congestion)

=1 if at least one tourist spot is located within the radius of 0-1000m of the road intersection, =0 otherwise

=1 if the maximum administrative level of road across the intersection is the 2nd level (county level), =0 otherwise
=1 if the maximum administrative level of road across the intersection is the 3rd level (city level), =0 otherwise
distance to the site of the district government

distance to the site of the city government
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Table C-3. Summary Statistics of Covariates Per Intersection and Per Month

N Mean S.D. Min. Max.
Panel A: Intersection-specific time-varying variables (yearly updated, lagged for one year)
edu_500m_dum 56,304 0.501 0.500 0 1
car park 500m_dum 56,304 0.680 0.466 0 1
gov_500m_dum 56,304 0.291 0.454 0 1
resid_500m_dum 56,304 0.357 0.479 0 1
comm_500m_dum 56,304 0.302 0.459 0 1
# catering_500m 56,304 25.310 56.311 0 501
# bus stop_500m 56,304 6.591 6.259 0 29

Panel B: Intersection-specific time-varying variables (monthly updated)

train station 1000m_dum 56,304 0.034 0.181 0 1
subway station_500m_dum 56,304 0.190 0.393 0 1
subway station_uc_500m_dum 56,304 0.026 0.159 0 1
ban_post 56,304 0.696 0.460 0 1

# old cameras_300m 56,304 0.346 0.823 0 6

# new cameras_300m 56,304 0.017 0.236 0 6

# accident cases in the past 3 months 51,612 1.956 2.762 0 50

# casualty cases in the past 3 months 51,612 0.838 1.313 0 18

Panel C: Intersection-specific time-invariant variables

traffic congestion level 200m 53,208 76.028 18.011 0 100
tourist 1000m_dum 56,304 0.016 0.125 0 1
road level2_dum 56,304 0.002 0.044 0 1
road level3 dum 56,304 0.004 0.062 0 1
distance to district gov 56,304 7.117 6.443 0.158 29.216
distance to city gov 56,304 18.771 10.348  0.201 49.446
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Table C-4. Model-Free Comparisons

Control Treatment
Average Average Before After
Panel A:
Intersections w/ advanced cameras vs.
Intersections w/o any cameras
# accident cases 0.458 0.519 0.560 0.381
(0.984) (0.937) (0.975) (0.782)
log(# accident cases + 1) 0.256 0.292 0314 0.220
(0.437) (0.457) (0.468) (0.408)
Panel B:
Intersections w/ conventional cameras
vs. intersections w/o any cameras
# accident cases 0.458 0.779 0.325 0.788
(0.984) (1.260) (0.688) (1.270)
log(# accident cases +1) 0.256 0.414 0.196 0.419
(0.437) (0.525) (0.373) (0.527)

Notes: Standard deviation in parentheses.
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Appendix D. Event Study Estimates

Table D-1 below presents the point estimates and standard errors for the baseline event study
estimates in Figure 1.

Table D-1. TWFE-OLS Event Study Estimates for Figure 1

DV: log(# accident cases + 1) New zfls). Null Old \(/;.)Null
Installed (-13 month) 0.019 (0.036) -0.012  (0.056)
Installed (-12 month) -0.008 (0.043) 0.037 (0.069)
Installed (-11 month) -0.016 (0.043) 0.025 (0.076)
Installed (-10 month) -0.047 (0.049) 0.049 (0.065)
Installed (-9 month) 0.014 (0.057) 0.113 (0.070)
Installed (-8 month) -0.016 (0.036) 0.114 (0.107)
Installed (-7 month) -0.046 (0.040) 0.125 (0.103)
Installed (-6 month) -0.049 (0.055) 0.068 (0.100)
Installed (-5 month) 0.009 (0.043) -0.025 (0.105)
Installed (-4 month) -0.049 (0.044) 0.015 (0.093)
Installed (-3 month) -0.036  (0.048) 0.067 (0.052)
Installed (-2 month) -0.041 (0.050) -0.033  (0.061)
Installed (-1 month)

Installed (+0 month) 0.013 (0.046) 0.109 (0.071)
Installed (+1 month) -0.096**  (0.043) 0.020 (0.036)
Installed (+2 month) -0.100**  (0.046) 0.095* (0.054)
Installed (+3 month) -0.058 (0.046) 0.023  (0.070)
Installed (+4 month) -0.101**  (0.049) 0.012 (0.049)
Installed (+5 month) -0.155**  (0.060) 0.031 (0.079)
Installed (+6 month) -0.196***  (0.069) -0.011 (0.060)
Installed (+7 month) -0.159**  (0.078) 0.021 (0.062)
Installed (+8 month) -0.305%**  (0.068) -0.019 (0.064)
Installed (+9 month) -0.235%*  (0.092) -0.015 (0.054)
Installed (+10 month) -0.164**  (0.070) 0.044 (0.044)
Installed (+11 month) -0.310*%**  (0.102) 0.037 (0.058)
Installed (+12 month) -0.327*%**  (0.093) 0.049 (0.048)
Installed (+13 month) -0.280***  (0.060) 0.038 (0.047)
# Treated Intersections 138 765

# Untreated Intersections 574 574

Road intersection FE Yes Yes
Year-Month FE Yes Yes
Time-Varying Control Yes Yes

# Observations 25,632 48,204
R-squared 0.340 0.376

Note: Robust standard errors (clustered at the block level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Appendix E: Robustness Checks for the Baseline Event Study Estimates

To the extent that this study would be advisory for traffic safety policymaking, it is essential that the
empirical findings be reliable and robust. In what follows, we cross-validate the estimates from the
event study method.

E.1. Altering Covariate Sets

We change the composition of the covariate set in various ways and examine if the based event study
estimates (Eq. 1) are sensitive to such changes. Recall that the baseline TWFE-OLS event study
specification includes intersection-specific time-varying covariates (i.e., number of train stations,
subway stations in operation, subway stations under construction, bus stops, educational institutes (for
elementary and secondary education), car parking spaces, restaurant and other catering facilities in the
vicinity of the focal intersection per month), plus intersection and year-month fixed-effects.

(1) We drop all covariates and all fixed effects.

(2) We only maintain intersection and year-month fixed effects and drop all intersection-specific
time-varying covariates.

(3) We maintain all covariates in the baseline model and add the interactions between all covariates
(except for time fixed-effects) and the year-month fixed-effects (dummies). This specification brings
monthly variations of previously time-invariant variables such as road types and distance to district
governments, expanding the control for time-varying factors.

(4) In addition to the baseline model, we control for the traffic congestion level (a static index of
traffic density passing through the focal intersection, offered by Baidu API) of each intersection by
interacting it with the year-month fixed-effects.

(5) We consider the influence of past accidents on the camera installation and accidents in the current
month by additionally controlling for the total accident cases and casualty cases in the past three
months (intersection-specific time-varying) to the baseline model

(6) We consider the spatial spillover effect of neighboring traffic cameras by adding (to the baseline
model) the counts of old cameras, new cameras, or other types of cameras in the vicinity of the focal
intersection within the 300-meter range. These cameras do not have to be installed in the road
intersections but could also be on the road segments and anywhere else within the 300-meter range,
meaning that we control effects from all cameras nearby (other than the focal one) on the accidents
and camera installations in the focal intersection.

Figure E-1 presents all the estimates together for new vs. null and old vs. null, respectively: (0)
baseline model, (1) without control & FE, (2) intersection-year FE, (3) workhorse model, (4) traffic
congestion level, (5) traffic accidents in the past three months, and (6) neighboring traffic cameras. As
seen, except for specification (2), all the other estimates (including point estimates and standard
errors) are highly consistent across different specifications, corroborating our baseline TWFE-OLS
event study estimates. The estimates of specification (2) indicate the potential bias caused by
unobservable, without accounting for intersection and year-month fixed effects.
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E.2. Alternative Sampling Strategies

We change the sampling strategy to check the sensitivity of our based estimates of Eq. 1. We take two
alternative strategies: (i) use all intersections without camera installation during the sample period as
the control group, and (ii) apply the matching technique, specifically Coarsened Exact Matching
(CEM) and only include observations (covariates-)matched to the treatment intersections as the
control group. Table E-1 presents the covariates before and after applying CEM. The results (mean
differences) demonstrate that CEM performed well in increasing the comparability between the

treatment and control groups when using a sample of covariates-matched observations.

Table E-1. Balance Checks of Covariates Between Treatment (road intersections with advanced
or conventional cameras) and Control Groups (intersections without cameras)

Covariates Before CEM After CEM
Panel A: No Advanced Mean No Advanced Mean
Advanced vs. No Camera Camera Camera Diff Camera Camera Diff
1) (2) (3) “) (5) (6)
train station 1000m_dum 0.025 0.014 0.01 1%** 0.008 0.008 0
subway station 500m_dum 0.149 0.050 0.099%** 0.027 0.027 0
subway station_uc_500m_dum 0.030 0.010 0.020%** 0.003 0.003 0
ban_post 0.531 0.537 -0.006 0.525 0.525 0
log(#catering_500m + 1) 0.795 0.461 0.334%** 0.206 0.208 -0.002
log(#bus stop_500m + 1) 1.184 0.849 0.336%** 0.782 0.776 0.006
edu 500m_dum 0.422 0.372 0.050%** 0.339 0.339 0
car park 500m_dum 0.584 0.495 0.089%** 0.461 0.461 0
gov_500m_dum 0.209 0.133 0.076%** 0.113 0.113 0
resid 500m_dum 0.221 0.138 0.084%** 0.065 0.065 0
comm_500m_dum 0.184 0.07 0.114%%* 0.039 0.039 0
obs. 55152 4968 4276 4276
Panel B: No Conventional Mean No Conventional Mean
Conventional vs. No Camera Camera Camera Diff Camera Camera Diff
Q)] (2) 3) “) (5) (6)
train station _1000m_dum 0.025 0.048 -0.023%%* 0.016 0.016 0
subway station 500m_dum 0.149 0.251 -0.102%%%* 0.169 0.169 0
subway station_uc_500m_dum 0.030 0.029 0.001 0.013 0.013 0
ban_post 0.531 0.816 -0.285%%* 0.772 0.772 0
log(#catering_500m + 1) 0.795 1.921 -1.126%%* 1.049 1.046 0.003
log(#bus stop_500m + 1) 1.184 1.869 -0.685%%* 1.591 1.592 -0.001
edu_500m_dum 0.422 0.582 -0.160%*** 0.546 0.546 0
car park_500m_dum 0.584 0.780 -0.195%*%* 0.704 0.704 0
gov_500m_dum 0.209 0.390 -0.181%*** 0.313 0.313 0
resid 500m_dum 0.221 0.502 -0.281*** 0.261 0.261 0
comm_500m_dum 0.184 0.434 -0.250%** 0.234 0.234 0
obs. 55152 27540 14120 14120

Notes: Panel A compares covariates for road intersections with advanced cameras and without any cameras, before and after
applying CEM. As seen, the differences are wiped out after applying the matching technique. Panel B compares covariates

for road intersections with conventional cameras and without any cameras, before and after CEM. The performance of
matching in balancing the covariates is also notable. We do not compare covariates for road intersections with advanced
cameras and conventional ones as we do not compare these intersections in our main analysis. The description of the
covariates is in Table C-2, Appendix C.
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Figure E-2 presents the two estimates together for new vs. null and old vs. null, respectively: (0)
baseline model, (1) all intersections, and (2) all intersections + CEM. The estimates are consistent
with our baseline event study results.
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Figure E-2. Event Study Estimates from Alternative Sampling Strategies
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E.3. Generalized Synthetic Control

While the event study estimates have shown compelling evidence for the effects of traffic cameras on
accidents at the installation intersection, it is possible that such estimates might be biased when
unaccounted time-varying confounders influence treated and untreated road intersections differently.
To address this issue, we employ the Synthetic Control (SC) method (Abadie et al. 2010). This
method helps construct a weighted combination of untreated road intersections (i.e., synthetic
controls) that closely resembles the covariates and past accident outcomes of the treatment
intersections in the pre-installation periods, which offers a better counterfactual to satisfy the parallel
trend assumption. In doing so, accident trends at both the treatment and control intersections should
be very close (thus comparable) in the pre-treatment periods, and their differences in the post-
treatment period should be solely driven by the treatment (i.e., camera installation).

In this study, we adopt a state-of-art variant of the SC method, Generalized Synthetic Control (GSC)
(Xu 2017), which has gained popularity in the social science area for causal inference
(Pattabhiramaiah et al. 2019, Guo et al. 2020); however, GSC and synthetic control methods are
relatively new in the information systems research (with exceptions Krijestorac et al. 2020, Wang et
al. 2021). We use the GSC method because it has two good properties that the traditional Synthetic
Control method lacks: (i) incorporating a fixed-effect structure, and (ii) allowing multiple treated units
and periods for the estimation. This is a good fit to our empirical context, i.e., multiple fixed-effects
(for intersections and months) and the staggered installations of cameras at multiple road intersections
at different times (instead of a one-time installation at one location).

Panel (1) and (2) of Figure E-3 below show the estimated dynamic effect of new cameras and old
cameras, respectively, at installation intersections (relative to non-installation intersections). We find
that the differences in trends of accidents are very similar to the main estimates from the event study:
(i) accidents in the pre-installation periods are not statistically distinguishable between treatment and
control intersections for both estimates, which supports the parallel trend assumption; and (ii) there is
a significant and persistent downward trend in accidents followed by the advanced camera installation
but no clear pattern followed by the conventional camera installation. Therefore, the GSC results
further corroborate the validity of the event study estimates (Figure 1).
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E.4. Hazard Model to Check if Camera Installation is Predictable

It is possible that advanced cameras were selected to be installed at intersections with higher accident
risks. We test this rationale using a hazard logit model to predict camera installation at the focal
intersection using its past accident records. As shown in Table E-1, we do not find statistically
significant evidence for reverse causality.

Table E-2. Predicting Advanced or Conventional Camera Installations Using Past Accidents

and Intersection Level Covariates

DV: conventional camera installed
(=1 yes, otherwise 0)

DV: advanced camera installed
(=1 yes, otherwise 0)

@) 2) (€)] “) ) (0) @) ®)
log(# accident cases+1) 0.516 0.853
(0.318) (0.948)
log(# casualty cases+1) -0.241 -0.430
(0.430) (1.167)
L1. log(# accident cases+1) 0.335 -0.641
(0.325) (0.858)
L1. log(# casualty casest1) -0.088 1.042
(0.418) (1.208)
L2. log(# accident cases+1) 0.354 -0.284
(0.303) (1.171)
L2. log(# casualty casest1) -0.332 -1.943
(0.443) (2.019)
L3. log(# accident cases+1) -0.130 1.154
(0.350) (1.518)
L3. log(# casualty cases+1) 0.204 -0.739
(0.439) (2.194)

Intersection-specific time-invariant variables

tourist 1000m_dum 0.507 0.496 0.258 0.346 omitted omitted omitted omitted
(1.708) (1.709) (1.744) (1.738) (0) (0 (0) (0)
road level2_dum -1.517 -1.658 -1.660 -1.695 omitted omitted omitted omitted
(1.605) (1.595) (1.604) (1.609) 0) (0) 0) (0)
road level3 _dum 0.695 0.801 0.850 0.837 omitted omitted omitted omitted
(0.846) (0.832) (0.837) (0.836) 0) (0) 0) (0)
log(distance to district gov) 0.268 0.286 0.228 0.221 3.601%* 4.077** 5.134%* 3.973
(0.438) (0.435) (0.438) (0.435) (1.763) (1.707) (2.295) (4.185)
log(distance to city gov) 4.637%%%  4.505%%%  4794%%x 4 730%** -3.162 -2.697 -4.586 -0.193
(1.345) (1.337) (1.354) (1.353) (5.057) (4.996) (5.822) (8.526)
Intersection-specific time-varying variables
edu_500m_dum 0.008 0.012 0.057 0.044 0.569 0.370 0.299 0.440
(0.246) (0.247) (0.249) (0.249) (0.782) (0.751) (0.861) (1.712)
car park_500m_dum -0.112 -0.092 -0.099 -0.043 1.203 1.330 1.347 1.783
(0.284) (0.284) (0.285) (0.285) (1.005) (1.007) (1.127) (1.864)
gov_500m_dum 0.001 0.051 0.027 0.046 0.795 0.838 2.155 0.859
(0.342) (0.340) (0.344) (0.341) (2.253) (2.321) (3.141) (2.297)
resid 500m_dum 1.342%% 1.379%* 1.378%* 1.385%* 5779%%%  6.290%** 4.028 6.547
(0.673) (0.684) (0.685) (0.678) (2.151) (2.111) (2.507) (6.909)
comm 500m_dum -0.692 -0.594 -0.564 -0.461 -1.977 -1.437 2132 -0.980
(0.667) (0.666) (0.674) (0.674) (1.630) (1.469) (1.577) (2.766)
log(# catering_500m+1) -0.357* -0.373% -0.378% S0.407%  -2.610%k% L2 712%k% D 645%k* -2.413
(0.207) (0.208) (0.209) (0.209) (0.780) (0.755) (0.938) (2.471)
log(# bus stop_500m-+1) -0.029 -0.041 -0.046 -0.062 -0.296 -0.548 -0.898 -2.870%
(0.134) (0.133) (0.135) (0.135) 0.717) (0.681) (0.851) (1.721)
train station_1000m_dum 1.524%* 1.480* 1.600%* 1.555% 0.481 0.809 0.569 0.966
(0.866) (0.858) (0.859) (0.852) (1.246) (1.146) (1.407) (1.939)
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subway Station_SOOm_dum -0.665 -0.627 -0.648 -0.598 -0.444 -1.178 -5.124 -2.643
(0.492) (0.492) (0.496) (0.494) (2.293) (3.251) (4.164) (20.136)
subway station uc_500m_dum 0.115 0.114 0.079 0.112 omitted omitted omitted omitted
(0.728) (0.728) (0.731) (0.734) (0) (0) (0) (0)
ban_post -0.062 -0.046 -0.078 -0.029 -1.225 -1.305 -1.739 0.330
(0.249) (0.248) (0.250) (0.248) (1.012) (1.030) (1.234) (2.102)
Block FE Yes Yes Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes Yes Yes
# Observations 24,606 22,512 20,418 18,325 604 520 436 360

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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E.S. Falsifying Spurious Effect or Autocorrelation

The observed significant downward trend of accidents might be possibly due to its spurious relations
with camera installation or serial correlations of accidents within intersections. While we cluster
standard errors at the intersection level, it is useful to implement a falsification test, as suggested by
Bertrand et al. (2004). Following extant literature (e.g., Burtch et al. 2018), we execute a permutation
test by randomly generating and assigning dichotomous pseudo (or placebo) treatment to the
observations of intersection-month. For intersections that do not receive such a “treatment,” they are
the control group. For those that receive the “treatment” at a specific month, prior to that month will
be the pre-treatment period (“treatment” = 0), and the months after that month (including itself) will
be the post-treatment period (“treatment” =1). Replacing the actual installation status with the pseudo
indicator, we rerun our baseline regression, stored the estimates, and replicated the procedure 500
times. This test allows us to identify more cleanly if the correlation within intersection-month is
unaccounted for and to check if our estimates are driven by outliers.

Figure E-4 shows the accident trends at both “treatment” and control intersections for new vs. null and
old vs. null. As it is clear, the point estimates vacillate intermittently above and below zero, with large
standard errors. This suggests that accident trends do not vary across intersections at both pre-
treatment and post-treatment periods. Contrast the estimates from this permutation test with the main
estimates in Figure 1, it is unlikely that the observed downward accident trends are spurious or have
severe autocorrelation issues.
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Figure E-4. Permutation Test for Falsification
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E.6. Poisson Estimation

We consider the distribution of accidents and used the count data model for the event study
estimation. As seen in Figure E-5, the Poisson estimates are qualitatively similar to the OLS ones, and
the decline in accidents at intersections after the installation of advanced cameras remains significant.
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Figure E-5. TWFE-Poisson Estimates on the Dynamic Effects of Automated Enforcement
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E.7. Overall Dynamic Effects of Traffic Camera Installation

While advanced and conventional cameras differ a lot in functions, one would still be curious about
the overall effect of camera installation, regardless of whichever the camera type is. Then we treat all
camera installations the same and replicate the analysis with this composite treatment measure. The
estimates remain consistent, and the downward trend of accidents is mainly driven by the effect of
advanced cameras (Figure E-6).
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Figure E-6. Intersections with Cameras (either new or old) vs. without Cameras
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E.8. Automated Enforcement Effect on Traffic Violations (That Led to Accidents)

It is sensible to directly test the deterrent effect of camera installation on traffic violations. We replace
the accidents with violation punishment, measured by the penalty points and ticket fines, as the
dependent variables and replicated the event study analysis to trace the changes in the punishment
near the camera-installed intersections.

As seen in Figure E-7, there is a significant drop in punishment near the intersections installed with
advanced cameras, indicating a decrease in violations as well; however, we do not find any significant
change in punishment after the installation of conventional cameras. A note of caution here is that we
do not have access to the full dataset of violations, some of which are not associated with any
accidents. Still, the observed decrease in the violations serves as the lower bound for, and
corroborates, the deterrence of automated enforcement.
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Figure E-7. Effects of Camera Installation on the Punishment (Penalty points and Fines)
of Traffic Violations (That Led to Accidents) Per Intersection Per Month
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Appendix F: More Analyses for Exploring Underlying Mechanisms

F.1. Mapping between Theoretical Mechanisms and Empirical Tests

Table F-1 shows the mapping between theoretical explanations, cameras involved, accidents

examined, empirical tests, and their effects. We shade the rows for the key mechanisms (automated
detection, real-time recording, and driver learning) we identify that drive the baseline results, with un-
shaded rows being the cross-validation or falsification tests.

Table F-1. Mapping between Mechanisms, Empirical Tests, and Effects
. Cameras Accident .
Mechanisms (location) (location) Effect Figure

Statistically
significant

Automated Advanced or conventional | Type A accidents reduction in Figure 3,

Detection cameras (at focal (at focal both, but Figure 4, and

intersections) intersections) pronounced Table 4
for advanced
. cameras
EZCI;E;TSI Statistically
P Y . Type B accidents significant .
Real-time Advanced cameras (at (@i oz reduction in Figure 5, and
Recording focal intersections) ) . Table 4
intersections) advanced
cameras only
Placebo effects Advanced or conventional | Type C accidents Statistically Fioure F-1 in
for falsification | S&meras (at focal (at focal insignificant Ag endix F
intersections) intersections) for both pp
Both advanced and
Driver conventional cameras (at i A aeelilEs Statistically
Learning (of neighboring intersections), e r—— sionificant Figure 6, and
proactive and only conventional ) g & gt Table 4
. intersections) reduction
functions) cameras (at focal
intersections)
Both advanced and
. . conventional cameras (at .

. D L . .. . T B .. . .
Driver (orflvzrss;zmmg neighboring intersections), (a}t/pfzcalacmdents Statistically Figure F-3 in
Cognition pa and only conventional ) . insignificant Appendix F

functions) intersections)
cameras (at focal
intersections)
Driver Learning | Both advanced and
(of neither conventional cameras (at Tvpe C accidents
proactive nor neighboring intersections), (a}tlri"ocal Statistically Figure F-4 in
passive and only conventional ) . insignificant Appendix F
. intersections)
functions) for cameras (at focal
falsification intersections)

Notes: Here we colored it red for the particular camera type that we examine its effect in the corresponding empirical
analysis. Additionally, we used shade for the main mechanisms (in bold) proposed and empirically supported that drive the
main baseline estimates.
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F.2. Effect of Camera Installation on Type C Accidents

We conducted a falsification test to assess the effects of new and old cameras on type C accidents for
which the associated violations are neither captured by cameras’ proactive functions nor passive
functions. Figure F-1 reveals statistically insignificant results for both advanced and conventional
cameras, confirming that cameras without the necessary technical capabilities cannot reduce the
corresponding accidents.
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Figure F-1. Effect of Camera Installation on Type C Accidents
Note: Examples of accidents for which the associated violations could have been captured by advanced cameras’ passive
functions are “drunk driving” or “driving without a license.”
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F.3. Graphical Illustration of Spillover Effects of Advanced Cameras at the Neighboring
Intersection

In the mechanism analysis (§4.2), we study driver learning by estimating the changes in accidents for
which the associated violations could have been captured by advanced cameras’ proactive functions at
focal intersections with conventional cameras installed when an advanced camera was newly installed
nearby (100-300 meters away).

Figure F-2 illustrates the spillover effects of advanced cameras at the neighboring intersection on
traffic accidents at the focal intersection. We restrict our sample to intersections (e.g., A, B, C) that
were installed with conventional cameras prior to the advanced camera installation. In this setting,
drivers passing through all intersections are subject to some but limited deterrence (since the
conventional cameras only detect two violations). The similar appearance of advanced and
conventional cameras may lead drivers to mistakenly believe a conventional camera at a focal
intersection (A) is an advanced camera (the latter may, in their memory, be located in the same
broader area). This deterrence spillover effect can solely arise from driver learning because: (i)
advanced cameras at neighboring intersections (e.g., B) cannot capture violations 100-300 meters
away (e.g., A), (i1) conventional cameras at focal intersections (e.g., A in this case) cannot detect
violations (e.g., speeding) that can only be captured by advanced cameras, and (iii) the reduction in
accidents (i.e., near A) can only be attributed to drivers learning the presence and function of
advanced cameras nearby (i.e., at B) and extending their deterrence to the conventional camera they
see at the focal intersection (A).
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Figure F-2. Graphical Illustration of Spillover Effects of Advanced Cameras at the Neighboring
Intersection on Traffic Accidents at the Focal Intersection
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F.4. More Analyses for Exploring the Driver Learning Effects.

We examine driver learning by estimating the changes in accidents for which the associated violations
could have been captured by advanced cameras’ passive functions and not captured by any functions.
Figure F-3 and Figure F-4 below present the results, indicating statistically insignificant patterns.

These findings may reveal two points: (i) Drivers who commit violations near passive or non-
functional advanced cameras (e.g., at intersection B in Figure F-2) are less likely to be punished (with
probabilities around 20% or even 0%) compared to those caught by the proactive functions of
advanced cameras (with a 100% probability of punishment). This discrepancy occurs because not all
accident victims request video recordings as evidence, allowing some violators (80-100%) to escape
punishment. As a result, these drivers do not adequately learn about the capabilities of the advanced
cameras. (ii) When these drivers later travel through the same area again (e.g., at intersection A in
Figure F-2), their limited learning from previous experiences provides little or no deterrence.
Consequently, they do not adjust their behavior, do not feel significantly deterred, and continue to act
as usual, which explains the statistically unchanged accident rates near the cameras, regardless of
whether they are advanced or conventional, as shown below.
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Figure F-3. Effect of Advanced Cameras at Neighboring Intersections on Traffic Accidents
(Linked to Violations That Could be Captured by Advanced Cameras’ Passive Functions)
at the Focal Intersection
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Figure F-4. Effect of Advanced Cameras at Neighboring Intersections on Traffic Accidents
(Linked to Violations Not Captured by Any Cameras’ Functions) at the Focal Intersection
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F.5. Mechanism Analyses on Specific Accidents

Finally, we analyze specific accidents that most frequently occurred in our sample to further test the
mechanisms (characterized in Table 3, Section 4.2). The results for the average effect of advanced and
conventional cameras on these accidents are in Tables F-2 below. As shown in Column 3, advanced
cameras, with their proactive and passive functions, are associated with a decline in accidents linked
to specific violations. However, for the accident identified as caused by “other improper operations,”
which is unaffected by either function, the coefficient is positive but statistically insignificant.
Column 4 highlights that conventional cameras, which only detect “running red light” and
“retrograde” violations, significantly reduce accidents involving “motor vehicle failing to comply
with traffic signal regulations” but show no significant effect on other violations. Overall, the
estimates are generally consistent with the results from the analysis using Type A, B, and C accidents
in Section 4.2, further corroborating the mechanisms we identified in the main text (see Table 4).

Table F-2. Estimates of Effects on Accidents Linked to Exemplary Violations
(Top 5 Accident Types Ranked by Frequency in Our Accident Data)

Accidents identified as caused by the Functions of cameras in Effect of EffeCt.Of
. S . L Advanced Conventional
following violations capturing these violations
Cameras Cameras
@) 2 3) “
“Operating a motor vehicle in a manner Passive -0.011%* 0.018
that otherwise hinders safe driving” (0.004) (0.016)
“Motor vehicle failing to comply with Proactive -0.058%** -0.059%***
traffic signal regulations” (0.013) (0.018)
“Changing lanes in a way that affects Proactive -0.023*** -0.008
other normally moving motor vehicles” (0.008) (0.005)
“Failing to maintain the necessary
safety distance from the vehicle ahead Passive -0.003 -0.004
. » (0.006) (0.012)
in the same lane
“Other improper operations” Neither Proactive nor 0.006 0.004
propet op Passive (0.004) (0.008)

Notes: Table F-2 presents the top 5 accident types ranked by frequency in our data, along with the effects of
advanced and conventional cameras on their incidence. Notably, we also applied TWFE-DiD estimation to
accident types beyond the top 5. However, due to their smaller sample sizes, the statistical power of these
estimates is limited, and they are not reported here. Robust standard errors (clustered at the block level) are
shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Appendix G: Alternative Explanations
G.1. Temporal and Spatial Displacement Effects

In line with the scholarly debate on whether deterrence primarily displaces, rather than reduces,
crimes (e.g., Banerjee et al. 2019), we empirically test the accident displacement effect in our setting.
First, it is clear in Figure G-1 that there is no temporal displacement because once cameras are
installed at a road intersection, they are rarely withdrawn. Second, spatial displacement is likely if
drivers become more strategic in driving after learning the locations of cameras. To test this
possibility, we replicate the baseline event study estimation but use the number of nearby accidents
(that could be at a neighboring road segment or intersection) within the 100-300m range near the focal
intersection. However, we find no evidence for such a spatial displacement. Empirically, there are no
significant changes in nearby accidents after the traffic camera installation (Figure G-1).

Coefficients

i

T T T T T T T T T T T T T T T T T T T T T T T
=212 -1 -0 9 & -7 6 5 4 -3 -2 -1 0 1 2 3 4 5 & 7 & 9 10 M 12 =12
Months Relative to the Camera Installation

* Advanced Cameras 4 Conventional Cameras

Figure G-1. Spatial Replacement (Radius: 100-300m)
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G.2. Distraction Effect

Newly installed cameras would present as a distraction to drivers when they pass the operated road
intersections. If a driver suddenly notices the cameras and slams on the break, the vehicles behind
would have to follow suit. If the latter cannot respond as promptly as possible, rear-end collisions will
happen. These cases would increase the number of accidents immediately after the camera
installation. To empirically test this possibility, we replicate the event study estimates but only focus
on rear-end collision accidents as the dependent variable. However, no evidence suggests such a
distraction effect (Figure G-2).
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Figure G-2: Distraction Effect
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G.3. Risk Compensation Effect

Despite the existence of deterrence, there are still cases where the decline in accidents is not seen. It
may be explained by the risk compensation effect. Because only drivers, but not pedestrians or
cyclists, are deterred by the traffic cameras, drivers may be more careful than others on the road. In
this setting, the main effect may be explained only by the decline of motor-and-motor accidents, but
not the pedestrian-and-motor accidents or single motor accidents (non-motor accidents thereafter). It
is likely that accident risk is transferred from those who are under the deterrence (drivers) to—or
compensated by—those who are not (pedestrians or cyclists), thereby increasing the accident
incidences of the latter. If so, such a risk compensation effect would offset the negative deterrent
effects. To check this possibility, we replicate the analyses but only focus on the changes in non-
motor accidents. However, no statistically significant evidence supports the risk compensation
explanation (Figure G-3).
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Figure G-3: Risk Compensation Effect
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Appendix H. Welfare Analysis

Based on the estimates from Table 2, we herein do a conservative estimation on the incremental
economic savings and human cost savings associated with the advanced traffic cameras. Economic
savings are calculated using the property loss that could be avoided, and human cost savings are
calculated using saved costs for bodily injuries and the loss of lifetime income thanks to the
installation of advanced cameras.

For the road intersection i, its total social welfare gain (/) from a reduction in a specific type of
accident outcome c (i.e., deaths, serious injuries, minor injuries, and property loss) since the
installation of advanced cameras at time ¢, up to the post-treatment period ¢ are estimated by the
following equation:

WE = S 2(FF x M€ x y©),

where Y€ is the average camera enforcement effects that are obtained from the TWFE-DiD estimates
of Table 2, measuring the percentage reduction in accident outcome 7 due to camera enforcement. M¢
denotes the average monetized cost from an additional count of accident outcome n. Y is the average
level for accident outcome » within the 0-100m range at road intersection i before the installation of
advanced cameras. We then sum up the multiplication of these terms to quantify the monetized total
social welfare gain associated with camera enforcement for collision type n, W, up to the post-
treatment period ¢.

For human cost savings, based on China’s standards of compensation for personal damage, where a
death occurs, the total compensation is around ¥1,024,369.5, which mainly includes the lump-sum
compensation for death (¥893,060) and for a funeral (¥31,309.5), as well as the mental damage
compensation for bereaved families (¥100,000); hence, the average human cost savings of one death
from the traffic camera per month at road intersection i is estimated by ¥; x ¥1,024,369.5 x 0.005.

The compensation for bodily injury mainly covers the lump-sum compensation for injury based on the
degree of disability ranging from Level 1 (the mildest) to Level 10 (the most severe), for mental
damage, and for the loss of lifetime income. Specifically, for a serious injury, the total compensation
is around ¥106,024, including the highest-level disability compensation (¥89,306), the mental damage
compensation (¥10,000), the compensation for the 1-month lifetime income loss (¥5,218), and the 1-
month in-hospital food subsidy (¥1,500); for a minor injury, as we do not have specific information
about the average compensation, we conservatively impute the monetized human costs as ¥10,602.4,
assuming that the average compensation for a minor injury amounts to 10% of a serious injury. As a
result, the total human costs saved per month at intersection 7 associated with severe injuries and
minor ones are imputed by ¥; X ¥106,024 x 0.001 and ¥; x ¥10,602.4 x 0.068, respectively.

For the economic savings from property loss, the average damaged property saved per month at road
intersection i associated with the advanced camera installation in the post-treatment period can be
directly calculated by Y; X 0.318.

With these imputed savings, we can infer the total societal benefits from the actual installation of
advanced cameras. In our sample, 128 intersections were installed with advanced cameras before
2017, and the resultant total social welfare gain is ¥426,003 (=$65,538). In the year 2017, 80 other
intersections were installed with advanced cameras, and all traffic cameras (including those installed
before 2017) are estimated to save ¥1,438,508 (=$221,308) total economic and human costs until the
end of this year. Subsequently, 155 extra intersections were progressively installed with new cameras
in 2019, and all cameras are estimated to produce ¥2,727,687 (=$419,644) societal benefits in total
until the end of that year.
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Appendix 1. Heterogeneous Effects of Camera Installations
1.1 TWFE-DiD Estimates of the Average Effects on Accidents by Driver Characteristics

We examine the varying effects of contextual factors to understand for whom and when advanced
cameras improve traffic safety. Specifically, we replicate the TWFE-DiD and our baseline event study
estimates within several subsamples of our accident data, including (1) female and male driver
accident cases, (2) novice and experienced driver accident cases, (3) daytime and night-time accident
cases, and (4) peak and off-peak hour accident cases.

Our average treatment effects estimates are shown in Table [-1 and the event study estimates are
presented in Figure I-1 below. In Table I-1, we also present to what extent the estimates between the
two subsamples differ statistically significantly. For example, the installation of advanced cameras is
statistically significantly (p < 0.01) more likely to reduce accidents involving male drivers than female
drivers.

Table I-1. Estimates of Effects on Accidents by Driver Characteristics

Driver Characteristics Effect of Advanced Cameras Effect of Conventional Cameras

# female driver cases -0.009 (0.012) 0.003 (0.017)

# male driver cases -0.063*** (0.015) -0.011 (0.021)
chi-squared 6.93%** 0.16

# novice driver cases -0.005 (0.007) 0.011 (0.010)

# experienced driver cases -0.078*** (0.016) -0.002 (0.024)
chi-squared 14.68%** 0.17

# daytime cases -0.041%** (0.012) 0.002 (0.018)

# night-time cases -0.052%** (0.014) 0.006 (0.021)
chi-squared 0.58 0.02

# peak hour cases -0.025%** (0.008) 0.006 (0.012)

# off-peak hour cases -0.063*** (0.016) 0.006 (0.023)
chi-squared 6.02%* 0.00

Note: Robust standard errors (clustered at the block level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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1.2 Event Study Estimates of Effects on Accidents by Driver Characteristics
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