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ABSTRACT 
 

Traffic safety poses a persistent challenge for society and public policy. Conventional law enforcement 

by human police is often cost-ineffective due to information asymmetry and negative externalities of 

unsafe driving behaviors. Automated enforcement, in the form of traffic cameras on the road, has gained 

prominence in recent decades, yet its effectiveness and underlying mechanisms remain debated. This 

study examines the impact of traffic cameras on road safety using longitudinal data from a metropolitan 

city in China. We distinguish between advanced cameras, which use machine learning to detect various 

traffic violations and constantly record video, and conventional cameras, which rely on triggered image 

capture for a limited number of violations. Using an event study design with staggered camera 

installations at road intersections, we observe a significant and sustained reduction in accidents near 

advanced cameras, compared to locations with no cameras or only conventional cameras. Further 

analysis identifies three key mechanisms driving the effects of advanced cameras: (i) automated 
detection effect—superior technical capabilities to automate violation detection; (ii) real-time recording 
effect— continuous monitoring and recording capability to augment accident cause identification; and 

(iii) driver learning effect—technology-enabled deterrence to increase driver awareness of these 

cameras and encourage behavioral adjustments to mitigate accident risks. This study contributes to 

information systems, transportation economics, and criminology, offering policy insights into the 

effective design and deployment of automated enforcement to improve traffic safety. 
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1. Introduction 
According to a recent Global Status Report on Road Safety by the World Health Organization (2023), 

1.19 million people died in road crashes worldwide in 2021. Strikingly, road traffic injury is the 

leading cause of death for children and young people aged 5-29 years. The global macroeconomic 

cost of road traffic injuries is estimated at U.S. $1.8 trillion, or roughly 10-12% of the global gross 

domestic product (GDP). This issue also intensifies regional inequality, as 92% of the traffic fatalities 

occur in middle- and low-income countries and the risk of death is 3 times higher in low-income 

countries than in high-income ones. Enhancing traffic safety has, therefore, been considered a 

significant endeavor for policymakers, especially in developing countries.  

Since the 1950s, various traffic safety measures have been introduced, including engineering 

innovations (e.g., airbags), product design regulations (e.g., child restraint laws), and behavioral 

mandates (e.g., speed limits). However, their effectiveness remains debated (Burris et al. 2013). For 

example, Pelzman (1975) proposed the “risk compensation hypothesis,” suggesting that safety 

measures (e.g., seatbelts) might inadvertently lead drivers to drive more carelessly, as the measures 

make them feel safer. This increases the likelihood of crashes and transfers risks to unprotected 

individuals such as pedestrians. Enforcing traffic safety regulations is also challenging. The most 

common approach, the presence of human police, is often costly and ineffective. Limited officer 

coverage leads drivers to perceive low odds of being caught, encouraging riskier driving. Moreover, 

gathering clear evidence and determining accident causes is difficult when accidents occur, further 

incentivizing unsafe driving. As a result, conventional law enforcement is often cost-ineffective due 

to information asymmetry and negative externalities (Edlin and Karaca-Mandic 2006). 

In recent decades, automated enforcement, such as speed checkers and red-light cameras, has 

been deployed on roads. Automated enforcement, increasingly driven by machine learning 

algorithms, differs from conventional methods in several key ways. First, traffic cameras detect 

violations automatically and operate 24/7. Second, unlike police officers, whose availability and 

deployment change constantly, traffic cameras are fixed and always active, making unsafe driving 

costly. Lastly, traffic cameras continuously gather evidence during accidents, reducing uncertainty in 

cause and liability identification. Therefore, the advantages of automated enforcement—monitoring 

road traffic, detecting violations, and recording evidence—address information asymmetry and 

negative externalities, improving traffic safety more effectively than conventional law enforcement.  

Nevertheless, prior research has shown mixed results on the effectiveness of traffic cameras 

in improving road safety (see a brief review in Table A-1 in Appendix A). Most studies indicate 

positive effects. Blais and Carnis (2015) found that the automated speed enforcement program 

(ASEP) in France was associated with a decrease of 19.7% in road crashes. Llau et al. (2015) reported 

that in a U.S. county, sites with red light cameras experienced a decrease in all types of injury crashes. 

Wang et al. (2020) found that traffic cameras were associated with a decrease in regional crash risk. 

In contrast, several studies documented negative or adverse effects. Lee et al. (2015) found that red 
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light cameras increase fatal crashes by 2% and injury crashes by 53% in a South Korean city, 

attributing this increase to higher average speeds on arterial roads. Likewise, Claros et al. (2017) 

observed that rear-end crashes increased by 16.5% after the installation of red-light cameras. 

Furthermore, several recent studies presented null or mixed effects. For example, De Pauw et al. 

(2014) found no statistical evidence of changes in injury crashes after the installation of fixed-speed 

cameras, although there was a significant decrease in deaths and serious injuries. Gallagher and Fisher 

(2020) found no evidence that red light cameras in Houston, Texas, reduced the total number of 

accidents or injuries, though they did change the composition of accidents.  

Given the mixed findings in the literature, uncertainty remains regarding the effectiveness of 

traffic cameras in enhancing road safety. A careful review of these studies reveals several gaps: First, 

most studies in transportation and safety literature mainly focused on the presence of traffic cameras, 

without unpacking the nuanced interplays among technical capabilities of automated enforcement, 

drivers’ risk-taking behaviors, and traffic safety outcomes. This presents an opportune direction for 

information systems (IS) scholars to theorize the role of technologies, particularly machine learning 

applications, in traffic safety. Second, most studies either used city-level aggregate accident data or 

selected a limited number of road intersections to estimate the effect of camera installation. Third, 

many studies focused solely on cameras that detect only one type of violation (e.g., running a red 

light), rather than those capable of simultaneously detecting various types of violations. Lastly, 

existing research primarily examined conventional cameras triggered by separate sensors (e.g., 

speeding radar) to capture violation images, with limited attention given to a new generation of 

automated enforcement that leverages the recent development in machine learning algorithms.  

Our work is hence well positioned to tackle the scholarly and policy challenges, including (i) 

the ever-increasing concerns about traffic safety, (ii) the touted promises of the traffic enforcement 

cameras juxtaposed with mixed assessment outcomes, (iii) the lack of granular data for deeper 

insights, and (iv) limited understanding of nuanced mechanisms in prior research. As IS scholars, we 

recognize the imminent importance of assessing the roles of automated enforcement enabled by 

machine learning and pattern recognition algorithms with a solid theoretical understanding and more 

rigorous empirical analyses. Thus, we ask the following research questions: (i) What is the impact of 

traffic enforcement cameras on road safety? (ii) To what extent can their deployment reduce human 

and economic costs of traffic accidents? (iii) How can we explain their potential effects? 

To answer these questions, we study dynamic changes in traffic accidents at road 

intersections in a metropolitan city in China, comparing locations with and without traffic cameras. 

We focus on two types of cameras: advanced cameras, which detect various traffic violations via 

constant video capture and real-time pattern recognition enabled by embedded machine learning 

algorithms, and conventional ones, which detect a limited number of violations via electromagnetic 

devices that trigger temporary image capture. We consolidate a panel dataset of traffic camera 
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installations and local police reports of road accidents in the vicinity of comparable road intersections 

of this city in the mid-2010s. 

Econometrically, we first employ the event study method to exploit the staggered installation 

of cameras across road intersections over time. We identify a statistically significant and persistent 

decrease in total accidents by an average of 8.3% near the road intersections installed with advanced 

cameras, compared to the locations without cameras or with only conventional cameras. The 

estimates remain consistent across a battery of robustness tests, such as leveraging different sets of 

covariates, changing the sampling strategies for the control intersections, and conducting a 

falsification test with randomly assigned pseudo treatments. Second, we use newly developed event 

study estimates in the econometrics literature (e.g., de Chaisemartin and D’Haultføeuille 2020, 

Borusyak et al. 2021, Sun and Abraham 2021) to relax the assumption of homogeneous treatment 

effects across space and time. The consistent results from these analyses lend credence to the 

downward trends in accidents at the intersections with advanced camera installations.   

What explains this baseline effect? We theorize the role of automated enforcement, drawing 

on the deterrence literature that originated from Becker (1968) on crime and punishment, which 

highlighted how monitoring resources and publishment severity deter violations. Unlike prior studies 

that focused on publishment severity (e.g., Hansen 2015, Goncalves and Mello 2017), our work 

emphasizes (i) monitoring resources, (ii) automated enforcement, including its technical features and 

presence, and (iii) aggregate-level deterrence and traffic safety outcomes. Specifically, we argue that 

the technical features of advanced cameras (automated violation detection and real-time recording) 

substantially improve traffic enforcement capabilities in violation identification and detection, 

establishing a technology-enabled deterrence. This, in turn, leads to drivers’ learning of the presence 

and functions of the traffic enforcement cameras, ultimately influencing their driving behaviors in a 

way to avoid violations and mitigate accident risks.  

To empirically test the technical capabilities and driver learning, we categorize accidents 

according to the cameras’ functions (i.e., either proactively or passively capturing violations; see §5). 

Our analyses yield statistically significant evidence not only supporting the proposed mechanisms but 

also explaining the differing effects of the two types of cameras. Compared to conventional cameras, 

advanced cameras (i) significantly reduce both the variety and incidence of accidents due to ML-

enabled automated detection, evident in the extensive margin (i.e., reduction in more types of 

accidents; see Figure 3) and the intensive margin (i.e., greater reduction within the same accident 

types; see Figure 4);1 (ii) have a unique impact on accidents by real-time video recording, helping 

 
1 The extensive margin captures the breadth of the impact, referring to the reduction in the number of different 
types of accidents (e.g., rear-end collisions, running a red light, etc.), while the intensive margin measures the 
depth of the impact, referring to the extent of reduction within the same type of accidents (e.g., a 30% reduction 
in rear-end collisions). These metrics together comprehensively capture how advanced cameras outperform 
conventional cameras in improving traffic safety. 
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identify accident causes (Figure 5); and (iii) create a driver learning effect, making drivers more 

aware of the cameras’ presence and functions and extending deterrence to areas even without these 

cameras (Figure 6). These findings highlight the superior technological and psychological deterrence 

of advanced cameras, explaining the significant reduction in total accidents nearby. 

Additional findings further support these mechanisms and rule out alternative explanations: 

First, the effect of automated enforcement is more pronounced for whom and where risky driving is 

more likely to occur, further corroborating the technology-enabled deterrence. Second, the effect of 

automated enforcement does persist over time but does not transfer to locations without cameras, 

demonstrating the absence of a displacement effect and further mitigating information asymmetry 

concerns over deterrence in non-camera areas. Third, accident risks are not transferred to other road 

users (e.g., pedestrians) after camera installations, failing to support the risk compensation hypothesis 

(Peltzman 1975) and mitigating potential negative externalities beyond motor-and-motor collisions.  

This work makes notable contributions to the IS literature and related disciplines. First, our 

investigation of AI-enabled solutions for traffic safety and their mechanisms enriches the scholarship 

on the societal impact of IT, particularly within the emerging IS literature on IT in transportation (see 

a brief review in Table A-2 in Appendix A). Specifically, (i) the IS literature has rarely addressed the 

critical topic of traffic safety, with exceptions such as Greenwood and Wattal (2020) on alcohol-

related vehicle fatalities. Our study expands this area by exploring the role of automated law 

enforcement on various accident outcomes and leveraging IS domain knowledge to unpack human-

technology interactions driving these effects. (ii) While prior studies have predominantly focused on 

ride-hailing platforms and their consequences (e.g., Barbar and Burtch 2020, Liu et al. 2021, Rhee et 

al. 2023), our work shifts attention to automated enforcement, specifically advanced cameras as an AI 

application in the public domain. (iii) Most IS studies on transportation emphasized the unintended 

consequences of digital platforms on traffic demands, with limited focus on IT-enabled interventions 

aimed at traffic management. Notable exceptions include Cheng et al. (2020) on federally-supported 

intelligent transportation systems and Zhang et al. (2020) on GPS-related driver learning. Addressing 

this gap, our study explores the intended impact of automated enforcement on traffic safety, focusing 

on its nuanced technical functions and behavioral implications. This focus is essential, as technology-

driven transportation solutions often produce mixed or unintended effects (Table A-1, Appendix A). 

By employing fine-grained data and rigorous methods, we analyze whether traffic enforcement 

cameras deliver their safety promises and how their effect arises via technical capabilities and 

behavioral deterrence. In doing so, this work responds to recent calls for IS research on smart mobility 

interventions (Ketter et al. 2023) by advancing the understanding of IT/AI-enabled solutions for safer 

and more sustainable transportation systems.  

Second, our findings align with and contribute to the economics of traffic safety (e.g., Hansen 

1997, Makowsky and Stratmann 2009). This literature has examined various traffic safety 

interventions that either decrease personal and social costs during an accident (e.g., seat belts, airbags) 
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or increase the cost of unsafe driving (e.g., speeding tickets) before an accident (Edlin and Karca-

Mandic 2006). Nevertheless, the literature has shown mixed evidence for the efficacy of these 

interventions due to concerns such as risk compensation and negative externalities. Without rigorous 

analyses, one might assume that traffic cameras share similar concerns with conventional safety 

interventions and may not necessarily reduce accident risks. To address this, we theorize the roles of 

automated enforcement and offer credible evidence that the installation of traffic cameras does not 

shift risks from reckless or careless drivers to other road users (e.g., pedestrians), thereby mitigating 

the concerns of risk compensation and negative externalities. This is because the functions and 

presence of such technology help reduce information asymmetry in monitoring and enforcement, 

preventing risk-taking behaviors and their associated accidents.   

Third, this work extends criminology literature (Becker 1968, Chalfin and McCrary 2017), 

which has primarily focused on police deployment and its deterrent effect (Welsh and Farrington 

2009, Priks 2015). Human police deployment is costly and temporal and may not systematically 

reduce crimes due to spatial displacement (to areas with police absence) and temporal displacement 

(to a later time when police presence diminishes). Our findings highlight key differences between 

human police and traffic enforcement cameras—such as real-time constant monitoring, permanent 

deployment, and fewer cognitive errors and biases, demonstrating the comparative advantages of 

automated enforcement, such as cost reduction and enhanced monitoring and enforcement 

capabilities, in improving traffic safety. Additionally, this study emphasizes that the deterrence of 

automated traffic law enforcement arises from its technical capabilities in automated detection and 

real-time recording, an underexplored mechanism in criminology literature.  

Finally, our findings provide important policy insights. Given that ensuring traffic safety is 

one of the primary responsibilities of governments (Hansen 1997, World Health Organization 2023), 

we aim to influence transportation policy and its enforcement by deepening the understanding of 

automated enforcement on the road. This is largely due to the economic significance and societal 

benefits of deploying traffic enforcement cameras. Notably, our conservative estimates indicate that, 

on average, the studied city could have reduced 1,190 accidents (including 379 casualty cases), saved 

496 people involved in fatal and injury cases, and saved ¥6,298,780 property loss from vehicular 

damage per year had the city installed advanced cameras in all of its signal-controlled intersections.  

The remainder of the paper is organized as follows: Section 2 provides background on 

automated enforcement, the empirical context, data, and descriptive statistics. Section 3 outlines the 

empirical strategy, main results, robustness checks, and economic significance. Section 4  explores 

mechanisms and presents empirical tests. Section 5 examines heterogeneous effects, and Section 6 

discusses implications and concludes.  
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2. Background, Data, and Descriptive Analysis 
2.1. Research Background 

Automated enforcement, in the form of traffic cameras such as speed checkers and red-light cameras, 

has seen widespread adoption across various countries, known as automated enforcement in the 

United States (U.S.), electronic police in China, and traffic enforcement cameras in the United 

Kingdom and several other European nations. This technology executes automated traffic law 

enforcement by detecting violations and collecting evidence. Utilizing state-of-the-art ML algorithms, 

some traffic cameras can recognize license plate numbers and characters within 0.7 milliseconds after 

detecting a speeding vehicle. The predictive accuracy of such algorithms often exceeds 97% (Tang et 

al. 2022). In regions such as China, Europe, and the U.S., ML techniques have reached a high level of 

maturity, particularly in identifying common violations such as running red lights or speeding. This 

could even result in automatic penalty issuance via text messages, with offenders retaining the right to 

contest violations and access evidence.  

While automated enforcement has been implemented to address traffic violations and their 

ramifications, evidence of its effectiveness in reducing traffic accidents has been mixed (See Table A-

1 in Appendix A for a brief review). Furthermore, the underlying mechanisms—how automated 

enforcement, through its functions and present, affect drivers’ behaviors and subsequent accident 

risk—remain inadequately explained in the literature. To comprehensively investigate this 

increasingly prevalent monitoring technology in the public domain, our study conducts rigorous 

empirical identification and mechanism tests. 

2.2. Empirical Context 

Our study is conducted in a metropolitan city in Southern China with a population of approximately 

13.3 million as of 2024. Over the past decade, this city has experienced two major waves of traffic 

camera deployment. In the initial wave of 2010-2016, the city installed conventional cameras capable 

of capturing violation images and transmitting data to a central database. The ongoing second wave, 

commencing in 2014 and continuing to the present, involves the deployment of advanced cameras 

equipped with ML-enabled computer vision algorithms for real-time pattern recognition, video 

analytics, and automatic traffic violation detection.  

Our investigation focuses on the period from 2014 to 2016, when both conventional and 

advanced cameras were concurrently deployed throughout the city. We analyze two types of cameras: 

conventional traffic cameras that only detect limited violations based on temporary image capture and 

advanced cameras that employ constant video capture and pattern recognition to identify a broader 

range of violations. See more details below and in Table B-3 and Figure B-5 in Appendix B. Notably, 

during this period, the replacement of conventional cameras with advanced ones in the same locations 

was rare due to the former’s durability (lasting at least 5-10 years) and the impracticality of 

dismantling them.  
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Two notable differences exist between conventional and advanced cameras: (i) the range of 

violations to detect and (ii) the detection methods. First, conventional cameras only detect running red 

lights or retrograde (moving backward), whereas advanced ones detect as many as thirty traffic 

violations, such as speeding, failure to follow traffic signs/signals, and driving in the wrong lane. 

Second, conventional cameras detect and capture violations only when triggered. Specifically, an 

electromagnetic device (a physical sensor) equipped below the ground (often below the crossroad) 

detects moving, or reversed-moving, objects when a red light is on and triggers conventional cameras 

nearby to capture the scene when a vehicle runs the red light. These cameras often take several 

images—capturing both the red light and the moving vehicle with a clear license plate—to document 

the violation. In contrast, advanced cameras constantly detect violations because the detection is 

based on real-time video capture and analytics. As the advanced camera is constantly in operation, 

most violations nearby are captured in real-time video streams. Therefore, all advanced cameras are 

much more capable than any conventional ones of detecting more violations.  

Despite these differences, conventional and advanced cameras share similar appearances, 

with advanced cameras typically accompanied by lighting devices. Moreover, violations captured by 

both are automatically written into a backend database, automatically generating text messages to 

notify offenders of the breach and associated fines. Hereafter, throughout this study, we 

interchangeably refer to advanced and conventional cameras as “new” and “old,” respectively.  

To better understand local traffic safety measures, we conducted field interviews with senior 

officials from the traffic surveillance unit, the accident unit, and the IT unit of the city police 

department. These interviews provided valuable insights, revealing that police officer deployment—

including staffing and patrol schedules—was independent of traffic camera installations during the 

sample period (2014-2016). This separation existed because distinct units were responsible for 

different aspects of enforcement deployment, with minimal coordination between the two units. 

According to the interviewees, coordination “only exists when the traffic surveillance unit detects a 

large accident and calls for dispatching more police officers to the accident site.” Such coordination 

is, hence, unlikely to affect police officer deployment prior to the accidents or the schedule of camera 

installations. Additionally, during our sample period, the local police department lacked the capability 

to utilize data analytics to analyze accident locations and times for planning camera placements.2  

 
2 Instead, the camera installation at a location was often planned long in advance (even years before the 
installation) and determined mainly by two criteria: (a) a road network density and (b) a prior camera 
installation status. Regarding (a), camera installations were prioritized in the road- or population-dense areas to 
achieve relatively full coverage of traffic surveillance in the city’s core districts. Regarding (b), while it is 
common to have multiple traffic cameras in the same area, cameras (either conventional or advanced) were 
more likely to be installed at the road intersections without cameras installed before. In our analysis, we account 
for the first criterion by using the road-intersection time-varying covariates and time-invariant fixed effects, and 
to test and account for the second criterion, we use the number of previously installed cameras nearby (0-300 
meters near a focal intersection) as a time-varying covariate. 
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2.3. Data 

Our analyses rely primarily on three data sources. The first data source is local police reports of road 

accidents, with accident information and characteristics. The second provides the time and location in 

which each traffic enforcement camera was installed. The third consists of characteristics related to 

each road intersection. 

Accident Data. We obtain a proprietary dataset of road accidents from the police department. 

The dataset records detailed information on all reported traffic accidents (237,255) in 2014-2016. It 

includes the specific time and location of each accident, the number of injuries and deaths involved, 

the accident causes (e.g., associated traffic violations), and driver characteristics, such as age, gender, 

and years of driving experience, among others. For the main analyses, we restrict our sample to 

accidents close to road intersections within a radius of 0-100 meters. This is because (i) these accident 

locations were more accurately recorded, and (ii) the accidents near the road intersections were more 

likely influenced by traffic cameras (the majority of which are located at the intersections). Accidents 

far away (e.g., 100-300 meters) from cameras are beyond the effective monitoring range; thus, their 

changes may not be attributed to the direct treatment effect of automated enforcement. However, 

these distant accidents allow us to measure the spatial displacement effect, which we will discuss 

below in §4.3. The restriction to accidents in the 0-100m radius results in a sample of 51,364 

accidents, and 43.3% of them are involved with casualties (deaths and/or injuries).  

The accident data has several key features. First, all accidents were documented by traffic 

police after they occurred. Second, 99.4% of these accidents resulted from specific traffic violations. 

Third, the dataset does not include violations that did not lead to accidents, though some may have 

been captured by traffic cameras. This is because the accident data comes from police reports, not 

camera recordings that capture violations. For more details, see Figures B-1, B-2, and Table B-1 in 

Appendix B and descriptive statistics in Table C-1 in Appendix C. 

Traffic Camera Installation Data. We manually collect the information on all traffic 

cameras installed until September 2021 from the city website. The data includes the location and time 

of each installation, as well as the functions (i.e., traffic violations designed to detect) of each camera. 

Two aspects of camera installation data are worth noting: First, the data includes not only the 

installations during the sample period but also those between January 2017 and September 2021. In 

our main analyses, we use road intersections installed with cameras after 2016 as our control group 

because both control and treatment intersections “need” camera installations, thereby being relatively 

comparable to each other. This is akin to a “lookahead matching” approach (e.g., Bapna et al. 2018), 

which matches the treatment group at time t to a comparable control group in which units are 

eventually treated at t + k. Second, we exclude cameras installed at non-intersection locations (e.g., in 

the middle of a road segment) because, in such cases, the locations of camera installations and 

accidents nearby are less likely to be accurate. See the details of camera installation data in Figures B-

3, B-4, B-5, and Table B-2 in Appendix B. 
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Road Intersection Data. We obtain road intersection-level features from Baidu Map API, a 

web mapping application in China. Its features include the average traffic congestion level (measured 

between 0 and 100), the road types (e.g., state, provincial, or urban roads that require different levels 

of engineering to accommodate varying speed limits and vehicles of different weights passing through 

the intersections), and the coordinates of educational institutions (including elementary and secondary 

schools), bus stops, train stations, subway stations (in operation or under construction), residential 

areas, commercial buildings, food shops (e.g., restaurants), tourist spots, parking spaces, and 

government agencies. We consider these facilities as they may affect both camera installations and 

accident propensities for a given location. We count the number of these facilities within a 0-500m 

radius to capture their effects (except for train stations and tourist spots, for which we use a 0-1000m 

radius to accommodate heavier traffic near them). See the detailed measurements of road intersection 

covariates in Table C-2 in Appendix C. 

After mapping and compiling the above data (see more details in Appendix B), we obtain a 

balanced longitudinal panel dataset of 1,564 road intersections over 36 months. The total number of 

intersections in our sample was 2,522 before the “lookahead matching,” and in a robustness check 

later, we use all intersections for analysis. The time unit of analysis is a month, rather than a week or a 

day, so that we can accommodate random errors of temporal distance between the actual camera 

installation date and the announcement date that we manually collect from the city website.3. Also, it 

would be a sparse dataset of accidents (many zeros) if aggregated to the week or day level, posing a 

statistical challenge. Hence, we use a month as a more accurate unit to not only measure the camera 

installation times more accurately but also accumulate a stable aggregation of accidents. 

Our empirical context has a few advantageous properties in identifying the effects of camera 

installations. First, camera installations were rolled out with both geographical and temporal 

variations, offering us a quasi-experimental setup (Figures B-6 in Appendix B). Second, we are able 

to use location fixed-effects to tease out time-invariant confounding effects from, for example, road 

complexity, bus traffic, and other traffic safety measures. We also control for location-specific time-

varying factors, such as the changes in nearby public and private facilities (See Table C-2 in 

Appendix C). Third, camera installations were not anticipated by drivers ex ante, reducing the 

endogeneity of the treatment. Fourth, we control for potential interferences among road intersections. 

Specifically, we account for the number of cameras installed at neighboring road intersections and 

segments (within 0-300 meters of a focal intersection). Additionally, standard errors are clustered at 

the block level to account for correlated unaccounted factors due to geographical connections. Lastly, 

the presence of cameras is made visible and noticeable to drivers (Figure B-7), as required by traffic 

safety laws in China. Also, all sampled cameras are located at road intersections so that drivers can 

 
3 Sometimes the announcement was one or two weeks late; but usually, it was issued on the same week of camera 
installation, according to our field interviews. 
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easily notice them when waiting for a green light. It is still possible that drivers passing through the 

green light at speed may not be aware of the cameras. Nevertheless, if we are able to identify any 

measurable effect of these cameras, it would serve as the lower bound of the true treatment effect, as 

the cameras would become more effective when they are more visible.  

2.4. Descriptive Statistics 

Using raw statistics, we conduct a non-parametric comparison of accidents near intersections treated 

and untreated (control) with installations during the sample period, as well as a comparison of 

accidents at the treated intersections before and after camera installations. The model-free 

comparisons yield several observations (see Table C-4 in Appendix C). First, before any camera 

installation, on average, the road intersections later treated with advanced cameras had experienced 

more accidents, whereas intersections later treated with conventional cameras had experienced fewer 

accidents than the control interventions. Second, at the treated intersections, on average, accidents 

decrease after advanced camera installation. Third, at treatment intersections, on average, accidents 

increase after conventional camera installation. These observations can hardly be causal evidence for 

the effects of camera installation, but they reveal at least two identification challenges: (i) the city 

might have selected locations to install advanced and conventional cameras for unobserved reasons, 

and (ii) time-varying confounders may explain the accident dynamics following their installations. 

We address these concerns through various empirical strategies detailed in §3 below.  

3. Empirical Strategy and Results 
3.1. Event Study Design  

To obtain estimates that can be more credibly interpreted as causal, we leverage the staggered 

installation of traffic cameras across road intersections over time. The quasi-experimental variation 

allows us to estimate the effect of traffic cameras on road accidents using an event study design. This 

strategy compares accident trends at treated road intersections before and after the treatment (i.e., 

camera installation) with those at control intersections over the same timeframe.  

The event study design offers several advantages over the conventional two-way fixed-effects 

difference-in-differences (TWFE-DiD) design. First, it captures the dynamic effects of traffic 

cameras, discerning whether effects are persistent or temporal and providing more transparent 

estimates than DiD. Second, it avoids issues like the assumption of constant treatment effect within 

treated units over time, which often arise in staggered DiD designs (Goodman-Bacon 2021). Third, it 

visualizes parallel pre-intervention trends in accidents, allowing us to intuitively assess if there are 

any selection biases over time. This, to a large extent, addresses challenges identified in the 

descriptive analysis (§2.4). We implement the event study using an OLS estimator below: 

!""#$%&'!" = ∑ *#+,%-./%,.!"(1)# + ∑ 4$+56'-./%,.!"(7)$ + 8!"% 9 + :! + ;" + ɛ!" ,  (Eq. 1) 

where !""#$%&'!" is the log-transformed number of total accidents within the 0-100m range at road 

intersection i in month t. +,%-./%,.!"(1) and +56'-./%,.!"(7) denote pre-treatment placebos and 
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post-treatment variables, respectively, that are equal to 1 if the temporal distance between month t and 

the month before (or after) the camera installation at intersection i is j (or k) months, respectively. We 

incorporate intersection-specific time-varying covariates (8!"), including the nearby public and private 

facilities, such as educational institutions, bus stops, train/subway stations, residential and commercial 

areas, parking spaces, and government agencies, as well as confounding changes in traffic safety 

regulations (e.g., a ban on riding electric bicycles in the studied city; see Panels (i) and (ii) in Table C-

2 in Appendix C). In addition to time-varying covariates, we account for road intersection (:!) and 

year-month fixed-effects (;"). We cluster standard errors at the block level to account for both serial 

correlations within a block and potential spatially correlated factors among intersections clustered in 

the same block.4 The vector 4$ represents the estimate of interests; a negative and statistically 

significant 4$ would indicate that a camera installation at the focal intersection reduces accidents 

nearby. Notably, the validity of event study estimates relies on the parallel trend assumption, where 

the intersections in the treatment and control groups do not differ in accident trends prior to a camera 

installation (i.e., the series of *# is statistically indifferent from zero). 

We first use Eq. 1 to estimate the effect of advanced camera installations (relative to no 

installations) in a sample of road intersections that were installed with only advanced cameras and 

those without any camera installations during the sample period. We then replicate this estimate for 

the effect of conventional cameras (relative to no installations, advanced or conventional). Finally, we 

present both estimates (i.e., new vs. null, old vs. null) to compare the effect of advanced cameras with 

that of conventional ones on total accidents. 

3.2. Main Results  

The results from the event study are depicted in Figure 1 (also refer to Table D-1 in Appendix D for 

all tabulated point estimates and standard errors). 

First, we find that the pre-trend estimates (*#) are not significantly different from zero (at the 

95% confidence intervals), supporting the parallel trend assumption. Second, we observe a 

statistically significant and persistent decrease in total accidents after the installation of advanced 

cameras (in red in Figure 1). However, we do not find a significant decline in total accidents after the 

installation of conventional cameras (in blue). This insignificant effect may be attributed to the fact 

that conventional cameras detect much fewer types of traffic violations than advanced cameras and 

rely on temporal image captures rather than constant video recording. Additional evidence supports 

this notion: when we replace the total accidents with accidents caused by “running a red light” or 

“retrograde” as the dependent variable, we find that the decrease in such accidents is statistically 

significant with conventional cameras, as they are only designed to detect these two violations (See 

details below in Figure 4).   

 
4 A block is a broader geographical unit that consists of multiple intersections, and this city has 57 blocks. 
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Figure 1. TWFE-OLS Estimates on the Dynamic Effects of Automated Enforcement 

 
Notes: The red (blue) line depicts the accident trend near advanced (conventional) cameras, compared to that at intersections 
without cameras (horizontal line at zero). 95% confidence intervals of point estimates are shown. 
 
3.3. Limitations of Baseline Estimates and Corresponding Remedies 

Although the TWFE specification similar to Eq. 1 has been widely adopted for staggered-adoption 

program evaluations, it has recently been demonstrated to deliver consistent estimates only under 

assumptions of homogeneous treatment effect (e.g., de Chaisemartin and D’Haultføeuille 2020, 

Borusyak et al. 2021, Callaway and Sant’Anna 2021, Goodman-Bacon 2021, Sun and Abraham 

2021). An intuitive explanation is that the estimate from a TWFE model is a weighted average of all 

possible “2 (before and after) × 2 (treated and untreated units)” DiD comparisons. If the treatment 

effects are homogeneous across treated units and times, the TWFE estimator is consistent for the 

average treatment effect on the treated (ATT). Conversely, if the effects are heterogeneous across 

units and times, the TWFE estimator may not produce consistent ATT estimates. 

To estimate the dynamic effects in a stagged-adoption design, we first follow Sun and 

Abraham’s (2021) approach, which uses either the untreated cohorts or the last-treated cohorts as 

controls. Based on a regression-based method, their approach estimates the share of the cohorts as 

weights that are more interpretable than the weights underlying TWFE with staggered adoptions. We 

then resort to the imputation estimator proposed by Borusyak et al. (2021), which amounts to fitting a 

regression of the outcome on group and time fixed-effects in the sample of untreated observations and 

using that regression to predict the counterfactual outcome of treated observations. The estimated 

treatment effect of those observations is then merely obtained by subtracting their counterfactual from 

their actual outcome, making the estimator more efficient than that in Sun and Abraham (2021). We 

also use the estimators in de Chaisemartin and D’Haultfoeuille (2021) to incorporate time-varying 
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covariates. This approach assumes that the trends are parallel once the linear effect of time-varying 

covariates is accounted for.  

Figure 2 presents and compares the event study estimates generated by TWFE-OLS and the 

ones based on Sun and Abraham (2021), Borusyak et al. (2021), and de Chaisemartin and 

D’Haultfoeuille (2021). All estimates are consistent with our baseline TWFE-OLS results in Figure 1. 

 
(i) Intersections w/ Advanced Cameras vs. w/o any Cameras 

 
(ii) Intersections w/ Conventional Cameras vs. w/o any Cameras 

 
Figure 2. Heterogeneity-Robust Event Study Estimators 

 

Notes: These figures present and compare the event study estimates generated by TWFE-OLS (our baseline event study 
estimates) with those based on Sun and Abraham (2021), Borusyak et al. (2021), and de Chaisemartin and D’Haultfoeuille 
(2021). The point estimates and 95% confidence intervals are used here.  
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3.4. Robustness Checks 
In what follows, we conduct a battery of tests to probe the robustness of our baseline event study 

estimates, with a summary in Table 1 and the results reported in Appendix E.  

First, we examine if our estimates are sensitive to including different sets of covariates (e.g., 

traffic congestion levels, traffic cameras not located at the focal intersection but nearby within the 

300-meter range). Results with different covariates indicate that the estimates are consistent (Figure 

E-1). Second, we test the sensitivity of our estimates to the sampling strategy. In the baseline 

analyses, we use a “lookahead matching” approach to construct the control group from intersections 

treated with cameras after the sample period. We consider two alternatives: (i) using all intersections 

without camera installation during the sample period as the control group and (ii) applying matching 

techniques, specifically coarsened exact matching (CEM) and only including observations 

(covariates-)matched to the treatment intersections as the control group (see Table E-1). Results 

remain consistent (Figure E-2).  

Third, the baseline estimates might be biased when unaccounted time-varying confounders 

influence treated and untreated road intersections differently. To address this issue, we employ a 

generalized synthetic control (GSC) method (Xu 2017). The results in Figure E-3 corroborate the 

validity of the event study. Fourth, advanced cameras might be selected to be installed at intersections 

with higher accident risks. We test this possibility using a hazard logit model to predict the camera 

installation at the focal intersection using its past accident records. However, we find no statistically 

significant evidence for potential reverse causality (see Table E-2).  

Fifth, the significant downward trend in accidents might be due to its spurious relations with 

camera installation or serial correlations of accidents within intersections. We conduct a falsification 

test by applying randomly assigned pseudo treatments to road intersections and months. Results do 

not indicate that autocorrelation exists or statistical effects are picked up at random (Figure E-4). 

Sixth, the distribution of accidents caters to a count data model, and as such, we apply a Poisson 

regression to the TWFE event study model. Results remain qualitatively consistent with the baseline 

estimates (Figure E-5).  

Seventh, one would still be curious about the overall effect of camera installation, regardless 

of camera type. We test it and find that the downward trend in total accidents remains following any 

camera installation (Figure E-6). Finally, it is important to test the effect of camera installation 

directly on traffic violations. One limitation of our data is that it only records violations associated 

with accidents, potentially missing many non-accident violations. To study the changes in violations, 

we replace the accidents with punishment for violations as the dependent variable, measured by 

penalty points and fines aggregated at the intersection-month level. Our analysis reveals a significant 

drop in punishment near advanced cameras, indicating fewer violations, while conventional cameras 

show no significant effect (Figure E-7). Although our dataset does not capture all violations, the 

estimated decline provides a conservative lower bound for the impact of automated enforcement.  
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Table 1. Summary of Robustness Checks 
Empirical Challenges Empirical Tests Results Location 
Are the estimates 
sensitive to including 
different sets of 
covariates? 

(1) Drop all covariates and all fixed effects Results remain 
consistent 

Figure  
E-1 (2) Only maintain intersection and year-month 

fixed effects and drop all intersection-specific time-
varying covariates 
(3) Maintain all covariates in the baseline model 
and add the interactions between all covariates and 
the year-month fixed-effects 
(4) Additionally control for the traffic congestion 
level of each intersection by interacting it with 
year-month fixed-effects 
(5) Additionally control for the total accident and 
casualty cases in the past three months 
(6) Add the counts of old cameras, new cameras, or 
other types of cameras within the 300-meter range 
of the focal intersection 

Are the estimates 
sensitive to the 
sampling strategy? 

(1) Use intersections without camera installation 
during the sample period as the control group 

Results remain 
consistent 

Figure  
E-2 

(2) Employ the coarsened exact matching (CEM) 
method 

Unaccounted time-
varying confounders 

Employ the generalized synthetic control (GSC) 
method 

Results remain 
consistent 

Figure  
E-3 

Advanced cameras 
might be selected to 
be installed at 
intersections with 
higher accident risks. 

Use a hazard logit model to predict the camera 
installation at the focal intersection using its past 
accident records 

No statistically 
significant 
evidence for the 
potential 
selectivity issue. 

Table  
E-1 

Spurious correlation? Conduct a falsification test by applying randomly 
assigned pseudo treatments to road intersections 
and months. 

No evidence for 
autocorrelation or 
statistical effects 
being picked up 
at random 

Figure  
E-4 

The distribution of 
accidents caters to a 
count data model 

Apply a Poisson regression Results remain 
consistent 

Figure  
E-5 

The overall effect, 
regardless of camera 
type 

Treat all camera installations the same and replicate 
the baseline analysis with this composite treatment 
measure 

The downward 
trend in total 
accidents remains 

Figure  
E-6 

How about the direct 
effect of camera 
installation on traffic 
violations? 

Replace accidents with punishment for violations 
as the dependent variable, measured by the penalty 
points and fines aggregated at the intersection-
month level 

Results remain 
consistent 

Figure  
E-7 

Is the TWFE model 
with a stagged-
adoption design 
consistent? 

Use the estimators proposed by Sun 
and Abraham (2021), Borusyak et al. (2021), and 
de Chaisemartin and D’Haultfoeuille (2021), 
respectively 

Results remain 
consistent 

Figure 2 

 

3.5. Average Effects and Economic Significance 

While the event study design demonstrates the dynamic effects of traffic cameras over time, it does 

not capture their overall effect during the sample period. To address this, we estimate the average 

treatment effect of traffic camera installation using a conventional TWFE-DiD approach, followed by 

a robustness check with Callaway and Sant’Anna’s (2021) method, which mitigates bias in staggered 

DiD settings by accounting for treatment effect heterogeneity across installation cohorts (details in 

§3.3). These estimates allow for a welfare analysis to assess the economic significance of automated 
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enforcement deployment. Specifically, we evaluate the average changes in accident counts, human 

costs (e.g., the number of deaths, serious, and minor injuries), and the monetary value of property loss 

involved in the accidents near the treated road intersections before and after camera installation.  

Table 2 presents TWFE-DiD and Callaway and Sant’Anna’s (2021) estimates for the effects 

of advanced cameras (versus no cameras) in Panel A and the effect of conventional cameras (versus 

no cameras) in Panel B. The TWFE-DiD estimates indicate that advanced traffic camera installations 

are statistically significantly associated with reductions in total accidents (–8.3%), casualty cases 

involving deaths and injuries (–6.3%), and non-casualty cases involving only vehicular damage (–

3.2%). Examining the specific components of human and economic loss involved, we find that 

advanced traffic cameras reduce deaths (–0.5%), serious injuries (–0.1%), minor injuries (–6.8%), and 

property loss (–31.8%). In contrast, we do not find statistically significant evidence that conventional 

camera installations affect accident counts, human loss, or property damage. The estimates using 

Callaway and Sant’Anna’s (2021) method are largely consistent with the baseline results, though they 

exhibit larger effect magnitudes and inevitably inflated standard errors. Consequently, the TWFE-DiD 

estimates can be considered a credible and conservative lower bound for the effects of interest.    

Table 2. Estimated Average Effects of Camera Installations on  
Road Accidents and Associated Human and Economic Costs 

DV: log(Y+1) 

# 
Accident 

Case 

# 
Casualty 

Case 

# 
Non-

Casualty 
Case 

# 
Deaths 

# 
Serious 
Injuries 

# 
Minor 

Injuries 

¥ 
Property 

Loss 

 (1) (2) (3) (4) (5) (6) (7) 
         

Panel A: 
TWFE-DiD        

Advanced cameras -0.083*** -0.063*** -0.032** -0.005** -0.0012* -0.068*** -0.318** 
 (0.016) (0.016) (0.013) (0.002) (0.0007) (0.018) (0.138) 
Callaway and Sant’Anna (2021)        

Advanced cameras -0.149*** -0.096** -0.062* -0.012 -0.002* -0.104** -0.439 
 (0.044) (0.042) (0.037) (0.009) (0.001) (0.050) (0.293) 
        
Mean of Y w/o cameras 0.474 0.199 0.276 0.005 0.001 0.241 654.490 
        
Panel B:        
TWFE-DiD        

Conventional cameras 0.009 -0.005 0.010 0.002 -0.000 -0.006 -0.119 
 (0.029) (0.017) (0.020) (0.003) (0.001) (0.021) (0.223) 
Callaway and Sant’Anna (2021)        

Conventional cameras 0.050 -0.004 0.048 0.002 0.001 0.001 0.422 
 (0.041) (0.026) (0.035) (0.003) (0.002) (0.027) (0.282) 
        
Mean of Y w/o cameras 0.455 0.188 0.267 0.004 0.001 0.228 654.669 
        

Notes: In all specifications, we control for intersection fixed effects, year-month fixed effects, and location-specific time-
varying control variables. Panel A shows the estimated effects of advanced camera installations (relative to no installations) 
in a sample of road intersections that were installed with only advanced cameras and those without any camera installations 
during the sample period. Panel B shows the estimates for the effect of conventional cameras (relative to no installations) in 
a sample of intersections that were installed with only conventional cameras and those without any camera installations. In 
each panel, we first implement a TWFE-DiD estimation, followed by a robustness check using Callaway and Sant’Anna 
(2021), with both approaches yielding consistent results. Robust standard errors (clustered at the block level) are reported in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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A back-of-the-envelope calculation using TWFE-DiD estimates suggests that if the city had 

installed advanced cameras at all signal-controlled intersections, it could have potentially prevented 

1,190 accidents (including 379 casualty cases) annually,5 saving 496 lives involved in fatal and 

injury-related incidents, and reducing property loss from vehicular damage by ¥6,298,780 (≈ US 

$969,043). Beyond this counterfactual estimation, we also estimate the incremental economic and 

human cost savings associated with the actual installation of advanced cameras during our sample 

period. Economic savings are again measured by reductions in property loss from vehicular damage, 

while human cost savings are now calculated based on decreased expenses related to bodily injuries 

and lost lifetime income due to the installation of advanced cameras. As a result, the total societal 

benefits from the actual deployment of advanced cameras amount to ¥426,003 (≈ $65,538) before 

2017, ¥1,438,508 (≈ $221,308) before 2018, and ¥2,727,687 (≈ $419,644) before 2019 (See detailed 

calculations in Appendix G). A note of caution is warranted when interpreting or extrapolating these 

estimates. While our analysis focuses on the traffic safety benefits of automated enforcement, 

potential costs—such as the negative aspects of increased surveillance—should not be overlooked, 

even though they fall outside the scope of this research.  

 
4. Underlying Mechanisms 
4.1. Key Explanations 

How to explain the overall decline in accidents after the installation of advanced cameras, relative to 

conventional ones? We draw upon deterrence literature to discuss the underlying mechanisms.  

Traffic cameras, as automated law enforcement tools, naturally connect this study to 

criminology and economics literature on monitoring. Becker (1968) 	argued that crime levels are 

determined by individuals’ rational evaluation of costs and benefits, where the expected cost of crime 

is shaped by monitoring resources (which increase the probability of apprehension) and punishment 

severity (which raises the potential penalty). He further suggested that this framework could be 

extended to encompass various types of violations, including traffic offenses (p. 170). This has 

inspired research on traffic safety as a matter of law enforcement. For instance, Hansen (2015) found 

harsher punishments reduce driving-under-influence offenses, and Goncalves and Mello (2017) 

studied the impact of speeding penalties on the future driving behavior of cited drivers. Our work 

differs by focusing on (i) monitoring resources rather than punishment severity, (ii) automated 

enforcement (including its functions and presence) rather than human police presence, and (iii) 

aggregate-level deterrence and traffic safety outcomes rather than individual behaviors. 

Drawing on deterrence literature (Chalfin and McCrary 2017), we argue that (i) traffic 

cameras’ technical capabilities increase the likelihood of identifying and apprehending traffic 

 
5  The reduction of 1,190 total accidents is computed as 0.474 (mean of total accidents at baseline intersections 
without any cameras) × 0.083 (the estimated average effects of advanced cameras) × 12 (months) × 2,522 (the 
number of all signal-controlled intersections). 0.474 and 0.083 are from Column 1 in Panel A of Table 2. 
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violators, and (ii) drivers’ awareness of these cameras influences their driving behaviors, with both 

mechanisms collectively reducing accident risks. Notably, the first mechanism (i) represents the 

technological source of deterrence, while the second (ii) is the psychological manifestation of 

deterrence. These mechanisms are interdependent, and both are essential to materialize the overall 

deterrent effect. To illustrate, if traffic cameras lack sufficient technical capacities (e.g., limited 

detection functions in conventional cameras) or are not functioning, drivers may adapt to their 

limitations, resulting in weak deterrence. Similarly, if drivers are unaware of the cameras’ presence or 

functionality, psychological deterrence is undermined, and violations and accidents are unlikely to 

decrease. Recognizing this, we explore the nature of these two factors in our empirical context.  

The primary technical capability of traffic cameras lies in their built-in functions with ML to 

constantly and automatically detect violations (automated detection effect). Compared to human 

police, automated law enforcement increases monitoring visibility and the range of violations to 

detect. Traffic cameras not only mimic the presence of human police but also operate more durably 

and ubiquitously, providing 24/7 violation detection. Before camera deployment, traffic law 

enforcement efficacy was relatively low and could only be improved by allocating more police 

officers and checkpoints, a costly endeavor. Even so, some violations, such as non-seatbelt use, are 

difficult for officers to detect, especially in heavy traffic or high-speed scenarios. In contrast, 

advanced cameras, equipped with ML algorithms, can recognize and detect many more violations 

simultaneously in real-time, making them more effective than conventional cameras and police 

patrols in deterring violators and preventing accidents.  

The other technical capability of traffic cameras is their ability to monitor and record, 

providing unambiguous evidence to assist law enforcement in identifying accident causes and liability 

(real-time recording effect). This function is more effective in advanced cameras. Conventional 

cameras only operate when triggered by separate sensors to detect specific violations (e.g., radar to 

detect speeding) and only take a few pictures. In contrast, advanced cameras constantly monitor 

traffic and record video. This video may happen to record some violations during an accident as 

evidence for the identification of accident cause and liability. Without traffic cameras, evidence for 

violations or accidents would often be incomplete. While professional investigators can inspect 

accident scenes, they are prone to inaccuracy and subjectivity, relying on post-crash human judgment. 

Advanced cameras offer instantaneous, objective facts through images or video footage for accident 

scenes. Individuals involved in accidents can request this evidence for an accurate account of the 

causes of the accidents. In our sample, some accidents lack the accurate on-site information needed to 

specify their causes. Installing advanced traffic cameras can reduce such unclear reports by recording 

evidence during accidents.  

Finally, due to their automated detection and real-time recording capabilities, traffic cameras 

can effectively deter risky driving and traffic violations, thereby reducing road accidents. This 

deterrent effect arises from human-technology interactions; drivers become more cautious and 
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prioritize safety when they feel deterred by such cameras. Technology-enabled deterrence 

materializes when drivers consciously or unconsciously associate the presence of cameras with their 

powerful functions of automated enforcement and punishment, rather than their mere presence. 

Notably, even if the cameras are not de facto operating or not within their deterrence coverage, drivers 

can still be psychologically deterred, as they understand the cameras’ technical capabilities, regardless 

of whether they are aware of their functionality. This psychological deterrence leads drivers to learn 

where and when cameras are installed and adjust their risk-taking behaviors while driving. In essence, 

driver learning channels the deterrent effects from their technical origins to driving behavior changes, 

ultimately reducing accident risks.  

In summary, the theoretical underpinnings laid out above aim to understand the deterrent 

effect of automated enforcement and its technological sources. Drawing on deterrence literature, the 

automated detection and real-time recording features of cameras improve the effectiveness of 

monitoring and increase the likelihood of violation apprehension, and such technical capabilities lead 

to drivers’ learning about the cameras’ presence and functions, which ultimately explains the overall 

decline in accidents near the cameras.  

4.2. Mechanism Analyses 

While the above explanations for the roles of automated enforcement are theoretically elucidated, 

empirically demonstrating these mechanisms—(i) technical capabilities (including automated 

detection and real-time recording) and (ii) driver learning—is challenging because these individual 

mechanisms are intertwined and collectively explain the overall changes in accidents. Next, we 

explore these mechanisms empirically using different types of road accidents detailed below.  

Table 3. Different Types of Accidents Recorded in the Police Reports 
Accident 
Type 

Function Description Types of cameras  Examples 

A1 

Proactive 
Accidents for which associated 
violations are detectable by cameras 
given their design 

Advanced 
“driving in the wrong 
lane,” or “causing 
traffic congestion” 

 
A2 

 
Conventional  

only “running a 
red light” and 
“retrograde” 

B Passive 

Accidents for which associated 
violations cameras are not designed 
to detect but can capture evidence 
for accident cause identification 
through video recording 

Advanced 

“not wearing a 
seatbelt,” “texting 
while driving,” or 
“other distracted 
driving” 

C 

Neither 
proactive 
nor 
passive 

Accidents are due to violations that 
cameras are not designed to detect 
and cannot capture evidence to 
identify accident cause even with 
recording 

Neither 
conventional nor 
advanced 

“drunk driving,” 
“driving without a 
license” 

Notes: Type A2 accidents are a subset of type A accidents and refer to accidents for which the associated 
violations could be detected by conventional cameras. On a separate note, we conducted a falsification test to 
assess the effects of advanced and conventional cameras on type C accidents. The results in Figure F-1 in 
Appendix F are statistically insignificant, indicating that cameras without the necessary technical capabilities 
cannot reduce the corresponding accidents. 
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We classify road accidents into three classes based on whether they are associated with 

violations that cameras can or cannot capture (Table 3): (A) accidents for which associated violations 

could have been captured by the proactive (i.e., primarily designed) functions of the cameras (e.g., 

“running a red light”), (B) accidents for which associated violations could have been captured by the 

passive and complementary (mainly real-time recording) functions of the cameras (e.g., “improper 

motor operation” such as texting while driving, captured by constant video but not designed to 

detect), and (C) accidents neither proactively nor passively captured by the cameras (e.g., “drunk 

driving” that only other means, such as a breath alcohol test, can help detect and identify the causes). 

Taken in sum, Type A accidents can be captured by either advanced or conventional cameras or both, 

Type B accidents can only be captured by advanced cameras (due to their constant video recording), 

and Type C accidents cannot be captured by either type of camera. 

Automated Detection Effect. We explore the effect of the cameras’ automated detection 

capability by focusing on accidents linked to violations captured by the cameras’ proactive functions 

(i.e., Type A accidents). We separate the analyses for advanced and conventional cameras, as their 

proactive functions exhibit different coverage of violations; advanced cameras can detect over 30 

types of violations, while conventional cameras detect only 2 (“running a red light” and “retrograde”). 

Figure 3 presents the baseline estimates using the number of accidents for which associated violations 

could have been captured by advanced cameras’ proactive functions as the dependent variable. The 

post-treatment estimates indicate a statistically significant downward trend (in red), empirically 

supporting the automated detection effect. Figure 4 presents the estimates using accidents linked to 

accidents captured by conventional cameras’ proactive functions. The post-treatment estimates 

indicate a similar downward trend after the installation of both conventional cameras (in blue) and 

advanced ones (in red), corroborating the automated detection effect. 

 
Figure 3. Effect of Camera Installation on Traffic Accidents Linked to Violations 

Captured by Advanced Cameras’ Proactive Functions 
 

Notes: Examples of accidents nearby for which associated violations captured by the advanced cameras’ 
proactive functions are “running a red light,” “driving in the wrong lane,” or “causing traffic congestion.”  
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Figure 4. Effect of Camera Installation on Traffic Accidents Linked to Violations  

Captured by Conventional Cameras’ Proactive Functions 
 

Notes: Accidents nearby for which associated violations could have been captured by the conventional cameras’ 
proactive functions are only “running a red light” and “retrograde.” 
 

Additionally, advanced cameras outperform conventional ones in reducing two types of 

accidents linked to violations both cameras can detect (post-estimates in red vs. those in blue in 

Figure 4). Notably, despite their ability to detect more violations and prevent a broader range of 

accidents, advanced cameras are also cheaper and easier to install. Unlike conventional cameras, 

which require an electromagnetic device embedded beneath the intersection, advanced cameras 

operate without this additional infrastructure, reducing costs and streamlining deployment. 
Real-time Recording Effect. We explore the effect of the cameras’ real-time recording 

capabilities by focusing on accidents for which associated violations could have been captured by 

advanced cameras’ passive functions (Type B accidents). We only focus on advanced cameras here, 

because conventional cameras barely record accident cause evidence beyond the two violations they 

are designed to detect. Figure 5 presents the baseline estimates using the number of accidents for 

which associated violations could have been captured by advanced cameras’ passive functions as the 

dependent variable. The post-treatment estimates indicate a statistically significant downward trend 

(in red), empirically supporting the real-time recording effect. However, we find such accidents 

remain statistically unchanged following the conventional camera installation, which serves as 

falsification evidence that the real-time recording effect does not arise if a camera is not technically 

capable of capturing video evidence to assist with accident cause identification.  
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Figure 5. Effect of Camera Installation on Traffic Accidents Linked to Violations 

Captured by Advanced Cameras’ Passive Functions 
 

Note: Examples of accidents for which associated violations could have been captured by advanced cameras’ 
passive functions are “improper motor operation” or “not wearing a seat belt.” Although the post-treatment 
estimates (red line) are not all statistically significant, raising concerns about whether the real-time recording 
effect is overstated, we find a negative and statistically significant average effect on accidents (-0.046 using 
TWFE-DiD estimates and -0.059 using Callaway and Santa’Anna (2021), p < 0.05) (see Table 4).  
 

Driver Learning Effect.  Drivers may change their behavior through learning from 

technologies (e.g., Zhang et al. 2020). In our context, we investigate whether driver learning arises 

from deterrence under ML-enabled automated enforcement. Specifically, we analyze changes in 

accidents linked to violations that advanced cameras’ proactive functions could have captured. This 

analysis focuses on focal intersections equipped with conventional cameras and examines the impact 

of advanced cameras newly installed at neighboring intersections 100–300 meters away (see Figure F-

2 in Appendix F).  
For this analysis, we use a subset of the full sample comprising intersections with 

conventional cameras installed prior to the installation of advanced cameras in nearby areas. This 

setting allows us to observe the behaviors of drivers who are exposed to both limited deterrence from 

conventional cameras—capable of detecting only two types of violations—and the broader deterrence 

of advanced cameras nearby. The similar appearance of advanced and conventional cameras may lead 

drivers to mistakenly attribute past punishments for violations (the experience they learned) to a 

conventional camera at a focal intersection, believing it to be an advanced camera with proactive 

detection capabilities, even though the actual advanced camera is located nearby in the broader area.  
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Figure 6. Spillover Effect of Advanced Cameras at Nearby Intersections on Accidents (Linked 

to Violations Captured by Their Proactive Functions) at the Focal Intersection 
 

Notes: It is important to highlight that both neighboring and focal intersections were installed with conventional 
cameras to ensure drivers’ awareness of their presence. The analysis here aims to understand whether the 
addition of an advanced camera to the neighboring intersection prompts driver learning and extends deterrence 
from the neighboring intersections (100-300m away from the focal one) to the focal intersection beyond the 
detection coverage of neighboring cameras. We also examine driver learning by estimating the changes in 
accidents for which associated violations could have been captured by advanced cameras’ passive functions and 
not captured by any functions, with results in Figure F-3 and Figure F-4 do not yield any significant patterns 
(see details in Appendix F).  
 

This deterrence spillover effect arises solely from driver learning for the following reasons. (i) 

Advanced cameras at neighboring intersections cannot capture violations occurring 100-300 meters 

away. (ii) Conventional cameras at the focal intersections cannot detect certain violations (e.g., 

speeding) that are detectable only through advanced cameras’ proactive functions. (iii) The reduction 

in accidents can only be attributed to drivers learning about the presence and function of advanced 

cameras nearby, based on past experiences, extending this deterrence to the conventional camera they 

encounter at focal intersections.6 Figure 6 shows a significant downward trend in accidents at focal 

intersections following the installation of advanced cameras nearby, providing notable evidence for 

the driver learning effects.  

Taken together, advanced cameras more effectively reduce accidents than conventional 

cameras through three mechanisms. First, the automated detection effect improves violation 

identification, leading to fewer accidents. Advanced cameras not only reduce overall accident 

occurrence by detecting a wider range of violations (extensive margin, Figure 3) but also further 

 
6 One alternative explanation for this spillover effect is GPS alerts notifying drivers of nearby advanced 
cameras, even when they are not directly passing them. While standard GPS alerts typically do not cover 
cameras beyond 100 meters on urban roads, if they do, such alerts would reinforce rather than contradict the 
driver learning effect. In this case, they could further enhance driver awareness, implying that our estimate— 
though statistically significant—may represent a conservative lower bound of the driving learning effect. We 
appreciate an anonymous reviewer for suggesting this alternative explanation.  
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decrease accidents where associated violations could have been proactively captured by conventional 

cameras (intensive margin, Figure 4). Second, the real-time recording effect enables passive 

monitoring through continuously capturing video, aiding in accident cause identification and 

improving post-accident analysis (Figure 5). Finally, the driver learning effect increases driver 

awareness over time. Drivers adjust their behavior in response to the presence and functions of 

advanced cameras and even extend this awareness to locations without effective deterrence (Figure 6).  

Beyond the event study estimates on these mechanisms, we also report the average effects 

using both TWFE-DiD and Callaway and Santa’Anna (2021) estimates in Table 4. The results 

indicate substantial effect magnitudes and statistical significance, aligning with the mechanisms 

discussed above.7 These findings suggest that advanced cameras provide greater technological and 

psychological deterrence than conventional ones, further corroborating the baseline result of a 

significant reduction in accidents observed near advanced cameras. 

Table 4. Estimated Average Effects of the Mechanisms  

Notes: This table presents the results of the mechanism analysis based on the estimated average effects of 
advanced (or conventional) cameras, complementing the event study estimates in Figures 3-6, which may not 
fully capture the magnitude and statistical significance of the overall effects. In all specifications, we control for 
intersection fixed effects, year-month fixed effects, and location-specific time-varying control variables. Each 
analysis begins with a TWFE-DiD estimation, followed by a robustness check using Callaway and Santa’Anna 
(2021), with both approaches yielding consistent results. Robust standard errors (clustered at the block level) are 
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 
7 The estimates for driver learning effects (-0.085 for TWFE-DiD estimation and -0.161 for Callaway and 
Santa’Anna (2021) method) seemed larger than the main effects of advanced cameras on A1 type accidents (-
0.055 for TWFE-DiD estimation and -0.096 for Callaway and Sant’ Anna’s method). This is because the 
subsample we used for driver learning effect analysis differs from the ones used for other tests. When using the 
same subsample, the main effect of advanced cameras is larger than the estimated driver learning effect. To 
further supplement the analysis of accident types (characterized as A, B, and C in Table 3), we also analyze 
specific accidents (top 5 in our accident data) and the impact of cameras. The results shown in Table F-2 in 
Appendix F are consistent with those from the main mechanism analyses in §4.2. 

Mechanisms Camera 
Type   

Accident 
Type 

Corresponding 
Event Study 

Estimates 
TWFE-DiD 

Callaway and 
Sant’Anna 

(2021) 
      

Automated 
Detection Effects 

Advanced 
Cameras A1 Figure 3 -0.055*** 

(0.014) 
-0.096*** 

(0.028) 
     

Advanced 
Cameras A2 Figure 4 -0.057*** 

(0.013) 
-0.050** 
(0.019) 

     
Conventional 

Cameras A2 Figure 4 -0.050*** 
(0.018) 

-0.064** 
(0.025) 

      
      
Real-time 
Recording Effect 

Advanced 
Cameras B Figure 5 -0.046** 

(0.018) 
-0.059** 
(0.026) 

      
      

Driver Learning 
Effect  

Neighboring 
Advanced 
Cameras 

A1 Figure 6 -0.085* 
(0.044) 

-0.161** 
(0.069) 
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4.3. Confounding Explanations 

There could be other confounding mechanisms that may obscure the interpretation of the observed 

effects. We first discuss one such mechanism—displacement—that would support the deterrent 

effects but does not improve the overall traffic safety of the studied city. Then, we explore two other 

explanations—distraction and risk compensation—that may increase accident propensities and 

potentially offset the deterrent effects.  

Temporal and Spatial Displacement. In line with the scholarly debate in criminology on 

whether deterrence primarily displaces, rather than reduces, crimes (e.g., Banerjee et al. 2019), we 

empirically test the accident displacement effect in our setting. We find no evidence of temporal 

displacement, as the effects of cameras are sustained once they are permanently installed (Figures 1 

and 2). Spatial displacement is possible if drivers become more strategic in risky driving, especially 

when they are not in camera detection range. Yet, we find that it is unlikely either, as there are no 

significant changes in accidents within a 100-300m radius of a focal intersection after camera 

installation (Figure G-1 in Appendix G). 

Distraction. Newly installed cameras may distract drivers when they pass the intersections 

where cameras are installed. If a driver suddenly notices the cameras nearby and slams on the break, 

the vehicles behind would have to follow suit. If the latter cannot respond as promptly as possible, 

rear-end collisions occur. These cases could increase the number of accidents immediately after the 

camera installation. To empirically test this possibility, we replicate the baseline estimation but only 

focus on rear-end collisions and do not find evidence of such a distraction effect (Figure G-2). 

Risk Compensation. Despite the existence of deterrence, there are still cases where a decline 

in accidents is not seen, as predicted by the risk compensation effect (Peltzman 1975). Because only 

drivers, but not pedestrians or cyclists, are deterred by traffic cameras, the drivers may become more 

careful than others on the road. If this is the case, the main effect would be explained only by a 

decline in motor-and-motor accidents, but not pedestrian-and-motor accidents or single motor 

accidents (non-motor accidents thereafter). It is possible that accident risk is transferred from those 

who are under the deterrence (drivers) to—or compensated by—those who are not (pedestrians or 

cyclists), thereby increasing the accidents of the latter. If so, such a risk compensation effect would 

offset the deterrent effects. To check this possibility, we replicate the analyses but only focus on the 

changes in non-motor accidents. We do not find any statistically significant evidence that supports the 

risk compensation explanation (Figure G-3). 

5. Effect Heterogeneity 
We further examine the varying effects of contextual factors to understand for whom and when 

advanced cameras improve traffic safety. The results are in Table I-1 in Appendix I.  

First, traffic cameras can deter risky driving behaviors more effectively among those who 

take more risks. Consistent with traffic safety literature (e.g., Makowsky and Stratmann 2009), our 

data shows that male drivers are more accident-prone than female drivers. Additionally, experienced 
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drivers have higher accident rates than novice drivers (e.g., 0-3 years post-licensing). These facts in 

our context might be due to (i) the higher proportion of male and experienced drivers and/or (ii) these 

drivers generally driving more, being over-confident, and less cautious. Consequently, male and 

experienced drivers’ behaviors should be more impacted by traffic cameras. Our findings support this, 

showing a significant reduction in accidents involving these driver groups post-camera installation.  

Second, since accidents are less likely to occur at lower speeds (Peltzman 1975), cameras 

should be more effective where traffic speed is higher. Urban traffic speeds are influenced by the 

severity of congestion. The speeds are lower during peak hours (7:00-9:00 am and 5:30-7:30 pm in 

our setting) but higher during off-peak hours. We classify the accident times into peak and off-peak 

hours and find that advanced cameras reduce accidents in off-peak hours, but not in peak hours, 

reinforcing their role in deterring risky driving.  

Finally, the advantage of automated enforcement over police officers lies in its constant 

presence and extensive coverage. Police deployment on the road is often disproportionate across time 

in a day – for example, more in the daytime and less at night. In addition, the ability of officers to 

detect traffic violations is weaker at night than in the daytime. In contrast, traffic cameras can operate 

effectively 24/7 under various light conditions. We analyze the effect of advanced cameras during 

daytime (6 am to 6 pm) and nighttime (6 pm to 6 am) separately. Results show that advanced camera 

installations lead to a statistically significant reduction in accidents in both periods, with a notably 

larger effect at night. These findings further support the benefits of automated enforcement’s constant 

and pervasive operations in preventing traffic accidents. 

6. Discussion and Conclusion 
6.1. Summary of Findings 

In this paper, we examine the role of automated enforcement in traffic safety. Using a unique 

longitudinal dataset on road accidents and traffic camera installations in a metropolitan city in China 

in the mid-2010s, our event study estimates consistently demonstrate a statistically significant and 

persistent downward trend in total accidents near advanced cameras. The installation of conventional 

cameras does not have a material effect on the total accidents, but it leads to a decrease in a limited 

type of accidents because such cameras are designed to detect limited violations. 

More importantly, we further theorize the sources of the effect: the technical capability and 

driver learning associated with the cameras. Our findings show that the unique technical capabilities 

– automated detection enabled by ML techniques and real-time recording – differentiate the trends in 

accidents near advanced cameras from those near conventional cameras or no cameras. Compared to 

conventional cameras, advanced cameras exhibit larger effects on accidents due to their proactive 

functions (i.e., enhanced violation detection). This relative effect is evident in both the extensive 

margin (a decrease in more types of accidents) and the intensive margin (a greater reduction in the 

same accident types). Furthermore, advanced cameras exhibit a unique effect on reducing more types 

of accidents for which associated violations could have been captured by their passive functions (i.e., 
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real-time video recording), an effect not observed for conventional cameras. These capabilities of 

advanced cameras help establish a technology-enabled deterrence, wherein drivers are aware of and 

learn the presence and functions of advanced cameras. This awareness and learning carry over to 

other locations, even where effective deterrence does not exist, by affecting drivers’ behaviors in a 

way to avoid violations and reduce their accident risks. 

Additional findings from tests of confounding explanations, heterogeneous effects, and 

welfare analyses further substantiate the impact of automated enforcement. First, the overall reduction 

in accidents persists over time and does not shift to locations further away from cameras, assuaging 

concerns about temporal or spatial displacement that is common with human police deployment. 

Second, we find no evidence of accident risks transferring to other road users (e.g., pedestrians, 

cyclists) after camera installations, addressing concerns about risk compensation and negative 

externalities to motor and pedestrian collisions. Third, the effects of advanced cameras are stronger 

for male and experienced drivers, as well as during non-peak hours and nighttime, when risky driving 

is more likely, corroborating the deterrence mechanism. Finally, the estimated total societal benefit 

associated with the advanced cameras is economically significant, with the potential decrease of 1,190 

accidents, 496 people involved in fatal and injury cases, and ¥6,298,780 (≈ US $969,043) in property 

loss annually, had they been installed at all signal-controlled intersections in the studied city. 

6.2. Contributions to Research and Policymaking 

This study makes significant contributions to research and practice. First, it advances research on 

traffic safety by distinguishing the capabilities of advanced, AI-driven systems from conventional 

interventions. Prior studies have largely focused on conventional cameras, often overlooking their 

technical features, and reported mixed or limited effects (De Pauw et al. 2014, Gallagher and Fisher 

2020). In contrast, we examine how technical features—such as ML-enabled multi-violation detection 

and real-time recordings—reshape road safety. Our findings suggest that advanced cameras address 

key limitations of conventional enforcement, including information asymmetry and negative 

externalities (Edlin and Karaca-Mandic 2006), while enhancing deterrence and encouraging drivers to 

internalize and comply with traffic regulations. By analyzing the interplays between technical 

capabilities and behavioral deterrence, we show how advanced cameras reduce accidents and foster 

sustained behavioral changes, even beyond monitored areas, bridging critical gaps in the literature on 

traffic management and road safety.  

Moreover, this study advances criminology and law enforcement scholarship (Becker 1968, 

Nagin 2013, Chalfin and McCrary 2017) by exploring the role of automated, AI-enabled enforcement. 

Although research has linked public surveillance cameras to crime deterrence (e.g., Priks 2015), the 

socio-technical aspects of automated enforcement remain under-theorized. We provide theoretical 

insights into how traffic cameras’ automated detection and real-time recording capabilities can evolve 

into effective technology-enabled deterrence. Further, our findings advance the debate on deterrence 

efficacy in traffic safety (e.g., Banerjee et al. 2019), demonstrating that technology-enabled deterrence 
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mitigates concerns over risk displacement or compensation (Pelzman 1975) and highlighting 

comparative advantages of automated over conventional law enforcement in improving road safety.  

Further, this research enriches the broader discourse on the societal impact of IT (e.g., Chan 

and Ghose 2014, Chan et al. 2016, Cheng et al. 2020, 2022, Liu and Bharadwaj 2020, Park et al. 

2021). By examining a machine learning application in the public domain, we extend the scope of IS 

literature on IT and transportation, offering new insights into the role of emerging technologies in 

addressing enduring challenges in road safety and public health.  

Finally, the findings of this work hold significant implications for policymakers. To enhance 

traffic law enforcement, policymakers and transportation planners should prioritize technology-

augmented policy interventions. More importantly, they must develop a deeper understanding of how, 

why, and when automated enforcement is most effective. The significant and persistent reduction in 

road accidents following the installation of advanced cameras, compared to conventional ones, 

delivers a key policy insight; for technology-enabled deterrence to be materially effective, it is 

essential to evaluate the technical capabilities, drivers’ behavioral changes, and overall effectiveness 

of such systems, rather than narrowly focusing on whether to deploy them or how many to install. 

Key questions to consider include: What types of violations can these cameras detect? How effectively 

do they apprehend traffic violators? Can they provide constant traffic monitoring and collect 

evidence to determine accident causes and liabilities? How do they influence drivers’ learning and 

behavioral adjustment toward safe driving? Insights from this study offer a foundation for 

policymakers to navigate the complexities of procuring and deploying automated enforcement 

systems and to cautiously and dynamically assess their impact on traffic safety. 

6.3. Limitations and Future Work 

To understand the extent to which our findings on automated enforcement and its effects can inform 

real-world considerations and applications, we highlight several important limitations. One key 

limitation lies in our focus on traffic safety, measured by changes in road accidents. While this 

approach provides valuable insights, a more detailed analysis of traffic violations following camera 

deployment could shed light on the underlying deterrence mechanisms. Since our analysis is based on 

police accident reports, it does not account for violations that do not result in accidents. A more 

comprehensive dataset, including all recorded violations, could reveal a broader deterrent effect, but 

such data were not available for this study.  

Another constraint is the inability to conduct a complete cost-benefit analysis due to limited 

data on camera installation costs. Expenses for camera purchase, installation, and maintenance vary 

significantly depending on the contracts between the city government and private vendors. Moreover, 

procurement details for traffic cameras in our context were not publicly disclosed. Despite this 

limitation, our welfare estimates indicate that the impact of automated enforcement on traffic safety is 

both statistically and economically significant. 
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A further consideration is the ongoing ethical and societal debate surrounding surveillance 

technologies (e.g., Acemoglu 2021, Crawford 2021, Zuboff 2019). We emphasize that the primary 

aim of this study is to provide rigorous scientific evidence on the impact of automated enforcement on 

traffic safety, rather than addressing broader societal concerns, such as potential privacy violations 

associated with surveillance. To achieve this aim, we independently collected and consolidated data 

on camera installations and accidents, and we described and analyzed the dataset with due caution. To 

gain deeper insights into the context where automated enforcement operates, we also conducted field 

interviews with local police officers, drivers, and camera suppliers. 

Building on these insights, we propose several directions for future research and practice. 

First and foremost, foundational research on deterrence mechanisms and behavioral insights is needed 

to better understand the implications of automated enforcement. Future studies can analyze traffic 

violations, including those not resulting in accidents, to better assess the effectiveness of AI-based 

deterrence. Driver-level analyses with individual-level data could offer more nuanced insights into 

behavioral adjustments under deterrence. Longitudinal research can track driver learning over time 

using telematics or digital driving records. These insights can inform the development of driver 

education programs that complement enforcement technologies.  

In addition, actionable frameworks for optimizing automated enforcement deployment are 

needed. Comprehensive cost-benefit analyses—accounting for installation, maintenance, and 

operational expenses alongside accident reduction benefits—would aid in evaluating economic 

feasibility. Additionally, examining the varying impacts of advanced cameras across urban, suburban, 

and rural settings, as well as roads with different speed limits, can guide data-driven strategies for 

optimal camera placement, maximizing safety benefits and economic efficiency.  

Furthermore, exploring synergies between automated enforcement, smart mobility 

technologies, and existing infrastructure is crucial. Research on integrated systems—combining 

automated enforcement with technological advancements (e.g., cameras to detect violations by non-

motorized vehicles), real-time traffic management, and safety policies—could help urban planners 

align enforcement technologies with broader smart city initiatives.  

Last but not least, addressing societal implications and fostering public acceptance of 

automated enforcement is vital. Future research can investigate public perceptions—including 

concerns about surveillance, privacy, and trust in institutions—and compare enforcement 

effectiveness across diverse policy environments and cultural contexts. Such studies could inform 

transparent communication strategies to build greater public trust and acceptance and provide 

comparative insights for global adoption and standardization of automated enforcement. Addressing 

these directions allows future research and practice to expand upon our study, advancing traffic 

safety, economic efficiency, and societal integration of automated enforcement.  
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AUTOMATED ENFORCEMENT AND TRAFFIC SAFETY 
 

Online Supplementary Appendices 
 
Appendix A: Literature Reviews 
 

Table A-1.  A Brief Review of Studies on Traffic Enforcement Cameras and Road Accidents (2014-2024) 
Authors (Year) Cameras for multiple violations? Technology 

behind? Accident measurements Geo-Units Traffic 
safety effect 

Blais and Carnis (2015) No (speed cameras) Unspecified Fatal and injury crashes 1 country (France) Positive 
Claros et al. (2017) No (red light cameras) Unspecified Rear-end, angle crashes 59 intersections Mixed 
De Pauw et al. (2014) Yes, but limited (speed & red light) Unspecified Injury, rear-end, side crashes 253 intersections Mixed 
Gallagher and Fisher (2020) No (red light cameras) Unspecified Total accidents and injuries 66 intersections Null 
Graham et al. (2019) No (speed cameras) Unspecified Personal injury collisions 771 camera sites Positive 
Hu and Cicchino (2017) No (red light cameras) Unspecified Fatal crashes 33 U.S. Cities Positive 

Hu and McCartt (2016) No (speed cameras) Unspecified Speed, crashes involved an 
incapacitating or fatal injury 117 U.S. cities Positive 

Langland-Orban et al. (2014) No (red light cameras) Unspecified Fatal crashes 62 U.S. Cities Null 
Lee et al. (2015) No (red light cameras) Unspecified Fatal and injury crashes 200 intersections Negative 
Llau et al. (2015) No (red light cameras) Unspecified injuries 20 intersections Positive 

Martínez-Ruí et al. (2019) Yes, but limited (e.g., speeding, red 
light running, blocking crosswalks) Unspecified All crashes, injury and fatal crashes 88 intervention 

areas in a city Positive 

Quistberg et al. (2019) No (speed cameras) Unspecified Motorist speeds and speed violation 
rates 

4 school areas in a 
city Positive 

Tilahun et al. (2022) No (speed cameras) Unspecified Injury and fatal crashes 101 camera 
locations in a city Positive 

Wang et al. (2020) Yes, but limited (e.g., speeding, red-
light running, illegal lane changing) Unspecified Injury and non-injury crashes 49 traffic analysis 

zones in a city Positive 

Wong (2014) No (red light cameras) Unspecified Red light crashes, injury crashes, all 
crashes 

32 treated 
intersections Mixed 

 
This paper 
 

Yes  Specified  Total and various accidents  2,522 intersections Positive 
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Table A-2. A Brief Review of IS Literature on IT in Transportation 
Authors (Year) Technology Topic in 

Transportation  
Intended 

effect? 
Key Findings 

Agarwal et al. (2023) Ride-hailing platform (Uber) Traffic congestion No Uber exit led to a decrease in travel time.  

Barbar and Burtch (2020) Ride-hailing platform (Uber) Public transit utilization No Uber entry led to a decrease in bus services but an 
increase in commuter rail services. 

Cheng et al. (2020) Federally-supported intelligent 
transportation systems (ITS) Traffic congestion Yes Government ITS adoption facilitates urban 

mobility and traffic management 

Greenwood and Wattal (2017) Ride-hailing platform (Uber) Traffic safety No Uber entry reduces alcohol-related motor vehicle 
fatalities 

Li et al. (2022) Ride-sharing platform (Uber) Traffic congestion No Uber entry increases traffic congestion in compact 
areas but decreases it in sprawling urban areas.  

Liu et al. (2021) Ride-hailing platform (Uber) Taxi and ridesharing 
service quality  Yes Platform design increases service efficiency and 

reduces moral hazard 

Rhee et al. (2023) Information sharing via ride-hailing 
platform 

Taxi and other public 
transit utilization No 

Information sharing via ride-hailing apps 
effectively allocates traffic demand across 
transportation means. 

Zhang et al. (2020) Global Positioning Systems (GPS) 
Drivers’ demand 
learning and driving 
decisions 

Yes 
Information provided by GPS helps drivers to 
learn the distribution of demand and make more 
efficient driving decisions.  

Zhang et al. (2023) Ridesharing platforms (Uber) Taxi and ridesharing 
utilization No 

The ridesharing platform outperforms (and is 
more resilient than) taxis under urban anomalies 
(e.g., terrorist attacks). 

This paper Automated enforcement (in the form 
of traffic cameras)  Traffic safety Yes 

Automated enforcement, depending on its 
technical capabilities, can establish deterrence to 
influence driver behaviors, reducing traffic 
violations and accident risks. 
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Appendix B: Data, Sample Construction, and Contextual Properties  
 
B.1. Accident Data  
 
We obtained a proprietary dataset of road accidents from the local police department. The dataset 
records detailed information on all reported traffic accidents (237,255) in this city between 2014 and 
2016 (accident data before 2014 and after 2017 were not made available to us for security control 
reasons). It includes the specific time and location of each accident, the number of injuries and deaths 
involved, the cause of each accident, as well as drivers’ characteristics, such as age, gender, and 
years of driving experience, among others. Figure B-1 illustrates part of the information collected 
from a traffic accident report in our context.  
 

 
Figure B-1. An Example of a Traffic Accident Report 

 
Our sample is restricted to accidents that are geographically close to the road intersections within a 
radius of 0-100 meters (See Table B-1). This is because (i) these accident locations were more 
accurately recorded, and (ii) the accident incidences were more likely influenced by traffic cameras 
(the majority of which are located at the road intersections). Accidents far away (e.g., 100-300 
meters) from the cameras (thus beyond the effective monitoring coverage) do not contribute to the 
direct treatment effect of automated enforcement, but they allow us to measure the spatial 
displacement effect discussed in the main text. The restriction to accidents in the 0-100m radius of a 
road intersection results in a sample of 51,364 accidents, 43.3% of which were involved with 
casualties (deaths and/or injuries). The casualty rate does not differ much across samples, including 
accidents with different distances (e.g., 50 meters, 100 meters, 200 meters, or 300 meters) to the 
nearest intersections, which indicates the representativeness of our sample for analysis.  
 

Table B-1. Accident Data by Distance from the Sampled Road Intersections 
  Accidents Casualty Cases Rate 

Data  237,255 78,466 0.331  
 300m 106,371 47,249 0.444  

 200m 81,382 36,204 0.445  
Sample Data 100m 51,364 22,241 0.433  

 50m 38,011 16,395 0.431  
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Notably, the monthly accidents in the studied city increased steadily over the sampled period from 
January 2014 to December 2016 (Figure B-2). Interestingly, this overall upward trend in accidents 
happened in the same timeframe during which the number of traffic camera installations increased. 
However, this positively covarying relationship cannot be interpreted as causal, as other confounding 
changes co-exist in this period but are not being accounted for. Hence, in the paper (§3), we use 
econometrics for formal causal identification.  
 

 
Figure B-2. Number of Accidents per Month, Over Time 
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B.2. Traffic Camera Installation Data  
 
We manually collected information on all traffic cameras installed in this city from the local 
government website until September 2021. Such information is required by law to be made available 
to the public. The camera data we compiled include the location and time of each camera installation, 
as well as the functions (i.e., what types of traffic violations the camera detects) of each camera 
installed. Figure B-3 is an exemplary webpage of the local government site from which we collected 
the camera installation data. 
 

Figure B-3. An Example of Local Government Webpage that Regularly Announced Camera 
Installations, the Camera Types, and Their Times and Locations 

 

Two aspects of camera installation data are worth noting: First, the installation data we collected not 
only covers the sample period (5,969 installations between 2014-2016), but also includes camera 
installation information before January 2014 (3,405) and between January 2017 and September 2021 
(7,977) (Table B-2). In the analysis, we use the road intersections that were later installed with 
cameras after 2017 as our control group, because both control and treatment intersections “need” 
camera installations, thereby relatively comparable. Second, we exclude cameras installed at non-
intersection locations, such as those in the middle of a road segment, because, in such cases, locations 
of both camera installations and accidents nearby were less accurately recorded in the original dataset.  
 

Table B-2. Accident Data by Distance from the Sampled Road Intersections 
 before 2017 after 2017 

Total Number of Cameras 9,374 7,977 
Number of Cameras in the Sample (Installed at the Road Intersections) 5,969  
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Figure B-4 summarizes the installations of traffic cameras per month over the extended period until 
September 2021.  It reflects the staggered installation of traffic cameras, creating a quasi-experimental 
setting that allows for the use of an event study to examine changes in accidents resulting from the 
camera installations (§3.1). 
 

 
Figure B-4. Temporal Distribution of Road Intersections  

that were Installed with Traffic Cameras per Month 
 
Notably, we study two types of cameras: conventional traffic cameras (which only detect limited 
violations based on temporary image capture) and advanced ones (which detect a greater variety of 
violations via constant video capturing and real-time pattern recognition). See the illustrations in 
Table B-3 and Figure B-5 for their differences and similarities. 
 
There are two notable differences between these two types of cameras: the coverage and method of 
violation detection. First, conventional cameras only detect running red lights or retrograde, whereas 
advanced ones detect as many as thirty traffic violations, including some common ones such as 
speeding, not following traffic signs/signals, and driving in the wrong lane. Second, conventional 
cameras detect and capture violations passively. For example, when a vehicle runs a red light, the 
electromagnetic device laid below the ground (often below the crossroad) can detect the moving (or 
reversed-moving) objects when the red light is on, and the device triggers the cameras nearby to 
capture the violation scene. These conventional cameras often take two to three images—capturing 
both the red light and the moving vehicle with a clear license plate—to testify to the violation. In 
contrast, advanced cameras detect violations proactively because the detection is based on real-time 
video capture and analytics. As the advanced camera is constantly in operation, all violations nearby 
are captured in this real-time video stream. In practice, whether a type of violation is detected and 
recorded depends on whether the ML algorithms embedded in the camera have learned such a 
violation before and been programmed to detect it. In the studied context, advanced cameras vary in 
their functions (i.e., number of detectable violations), depending on the camera suppliers. Cameras of 
different installation cohorts may come from different suppliers. Nevertheless, in all cases, advanced 
cameras are much more capable than conventional ones of detecting violations.  
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Figure B-5. Graphical Illustration of Conventional and Advanced Camera Enforcement 

 
 

Table B-3. Differences between Conventional and Advanced Traffic Cameras 
 Conventional Cameras Advanced Cameras 
Violations Detected 
(Fewer vs. More) 
 

Running red lights and retrograde Over 30 common traffic violations. 
Besides running red lights and 
retrograde, the violations detected 
mainly include speeding, illegally 
overtaking other vehicles, U-turns in 
dangerous areas, not following traffic 
signs/signals, and driving in the wrong 
lane. 
 

Detection Methods 
(Passive vs. Proactive) 

The violation can be detected by an 
underground electromagnetic device 
that triggers the cameras nearby to 
capture images of the violated vehicle 
with the license plate number. 
 

The violation and the violated vehicle 
can be captured in the real-time video 
stream and identified by the pattern 
recognition algorithms embedded in 
the camera. 
 

 
Despite these differences, conventional and advanced cameras are very similar in appearance, though 
the advanced camera is always with a lighting device nearby. Another similarity is that on-site 
violations captured by both types of cameras are automatically written into the backend database, 
which allows the generation of text messages (as a notice of violation and fine) to offenders. The text 
message also informs the offenders of the type of traffic violation as well as when and where the 
violation happened. 
 
Throughout this paper, we use “new” and “old” cameras interchangeably for advanced and 
conventional cameras, respectively.  
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B.3. Road Intersection Data 
 
We obtained the road intersection-level features from Baidu Map API, a web mapping service 
application in China. The features include the average traffic congestion levels, road types (e.g., state, 
provincial, or urban roads with varying engineering requirements to accommodate speed limits and 
vehicles of different weights) passing through the intersection, and the coordinates of all educational 
institutes (elementary and secondary schools), bus stops, train stations, subway stations (either in 
operation or under construction), restaurants, tourist spots, and government agencies. We consider 
these facilities as they might affect both the cameras needed and the accidents near the focal 
intersection. To control their effects, we count the number of such facilities within the 0-500 meters 
radius, except for train stations and tourist spots, where we use a 1000m radius, given significantly 
much heavier traffic of commercial vehicles and pedestrians near them. 

 
To construct a dataset at the intersection-month level, we restricted the sample of road intersections to 
signal-controlled ones. This is because (i) in urban areas (and also in our sample), the most likely 
location for a traffic accident is the road intersection, and most traffic cameras are installed at the 
intersections rather than at the road segments; (ii) per local traffic regulation, all intersection cameras 
should be installed at the signal-controlled intersections; and (iii) as different intersections may 
exhibit substantial heterogeneity, we restrict the sample in this way to construct a comparable 
treatment-control sample for analysis. This restriction results in 2,522 signal-controlled intersections.  
 
We manually matched all the cameras in our dataset with these signal-controlled intersections. We 
find that among these intersections, 958 have never installed cameras by September 2021, when data 
collection needed. Recall that we use the intersections that installed cameras later (2017-2021) as a 
counterfactual for the treated intersections with cameras in the sample period (2014-2016). Thus, we 
dropped these 958 less comparable intersections, resulting in 1,564 sampled ones.  
 
Accidents were then matched to the vicinity (0-100 meters) of these intersections. In doing so, we 
compiled a dataset of camera installations and accidents to the same referenced map of road 
intersections. Among these 1,564 intersections, 990 were treated with cameras (thus the treatment 
group), and 574 were not (thus the control group). Within the treatment group, 138 had only advanced 
cameras, 765 had only conventional cameras, and 87 had both. We conducted two event study 
estimations, comparing (i) new vs. no cameras and (ii) old vs. no cameras.  As shown in Figure B-6, 
most conventional cameras were installed earlier than advanced cameras, which reflects the transition 
from the first wave to the second wave of traffic camera deployment in this city.   
 

 
Figure B-6. Temporal Distribution of Road Intersections that Were Installed with Advanced 

and Conventional Traffic Cameras per Month  
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B.4. Contextual Properties 
 
There are a few good properties in this context for identifying the effects of traffic camera installation: 
First, camera installations were rolled out with both geographical and temporal variations, which 
offers us a quasi-experimental setup. Second, we are able to use location fixed-effects to tease out 
time-invariant confounding effects from, for example, population density, road complexity, bus 
traffic, and past traffic measures. We also account for location-specific time-varying factors, such as 
traffic speed. Third, camera installations are not anticipated ex ante by drivers, which increases the 
confidence in the treatment exogeneity. Fourth, we control the potential interference among road 
intersections, i.e., the installation of cameras nearby imposes an effect on accidents at the focal 
intersection. Specifically, we control the number of cameras installed at neighboring road 
intersections and segments (within 0-300 meters of the focal intersection). 
 
We note a valid concern about the non-compliance issue, i.e., whether the presence of cameras at the 
focal intersection is noticeable to drivers passing through; if not, this intersection is, de facto, not 
treated. Note that “non-compliance” here does not mean that drivers act against the traffic safety 
regulations; rather, it is a situation where cameras are too invisible to exert effect. In our setting, the 
non-compliance issue is not severe for several reasons.  
(1) Traffic cameras in China are recognizable with clear signs next to them (Figure B-7), and de jure, 

all drivers have to be able to recognize such signs.  
(2) The cameras in our sample were all installed at signal-controlled intersections, and vehicles have 

to stop and notice the presence of cameras when the red light switches on. Otherwise, they will 
almost be a 100% chance of getting caught, as all cameras can detect running red-light violations. 
If drivers get caught, they are essentially affected by the cameras, and then non-compliance is 
accounted for by the treatment effect.  

(3) When the green light switches on and some drivers passing by at speed are not aware of the 
cameras, this is the situation that most likely reduces the effectiveness of the treatment. That said, 
if we identify any measurable effect, it will serve as the lower bound of the true effect, because 
cameras will surely exert a larger effect when they are more visible. This, however, does not 
weaken the informativeness of our estimates. 

 

 
 

Figure B-7. Traffic Cameras with the Sign Next to Them  
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Appendix C: Descriptive Statistics, Covariates, and Camera Installation Prediction 
 

Table C-1 summarizes the statistics of different accidents and associated consequences (e.g., death, 
injury, property loss, violation tickets) per intersection per month. Table C-2 presents the construction 
of intersection-level covariates that we use in the event study estimation. Table C-3 reports the 
exposure analysis where we use past accident levels (one month, two months, three months) and 
covariates to predict if a road intersection would be installed with either an advanced traffic camera or 
a conventional one. The results indicate that reverse causality might not be a concern, supporting the 
parallel trend assumption for the TWFE event study estimation.  We also conduct a non-parametric 
comparison of accidents near intersections eventually treated (treatment group) and untreated (control 
group) with installations during the sample period, as well as a comparison of accidents at treatment 
intersections before and after camera installation, and the results are reported in Table C-4.  
 

Table C-1. Summary Statistics of Accidents per Intersection per Month (N=56,304) 
 Mean S.D. Min. Max. 
 (1) (2) (3) (4) 

Within the radius of 0-100 meters of the intersection     
   # accident cases 0.649 1.153 0 23 
   # casualty cases 0.278 0.619 0 9 
   # non-casualty cases 0.371 0.845 0 18 
   # deaths 0.006 0.081 0 6 
   # injuries 0.338 0.841 0 49 
   ¥ property loss 753.254 2,630.757 0 200,000 
   # accidents affected by new cameras’ proactive function 0.272 0.692 0 14 
   # accidents affected by old cameras’ proactive function 0.099 0.384 0 6 
   # accidents affected by new cameras’ passive function 0.260 0.604 0 15 
   # accident not affected by any function 0.062 0.298 0 9 
   # female driver cases 0.233 0.639 0 17 
   # male driver cases 0.447 0.938 0 19 
   # novice driver cases 0.078 0.410 0 17 
   # experienced driver cases 0.634 1.141 0 23 
   # daytime cases 0.261 0.612 0 11 
   # night-time cases 0.387 0.805 0 15 
   # holiday cases 0.189 0.507 0 15 
   # workday cases 0.460 0.901 0 16 
   # peak hour cases 0.102 0.352 0 6 
   # off-peak hour cases 0.546 1.018 0 22 
     
Within the range of 100-300 meters of the intersection     
   # accident cases 0.630 1.165 0 22 
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Table C-2. Covariates and Definitions 
Covariate Definition 
 
(i) Intersection-specific time-varying variables (yearly updated, lagged for one year) 
  

edu_500m_dum =1 if at least one educational institution is located within the radius of 0-500m of the road intersection, =0 otherwise 
car park_500m_dum =1 if at least one car park is located within the radius of 0-500m of the road intersection, =0 otherwise 
gov_500m_dum =1 if at least one government office is located within the radius of 0-500m of the road intersection, =0 otherwise 
resid_500m_dum =1 if at least one residential district is located within the radius of 0-500m of the road intersection, =0 otherwise 
comm_500m_dum =1 if at least one commercial building is located within the radius of 0-500m of the road intersection, =0 otherwise 
# catering_500m number of food shops within a radius of 0-500m of the road intersection 
# bus stop_500m number of bus stops within a radius of 0-500m of the road intersection 
 
(ii) Intersection-specific time-varying variables (monthly updated) 
 

train station_1000m_dum =1 if at least one train station is located within the radius of 0-1000m of the road intersection, =0 otherwise 
subway station_500m_dum =1 if at least one subway station is located within the radius of 0-500m of the road intersection, =0 otherwise 
subway station_uc_500m_dum =1 if at least one subway station under construction is located within 0-500m of the road intersection, =0 otherwise 
ban_post =1 if there is a ban on riding the electric bicycle on the road, =0 otherwise 
# old cameras_300m number of neighboring conventional cameras within the radius of 0-300m of the road intersection 
# new cameras_300m number of neighboring advanced cameras within the radius of 0-300m of the road intersection 
# accident cases in the past 3 months total number of traffic accidents in the past three months 
# casualty cases in the past 3 months total number of casualty accidents in the past three months 
  
(iii) Intersection-specific time-invariant variables 
 

traffic congestion level_200m the traffic congestion level within 0-200m of the road intersection (a lower value represents severer congestion) 
tourist_1000m_dum =1 if at least one tourist spot is located within the radius of 0-1000m of the road intersection, =0 otherwise 
road level2_dum =1 if the maximum administrative level of road across the intersection is the 2nd level (county level), =0 otherwise 
road level3_dum =1 if the maximum administrative level of road across the intersection is the 3rd level (city level), =0 otherwise 
distance to district gov distance to the site of the district government 
distance to city gov distance to the site of the city government 
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Table C-3. Summary Statistics of Covariates Per Intersection and Per Month 
  N Mean S.D. Min. Max. 

Panel A: Intersection-specific time-varying variables (yearly updated, lagged for one year) 
  edu_500m_dum 56,304 0.501 0.500 0 1 
  car park_500m_dum 56,304 0.680 0.466 0 1 
  gov_500m_dum 56,304 0.291 0.454 0 1 
  resid_500m_dum 56,304 0.357 0.479 0 1 

comm_500m_dum 56,304 0.302 0.459 0 1 
  # catering_500m 56,304 25.310 56.311 0 501 
  # bus stop_500m 56,304 6.591 6.259 0 29 
      

Panel B: Intersection-specific time-varying variables (monthly updated) 
  train station_1000m_dum 56,304 0.034 0.181 0 1 
  subway station_500m_dum 56,304 0.190 0.393 0 1 
  subway station_uc_500m_dum 56,304 0.026 0.159 0 1 
  ban_post 56,304 0.696 0.460 0 1 
  # old cameras_300m 56,304 0.346 0.823 0 6 
  # new cameras_300m 56,304 0.017 0.236 0 6 
  # accident cases in the past 3 months 51,612 1.956 2.762 0 50 
  # casualty cases in the past 3 months 51,612 0.838 1.313 0 18 
      

Panel C: Intersection-specific time-invariant variables 
  traffic congestion level_200m 53,208 76.028 18.011 0 100 
  tourist_1000m_dum 56,304 0.016 0.125 0 1 
  road level2_dum 56,304 0.002 0.044 0 1 
  road level3_dum 56,304 0.004 0.062 0 1 
  distance to district gov 56,304 7.117 6.443 0.158 29.216 
  distance to city gov 56,304 18.771 10.348 0.201 49.446 
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Table C-4. Model-Free Comparisons 
 Control  Treatment 
  Average  Average Before After 
Panel A:  
Intersections w/ advanced cameras vs. 
Intersections w/o any cameras 
  

 
 

   

# accident cases 0.458  0.519 0.560 0.381 
 (0.984)  (0.937) (0.975) (0.782) 
      
log(# accident cases + 1) 0.256  0.292 0.314 0.220 
 (0.437)  (0.457) (0.468) (0.408) 
      
Panel B: 
Intersections w/ conventional cameras 
vs. intersections w/o any cameras 
  

 
 

   

# accident cases 0.458  0.779 0.325 0.788 
 (0.984)  (1.260) (0.688) (1.270) 
      
log(# accident cases +1) 0.256  0.414 0.196 0.419 
 (0.437)  (0.525) (0.373) (0.527) 
Notes: Standard deviation in parentheses. 
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Appendix D. Event Study Estimates 
 

Table D-1 below presents the point estimates and standard errors for the baseline event study 
estimates in Figure 1.  

 
Table D-1. TWFE-OLS Event Study Estimates for Figure 1 

DV: log(# accident cases + 1) New vs. Null Old vs. Null 
(1) (2) 

Installed (-13 month) 0.019 (0.036) -0.012 (0.056) 
Installed (-12 month) -0.008 (0.043) 0.037 (0.069) 
Installed (-11 month) -0.016 (0.043) 0.025 (0.076) 
Installed (-10 month) -0.047 (0.049) 0.049 (0.065) 
Installed (-9 month) 0.014 (0.057) 0.113 (0.070) 
Installed (-8 month) -0.016 (0.036) 0.114 (0.107) 
Installed (-7 month) -0.046 (0.040) 0.125 (0.103) 
Installed (-6 month) -0.049 (0.055) 0.068 (0.100) 
Installed (-5 month) 0.009 (0.043) -0.025 (0.105) 
Installed (-4 month) -0.049 (0.044) 0.015 (0.093) 
Installed (-3 month) -0.036 (0.048) 0.067 (0.052) 
Installed (-2 month) -0.041 (0.050) -0.033 (0.061) 
Installed (-1 month)     
Installed (+0 month) 0.013 (0.046) 0.109 (0.071) 
Installed (+1 month) -0.096** (0.043) 0.020 (0.036) 
Installed (+2 month) -0.100** (0.046) 0.095* (0.054) 
Installed (+3 month) -0.058 (0.046) 0.023 (0.070) 
Installed (+4 month) -0.101** (0.049) 0.012 (0.049) 
Installed (+5 month) -0.155** (0.060) 0.031 (0.079) 
Installed (+6 month) -0.196*** (0.069) -0.011 (0.060) 
Installed (+7 month) -0.159** (0.078) 0.021 (0.062) 
Installed (+8 month) -0.305*** (0.068) -0.019 (0.064) 
Installed (+9 month) -0.235** (0.092) -0.015 (0.054) 
Installed (+10 month) -0.164** (0.070) 0.044 (0.044) 
Installed (+11 month) -0.310*** (0.102) 0.037 (0.058) 
Installed (+12 month) -0.327*** (0.093) 0.049 (0.048) 
Installed (+13 month) -0.280*** (0.060) 0.038 (0.047) 
     
# Treated Intersections 138 765 
# Untreated Intersections 574 574 
Road intersection FE Yes Yes 
Year-Month FE Yes Yes 
Time-Varying Control Yes Yes 
# Observations 25,632 48,204 
R-squared 0.340 0.376 
Note: Robust standard errors (clustered at the block level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix E: Robustness Checks for the Baseline Event Study Estimates 
 
To the extent that this study would be advisory for traffic safety policymaking, it is essential that the 
empirical findings be reliable and robust. In what follows, we cross-validate the estimates from the 
event study method.  
 
E.1. Altering Covariate Sets  
 
We change the composition of the covariate set in various ways and examine if the based event study 
estimates (Eq. 1) are sensitive to such changes. Recall that the baseline TWFE-OLS event study 
specification includes intersection-specific time-varying covariates (i.e., number of train stations, 
subway stations in operation, subway stations under construction, bus stops, educational institutes (for 
elementary and secondary education), car parking spaces, restaurant and other catering facilities in the 
vicinity of the focal intersection per month), plus intersection and year-month fixed-effects.  
 
(1) We drop all covariates and all fixed effects.  
 
(2) We only maintain intersection and year-month fixed effects and drop all intersection-specific 
time-varying covariates. 
 
(3) We maintain all covariates in the baseline model and add the interactions between all covariates 
(except for time fixed-effects) and the year-month fixed-effects (dummies). This specification brings 
monthly variations of previously time-invariant variables such as road types and distance to district 
governments, expanding the control for time-varying factors.  
 
(4) In addition to the baseline model, we control for the traffic congestion level (a static index of 
traffic density passing through the focal intersection, offered by Baidu API) of each intersection by 
interacting it with the year-month fixed-effects.  
 
(5) We consider the influence of past accidents on the camera installation and accidents in the current 
month by additionally controlling for the total accident cases and casualty cases in the past three 
months (intersection-specific time-varying) to the baseline model 
 
(6) We consider the spatial spillover effect of neighboring traffic cameras by adding (to the baseline 
model) the counts of old cameras, new cameras, or other types of cameras in the vicinity of the focal 
intersection within the 300-meter range. These cameras do not have to be installed in the road 
intersections but could also be on the road segments and anywhere else within the 300-meter range, 
meaning that we control effects from all cameras nearby (other than the focal one) on the accidents 
and camera installations in the focal intersection.  
 
Figure E-1 presents all the estimates together for new vs. null and old vs. null, respectively: (0) 
baseline model, (1) without control & FE, (2) intersection-year FE, (3) workhorse model, (4) traffic 
congestion level, (5) traffic accidents in the past three months, and (6) neighboring traffic cameras. As 
seen, except for specification (2), all the other estimates (including point estimates and standard 
errors) are highly consistent across different specifications, corroborating our baseline TWFE-OLS 
event study estimates. The estimates of specification (2) indicate the potential bias caused by 
unobservable, without accounting for intersection and year-month fixed effects. 
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(1) New vs. Null 

 

 
(2) Old vs. Null 

 
Figure E-1. Event Study Estimates from Specifications with Different Covariates 
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E.2. Alternative Sampling Strategies 
 
We change the sampling strategy to check the sensitivity of our based estimates of Eq. 1. We take two 
alternative strategies: (i) use all intersections without camera installation during the sample period as 
the control group, and (ii) apply the matching technique, specifically Coarsened Exact Matching 
(CEM) and only include observations (covariates-)matched to the treatment intersections as the 
control group. Table E-1 presents the covariates before and after applying CEM. The results (mean 
differences) demonstrate that CEM performed well in increasing the comparability between the 
treatment and control groups when using a sample of covariates-matched observations.  
 
Table E-1. Balance Checks of Covariates Between Treatment (road intersections with advanced 

or conventional cameras) and Control Groups (intersections without cameras) 
Covariates  Before CEM    After CEM  
Panel A:  
Advanced vs. No Camera 

No 
Camera 

Advanced 
Camera 

Mean 
Diff 

 No 
Camera 

Advanced 
Camera 

Mean 
Diff 

(1) (2) (3)  (4) (5) (6) 
train station_1000m_dum 0.025 0.014 0.011***  0.008 0.008 0 
subway station_500m_dum 0.149 0.050 0.099***  0.027 0.027 0 
subway station_uc_500m_dum 0.030 0.010 0.020***  0.003 0.003 0 
ban_post 0.531 0.537 -0.006  0.525 0.525 0 
log(#catering_500m + 1) 0.795 0.461 0.334***  0.206 0.208 -0.002 
log(#bus stop_500m + 1) 1.184 0.849 0.336***  0.782 0.776 0.006 
edu_500m_dum 0.422 0.372 0.050***  0.339 0.339 0 
car park_500m_dum 0.584 0.495 0.089***  0.461 0.461 0 
gov_500m_dum 0.209 0.133 0.076***  0.113 0.113 0 
resid_500m_dum 0.221 0.138 0.084***  0.065 0.065 0 
comm_500m_dum 0.184 0.07 0.114***  0.039 0.039 0 
        
obs. 55152 4968 

 
 4276 4276 

 

Panel B:  
Conventional vs. No Camera 

No 
Camera 

Conventional 
Camera 

Mean 
Diff 

 No 
Camera 

Conventional 
Camera 

Mean 
Diff 

(1) (2) (3)  (4) (5) (6) 
train station_1000m_dum 0.025 0.048 -0.023***  0.016 0.016 0 
subway station_500m_dum 0.149 0.251 -0.102***  0.169 0.169 0 
subway station_uc_500m_dum 0.030 0.029 0.001  0.013 0.013 0 
ban_post 0.531 0.816 -0.285***  0.772 0.772 0 
log(#catering_500m + 1) 0.795 1.921 -1.126***  1.049 1.046 0.003 
log(#bus stop_500m + 1) 1.184 1.869 -0.685***  1.591 1.592 -0.001 
edu_500m_dum 0.422 0.582 -0.160***  0.546 0.546 0 
car park_500m_dum 0.584 0.780 -0.195***  0.704 0.704 0 
gov_500m_dum 0.209 0.390 -0.181***  0.313 0.313 0 
resid_500m_dum 0.221 0.502 -0.281***  0.261 0.261 0 
comm_500m_dum 0.184 0.434 -0.250***  0.234 0.234 0 
        
obs. 55152 27540 

 
 14120 14120 

 

Notes: Panel A compares covariates for road intersections with advanced cameras and without any cameras, before and after 
applying CEM. As seen, the differences are wiped out after applying the matching technique. Panel B compares covariates 
for road intersections with conventional cameras and without any cameras, before and after CEM. The performance of 
matching in balancing the covariates is also notable. We do not compare covariates for road intersections with advanced 
cameras and conventional ones as we do not compare these intersections in our main analysis. The description of the 
covariates is in Table C-2, Appendix C. 
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Figure E-2 presents the two estimates together for new vs. null and old vs. null, respectively: (0) 
baseline model, (1) all intersections, and (2) all intersections + CEM. The estimates are consistent 
with our baseline event study results. 
 

 
(1) New vs. Null 

 

 
(2) Old vs. Null 

 
Figure E-2. Event Study Estimates from Alternative Sampling Strategies 
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E.3. Generalized Synthetic Control 
 

While the event study estimates have shown compelling evidence for the effects of traffic cameras on 
accidents at the installation intersection, it is possible that such estimates might be biased when 
unaccounted time-varying confounders influence treated and untreated road intersections differently. 
To address this issue, we employ the Synthetic Control (SC) method (Abadie et al. 2010). This 
method helps construct a weighted combination of untreated road intersections (i.e., synthetic 
controls) that closely resembles the covariates and past accident outcomes of the treatment 
intersections in the pre-installation periods, which offers a better counterfactual to satisfy the parallel 
trend assumption. In doing so, accident trends at both the treatment and control intersections should 
be very close (thus comparable) in the pre-treatment periods, and their differences in the post-
treatment period should be solely driven by the treatment (i.e., camera installation). 
 
In this study, we adopt a state-of-art variant of the SC method, Generalized Synthetic Control (GSC) 
(Xu 2017), which has gained popularity in the social science area for causal inference 
(Pattabhiramaiah et al. 2019, Guo et al. 2020); however, GSC and synthetic control methods are 
relatively new in the information systems research (with exceptions Krijestorac et al. 2020, Wang et 
al. 2021). We use the GSC method because it has two good properties that the traditional Synthetic 
Control method lacks: (i) incorporating a fixed-effect structure, and (ii) allowing multiple treated units 
and periods for the estimation. This is a good fit to our empirical context, i.e., multiple fixed-effects 
(for intersections and months) and the staggered installations of cameras at multiple road intersections 
at different times (instead of a one-time installation at one location).  
 
Panel (1) and (2) of Figure E-3 below show the estimated dynamic effect of new cameras and old 
cameras, respectively, at installation intersections (relative to non-installation intersections). We find 
that the differences in trends of accidents are very similar to the main estimates from the event study: 
(i) accidents in the pre-installation periods are not statistically distinguishable between treatment and 
control intersections for both estimates, which supports the parallel trend assumption; and (ii) there is 
a significant and persistent downward trend in accidents followed by the advanced camera installation 
but no clear pattern followed by the conventional camera installation. Therefore, the GSC results 
further corroborate the validity of the event study estimates (Figure 1).  
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(1) New vs. Null 

 

 
(2) Old vs. Null 

 
Figure E-3. Generalized Synthetical Control with Stagged Camera Installation 
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E.4. Hazard Model to Check if Camera Installation is Predictable 
 
It is possible that advanced cameras were selected to be installed at intersections with higher accident 
risks. We test this rationale using a hazard logit model to predict camera installation at the focal 
intersection using its past accident records. As shown in Table E-1, we do not find statistically 
significant evidence for reverse causality. 
 

Table E-2. Predicting Advanced or Conventional Camera Installations Using Past Accidents 
and Intersection Level Covariates 

 
DV: advanced camera installed 

 (=1 yes, otherwise 0) 
DV: conventional camera installed 

 (=1 yes, otherwise 0) 
 (1) (2) (3) (4) (5) (6) (7) (8) 
         

log(# accident cases+1) 0.516    0.853    
 (0.318)    (0.948)    
log(# casualty cases+1) -0.241    -0.430    
 (0.430)    (1.167)    
L1. log(# accident cases+1)  0.335    -0.641   
  (0.325)    (0.858)   
L1. log(# casualty cases+1)  -0.088    1.042   
  (0.418)    (1.208)   
L2. log(# accident cases+1)   0.354    -0.284  
   (0.303)    (1.171)  
L2. log(# casualty cases+1)   -0.332    -1.943  
   (0.443)    (2.019)  
L3. log(# accident cases+1)    -0.130    1.154 
    (0.350)    (1.518) 
L3. log(# casualty cases+1)    0.204    -0.739 
    (0.439)    (2.194) 
         
Intersection-specific time-invariant variables       
tourist_1000m_dum 0.507 0.496 0.258 0.346 omitted omitted omitted omitted 
 (1.708) (1.709) (1.744) (1.738) (0) (0) (0) (0) 
road level2_dum -1.517 -1.658 -1.660 -1.695 omitted omitted omitted omitted 
 (1.605) (1.595) (1.604) (1.609) (0) (0) (0) (0) 
road level3_dum 0.695 0.801 0.850 0.837 omitted omitted omitted omitted 
 (0.846) (0.832) (0.837) (0.836) (0) (0) (0) (0) 
log(distance to district gov) 0.268 0.286 0.228 0.221 3.601** 4.077** 5.134** 3.973 
 (0.438) (0.435) (0.438) (0.435) (1.763) (1.707) (2.295) (4.185) 
log(distance to city gov) 4.637*** 4.505*** 4.794*** 4.730*** -3.162 -2.697 -4.586 -0.193 
 (1.345) (1.337) (1.354) (1.353) (5.057) (4.996) (5.822) (8.526) 
         
Intersection-specific time-varying variables 
edu_500m_dum 0.008 0.012 0.057 0.044 0.569 0.370 0.299 0.440 
 (0.246) (0.247) (0.249) (0.249) (0.782) (0.751) (0.861) (1.712) 
car park_500m_dum -0.112 -0.092 -0.099 -0.043 1.203 1.330 1.347 1.783 
 (0.284) (0.284) (0.285) (0.285) (1.005) (1.007) (1.127) (1.864) 
gov_500m_dum 0.001 0.051 0.027 0.046 0.795 0.838 2.155 0.859 
 (0.342) (0.340) (0.344) (0.341) (2.253) (2.321) (3.141) (2.297) 
resid_500m_dum 1.342** 1.379** 1.378** 1.385** 5.779*** 6.290*** 4.028 6.547 
 (0.673) (0.684) (0.685) (0.678) (2.151) (2.111) (2.507) (6.909) 
comm_500m_dum -0.692 -0.594 -0.564 -0.461 -1.977 -1.437 -2.132 -0.980 
 (0.667) (0.666) (0.674) (0.674) (1.630) (1.469) (1.577) (2.766) 
log(# catering_500m+1) -0.357* -0.373* -0.378* -0.407* -2.610*** -2.712*** -2.645*** -2.413 
 (0.207) (0.208) (0.209) (0.209) (0.780) (0.755) (0.938) (2.471) 
log(# bus stop_500m+1) -0.029 -0.041 -0.046 -0.062 -0.296 -0.548 -0.898 -2.870* 
 (0.134) (0.133) (0.135) (0.135) (0.717) (0.681) (0.851) (1.721) 
train station_1000m_dum 1.524* 1.480* 1.600* 1.555* 0.481 0.809 0.569 0.966 
 (0.866) (0.858) (0.859) (0.852) (1.246) (1.146) (1.407) (1.939) 
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subway station_500m_dum -0.665 -0.627 -0.648 -0.598 -0.444 -1.178 -5.124 -2.643 
 (0.492) (0.492) (0.496) (0.494) (2.293) (3.251) (4.164) (20.136) 
subway station_uc_500m_dum 0.115 0.114 0.079 0.112 omitted omitted omitted omitted 
 (0.728) (0.728) (0.731) (0.734) (0) (0) (0) (0) 
ban_post -0.062 -0.046 -0.078 -0.029 -1.225 -1.305 -1.739 0.330 
 (0.249) (0.248) (0.250) (0.248) (1.012) (1.030) (1.234) (2.102) 
         
Block FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year-Month FE Yes Yes Yes Yes Yes Yes Yes Yes 
# Observations 24,606 22,512 20,418 18,325 604 520 436 360 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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E.5. Falsifying Spurious Effect or Autocorrelation 
 
The observed significant downward trend of accidents might be possibly due to its spurious relations 
with camera installation or serial correlations of accidents within intersections. While we cluster 
standard errors at the intersection level, it is useful to implement a falsification test, as suggested by 
Bertrand et al. (2004). Following extant literature (e.g., Burtch et al. 2018), we execute a permutation 
test by randomly generating and assigning dichotomous pseudo (or placebo) treatment to the 
observations of intersection-month. For intersections that do not receive such a “treatment,” they are 
the control group. For those that receive the “treatment” at a specific month, prior to that month will 
be the pre-treatment period (“treatment” = 0), and the months after that month (including itself) will 
be the post-treatment period (“treatment” =1). Replacing the actual installation status with the pseudo 
indicator, we rerun our baseline regression, stored the estimates, and replicated the procedure 500 
times. This test allows us to identify more cleanly if the correlation within intersection-month is 
unaccounted for and to check if our estimates are driven by outliers.  
 
Figure E-4 shows the accident trends at both “treatment” and control intersections for new vs. null and 
old vs. null. As it is clear, the point estimates vacillate intermittently above and below zero, with large 
standard errors. This suggests that accident trends do not vary across intersections at both pre-
treatment and post-treatment periods. Contrast the estimates from this permutation test with the main 
estimates in Figure 1, it is unlikely that the observed downward accident trends are spurious or have 
severe autocorrelation issues.  
 

 
Figure E-4. Permutation Test for Falsification 
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E.6. Poisson Estimation 
 
We consider the distribution of accidents and used the count data model for the event study 
estimation. As seen in Figure E-5, the Poisson estimates are qualitatively similar to the OLS ones, and 
the decline in accidents at intersections after the installation of advanced cameras remains significant.  

 

 
Figure E-5. TWFE-Poisson Estimates on the Dynamic Effects of Automated Enforcement 
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E.7. Overall Dynamic Effects of Traffic Camera Installation  
 
While advanced and conventional cameras differ a lot in functions, one would still be curious about 
the overall effect of camera installation, regardless of whichever the camera type is. Then we treat all 
camera installations the same and replicate the analysis with this composite treatment measure. The 
estimates remain consistent, and the downward trend of accidents is mainly driven by the effect of 
advanced cameras (Figure E-6).  
 

 
Figure E-6. Intersections with Cameras (either new or old) vs. without Cameras  
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E.8. Automated Enforcement Effect on Traffic Violations (That Led to Accidents) 
 
It is sensible to directly test the deterrent effect of camera installation on traffic violations. We replace 
the accidents with violation punishment, measured by the penalty points and ticket fines, as the 
dependent variables and replicated the event study analysis to trace the changes in the punishment 
near the camera-installed intersections.  
 
As seen in Figure E-7, there is a significant drop in punishment near the intersections installed with 
advanced cameras, indicating a decrease in violations as well; however, we do not find any significant 
change in punishment after the installation of conventional cameras. A note of caution here is that we 
do not have access to the full dataset of violations, some of which are not associated with any 
accidents. Still, the observed decrease in the violations serves as the lower bound for, and 
corroborates, the deterrence of automated enforcement. 
 

 
(1) # Penalty Points 

 

        
(2) ¥ Ticket Fines (Min.)                                                  (3) ¥ Ticket Fines (Max.) 

 
Figure E-7. Effects of Camera Installation on the Punishment (Penalty points and Fines)  

of Traffic Violations (That Led to Accidents) Per Intersection Per Month 
 

  



 - 27 - 

Appendix F:  More Analyses for Exploring Underlying Mechanisms 
 
F.1. Mapping between Theoretical Mechanisms and Empirical Tests 
 
Table F-1 shows the mapping between theoretical explanations, cameras involved, accidents 
examined, empirical tests, and their effects. We shade the rows for the key mechanisms (automated 
detection, real-time recording, and driver learning) we identify that drive the baseline results, with un-
shaded rows being the cross-validation or falsification tests.       
 

Table F-1. Mapping between Mechanisms, Empirical Tests, and Effects 
 Mechanisms Cameras 

(location) 
Accident 
(location) Effect Figure 

Technical 
Capability 

Automated 
Detection 

Advanced or conventional 
cameras (at focal 
intersections) 

Type A accidents 
(at focal 
intersections) 

Statistically 
significant 
reduction in 
both, but 
pronounced 
for advanced 
cameras 

Figure 3, 
Figure 4, and 
Table 4 

Real-time 
Recording 

Advanced cameras (at 
focal intersections) 

Type B accidents 
(at focal 
intersections) 

Statistically 
significant 
reduction in 
advanced 
cameras only 

Figure 5, and 
Table 4 

Placebo effects 
for falsification 

Advanced or conventional 
cameras (at focal 
intersections) 

Type C accidents 
(at focal 
intersections) 

Statistically 
insignificant 
for both 

Figure F-1 in 
Appendix F 

Driver 
Cognition 

Driver 
Learning (of 
proactive 
functions) 

Both advanced and 
conventional cameras (at 
neighboring intersections), 
and only conventional 
cameras (at focal 
intersections) 

Type A accidents 
(at neighboring 
intersections) 

Statistically 
significant 
reduction  

Figure 6, and 
Table 4 

Driver Learning 
(of passive 
functions) 

Both advanced and 
conventional cameras (at 
neighboring intersections), 
and only conventional 
cameras (at focal 
intersections) 

Type B accidents 
(at focal 
intersections) 

Statistically 
insignificant 

Figure F-3 in 
Appendix F 

Driver Learning 
(of neither 
proactive nor 
passive 
functions) for 
falsification 

Both advanced and 
conventional cameras (at 
neighboring intersections), 
and only conventional 
cameras (at focal 
intersections) 

Type C accidents 
(at focal 
intersections) 

Statistically 
insignificant 

Figure F-4 in 
Appendix F 

Notes: Here we colored it red for the particular camera type that we examine its effect in the corresponding empirical 
analysis. Additionally, we used shade for the main mechanisms (in bold) proposed and empirically supported that drive the 
main baseline estimates. 
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F.2. Effect of Camera Installation on Type C Accidents 
 
We conducted a falsification test to assess the effects of new and old cameras on type C accidents for 
which the associated violations are neither captured by cameras’ proactive functions nor passive 
functions. Figure F-1 reveals statistically insignificant results for both advanced and conventional 
cameras, confirming that cameras without the necessary technical capabilities cannot reduce the 
corresponding accidents. 
 

 
Figure F-1. Effect of Camera Installation on Type C Accidents  

Note: Examples of accidents for which the associated violations could have been captured by advanced cameras’ passive 
functions are “drunk driving” or “driving without a license.” 
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F.3. Graphical Illustration of Spillover Effects of Advanced Cameras at the Neighboring 
Intersection  
 
In the mechanism analysis (§4.2), we study driver learning by estimating the changes in accidents for 
which the associated violations could have been captured by advanced cameras’ proactive functions at 
focal intersections with conventional cameras installed when an advanced camera was newly installed 
nearby (100-300 meters away).  
 
Figure F-2 illustrates the spillover effects of advanced cameras at the neighboring intersection on 
traffic accidents at the focal intersection. We restrict our sample to intersections (e.g., A, B, C) that 
were installed with conventional cameras prior to the advanced camera installation. In this setting, 
drivers passing through all intersections are subject to some but limited deterrence (since the 
conventional cameras only detect two violations). The similar appearance of advanced and 
conventional cameras may lead drivers to mistakenly believe a conventional camera at a focal 
intersection (A) is an advanced camera (the latter may, in their memory, be located in the same 
broader area). This deterrence spillover effect can solely arise from driver learning because: (i) 
advanced cameras at neighboring intersections (e.g., B) cannot capture violations 100-300 meters 
away (e.g., A), (ii) conventional cameras at focal intersections (e.g., A in this case) cannot detect 
violations (e.g., speeding) that can only be captured by advanced cameras, and (iii) the reduction in 
accidents (i.e., near A) can only be attributed to drivers learning the presence and function of 
advanced cameras nearby (i.e., at B) and extending their deterrence to the conventional camera they 
see at the focal intersection (A).  
 

Figure F-2. Graphical Illustration of Spillover Effects of Advanced Cameras at the Neighboring 
Intersection on Traffic Accidents at the Focal Intersection  
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F.4. More Analyses for Exploring the Driver Learning Effects. 
 
We examine driver learning by estimating the changes in accidents for which the associated violations 
could have been captured by advanced cameras’ passive functions and not captured by any functions. 
Figure F-3 and Figure F-4 below present the results, indicating statistically insignificant patterns.  
 
These findings may reveal two points: (i) Drivers who commit violations near passive or non-
functional advanced cameras (e.g., at intersection B in Figure F-2) are less likely to be punished (with 
probabilities around 20% or even 0%) compared to those caught by the proactive functions of 
advanced cameras (with a 100% probability of punishment). This discrepancy occurs because not all 
accident victims request video recordings as evidence, allowing some violators (80-100%) to escape 
punishment. As a result, these drivers do not adequately learn about the capabilities of the advanced 
cameras. (ii) When these drivers later travel through the same area again (e.g., at intersection A in 
Figure F-2), their limited learning from previous experiences provides little or no deterrence. 
Consequently, they do not adjust their behavior, do not feel significantly deterred, and continue to act 
as usual, which explains the statistically unchanged accident rates near the cameras, regardless of 
whether they are advanced or conventional, as shown below.  

 
Figure F-3. Effect of Advanced Cameras at Neighboring Intersections on Traffic Accidents 
(Linked to Violations That Could be Captured by Advanced Cameras’ Passive Functions)  

at the Focal Intersection 
 

 
Figure F-4. Effect of Advanced Cameras at Neighboring Intersections on Traffic Accidents 
(Linked to Violations Not Captured by Any Cameras’ Functions) at the Focal Intersection  
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F.5. Mechanism Analyses on Specific Accidents 
 
Finally, we analyze specific accidents that most frequently occurred in our sample to further test the 
mechanisms (characterized in Table 3, Section 4.2). The results for the average effect of advanced and 
conventional cameras on these accidents are in Tables F-2 below. As shown in Column 3, advanced 
cameras, with their proactive and passive functions, are associated with a decline in accidents linked 
to specific violations. However, for the accident identified as caused by “other improper operations,” 
which is unaffected by either function, the coefficient is positive but statistically insignificant. 
Column 4 highlights that conventional cameras, which only detect “running red light” and 
“retrograde” violations, significantly reduce accidents involving “motor vehicle failing to comply 
with traffic signal regulations” but show no significant effect on other violations. Overall, the 
estimates are generally consistent with the results from the analysis using Type A, B, and C accidents 
in Section 4.2, further corroborating the mechanisms we identified in the main text (see Table 4). 
 

Table F-2. Estimates of Effects on Accidents Linked to Exemplary Violations 
(Top 5 Accident Types Ranked by Frequency in Our Accident Data) 

Accidents identified as caused by the 
following violations 

Functions of cameras in 
capturing these violations 

Effect of 
Advanced 
Cameras 

Effect of 
Conventional 

Cameras 
(1) (2) (3) (4) 

 
“Operating a motor vehicle in a manner 
that otherwise hinders safe driving” 
  

Passive -0.011** 
(0.004) 

0.018 
(0.016) 

 
“Motor vehicle failing to comply with 
traffic signal regulations” 
  

Proactive -0.058*** 
(0.013) 

-0.059*** 
(0.018) 

 
“Changing lanes in a way that affects 
other normally moving motor vehicles” 
  

Proactive -0.023*** 
(0.008) 

-0.008 
(0.005) 

 
“Failing to maintain the necessary 
safety distance from the vehicle ahead 
in the same lane” 
  

Passive -0.003 
(0.006) 

-0.004 
(0.012) 

 
“Other improper operations” 
  

Neither Proactive nor 
Passive 

0.006 
(0.004) 

0.004 
(0.008) 

Notes: Table F-2 presents the top 5 accident types ranked by frequency in our data, along with the effects of 
advanced and conventional cameras on their incidence. Notably, we also applied TWFE-DiD estimation to 
accident types beyond the top 5. However, due to their smaller sample sizes, the statistical power of these 
estimates is limited, and they are not reported here. Robust standard errors (clustered at the block level) are 
shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix G:  Alternative Explanations  
 

G.1. Temporal and Spatial Displacement Effects 
 
In line with the scholarly debate on whether deterrence primarily displaces, rather than reduces, 
crimes (e.g., Banerjee et al. 2019), we empirically test the accident displacement effect in our setting. 
First, it is clear in Figure G-1 that there is no temporal displacement because once cameras are 
installed at a road intersection, they are rarely withdrawn. Second, spatial displacement is likely if 
drivers become more strategic in driving after learning the locations of cameras. To test this 
possibility, we replicate the baseline event study estimation but use the number of nearby accidents 
(that could be at a neighboring road segment or intersection) within the 100-300m range near the focal 
intersection. However, we find no evidence for such a spatial displacement. Empirically, there are no 
significant changes in nearby accidents after the traffic camera installation (Figure G-1). 
 

 
Figure G-1. Spatial Replacement (Radius: 100-300m)  
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G.2. Distraction Effect 
 
Newly installed cameras would present as a distraction to drivers when they pass the operated road 
intersections. If a driver suddenly notices the cameras and slams on the break, the vehicles behind 
would have to follow suit. If the latter cannot respond as promptly as possible, rear-end collisions will 
happen. These cases would increase the number of accidents immediately after the camera 
installation. To empirically test this possibility, we replicate the event study estimates but only focus 
on rear-end collision accidents as the dependent variable. However, no evidence suggests such a 
distraction effect (Figure G-2). 
 

 
Figure G-2: Distraction Effect 
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G.3. Risk Compensation Effect  
 
Despite the existence of deterrence, there are still cases where the decline in accidents is not seen. It 
may be explained by the risk compensation effect. Because only drivers, but not pedestrians or 
cyclists, are deterred by the traffic cameras, drivers may be more careful than others on the road. In 
this setting, the main effect may be explained only by the decline of motor-and-motor accidents, but 
not the pedestrian-and-motor accidents or single motor accidents (non-motor accidents thereafter). It 
is likely that accident risk is transferred from those who are under the deterrence (drivers) to—or 
compensated by—those who are not (pedestrians or cyclists), thereby increasing the accident 
incidences of the latter. If so, such a risk compensation effect would offset the negative deterrent 
effects. To check this possibility, we replicate the analyses but only focus on the changes in non-
motor accidents. However, no statistically significant evidence supports the risk compensation 
explanation (Figure G-3). 
 

 
Figure G-3: Risk Compensation Effect  
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Appendix H. Welfare Analysis 
 
Based on the estimates from Table 2, we herein do a conservative estimation on the incremental 
economic savings and human cost savings associated with the advanced traffic cameras. Economic 
savings are calculated using the property loss that could be avoided, and human cost savings are 
calculated using saved costs for bodily injuries and the loss of lifetime income thanks to the 
installation of advanced cameras.  
 
For the road intersection i, its total social welfare gain (W) from a reduction in a specific type of 
accident outcome c (i.e., deaths, serious injuries, minor injuries, and property loss) since the 
installation of advanced cameras at time 𝑡0 up to the post-treatment period t are estimated by the 
following equation: 
 

𝑊𝑖
𝑐 = ∑ (𝑌̅𝑖𝑐 × 𝑀𝑐 × 𝛾𝑐)𝑡−𝑡0

𝑘=1 , 
 

where 𝛾𝑐 is the average camera enforcement effects that are obtained from the TWFE-DiD estimates 
of Table 2, measuring the percentage reduction in accident outcome n due to camera enforcement. 𝑀𝑐 
denotes the average monetized cost from an additional count of accident outcome n. 𝑌̅𝑖𝑐 is the average 
level for accident outcome n within the 0-100m range at road intersection i before the installation of 
advanced cameras. We then sum up the multiplication of these terms to quantify the monetized total 
social welfare gain associated with camera enforcement for collision type n, 𝑊𝑖

𝑐, up to the post-
treatment period t.  
 
For human cost savings, based on China’s standards of compensation for personal damage, where a 
death occurs, the total compensation is around ¥1,024,369.5, which mainly includes the lump-sum 
compensation for death (¥893,060) and for a funeral (¥31,309.5), as well as the mental damage 
compensation for bereaved families (¥100,000); hence, the average human cost savings of one death 
from the traffic camera per month at road intersection i is estimated by 𝑌̅𝑖 × ¥1,024,369.5 × 0.005.  
 
The compensation for bodily injury mainly covers the lump-sum compensation for injury based on the 
degree of disability ranging from Level 1 (the mildest) to Level 10 (the most severe), for mental 
damage, and for the loss of lifetime income. Specifically, for a serious injury, the total compensation 
is around ¥106,024, including the highest-level disability compensation (¥89,306), the mental damage 
compensation (¥10,000), the compensation for the 1-month lifetime income loss (¥5,218), and the 1-
month in-hospital food subsidy (¥1,500);  for a minor injury, as we do not have specific information 
about the average compensation, we conservatively impute the monetized human costs as ¥10,602.4, 
assuming that the average compensation for a minor injury amounts to 10% of a serious injury. As a 
result, the total human costs saved per month at intersection i associated with severe injuries and 
minor ones are imputed by 𝑌̅𝑖 × ¥106,024 × 0.001 and 𝑌̅𝑖 × ¥10,602.4 × 0.068, respectively. 
 
For the economic savings from property loss, the average damaged property saved per month at road 
intersection i associated with the advanced camera installation in the post-treatment period can be 
directly calculated by 𝑌̅𝑖 × 0.318.  
  
With these imputed savings, we can infer the total societal benefits from the actual installation of 
advanced cameras. In our sample, 128 intersections were installed with advanced cameras before 
2017, and the resultant total social welfare gain is ¥426,003 (≈$65,538). In the year 2017, 80 other 
intersections were installed with advanced cameras, and all traffic cameras (including those installed 
before 2017) are estimated to save ¥1,438,508 (≈$221,308) total economic and human costs until the 
end of this year. Subsequently, 155 extra intersections were progressively installed with new cameras 
in 2019, and all cameras are estimated to produce ¥2,727,687 (≈$419,644) societal benefits in total 
until the end of that year. 
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Appendix I. Heterogeneous Effects of Camera Installations 
 
I.1 TWFE-DiD Estimates of the Average Effects on Accidents by Driver Characteristics 
 
We examine the varying effects of contextual factors to understand for whom and when advanced 
cameras improve traffic safety. Specifically, we replicate the TWFE-DiD and our baseline event study 
estimates within several subsamples of our accident data, including (1) female and male driver 
accident cases, (2) novice and experienced driver accident cases, (3) daytime and night-time accident 
cases, and (4) peak and off-peak hour accident cases.  
 
Our average treatment effects estimates are shown in Table I-1 and the event study estimates are 
presented in Figure I-1 below. In Table I-1, we also present to what extent the estimates between the 
two subsamples differ statistically significantly. For example, the installation of advanced cameras is 
statistically significantly (p < 0.01) more likely to reduce accidents involving male drivers than female 
drivers.  
 

Table I-1. Estimates of Effects on Accidents by Driver Characteristics 
Driver Characteristics Effect of Advanced Cameras  Effect of Conventional Cameras 
     
# female driver cases -0.009 (0.012) 0.003 (0.017) 
# male driver cases -0.063*** (0.015) -0.011 (0.021) 
   chi-squared 6.93***  0.16  
     
# novice driver cases -0.005 (0.007) 0.011 (0.010) 
# experienced driver cases -0.078*** (0.016) -0.002 (0.024) 
   chi-squared 14.68***  0.17  
     
# daytime cases -0.041*** (0.012) 0.002 (0.018) 
# night-time cases -0.052*** (0.014) 0.006 (0.021) 
   chi-squared 0.58  0.02  
     
# peak hour cases -0.025*** (0.008) 0.006 (0.012) 
# off-peak hour cases -0.063*** (0.016) 0.006 (0.023) 
   chi-squared 6.02**  0.00  

Note: Robust standard errors (clustered at the block level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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I.2 Event Study Estimates of Effects on Accidents by Driver Characteristics 
 
 
 
 
 
 
 
 
 
 
 

 
(1) #Female Driver Cases  (green) vs. # Male Driver Cases (orange) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(2) #Novice Driver Cases  (green) vs. # Experienced Driver Cases (orange) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3) #Daytime Cases (green) vs. # Night-time Cases (orange) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4) #Peak Hour Cases (green) vs. # Off-Peak Hour Cases (orange) 
 

Figure I-1. Event Study Estimates of Effects on Accidents by Driver Characteristics 
Note: the left panel is new vs. null, and the right panel is old vs. null.  
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