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Abstract

A composite likelihood is an inference function derived by multiplying a set of
likelihood components. This approach provides a flexible framework for drawing
inferences when the likelihood function of a statistical model is computationally in-
tractable. While composite likelihood has computational advantages, it can still be
demanding when dealing with numerous likelihood components and a large sample
size. This paper tackles this challenge by employing an approximation of the conven-
tional composite likelihood estimator based on a stochastic optimization procedure.
This novel estimator is shown to be asymptotically normally distributed around the
true parameter. In particular, based on the relative divergent rate of the sample size
and the number of iterations of the optimization, the variance of the limiting distri-
bution is shown to compound for two sources of uncertainty: the sampling variability
of the data and the optimization noise, with the latter depending on the sampling
distribution used to construct the stochastic gradients. The advantages of the pro-
posed framework are illustrated through simulation studies on two working examples:
an Ising model for binary data and a gamma frailty model for count data. Finally,
a real-data application is presented, showing its effectiveness in a large-scale mental
health survey.

Keywords: Exchangeable variables central limit theorem, Ising model, Gamma frailty
model, Pairwise likelihood, Stochastic gradient
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1 Introduction

The seminal work of Besag (1974) and the general framework proposed by Lindsay (1988)
have paved the way for the wide adoption of composite likelihood methods as a prac-
tical approach for modelling multivariate responses with complex dependence structures
(e.g., Henderson & Shimakura 2003, Bellio & Varin 2005, Katsikatsou et al. 2012, Lee &
Hastie 2015). Such methods replace an intractable likelihood with an inference function
constructed by multiplying many lower-dimensional marginal or conditional likelihood com-
ponents, enabling frequentist estimation when traditional maximum likelihood approaches
are infeasible or unattainable; see Varin et al. (2011) for an overview. However, in settings
with large sample sizes and moderate response dimensions, the numerical optimization of
the composite likelihood function requires evaluating many likelihood components at each
iteration. Thus, it becomes, in turn, computationally unattainable.

Natural candidates for such settings are stochastic approximations, computationally
convenient alternatives to numerical optimization that replace the score used by gradient-
based routines with an adequately defined stochastic substitute (Robbins & Monro 1951).
Thanks to their computational convenience, methods based on stochastic gradients (SGs)
have quickly gained popularity among practitioners, becoming the standard choice for
estimating complex models on large-scale data (Bottou et al. 2018). While their success
is due to the capability of providing computationally affordable point estimates of the
parameters of interest, the last decade has seen rising attention to conducting statistical
inference with such estimates. Most of the recent developments in this regard build on
the seminal work of Ruppert (1988) and Polyak & Juditsky (1992), who first established
the asymptotic normality and statistical optimality of averaged stochastic estimators. We
identify two challenges that have attracted the interest of researchers in recent years. The
first one is the theoretical extension of the asymptotic results of Polyak & Juditsky (1992)
to more general and flexible settings than the ones outlined in the original paper. In
this regard, Toulis & Airoldi (2017) establish the asymptotic optimality of the Polyak-
Ruppert averaged version of their proposed estimator based on implicit stochastic updates;
Lee et al. (2022) extend Polyak & Juditsky (1992) results to a functional form; Su &
Zhu (2023) relax the original assumptions to allow for globally convex and locally strongly
convex objective functions; Wei et al. (2023) include the effect of general averaging schemes
in the asymptotic distribution of the averaged estimates; Chen et al. (2024) establish the
asymptotic properties of the averaged version of the Kiefer-Wolfowitz algorithm. The
second challenge is the online estimation of the uncertainty of stochastic estimates. With
few exceptions (e.g. Chee et al. 2023), most recent works in this area focus on Polyak-
Ruppert type estimators, including the online bootstrap (Fang et al. 2018), mean-batch
estimators (Chen et al. 2020, Zhu et al. 2023), the random scaling approach (Lee et al.
2022, Chen et al. 2023, 2024), and HiGrad (Su & Zhu 2023).

While most of the papers mentioned above explicitly refer to settings with online data
(i.e., new observations sampled from the true data-generating distribution), stochastic op-
timization can also be used offline on an observed dataset, which is the classical setting of
frequentist estimation. In the online-data setting, the result in Polyak & Juditsky (1992)
and its extensions directly guarantee the asymptotic statistical optimality of the averaged
stochastic estimator for the true parameter value. However, in the offline-data scenario, at
each iteration, new observations are resampled from the empirical distribution of data, and
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stochastic estimators converge to the maximum likelihood estimator (MLE) (e.g., Moulines
& Bach 2011, Needell et al. 2014). It follows that, for a given dataset, the inferential
procedures based on Polyak & Juditsky (1992) only quantify the variability of stochastic
estimators around their target, i.e. the MLE, but neglect the sampling variability of the
data. In addition, to our knowledge, the combination of stochastic approximations and
composite likelihood inference has not been formally investigated.

Thus, our contribution in the following is two-fold. First, in Section 2, we show how
different sampling schemes for the margins involved in the composite likelihood affect the
statistical efficiency of SGs. Second, in Section 3, we extend Polyak & Juditsky (1992)
result by establishing the consistency and asymptotic normality of the stochastic estimator
around the true parameter in the offline-data setting. In particular, we show that, accord-
ing to the relative divergence rate of the sample size and the number of iterations, the
variance of the limiting distribution compounds for two sources of uncertainty: the sam-
pling variability of the data and the noise injected by the SGs. While intuitive, combining
the two sources of variability is technically non-trivial. Allowing the data to be random
implies that all the SGs share a common source of variability, which complicates the appli-
cability of central limit theorems for martingale sequences. Nevertheless, the asymptotic
distribution can still be identified with the sum of exchangeable summands, which allows us
to use the central limit theorem outlined in Blum et al. (1958) to establish the asymptotic
normality of the estimator. Furthermore, by taking advantage of the second Bartlett’s
identity for the single likelihood components, it is possible to lower the noise injected in
the optimization with the SGs at a fixed computational cost. In Section 4, we investigate
the established theoretical results with simulation experiments on two working examples,
one of which concerns estimating the Ising model based on full-conditional margins and
the other concerns estimating a gamma-frailty model based on bivariate margins. Finally,
Section 5 provides a real data application to a United States national health survey1.

2 Composite Likelihood, Stochastic Approximations

2.1 Composite Likelihood

Let Y = (Y1, . . . , Yp)
⊤ be a p-variate random vector that follows a parametric distribution

with probability density/mass function p(y;θ) and parameters θ ∈ Rd. Let {A1, . . . ,AK}
be a set of marginal or conditional events with likelihood functions Lk(θ;y) ∝ p(y ∈ Ak;θ).
A composite log-likelihood is obtained by summing the logarithms of the K likelihood ob-
jects. Thus, with y1, . . . ,yn being independent and identically distributed (i.i.d.) realiza-
tions of Y , inference on θ can be drawn based on the composite log-likelihood function

cℓn(θ) =
n∑

i=1

K∑
k=1

wkℓk(θ;yi), (1)

where ℓk(θ;yi) = logLk(θ;yi) is usually referred to as the k-th log-likelihood component
or sub-log-likelihood and {w1, . . . , wK} is a set of weights to be defined depending on the

1https://catalog.data.gov/dataset/national-epidemiologic-survey-on-alcohol-and-related-conditions-
nesarcwave-1-20012002-and-
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model being estimated. The Composite Likelihood Estimator (CLE) is given by

θ̂ = argminθ {−cℓn(θ)}. (2)

Typically, the CLE is used when the sub-log-likelihoods have simple forms while the joint
density function p(y;θ) is analytically intractable. We give two illustrative examples below.

Example 1 Let Y be a binary vector with Yj ∈ {0, 1} following an Ising model (Ising

1924). Under this model, p(y;θ) = exp
{∑p

j=1 βj0yj +
∑

j<j′ βjj′yjyj′
}
/Z(θ), where Z(θ) =∑

y∈{0,1}p exp
{∑p

j=1 βj0yj +
∑

j<j′ βjj′yjyj′
}

is the so-called partition function which is

needed to guarantee p(y;θ) to be a proper probability mass function. In this model, the
parameters of interest are θ = (βi0, βjj′ : i = 1, . . . , p, 1 ≤ j < j′ ≤ p)⊤, whose dimension
is d = p + p(p − 1)/2. As Z(θ) involves a summation over all possible binary vectors,
the complexity of computing Z(θ) grows exponentially with p. Thus, the likelihood function
quickly becomes intractable when p is large. To draw inference under the Ising model, Besag
(1974) proposed a composite likelihood estimator that considers K = p component likeli-
hood terms Lj(θ;y) = exp(yj(βj0 +

∑
j′ βjj′yj′))/(1 + exp(βj0 +

∑
j′ βjj′yj′)), j = 1, . . . , p,

which are derived from the conditional distribution of Yj given the rest of the entries of Y .
The composite log-likelihood function for a random sample of size n can then be written as
cℓn(θ) =

∑n
i=1

∑p
j=1 yij

(
βj0 +

∑
j′ ̸=j βjj′yij′)− log

{
1 + exp

(
βj0 +

∑
j′ ̸=j βjj′yij′

)}
.

Example 2 Consider the correlated gamma frailty model proposed in Henderson & Shi-
makura (2003). The authors impose an autoregressive correlation structure to model the
underlying gamma process. In such a setting, it is convenient to consider only pairs within
a certain time lag, drastically lowering the model’s estimation cost. For this reason, we
consider an exchangeable correlation structure such that no pairs can be ignored a priori.
For illustration purposes, we consider a simplified version without covariates. Let Y be a
multivariate count vector of dimension p. Its generic element, Yj ∈ N for j = 1, . . . , p,
is distributed as Yj|Vj ∼ Poisson {Vj exp(λj)} , for j = 1, . . . p, where λj the j-th base-
line rate. The p-dimensional frailty term V has unidimensional margins distributed as
Vj ∼ Gamma(ξ−1, ξ−1), and correlation matrix C, with generic element Cjj′ = ρ, for
0 ≤ ρ ≤ 1. The interest is in estimating θ = (λ, ρ, ξ), with λ = (λ1, . . . , λp)

⊤, which has
dimension d = p+ 2. The density function of the model can be written as

p(Y1 = y1, . . . , Yp = yp;θ) =

(
p∏

j=1

u
yj
j

yj!

)∫
Rp

(
p∏

j=1

V
yj
j

)
exp(−u⊤V )dV

= (−1)
∑

j yj

(
p∏

j=1

u
nj

j

nj!

)
∂(

∑
j yj)L(u)

∂y1u1, . . . , ∂ypup

, (3)

where uj = exp(λj0), u = (u1, . . . , up)
⊤, V = (V1, . . . , Vp)

⊤ and L(u) = EV

{
exp(−u⊤V )

}
.

The computational challenge is that the random number of derivatives involved in (3),∑
j yj, can be too large to handle even in small p settings. Henderson & Shimakura (2003)
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substitute (3) with the composition of bivariate log-margins ℓjj′(θ; yj, yj′), computed via

ℓjj′(θ; yj, yj′) = yj log uj + yj′ log uj′ − log(yj!)− log(yj′ !)+

+

m2−1∑
s=0

log(1 + sξ) + yj logDj + yj′ logDj′ − (yj + yj′ + ξ−1) log∆+

+ log

m1∑
s=0

[
(−1)s

(
m1

s

)(
m2

s

)
s!

{
m1+m2−s−1∏

s′=m2

(1 + s′ξ)

}
ξsf s

]
,

with m1 = min(yj, yj′), m2 = max(yj, yj′), ∆ = 1 + ξuj + ξuj′ + ξ2ujuj′(1 − ρ|j−j′|),

Dj = 1 + ξuj′(1 − ρ|j−j′|) and f = ∆(1−ρ)
DjDj′

. Therefore, the composite log-likelihood for a

random sample of size n can then be written as cℓn(θ) =
∑n

i=1

∑
j<j′ ℓjj′(θ; yij, yij′).

When the parametric model is correctly specified, the CLE is consistent and asymptotically
normal (Lindsay 1988). Let θ∗ denote the true parameter value. Then θ̂ converges in
probability to θ∗, and further

√
n(θ̂ − θ∗)

d−→ Np

(
0,H−1JH−1

)
, (4)

where H = EY {−∇2cℓn(θ
∗)/n} and J = VarY {∇cℓn(θ

∗)/n}. Note that such asymptotic
results are obtained under a classical asymptotic regime where p is fixed while n diverges.
In the case of (1), such an assumption implies considering both the number of contributions,
K, and the parameter space, d, as fixed.

2.2 Proposed Method

As discussed in Section 2.3, it can be computationally intensive to obtain a numerical solu-
tion to (2) that can be used for statistical inference when large sample sizes and numerous
sub-likelihood components are involved. To leverage the trade-off between statistical and
computational efficiencies, we propose to use an algorithm based on SGs to get an approx-
imation of θ̂. First, consider that the gradient of −cℓn(θ) with respect to θ is simply given
by −

∑n
i=1

∑K
k=1∇ℓk(θ;yi). Considering its double-sum structure and the proper-likelihood

nature of each ℓk(θ;yi), a SG of −cℓn(θ) can be constructed as

S(θ;W ) = − 1

γ1

n∑
i=1

K∑
k=1

wik∇ℓk(θ;yi). (5)

Here, W = (wik)n×K is a random matrix following a joint distribution P , under which
wik ∈ {0, 1} and P (wik = 1) = γ1. Differently from (1), we let the weights change across
observations and iterations. Such broader specification introduces greater flexibility in
managing the variability of the SG by allowing for different choices of P .

As summarized in Algorithm 1 below, the proposed method iterates between updating
θ and constructing an SG under the current value of θ. We anchor the number of iterations
to the sample size for theoretical reasons that will be shown in detail in Section 3. For the
moment, just let the notation Tn refer to the number of iterations performed, where the
dependence on n is such that Tn −→ ∞ as n −→ ∞.
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Algorithm 1 Composite Stochastic Gradient Descent

1: Input: y,P , θ0, η0, Tn, B.
2: for t in 1, . . . , Tn do
3: Sampling Step: Draw Wt from P ;
4: Approximation Step: Construct a stochastic gradient St = S(θt−1;Wt);
5: Update Step: Update the parameter estimate via θt = θt−1 − ηt

n
St;

6: end for
7: Trajectories Averaging: Compute θ̄P = 1

Tn−B

∑Tn

t=B+1 θt;

8: Output: Return θ̄P .

In each iteration, the Sampling Step injects some randomness into the procedure by
drawing Wt from P . Note that P must be defined such that the SG computed during the
Approximation Step, St, is computationally cheaper than the full gradient −∇cℓn(θt−1),
but still unbiased, i.e. EW {St} = −∇cℓn(θt−1). In other words, although the descent
direction identified by St is noisy due to the randomness of W , it still recovers the exact
negative gradient on average. The computational convenience of St is the key advantage
of Algorithm 1 and, together with P , it controls the trade-off between computational and
statistical efficiencies. At the end of each iteration, the estimates are updated via a Robbins-
Monro step (Robbins & Monro 1951), where ηt is the stepsize at the t-th iteration computed
given an initial value η0 and a suitable decreasing schedule, formalized in Assumption 5 in
Section 3. The rescaling by 1/n only affects the initial value η0 and not the scheduling per
se. It serves to standardize the SG, such that n−1St is of magnitude O(1), which is used in
the proof of Proposition 1. It is worth remarking that the Update Step can be generalized
to a second-order update, where the stepsize is substituted by a d×d matrix approximating
H−1. For ease of exposition, we limit the discussion to one-dimensional stepsizes. Finally,
after completing Tn iterations, the output of the algorithm, θ̄P , is computed by averaging
the stochastic estimates along their trajectories (Ruppert 1988, Polyak & Juditsky 1992).
In practice, it is often useful to account for a burn-in period, B, to avoid including estimates
too close to the starting point θ0 in the computation of θ̄P .

It is straightforward to notice that Algorithm 1 closely follows the averaging SG descent
outlined in Polyak & Juditsky (1992), and it inherits, in fact, its theoretical properties in
approximating θ̂. However, the theoretical framework discussed in Section 3 allows the
output of Algorithm 1 to be directly used to draw inference on θ∗. A further advantage
of our proposal is that, by specifying St as in (5), Algorithm 1 gives the user the freedom
to leverage the peculiar structure of the composite likelihood to improve the efficiency of
the approximation by adequately choosing P . To this end, let us introduce three possible
choices for the distribution of the weights, as described in Definitions 1 through 3.

Definition 1 Let P1 be the joint distribution of W such that W = D1nK, where 1nK is
a n × K matrix of ones and D is a n × n diagonal matrix, with diagonal distributed as
Multinomial {1, (1/n, . . . , 1/n)}.

Definition 2 Let P2 be the joint distribution of W such that Wi,k
i.i.d.∼ Bernoulli (1/n) for

i = 1, . . . , n and k = 1, . . . , K.
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Definition 3 Let P3 be the joint distribution of W such that Wi,k = viK−K+k, where v is
a nK-dimensional random vector following a multivariate hypergeometric distribution with
K draws over nK categories of dimension 1 and vj is its j-th element.

All three definitions lead to drawing, on average, K weights equal to 1 and the remaining
nK−K equal to zero. The implied per-iteration complexity is O(K), independent of n, and
thus particularly suitable for large-scale applications. However, according to the sampling
scheme chosen, a different dependence layout is induced on the cells of W . In Section 3, we
show how this noise structure affects the asymptotic efficiency of the stochastic estimates.

We discuss the three proposed sampling schemes in more detail. A weight matrix W
sampled according to Definition 1 is constrained to have all elements equal to zero, apart
from a single row filled with ones. With such weights, St evaluates the gradient on a single
observation selected randomly from {1, . . . , n}. We refer to this construction as standard
SG to stress its widespread adoption at the core of many stochastic algorithms. Note that
using such a sampling scheme, we are ignoring the double sum structure of (1) since P1

constraints the K selected sub-likelihood component to belong to the same observation.
Nevertheless, (5) is very flexible in defining the SG and allows for different choices of

P . Consider P2 as described by Definition 2. All the elements of the matrix are now
independent and identically distributed as Bernoulli random variables with proportion pa-
rameter 1/n. It means that, at each iteration, K sub-likelihood components are selected on
average by the weighting matrix. Therefore, the complexity of the approximation matches
the standard SG one. However, the proportion parameter in Definition 2 can be set as
low as (nK)−1, implying an iteration complexity O(1), which is unattainable using Defi-
nition 1. Regardless, for comparison purposes, we stick to the proportion parameter 1/n.
Note that the structure of the noise injected by P2 is very different from the one implied
by P1. While the K components drawn by P1 share a very specific covariance stemming
from the dependence among the summands of cℓn(θ), P2 completely breaks this structure
by independently selecting sub-likelihoods possibly belonging to independent observations.
Finally, consider the sampling scheme P3. It can be seen as a random scramble of the vec-
torization of W , where only the elements in the first K positions are retained. Like P2, the
complexity per iteration can be lowered to O(1) by decreasing the number of components
retained per iteration. However, in this case, the weights are not completely independent
since, given the fixed number of components drawn, a weak negative correlation is induced
among the elements of W . In Section 3, we show how P2 and P3 improve the efficiency of
θ̄P while maintaining the same computational cost as the standard SG.

2.3 Comparison with Gradient Descent

Before investigating the theoretical properties of Algorithm 1 in the next section, let us
consider solving (2) by a gradient descent algorithm with fixed stepsize to compute θ̃, a
numerical estimate of θ∗. Given the subtleness of the notation, see Table 1 as a reference
for the symbols used. To describe the relative divergence rate of two positive sequences
an and bn, we write an = o(bn) if limn→∞ an/bn = 0, an = ω(bn) if limn→∞ an/bn = ∞,
while an = Θ(bn) if limn→∞ an/bn = γ with 0 < γ < ∞. Given a fixed starting point
θ0 and assuming cℓn(θ) to be strongly convex and its gradient to be Lipschitz continuous
with constant L > 0, then, at each iteration t, the numerical procedure updates via θt =
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Table 1: Notation summary for θ values.

θ∗ θ̂ θ̃ θ̄P

True parameter.
Not observed.

CLE. Usually not
available analytically.

Numerical approximation
of θ̂ used as estimate of θ∗.

Stochastic estimator of θ∗

based on the chosen P.

θt−1 + η∇cℓn(θt−1), t = 1 . . . , Tn, where 0 < η < 2/L is a fixed stepsize. The final
parameter estimate is taken as the output of the algorithm, namely θ̃ = θTn . This gradient-
based update highlights that the critical quantity to be computed at each iteration is
∇cℓn(θ), which costs O(nK) operations. Furthermore, to draw statistical inference with
the numerical solution θ̃, one requires θ̃ to have the same limiting distribution as θ̂, which
implies that θ̃ − θ̂ = o(1/

√
n). Given the linear convergence rate of gradient descent (see,

for example, Theorem 2 in Section 1.4.2 of Polyak (1987)), the total number of iterations
needs to satisfy Tn = ω(−1

2
logc n) with c ∈ [0, 1), hence Tn = ω(log n). In Table 2, we

compare the total computational budget, B, and asymptotic variance of θ̄P and θ̃ according
to the relative divergence rate of Tn and n.

Table 2: Computational and statistical efficiency comparison between gradient descent
and Algorithm 1 with P chosen according to Definitions 1, 2 and 3.

Per iteration Number of Total Asymptotic
complexity iterations complexity variance

GD O(nK) Tn = ω(log n) B = ω(nK log n) n−1H−1JH−1

P1 O(K)
Tn = ω(n) B = ω(nK) n−1H−1JH−1

Tn = o(n) B = o(nK) T−1
n H−1JH−1

Tn = Θ(n) B = Θ(nK) (T−1
n + n−1)H−1JH−1

P2 O(K)
Tn = ω(n) B = ω(nK) n−1H−1JH−1

Tn = o(n) B = o(nK) T−1
n H−1

Tn = Θ(n) B = Θ(nK) n−1H−1JH−1 + T−1
n H−1

P3 O(K)
Tn = ω(n) B = ω(nK) n−1H−1JH−1

Tn = o(n) B = o(nK) T−1
n H−1

Tn = Θ(n) B = Θ(nK) n−1H−1JH−1 + T−1
n H−1

First, to achieve the asymptotic efficiency in (4), Algorithm 1 needs many more itera-
tions compared to gradient descent. However, given the extreme computational affordabil-
ity of its iterations, the total budget needed to reach such an asymptotic behavior is lower
than what is needed by gradient descent, whatever the choice of P . While theoretically
appealing, Algorithm 1 might need to tune η0 adequately in practice, like most stochas-
tic optimization methods, which increases its computational cost. Furthermore, numerical
optimization is typically carried out with Newton and quasi-Newton algorithms. They are
well-known to be more efficient than gradient descent in practical applications. Still, they
are particularly sensitive to the dimension of the parameter space since they require to
compute, or approximate, the inverse of the d× d Hessian matrix. From a practical point
of view, on problems of moderate dimensions, it might still be preferable to use numerical
optimizers to take advantage of the asymptotic behavior of θ̂.

The real advantage of Algorithm 1 shows up when O(nK) is the maximum compu-
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tational budget available, and we want to quantify uncertainty around our estimates. In
such a scenario, using the numerical solution θ̃ can be infeasible since the computational
inaccuracy remaining might be too large. Regardless, using θ̄P is a viable option, and the
reason is rather intuitive. Although subtle, when running numerical optimization, one does
not use θ̃ directly to draw inference on θ∗. Instead, the requirement for θ̃ is to be close
enough to θ̂ in order to safely replace θ̂ with θ̃ in (4). We argue that this is not the case
when using stochastic optimizers since θ̄P − θ̂ is a random variable itself, with distribution
depending on P . Hence, quantifying the noise injected by W in the optimization makes
it possible to directly use θ̄P for inference on θ∗, without strict requirements on its dis-
tance from θ̂. Fixing B = O(nK) implies the running length of the algorithm to be either
Tn = o(n) or Tn = Θ(n). With such divergence rates, the choice of P plays a central role
in the asymptotic variance of θ̄P since the noise in the stochastic approximation is still
non-negligible. Table 2 shows that, in those cases, relying on different choices of P is not
equivalent. Estimates based on P2 and P3 enjoy a lower asymptotic variance than P1, as
will become more apparent in the next section. Furthermore, Section 3 also establishes the
asymptotic distribution of θ̄P around θ∗ under some mild assumptions on the choice of P .

2.4 Implementation Remarks

From an implementation perspective, Algorithm 1 allows for some practical expedients to
enhance the computational performance. First, the computation of St at each iteration can
be easily parallelized by taking advantage of the double-sum structure of∇cℓn(θ), assigning
the gradient computation for a different sub-likelihood component to each available thread.

Second, as typical of stochastic algorithms, not all the data are needed at each iteration,
such that memory resources can be saved by carefully passing only the portion of the data
needed to compute St at a given t. In this regard, P1 is the cheaper choice memory-wise
since it fixes the memory cost to O(K) no matter the structure of ∇cℓn(θ). By choosing
P2 or P3, one typically needs to store data coming from multiple observations, such that
the maximum amount of memory necessary strictly depends on the model. In the case
of Example 1, each sub-log-likelihood component has a memory cost O(K). Thus, since
P2 and P3 can draw components potentially belonging to K different observations, their
maximum memory cost per iteration is O(K2). If we consider Example 2, each component
accesses only O(1) data instead. Consequently, by drawing K components on different
observations, both P2 and P3 have a maximum per-iteration memory cost of O(K).

Third, the Sampling Step can be recycled across iterations to save computational re-
sources. Namely, with P1, one can scramble the vector (1, . . . , n) once and then use each
of the first l elements as indices of the observations drawn in the following l-dimensional
window of iterations. Intuitively, as long as l is low enough, the dependence induced by the
recycling among iterations within the same window is negligible, such that they can still
be considered independent. Thus, recycling trims the cost of the Sampling Step by a factor
of l. The same approach can be implemented when using P3 by scrambling the vector
(1, . . . , nK) and allocating the first l K-dimensional sequences of indices to the subsequent
l iterations. Unfortunately, recycling is impossible when P2 is chosen since the number of
components drawn per iteration is not deterministic.
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3 Theoretical Results

In what follows, we establish the asymptotic properties of the proposed estimator θ̄P .
Proposition 1 states the convergence of θ̄P to θ∗, while Theorem 1 and Corollary 1 provide
novel theoretical results describing the asymptotic distribution of θ̄P under different choices
of Tn and P . The following assumptions combine classical domination conditions on the
log-likelihood components (e.g. White 1982), with the flexible setting outlined in Su & Zhu
(2023) for globally convex and locally strongly convex objective functions.

Assumption 1 For k = 1, . . . , K, ℓk(θ;y) exists for every θ, is continuous in θ for all
y ∈ Y and |ℓk(θ;y)| is dominated by a function integrable with respect to the distribution
of Y . The vector θ∗ is the unique solution to EY {

∑K
k=1 ℓk(θ;Y )} = 0.

Assumption 2 Each sub log-likelihood ℓk(θ;y) is differentiable in θ, and its gradient con-
tinuous, for all y ∈ Y. Furthermore, with θr being the generic r-th element of θ, the
quantity |∂ℓk(θ; y)/∂θr| is dominated by a function integrable with respect to p(Y ;θ∗) up
to the fourth power. In addition, |∂2ℓk(θ; y)/∂θr∂θr′| exists in a δ-neighbourhood of θ∗, i.e.
for some δ > 0 such that ∥θ − θ∗∥ < δ, where it is continuous in θ and dominated by a
function integrable with respect to p(Y ;θ∗).

Assumption 3 The expected sub log-likelihoods are concave in θ and their gradients satisfy
∥∇EY {ℓk(θ′,Y )}−∇EY {ℓk(θ,Y )}∥≤ L1∥θ−θ′∥, for L1 > 0, k = 1, . . . , K and θ,θ′ ∈ Rd.
Furthermore, for some L2, δ > 0, the expected Hessian of each sub log-likelihood verifies
∥∇2EY {ℓk(θ,Y )} − ∇2EY {ℓk(θ∗,Y )}∥ ≤ L2∥θ − θ∗∥ with ∥θ − θ∗∥ < δ. Additionally∑K

k=1 ∇2EY {ℓk(θ∗,Y )} is negative-definite.

Assumption 4 The sampling scheme P is such that E{Wi,k} = γ1, with 0 < γ1 < 1, for
i = 1, . . . , n and k = 1, . . . , K. Additionally, limn−→∞ nγ1 > 0, E {Wi,kWi,k′} , E {Wi,kWi,k′Wi,k′′},
and E {Wi,kWi,k′Wi,k′′Wi,k′′′} are of order O(γ1), and E {Wi,kWj,k′} , E {Wi,kWi,k′Wj,k′′},
and E {Wi,kWi,k′Wj,k′′Wj,k′′′} are of order O(γ2

1), with i ̸= j and k, k′, k′′, k′′′ = 1, . . . , K.
For notation aims, let E{Wi,kWi,k′} = γ2 if k ̸= k′.

Assumption 5 Given η0 > 0, the stepsize scheduling is chosen as ηt = η0t
−c with 1/2 <

c < 1, implying limn−→∞
∑Tn

t ηt = ∞, limn−→∞
∑Tn

t ηt/
√
t < ∞, limn−→∞

∑Tn

t η2t < ∞.

Assumption 1 collects the regularity conditions on the behavior of the likelihood function
that guarantee the existence and uniqueness of θ∗ (see Varin & Vidoni 2005). Assumption 2
allows exchanging the order of integration and differentiation when working with sub-log-
likelihood objects. In addition, it guarantees the existence of EY {∇2ℓk(θ;Y )} on ∥θ −
θ∗∥ < δ, with δ small enough. Assumption 3, imposes Lipschitz regularity for EY {∇ℓk(θ)}
on all Rd, and for EY {∇2ℓk(θ)} on the ball ∥θ − θ∗∥ < δ. Furthermore, it outlines
the local strong concavity of the composition of the expected composite log-likelihood in a
neighborhood of θ∗, thus guaranteeing its local identifiability. Together with Assumption 2,
it allows recovering the conditions on the objective function required by Su & Zhu (2023).
Assumption 4 requires all the weights to share the same expected value, γ1, which does
not decay faster than 1/n. Furthermore, it assumes the cross-products across the weights
of different sub log-likelihoods to be bounded up to a constant by γ1, when referring to
the same observations, and by γ2

1 , when referring to two different ones. Together with
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Assumption 2, such bounds control the stochastic behavior of the SGs constructed via
(5). Assumption 4 is more general than what is needed for P1, P2 and P3 and potentially
allows for different sampling schemes. Note that γ1 can be fixed across different choices of
P to match the computational cost of constructing (5). However, for a given γ1, different
sampling schemes lead to different γ2, which affects the correlation across weights belonging
to the same observation. Theorem 1 shows that the pair γ1,γ2 is sufficient to explain
the statistical efficiency implied by different choices of P . Assumption 5 is a standard
requirement on the decreasing scheduling of the stepsize (e.g. Polyak & Juditsky 1992).

With Assumptions 1-5, it is straightforward to adapt Su & Zhu (2023) results to prove
θ̄P being a stochastic approximation of θ̂ as the number of iterations Tn diverge. However,
θ̂ gets closer to θ∗ as the sample size grows. It follows that θ̄P can also be used as a
consistent estimator of θ∗ as long as both Tn and n diverge simultaneously.

Proposition 1 With Assumptions 1-5, the output of Algorithm 1 provides a consistent
estimator of θ∗ when Tn −→ ∞ as n −→ ∞, i.e. θ̄P

a.s.−−→
n

θ∗.

The proof of Proposition 1 in the online Appendix is an adaptation of Lemma 17 in Su
& Zhu (2023). However, it is worth emphasizing that it takes advantage of the expected
behavior of St when evaluated at θ∗ rather than θ̂. In other words, it acknowledges the
data and Wt as random variables when constructing St. This is critical to stress since it
allows considering θ∗ as the target of θ̄P given the double asymptotics in n and Tn.

While Proposition 1 formalizes the consistency of θ̄P , nothing has been said so far about
its distributional properties. Theorem 1 tackles this aspect by outlining the asymptotic dis-
tribution of θ̄P according to the relative divergence rate of n and Tn. Let us anticipate
how Theorem 1 differs from the original inference framework for averaged stochastic opti-
mization. When used to find the root of ∇cℓn(θ) = 0, the original result in Theorem 2 in
Polyak & Juditsky (1992) describes the asymptotic behavior of θ̄P around θ̂. It assumes
the data is fixed and does not quantify the uncertainty of the stochastic estimates around
θ∗. From a technical point of view, directly combining such a result with (4) is not straight-
forward since the two asymptotic statements are defined on different probability spaces,
namely with and without the conditioning on the observed values of Y . Furthermore, as
soon as we allow the data to be random, we are not able anymore to take advantage of the
independence of the stochastic quantities St(θ

∗;Wt), with t = 1, . . . , Tn, which is a critical
step in the proofs presented in Polyak & Juditsky (1992). In other words, while all the
iterations still share the same dataset, its random nature induces dependence among them.

It follows that, when stochastically optimizing cℓn(θ), if the interest is drawing infer-
ence about θ∗, which is typically the case of composite likelihood methods and maximum
likelihood estimation in general, the available results building on the asymptotic covariance
matrix outlined in Polyak & Juditsky (1992) only provide a partial answer to the research
question. To fill this gap, we provide Theorem 1, which shows that θ̄P is asymptotically
normally distributed around θ∗ and its covariance matrix changes according to both P
and the relative divergent behavior of Tn and n. The choice of P affects the shape of the
noise coming from the optimization, while the divergent behavior of Tn and n quantifies its
relative magnitude compared to the sampling variability of the data.

Theorem 1 Let n/(Tn + n) −→
n

α, with 0 ≤ α ≤ 1. Under Assumptions 1-5, for the sam-

pling schemes P1,P2,P3 in Definitions 1-3, it holds that:
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Regime 1: If α = 0, then
√
n(θ̄P − θ∗)

d−→
n

N (0,H−1JH−1);

Regime 2: If α = 1 and n7/9 = o(Tn), then
√
Tn(θ̄P − θ∗)

d−→
n

N (0,H−1VPH
−1);

Regime 3: If 0 < α < 1, then
√
Tn + n(θ̄P−θ∗)

d−→
n

N (0,H−1VPH
−1/(1−α)+H−1JH−1/α),

where VP = limn−→∞ γ−2
1 n−1(γ1 − γ2)H + n−1

(
γ−2
1 γ2 − 1

)
J = O(1).

The asymptotic covariance matrices in Theorem 1 can be described as a weighted average
between H−1VPH

−1 and H−1JH−1, with weights depending on the divergence rate of
Tn and n. Note that H and J are the usual matrices entering the asymptotic efficiency
of the CLE, as discussed in Section 2. While H−1JH−1 is already well known from (4)
and quantifies the variability due to Y , the matrix H−1VPH

−1 can be shown to describe
the noise coming from the optimization. As the notation stresses, the value of VP depends
on the choice of P . In particular, it results in a linear combination of the matrices H and
J , with coefficients based on the quantities γ1 and γ2. For a detailed derivation of VP , see
the proof of the theorem in the online Appendix B. Before describing Corollary 1, which
outlines the different shapes of VP according to the choices P , we briefly summarize the
three asymptotic regimes described in Theorem 1.

When the algorithm runs for Tn = ω(n) iterations, it holds that n/(Tn + n) −→ 0, and
the estimates obtained fall under Regime 1. With such a setting, the noise component
generated by the optimization is negligible compared to the sampling variability of the
data. In this scenario, the algorithm runs until closely approximating the CLE, i.e., there
is no difference between the asymptotic behaviors of θ̄P and θ̂. Inference can be carried
out based on the familiar H−1JH−1, as described in (4).

In the opposite setting, where the algorithm is stopped at Tn = o(n), we get n/(Tn +
n) −→ 1 and Regime 2 holds. Note that setting γ1 = Θ(1/n), as in the three sampling
schemes considered, requires a minimum growing rate on the number of iterations to es-
tablish asymptotic normality, i.e. n7/9 = o(Tn). While such a condition is not particularly
restrictive in practice, its technical derivation can be found in Lemma 4 in the online Ap-
pendix. In such an asymptotic regime, the dominant variance component is the one induced
by P , such that inference can potentially ignore the variability of the data. In this case, the
asymptotic distribution resembles the one in Polyak & Juditsky (1992) and related works,
apart from having the parameter-dependent quantities evaluated at θ∗ rather than θ̂. To
glimpse the connection between Regime 2 and the conditional inference setting tradition-
ally adopted in stochastic optimization, imagine n being so large that the distance between
θ̂ and θ∗ is negligible. Then, there is not much difference in practice between using θ̄P
to infer either on θ∗ or θ̂. In other words, the results in Polyak & Juditsky (1992) are
equivalent, in a suitable sense, to inference under Regime 2 of Theorem 1.

Regime 3 describes an intermediate setting between the previous two. Since Tn and
n grow at the same rate, i.e., Tn = Θ(n), it holds that 0 < α < 1 and the asymptotic
covariance matrix around θ∗ compounds for both the optimization error and the sampling
variability of the data. As it is difficult to assess whether θ̄P is obtained strictly under
Regime 1 or Regime 2, it is always recommended to use Regime 3.

Hence, according to the divergent behavior of n/(Tn + n), Theorem 1 highlights which
variability component can be neglected and which can not when quantifying the uncertainty
around stochastic estimates. Furthermore, note that for ease of exposition, Theorem 1
assumes γ1 = Θ(1/n) as in the three sampling schemes P1-P3. However, such results can be
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extended for whatever choice of P satisfying Assumption 4. The three asymptotic regimes
and the variance decomposition are still valid, but different sampling rates γ1 require a
careful analysis of the magnitude of VP . Nevertheless, it is interesting to comprehend how
the distribution of W affects the optimization noise. In this regard, Corollary 1 outlines
the effects of choosing P according to Definitions 1, 2 and 3. In particular, the choice of P
affects the values of γ1 and γ2 which control the shape of VP .

Corollary 1 Let Theorem 1 hold. Then, Definition 1, implies VP1 = J andH−1VP1H
−1 =

H−1JH−1; Definition 2 implies VP2 = H and H−1VP2H
−1 = H−1; Definition 3 implies

VP3 = H and H−1VP3H
−1 = H−1.

While it is apparent that γ1 = 1/n for all three sampling schemes, we leave the details
about the implied values of γ2 in the proof of Corollary 1 provided in the online Appendix
B. When P is chosen according to Definition 1, the Sampling Step of Algorithm 1 keeps
untouched the correlation structure among the sub-likelihood components of the objective
function. In other words, it samples from the empirical distribution of the data. Therefore,
the variability due to W takes the same shape as the one stemming from Y , represented by
the matrix J . Note, in fact, that when P1 is chosen, γ1 = γ2 and therefore H asymptoti-
cally disappears when computing VP following Theorem 1. Instead, if P is chosen according
to Definition 2, the sub log-likelihood components are drawn independently, even when be-
longing to the same observation. This step breaks the original correlation structure among
the summands in ∇cℓn(θ), such that VP collapses onto the expected second derivative of
St, H . The weights independence, in fact, implies γ2

1 = γ2 and, therefore, a zero weight
for J when computing VP . Finally, if P follows Definition 3, the correlation among the
elements keeps the weight for J different from zero but asymptotically negligible because
of being O( 1

nK
). Thus, asymptotically, P3 shares the same asymptotic efficiency of P2.

It is well known that H ̸= J when using composite likelihood methods. Hence, the
inference with θ̂ must be based on H−1JH−1 rather than H−1, which typically results in
inflated variances for each parameter. Corollary 1 shows that P1 injects this same variability
as noise in the optimization, while P2 and P3 constrain it to H−1. Such a difference is
evident, as the simulations in Section 4 highlight, with the estimates based on P2 and P3

exhibiting lower variability than those obtained with P1.

4 Simulation Studies

We investigate the results from some simulation experiments with R = 500 replications for
the models presented in Examples 1 and 2. In particular, our goal is two-fold. First, we
provide evidence to support Proposition 1, namely to show that θ̄P converges to θ∗ when
both Tn and n diverge by tracking the average mean square error of θ̄P . i.e. MSE =
1
dR

∑R
r=1∥θ̄

(r,t)
P − θ∗∥2, where θ̄

(r,t)
P is the d-dimensional output of Algorithm 1 on the r-th

replication when stopped at the t-th iteration. Furthermore, we highlight that different
choices of P characterize different behavior of the MSE trajectories because of the implied
asymptotic variabilities outlined in Corollary 1.

Second, we assess the empirical coverage performance of confidence intervals built
from the asymptotic covariance matrices outlined in Theorem 1. We aim to highlight
the strength of asymptotic Regime 3, which compounds both the sampling variability
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of the data and the optimization noise. To construct the confidence intervals, an es-
timate for both H and J is needed. Here, we use the usual sample estimators (see

e.g. Varin et al. 2011, Section 5) Ĵ (r,t) = 1
n

∑n
i=1

{
∇cℓ(θ̄

(r,t)
P ;yi)

}{
∇cℓ(θ̄

(r,t)
P ;yi)

}⊤
and

Ĥ(r,t) = 1
n

∑n
i=1

∑K
k=1

{
∇ℓk(θ̄

(r,t)
P ;yi)

}{
∇ℓk(θ̄

(r,t)
P ;yi)

}⊤
. In all experiments, we burn the

first 0.25n iterations and start drawing inference and tracking estimates variability from
Tn = .5n. To correctly assess the empirical coverage of confidence intervals iteration-wise,
all simulations track results for Tn ∈ {0.5n, . . . , 3n}. Hence, for each stopping time, we
observe all the R runs of Algorithm 1 for a given P . Results are shown for the decreasing
stepsize scheduling outlined in Assumption 5 with c set arbitrarily small at c = 0.501. The
initial step size instead, η0, is chosen differently for the two examples.

In the experiments we compare the performances of θ̄P1 (standard), θ̄P2 (bernoulli),
θ̄P3 (hyper) together with the implementations of θ̄P1 and θ̄P3 taking advantage of a
recycled Sampling Step (recycle standard and recycle hyper respectively) as described
in Section 2.4. We also compute θ̂ numerically as a benchmark.

4.1 Experiments for Example 1

Data are generated by using the exact probabilities of observing each of the possible p-
variate realizations of the graph. We assume the true graph follows a two-row grid structure,
similar to the simulation setting of Lee & Hastie (2015). In particular, horizontal edges are
set at 0.5, vertical ones at −0.5, intercepts at −0.5 for odd nodes and 0.5 for even ones.
The optimization always starts at the null vector.

We investigate the performances of Algorithm 1 with n ∈ {2, 500, 5, 000, 10, 000} and
p ∈ {10, 20}, implying d ∈ {55, 210}. The value of η0, is picked by minimising over a
grid of possible candidates the mean square error of standard at Tn = 3n in the most
challenging simulation setting, i.e. n = 2, 500, p = 20. However, additional simulation
results for different choices of η0 are available in the online Appendix C. Figure 1 shows
the convergence of all instances of the proposed estimator in terms of average mean square
distance from θ∗. Interestingly, the different noise levels introduced by different sampling
schemes characterize the convergence behavior as the estimation proceeds. That is, θ̄P2 and
θ̄P3 share the same asymptotic performances and are preferable to θ̄P1 . As expected, the
recycled implementations of P1 and P3 do not show any relevant discrepancy from their non-
recycled versions. Furthermore, after reaching Tn = 3n, none of the stochastic estimators
has reached the MSE of the numerical optimizer. This phenomenon happens because when
the stochastic algorithm is stopped, the optimization noise is still non-negligible, which
affects the variance considered in the MSE computation. It follows that, since this noise
can not be neglected, it must be appropriately considered when quantifying the uncertainty
around θ̄P .

In this regard, Figure 2 shows that, by appropriately accounting for both sources of
variability when the algorithm is stopped, it is possible to draw inference about θ∗ using θ̄P ,
whatever the choice of P . It presents the empirical coverage levels obtained by constructing
confidence intervals following the covariance matrices outlined in Theorem 1 under the three
asymptotic regimes. As predicted by the theory, one should use Regime 1 when Tn = ω(n),
and Regime 2 in the opposite scenario, Tn = o(n). However, Regime 3 is the recommendable
choice in practice because it directly compounds both the optimization uncertainty and the
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Figure 1: Ising model. Log mean square error trajectories along the optimization, grouped
by n and p. Solid lines refer to θ̄P under different sampling schemes. Dashed lines denote
the performance of the numerical approximation of θ̂. Grey areas highlight the burn-in.
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Figure 2: Ising model. Empirical coverage of confidence intervals for θ̄P constructed ac-
cording to Theorem 1. Results are grouped by n and p. Dashed lines highlight the nominal
coverage level 95%. Solid lines refer to scalar elements of θ̄P under different sampling
schemes. Dark crosses refer to scalar elements of the numerical approximation of θ̂ (placed
after the third pass for visualization purposes).

data sampling variability. As a reference, under Regime 3, Figure 2 reports the empirical
coverage levels obtained by constructing confidence intervals for the numerical optimizer
estimating the asymptotic covariance matrix in (4).

For space reasons, computational times are reported in the online Appendix C. Briefly,
taking advantage of a recycling window of iterations is highly beneficial implementation-
wise, especially with diverging n. In particular, it allows recycle hyper to be compu-
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tationally competitive with standard and recycle standard while being systematically
more efficient in statistical terms, whatever the choice of Tn (and of η0, as remarked in the
additional experiments reported in the online Appendix).

4.2 Experiments for Example 2

While the previous example clearly shows the statistical convenience of relying on P2 or
P3 rather than P1, the experiments in this second example illustrate how these differ-
ences vary based on the model considered. Since the discrepancy in the asymptotic co-
variance of the considered estimators depends on the matrices H and J , such a gap can
be more or less evident according to the model analyzed. Compared to the previous ex-
ample, this difference is much more apparent in the gamma frailty model, as illustrated
below. Similarly to the previous experiments, we assess the performances of Algorithm 1 for
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Figure 3: Gamma frailty model. Log mean square error trajectories grouped by n and
p. Solid lines refer to θ̄P under different sampling schemes. Dashed lines denote the
performance of the numerical approximation of θ̂. Grey areas highlight the burn-in.

n ∈ {2, 500, 5, 000, 10, 000} and p ∈ {20, 30}. Note that, from p = 20 to p = 30, the dimen-
sion of the parameter space goes from d = 22 to d = 32 while the computational burden per
iteration more than doubles since K increases from K = 190 to K = 435. Given the large
number of likelihood contributions considered compared to the Ising model, we only assess
the performances of recycle standard and recycle hyper, not their exact versions. In
particular, P3 is the sampling scheme suffering the most from the hefty K. Accordingly,
we increase the recycling window length to l = 500 for both estimators to have competitive
computational times. For completeness, the online Appendix C provides further experi-
ments showing how different values of l lead to comparable estimates for recycle hyper

while having massive impacts on computational times. Similarly to previous experiments,
the value of η0 shown is the stepsize minimizing the mean square error performance at
Tn = 3n of recycle standard in the most challenging setting, i.e., n = 2, 500, p = 30.

Figure 3 shows the trajectories along the optimization of the log mean square error for
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the proposed estimators. Similarly to the Ising model, the MSE differences are due to the
asymptotic variabilities implied by P1 and P3, but they are more pronounced in this case.
The estimates based on P3 exhibit a sharp drop at the beginning of the optimization and
reach the performance of the numerical estimator almost always after one pass through the
data. For the estimates based on P1, the convergence is much slower and does not match
the numerical approximation even after the maximum length tested of three passes. The
optimization noise of P3 drops almost immediately to negligible levels, leading the variance
of θ̄P3 to overlap with the one from numerical estimation closely. The noise generated
by P1 persists much longer, translating into higher variances for the stochastic estimates
throughout the optimization and, hence, higher MSE. Note that recycle standard is faster
than recycle hyper when both are stopped at the same Tn. However, the simulations
show that even after Tn = n, recycle hyper is already closer to the numerical estimates
than recycle standard at Tn = 3n. Thus, it represents a more efficient alternative to
recycle standard both computationally and statistically. In addition, the low variability
of the recycle hyper also allows for larger steps than what shown here, which permits
stopping the optimization even earlier than Tn = n. For space reasons, we refer to the
online Appendix C for additional details and results about the experiments of this section.

5 A Network Analysis of Mental Health Data

To illustrate the power of the proposed methodology, we consider an application of the
Ising model to the mental health data from the Epidemiologic Survey on Alcohol and
Related Conditions (NESARC) - Wave 1. The NESARC is a nationally representative
survey of the United States adult population, which gathered data on alcohol behavior
and mental health disorders from April 2001 to June 2002 (Grant et al. 2003). We take
the network psychometrics approach (e.g., Epskamp et al. 2018, Borsboom 2022), viewing
symptoms as nodes of an unknown graph and direct symptom-to-symptom interactions as
edges whose parameters are to be estimated. We select p = 32 items related to antisocial
disorders, high mood, low mood, panic and personality disorders, and social and other
specific forms of phobia. Therefore, the dimension of the parameter space is d = 528. The
items are selected among the ones with the lowest missing response rates, avoiding screening
items and related ones, and the remaining observations with missing values were discarded,
leaving the dataset with a total of 31, 826 respondents. See the online Appendix D for the
description of the 32 items considered. We hold out 10% of the available observations
as a validation set to monitor the out-of-sample behavior of the negative composite log-
likelihood during the iterations. The training partition retains n = 28, 643 observations.

The model is estimated using the hypergeometric sampling of Definition 3. Given the
large sample size, we set the recycling window at l = 1, 000 and burn-in period B = 0.25n.
The stepsize scheduling is defined by c = .501 and η0 chosen by halving an initial proposal
until the holdout negative composite log-likelihood performance ceases improving when
evaluated at Tn = n. The selected value is η0 = 5. After every 0.25n iterations, the
algorithm performs a new evaluation of the holdout negative log-likelihood. When the
improvement falls under 0.1%, the algorithm stops. In our case, it stops at Tn = 1.75n. The
full estimation procedure, including the initial stepsize selection, took almost 15 seconds
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Figure 4: Graphical structure of mental health disorders. Node colors refer to specific
survey areas. Solid and dashed lines stand for positive and negative estimated edges. Edge
width is proportional to the absolute estimated coefficient.

when run on a single core of a personal laptop2. As a benchmark, the numerical estimator
took more than half an hour to converge on the same hardware, providing similar results.

At the end of the stochastic estimation, the asymptotic standard errors are computed
by estimating the covariance matrix of θ̄P3 under Regime 3 of Theorem 1 using the usual
sample estimators of H and J . To investigate the structure of the estimated graphical
model, all the d parameters are tested against the null hypothesis of being zero. The
resulting p-values are then adjusted via the Holm correction (Holm 1979) to control for the
family-wise error rate across the d hypothesis at level 0.01. The procedure identifies 17.1%
of the possible edges as statistically significant, as visualized in Figure 4.

The identified graphical structure highlights how symptoms of the same disorder tend
to cluster together with dense positive connections. Instead, relationships among differ-
ent disorders are less strict, with some of them being slightly negative. Furthermore, the
sparsity induced by the non-significance of many edges allows for providing conditional
independence statements among symptom areas. For example, panic disorders are condi-
tionally independent of the rest of the graph, given the specific phobias and mood disorders
areas. The same can be said for the social phobia area, which is independent of mood dis-
orders, for example, when conditioned on personality disorders and other specific types of
phobias. Similar reasoning can be used to investigate symptoms belonging to the same
area. For example, item S6Q2 concerns the experience of feeling erroneously in danger after
a panic attack. This symptom is isolated from the others when the remaining two items
related to panic attacks, S6Q1 and S643, are considered. In particular, such items refer to
experiencing panic episodes for no real reason and misinterpreting nerves as a heart attack.
Finally, it can also happen that single items separate two specific portions of the graph.
That is the case of the node S4CQ1, which concerns having experienced two or more years
of depression and separates from the rest of the symptoms item S9Q1B, which is related to
experiencing six months or longer of nervousness about everyday problems.

2Intel i5-2520M; RAM 8 GB; R version 4.3.0; gcc version 13.1.1; 4x 3.2GHz, OS Manjaro Linux 23.0.0
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6 Discussion

When the optimization noise is non-negligible, it is crucial to properly quantify the uncer-
tainty around stochastic approximations if the goal is to run valid frequentist inferences
about true parameters. We show how the asymptotic variance of such estimators com-
pounds two sources of uncertainty: the sampling variability of the data and the noise
injected in the procedure by the SGs. We optimize composite likelihoods by constructing
the SGs using a hypergeometric sampling of sub-likelihood contributions, which enhances
their statistical and computational efficiencies. The resulting estimator is a flexible inferen-
tial tool for applied research. In contrast to existing methods that discard part of the data
to reduce computational times (Dillon & Lebanon 2010, Mazo et al. 2023), our proposal uti-
lizes available information more parsimoniously, leading to improved statistical efficiency.
Additionally, a small experiment in online Appendix E compares our method with the
randomized pairwise likelihood estimator of Mazo et al. (2023). The results confirm that
spreading the usage of likelihood components across iterations via stochastic optimization
rather than discarding them leads to improved estimation performances. Various exten-
sions of the proposed method are possible by expanding the scope of the parameter update
in Algorithm 1. A first straightforward extension relates to quasi-Newton alternatives of
standard SG descent (Byrd et al. 2011). Such extensions can be quite effective in practice
because they adapt the steps to the different scales of each parameter, which typically im-
proves the convergence of the estimator. A second forthright extension enriches the update
step to account for proximal operators, allowing for non-differentiable terms like projections
and lasso penalties, as investigated in Atchadé et al. (2017) and Zhang & Chen (2022).

Nevertheless, the current proposal still has limitations, particularly when making in-
ferences with an increasing parameter space. From a computational perspective, it does
not address the challenge of computing H−1 and J . It is important to have accurate esti-
mates of both H−1 and J to construct reliable confidence intervals. However, estimating
these quantities can be computationally challenging, especially with large numbers of pa-
rameters due to the matrix inversion required. Furthermore, this work focuses on settings
where traditional frequentist estimation is theoretically adequate but computationally in-
convenient, such as moderate parameter spaces with much larger sample sizes. Further
research is needed to expand the current theoretical framework to settings where a regu-
larization term is necessary to identify the parameters of interest. Conducting inference in
such settings is complicated due to the bias introduced by regularization. We are explor-
ing potential solutions based on recent advances in debiasing techniques for lasso-based
estimators. These methods have gained popularity in both offline settings (Janková &
van de Geer 2018) and with streaming data (Han et al. 2023). Addressing these theoretical
challenges could enable composite likelihood inference for large-scale data.
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