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Abstract. Peer grading is an educational system in which students assess each
other’s work. It is commonly applied under Massive Open Online Course (MOOC)
and offline classroom settings. Peer grading data have a complex network struc-
ture, where each student is a vertex of the network, and each peer grade serves
as an edge connecting one student as a grader to another student as an examinee.
We introduce a latent variable model framework for analyzing peer grading data
and develop a fully Bayesian procedure for its statistical inference. The proposed
approach produces more accurate aggregated grades by modelling the heteroge-
neous grading behaviour with latent variables and provides a way to assess each
student’s performance as a grader. It may be used to identify a pool of reliable
graders or generate feedback to help students improve their grading. Thanks to
the Bayesian approach, uncertainty quantification is straightforward when infer-
ring the student-specific latent variables as well as the structural parameters of
the model. The proposed method is applied to a real-world dataset.

Keywords: peer grading, rating models, cross-classified models, latent variable
approach, Bayesian modelling

1 Introduction

Peer grading, also known as peer assessment, is a system of formative assess-
ment in education whereby students assess and give feedback on one another’s
assignments. It substantially reduces teachers’ burden for grading and improves
students’ understanding of the subject and critical thinking [9]. Consequently, it is
widely used in many educational settings, including massive open online courses
(MOOCs; [4]), large university courses [2], and small classroom settings [7].

2 Proposed Model

Consider N students who receive T assignments. Each student i’s work on as-
signment t is randomly assigned to a small subset of other students to grade their
work. We denote this subset as Sit , which is a subset of {1, ..., i−1, i+1, ...,N}.
Each grader g ∈ Sit gives a grade Yigt to this work, following certain scoring
rubrics. For simplicity, we consider the case when Yigt is continuous while point-
ing out that extending the proposed model to ordinal data may be achieved using
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an underlying variable formulation [1]. It is common, but not required, for the
number of grades |Sit | to be the same for all students and assignments. An ag-
gregated score is then computed as a measure of student i’s performance on the
tth assignment student i’s performance on the tth assignment, often by taking the
mean or the median of the peer grades Yigt ,g ∈ Sit . We note that a simple aggre-
gation rule, such as the mean and the median of the peer grades, fails to account
for the grader effect and, thus, may not be accurate enough.

2.1 Proposed Model

Modelling Peer Grade Yigt . We assume the following decomposition for the peer
grade Yigt :

Yigt = θit + τigt −δt , i = 1, ...,N, t = 1, . . . ,T,g ∈ Sit . (1)

Here, δt captures the difficulty level of assignment t. A larger value of δt corre-
sponds to a more difficult assignment. In addition, θit represents student i’s true
score for assignment t, and τigt is an error brought by the grader. We assume θit ,
τigt and δt to be independent.

Modelling True Score θit . For each student i, we assume that their true scores
for different assignments θit , t = 1, . . . ,T , are independent and identically dis-
tributed, following a normal distribution

θit ∼ N(αi,η
2
i ), (2)

where the mean and variance are student-specific latent variables. The latent vari-
able αi captures the student’s average performance over the assignments, and the
latent variable η2

i measures their performance stability. This model assumes the
true scores fluctuate randomly around the average score αi without a trend. This
assumption can be relaxed if we are interested in assessing students’ growth over
time.

Modelling Grader Effect τigt . Each student g grades multiple assignments from
multiple students. We let Hg = {(i, t) : g ∈ Sit , t = 1, ...,T} be all the work student
g grades. For each student g, we assume that τigt , for all (i, t) ∈ Hg, are indepen-
dent and identically distributed (i.i.d.), following a normal distribution N(βg,φ

2
g ),

where the mean and variance are student-specific latent variables. The latent vari-
able βg may be interpreted as the bias of student g as a grader. For two students g
and g′ satisfying βg > βg′ , student g will give a higher grade on average than stu-
dent g′ when grading the same work. We say grader g is unbiased when βg = 0.
Moreover, the latent variable φ 2

g is a measure of grader reliability. A smaller value
of φ 2

g implies that the grader tends to follow a consistent standard, while a larger
value suggests that they may give erratic grades that lack a consistent standard.
In other words, when grading multiple pieces of work with the same true score
and assignment difficulty (so that ideally they should receive the same grade), a
grader with a small φ 2

g tends to give similar grades, and thus, the grades are more
reliable. In contrast, a grader with a large φ 2

g tends to give noisy grades that lack
consistency. We remark that the grader effects τigt , t = 1, ...,T , are assumed to
be i.i.d. in the current setting, which means the grading quality remains the same
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over time. It is possible to extend the model for τigt to capture its change. We
leave it for future investigation.

Joint Modelling of Student-Specific Latent Variables. The above model spec-
ification introduces four student-specific latent variables (αi,βi,η

2
i ,φ

2
i ) for each

student i. We allow for dependence between these latent variables, which will
enable us to borrow information between the performance data and the grading
data of the same student when evaluating their performances as an examinee and
as a grader. More precisely, we assume (αi,βi,η

2
i ,φ

2
i ), i = 1, ...,N are i.i.d., with

(αi,βi, log(η2
i ), log(φ 2

i )) following a multivariate normal distribution N (µµµ,ΣΣΣ),
where µµµ = (µ1, ...,µ4)

⊤ and ΣΣΣ = (σi j)4×4. For identifiability purposes, we fix
µ1 = µ2 = 0, so that the average score of each assignment (averaged across stu-
dents and graders) is completely captured by the difficulty parameter δt . We note
that no constraint is imposed on µ3 and µ4.

2.2 Bayesian Inference

We adopt a fully Bayesian procedure for drawing statistical inference under the
proposed model.
Prior specification. We first specify the prior for the assignment difficulty pa-
rameters δ1, . . . ,δT . When T is relatively small (e.g., T ≤ 5), we simply assume
each δt to have a weakly informative prior N(0,52). When T is larger, a hierarchi-
cal prior specification may be used by assuming δ1, . . . ,δT to be i.i.d. following
a certain prior distribution (e.g., normal) with some hyper-parameters and further
setting a hyper-prior distribution for the hyper-parameters. We proceed to specify
a prior for the parameters µµµ and ΣΣΣ in the joint distribution for the student-specific
latent variables. Recall that µ1 and µ2 are constrained to zero, for which no prior
needs to be set. For µ3 and µ4, we assume them to be independent, each follow-
ing a weakly informative normal prior N(0,52). For the covariance matrix ΣΣΣ , we
reparameterize

ΣΣΣ = SΩΩΩS,

where S = diag(
√

σ11, . . . ,
√

σ44) is a 4×4 diagonal matrix with its diagonal en-
tries being the standard deviations of (αi,βi, log(η2

i ), log(φ 2
i )), and ΩΩΩ =(ωi j)4×4 =

S−1
ΣΣΣS−1 is the correlation matrix of (αi,βi, log(η2

i ), log(φ 2
i )). The prior distri-

bution on ΣΣΣ is imposed by the priors on S and ΩΩΩ . For S, we assume
√

σ11, . . . ,
√

σ44
to be i.i.d., each following a half-Cauchy distribution with location 0 and scale 5.
For the correlation matrix ΩΩΩ , we assume a Lewandowski-Kurowicka-Joe (LKJ)
prior distribution with shape parameter 1 [6], which corresponds to the uniform
distribution over the space of all correlation matrices.

Computational aspects. We adopt the No-U-Turn Hamiltonian Monte Carlo
(HMC) sampler [5], a computationally efficient MCMC sampler, and implement
it under the Stan programming language. Compared with classical MCMC sam-
plers, such as the Gibbs and Metropolis-Hastings samplers, the No-U-Turn HMC
sampler uses geometric properties of the target distribution to propose posterior
samples and thus converges faster to high-dimensional target distributions [5].
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Regarding the implementation, for all the models, 4 HMC chains are run in par-
allel for 2000 iterations, of which the first 1000 iterations were specified as warm-
up. We use the rstan R package to analyze the resulting posterior samples, more
specifically, it enables us to merge the MCMCs, compute the summary statistics
of the posteriors and check the MCMC mixing and convergence. Moreover, the
R package loo [8] and Bayesplot [3] are used separately for model comparisons
and to plot the results, respectively.

3 Real Data Example

These peer grading data are from [10]. Participants are N = 274 American under-
graduate students attending a Biology course. A double-blinded individual peer
assessment was implemented for four different assignments, T = 4 throughout
the course. Each student was graded, on average, by a random set of 5 other stu-
dents for each assignment. The coursework was rated on a 1−7 Likert scale with
instructor-provided anchor descriptions for each rating level. For the current anal-
ysis, only the students who completed at least three assignments were considered.
This allows us to fit the LGC model. It results in a sample size of N = 212 stu-
dents.

Results. No mixing or convergence issues emerge from a graphical inspection of
the MCMCs and also as suggested by the values of the R̂ < 1.01.
The assignment difficulty levels seem to be in increasing order (see Table 1).
Conditional to the other parameters, the first and the fourth assignments are, re-
spectively, the easiest and the most difficult ones. The 95% quantile-based credi-
ble intervals of the assignment difficulty parameters are moderately narrow, sug-
gesting a low level of uncertainty for these parameters. The estimates of the lo-
cation parameters of the latent variables, µ3 and µ4, suggest that students are on
average more consistent than reliable. The posterior mean and the 95% credi-
ble intervals of the first quantity, respectively µ̂3 = −1.27 and (−1.46,−1.10),
are considerably smaller than those related to the second one, µ̂4 = −0.46 and
(−0.51,−0.41). This implies that, on average, the variance of the student’s ability
is smaller than the error variance of the grades they give. They are more consistent
as an examinee than as a grader. From a substantive point of view, considering
that they are not grader experts, it seems reasonable. Note that these quantities
are expressed on a logarithmic scale, which implies that the average variance of
the students’ proficiency across different assignments is exp(µ̂3) = 0.28, and, on
average, their reliability parameter is exp(µ̂4) = 0.63.
Students are moderately homogeneous in terms of their mean abilities, as sug-
gested by the relatively small values of σ1, whereas they are more variable in
their systematic bias, which is indicated by the posterior values of the parameter
σ2. In other words, they are, on average, more similar as examinees than they are
as graders. Moreover, students are widely different from each other concerning
their consistency across assignments, as suggested by the posterior values of the
structural parameter σ3. There is slightly less variability among them concerning
the reliability parameters as suggested by the values of σ4.
Regarding the dependency among the latent variables, it emerges that higher val-
ues of students’ proficiency are associated with higher values of consistency.
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Indeed, there is evidence of a strong correlation, between the first and the sec-
ond student-specific variable, respectively, αi and log(η2

i ), as suggested by the
posterior mean and the 95% credible interval ω̂13 = −0.86 and (−0.96,−0.74),
respectively. In addition, higher values of mean bias are predictive of higher relia-
bility levels. This is evidenced by the posterior mean and 95% credible interval of
the parameter ω24, respectively, ω̂24 =−0.73 and (−0.83,−0.63). The estimates
of the other correlation parameters do not provide clear evidence about any other
dependency among the latent variables under the present model.
Going to the student-specific level, each student might be provided with a Score
estimate and a 95% quantile-based credible interval for each assignment as a
measure of uncertainty. The posterior mean of θ̂it − δ̂t might be a point estimate
for students’ Scores. The posterior distributions of both the average bias and the
reliability of each grader might be useful information to assess their grading be-
haviour.

Parameter Post. Mean 95% CI

Assignments δ1 −6.31 (−6.39,−6.24)
δ2 −5.38 (−5.46,−5.32)
δ3 −5.36 (−5.43,−5.29)
δ4 −4.96 (−5.03,−4.89)

Students µ3 −1.27 (−1.46,−1.10)
µ4 −0.46 (−0.51,−0.41)
σ1 0.23 (0.19,0.28)
σ2 0.35 (0.32,0.39)
σ3 0.66 (0.53,0.83)
σ4 0.32 (0.29,0.37)
ω12 −0.09 (−0.27,0.08)
ω13 −0.86 (−0.96,−0.74)
ω14 0.17 (−0.02,0.36)
ω23 −0.08 (−0.29,0.13)
ω24 −0.73 (−0.83,−0.63)
ω34 0.12 (−0.10,0.34)

Table 1. Estimated structural parameters. For each parameter, the posterior mean (Post. Mean)
and the 95% quantile-based credible interval (CI) are reported. The parameter δt is the difficulty
level of the assignment t; µ3 and µ4 are the location parameters of the third and the fourth latent
variable; σ1, . . . ,σ4 are the standard deviations of the latent variables; ωmn is the correlation
parameter between the latent variables m and n.
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