Approximations of expectations under infinite
product measures’

Galit Ashkenazi-Golan®  Janos Flescht  Arkadi Predtetchinski®
Eilon SolanT

January 7, 2025

Abstract

We are given a bounded Borel-measurable real-valued function on a product of
countably many Polish spaces, and a product probability measure. We are interested
in points in the product space that can be used to approximate the expected value
of this function. We define two notions. A point is called a weak e-approximation,
where € > 0, if the Dirac measure on this point, except in finitely many coordinates
where another measure can be taken, gives an expected value that is e-close to the
original expected value. A point is called a strong e-approximation if the same holds
under the restriction that in those finitely many coordinates the measure is equal to
the original one. We prove that both the set of weak 0-approximation points and
the set of strong e-approximation points, for any € > 0, have measure 1 under the
original measure. Finally, we provide two applications: (i) in Game Theory on the
minmax guarantee levels of the players in games with infinitely many players, and
(ii) in Decision Theory on the set of feasible expected payoffs in infinite duration
problems.
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1 Introduction

Approximations of expected payoffs. Suppose that o = ®;c0; is a product probability
measure on a product space X = X;cnX;, where each X; is a non-empty Polish space,
and f : X — R is a bounded and Borel-measurable function. In this paper, we ask
whether E,[f] can be approximated by an expectation [E.[f], for some “simple” product
measure T.

If f is a tail function, then there necessarily exists x € X such that f(x) = E;[f]; in
fact, almost every (under o) point of X has the stated property. In general, no such point
x need to exist.

We are interested in two types of approximating measures. We say that x = (x;)ien €
X is a weak e-approximation of the expectation of f under o if there is some product prob-
ability measure T = ®;cNT;, such that (i) |E<[f] — E,[f]| < €, and (ii) 7; is the Dirac mea-
sure on x; for all but finitely many i’s. We will say that x € X is a strong e-approximation
of the expectation of f under ¢ if the same holds, where in addition (iii) 7; is either o; or
the Dirac measure on x;, for every i € IN.

Our main results are that (i) the set of weak 0-approximations have c-measure 1 (cf.
Theorem 4), and (ii) the set of strong e-approximations have c-measure 1 for every € > 0
(cf. Theorem 6). As an example demonstrates (cf. Example 7), a strong 0-approximation
does not always exist.

Application in Game Theory. The first motivation for our study comes from Game The-
ory, and more specifically, from the study of strategic-form games with countably many
players. Games with countably many players have been studied, e.g., by Peleg [8],
Voorneveld [14], Rachmilevitch [9], and Ashkenazi-Golan, Flesch, Predtetchinski and
Solan [2]. These studies have mainly revolved around the question of (non)existence of
Nash (e-)equilibrium. In contrast, here we focus on the notion of the minmax value.

The minmax value of a player is one of the central concepts in game theory. It is
defined as the maximal payoff that the player can guarantee to obtain, when all other
players try to decrease her payoff. The underlying assumption on the behavior of the
punishing players is that they cannot correlate their lotteries, and thus their joint strat-
egy is a product measure.

Ashkenazi-Golan, Flesch, Predtetchinski and Solan [2] introduced a notion of the
finitistic minmax value. This is a version of the minmax value where only finitely many
of the punishing players are allowed to randomize; the others are required to choose a
Dirac measure. It is clear that the finitistic minmax value is not lower than the minmax
value. Whether the two values are in fact equal is an open problem. Here we answer
this question in the affirmative (cf. Theorem 8). This is achieved using the result (ii) on
strong e-approximations.

Application in Decision Theory. The second motivation comes from decision theory.
In dynamic decision problems with infinite horizon, Markov strategies play an important
role (e.g., Hill [5], Kiefer, Mayr, Shirmohammadi, Totzke [6], Sudderth [13]). These are
strategies in which, at each stage, the choice of action may depend on the current stage



and the current state, but not on past events. Such strategies are desirable because of
their simplicity, as the decision maker’s behavior depends only on the current payoff
relevant parameters. A strategy is called eventually pure if after some stage it does not
use randomization (cf. Flesch, Herings, Maes, Predtetchinski [4]).

Using our result (i) on weak 0-approximations, we show that in a class of decision
problems with infinite horizon, the set of expected payoffs that the decision maker can
obtain by Markov strategies is equal to the set of expected payoffs under eventually
pure Markov strategies. In other words, using Markov strategies that involve a ran-
domization at infinitely many stages does not generate additional expected payoffs.

Structure of the paper. Definitions appear in Section 2, the main results and their proofs
are provided in Section 3, and the applications to Game Theory and Decision Theory are
discussed in Section 4. A few concluding remarks are given, including an open problem,
in Section 5.

2 Approximations of expectations

LetIN = {1,2,...}. Foreachi € N, let X; be a non-empty Polish space. Let X = X;cNX;
denote the product space, which we endow with the product topology.

For each i € IN, let X; be the set of Borel probability measures on X;, and let X be
the set of all product Borel probability measures on X, i.e., the measures ¢ = ®;cN0;
where 0; € %; for each i € IN. With a slight abuse of notation, we write x; to denote both
a point of X; and the Dirac measure concentrated on x;, and we use the same symbol
o to denote both a measure in X and its unique extension to the sigma-algebra of all
universally measurable sets of X.

We define two notions for the approximations of expectations under the measures
in 2.

Definition 1 Let € > 0. For a product measure o € X and a bounded Borel-measurable
function f : X — R, a point x € X is said to be a weak e-approximation of the expectation
of f under o if there is n € IN and a Borel probability measure T; on X; for each i < n, such
that:

I Eq0--00, 1@menao-Lf] — Bolf]| < e 1)

Intuitively, Eq. (1) means that the expectation changes by at most € if we replace o
by the measure that is the Dirac measure on x; in each coordinate i > n and 7; in each
coordinate i < n.

Definition 2 Let € > 0. For a product measure o € X and a bounded Borel-measurable
function f : X — R, a point x € X is said to be a strong e-approximation of the expectation
of f under o if there is n € IN such that:

Eoy0--00, 1 0xer, - [f] = Bolfl] < e )



Thus, Eq. (2) means that the expectation changes by at most € if we replace o by
the Dirac measure on x; in each coordinate i > n. Obviously, if x € X is a strong
e-approximation of the expectation of f under o, then x is also a weak e-approximation.

Let We(o, f) € X and Se(o, f) € X denote the sets of weak and respectively strong
e-approximations of the expectation of f under 0. Thus, We(c, f) C Se(o, f). It follows
from the following lemma that both We (o, f) and S¢(o, f) are universally measurable,
and in particular, both sets are measurable with respect to the measure ¢.

Lemma 3 For each € > 0, each product measure o € X, and each bounded Borel-measurable
function f : X — R, the set We(o, f) C X is analytic and the set S¢ (o, f) C X is Borel.

Proof: For each n € IN, we equip X, with the topology of weak convergence, and
2" = xI,%; with the product topology. Note that 2" is a Polish space. For eachn € IN,
the function X x £* — R given by (x,71,...,T) = Eqo..01, 1000%,101m00- Lf] 18
Borel-measurable (this follows by applying Aliprantis and Border [1, Theorem 15.8],
Ressel [11, Theorem 2(i)], and Aliprantis and Border [1, Theorem 15.13]). Hence the
set B" C X x X" consisting of the points (x, 1,...,T,) satisfying Eq. (1) is a Borel set.
Let A" be the projection of B" onto the first coordinate. Then A" is analytic. Since
We(o, f) = Upen A", the first result follows.

The fact that S¢(o, f) is a Borel set follows since the map X — R given by x —
Eo -0, 10xm@x,.,@--f] is Borel-measurable for each n € IN. O

3 Results

Theorem 4 For each product measure o € X and each bounded Borel-measurable function
f: X — R, the set Wy(0, f) has o-measure 1.

Proof: Fix a product measure ¢ € ¥ and a bounded Borel-measurable function f : X —
R.

Let ~ be the following tail equivalence relation: for x,y € X let x ~ y if there is some
n € IN such that x; = y; for all i > n. Let 2 denote the collection of all equivalence
classes of ~. For Z € %, let Iz be the convex hull of f(Z) = {f(x) : x € Z}, in
particular, Iz is an interval, with or without its endpoints.

Let r = E;[f]. Define

Z_.=\{zeZ:1;C (—oo,1)},
Zo={zez 1>},
Zy=\[{ZeZ 1 C (r,4)}.

The statement of Theorem 4 follows from Claims 1 and 2 below.

CLAIM 0: Z_ and Z are co-analytic subsets of X.
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It follows from Claim O that Zj is analytic, and hence Z_, Zj, and Z are measurable
with respect to 0.

PROOF OF CLAIM 0: Let us write ~ to denote the set {(x,y) € X x X : x ~ y}. Then ~
is a Borel subset of X x X, as can be seen by rewriting it as

U ﬂ{(x,y) € XX X:x;i=y;}

nelNi>n

The set X \ Z_ is a projection of the Borel set

~(M(xy) € X xX: f(y) >r}

onto its first coordinate, and therefore analytic. The argument that X \ Z is analytic is
similar.

CLAIM 1: Zy € Wy(o, f).
PROOF OF CLAIM 1: Take any Z € 2 with r € I;. We show that Z C Wy(c, f).

As r € Iz, there exist points x,y € Z such that f(x) < r < f(y). Let n € N be such
that x; = y; for each i > n.

Foreachk =1,...,n+1,1letz(k) = (y1,...,Yx_1, X, Xk11, - - .). In particular, z(1) =
xand z(n+1) = y, and z(k) € Z for each k = 1,...,n+ 1. Because z(1) = «x
and z(n + 1) = y, the interval [f(x), f(y)] is covered by the union of the intervals
[f(z(k)), f(z(k+1))] withk = 1,...,n. Consequently, there is k € {1,...,n} such that
r € [f(z(k)), f(z(k+1))]. Note that z(k) and z(k + 1) only differ in coordinate k.

Let w € [0,1] be such that a - f(z(k)) + (1 —«) - f(z(k+ 1)) = r. Define the measure
T, on Xj as follows: i places probability a on x; and probability 1 — « on yi. Then,

IE'y1®'~'®yk71®Tk®xk+1®Xk+2®'“[f] = f(Z(k)) + (1 - lX)f(Z(k + 1)) =r = IEU[f]

This means that z(k) = (y1,...,Yk_1, Xk, Xk11, - - -) is @ weak O-approximation of the ex-
pectation of f under o, so that z(k) € Wy(c, f). Hence, so is each point in the equiva-
lence class Z of z(k).

CLAIM 2: Zj has oc-measure 1.

PROOF OF CLAIM 2: The sets Z_, Zj, and Z are tail. Since ¢ is a product measure,
the c-measure of each set is either 0 or 1 (see Lemma 10 in the Appendix). Since Z_,
Zo, and Z, partition X, exactly one of them has o-measure 1. It cannot be the case that
o(Z_) = 1,sincethen,as Z_ C f~!(—oco,r), we would obtain [E,[f] < r,a contradiction.
One similarly excludes the possibility that ¢(Z;) = 1. Hence 0(Zp) = 1. O

Remark 5 The proof of Claim 1 in the proof of Theorem 4 reveals the following state-
ment: For each product measure ¢ € X and each bounded Borel-measurable function



f : X — R, there exists a weak 0-approximation x € Wy(c, f) with the following prop-
erty: there is a coordinate n and a Borel probability measure 7, on X, such that

IE'X1®-“®xn_1®Tn®xn+1®xn+2®'“[f] = IEU[f]

That is, we only need to replace x in a single coordinate by a Borel probability measure.

Theorem 6 For each product measure ¢ € %, each bounded Borel-measurable function f :
X — R, and each € > 0, the set S¢(0, f) has o-measure 1.

Proof: Let ¢, be the sigma-algebra on X generated by the coordinate functions xx, k > n.
Let Y = N,,eN % This is the tail sigma-algebra on X. Consider g, = E,[f|%,].

The process {gn }nen is a reverse martingale with respect to the sequence {¥, },eN
and the measure o. Thatis, E;[gn | 9+1] = gu+1. By Durrett [3, Theorems 5.6.1 and
5.6.2], the sequence g, converges to a ¢-measurable limit g, almost surely with respect
to 0, and Ey[¢e] = E¢[g0] = E¢[f]. Since ¢ is a product measure, Kolmogorov’s 0-1
law implies that g is constant o-almost surely. Hence c-almost surely, g, converges to
E;[f]. This means that o-almost surely, Eq. (2) holds for large n € IN, as desired. O

As the following example shows, there are product measures ¢ € X and bounded
Borel-measurable functions f such that there is no strong 0-approximation of the expec-
tation of f under o, i.e., So(0, f) = @.

Example 7 Let X; = {0,1} for each i € IN, and let f(x) be 1if x; = 1 for each i € N and
0 otherwise. We identify 0; € %; with 0;({1}), the probability of 1. Take any ¢ € X such
that (a) 0 < [E,[f] and (b) there are infinitely many i € IN such that 0; < 1 (for example
0; = 1—2""for each i € N). Then, So(o, f) = @. Indeed, consider an x € X and an
n € N. If x; = 0 for some i > n, then E¢ s...00, ;0x,0x,,19--[f] = 0. If, on the other
hand, x; = 1 for each i > n, then

) n—1
IEU'[f] = HO—Z < H Ui = E01®"'®Un—1®xn®xn+l®'“[f]'
i=1 i=1

4 Applications in Decision Theory and Game Theory

In this section, we provide two applications of our results: one in Game Theory and one
in Decision Theory.

Application in Game Theory. We apply Theorem 6 on strong e-approximations of ex-
pectations to prove a result on the minmax values of the players in strategic-form games
with an infinite set of players.

We consider a strategic-form game in which the set of players is {0} UN. Player
0’s action set is a non-empty finite set A, whereas the action set of each player i € IN



is a non-empty Polish space X;. As before, X = X;cnX;. Player 0's payoff function is
u: Ax X — R, a bounded Borel-measurable function. As before, ¥ denotes the set
of product probability measures on X, which is the set of strategy profiles of player 0’s
opponents. Let 2* C X denote the set of strategy profiles ¢ = ®;cN0; of player 0’s
opponents such that o; is pure (i.e.,, a Dirac measure on X;) for all but finitely many
i €IN.

The minmax value and the finitistic minmax value of player 0 are defined respectively
as

v = inf max E, . |u
ceX acA ® [ ]’
*

o= ol ey Besel)

Intuitively, the minmax value of player 0 is the maximal expected payoff that player
0 can guarantee to obtain, when all other players try to lower her payoff. The minmax
value is a fundamental concept, and the expected payoff of a player in a Nash equilib-
rium can never be below her minmax value.

The finitistic minmax value is a variant where only finitely many opponents can
randomize over their actions. As mention in the introduction, the concept of the finitis-
tic minmax value played a crucial role in Ashkenazi-Golan, Flesch, Predtetchinski and
Solan [2] in their study of games with infinitely many players.

It follows directly from the definitions that v < v*. By using Theorem 6, it turns out,
perhaps surprisingly, that in fact equality holds.

Theorem 8 v = v*.

Proof: Since X* C ¥, we always have v < v*. To prove Theorem 8 we therefore need to
show that v* < v. Fix € > 0. We show that v* < v + 2e.

Foreacha € A, let f; = u(a,-) : X = R. Let 0 € X be e-minmax strategy profile of
player 0’s opponents; that is, a strategy profile such that E,x[u] = E[fs] < v+ € for
eacha € A.

Take any x € N,ca Se(fa, o), which is non-empty by Theorem 6 and since A is finite.
Using once again the finiteness of A, there exists n € IN such that Eq. (2) holds for each of
the functions f;, and thus E¢,...00, ;0x,0x,.,@-[fa] < Eo[fa] + € foreach a € A. This
implies that the strategy profile T =01 ® - - - ® 03,1 @ X, @ X431 @ - - - € X* of player 0’s
opponents is a 2e-minmax strategy profile: E,o[t] = E[fa] < Es[fs] +€ < v+ 2€ for
each a € A. Therefore, v* < v + 2¢, as desired. O

As the following example shows, the statement of Theorem 8 is not true if player 0’s
action set A is infinite.

Example 9 Suppose that A =IN x {0,1} and X; = {0,1} for each i € IN. Define player
0’s payoff function as follows: for (n,j) € Aand x € X, letu((n,j),x) be 1if j = x,, and



0 otherwise. Intuitively, player 0’s action (7, j) can be thought of naming an opponent
n and an action j, and if opponent n’s action is indeed j, then player 0 obtains payoff 1.

On the one hand, v = %, which follows by noticing that if o; places equal probability
on 0 and 1 for each i € N then E(, jyoq[u] = 3 for each (n,j) € A. On the other hand,
v* =1, as in any strategy profile ¢ € X* there is a player n € IN who places probability
1 on one of his actions j € {0,1}, and then E,, j)s,[u] = 1.

Application in Decision Theory. We apply Theorem 4 to the following class of decision
problems with infinite horizon: At each stage t € IN, a decision maker chooses an action
x¢ from a non-empty Polish space X;. If the sequence of chosen actions is (x1,x2,...) €
X = XtenXy, then her payoff is u(x1, x2,...), where u : X — R is a bounded Borel-
measurable function.

A Markov strategy is an element of X, which is, as before, the set of product probabil-
ity measures on X. Intuitively, a Markov strategy o = (0t);en € X chooses an action
at each stage t only depending on the current stage t, and thus not depending on the
past actions. Such a strategy is called eventually pure, if 0; is a Dirac measure for all but
finitely many stages t € IN.

It follows from Theorem 4 that the set of expected payoffs that the decision maker
can obtain by Markov strategies is equal to the set of expected payoffs under eventually
pure Markov strategies. In other words, randomizing infinitely many times in a Markov
strategy does not give additional expected payoffs to the decision maker.

5 Concluding Remarks

We do not know whether Theorem 4 could be deduced from Theorem 6 or vice versa.
The two results appear to be logically unrelated, especially as the proofs use different
approaches.

We conclude with an open problem: Can one generalize Theorem 4 to vector-valued
(rather than just real-valued) functions? Consider a bounded Borel-measurable function
f:X = RY, and a product measure ¢ € X. Is there a point x € X, ann € IN, and
probability measures 7; € X; for i < n, such that

]ET1®"'®Tn_1®xn®xn+1®"' [fl] = ]Ea[fl]

foreachi € {1,...,d}? Theorem 4 gives the affirmative answer when d = 1. The answer
is also a “yes” when f is a tail function (i.e., when f is measurable with respect to the
tail sigma-algebra on X). Beyond these special cases, the problem is open. In particular,
it is also open if f is continuous.

Appendix

We have applied Kolmogorov’s zero-one law to analytic and co-analytic sets. A similar
result is stated (without proof) in Rao and Rao [10, Chapter 11, p. 265]. For the sake of
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completeness, we state and prove a version of the result suitable for our purposes.

Lemma 10 If U is a universally measurable tail subset of X and o € X, then the o-measure of
U can only have the values 0 and 1.

Proof: We adapt the proof of the Kolmogorov’s zero-one law in Shiryaev [12, p.381].

For n € N let .#, be the sigma-algebra on X generated by the first n coordinate
functions x1, ..., x,. The Borel sigma-algebra .7 on X is the sigma-algebra generated by
the set U,en-#n. As U is universally measurable, there exists a Borel set B of X such
that c(BAU) = 0, where A denotes the symmetric difference.

By Shiryaev [12, Problem 8, p.69], for every n € IN there exists a set B, € %, such
that 0(B,AB) — 0. Since ¢ is a product measure and U is tail, B, and U are indepen-
dent. Therefore,

0(Bn) = o(B) = o(U) and

o(By)-o(U)=0(B,NU)=0c(B,NB) — ¢(B) =c(U).
It follows that o(U) = o(U) - ¢(U), implying the result. O
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