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Abstract

We show that a non-parametric estimate of the pricing kernel, extracted using an information-
theoretic approach, delivers smaller out-of-sample pricing errors and a better cross-sectional fit than
leading multi-factor models. The information stochastic discount factor (I-SDF) identifies sources of
risk not captured by standard factors, generating very large annual alphas (20-37%) and Sharpe ratio
(1.1). The I-SDF extracted from a wide cross-section of equity portfolios is highly positively skewed
and leptokurtic, and implies that about a third of the observed risk premia represent compensation for
2.5% tail events. The I-SDF offers a powerful benchmark relative to which competing theories and in-
vestment strategies can be evaluated.

Keywords: alpha, cross-sectional asset pricing, factor mimicking portfolios, factor models, pricing kernel, rela-
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Asset prices contain information about the stochastic discounting of possible future states,
that is, about the pricing kernel, or stochastic discount factor (SDF). Based on this simple
observation, and an information-theoretic approach, we propose a novel non-parametric
method for the estimation of the pricing kernel and out-of-sample pricing of asset returns.
The proliferation of risk factors identified in the empirical asset pricing literature has
brought forth concerns over data mining and spurious inference (see, e.g., Lewellen, Nagel,
and Shanken 2010; Harvey and Liu 2015; McLean and Pontiff 2016; Bryzgalova 2016),
and highlights the risk of over-parameterization of the pricing kernel. Therefore, a non-
parametric approach to the recovery of the pricing kernel is a potentially valuable alterna-
tive to the ad-hoc construction of risk factors. Moreover, given its strong empirical
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performance, it provides a benchmark model relative to which competing theories, as well
as investment managers, can be evaluated.

The use of information-theoretic (or entropy-based) techniques has become increasingly
popular since their introduction in the finance literature by Stutzer (1995, 1996) and
Kitamura and Stutzer (2002). Recent research has found the information-theoretic ap-
proach to be a useful tool for addressing a number of central questions in economics and fi-
nance. Examples include Julliard and Ghosh (2012), who rely on this entropy-based
inference approach to assess the empirical plausibility of the rare disasters hypothesis in
explaining the equity premium puzzle; Almeida and Garcia (2012) and Backus, Chernov,
and Zin (2014), who propose entropy-based performance measures to assess candidate as-
set pricing models (see also Bansal and Lehmann 1997; Almeida and Garcia 2016; Liu
2021); Borovicka, Hansen, and Scheinkman (2016), who propose using relative entropy
minimization techniques to isolate a positive martingale component of the SDF process
that contains information about long-term risk adjustments (see also Alvarez and Jermann
2005); Ghosh, Julliard, and Taylor (2017), who use a relative entropy minimization ap-
proach to derive entropy bounds for the SDF that are tighter and more flexible than the
seminal Hansen and Jagannathan (1991, 1997) bounds, as well as recover the unobserv-
able components of the SDF (e.g., habits, return on total wealth, etc.) for a broad class of
consumption-based asset pricing models (see also Sandulescu, Trojani, and Vedolin 2021);
Chen, Hansen, and Hansen (2020) and Ghosh and Roussellet (2020), who propose using
the approach to recover investors’ beliefs from observed asset prices; and Ghosh, Julliard,
and Stutzer (2020), who use the approach to estimate the welfare costs of aggregate eco-
nomic fluctuations.

In the above literature, the information-theoretic technique is typically used to construct
an SDF in sample, which, by construction, correctly prices the cross-section of assets used
in its estimation. Although this provides a very useful tool for the aforementioned applica-
tions, the fact that the test assets are priced perfectly means that standard tests of empirical
asset pricing, where the success or failure of an asset pricing model is usually decided, are
not meaningful. Indeed, it is an open question whether SDFs extracted using information-
theoretic methods have, by the standards of conventional empirical asset pricing tests, any
real ability to price assets out-of-sample. Given the increasing use of entropy techniques,
we take this question to be of considerable importance. Therefore, in this article, we assess
the ability of the entropy-based SDF to price broad cross-sections of assets out-of-sample,
and compare its performance with those of the leading factor models popular in the empiri-
cal asset pricing literature. Our results suggest that the entropy-based SDF offers a power-
ful benchmark for asset pricing.

Ghosh, Julliard, and Taylor (2017) show how a pricing kernel can be estimated in the
sample in a non-parametric fashion using only no arbitrage restrictions. Specifically, given
the time series data of returns on a cross-section of assets, they utilize a model-free relative
entropy minimization approach to estimate an SDF that prices the cross-section. The result-
ing SDF is a non-linear function of the asset returns and the Lagrange multipliers associated
with the assets’ cross-sectional pricing restrictions (i.e., the shadow value of relaxing the
Euler equation restrictions).

The main methodological contribution of the present article is to extend the minimum-
entropy SDF approach out-of-sample for the purposes of cross-sectional pricing. In particu-
lar, using the Lagrange multipliers estimated in a training sample, we construct the out-
of-sample SDF in a rolling fashion, and use it as the single factor to price different
cross-sections of test assets. This method ensures non-negativity, hence validity, of the SDF
in- and out-of-sample. Our approach does not require taking a stance on either the number
or the identity of the underlying risk factors or on the functional form of agents’ risk pref-
erences. Instead, the approach summarizes all the relevant pricing information (contained
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in, potentially multiple, priced risk factors) in the form of a single time series for the SDF.
We refer to the out-of-sample SDF as the “Information SDF” (I-SDF). The question then
becomes whether our non-parametric approach to the recovery of the pricing kernel pro-
vides meaningful information for the pricing of assets out-of-sample in empirically realistic
scenarios. And if so, whether it can be considered a valuable alternative to the ad-hoc con-
struction of risk factors, or even PCA-based methods, commonly used as proxies for the
underlying sources of priced risk.

The relative entropy minimization approach delivers an SDF that is theoretically distinct
from the mean—variance efficient tangency portfolio of the set of assets used in its construc-
tion. Specifically, the former approach recovers an I-SDF that has the minimum weighted
sum of all of its moments. Recall that the tangency portfolio, on the other hand, is chosen
to have the minimum variance. If the true underlying pricing kernel were log normal, then
all of its higher order moments would be zero, such that minimizing relative entropy would
be equivalent to minimizing the variance. If, on the other hand, the SDF is not log normal
(e.g., if we believe that tail risk is an important source of priced risk), then the variance is
not a sufficient statistic summarizing its distribution, and there is no a priori reason to rely
on a solely variance minimizing criterion to recover the SDF.

One natural limitation of an entropy-driven approach is that, as any other large-T mo-
ment based estimator, it is more reliable with a relatively small cross-sectional dimension
relative to the time series one. We address this limitation in two possible ways, by either: a)
selecting a relatively small (15) set of anomaly portfolios, known to have good spanning
properties for asset returns, as base assets to construct the I-SDF; and b) when considering
a large set (135) of base assets to recover the SDF, we employ a Li-penalization to deal
with the high-dimensional moment conditions.

In the first case, we estimate the I-SDF from a small cross-section of 15 equity portfolios,
that capture several well-known asset pricing anomalies—including portfolios sorted on
the basis of size, book-to-market-equity, momentum, industry, and short- and long-term
reversals—and analyze its ability to explain out of sample several broader cross-sections of
test assets. Compared to leading multifactor models, such as the Fama and French (1993,
2015) three- and five-factor models (FF3 and FF3, respectively) or the Hou, Xue, and
Zhang (2015) g-factor model (HXZ), the I-SDF typically delivers smaller pricing errors on
all the different sets of test assets that we consider. Moreover, it explains a larger fraction
of the cross-sectional variation of the returns. These results hold for a variety of measures
commonly used in the literature to assess the cross-sectional fit in addition to the standard
OLS R2. We also show that the I-SDF (compared to the other factor models considered)
more closely identifies—out-of-sample—the tangency portfolio, that is, the maximum
Sharpe ratio portfolio. Furthermore, we find that the I-SDF extracts novel pricing informa-
tion not captured by the FF3, HXZ4, or FF5 models: it leads to an “information anomaly,”
generating large and statistically significant intercepts (12.4-13.4% per annum) relative to
these factor models, which only explain less than 13% of its time series variation.

When dealing with a large set of base assets to construct the SDF, we employ an exten-
sion of the penalized information-theoretic method proposed in Qiu and Otsu (2022). This
enables the recovery of an [-SDF from a large cross-section, potentially greater than the
length of the available time series. Specifically, we recover the I-SDF from a set of 135 eq-
uity portfolios that encompasses all the major anomaly variables identified in the litera-
ture—the five industry portfolios and the ten decile portfolios for univariate sorts on the
basis of each of the following characteristics: size, book-to-market-equity, momentum,
short-term reversals, long-term reversals, operating profitability, investment, accruals, new
issues, beta, variance, residual variance, and earnings-to-price. Consistent with the results
for the smaller cross-section of base assets, the I-SDF retains its favorable performance
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vis-4-vis the other factor models. Furthermore, even in this large N case, our entropy-based
approach outperforms the PCA-based method of Kozak, Nagel, and Santosh (2020).

Overall, our results suggest that the I-SDF is well suited for studying broad cross-
sections of assets, for example, portfolios, that have been explored in the literature with
standard methods. It offers a single factor that prices such assets substantially better than
standard benchmarks. However, being a large T moments-based method, without impos-
ing a regularization as the one that we consider, the method might not be amenable to
extracting a unique [-SDF that prices the universe of assets, such as, for example, the entire
cross-section of individual stocks.

Furthermore, we offer an economic interpretation of the I-SDF. The I-SDF has a strong
business cycle pattern: it is smaller during expansions and larger during recessions.
However, the I-SDF also exhibits another interesting feature over and above its business cy-
cle properties: it is particularly high when the recessions are concomitant with big down-
ward movements in the stock market, such as during the 1973-1975, 2001, and 2007-
2009 recessions (unlike the 1981-1982 and 1990-1991 recessions that were not accompa-
nied by big stock market crash episodes). Our results suggest that while business cycle risk
is an important source of systematic risk, it cannot fully explain the behavior of the I-SDF,
and that the true underlying SDF may not be a function of business cycle variables alone,
but also of additional variables related to the performance of the overall stock market.
Also, the I-SDF has a strongly non-Gaussian distribution: it is highly positively skewed and
leptokurtic. Furthermore, it implies that about one-half of the observed risk premia of
stocks represent compensation for tail risk.

Our article contributes to the extensive cross-sectional asset pricing literature that seeks
to identify priced risk factors to explain the cross-section of returns of different classes of fi-
nancial assets. Harvey, Liu, and Zhu (2015) document 316 risk factors discovered by aca-
demics. Lewellen, Nagel, and Shanken (2010) offer a critical assessment of asset pricing
tests and conclude that although many of the proposed factors seem to perform well in
terms of producing high cross-sectional R? and small pricing errors, this result is largely
driven by the strong factor structure of the size and book-to-market-equity sorted portfolio
returns (which are often used as the sole test assets), which makes it quite likely for an arbi-
trarily chosen two or three factors, which have little correlation with the returns, to pro-
duce these results. Moreover, a large literature (e.g., Kan and Zhang 1999a, 1999b;
Kleibergen 2009; Kleibergen and Zhan 2015), stresses that the apparent good performance
of several factor models proposed in the literature might be the spurious outcome of a
weak identification problem. We show that our I-SDF is robust to these concerns and that
our approach provides a reliable benchmark against which competing models can be evalu-
ated. Furthermore, Bryzgalova, Huang, and Julliard (2023) show that the true latent SDF
is dense in the space of observable asset pricing factors, and that all low-dimensional factor
models in the previous literature are misspecified with very high probability. Our method
overcomes this issue by delivering an optimal non-linear combination of a large set of
anomaly portfolios, that is, extracting a single SDF from a dense space of observ-
able factors.

In spirit, our article is also close to, and builds upon, the long tradition of using asset pri-
ces to estimate the risk-neutral probability measure (see, e.g., Jackwerth and Rubinstein
1996; Ait-Sahalia and Lo 1998; Almeida and Freire 2022) and use this information to ex-
tract an implied pricing kernel (see, e.g., Ait-Sahalia and Lo 2000; Rosenberg and Engle
2002; Hansen 2014; Ross 2015). The main advantages of our approach relative to this lit-
erature are that a) we do not need to rely exclusively on options data that are only available
over a much shorter sample period, and b) we can construct an out-of-sample pricing ker-
nel and maximum Sharpe ratio portfolio. Moreover, as we show, our method is very gen-
eral and can be applied to other asset classes including currencies, commodities, as well as
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international equities. In the usage of a Li-norm penalty as regularization, our work is also
connected to the recent developments on the estimation of the SDF in large cross-sections
(e.g., Kozak, Nagel, and Santosh 2020; Korsaye, Quaini, and Trojani 2021).

The remainder of this article is organized as follows. Section 1 describes our method of
extracting the pricing kernel from a vector of asset returns, as well as the different inference
methods used in the empirical analysis. The data used in the empirical analysis are de-
scribed in Section 2. The empirical performance of the I-SDF in explaining broad cross-
sections of returns is presented in Section 3. Section 4 discusses the properties of the I-SDF.
Section 5 concludes with suggestions for future research.

1 The Method

Our relative-entropy minimizing approach enables us to recover, for a given cross-section
of assets, what we refer to as the I-SDF. Section 1.1 describes the information-theoretic
method used to construct the I-SDF. Section 1.2 discusses the econometric tests used to as-
sess the pricing performance of the I-SDF and compares its performance to some leading
empirical asset pricing models commonly used in the literature.

1.1 Recovery of the I-SDF

The absence of arbitrage opportunities implies the existence of a strictly positive pricing
kernel (also known as the SDF), M, such that the expectation of the product of the kernel
and a vector of excess returns, Rf € RN, is zero under the physical probability measure, PP:

0=E"[MR!] = JM,RdeP’,

where 0 denotes a conformable vector of zeros. Under weak regularity conditions, the
above restrictions on the SDF can be rewritten as

0= JAA//I;RedP JR;d@zE@[Rﬂ, (1)

where ¥ := E[x;], and %:% is the Radon-Nikodym derivative of Q with respect to P.

This change of measure is legitimate if the measure Q is absolutely continuous with respect
to IP. The above transformation also implies that using only the Radon-Nikodym deriva-
tive in the Euler equation for excess returns, one can recover the SDF only up to a scale. As
below, we will use the Euler equation for the risk-free rate to recover the scale factor, hence
the level of the SDF.

Given the above, an estimate of the risk-neutral probability measure Q can be obtained
as the minimizer of its relative entropy with respect to the physical measure P, that is, as'

, _ L[4, (4O 4O —
arg&mnD(@HP) = arg{rpnm‘[ (dP)dP s.t. JdeQ =0, (2)

dA

where D(A||B) := [Ind2dA = [ dB denotes the relative entropy of A with respect
to B, that is, the Kullback—Lelbler Information Criterion (KLIC) divergence between A

Minimizing the relative entropy to recover the risk neutral probability measure was first suggested by
Stutzer (1995). Ghosh, Julliard, and Taylor (2017) extended the method to recover the unobserved component
of the SDF for a broad class of consumption-based asset pricing models as well as to construct entropy bounds
on the SDF and its components that are tighter and more flexible than the seminal Hansen—
Jagannathan bounds.
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and B (White 1982). Note that D(A||B) is always non-negative, and has a minimum at
zero that is attained when A is identical to B. This divergence measures the additional in-
formation content of A relative to B and, as pointed out by Robinson (1991), is very sensi-
tive to any deviation of one probability measure from another. Therefore, the optimization
in Equation (2) is a relative entropy minimization under the asset pricing restrictions com-
ing from the Euler Equation (1).

There are many different functions that could be used to measure the divergence between
two probability measures ((Q and P in this case). Equation (2) relies on one particular
choice of this function. In fact, if the function is chosen to be quadratic, minimizing the di-
vergence between P and Q is akin to the continuous updating GMM estimator. An impor-
tant advantage of using the function in Equation (2) is that the objective function can be
re-written as a weighted sum of all the moments of the distribution of log(Q), whereas the
quadratic choice of the function is akin to minimizing the variance. If the underlying pric-
ing kernel is not lognormal, its variance would not be a sufficient statistic for its distribu-
tion and there is no obvious reason to minimize the variance alone.

Ghosh, Julliard, and Taylor (2017) show that the above approach to the recovery of the
pricing measure has several desirable properties. First, the estimation in Equation (2) deliv-
ers a non-parametric maximum likelihood estimate of the risk-neutral measure. A formal
proof of this property of the estimator is as follows. Consider the following procedure for
constructing the series {qz}tT: 1 (up to a positive scale). Given an integer N > 0, distribute
randomly to the various points in time ¢t = 1,..., T, the value 1/N in N independent draws.
That is, draw a series of probability weights {Z]}Zzl, given by g, =¥, where 7, measures the
number of times that the value 1/N has been assigned to time ¢. Subsequently, check
whether the drawn series {Z]}Ll satisfies the asset pricing restrictions ZzT:1 R¢q,=0.1If it
does, use this series as the estimator of {g,},_,, and if it does not, draw another series. In
other words, an estimate for gq; would correspond to the most likely outcome of the above
procedure. Noticing that the distribution of the g, is, by construction, a multinomial distri-
bution with support given by the historical sample, the likelihood of any particular se-
quence {E]t}tT:] is given by:

N! N!
~ 3T N -N - -
L({qt}tzl) o nl!nzl...nT! xT Né1'Na2'NQT'

x TN,
Hence, as N — oo (and, therefore, the approach becomes more accurate), the log likeli-
hood is given by?

T
Jim nL({3, 1) = - D a,Ing,
=1
Therefore, taking into account the asset pricing constraints, the MLE of g, solves

T T
{40, =argmax- > g,Ing,, st {3}, €a”, Y Rz, =0.
t=1

t=1

Note that the solution to the above likelihood maximization problem is also the solution of
the relative entropy minimization problem in Equation (2) (see, e.g., Csiszar 1975).
Therefore, the KLIC minimization is equivalent to maximizing the likelihood of finding the
risk-neutral measure g;,.

.l
Recall that from Stirling’s formula, we have lim N# =1

Ng, — 0 \/ZJT—I\@(NE‘>Nq'

2
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The second desirable property of this approach to the recovery of the risk-neutral mea-
sure is that, due to the presence of the logarithm in the objective function in Equation (2),
the use of relative entropy naturally enforces the non-negativity of the pricing kernel—a
property that, as shown below, extends to the out-of-sample pricing kernel. Note that the
absence of arbitrate opportunities implies the existence of a strictly positive SDF that prices
assets (see, e.g., Harrison and Kreps 1979). In other words, negative realizations of the
SDF imply the presence of arbitrage opportunities that should not be present in well-
functioning financial markets. SDFs that take on negative values, particularly for a non-
trivial proportion of the time, are, therefore, indicative of misspecification and should be
interpreted with this caveat even if they price assets well. It is for this reason that, in theo-
retical asset pricing models, the SDF is modeled as being strictly positive. Thus, we consider
an SDF that takes on negative values as not being valid. Third, the approach satisfies
Occam’s razor, or the law of parsimony, since it adds the minimum amount of information
needed for the pricing kernel to price assets. Fourth, it is straightforward to add condition-
ing information: given a vector of conditioning variables Z,_1, one simply has to multiply
(element by element) the argument of the integral constraint in Equation (2) by the condi-
tioning variables in Z,_1. Fifth, there is no ex-ante restriction on the number of assets that
can be used in constructing M. Nevertheless, as for other moment-based estimators (e.g.,
GMM), the cross-sectional dimension (the number of assets) should be ideally kept small
relative to the length of the time series used.? Sixth, as implied by Brown and Smith (1990),
the use of entropy is desirable if one believes that tail events are an important component
of the risk measure (minimum entropy estimators endogenously re-weight the observations
to appropriately account for tail events that happened to occur in the data with a frequency
lower than their true probability).*

In this article, we focus on the out-of-sample asset pricing performance of an SDF con-
structed using the above relative entropy minimization approach. In particular, note that

since % = Zg, the optimization in Equation (2) can be rewritten as

argmin E¥ [MyInM,] st EF [M/R{] =0,
M,

where, to simplify the exposmon we have used the normalization M = 1 without loss of
generality.’ Given a sample of size T and a history of excess returns {Rt}t_] , the above ex-
pression can be made operational by replacing the expectation with a sample analogue, as
is customary for moment-based estimators,® obtaining

1Z
argmmTZMtlth s.t. TZMtRf =0. (3)
{Mt}; 1 t=1 t=1

The above formulation is convenient because a solution is easily obtainable via Fenchel’s
duality (see, e.g., Csiszar 1975):

The approach does not require a decomposition of M into short- and long-run components (cf. Alvarez
and Jermann 2005), and it does not rely on the existence of a continuum of options price data (cf. Ross 2015).
4 Based on this insight, Julliard and Ghosh (2012) used a relative entropy estimation approach to analyse the
empirical plausibility of the rare events hypothesis to explain a host of asset pricing puzzles.
> This normalization is innocuous since the estimate of M, is identified up to a strictly positive scale constant.
This positive scale constant can be recovered from the Euler equation for the risk free rate. Specifically, the re-
covered I-SDF M, = kM,, where M, denotes the true underlying SDF and k is a positive constant. Since the true
SDF must price the risk free asset, we have, E[M,] = E[M,] /k =E [1/Ry,]. Hence, the constant k can be recov-
ered as k = E[M,| /E[1/Ry,].
This amounts to assuming ergodicity for both the pricing kernel and asset returns.
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X . OrR]
i, = M (0r.RE) = 1w ()

T E’
Z e 1R}
t=1

where 8 € RN is the vector of Lagrange multipliers that solve the unconstrained con-
vex problem

; 1 & gpe
O7 := argmin — R (5)
g T;

and this last expression is the dual formulation of the entropy minimization problem in
Equation (3). The above duality result implies that the number of free parameters available
in estimating {M,}Z;l is equal to the dimension of (the Lagrange multiplier) 6: that is, it is
simply equal to the number of assets considered in the Euler equation.

Note that since relative entropy is not symmetric, that is, D(Q||P) # D(IP||Q), we can
reverse the roles of the probability measures P and QQ in Equation (2) to obtain an alterna-
tive definition of relative entropy and, therefore, a second approach to estimating the pric-
ing kernel. This approach is described in Appendix A.1. The empirical results obtained
using this approach are similar to those obtained using Equation (2) and are, hence, omit-
ted for brevity. Furthermore, this alternative approach does not guarantee the non-
negativity of the SDF out-of-sample.”

We use the above method to recover the time series of the SDF in a rolling out-of-sample
fashion. In particular, for a given cross-section of asset returns, we divide the time series of
returns into rolling subsamples of length T and final date T}, i=1,2,3,..., and constant
s:=T;y1 - T;. In subsample i, we estimate the vector of Lagrange multipliers 67, by solving
the minimization in Equation (5). Using the estimates of the Lagrange multipliers, 67, the
out-of-sample I-SDF M(1,,R¢) is obtained for the subsequent s periods (i.e., for # such that
T;+1<t<T;,1) using Equation (4). This process is repeated for each subsample to obtain
the time series of the estimated kernel over the out-of-sample evaluation period. Note that
this procedure ensures, thanks to the exponential form in Equation (4), a non-negative SDF
not only in-sample but also out-of-sample.

This procedure is analogous in spirit to the canonical approach of forming portfolios
(e.g., the SMB and HML portfolios) based on past asset return characteristics (e.g., by sort-
ing on size and book-to-market-equity in the past calendar year). The key difference is that

M(67,,R?) is a non-linear function of the portfolio é,T,-Rf and the weights 6 are chosen to

deliver an MLE of the SDF in each (past) subsample.
In our baseline empirical analysis, we set s = 12 months, corresponding to annual reba-

lancing. The size of the rolling window, T, is set to 30years, allowing the out-of-sample
tests to begin in 1963:07.

1.2 Asset Pricing Tests

For a given cross-section of test assets, we construct the out-of-sample I-SDF using the pro-
cedure described in Section 1.1. We compare the performance of the I-SDF to that of the
one-factor CAPM, the three and five factor Fama—French models (FF3 and FFS, respec-
tively), the Hou, Xue, and Zhang q-factor model (HXZ), the principal components based

More generally, both of these entropy based criteria corresponds to two particular cases of the so-called
Cressie-Read family of discrepancies (see, e.g., Almeida, Ardison, and Garcia 2020).
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SDF of Kozak, Nagel, and Santosh (2020) (KNS), and the minimum variance SDF of
Hansen and Jagannathan (1991).

We use the standard two-step regression approach (with Shanken correction of the stan-
dard errors) ® to assess the ability of each model to price broad cross-sections of test assets.
In the first step, the factor loadings for the test assets are estimated from a time series re-
gression of the excess returns on the factors:

R} = a+ BF, +e&;.

In the second step, the factor risk premia are obtained from a cross-sectional regression of
the average excess asset returns, u € RN, on the factor loadings estimated from the
first stage:

u=z2+By+a=Cil+a, C:=[B|}:= [z ;/],

where 1 denotes a conformable vector of ones, y denotes the vector of factor risk premia, z
is a scalar constant (that should be zero if the zero-beta rate matches the risk-free rate), and
ae RN is the vector of pricing errors (that should be zero if the factors price the test
assets accurately).

Following the suggestions of Lewellen, Nagel, and Shanken (2010), we present several
alternative measures of performance for the above cross-sectional regressmns First, we
present the standard OLS cross-sectional adjusted R? (hereafter denoted by ROLS) This
measure suffers from the shortcoming that if the returns have a strong factor structure
(such as, e.g., the size and book-to-market equity sorted portfolio returns), then an arbi-
trarily chosen set of two or three factors, that have little correlation with the returns, are
quite likely to produce large values of this statistic. This is obviously less of an issue for our
I-SDF since it is a one-factor model, but it is likely to affect the performance of the other
factor models that we consider for comparison.

Second, we present the GLS-adjusted R? (hereafter denoted by RGLS) that is obtained

-2 u on v 172 [t B], where V := Var(R¢). The

RZGLS for a model, unlike RéLS, is completely determined by the model-implied factors’
proximity to the minimum variance frontier and, in general, presents a more stringent hur-
dle for models (Lewellen, Nagel, and Shanken 2010).

Third, we present the cross-sectional T? statistic of Shanken (1985), given by

from the cross-sectional regression of V

T? :=a'S}a, where S is the pseudoinverse of the estimated =, := (1 —&—y’E;ly) y?, y:i=

I-C(C'C)™'C and 3 := Var(e;). The T? statistic has an asymptotic y? distribution with
N-K-1 degrees of freedom, where K denotes the number of factors, and the non-

centrality parameter &S a = o (yEy)ﬂx(H,iTz_l), where 3f denotes the covariance ma-
Y4r V¥

trix of the factors. We compute the p-value of this statistic under the null hypothesis that
the model explains the vector of expected returns perfectly, that is, the vector of pricing
errors a = 0.

Fourth, we present the quadratic g := oa'(y3y) " a, which measures how far a candidate
model’s factors are from the mean—variance frontier.” In particular, it is equal to the differ-
ence between the squared Sharpe ratio of the tangency portfolio of the test assets and the
maximum squared Sharpe ratio attainable from the model-implied factors (or their mim-
icking portfolios in the case of non-traded factors).

8 We follow Cochrane (2005, Chapter 12) and apply the Shanken (1992) correction to the standard
errors therein.

?  See Uppal and Zaffaroni (2015) for an alternative economic interpretation of this statistic.
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Lastly, we present the simulated 90% confidence intervals for the statistics. The simu-
lated confidence intervals are obtained using the approach suggested by Stock (1991) (see
also Lewellen, Nagel, and Shanken 2010 for a detailed discussion). Consider first the con-

struction of the confidence intervals for the R%)LS' The simulations have two steps. First,
we fix a true (population) cross-sectional R? that we want the model to have and alter the
(N x 1) vector of expected returns, u, to be u = hCi+e, where C = [1, B], B denotes the vec-
tor of factor loadings in the historical sample, and e ~ N(0,52). The constants » and ¢? are
chosen to produce the right cross-sectional R? and maintain the historical cross-sectional
dispersion of the average returns. Second, we jointly simulate an artificial time series of the
factor and the returns of the same length as the historical data by sampling, with replace-
ment, from the historical time series. We then use the two-pass regression method to esti-
mate the sample cross-sectional R? of the simulated sample. We repeat the second step
1,000 times to construct a sampling distribution of the R? statistic conditional on the given
population R?. This procedure is repeated for all values of the population R? between 0
and 1. The 90% confidence interval for the true R? represents all values of the population
R? for which the estimated R? in the historical sample falls within the Sth and 95th percen-
tiles of the sample distribution.

A confidence interval for g is found using a method similar to that used to obtain the confi-
dence interval for the true (population) cross-sectional R2. Specifically, a given population R?
implies a specific value of g. We obtain the sample distribution of the T? statistic as a function
of q. The confidence interval for the true g represents all values of the g for which the estimated
T2 in the historical sample falls within the Sth and 95th percentiles of the sample distribution.

For the T? statistic, we present its finite-sample p-value, obtained from the above simula-
tions, as the probability that the T? statistics in the simulated samples exceed the value of
the statistics in the historical data for ¢ = 0.

2 Data Description

In our baseline results, we assess the out-of-sample pricing performance of the extracted
pricing kernel (the I-SDF) at the monthly frequency, over the period 1963:07-2017:06.
The start date 1963:07 is chosen to coincide with that in Fama and French (1993),
Lewellen, Nagel, and Shanken (2010), as well as DeMiguel, Garlappi, and Uppal (2009).
This facilitates a useful comparison of our results with the existing literature. Given our
30-year training period, this requires data from 1933:07.

We first estimate the I-SDF from a small cross-section of fifteen equity portfolios, which
includes industry portfolios and the top and bottom deciles of portfolios formed by univariate
sorts of stocks based on size, book-to-market equity, momentum, and short- and long-term
reversals. We also recover an I-SDF from a larger cross-section of 135 equity portfolios, which
includes the five industry portfolios and the ten decile portfolios for univariate sorts on the ba-
sis of each of the following characteristics: size, book-to-market equity, momentum, short-
term reversals, long-term reversals, operating profitability, investment, accruals, new issues,
beta, variance, residual variance, and earnings-to-price. For the latter I-SDF, the out-of-sample
evaluation period covers 1993:07-2017:06 because data on many of the portfolios are only
available from the mid-sixties and our baseline procedure uses a 30-year training period.

Monthly returns data on the above portfolios are obtained from Kenneth French’s data
library. An estimate of the monthly risk-free rate is subtracted from the portfolio returns to
produce the excess returns. Our proxy for the risk-free rate is the 1-month Treasury Bill
rate, also obtained from Kenneth French’s data library.

We also evaluate the performance of the I-SDF for other asset classes. In particular, we
consider (i) the six currency portfolios from Lustig, Roussanov, and Verdelhan (2011),
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formed by sorting the currencies of developed and emerging economies on the basis of their
forward discounts and rebalancing every month. Monthly returns on these currency port-
folios are available from 1983:11 to 2017:06, (ii) portfolios of commodity futures from
Asness, Moskowitz, and Pedersen (2013), the monthly returns on which are available over
the period 1972:02-2017:06, and (iii) portfolios of global individual stocks from Asness,
Moskowitz, and Pedersen (2013), available over the 1970:07-2017:06 period.

3 Cross-Sectional Pricing

In this section, we evaluate the out-of-sample ability of the I-SDF to explain the cross-
section of returns for a variety of test assets representing the central anomalies in empirical
asset pricing. Section 3.1 presents the results when the set of assets used to recover the I-
SDF coincides with the set of test assets that the SDF is subsequently asked to price. Section
3.2, on the other hand, recovers a unique I-SDF from a small cross-section of fifteen portfo-
lios and uses it to price several larger cross-sections of test assets. Finally, Section 3.3 uses
an extension of the methodology to recover a unique I-SDF from a high dimensional cross-
section, that includes portfolios formed based on all the major anomaly variables identified
in the literature.

3.1 A Unique I-SDF for Each Cross-Section

Panel A of Table 1 presents the cross-sectional pricing results when the test assets consist of
the 25 size and book-to-market-equity sorted portfolios of Fama and French (hereafter re-
ferred to as FF25). Row 1 shows that when the I-SDF is used as the sole factor, its esti-
mated price of risk has the correct sign and is strongly statistically significant. Specifically,
the (Shanken corrected) #-statistic has an absolute value in excess of 4. Harvey, Liu, and
Zhu (2015) argue that a ¢-statistic of around 2.0 is too low a hurdle to establish the statisti-
cal significance of a given factor in the presence of extensive data mining. Using a new
framework that allows for multiple tests, they show that a ¢-statistic greater than 3.0 would
be required for a factor to be deemed as being statistically significant. Row 1 shows that
the I-SDF has a t-statistic more than the value needed to establish statistical significance
even after taking into account the possibility of data mining.

Since the regression uses the monthly excess returns as the dependent variable, the inter-
cept can be interpreted as the estimated monthly zero beta rate over and above the risk-free
rate. The estimated annualized zero beta rate is 3.1% (annualized) but is not statistically
different from zero., !0 The I-SDF produces an R%)LS of 84.5% and, more importantly, R Ls
is very similar to ROLS, at 72.6%. Note that the GLS R? is high 1f and only if the factor is
close to the mean—variance frontier and, in general, provides a more stringent hurdle for as-
set pricing models. The T? statistic shows that the model is not rejected at conventional sig-
nificance levels. Lastly, the g statistic, which equals the difference between the squared
Sharpe ratio of the tangency portfolio of the test assets and the squared Sharpe ratio of the
factor-mimicking portfolio, is 0.045 and its 90% confidence interval includes 0, that is, the
[-SDF mimicking portfolio is statistically indistinguishable from the maximum Sharpe ratio
portfolio of the test assets.

In Row 2, we present the results for the unconditional CAPM. The market risk premium
has the wrong sign and is not statistically different from zero. The intercept, on the other
hand, is strongly significant with an annualized value of 13.9%—more than four times
higher than the 3.1% value obtained with the I-SDF. The OLS and GLS R” are much
smaller at 3.95% and 30.3%, respectively, compared to those obtained with the I-SDF.
The T? statistic is triple that obtained with the I-SDF, and has a p-value of zero: that is, the
model is strongly rejected. The g statistic is closely related to the R%;LS and the T? statistics

19 Note that part of it may be attributable to the differences between lending and borrowing rates (1-2%).
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and, therefore, not surprisingly, provides similar conclusions: the 90% confidence interval
for the g statistic implies a large unexplained Sharpe ratio between 0.20 and 0.58, that is,
the model fails to identify the maximum Sharpe ratio portfolio.

Row 3 presents the results for the FF3 model. The results show that the market risk pre-
mium is marginally statistically significant, albeit with the wrong sign. Only the risk pre-
mium associated with the factor proxying for risks related to book-to-market equity is
significantly positive. However, the intercept is statistically and economically large, with
an annualized value of 15.1%, similar to that obtained with the market risk factor alone in
Row 2. The ROLS is high at 66.3% (although substantially smaller than the 84.5% value
obtained with the I-SDF), consistent with existing empirical evidence that the three FF fac-
tors explain a large fraction of the time series and cross-sectional variation in the returns of
the twenty-five FF portfolios. However, moving to a GLS cross-sectional regression, R
drops sharply to 40.2%, consistent with the observation that a GLS regression offers a
more stringent hurdle for models than does the OLS. This is in stark contrast to the I-SDF,
which delivers very similar R’ using both the OLS and GLS procedures. The T? statistic is
larger than that obtained with the I-SDF (55.3 versus 24.4) and has a p-value of zero, im-
plying a statistical rejection of the model. The g statistic is also double that obtained with
the I-SDF (0.089 versus 0.045). Moreover, the 90% confidence interval of the g statistic
does not include 0, that is, the maximum Sharpe ratio obtainable from the three FF
factors is statlstlcally smaller than the Sharpe ratio of the tangency portfolio of the test
assets. Finally, the 90% confidence intervals for the true population Ry, ¢ and RGLS are
tighter for the I-SDF than those obtained with the three FF factors. Specifically, the 95%
confidence interval for the ROLS includes the range [21.1-90.9] for the three FF factors,
whereas i it includes a narrower range of [78.1-100] for the I-SDF; the corresponding ranges
for the RGLS are [20.5-90.8] and [75.8-100] for the three FF factors and the I-SDF, respec-
tively. Note that the confidence intervals for both the RZOLS and RZGLS include the highest
possible value of 100 for the I-SDF but not for the three FF factors.

Row 4 shows that the FF5 model does not improve much upon the FF3 model.
Specifically, the estlmated intercept remains unchanged relative to the FF3 model at 12.2%
annualized, the ROLS increases marginally from 66.3% for the FF3 to 74.2% for the FF5
model, the RGLS in fact, decreases marginally from 40.2% for the FF3 to 37.1% for the
FF5 model and the T? test rejects both models with a p-value of 0.00. Finally, the perfor-
mance of the HXZ model, presented in Row 3, is also very similar to the FF3 and FF5 mod-
els. Interestingly, among the market risk factor for the CAPM, and the three, four, and five
risk factors for the FF3, HXZ, and FF5 models, respectively, only the HML factor in FF3
and the IA factor in HXZ have #-statistics in excess of 3 once the first-stage estimation error
in the factor betas are taken into account via the Shanken correction.

Row 5 presents results obtained using the Kozak, Nagel, and Santosh (2020, KNS hence-
forth) shrinkage-based method of constructing an SDF using the principal components of
the base assets. The tuning parameters are set using a three-fold cross-validation that uses
the full sample due to the relatively short time series available (this gives the method a po-
tential advantage since it might induce a look-ahead bias). The KNS-SDF has overall a
good performance, with large measures of fit and small and insignificant intercepts, and
small share of negative realizations (0.46% of the cases). Nevertheless, at the point esti-
mates, it fairs quite worse than the I-SDF in terms of cross-sectional fit, and the latter
comes with a very large sampling uncertainty.

The last row of Panel A presents results for the Hansen—Jagannathan variance-
minimizing SDF (hereafter referred to as HJ-SDF). This represents an alternative nonpara-
metric approach to the recovery of the underlying SDF, albeit does not present a valid
SDF in that it can take on negatwe values. Row 6 shows that the HJ-SDF performs slightly
worse than the I-SDF - ROLS of 84.5% versus 78.5%, respectively, and intercept of 3.8%

Gz0z Asenuep gz Uo Jasn SoILIOU02T JO [00Y0S UopuoT Aq 69EESE//EE09BAU/L/SZ/a1o1ue/08)/woo dnoolwepeoe//:sdiy Woll papeojumod



Ghosh et al.| Information-Theoretic Asset Pricing Model 15

versus 3.1%. Importantly, unlike the I-SDF which is always positive by construction, the
H]J-SDF takes on negative values about 3.7% of the time.

We next show that the strong performance of our model holds not only for the FF25
portfolios but also for portfolios formed by sorting stocks on the basis of other characteris-
tics, such as prior returns, industry, etc. Panel B of Table 1 presents the cross-sectional re-
gression results when the set of test assets consists of the 10 momentum sorted portfolios.
The results are very similar to those obtained with the FF25 portfolios in Panel A.

Even stronger results are obtained in Panel C, where the set of test assets is much
broader, consisting of the five industry-sorted portfolios and the top and bottom deciles of
the ten size-sorted, ten BM-sorted, ten momentum-sorted, ten short-term reversal sorted,
and ten long-term reversal sorted portfolios. Specifically, the I-SDF produces high RéLS
and RGLS of 91.4% and 89.9%, respectively, and the T? test fails to reject the model at
conventional significance levels. For the CAPM, on the other hand, the Ry, s and R are
close to zero at —2.1% and 2.6%, respectively. For the FF3 and FF5 models these statistics
remain close to zero at 3.6% and 11.0%, respectively, for the ROLS and -2.6% and
-11.3%, respectlvely, for the RGLS The HXZ model performs better than the FF3 and
FF5 models with RO]S and RG,S of 52.4% and 16.3%, respectively. However, its perfor-
mance is significantly worse than that of the I-SDF. Moreover, for each of these multi-
factor models, the T? test strongly rejects the hypothesis that the model accurately prices
the cross-section producing zero pricing errors. The KNS-SDF performs relatively well (but
worse than the I-SDF) in Panel B (yielding a good fit and a small intercept), but does signifi-
cantly worse in Panel C (where it achieves a negative R(; ¢ and has a large, albeit statisti-
cally insignificant, intercept). The HJ-SDF has comparable performance to the I-SDF in
Panels B and C, but, once again, takes on negative values of 1.5% and 3.6%, respectively,
of the time, thereby invalidating its use as a benchmark SDF.

Overall, Table 1 shows that: the I-SDF tends to produce smaller pricing errors and larger
cross-sectional R?s than the Fama-French three- and five-factor and the HXZ four-factor
models, despite being only a one-factor model; the risk premium associated with the I-SDF
is statistically significant; the T? statistic of the I-SDF implies that this factor is never
rejected at standard confidence levels (while the other factor models considered are almost
always rejected); the g statistic implies that the I-SDF successfully identifies the capital mar-
ket line, that is, the mimicking portfolio is statistically undistinguishable from the maxi-
mum Sharpe ratio portfolio (while the other factor models are considered to fail in this
respect); in all three cases, the (Shanken corrected) ¢-statistics of the information factor are
larger than 3, hence clearmg the higher hurdle for statistical 51gn1flcance recommended by
Harvey and Liu (2015) and the 95% confidence intervals for the ROLS and RGLS are tighter
for the I-SDF than those obtained with the other multi-factor models. Moreover, as an ad-
ditional robustness check of the results in Table 1, we have also obtained cross-sectional
estimates using the Pen-FM (Penalized Fama—-MacBeth) estimator of Bryzgalova (2016),
that by design has the ability to detect spurious factors and shrink (in a “lasso” fashion)
their 2’s to zero. Using this approach, we found virtually identical results for the informa-
tion factor to those discussed above."!

Among the alternative methods for constructing a single factor SDF that we consider,
only the H] method has a similar performance to that of the I-SDF, but it often yields nega-
tive realization of the SDF.

Note that Table 1 focused on U.S. equities with long available histories of data. While
U.S. equities are undoubtedly the most widely studied asset class among both academics
and practitioners, other asset classes such as currencies and commodities have gained
prominence in recent times. Moreover, international financial markets are playing an

' We are thankful to Svetlana Bryzgalova for providing us with the necessary computer code to implement

this test.
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Table 2. Performance of I-SDF on other asset classes

Row  Assets const.(%) Aca Ry (%) RE(%) T? q

Monthly

(1) Currencies -0.14 -0.243 92.6 84.2 2.66 0.011
(-126) (-455) (0.61)

(2) Commodities 0.28 -0.173 89.1 96.9 0.47 0.001
(1.14) (-3.56) (0.79)

(3) Global Equities -0.25 -0.100 98.4 98.9 0.128 0.000
(-128) (-4.16) (0.938)

Cross-sectional regressions of average excess returns are listed in column 2 on the estimated factor loadings for
the information SDF, at the monthly frequency. For each set of returns, the table presents the intercept and
slopes, along with Shanken t-statistics in parentheses. It also presents the OLS-adjusted R? and the GLS-adjusted
R2. The last two columns present, respectively, Shanken’s (1985) cross-sectional T? statistic along with its
asymptotic p-value in parentheses, and the g statistic.

ever-increasing role in the global landscape. In Table 2, we provide empirical evidence on
the ability of the I-SDF to price currencies, commodities, and international equities out of
sample. Because of the relatively short sample over which the returns data on these assets
are available, we use a rolling window of 10 (rather than 30) years for the estimation of the
I-SDF.

Row 1 presents the results for currency markets. The test assets are the six currency port-
folios from Lustig, Roussanov, and Verdelhan (2011), formed by sorting the currencies of
(at most) thirty-five developed and emerging economies on the basis of their forward dis-
counts and rebalancing every month. Row 1 shows that the I-SDF produces an annualized
intercept of —1.7%, which is statistically indistinguishable from zero and economically
small. The risk premium associated with the I-SDF, on the other hand, is strongly statisti-
cally significant with a z-statistic exceeding 4 in absolute terms. Moreover, the risk premium
has a similar magnitude and sign to those obtained for the U.S. equity market in Table 1. The
OLS R” looks impressive at 92.6% and, more importantly, is quite close to the GLS R~ of
84.2%. Consistent with the above statistics, the T? statistic has a p-value of 61%, suggesting
that the sum of squared pricing errors is not statistically different from zero.

Row 2 presents the results for commodities. The test assets consist of four portfolios: the
top and bottom portfolios formed by univariate sorting of twenty-seven different commod-
ity futures into three portfolios on the basis of their book-to-market equity or “value” and
momentum or past performance (details of the construction of these portfolios can be
found in Asness, Moskowitz, and Pedersen 2013). The results are quite similar to those
obtained with currency portfolios in Row 1—the estimated intercept is statistically insignif-
icant and economically small with an annualized value of — 3.4%; the risk premium associ-
ated with the I-SDF is statlstlcally significant, with the absolute value of the #-statistic
exceeding 3; the OLS and GLS R” are both large at 89.1% and 96.9%, respectively; and
the T? test falls to reject the model.

Row 3 presents the results for global equities. The test assets consist of four portfolios:
the top and bottom portfolios formed by univariate sorting of individual stocks globally
across four equity markets—the United States, the UK, Europe, and Japan—into three
portfolios on the basis of their book-to-market equity and momentum (details of the con-
struction of these portfolios can be found in Asness, Moskowitz, and Pedersen 2013). Row
3 shows that, in this case, the estimated intercept is statistically insignificant and economi-
cally small with an annualized value of 3.0%. The risk premium associated with the I-SDF,
on the other hand, is strongly statistically significant with a magnitude similar to those
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obtained in the U.S. equity market in Table 1. Moreover, the OLS and GLS R” are both
large at 98.4% and 98.9%, respectively, and the T? test fails to reject the model.

The above results suggest that the I-SDF accurately identifies the underlying sources of
priced risk, for broad cross-sections of assets. The latter finding is an important robustness
check, since the methodology used relies on a large time series dimension (T) relative to the
cross-sectional one (N). Hence, the stability of the results when the I-SDF is estimated from
other asset classes with short histories is reassuring about the performance of the approach
with shorter time series of returns data.

3.2 Unique I-SDF Recovered from a Small Cross-Section

In Section 3.1, the set of assets used to recover the out-of-sample I-SDF coincided with the
set of test assets that the recovered I-SDF was subsequently challenged to price. In other
words, a different I-SDF was recovered for each set of test assets. In this section, we assess
whether a unique I-SDF, extracted from a small cross-section of assets, can price a variety
of larger cross-sections of test assets.

Specifically, we consider the I-SDF obtained from the small, but broad, cross-section in
Table 1, Panel C. The cross-section consists of the five industry portfolios and the top and
bottom deciles of portfolios formed by sorting the universe of U.S. stocks based on several
observable characteristics established in earlier literature as earning a risk premium—
namely, size, the ratio of the book value of equity to its market value, momentum, short-
term reversals, and long-term reversals. We use the I-SDF recovered from these fifteen port-
folios to price larger cross-sections of test assets. We select this limited cross-section of
anomaly portfolios (and industry ones) for two reasons. First, it captures well-documented
risk factors that tend to be salient for more than just the unique cross-sections that they
were designed to price. Second, the relative entropy approach’s empirical performance, as
any large T moment-based estimator, is more reliable with a relatively small cross-sectional
dimension (N) relative to the time dimension (ideally, we would have N/v/T approach-
ing zero).

The results are presented in Table 3. Consider first Panel A, where the test assets consist
of the FF25 portfolios. Column 2 shows that the I-SDF produces a substantially smaller
(and statistically insignificant) intercept than the other factor models—its intercept is very
close to zero and at least two orders of magnltude smaller than those implied by CAPM,
FF3, FF5, HXZ4, and KNS. The ROLS and RGLS for the I-SDF are comparable with those
obtalned Wlth the FF3, FFS5, and HXZ4 models. However, it must be borne in mind that
these multi-factor models were specifically proposed to explain the returns on these sizes
and book-to-market equity sorted portfolios. Another consideration documented by
Lewellen, Nagel, and Shanken (2010) is that the additional degrees of freedom enjoyed by
multifactor models over a single-factor model can artificially inflate the R? values, and we
consider this effect in Table 4 below. The HJ-SDF produces results similar to those
obtained with the I-SDF, albeit at the cost of producing negative realizations of the SDF in
about 3.6% of the time periods.

The superior performance of the I-SDF vis-a-vis other multi-factor models is perhaps bet-
ter demonstrated in Panel B, where the test assets consist of the ten size sorted, ten book-
to-market-equity sorted, ten momentum sorted, ten short-term reversals sorted, ten long-
term reversals sorted, and five industry-sorted portfolios. The I-SDF produces R?)LS of
74.7%, R%}LS of 43.1%, and a T? statistic that cannot be rejected at the 5% level of signifi-
cance. The ROLS for the FF3 and FF5 models are smaller at 22.9% and 31.9%, respec-
tively, and the R%;LS close to zero at 9.0% and 8.1%, respectively. Moreover, for both
models, the T? test rejects the null hypothesis of zero pricing errors at all significance levels.
The HXZ model performs better than the FF3 and FFS models for this set of test assets.
Specifically, it produces an ROLS of 56.5%, which is still substantially smaller than the
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74.7% implied by the I-SDF. It also implies a substantially smaller RZGLS than that pro-
duced by the I-SDF (16.1% versus 43.1%). This is also reflected in the higher value of the
closely related g-statistic for the HXZ model compared to the I-SDF. Also, the T? test
rejects the HXZ model at all significance levels. The KNS-SDF does not perform well in
this cross-section of test assets, yielding a statistically insignificant A coefficient and low
measures of fit. Once again, only the HJ-SDF has similar performance to that of the I-SDF,
yet once again at the cost of negative realizations.

Finally, Panel C presents the pricing performance of the various models when the set of
test assets includes the FF25 portfolios, the thirty industry-sorted portfolios, and the ten
momentum-sorted portfolios. As with the test assets in Panel B, the I-SDF exhibits the best
performance in terms of the smallest estimated intercept, the highest R%)LS and R¢;, the
lowest T? statistic, and the lowest g-statistic amongst the factor models.

Overall, Table 3 reinforces the conclusion from Table 1, namely that the I-SDF tends to
produce smaller pricing errors and larger cross-sectional R?s than the Fama—French three-
and five-factor and the HXZ four-factor models, despite being only a one-factor model. As
shown in Lewellen, Nagel, and Shanken (2010), it is relatively easy to find two or three fac-
tors that produce large R{);  for test assets such as the twenty-five FF portfolios because of
their strong factor structure. It is noteworthy that a single factor, namely the I-SDF, does
even better than the FF3, FFS5, and HXZ factors. Of course, any multi-factor model can be
rewritten as a single-factor model (see e.g., Back 2010), nevertheless this requires knowl-
edge of the projection coefficients that are available only ex post to the econometrician.
Hence, ex ante, the number of factors is a relevant metric for assessing the degrees of free-
dom that a model has for fitting the data.

To assess the extent of this bias in favor of the multifactor models (FF3, FF5, and HXZ),
we also test one-factor versions of these models, where the single factor is created from a
linear combination of the multiple factors in the rolling training sample. These tests restrict
the degrees of freedom of the multifactor models to that of a single factor, allowing better
comparison with the I-SDF than when the coefficients are left unrestricted in the cross-
sectional regressions. Specifically, we present the empirical performance of the multi-factor
models when a multi-factor-model-implied SDF is constructed as a linear function of the
risk factors, with the coefficients estimated in a rolling out-of-sample fashion using only
past returns data on the same cross-section of portfolios used to recover the I-SDF. For in-
stance, we define the FF3 model-implied SDF as:

3
MP =0+ vifins (6)
i=1

]

where the coefficients y;, j = 0, 1,2, 3, are estimated in a rolling out-of-sample fashion using
only past returns data on the cross-section of fifteen equity portfolios, so as to satisfy the
Euler equation restrictions for these portfolios:

3
0=E|(Ris=Re) | vo+ > _7ifie | |- i=1,2,...,15. (7)
=1

The resulting M is then used as the single risk factor in the cross-sectional regressions
for different sets of test assets to assess its empirical performance. Similarly, the FF5 model-
implied SDF is defined as M!S =y + Zle vifiss and so on for the HXZ model-
implied SDF.
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The results are presented in Table 4. For the ease of comparison, Panel A reiterates the
pricing performance of the I-SDF for the three different cross-sections (Table 3, Row 1 of
each panel). Consider first Panel B, which presents the results for the FF3 model-implied
SDF, MIF3. The table shows that the performance of the one-factor M3 is substantially
worse than when the FF3 factors are treated as three separate risk factors with unrestricted
coefficients in the cross-sectional regressions (Table 3, Panels A-C, Row 3) Specifically, re-
gardless of the cross-section of test assets used, the magnltudes of the ROLS are substan-
tially smaller than those obtained in Table 3 where the coefficients of the three factors are
left unrestrlcted in the cross-sectional regressions—when the test assets are the FF25 port-
folios, the ROLS reduces from 66.3% in Table 3 to 0.67% in Table 4; and for the FF25,
thirty Industry, and ten momentum-sorted portfolios, it reduces from 24.9% to 0.73%.

We next turn to the FF5 model-implied SDF. Since data on the profitability and invest-
ment factors are only available from 1963 onwards and we use a 30-year rolling sample to
recover the model-implied SDFs, our out-of-sample evaluation period for this model
extends over 1993:07-2017:06. The results are presented in Panel C of Table 4 and are
similar to those obtained in Panel B for the FF3 model-implied SDF. Similar conclusions
are also obtained in Panel D for the HXZ model-implied SDF over 1993:07-2017:06.
Note that in Table 4, we do not report results for the HJ- and KNS-SDF since these would
be identical to those reported in Table 3.

Finally, note that, we have, thus far, focused on tests based on the expected return—beta
representation of models. However, one can also perform SDF-based tests, that is, tests
based on the Euler restrictions E[MR¢] = 0. This is because our information-theoretic meth-
odology delivers a direct estimate of the pricing kernel M. Therefore, for each cross-section
of test assets in Table 4, we can compute the average absolute Euler Equation error,

EER ENZE\; |%ZL1 M;R;,|, along with the cross-sectional root mean squared error,

2
RMSE = \/%Zfi] (%ZL] M1R21> . These statistics can be similarly computed using the

model-implied SDFs for the FF3, FES5, and HXZ multi-factor models. The results, pre-
sented in the last column of Table 4, show, once again, that the I-SDF compares favorably
with respect to the multi-factor models, particularly the FF5S and HXZ models.

Note that the performance of the FF3, FF5, and HXZ multi-factor models might be sur-
prising relative to the results in the literature. The reason for this discrepancy is that, unlike
most previous studies, we restrict them in the out-of-sample to be a single SDF, hence
allowing them only one degree of freedom—Iike for the I-SDF—to price asset returns.

Overall, the results suggest that the one-factor I-SDF has an impressive pricing perfor-
mance compared to popular multi-factor models widely used in the literature.

3.3 Unique I-SDF Recovered from a Large Cross-Section

The unique I-SDF in Section 3.2 was recovered from a small cross-section of fifteen equity
portfolios. This includes portfolios representing many, but not all, of the anomalies identi-
fied in the literature. The restricted cross-section is required because the methodology, be-
ing an information-theoretic alternative to the widely used generalized method of moments
approach, relies on the number of moment restrictions being small relative to the length of
the available time series. In this section, we apply an extension of the approach, developed
by Qiu and Otsu (2022), to recover the I-SDF from a large cross-section of assets that
includes all the major anomaly variables identified in the literature.

Qiu and Otsu (2022) show that, in a high-dimensional scenario, the SDF can be recov-
ered as:
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. . TeO TR
M, = M,(0r.R;) = . v, (8)
S efrRi
t=1
where
1 T
Or = argmin ?Z S rnllels (9)

where ||0]], is the L1 norm of the vector of Lagrange multipliers 6 and yy is a penalty level
chosen by the researcher. A comparison of Equations (8) and (9) for the high-dimensional
case with Equations (4) and (5) for a low-dimensional scenario shows that the only differ-
ence between them is the introduction of the penalty term in the former case. This penalty
term serves to shrink towards zero the weights of redundant assets in the resultant I-SDF.
This approach can be applied even when the size of the cross-section is larger than the
length of the available time series, thereby allowing one to form a unique I-SDF from a
much richer sample of assets.

We apply this extension of the methodology to a cross-section of N =135 portfolios.
These include the five industry portfolios and the ten decile portfolios for univariate sorts
on the basis of each of the following characteristics: size, book-to-market equity, momen-
tum, short-term reversals, long-term reversals, operating profitability, investment, accruals,
new issues, beta, variance, residual variance, and earnings-to-price. As with our earlier
analysis, we use a training sample of 30years. Since data on many of these portfolios are
only available from the mid-sixties, we present out-of-sample pricing performance over the
25 year period 1993:07-2017:06.

For selecting the penalty parameter yy, we consider two different approaches. First, we
follow the approach of Qiu and Otsu (2022). Specifically, we create a grid for yy from 0.1
to 2 with 0.05 increments, estimate the I-SDF using our method, and implement the cross-
sectional regression for each penalty level. In the absence of penalization, the I-SDF
performs poorly with the R%, ¢ and RZ, ¢ close to zero. As the penalty level increases, the
performance of the I-SDF improves, with the performance peaking when the penalty level
is around 0.5 —0.6. Further increases in the penalty level lead to worsening of the model
performance since the number of portfolios selected becomes too small for very large pen-
alty levels. Based on this, we set the penalty level at 0.6. Note that the above approach to
selecting the penalty parameter has a look-ahead bias. Therefore, in our second approach,
the penalty parameter is selected in a rolling fashion and then used to construct the I-SDF
out-of-sample. Specifically, in the 30-year training sample, the first 25 years are used to es-
timate the Lagrange multipliers. The penalty parameter is then selected using the subse-
quent five years of data. Using the estimates of the Lagrange multipliers and the selected
value of the penalty parameter based on the 30-year window, the I-SDF is then constructed
out-of-sample for the following 12 months. This process is then repeated using a rolling 30-
year training sample to obtain the time series of the I-SDF over the full out-of-sample evalu-
ation period. This removes any look-ahead bias from the procedure.

Our results are presented in Table 5, Panel A. Row 1 shows that, when the penalty pa-
rameter is selected using the full out-of-sample period, the I-SDF has a price of risk that has
the same negatlve sign as in all the previous tables, albeit not statistically significant in this
case, and an ROLS 0f 22.0%. Row 2 presents the results when the penalty parameter is cho-
sen in a rolling manner thereby avoiding any look-ahead bias. A comparison of Rows 1
and 2 shows that the results without any look-ahead bias are actually quite similar to the
ones obtained with a penalty parameter selected over the full sample. Row 3 shows that,
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perhaps not surprisingly, the CAPM fares quite poorly at explaining this large cross-
section, producmg an annualized intercept of 10.2%, a wrong sign for the price of market
risk, and an ROLS of only 3.9%. Row 4 shows that the FF3 model improves upon the
CAPM but still fares worse than the I-SDF, both in terms of the annualized intercept and
ROLS This is particularly striking given that the [-SDF is a one-factor model compared to
the three-factor FF3 model. To this effect, Row 5 shows the performance of the one-factor-
FF3-model-implied SDF, denoted MFF3, constructed as a linear function of the three risk
factors, with the coefficients estimated in a rolling out-of-sample fashion using past returns
data on the same cross-section of 135 portfolios used to recover the I-SDF. The table shows
that the one-factor MFF3 performs substantially worse than the three-factor FF3, producing
a price of risk that is not statistically significant and an ROLS of -0.7% (compared to
9.5% in Row 3 for the FF3 model). Row 6 shows that the one-factor SDF implied by a dis-
aggregated five-factor variant of the FF3 model—with the factors being the return on the
market, and returns on portfolios of small market capitalization, big market capitalization,
growth, and value stocks—fares no better than the one-factor-FF3-model-implied SDF in
Row 5.

Row 7 shows that the unrestrlcted FF5 model performs better than the I-SDF—it produ-
ces a smaller intercept and larger ROLS However, Row 8 shows that this is largely driven
by the extra flexibility of a five-factor model relative to that of a one-factor model in
matching the data. Specifically, the one-factor M, constructed as a linear combination of
the five FF factors in a similar manner as the MFF 3, performs substantlally worse than the
[-SDF—its estimated price of risk is not statistically significant and ROLS is negative. Row
9 shows that the one-factor SDF implied by a disaggregated nine-factor variant of the FFS
model—with the factors being the return on the market, and returns on portfolios of small
market capitalization, big market capitalization, growth, value, robust profitability, weak
profitability, conservative investment, and robust investment stocks—fares no better than
the one-factor-FFS-model-implied SDF in Row 8. Similar conclusions were obtained for
the unrestricted four-factor HXZ model in Row 10 and its restricted one-factor specifica-
tion in Row 11. Surprisingly, the KNS-SDF in Row 12, despite being designed for handling
large cross-sections of base and test assets, does not perform well in this setting.

Finally, Row 13 presents results for the HJ-SDF. The HJ-SDF performs slightly worse
than the I-SDF in Row 1 - ROLS of 15.1% versus 22.0%, respectively, and (annualized) in-
tercept of 9.4% versus 6.1%. More importantly, as discussed earlier, the HJ-SDF is not a
valid SDF in that it produces negative realizations of the SDF. Not surprisingly, this issue
becomes more severe when the size of the cross-section used to extract it increases. In this
case, where 135 portfolios are used, the HJ-SDF is negative 23.6% of the time. The I-SDF,
on the other hand, always produces a valid SDF.

Panel B presents results for a shorter training Wmdow of 20 years. The pricing perfor-
mance of all the models improve in terms of their ROLS relative to Panel A, where the
length of the training window corresponded to the baseline value of 30 years. However, the
conclusions regarding the relative performance of the models remain unaltered with respect
to those obtained in Panel A. Specifically, the one-factor I-SDF performs substantially bet-
ter than the one-factor SDFs implied by all the multi-factor models. The HJ-SDF, which
has a performance comparable to that of the I-SDF, leads to negative realizations 31.6% of
the time in this case.

4 Properties of the I-SDF

Having shown that the I-SDF is successful at pricing broad cross-sections of financial assets
out-of-sample, we next turn to an investigation of the properties of the I-SDF.
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Figure 1. Time series of the I-SDF (red line) and the 1-year moving average of the |-SDF (blue-dashed line).
The |-SDF is constructed from fifteen portfolios—consisting of five industry portfolios and the smallest and
largest deciles of size, BM, momentum, short-term reversal, and long-term reversal sorted portfolios—using
a relative entropy minimizing procedure, in a rolling out-of-sample fashion starting in 1963:07. NBER
recession periods are marked by the gray vertical bands. The vertical dot-dashed lines indicate market
crashes identified using the Mishkin and White (2002) approach.

4.1 The I-SDF

Figure 1 plots the time series of the unique I-SDF (red solid line) from Section 3.2. To iso-
late visually the low frequency behavior of the I-SDF, the figure also reports the 1-year
moving average of the [-SDF (blue dashed line). The I-SDF shows a clear business cycle pat-
tern: it is low during expansions and higher during NBER recession periods (depicted by
the grey vertical bands).

However, Figure 1 also reveals another interesting characteristic of the I-SDF over and
above the co-movement related to the business cycle. The I-SDF is especially high when the
recession episodes are concomitant with periods of big stock market downturns, like the
2001, and 2007-2009 recessions, unlike the 1981-1982 and 1990-1991 recessionary peri-
ods that were not accompanied by big stock market crash episodes. The correlation be-
tween the smoothed I-SDF and a recession dummy is 12.4%, while that of the I-SDF and a
market crash dummy is 9.2%.

Note also that using an alternative relative entropy minimization approach for
the construction of the I-SDF (in Appendix A1), we obtain a pricing kernel with very simi-
lar business cycle properties. This stresses that business cycle risk seems to be priced in the
cross-section of asset returns. Hence, minimum entropy constructions of the SDF, and
more generally Cressie—-Read discrepancy-based methods (see, e.g., Almeida and Garcia
2012),'? of which relative entropy is a particular case, are likely to recover this feature of
the data.

Our results suggest that business cycle risk is an important source of priced risk. Note
that this result obtains even though we do not use any macroeconomic variables, but only

12 The Cressie-Read discrepancies have one free parameter that controls the sensitivity of the SDF to the

higher moments of the base assets.
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Table 6. Characterizing the I-SDF

Panel A: Summary statistics

Row Median Volatility Skewness Kurtosis Max Min

(1) 0.85 0.80 4.52 35.5 8.91 0.032
Panel B: Quantifying Tail Risk

Row Assets Moy .os Mo 99 R8_95 Rf).90 Mo os and R8_95 My .99 and RSSO
(1) Market 33.0 45.7 50.4 57.6 42.7 61.5

[5.09] (10.0] [4.94] [9.88] [123] 3.40]
(2) Cross-Section 39.7 48.4 42.7 50.0 37.4 60.7

[5.09] [10.0] [4.94] [9.88] [0.93] 3.09]

Panel A reports the summary statistics from the distribution of the I-SDF. The I-SDF is constructed using the
cross-section of ffiteen portfolios, consisting of five industry portfolios and the smallest and largest deciles of
size, BM, momentum, short-term reversal, and long-term reversal sorted portfolios, in a rolling out-of-sample
fashion over 1963:07-2017:06. Panel B presents the contribution of tail risk to the overall risk premium of the
aggregate stock market portfolio (Row 1) and to the risk premium of the cross-section (Row 2). The
contribution of tail risk is computed as the ratio of (i) the covariance between the I-SDF and the excess returns
on the market (Row 1) or each asset in the cross-section (Row 2), computed using only those observations that
lie in the tail of the I-SDF (Columns 3 and 4), the excess returns (Columns 5 and 6) or both (Columns 7 and 8)
and (ii) the overall covariance between the I-SDF and the excess returns on the market (Row 1) or each asset in
the cross-section (Row 2), computed using all the available observations. The two numbers in each cell denote
the ratio for the excess market return in Row 1 (the mean of the ratio across the assets in the cross-section for
Row 2), along with the fraction of the total number of observations belonging to the corresponding tail in
square brackets below.

stock market variables in the recovery of the I-SDF. However, our results also indicate
that, while business cycle risk is undoubtedly important and spanned by the asset returns
used to construct the I-SDF, it cannot fully explain its behavior. We find evidence that the
true underlying SDF may not solely be a function of the business cycle, but also of addi-
tional variables related to the performance of the stock market (that is only imperfectly cor-
related with the business cycle).

4.2 |-SDF and Tail Risk

The I-SDF has a strong non-Gaussian distribution. Panel A of Table 6 presents the sum-
mary statistics from the distribution of the I-SDF. The I-SDF is strongly positively skewed
with a coefficient of skewness equal to 4.5. The coefficient of excess kurtosis is also very
high at 35.5. These results suggest that tail risk is an important source of priced risk.

With the estimated I-SDF at hand, it is also possible to quantify the share of the risk pre-
mium of an asset attributable to tail risk compensation. Recall that, given an SDF M,, the
lack of arbitrage opportunities implies that the risk premium on an asset 7 is

f(Mt_M)Ritl{(M,,RZ)eA}dP"' f(Mz—M)Ritl{(Mt,R;,)gA}dP

BRG] = - E [1 /Rf}

for any arbitrary set A, where 1, denotes the indicator function that takes value 1 when
the condition in brackets is satisfied, and the numerator of the above expression is simply
the covariance between the SDF and the excess return on asset i. As a consequence, using
our estimate of the I-SDF, choosing a set A in the tail of the empirical distribution of M,

and R{,, and replacing the integral with a sample analogue, we can compute the share of
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the asset’s observed risk premium generated by tail risk. Note that the above decomposi-
tion only holds for an SDF that prices asset i perfectly, that is, has zero pricing errors in the
Euler equation for asset i. Since the out-of-sample I-SDF has non-zero pricing errors (as
shown in Tables 1-5), for the purpose of this decomposition, we use the in-sample SDF
constructed from the small but broad cross-section of fifteen portfolios in Table 1, Panel C
that, by construction, prices the assets perfectly.

Panel B of Table 6 reports the share of the risk premium attributable to tail risk.
Consider first Row 1 that presents the fraction of the market risk premium attributable to
tail risk. Columns 3 and 4 show that the 5% (10%) most extreme (positive) realizations of
the SDF drive 33.0% (45.7%) of the total market risk premium. Columns 5 and 6 show
that the 5% (10%) most extreme (negative) realizations of market returns generate 50.4%
(57.6%) of the observed market risk premia. Finally, the last two columns report the share
of observed risk premia generated by the joint tail of asset returns and the I-SDF. The joint
tail of the I-SDF and the market portfolio accounts on average for 42.7-61.5% of the mar-
ket risk premium. Specifically, 1.2% of the possible joint states generate almost half
(42.7%) of the market equity premium and 3.4% of the possible joint states generate
61.5% of the premium.

Similar results, presented in Row 2 of Panel B, obtain for the proportion of the observed
risk premia on the cross-section of equity portfolios attributable to tail risk. Across the cross-
section of 535 test assets—that consists of the five industry portfolios and the decile portfolios
formed from univariate sorts on size, book-to-market equity, momentum, short-term rever-
sals, and long-term reversals—the 5% (10%) most extreme realizations of the I-SDF drive
39.7% (48.4%) of the assets’ risk premia on average, the 5% (10%) most extreme realiza-
tions of the asset returns generate 42.7% (50.0%) of the premia on average, and the joint tail
of the I-SDF and the asset return accounts on average for 37.4-60.7% of the premia.

To facilitate interpretation, we also offer rough guidance on what these numbers would
look like in a Gaussian world. The observations in the 2.5% right tail of the distribution of
the I-SDF account for almost 30% (27.2% to be exact) of the market risk premium. If,
however, the underlying SDF were Gaussian, these observations would all lie in the 0.46 %
right tail of its distribution, that is, such events would be more than five times less frequent.
We obtain this latter number from a Gaussian SDF with the same mean and variance as the
recovered I-SDF. Similarly, the observations in the 2.5% left tail of the distribution of the
market return account for over 30% (32.3% to be precise) of the market risk premium. If,
however, the market return were Gaussian, these observations would all lie in the 1% left
tail of its distribution, that is, such events would be more than two and a half times less fre-
quent. Once again, we obtain this by looking at a Gaussian distribution for the market re-
turn with the same mean and variance estimated from the historical sample.

Overall, our results suggest that a very large part of the observed risk premia are due to a
compensation for tail risk. A large literature on asset pricing highlights the crucial role of
tail events in explaining several observed features of stock market data. Examples include
the rare disasters paradigm in a representative agent setting that models negative skewness
in aggregate consumption growth (see, e.g., Barro 2006) as well as models with incomplete
markets that feature negative skewness in the cross-sectional distribution of idiosyncratic
labor income growth (see, e.g., Mankiw 1982; Constantinides and Ghosh 2017). By their
very definition, such disaster events are rare making it difficult to rigorously calibrate such
models. Our methodology offers a data-driven approach to calibrating models featuring
tail risks as an important source of systematic risk.

4.3 I-SDF versus Tangency Portfolio

As highlighted in the introduction, using relative entropy minimization as a criterion to re-
cover the underlying pricing kernel or its components has been recently advocated in the
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literature. Equations (2) and Appendix (A1) provide the methodology to recover the kernel,
for two alternative definitions of relative entropy. Section 1.1 enumerates a number of de-
sirable characteristics of using this approach to recover the SDF. Theoretically, this proce-
dure is distinct from estimating the mean—variance efficient tangency portfolio from a
given cross-section of assets.

To see this, note that a cumulant expansion of the minimized objective function in
Equation (A1) gives:

D(P|\Q)=%+%+ﬁ+..., (10)

where O solves Equation (A1), and M :‘j‘—% with E(M) = 1. In the above equation, x

denotes the j-th moment of In(M), that is, k) denotes its variance, k)1 its skewness, x}! its
kurtosis, and so on. R

Therefore, the relative entropy minimization approach recovers a pricing kernel M that
has the minimum weighted sum of all its moments. Recall that, the tangency portfolio, on
the other hand, is chosen to have the minimum variance. If the true underlying pricing ker-
nel were log normal, then all of its higher order moments would be zero, such that minimiz-
ing relative entropy would be equivalent to minimizing the variance (see the above
equation). If, on the other hand, the SDF is not log normal (for example, if we believe that
tail risk is an important source of priced risk), then the variance is not a sufficient statistic
summarizing its distribution, and there is no a priori reason to recover the SDF to minimize
solely the variance.

Note that, the I-SDF, by construction, prices perfectly in-sample the cross-section of
assets used to recover it. Therefore, a linear projection of the I-SDF on to the set of asset
returns used to construct it identifies the tangency portfolio for that set of assets (we refer
to this portfolio as the I-P). Appendix A.2 provides a derivation of this result. In this sec-
tion, we evaluate whether the non-linear dependency of the I-SDF on the underlying assets
carries valuable pricing information. We do so by comparing the I-SDF’s pricing ability to
the pricing performance of the corresponding I-P.

The I-P is constructed, in a rolling out-of-sample fashion, from time series regressions of
the I-SDF on to the set of asset returns used in its construction. Specifically, using the nota-

tion in Section 1.1, in subsample i, the estimates of the Lagrange multipliers, 67, are used
to construct the in-sample SDF M;, = M(éTX,R;’), t=T;-T+1, T;i-T+2, ..., T;. Then

M, is projected onto the space of returns to obtain the vector of portfolio weights wr, €
RN (normalized to sum to unity). That is, the mimicking portfolio weights r, are given by

oT, = BT‘ [&T,,b, } = argmini i (]\A/I,-_,t—aTi —bT,Rt)l, (11)

i
i

Y 9
|lel| {ar, b1} © =T, T 11

where 1 denotes a conformable column vector of ones. Using the portfolio weights vector,
the out-of-sample I-P is obtained as RII' = o't R, for the subsequent s periods, that is, for
t=T;+1,T;+2, ..., T; 1. This process is repeated for each subsample to obtain the time
series of the I-P over the out-of-sample evaluation period.

To compare the performance of the [-SDF vis-a-vis the I-P, we consider the unique I-SDF
recovered in Section 3.2 from the small, but broad, cross-section of assets, encompassing
several well-documented anomalies. The I-P is obtained as the linear projection of the

Gz0z Asenuep gz Uo Jasn SoILIOU02T JO [00Y0S UopuoT Aq 69EESE//EE09BAU/L/SZ/a1o1ue/08)/woo dnoolwepeoe//:sdiy Woll papeojumod



31

Ghosh et al.| Information-Theoretic Asset Pricing Model

Downloaded from https://academic.oup.com/jfec/article/23/1/nbae033/7953369 by London School of Economics user on 23 January 2025

-onsnes b ays pue ‘sasaypuared ur anfea-d onoiduw4se s

31 SUOJE DIISIIEIS ] [BUOIDIS-SSOID (686 T) SudueyS ‘A[0A1dadsar “quasard suwnjod omi 1se] 3y, ",y paisnlpe-gTo ay3 pue .y paisnlpe-gT0 2y syuasaxd osye 11 “sasoyiuared
ur sonsiels-7 uadueys yim uoje ‘sadoys pue 3dodraiur oy s3uasaxd 9[qel Y3 ‘SUINIAI JO 39S YOI J0 *A[9A1303dsar ‘s18aK ()T pue s1Ba4 ()¢ YISud] jo sopdwres Surjoa 10§

s3nsax ay3 Juasard g pue y spuRd "90:L107-L0: €961 1940 uoIysey ajdwes-J0-1n0 SuI[[OI € UT ‘s01[0J310d PIIIOS [BSIFAT UII2I-SUO[ PUE [BSIIAIT WIAI-1IOYS ‘WNIUIWOW ‘INq 9ZIS
JO SI[109p 1s931e] PUE ISI[[EWS 3Y3 puE sorjojarod £13snpur IAY JO SUNSISUOD ‘s01[0J310d UIIYY JO UOIIIIS-SSOID B FUISN PAIONIISU0D ST J(JS-] YL, "90:410T—-L0:E961 1240 Aouanbaiy
AJyauow ay3 3 (J-] 3y3) uondafoid Teaul| s31 pue JJS-] Y3 10§ SSUIPEO[ J030] PIIBWINISI Y3 UO 7 UWN[OD UI PIISI[ SUINIIT $S30X3 3FLISAE 33 JO SUOISSIIZAT [BUOIIIS-SSOI)

(0000) (e0- (657¢)
80€°0 016l €81 9v'0- L8 o 990
(000°0) (r6€-) (6£1)
1LT0 S Syl 1°8¢ Ty 87S0— 10 WO 0T + PUI 0€ + dd §T (€)
(000°0) (tTr-) (ot°€)
+0C°0 §901 609 §9°C SO'C— ¥9°0
(12070) (96°¢-) (02°1) Ul LT ILS MOW AN /A9 AN
(4N 09, 1'v¢ 879 §S0- 8¢€°0 $01]0/140 2]122(] G § (0
(000°0) (s1€°0-) (z8°¢)
8TI1°0 L'18 T 16°¢— L1S0— YL 0
(££0°0) (trz-) (15°0)
901°0 ¥'9¢ L9¢ €08 or'1T— 0T0 gadd (1)
s1eak ()1 = ojdureg Suifoy :gq [Pueg
(000°0) (9%'+) (€6'T)
£L9T°0 1'8ST 16T 81§ €€0°0 10
(000°0) (pev - (0L71)
§§T0 Te¢vl €'Te €0¢ €1¢0- 8€°0 WO 0T + PUL 0€ + 44 ST (€)
(080°0) (€39 (16°1)
91170 189 6'9% 08 ¥€0°0 8€0
(£90°0) (69+-) (99°1) Ul LT LS MOW AN /TG AN
¥C1°0 $'69 ey LYL creo- §€0 $01]0/140J 21129(] S § (0
(100°0) (€9°¢) (z5°0)
601°0 08 €'se 8°L9 690°0 ¥1°0
(0£0°0) (oTe-) (€100-)
L01°0 €LE 1°9¢ 9°89 v 0— 000— gadd (1)
s1eaf ()¢ = ojduwreg 3urjjoy 1y [oued
b L (%)%124 (%)%10" foudy ey (%) 3su0> S35y moy

uonosloid Jeaul| sy SNsIoA 4QS-| “L dlqeL



32 Journal of Financial Econometrics

Informatlon SDF

o ! ! || S — |I=BOF
| | | 1 - - [I+8DF (Smoothed)

i | | ' i
< i | | i i
i . | ' i
i | | i i
7 i . | ' i
i | | i i
o i ' 11E: I
] | | ]
| | |

— 1.8 'k !
1
i o i ' i

I [ T T T
1970 1980 1990 2000 2010

Figure 2. Time series of the I-SDF (red line) and the 1-year moving average of the I-SDF (blue-dashed line).
The I-SDF is constructed from fifteen portfolios—consisting of five industry portfolios and the smallest and
largest deciles of size, BM, momentum, short-term reversal, and long-term reversal sorted portfolios—using
the alternative relative entropy minimizing procedure, in a rolling out-of-sample fashion starting in 1963:07.
NBER recession periods are marked by the gray vertical bands. The vertical dot-dashed lines indicate market
crashes identified using the Mishkin and White (2002) approach.

I-SDF as described above. The results are presented in Table 7. Panels A and B report the
results using a rolling sample period of 30 and 10 years, respectively. Panel A shows that
the I-P has a comparable performance to that of the I-SDF for all different cross-sections of
test assets when the length of the training sample is long, that is, the rolling out-of-sample
period used Jto construct it is long. Specifically, the I-P produces similar intercepts and
RéLS and RGLS compared to those generated by the I-SDF. However, Panel B shows that
the pricing performance of the I-P is volatile and unstable, relying critically on long training
periods. Specifically, its estimated price of risk changes sign when moving from a 30-year
training period in Panel A to a 10-year period in Panel B—the estimate in Panel A is always
positive with an average value of 0.045 across the three cross-sections, compared to being
always negative with an average of —1.15 in Panel B. Also, its RZOLS falls drastically when
moving from Panel A to B: 67.8% to —3.9% when the 25 FF portfolios are the test assets;
80.5% to 2.7% when the test assets are the ten decile portfolios formed from univariate
sorts on size, B/M, momentum, short-term reversals, and long-term reversals, and the five
industry portfolios; and 51.8% to —.46% when the test assets consist of the 25 FF, 30
Industry, and 10 momentum portfolios. The I-SDF, on the other hand, has a consistently
negative prlce of risk in both panels, which is strongly statistically significant in all six
cases. Its ROLS also does fall when moving from Panel A to B—from 68.6% to 50.3% for
the 25 FF portfolios, 74.7% to 62.8% for the 55 decile portfolios, and 50.3% to 42.4%
for the twenty-five FF, thirty Industry, and ten momentum portfolios—albeit much less so
compared to the I-P.

We next proceed to show that the I-SDF contains novel information, over and above
that contained in its linear projection (namely, the I-P), that is not captured by standard
multi-factor asset pricing models. Table 8 presents time series regressions of the I-SDF on
the FF3, FF5, and HXZ factors. If the factors fully explain the variation in the I-SDF, the
intercepts from the time series regressions should be indistinguishable from zero and the
R? of the regressions should be high. Note that, in the case of similar time series regressions

Gz0z Asenuep gz Uo Jasn SoILIOU02T JO [00Y0S UopuoT Aq 69EESE//EE09BAU/L/SZ/a1o1ue/08)/woo dnoolwepeoe//:sdiy Woll papeojumod



33

Ghosh et al.| Information-Theoretic Asset Pricing Model

Downloaded from https://academic.oup.com/jfec/article/23/1/nbae033/7953369 by London School of Economics user on 23 January 2025

-9[qeredwod £[10211p J0U 1€ sopnitugew J12y3 pue sudis a3soddo aaey 01 JJS-] pPue J-] JO Se1aq Ayl 10adxd

P[NOM U0 ‘] 01 WINS 03 PAZI[BUWLIOU dTB PUE ‘SIUAIOYJ200 uondsloid ays snurw 03 [euonitodoid a1e (1) uonenby ur syySrom J-T 9y 9ouls 98yl 910N "90:/T07—L0:E96 FoA0
uorysej o[dures-§o-1no JuI[oI e Ul ‘s01[0J310d Pa3Ios [BSIIAIT WIA-SUO] PUE ‘[ESIDAIT WII-1I0YS ‘WNIUIWOW JAT DZIS JO SI[IOIP 3s93Te[ pUE Is3[[ews Y3 pue sorjoprod Lnsnpur
9AY JO SUnSISUOD ‘sO1[0J310d U333 JO UOIIIIS-SSOID B WOIJ PAIONIISUOD AIE J-] PUB J(S-] Y.L, "S[opowr J030ej-nnuwr 1e[ndod £q payIuspI s10108J UO (SMOT UIAI) J-] PUE (SMOI
PPO) AQS-1 Y3 JO SUOISSIIZII SILIIS WY WOIJ €y Paisn(pe-§TO Y3 Se [[om se ‘sasdypuared ur so1sHeIs-2 Y3 Y1m Suofe ‘saudidyyaod adofs pue 1dooraur sy syuasaxd dpqes ay L,

(6¥°L) (91°6) (¥89) (€579) (z8°¢)
L'1T STT 81'C 960 €9°0 91 (YZXH) &1 (9)
(365 — (02— (sL7¢-) (16'S-) (1°€¢)
9Tl 0S9- TEl- 01'v- 19'%— (48! (+ZXH) 4ds-1 (s)
(s0°8) (61°9) (9t°0-) (1) (80°£) (99°9)
YLT 0€'CT 10°T 60°0— £L9°0 040 8T'C (4d) &1 ()
(819~ (s1e-) (08°0) (6T~ (1T9-) (s'p¢)
001 PR YLy — 0Tt 9T 8LV~ L0°T ($44) 4as-1 (€)
(91°9) (€0°¢) (80%) (6€°2)
192 €60 w0 0t'0 90°¢ (€dd) d-1 (@
(6T¥-) (ep1- (crv-) (0°¢€)
Wy LSV~ 0S'1- L0°€— €01 (€d4d) Aas-1 (1)
90:LT107-L0°€961 “A[yruoN
Am&v,ﬁwwm 0¥y Vi VIO ¢ MW TWHf NSy g Ah&v dip @&KEU $19sSy Moy

$10108} 44 Ylm d-| pue 4S-| Buiuiejdx3 ‘g ajqeL



34 Journal of Financial Econometrics

of the I-P on a set of candidate risk factors, the intercepts have the interpretation of a stan-
dard a.

Row 1 shows that the three FF factors explain only 4.4% of the variation in the I-SDF.
Moreover, the estimated intercept is strongly statistically significant, with an annualized
value of 12.4%. Note that since the I-SDF is not a tradeable factor, the intercept is not in-
terpretable as a tradeable alpha. Row 2 shows that the 3 FF factors can explain a larger
fraction of the variation in the I-P than in the I-SDF (7.6 % versus 4.4%). However, even in
this case, the bulk of the variation is left unexplained by the FF factors. Moreover, the esti-
mated intercept, which in this case has the interpretation of a standard a, is statistically
and economically large, at 36.7% per annum.

Similar results are obtained for the five FF factors. The Ry oLs from the I-SDF regression
is only 10.0% (Row 3), showing that a substantial proportion of the variability in the
I-SDF cannot be explained by the movements in the FF5 factors. Row 4 shows that the
RéLS from the I-P regression is higher at 17.4%, but still, a substantial fraction of the vari-
ability is left unexplained. In both cases, the estimated annualized intercepts are statistically
significant and economically large, varying from 12.8% for the I-SDF to 27.4% for the I-P.
The results obtained for the four HXZ factors, reported in Rows 5 and 6, are, once again,
very similar.

Overall, the results in Tables 7 and 8 suggest that the non-linearity of the I-SDF contains
valuable information about the underlying sources of priced risk—information that is par-
tially lost by the linear projection of the I-SDF on to the set of asset returns used in its
construction.

5 Conclusion

Given a cross-section of asset returns, we show how an information-theoretic approach
can be used to estimate, non-parametrically, an out-of-sample pricing kernel. We show
that this “information SDF” prices broad cross-sections of asset returns better than com-
monly employed multi-factor models (e.g., FF3, HXZ, and FF5 models) and that, unlike
these factor models, it seems to more closely pin down the tangency portfolio out-of-
sample, as a correct SDF should. Moreover, the I-SDF extracts novel pricing information
not captured by the Fama—French and HXZ factors (which explain only a small share of
the I-SDF’s time variation). The I-SDF offers a useful benchmark against which competing
theories and investment strategies can be evaluated.

Appendix A

A.1. An Alternative Minimum Entropy Pricing Kernel

The definition of relative entropy, or KLIC, implies that this discrepancy metric is not sym-
metric, that is, generally D(A||B) # D(B||A) unless A and B are identical (in which case
their divergence would be zero). This implies that for measuring the information divergence
between Q and IP, we can also interchange the roles of Q and IP in Equation (2) to recover

Q as

argmm D(P||Q) = argmanlnTQdP s.t. JRﬁdQ =0. (A1)
Mr —

Since Tt = dP” the optimization in Equation (A1) can be rewritten as
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argmin E" [InM,] st EY [M;R{] = 0.

M,

where, to simplify the exposition, we have used the innocuous normalization M = 1.
Replacing the expectation with a sample analog yields

M,R¢ = (A2)

~l =
Ma

argmin — Zlth s.t.
M}, =1 t=1

Thanks to Fenchel’s duality theorem (see, e.g., Csiszar 1975) this entropy minimization is
solved by
N R 1
M, =M, (0rR) = W (A3)
T(1+4607R?)

where 07 € RN is the solution to

T
argmin — g(1+0'RY),
gr ;

and this last expression is the dual formulation of the entropy minimization problem in
Equation (A2). Note also that this dual problem is analogous to estimating the so-called
growth-optimal portfolio (i.e., the portfolio with the maximum log return).

We next proceed to show that the entropy minimization problem in Equation (A1) also
delivers a maximum likelihood estimate of the risk-neutral measure. Let the vector z; be a
sufficient statistic for the state of the economy at time . Given z,, the equilibrium quanti-
ties, such as asset returns R® and the SDF M, are just a mapping from z on to the real line,
that is,

M@z):z — Ry, R(z):z - RN, M, =M(z;), R;=R°(z),

where z; is the time ¢ realization of z.
Equipped with the above definition, we can rewrite the Euler Equation (1) as

0=E[R/M,| = JRfM,dP = JRE(Z)M(z)p(z)dz7 (A4)

where p(z) is the pdf associated with the physical measure P. Moving to the risk-neutral
measure we have

0= E[R‘M,] = EC[R!] = JRe(z)q(z)dz, (AS)

where ¢(z) is the pdf associated with the risk-neutral measure Q and M =dQ/dP.
Note that

D(P||0) = Jlnj—gdP Jp(z) Inp(z)dz - Jp(z) Ing(z)dz.

Gz0z Asenuep gz Uo Jasn SoILIOU02T JO [00Y0S UopuoT Aq 69EESE//EE09BAU/L/SZ/a1o1ue/08)/woo dnoolwepeoe//:sdiy Woll papeojumod



36 Journal of Financial Econometrics

Since the first term on the right-hand side of the above expression does not involve g,
D(P||Q) is minimized, with respect to Q, by choosing the distribution that maximizes the
second term, that is,

O* = argmin D(P||Q) = argmax E[Ing(z)] s.t. EQ [R{] =0.
0 q

That is, the minimum entropy estimator in Equation (A1) maximizes the expected—
risk-neutral—log likelihood. Approximating the continuous distribution q(z) with a multi-
nomial distribution {g,}._, that assigns probability weight g; to the time # realizations of z,
a non-parametric maximum likelihood estimator of Q can be obtained as

{q;‘}thl = argmax Ing, (A6)

st qr € AT = {(q1:92,- - q91) : @ = q: = 1} and holds,

1T
T2
t=1
T
0,y
=1
provided that

1< :
T Z Ing, T%OC E[lng(z)].
=1

Since the SDF estimate obtained with the EL approach in Equation (A3) can, in principle,
lead to negative realizations out-of-sample, we focused on the SDF estimated with
Equation (4) in the main text which guarantees the positivity of the SDF. Here we present

Table A.1. Unique |-SDF Recovered From 15 portfolios, 1963:07-2017:06

Row const.(%) Asdf RY, (%) Reys(%) e q

Panel A: 25 FF Portfolios

I-SDF -0.10 -0.526 32.6 25.8 40.1 0.124
(-0.43) (-3.55) (0.015)

Panel B: 55 Test Assets

I-SDF 0.21 -0.272 471 26.0 82.2 0.161
(347) (=7.01) (0.006)

Panel C: 25 FF + 30 Industry + 10 Momentum

I-SDF 0.04 -0.410 40.0 25.7 114.1 0.283
(0.407) (-6.61) (0.000)

Cross-sectional regressions of average excess returns of different sets of test assets on the estimated factor
loading, for the I-SDF recovered using the alternative relative entropy minimization approach. Panel A presents
the results when the test assets consist of the twenty-five size and BM sorted portfolios of FF. Panel B presents
results when the test assets consist of ten size-sorted, ten BM-sorted, ten momentum-sorted, ten short-term
reversal sorted, ten long-term reversal sorted, and five industry-sorted portfolios. Panel C presents results when
the test assets consist of the twenty-five FF, thirty Industry, and ten Momentum-sorted portfolios. The I-SDF is
constructed from fifteen portfolios—consisting of five industry portfolios and the smallest and largest deciles of
size, BM, momentum, short-term reversal, and long-term reversal sorted portfolios—using a relative entropy
minimizing procedure, in a rolling out-of-sample fashion starting in 1963:07. The table presents the intercept
and slopes, along with Shanken z-statistics in parentheses. It also presents the OLS-adjusted R? and the GLS-
adjusted R?. The last two columns present, respectively, Shanken’s (1985) cross-sectional T? statistic along with
its asymptotic p-value in parentheses, and the g statistic that measures how far the factor-mimicking portfolios
are from the mean-variance frontier of the test assets.
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the pricing performance of the alternative SDF in Equation (A3) for the cross-sectional out-
of-sample exercise in which a unique I-SDF is recovered from a small cross-section of
fifteen anomaly portfolios and is then used to price, out-of-sample, several other larger
cross-sections (analogous to Table 3). Overall, the performance of the EL method is only
marginally worse than that of the ET in Table 3 and, despite this not being guaranteed, it
never yields a negative SDF out-of-sample in the applications we consider. Figure 2 plots
the time series of the EL-based I-SDF. Overall, its time series behavior is similar to the one
obtained with the ET approach, and their correlation is 38.5%.

A.2.|I-SDF versus Tangency Portfolio

The sample-based mean—variance approach identifies the tangency (maximum Sharpe
Ratio) portfolio weights as:

-1 B
o [Var(R)] " E(R®) 7 (A7)

/[Var(R)] " 'E(R®)

The projection of the I-SDF, M, onto the set of assets used for its construction is obtained
from the regression:

M, =a+bR,+¢. (A8)

Therefore, the (normalized) weights for the Information Portfolio (I-P) are given by:

b _ [Vdr(Rt)] __]]COU(RU Mt) , (A9)
/[Var(R,)] ™" Cov(R;, M;)

Now, note that since M;, by construction, is a valid pricing kernel in that it prices the
cross-section of test assets perfectly in sample, we have

Cov(R;, M,)

ER) = =5

(A10)

Substituting Cov(R;, M;) from Equation (A10) in the expression for b in Equation (A9)
(the weights on the I-P), we have

[Var(R)] ™' E(R?)
/[Var(R)] " "E(R®)

. (A11)

Hence, in sample, the portfolio weights for the I-P in Equation (A11) are identical to that
of the mean—variance efficient tangency portfolio ones in Equation (A7).
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