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Abstract

Using information in returns we identify the stochastic process of consumption. We
find that aggregate consumption reacts over multiple quarters to innovations spanned
by financial markets, and this persistent component accounts for over a quarter of
consumption variation. These shocks are cross-sectionally priced, drive most of the
time-series variation in stocks, and a small, yet significant, share of volatility of bonds.
Nevertheless, we find no support for stochastic volatility of consumption driving time-
varying risk premia. Finally, an otherwise standard recursive utility model based on
our estimated process explains both equity premium and risk-free rate puzzles with
low risk aversion.
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Consumption-based models have contributed to our understanding of financial markets, busi-
ness cycle dynamics, and household decision-making. In these settings, assumptions about
consumption persistence and volatility have a profound impact on both empirical perfor-
mance and policy implications of models. However, using consumption data alone, it is dif-
ficult to identify the underlying stochastic process.! As a result, macro-finance researchers
tend to rely on assumptions that are difficult, if not impossible, to validate outside the
frameworks under consideration. Chen, Dou, and Kogan (2021) refer to this source of model
fragility as “dark matter.”

As we show, if the stochastic process of consumption were of the type usually postu-
lated in the literature, standard methods would fail to accurately recover the magnitude
and persistence of its conditional mean and volatility — crucial ingredients for asset pric-
ing. Instead, we develop a novel state-space approach that sheds light on the dark matter
of consumption-based models. We find that consumption growth is highly predictable at
business cycle frequency by shocks spanned by financial markets that account for more than
a quarter of its variance. Furthermore, these shocks to the conditional consumption mean
are significantly priced in the cross-section of asset returns. Nevertheless, we find no support
for the stochastic volatilities of consumption driving time-varying risk premia. Our findings
hold across a range of reasonable measures of consumption growth, choices of base assets,
specifications of external predictors, assumptions about mismeasurement in consumption,
and misspecification of the model.

Our identification strategy is rooted in the central insight of the intertemporal Euler
equation of models that have consumption as one of the state variables in the utility function:
Most shocks affecting the household force it to adjust both investment and consumption
plans. This is exactly the insight that motivated the modeling of the conditional moments of
consumption as a function of information in stocks and bonds, for example, in Harvey (1988)
and Kandel and Stambaugh (1990). In fact, asset prices that reveal information about the
state variables of the economy are a feature of almost any consumption-based macro-finance
model. Therefore, we use the cross-section of returns to extract innovations reflected in

both consumption and financial assets. In addition, our identification strategy is confirmed

1See, e.g., Beeler and Campbell (2012), Campbell (2017), Cochrane (2005), and Ludvigson (2013) for a
review of the empirical challenges of consumption-based asset pricing.



by data on shareholders’ and non-shareholders’ consumption: Only the consumption of the
former reacts to financial market shocks, with the aggregate data being in between the two.

Our approach allows the joint consumption and return data to speak for itself and estab-
lishes a new set of facts regarding the dynamics of stocks, bonds, and consumption growth.
Conceptually, the method is simple. As in Blanchard and Quah (1989), we leverage the fact
that any covariance stationary process for consumption, including but not limited to those
used in habits and long-run risk models, can be represented by a Moving Average (MA). As
in the structural vector autoregression literature (e.g., Christiano, Eichenbaum, and Evans
(2005) and Sims and Zha (2006)), we impose an economic restriction to identify the impulse
response of consumption to shocks spanned by financial markets, and, hence, reliably esti-
mate its conditional mean and persistence. This, in turn, allows us to correctly recover the
volatility dynamics, because the latter, as we show, can be consistently estimated only if the
conditional consumption mean and its predictability are properly captured. Furthermore,
the MA modeling is also motivated by measurement problems in consumption data, such as
time aggregation (Breeden, Gibbons, and Litzenberger (1989)) and benchmarking (Wilcox
(1992)), that we formally account for in our analysis.

The crucial role of the conditional mean in driving consumption growth that we uncover
(over 25% of total consumption variance) is more than twice what is normally assumed in
leading macro-finance models. For instance, the conditional mean contribution to consump-
tion variance is zero in Lucas (1987) that calculates the cost of business cycle fluctuation
as well as in models that, for parsimony, do not encode any predictability in consumption
(e.g., the habit framework of Campbell and Cochrane (1999) and the rare disasters model of
Barro (2006)). It is instead about 12% in the long-run risk calibrations of Bansal and Yaron
(2004) and Hansen, Heaton, Lee, and Roussanov (2007) (to the best of our knowledge, the
largest used in the literature).

The impact of shocks to the consumption growth mean is well identified, sharply esti-
mated, and economically large: A one-standard-deviation innovation implies a response of
consumption growth of about 1% over the next two years. Moreover, it takes about two years
for the conditional mean shocks to be fully reflected in the consumption process, producing

substantial predictability, and no further reaction is apparent after this horizon.



The consumption shocks spanned by financial markets generate a clear business cycle
pattern in the conditional expectation of consumption growth, are significantly priced in the
cross-section of asset returns, and demand a large risk price (with an implied annualized
Sharpe ratio of about 0.5). This in turn implies, as we show, that an otherwise standard
Epstein and Zin (1989) preference setting calibrated with our estimated process can match
the market equity risk premium with a low level of risk aversion: Point estimates range from
6.5 to 27, with values as low as 10 always within the 90% confidence intervals. Furthermore,
assuming an elasticity of intertemporal substitution above one, the model can also match
the level and volatility of the risk-free rate. Nevertheless, we uncover a challenge for macro-
finance modeling. Often, representative agent models obtain equilibrium time-varying risk
premia by postulating stochastic volatilities (SVs) in consumption, which leads to a depen-
dence of excess returns on the conditional volatilities. We find no evidence supporting this
mechanism, even after controlling for time-averaging bias in the consumption process.

Crucially, all of our findings are obtained without restricting either the nature or num-
ber of factors driving asset returns, allowing for general and flexible SV processes in both
consumption and returns (with short- and long-run SVs, as in Schorfheide, Song, and Yaron
(2018), as well as the leverage effect), and hold using quarterly, monthly, and mixed-frequency
estimations.

Estimation consistency of a volatility process crucially depends on the correct specifica-
tion of the conditional mean, especially when the latter is persistent and difficult to detect,
as postulated in leading models. For this reason, the key driver of our findings is the cor-
rect identification of the conditional mean process of consumption. Following the insight
of Jagannathan and Marakani (2016), we show that using consumption data alone is not
enough to reliably identify the consumption process, and we leverage instead the informa-
tion in a rich cross-section of asset returns. Similar to Schorfheide, Song, and Yaron (2018),
we use a state-space approach to filter the latent shocks to the consumption process. But
unlike them, we do not constrain the consumption mean process to a stringent parametric
functional form.

Our econometric framework is flexible and comprehensive. We model consumption

growth as the sum of two independent processes: a high-order MA that (potentially) co-



moves with returns and a transitory component orthogonal to financial assets (and external
predictors). Innovations to returns are, in turn, modeled as depending (potentially) on the
shocks to the persistent component of consumption, potentially external predictors, and a set
of orthogonal latent factors that drive the residual comovement among assets. As in Wold’s
decomposition, we estimate the MA representation of consumption (equivalently, its impulse
response). Nevertheless, unlike in the existing literature, we identify the MA innovations
by using a large cross-section of asset returns. These economic innovations are allowed to
follow distinct SV processes, which can further act as predictors for asset returns, as in many
equilibrium macro-finance models.

With extensive simulations, we show that our method, even in samples as small as the
historical sample, robustly recovers the consumption dynamics. This is a difficult task, and
indeed we find that popular model selection procedures (e.g., AIC and BIC criteria) fail to
identify the type of consumption processes postulated in the literature. Rather, our approach
correctly recovers the conditional mean of consumption growth and, therefore, its volatility
process. As we show, missed and/or misspecified predictability in the conditional mean
process generates spurious volatility dynamics similar to what is documented in the existing
literature.

The key identifying restriction we rely on is that innovations in consumption spanned
by financial markets should be reflected in returns at the same time as they occur. Instead,
consumption could adjust slowly to these shocks. This assumption is not only theoretically
sound (see, e.g., Caballero and Simsek (2023)), since equilibrium prices are jump variables,
but is also supported by a rich set of reduced-form empirical evidence in the previous litera-
ture (that we elaborate on in the Internet Appendix D). In addition, our formulation implies
a particular term structure for the covariances between asset returns and multi-period con-
sumption growth. We measure this term structure directly in the data and find that it yields
the same size and persistence of the conditional mean process as in our state-space setting.
Moreover, our estimated conditional consumption mean is a predictor of future consumption
growth superior to other commonly used proxies (e.g., lagged consumption growth, its AR
or VAR forecasts, lagged GDP growth, the Survey of Professional Forecaster, and the Liu
and Matthies (2022) news index).



The central feature of our framework is that we do not impose stringent parametric
restrictions on the functional form of the conditional consumption mean process. Our ap-
proach is by construction robust to the nature and number of factors driving asset returns,
the priced or unpriced nature of the shocks, and the role of external predictors. It allows us
to compare and test not only specific structural models but also entire classes of economic
mechanisms. To the best of our knowledge, this yields the most comprehensive analysis
of the stochastic process for consumption to date and should guide both the design and

calibration of macro-finance models.

Closely Related Literature

By its very nature, our paper is closely linked to consumption-based asset pricing.? Given
both the saliency of consumption dynamics for equilibrium macro-finance models and the
ambiguous nature of the true data-generating process, akin to the dark matter in finance
(Campbell (2017) and Chen, Dou, and Kogan (2021)), much effort has been put into deter-
mining its key features. Hence, our paper is naturally related to several large strands of the
literature.

Proper identification and recovery of the consumption process, as well as its link to asset
returns, is known to be an elusive problem. Consumption-based asset pricing models are
notoriously difficult to estimate due to the weak identification of the underlying parameters.
This problem is particularly pronounced in the context of linear factor models (Burnside
(2011, 2015), Kan and Zhang (1999), and Kleibergen and Zhan (2020)) that consider con-
sumption growth as a source of priced risk in the cross-section of asset returns. The challenge
of identifying the stochastic process of consumption growth has also been highlighted in the
structural models of consumption-based asset pricing. In particular, Johannes, Lochstoer,
and Mou (2016) and Collin-Dufresne, Johannes, and Lochstoer (2016) illustrate the prob-
lem from the perspective of a Bayesian learner and show that it has a profound impact on

equilibrium consumption and return dynamics.

2For example, Breeden, Gibbons, and Litzenberger (1989), Lettau and Ludvigson (2001, 2001b), Jacobs
and Wang (2004), Hansen, Heaton, Lee, and Roussanov (2007), Jagannathan and Wang (2007), Piazzesi,
Schneider, and Tuzel (2007), Constantinides and Ghosh (2017), and Bansal, Kiku, and Yaron (2012). See
also Ludvigson (2013) for an excellent review.



Our solution to the identification problem of consumption dynamics relies on insights
from two strands of literature in empirical macroeconomics. First, following Blanchard and
Quah (1989), we rely on the MA representation of the stochastic process. Second, as in
the structural VAR literature (e.g., Christiano, Eichenbaum, and Evans (2005) and Sims
and Zha (2006)), we use the intertemporal Euler equation to formulate a constraint on
the joint dynamics of asset returns and consumption and identify their common shocks
and propagation mechanisms. This allows us to trace out the response of consumption to
shocks spanned by financial market as in Parker (2001), but without assuming that return
innovations are fully captured by the market index and that consumption reacts only with
a lag to financial shocks.

Using data from the Panel Study of Income Dynamics (PSID), we show that the dynamics
uncovered in aggregate data also hold for shareholders but — importantly — not for non-
shareholders, further supporting our identification strategy and rationalizing the findings of
Malloy, Moskowitz, and Vissing-Jorgensen (2009). Finally, our approach is also supported
by the evidence in Ang, Piazzesi, and Min (2006), who show that financial markets are
informative about macro dynamics, and Liew and Vassalou (2000), who find that the equity
value and size factors are leading indicators of economic growth.

We follow the logic of Jagannathan and Marakani (2016) and leverage a large cross-
section of equity and bond returns to amplify the signal common to consumption and asset
returns. The high-dimensional nature of the problem, therefore, naturally calls for the use of
Bayesian filtering techniques. Similar to Schorfheide, Song, and Yaron (2018) and Zviadadze
(2021), we leverage state-space modeling to infer the latent dynamics of consumption and
returns. Unlike them, however, we do not rely on the restrictive assumption of a low-
order autoregressive structure (e.g., AR(1)), because this would constrain the entire long-
run dynamics of the conditional mean of consumption (Beeler and Campbell (2012)). This
element is key, because misspecifying the conditional mean gives rise, as we show, to spurious
volatility dynamics in consumption.

Our study is also related to a recent strand of papers that employ Bayesian tools to eval-
uate the assumptions, long considered to be salient, yet largely untestable by the frequentist

literature. Giannone, Lenza, and Primiceri (2021) rely on the spike-and-slab priors to test



the cornerstone assumption of sparsity in a variety of applications. Bryzgalova, Huang, and
Julliard (2023) leverage the hierarchical structure implied by the no-arbitrage constraint in
cross-sectional asset pricing to parse the factor zoo and test the underlying assumptions of
uniqueness and factor sparsity of linear models. Our flexible modeling allows us to compare
entire classes of data-generating processes for consumption and returns, postulated (and not)
in the prior literature. As a result, we are able to test the key assumptions — usually taken
for granted — commonly used to generate time-varying risk premia in macro-finance models.

The low power of frequentist approaches in consumption-based models often forces re-
searchers to rely on proxies of consumption volatility. Bansal, Kiku, Shaliastovich, and Yaron
(2014) and Campbell, Giglio, Polk, and Turley (2018) use realized volatility of returns as
a proxy for that of consumption growth, motivated by the market clearing condition of a
closed Lucas tree economy with no labor or public spending. Dew-Becker and Giglio (2016)
further acknowledge the lack of sufficient power in testing whether stochastic volatility drives
time-varying risk premia. Our framework, instead, allows us to estimate the volatilities of
consumption and assets and test their persistence, equality, and other features. We find
that the data reject the notion of equality between consumption and return volatilities and
indicate that neither of them drives time variation in conditional risk premia.

Our work is also connected to a large body of literature on robust inference in potentially
misspecified models (Hansen and Sargent (2001)). Similar to Giglio and Xiu (2021), we
allow for multiple latent and observable factors to drive a cross-section of asset returns.
Our specification for the consumption dynamics is also agnostic about the exact functional
form consistent with the underlying MA decomposition, treating the consumption data-
generating process as unknown. In the consumption habit setting, a similar approach has
been undertaken by Chen and Ludvigson (2009), who, rather than postulating a particular
functional form of habit, provide its general nonparametric estimate.

Finally, our paper also contributes to the literature that studies the link between low-
frequency consumption movements and financial returns (Lettau and Ludvigson (2001, 2001b),
Parker and Julliard (2005), Jagannathan and Wang (2007), Ortu, Tamoni, and Tebaldi
(2013), Dew-Becker and Giglio (2016), and Bandi and Tamoni (2023)). We identify the

stochastic process of consumption by (primarily) tracing out the term structure of its re-



sponse to shocks spanned by financial markets. In doing so, we document that it is the same
consumption shocks, weakly identified in the short run (as in Kleibergen and Zhan (2020)),
but economically and statistically salient at business cycle frequency, that are priced in the
cross-section of asset returns. Furthermore, we show that this mechanism is unlikely to
be driven by measurement error, time-averaging and benchmarking of consumption data
(Hansen and Singleton (1983), Breeden, Gibbons, and Litzenberger (1989), and Wilcox
(1992)), as our results also hold with mixed-frequency estimation, monthly data, formally
accounting for observational error, and in a broad spectrum of robustness exercises.
Although our method cannot distinguish the economic mechanisms driving the persis-
tency of the conditional consumption mean (e.g., adjustment costs in consumption and com-
plementary factors in the marginal utility, or constraint on information processing), we do
pin down the process for consumption (and asset returns) that a valid macro-finance model
should either deliver in equilibrium or that a researcher should at least use for a realistic

calibration of the data-generating process.

The remainder of the paper is organized as follows. Section I demonstrates that the
types of consumption process that are often used in the macro-finance literature are unlikely
to be correctly identified using canonical model specification selection. Our state-space
formulation is introduced in Section II, where we also show that it can accurately recover the
consumption dynamics of popular models, as well as more general formulations. Our main
empirical findings are presented in Section III, Section IV outlines their main implications

for equilibrium asset pricing models, and Section V concludes.

I The Challenge of Consumption Persistency

We begin by showing that the type of consumption processes assumed in most macro-finance
models is difficult to detect and, hence, test in samples of the same size as historical samples.

Consider, for example, the so-called long-run risk process of Bansal and Yaron (2004). In
this formulation, log-consumption growth, Ac; 41, contains a persistent AR(1) component,
xy, which is crucial in rationalizing unconditional risk premia and other moments of the

historical data. That is,



Aciiy1 = 0+ T + 01, Tir1 = PTy + PeOrei11, (1)

where 7, e; SN (0,1) and oy, depending on the calibration, is either a constant or a SV
process. The amount of time-series variation of consumption that is driven by the predictable
component x; varies in the literature. For instance, the conditional mean generates about
12% of the quarterly consumption variance in Bansal and Yaron (2004) and Hansen, Heaton,
Lee, and Roussanov (2007).

But would a researcher be likely to detect this persistency and identify its functional
form in samples of the same size as the historical sample? We address this question formally
by using the Hansen, Heaton, Lee, and Roussanov (2007) calibration to generate a monthly
series of consumption of the same length as the postwar sample we use in our empirical
analysis (214 quarters) and formally perform ARIMA model selection for the consumption
process. We consider consumption aggregated to the quarterly frequency — as in real-world
data — as well as the monthly observations that are generally much noisier in reality. We
report the details of the simulation design in Internet Appendix A.

Table 1 presents the frequency of specification selected according to the Bayesian and
Akaike Information Criteria (BIC and AIC). Strikingly, with both quarterly and monthly
sampling, the most often selected specification implies no predictability at all (Columns
(A) and (B)). Moreover, note that this result arises using the calibration of the long-run risk
process that has the largest predictability of consumption. Furthermore, the table shows that
even if a researcher were to observe the conditional mean of consumption growth directly
(Columns (C) and (D)), canonical specification selection would fail to identify the true mean
process with more than 92% probability.

Note that misidentifying the conditional mean process also has important consequences
for recovering the volatility process. For instance, suppose that the process in equation (1)
has a constant volatility; that is, oy = ¢ V¢. In this case, if a researcher were to conclude
that there is no predictability in consumption growth (as Table 1 suggests as the most likely
outcome), she would then find evidence of time-varying volatility in consumption, because
its squared forecast errors would be positively autocorrelated (with the j-th autocorrelation
proportional to p*). More generally, missing the true degree of predictability in the condi-

tional mean process mechanically delivers spurious (if the true process is homoskedastic) or



Table 1: ARIMA model selection of the long-run risk consumption process

(A) BIC: ACt7t+1 (B) AIC: Act7t+1 (C) BIC: T4l (D) AIC: T4l
Panel A: Quarterly frequency (214 observations)
p d q freq p d q freq p d q freq p d q freq
0 0 0 53.7™% 0 0 0 251% 0 1 0 50.0% 0 1 1 21.5%
0 1 1 24.8% 0 1 1 14.6% 0 1 1 15.6% 0 1 0 13.7™%
1 0 1 59% 1 0 1 13.8% 1 0 1 122% 1 0 1 11.6%
1 1 1 51% 0 0 1 6.3% 2 0 0 10.1% 2 0 0 76%
1 00 39% 11 1 53% 1 1 0 51% 11 0 7.5%
Panel B: Monthly frequency (642 observations)
0 0 0 551% 0 0 0 27.8% 0 1 0 92.3% 0 1 0 70.0%
0 1 1 31.3% 0 1 1 24.0% 1 00 72% 2 1 2 4.9%
1 0 1 47% 1 0 1 134% 1 1 0 03% 10 0 47%
5 1 0 14% 0 0 1 6.5% 1 1 1 01% 11 0 38%
0 0 1 0 1 2 2 00 1 1 1

0.9% 3.2% 0.1% 3.6%

Empirical frequencies of ARIMA (p,d,q) models selected by Bayesian information criterion (BIC) and Akaike
information criterion (AIC) in 1,000 simulations of the Hansen, Heaton, Lee, and Roussanov (2007) long-run

risk specification for the consumption growth process. We list only the top five most frequent models.

biased (if the true process has time-varying volatility) evidence of volatility clustering.

If the true process for consumption is similar to what we rely on in macro-finance mod-
els, the considerations above imply three crucial requirements for reliable inference on the
data-generating process of consumption. First, we need an estimator of the conditional mean
of consumption that can capture the true degree of predictability without relying on fragile
specification selection. This is crucial, in particular, if one wants to make statements about
stochastic volatility in consumption (its existence, magnitude, and properties). Second, we
should not achieve identification via arbitrary (and often non-testable within a model) para-
metric restrictions for the consumption process, for example, an arbitrary AR(1) process
for its persistent component or the often employed proportionality restriction between con-
sumption and return stochastic volatilities. Given their crucial role in model predictions,
these restrictions should be tested whenever possible. Third, ideally, we would use a method
that allows us to learn about the consumption process by leveraging information in other
variables that should be adapted to the same type of shocks that drive consumption (e.g.,
wealth shocks). These three properties above are exactly what our empirical formulation

delivers. We present it in the next section.
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II A Model of Consumption and Returns Dynamics

In macro-finance models, the stochastic discount factor is typically a function of consumption
growth and potentially additional variables (e.g., habits, returns on wealth, leisure, leverage
ratios, and aggregation weights in heterogeneous agent models). Furthermore, consumption
and returns both contribute to the intertemporal budget constraint. This implies that, with
the exclusion of exceptional examples, there is a set of shocks with respect to which both
returns and consumption growth are adapted processes.

The reason for this general feature of equilibrium models is that households react to
shocks (e.g., wealth, income, and beliefs) by adjusting both consumption and investment
decisions. Hence, in principle, one could leverage the information in equilibrium asset returns
to learn about the shocks that drive consumption and the form of its stochastic process. This
simple insight lies at the core of our empirical strategy.

In particular, to model parametrically the reaction of consumption to the same shocks
that are spanned by asset returns, we postulate that the consumption growth process can
be decomposed in two terms: A serially uncorrelated disturbance, w. with variance o,
which is independent of financial market shocks, and a possibly autocorrelated process — a
persistent component — that possibly depends on the current and past shocks to asset returns.
For expositional simplicity, we start by focusing on a setting with constant volatilities and
generalize our framework to incorporate stochastic volatilities in all the shocks.

To avoid taking an ex-ante stand on the particular time-series structure of the persis-
tent component (or its absence), we work with its (possibly infinite) MA representation.
Obviously, by virtue of Wold’s representation theorem, an M A(co) model for the persis-
tent component would capture the true data-generating process and avoid the fallacy of
model selection outlined in the previous section. Because the MA coefficients in the Wold
representation are square summable, any finite order covariance stationary ARIMA can be
approximated using a high-order MA process, with the accuracy increasing with the MA
order. Therefore, we model the (log) consumption growth process as

S
Aciyp = e+ Z pjfi—j +wy, (2)
j=0

h,_—/
MA(S)

11



where S is a large positive integer (potentially equal to +00), p. is the unconditional mean,
the p; coefficients are square-summable, and, most importantly, f; (a white noise process
normalized to have unit variance) is the fundamental innovation upon which all asset returns
load contemporaneously.

This representation encompasses most leading consumption-based asset pricing models.
In particular, setting p; = wy = 0 Vj > 0 and letting f; to be an i.i.d. Gaussian process yields
the formulation of Campbell and Cochrane (1999). The two-state Markov chain process of
Mehra and Prescott (1985) is equivalent to an AR(1) process, and, hence, M A(S = o) and
w§ = 0. In the rare disaster formulation of Barro (2005), p; = 0Vj > 0, f; is an i.i.d. jump
variable, and wy are i.i.d. shocks. Wachter (2013) shares the same formulation but with
varying jump intensity. The AR(1) process in Vasicek (1977) maps into M A(S = oo) and
wf = 0. Finally, adding an uncorrelated w§ shock to the Vasicek (1977) formulation results
in the consumption process of Campbell (1999) and Bansal and Yaron (2004).

Consistent with these models, we assume that returns load on f; contemporaneously:

i = pr + ptfi + pege +wy, fi L g, g~ N(Ox 1, I 1), (3)

where r® denotes a vector of log excess returns, u,. is a vector of expected values, p" contains
the asset-specific loadings on the common risk factor, g; is the additional K —1 latent factors
driving only asset returns but not appearing in the consumption growth equation, and wj
is uncorrelated with all other shocks and has a diagonal covariance matrix X,.2> The key
identification assumption in equation (3) is that f; is the only common component between
consumption growth and asset returns and is orthogonal to the remaining factors g¢. In the
formulation above, returns are modeled as reacting contemporaneously and fully to the f
shocks since prices are “jump” variables in equilibrium models. Note that, as shown below,
equations (2)—(3) can also accommodate external predictor variables and, as we demonstrate
later on, a direct dependency on the stochastic volatility processes of all shocks.

The joint dynamics of consumption and returns postulated in equations (2)—(3) are con-

sistent with the extensive preliminary evidence that we report in Internet Appendix D.

3The diagonality and time-invariance assumption can be relaxed, as explained in Internet Appendix B.2,
and we do so in empirical applications. We will later allow this covariance to embed both common and
idiosyncratic stochastic volatilities. Note also that the violation of the diagonality restriction affects only
efficiency, not consistency, of the estimation of the conditional mean processes for consumption and returns.
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Therein, based on predictive regressions, we show that: i) the consumption growth pro-
cess shows significant predictability over multiple years and i7) this predictability is better
captured by lagged returns than by lagged consumption.

Obviously, we cannot feasibly use an infinite number of lags in the MA component of
consumption growth. At the same time, because the MA representation of the persistent
component is meant to approximate only the true latent dynamic, model selection would not
be appropriate and, as outlined in Section I, would possibly be unreliable. Note also that
employing an excessively high number of lags in the MA does not affect the consistency of
the estimation, but only its efficiency. Consequently, in our empirical analysis, we rely on a
conservative approach and: i) in the baseline estimation, we use up to 3.5 years of lagged
quarterly shocks in the conditional mean of consumption because this is almost twice as much
the degree of persistency that we find in the preliminary evidence in Internet Appendix D,
and it covers the span of predictability uncovered in the previous literature (see, e.g., Liew
and Vassalou (2000), Parker and Julliard (2005), and Bandi and Tamoni (2023)); ii) we
show in the simulation in Section II.1 that the approach is robust to the precise number of
included MA lags; and iii) we confirm that all of our empirical results are virtually identical
even when including up to 12.5 years of past quarterly shocks (i.e., 50 lags).

The dynamic system in equations (2)—(3) can be reformulated as a state-space model,
and Bayesian inference can be conducted to estimate both the unknown parameters (ji., t,,
{p; }]S:O, p", 02, %,) and the time-series of the unobservable common factor of consumption
and asset returns ({f;},_,). This estimation procedure is described in Internet Appendix B.

A crucial point that allows us to identify the shocks is the lead-lag structure of the con-
sumption process and its possible link to asset returns. Without equation (2), the shocks
would be under-identified, making it difficult to give any particular rotation a structural
interpretation. Another interpretation of this estimation approach is that of uncovering the
shocks that drive financial returns through the impulse response function on consumption,
in the spirit of the Uhlig (2005) identification in structural-VARs. In particular, our ap-
proach is akin to constructing the Generalized Impulse Response Function of consumption
and financial markets, building upon the insights of Koop, Pesaran, and Potter (1996) and
Pesaran and Shin (1998).
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In fact, it is easy to see that the p; coefficients identify the impulse response function

(IRF) of multiperiod consumption growth to the shock f; as?
aE AC S
M Z’OJ’ P (4)

The framework described in equations (2)—(3) is closely related to Giglio and Xiu (2021),
who propose a three-pass estimator of factors’ risk premia. Specifically, their paper projects
the nontradable factor onto the space of asset returns’ latent factors. Their building block is
that the projection of any variable onto the asset space is rotation invariant; hence, they can
recover latent factors of asset returns via Principal Component Analysis (PCA) and regress
the nontradable factor on the first several principal components (PCs). Similar to their
paper, we extract the common component in nontradable factors and asset returns relying
on the rotation invariance of latent factors. We show in Section I1.2 that if the true f; is a
linear combination of large principal components of rf, our framework can identify it.

Furthermore, our paper nests in and improves the framework in Giglio and Xiu (2021).
We allow the lead-lag relationship between nontradable factors and asset returns, whereas
Giglio and Xiu (2021) study only the contemporaneous covariance structure between these
variables. Because most nontradable factors, especially macro variables, are persistent to a
certain extent, the flexibility of our approach can improve the identification of the spanned
component between nontradable economic fundamentals and asset returns.

Finally, note that the formulation in equations (2)—(3) can be generalized to i) allow for
a bond-specific latent factor (b;) to which consumption could react slowly over time and %)

external predictor variables, &, predetermined at time ¢, as follows:

S 5
Acioiy=fie+ Y pifig+ Y 0ibj +¥im1 +wf and (5)
j=0 j=0
/
I‘f = ft |: Olb ) QV—Nb :| bt + ngt + ’7;5th1 + W: ) (6)
Nx1 N><1 N Npx1 Nx1

where Nj, is the number of bonds that are ordered first in the vector r¢, and 8° € R™ contains

the bond loadings on the factor b; — a white noise process with variance normalized to one.

4This immediately follows from the observation that, since Aci_1448 = Zf:o Aci—iqjiyr; =

r ’
In(Cty5/Ct-1), we have [Act—u, ACt 144150 ACt—1,t+S] =T [Act—l,h Act i1y ACt—1+S,t+S] , where
I is a lower triangular square matrix of ones (of dimension S).
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Two observations regarding our parametric framework warrant mentioning. First, both
the one-factor (equations (2)—(3)) and two-factor (equations (5)—(6)) models are overidenti-
fied. Second, the estimation of the model assuming constant volatility is generally consistent
even in the presence of time-varying volatility in the true processes; hence, our formulation
is robust along this dimension. We address this issue formally in Section II1.2, where we
show that misspecification of the consumption mean process leads to spurious evidence of
consumption volatility clustering, and in Section II1.6, where we generalize our state-space

model to allow for stochastic volatilities affecting all the shocks in the system.

II.1 The challenge of consumption persistency redux

A natural question is whether our state-space representation of consumption and returns in
equations (2)—(3) is able to recover the consumption process when standard methods fail
(as shown in Section I). To do so, we again use the simulated Hansen, Heaton, Lee, and
Roussanov (2007) long-run risk consumption process described in Section I, calibrate the
asset loadings on f to the values observed in the historical data, and apply our state-space
estimation to it. Note that this simulation is particularly challenging for two reasons. First,
the simulated time-series sample is small, with only 200 quarterly observations. Second,
consumption and return data are generated at a monthly frequency and then aggregated to
the quarterly frequency. Hence, the simulated data are affected by time-averaging, making
the true conditional mean much harder to recover, as illustrated in Schorfheide, Song, and
Yaron (2018).

As shown in Panel (a) of Figure 1, our state-space model with a long consumption MA
accurately captures the effect of time-t shocks on subsequent consumption growth: The
difference between the mean estimate (across simulated time-series) and the true value is
extremely small, as is the variability across simulated samples. If anything, we observe a
small attenuation bias in the long run, implying that our approach is, in fact, conservative
in estimating the true extent of consumption predictability. That is, the conditional mean of
consumption is accurately captured by the state-space representation method. In addition,
Figure [A.19 in Internet Appendix O demonstrates that our estimation precisely recovers

the loading of asset returns on the shocks to the conditional mean of consumption.
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Figure 1: Cumulative impulse response function of consumption growth to one-standard-

deviation shock to the conditional mean of consumption growth in 1,000 simulations.
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Panel (a) plots the mean, 5th, 16th, 84th, and 95th percentiles of cumulative IRF in 1,000 simulations.
The model is estimated under the assumption that S = 14. The simulated time-series sample size is 200
(quarters). Panel (b) plots the average cumulative IRF of consumption growth to one-standard-deviation
shock to the conditional mean of consumption growth in 1,000 simulations, using MA representation with
different maximum number of lags: S = 6, 10, 14, and 18.

Furthermore, as shown in Panel (b) of Figure 1, the IRF estimates are almost identical
when using different orders for the MA component. The only difference is that with a
longer MA, we can trace the effect further in the future. Hence, a finite order MA yields a
conservative measure of the long-run effect of time-t¢ shocks.

Recall also that there is a one-to-one mapping between IRFs (or, equivalently, MA rep-
resentation) and variance decomposition. Hence, our accurate IRF estimates imply that we

can perform accurate variance decomposition for both consumption and returns, as we do

in later sections.

II.2 Identifying the conditional dynamic of Ac;_;;

Section II.1 confirms that our framework can accurately recover the conditional dynamics
of the consumption process in a single-factor model, where the shock to the consumption
conditional mean is the only common driver in consumption and asset returns. However,
some may be concerned that our approach mechanically identifies f; as the largest principal
component of returns. To address this concern, we consider a more general simulation setup

in which asset returns are driven by their PCs and the conditional mean of consumption
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growth is determined by large or small PCs or even their linear combinations.

Specifically, we assume the following multifactor model for asset returns r;:
e r r iid "~ o - iid
ry :HT+p ut+wt7 utNN(OK7IK)7 (p )/p :IK7 w, NN<0N72T)> (7)

where u; denotes pseudo-true latent factors, p” are their factor loadings, u, is the vector
of unconditional mean returns, and w; are idiosyncratic shocks with a diagonal covariance
matrix. Ac¢;_q, is simulated using equation (2).

We consider four scenarios: (I) p” contains the eigenvectors of the first and second PCs of
returns (K = 2), and f; = uy,, (II) p” contains the eigenvectors of the first and second PCs
of returns (K = 2), and f; = ugy, (III) p” contains the eigenvectors of the first and second
PCs of returns (K = 2), and f; = (uy,+us)/v/2, and (IV) p” contains the eigenvectors of the
first five PCs (K = 5), and f; = (uy + ug)/v/2. In addition, we estimate the eigenstructure
of returns using observed return data of 37 stock portfolios and calibrate them such that
(p7) pT = 16(p%) pt = 25(p%) p% = 36(p}) p; = 144(pL) pt. Hence, the first latent factor is
a dominant one. In all simulations, we calibrate p® using the estimates obtained in Figure
3, and the variance of w, such that the time-series R? explained by the MA component of
[ 1s 23-24% in the consumption equation, consistent with our empirical evidence presented
later.

Figure 2 presents the distribution of correlations between the estimated MA components
and their pseudo-true values, that is, Corr(Zfzo 05 t—is Zf:o 05 ft_j). If we perfectly recover
the MA component, the correlation coefficients should equal 1. It is worth noting that
the identification of Zf:o 05 fi—; depends on whether (1) we recover f; and (2) we precisely
estimate p$. In experiment I, f; is the strong factor (the first PC of asset returns), so
identifying f; is relatively simple. The box plot confirms this: Our estimates identify virtually
the entire MA component in consumption growth, with a mean correlation coefficient of 0.89
and a 90% confidence interval of [0.76, 0.93].

Moreover, our identification strategy does not mechanically recover the first principal
component of ry. Experiment I assumes that f; is the second PC, whose variance is %6 of

the first PC. However, our method can still recover the MA component in this challenging

case. In particular, the second column of Figure 2 shows that the mean correlation is about
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Figure 2: Correlation between estimated and pseudo-true MA components.
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The graph presents the distribution of correlations between the estimated MA components and their pseudo-
true values, that is, Corr(Zsz P ft—js Z}g:o 5 fi—j). The model is estimated under the assumption that

S = 14. The simulated time-series sample size is 200 (quarters), under the following four simulation setups:
Experiment I: p” contains the eigenvectors of the first two PCs of asset returns (K = 2), and f; = uy;.
Experiment II: p” contains the eigenvectors of the first two PCs of asset returns (K = 2), and f; = ug;.
Experiment ITI: p” contains the eigenvectors of the first two PCs (K = 2), and f; = (u1¢ + uar)/V/2.
Experiment IV: p” contains the eigenvectors of the first five PCs (K = 5), and f; = (u1s + uas)/V/2-

0.85, quite close to the value of experiment I.

Another concern of our approach is the single-factor structure in the consumption growth
equation; that is, we allow for only one f;. To address this critique, experiment III assumes
that the true f; is a linear combination of the top two PCs of rf. The simulation results
are assuring: The mean correlation between the estimated and true MA components is 0.88,
and the 90% confidence interval is similar to that of experiment I.

Finally, the fourth experiment simulates returns using a five-factor model, and f; consists
of the first and fourth PCs. Despite the challenge that this scenario presents, we are still able
to identify the MA component, with a similar correlation coefficient as in the other three
experiments. However, the confidence interval is wider than that of experiment III, in which
we consider a two-factor model. As shown in later sections, adding more latent factors in
returns only increases estimation noise, thus leading to wider confidence intervals.

Overall, there are three main takeaways from the simulation study. First, our method
does not mechanically identify the first principal component of asset returns. Second, we

can identify f; even when it is a small principal component or a linear combination of several
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latent factors of asset returns. Finally, it is essential to consider both single-factor and
multifactor models. If we do not identify additional valuable information in consumption
growth using multifactor models, the simple single-factor model is preferred because we can

achieve sharper estimates and statistical inference.

III Empirical Evidence

In this section, we bring the state-space formulation in equations (2)—(3), as well as its
generalization in equations (5)—(6), to the data to recover the conditional consumption mean
process (subsections III.1, III.3-II1.5). Furthermore, our analysis identifies the forms of
volatility processes that are consistent with the data, identifies the degree of commonality
in the consumption and returns stochastic volatility processes, and determines whether they
drive time-varying risk premia (subsections I11.2 and III.6).

We first focus on the conditional consumption growth mean dynamics in subsections III.1,
its implications for consumption volatility dynamics (subsection II1.2), and the loadings of
asset returns on the shocks spanned by consumption (subsection I11.3). In these subsections,
we focus on the most robust specification in that we consider only one latent factor (f),
do not include external predictors, leave the covariance structure of returns unrestricted,
and do not impose a particular dynamic on the volatility processes. We begin with this
streamlined formulation because it is consistent for the estimation of the conditional mean
process of consumption and its forecast errors under general conditions and, hence, it allows
us to analyze the properties of consumption volatility without taking a stand on its true
process (see, e.g., Engle (1982)).

We then confirm that the results are stable if we consider external predictors for con-
sumption and asset returns (subsection I11.4) and multiple latent factors driving asset returns
(subsection I11.5), if we explicitly model stochastic volatility of all shocks (subsection I11.6),
and if we consider different MA lengths and cross-sections of asset returns (subsection II1.7).
We also show that the key stylized facts we uncover in the data are confirmed nonparamet-

rically without the additional assumptions needed for the state-space model estimation.
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Figure 3: Cumulative impulse response function of consumption growth to a one-standard-
deviation shock spanned by asset returns.
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Posterior means of the cumulative response function of consumption growth (solid line with circles), with

the centered posterior 90% (dotted lines) and 68% (dashed lines) coverage regions. Red line with triangles
denotes the first principal component of cov(r{f, Ac; 11+5). Quarterly data, 1963:Q3-2019:Q4. Green line
with triangles is the simulated cumulative impulse responses assuming that (1) monthly consumption growth
is independent over time and has a contemporaneous correlation of 0.20 with the monthly f; shock, and (2)
monthly consumption data are benchmarked to the annual data (see Internet Appendix H for details).

III.1 The consumption mean process

The consumption growth representation in equations (2) and (5) is similar to the MA decom-
position and allows us to infer the dynamics of multi-period consumption growth (Ac;sy145)
in response to a common and/or bond-specific shock. Figure 3 depicts the (cumulated)
loadings of consumption on the latent factor f as a function of the horizon S. At S = 0,
as in the case of a standard consumption-based asset pricing model, the MA component
of consumption virtually does not load on the common factor. Instead, as S increases, the
impact of the common factor becomes increasingly pronounced, leveling off at approximately
S = 10. At this horizon, the effect is economically substantial: The cumulative response of
consumption growth to a one-standard-deviation shock is about 1%. Nevertheless, this large
effect is not excessive: As shown in Internet Appendix E, it does not violate the bound on
the long-run standard deviation of consumption growth obtained in Dew-Becker (2017).
Importantly, the finding in Figure 3 reconciles seemingly discordant empirical claims in
the literature. For instance, Kleibergen and Zhan (2020) argue that the correlation be-

tween stock returns and consumption growth is small and not significantly different from
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zero. In contrast, Parker and Julliard (2005) find a large and significant long-run response
of consumption to asset return shocks. Our MA representation sheds light on this appar-
ent contradiction by pinning down the slow propagation mechanism of shocks spanned by
financial markets into consumption: It is the same consumption shock that is both weakly
identified in the short horizon yet strong and evident at business cycle frequency. Further-
more, the tight confidence intervals in the figure emphasize that our parametric state-space
approach has a higher power of detecting the link between financial markets and consump-
tion compared to the nonparametric approaches in the previous literature that yield high
sampling uncertainty.

Note that allowing for a bond-specific latent factor (equations (5)—(6)) leaves the con-
sumption loadings on f shocks virtually unchanged, and consumption does not significantly
load on the bond-specific factor b;. See, respectively, Figure IA.21 in Internet Appendix O.

The relatively tight restrictions on the parametric model in equations (2)—(3) allow us
to pin down the parameters of the joint consumption-returns process with a high degree
of precision. However, this comes at the price of imposing (weak) constraints on the data-
generating process, some of which may, in principle, not hold in the data. However, the
strongest prediction of our parametric setting — the term structure of asset exposure to
consumption risk — can be tested without all the ancillary assumptions of the state-space
model.

To see this, note that equations (2)—(3) imply a particular pattern in the covariances of

asset returns with multi-period consumption growth; that is, for any asset 4,
cov(riy g, i) = pipo,

cov(rit, 1, Aciiy2) = pi(po + p1), and

COU(T;QEH, Aci k) = pj (Z pk1> .

j=1

Therefore, the term structure of asset exposures to consumption risk is driven by a single
common component: (pg, po + p1,-- -, Z?Zl pr—1), that is; the cumulative response function
of consumption to an f; shock. This property is not affected by the potential presence of

cross-sectional correlations between stocks and bonds or additional factors driving stocks
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and bonds that are orthogonal to consumption. Therefore, if the time-varying dynamics of
consumption growth in equation (2) describes well the data-generating process, we should
be able to recover the same pattern of loadings by simply extracting the first uncentered
principal component of cov(r{%,,, Acy 1) at different horizons k.

The red line with triangles in Figure 3 illustrates our findings. Remarkably, the loadings
on the first PC of consumption term structure exposure almost exactly match the cumulated
response function from the state-space model, therefore identifying the same persistent time-
varying mean for consumption growth.®

Recall that the identifying restriction for the finding above is that, for a representative
agent, the intertemporal Euler equation determining equilibrium prices implies that both
returns and consumption react to a common set of innovations (e.g., wealth shocks and
changes in expectations). But is this really what we uncover? For an agent who does not
participate in the equity market, such an Euler equation argument does not hold. Hence,
we can verify this mechanism by using micro-data on the consumption of stockholders and
non-stockholders.

Figure 4 uses the consumption series constructed in Malloy, Moskowitz, and Vissing-
Jorgensen (2009) over the sample of 1982:Q1 to 2004:Q3 and reestimates our state-space
model separately for these two types of households. Although the confidence bands are
wider than in our baseline estimation due to the short sample size, the message is clear:
Consumption growth of households that participate in the financial market (left panel) re-
acts significantly, and gradually over multiple quarters, to shocks spanned by financial assets,
whereas the consumption of other households (right panel) does not. This further confirms
the power and the economic mechanism underlying our identification strategy: Some of the
shocks affecting the households that participate in financial markets are reflected in both
equilibrium asset prices and consumption. Hence, we use this insight to uncover their joint
dynamics and compare them with those postulated in popular macro-finance models. Note
also that the estimated effect of a one-standard-deviation shock for shareholders’ consump-
tion is actually larger, by a factor of 2-3, than the effect uncovered in aggregate data —

exactly as one would expect, given that the aggregate series also contains the consumption

°In the figure, the level of the first PC is normalized to have the same origin as the py estimated from
the state-space formulation.
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Figure 4: Cumulative impulse response functions of shareholders’ and non-shareholders’
consumption growth to a one-standard-deviation shock spanned by asset returns.
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Posterior means of the cumulative response functions of consumption growth, centered posterior 90% (dotted
lines) and 68% (dashed lines) coverage regions. Panels (a) and (b) use shareholders and non-shareholders’
consumption growth, respectively, following Malloy, Moskowitz, and Vissing-Jorgensen (2009). Data are
downloaded from Tobias Moskowitz’s website. We use the “Dnl1” and “Dsl1” variables as proxies for non-
shareholders’ and shareholders’ quarterly consumption growth. Data sample: 1982:Q1 to 2004:Q3.
of non-shareholders.

Figure 5 shows the (posterior mean of the) MA component of consumption, based on our
filtered f; innovations. The slow-moving component within consumption aptly captures the
business-cycle fluctuations and has a pronounced exposure to recession risk. Furthermore,

this component generates economically large swings in quarterly consumption growth, with

contractions and expansions of about 1% being not uncommon.

II1.1.1 Measurement issues of consumption

There are two possible measurement issues in quarterly data that might bias our estimates
in Figure 3: time averaging and benchmarking of the quarterly consumption series. We now
turn to evaluate their potential impact.

The evidence of persistency of the conditional consumption mean process that we doc-
ument in Figure 3 might be contaminated by the well-known time-aggregation “bias” (see,
e.g., Breeden, Gibbons, and Litzenberger (1989)). That is, consumption growth measured
from quarter ¢ to t 4+ 1 is in fact a moving average of true consumption growth from ¢ — 1

to t+ 1 (as shown in Equation (IA.11) of the Internet Appendix). We formally address this
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Figure 5: Moving average component of consumption growth.

Posterior mean of the moving average f; component of consumption growth. Grey areas denote NBER
recessions. Estimate based on the single-factor model in equations (2)—(3), with S = 14. The cross-section
of base assets includes 25 size- and value-sorted portfolios, 12 industry portfolios, and nine bond portfolios.
issue in two ways.

First, in Section G of the Internet Appendix, we introduce a mixed-frequency state-
space formulation that can be overlayed on our estimation framework to directly model
the time aggregation of quarterly consumption. Therein, we also show that, under the
null of serially uncorrelated monthly consumption growth, we should not observe significant
impulse responses of consumption after two quarters, even in the presence of time-aggregation
bias. Furthermore, we estimate a latent factor model for monthly excess returns and allow
quarterly consumption growth (observed only at the end of each quarter) to react slowly to
the monthly asset return shocks as in Equation (2).

Second, as an additional way of addressing the time-aggregation bias, in Section F of
the Internet Appendix, we reestimate our dynamic model for consumption and asset returns
using monthly consumption and return data. Note that monthly consumption requires con-
sidering the well-known issue of measurement error in these data, which is directly modeled
in our extended state-space formulation (see equation (IA.8) of the Internet Appendix).

Figure 6 presents the cumulative responses of quarterly consumption growth to one-
standard-deviation monthly asset return shocks. We report the mixed-frequency state-space
estimates in Panel (a), where the impulse response of consumption continues to increase

until about 24 months, with a cumulative effect of roughly 0.015. Panel (b), instead, depicts
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Figure 6: Cumulative impulse response function of quarterly consumption growth to a
one-standard-deviation shock spanned by monthly asset returns.
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Posterior means of the cumulative impulse response function of quarterly consumption growth (solid lines
with circles) to monthly asset return shocks, with centered posterior 90% (dotted lines) and 68% (dashed
lines) coverage regions. The x-axis denotes the number of monthly lags. Panel A uses the mixed-frequency
state-space model in Section G of the Internet Appendix. Panel B is based on the impulse responses
of monthly consumption growth to monthly asset return shocks, converted into the CIRFs of quarterly
consumption growth to monthly asset return shocks (see equation (IA.15) of the Internet Appendix). Green
lines display the simulated cumulative impulse responses, assuming that (1) monthly consumption growth
is independent over time and has a contemporaneous correlation of 0.20 with the monthly f; shock, and (2)
monthly consumption data are benchmarked to the annual data (see Internet Appendix H for details).

the cumulative impulse function obtained with the monthly consumption data and mapped
into quarterly consumption responses. The estimates in Panels (a) and (b) are strikingly
similar, with wider confidence intervals in the case of monthly consumption data (due to
the substantial measurement error). Furthermore, as Figure IA.3 of the Internet Appendix
shows, monthly consumption growth still slowly adjusts to asset return shocks: The f; shocks
explain more than 11% of the time-series variation of monthly consumption growth.

But how would the time-aggregated quarterly consumption growth react to monthly as-
set return shocks if there were no predictability in monthly consumption? We answer this
question in Figure IA.11 of the Internet Appendix by conducting a counterfactual exercise.
Specifically, we impose that monthly consumption growth correlates only with contempo-
raneous asset return shocks. This implies that the time-aggregated quarterly consumption

growth comoves with only contemporaneous and lagged asset returns up to four months.® In

6That is, we impose S = 0 in equation (IA.14) of the Internet Appendix.
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this setting, we find a much smaller cumulative impulse response of quarterly consumption
growth that peaks at less than 0.004 (one quarter of what we show in Figure 6). Hence,
the time aggregation of consumption is unlikely to fully explain the predictability that we
observe in quarterly consumption growth.

In addition to time aggregation, the serial dependence of quarterly consumption growth
could be biased by benchmarking (see Wilcox (1992) and Triplett (1997)). Specifically,
monthly and quarterly estimates of consumption are based on the Monthly Retail Trade
Survey, which is of lower quality than the annual survey. Because the four quarters of
consumption never precisely match the annual measure, the monthly and quarterly estimates
are ex-post revised to benchmark to the annual estimates.

What would our state-space estimation method yield if consumption were IID but time-
aggregated and benchmarked? We answer this question by simulation (see details in Internet
Appendix H). In particular, we add to Figures 3 and 6 the simulated CIRFs (green lines),
assuming that i) monthly consumption growth is independent over time and has a contem-
poraneous correlation of 0.20 with the monthly f; shock” and ii) monthly consumption data
are benchmarked to the annual consumption data. Two observations are in order.

First, even if the true monthly consumption growth were serially independent, we would
still detect slow responses of quarterly consumption growth to asset return shocks due to
time aggregation and benchmarking. Furthermore, the asset return shock would predict
quarterly consumption growth up to four quarters ahead. However, the cumulative impulse
responses would be flat after the benchmarking horizon of four quarters.

Second, nevertheless, time aggregation and benchmarking of consumption data cannot
fully explain the predictability of consumption growth that we estimate using our state-
space formulation. In the observed data, as shown in Figures 3 and 6, the cumulative
responses increase until the seventh quarter and are much larger than those predicted by time-
aggregation bias and benchmarking (the green lines in the figures). Even when calibrating
a much larger contemporaneous correlation between monthly consumption growth and f;
(e.g., 0.4 in Figure IA.15 of the Internet Appendix), our state-space model estimates of

the cumulative responses are much more persistent and sizable than those obtained in 11D

In the real data, this contemporaneous correlation is about 0.17. Figure IA.15 of the Internet Appendix
explores different correlation coefficients of between 0.10 and 0.40.
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time-aggregated and benchmarked consumption data.
Overall, the large degree of consumption predictability that we uncover cannot be ratio-

nalized by time aggregation and benchmarking of consumption data.

IT11.1.2 Predicting consumption

But how much of the total consumption volatility can this slow-moving component explain?
The answer is more than a quarter, which is large (and sharply estimated) compared to
the leading asset pricing frameworks: For example, this is more than twice as large as in
the long-run risk framework of Bansal and Yaron (2004).® Figure 7 demonstrates that the
common factor is responsible for roughly 23% of the variation in the one-period nondurable
consumption growth, 26% of the two-period consumption growth, and so on, followed by a
slow decline toward slightly more than 6% for the 12-period growth.? Furthermore, as shown
in the figure, the predictability of consumption is even higher at the longer horizons when
we estimate the mixed-frequency state-space model to correct the time aggregation. In this
case, the MA component can explain about 12% of the quarterly consumption growth at
the three-year horizon. Interestingly, the model retains significant predictive power (albeit
lower), even for the one-period consumption three years ahead.

But does the conditional mean component uncovered by our method do a good job at
predicting consumption? Does it survive horse races with the canonical predictors? To
answer these questions, we explore whether the future realized consumption growth at short

to medium horizons could be explained by the estimated conditional mean implied by our

MA model. Specifically, given the estimated MA coefficients {p, 5:07 we can estimate the
conditional mean of future one-period consumption growth as
S
E [Act+j—1,t+j} = Z Ps fitjs; 9)
s=j

where j ranges from 1 to 12 quarters. To avoid forward-looking bias and preserve consistency

of our predictive regressions, we employ a (one-side) Kalman filter (rather than a Kalman

8This quantity is zero in frameworks that, for parsimony, do not model any predictability in consumption
(e.g., Campbell and Cochrane (1999) and Barro (2006)).

9 As shown in Figure IA.22 of the Internet Appendix, adding a bond-specific factor has a minimum impact
on the explanatory power of the model for future consumption growth.
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Figure 7: Share of consumption growth variance driven by its moving average component.
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Box plots (posterior 95% coverage area) of the percentage of time-series variances of consumption growth
explained by the MA component. The state-space models are estimated at both quarterly (blue bars) and
mixed (red bars) frequencies. Plots report the unadjusted R-squared. Left panel: Cumulated consumption
growth Aci—144+5. Right panel: One-period consumption growth Ac;_i4;++;. Estimates based on single-
factor model, with S = 14. The cross-section of base assets includes 25 size- and value-sorted portfolios, 12

industry portfolios, and nine bond portfolios.

smoother) to extract the latent state f,. We next regress Acyyj_1,4; on ]/Et [Actﬂ-_l,tﬂ-],
Acij 1445 = Boj + BB [Acisj—1445] + B, jcontrols, + €5, 1., (10)

and test whether the slope coefficient, 3, ;, is significantly different from one-the value that
we should obtain in a long sample with a correctly specified model. As we do not reestimate
the MA coefficients to fit future consumption growth, this exercise is an additional test of
the validity of our method.

Table 2 reports the predictive regression results. In Panel A, we regress future (one-
period) consumption growth (from one to 12 quarters ahead) on our estimated conditional
means. The predictive R?s are extremely close to those obtained in Panel B of Figure 7, with
the predictability after two years declining faster than shown in the figure. This small decline
in predictability is not surprising, given the one-sided nature of the Kalman filter compared
with the Kalman smoother in the figure. Moreover, the slope coefficients associated with
the conditional mean are extremely close to, and statistically indistinguishable from, one-as
should be under the null of our specification. As a benchmark, in Table TA.III of the Internet
Appendix, we repeat the same predictability analysis using as a proxy for the conditional
mean the VAR-based estimate of Parker (2001). At the rather short horizon (1-2 quarters),

the VAR has performance similar to our state-space formulation, but at longer horizons, its
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performance quickly deteriorates, with R?s essentially equal to zero and slope coefficients
much smaller than one after one year.

Panels B to D of Table 2 conduct horse races with the canonical predictors: Lagged
consumption and GDP growth, as well as a Kalman filter estimate from a standard AR(1)
latent expected growth model for consumption growth.!® The results therein confirm that our
conditional estimate captures information not fully spanned by these canonical predictors.
First, the slope coefficient associated with the conditional mean is once again close to and
indistinguishable from one. Second, the (unadjusted) R%s are only marginally higher than
those in Panel A, highlighting the fact that most of the information contained in these
variables is already captured by our conditional consumption mean process. Third, the
added predictors never drive out the statistical significance of our conditional mean, and
are themselves statistically different from zero only in rare cases (3 out of 36, i.e., at the
expected Type I error frequency) and only at the short horizon (one or two quarters).

As additional horse races, in Tables TA.IV and TA.V of the Internet Appendix, we consider
the mean consumption forecasts from the Survey of Professional Forecasters (SPF) as well
as the news-based index of Liu and Matthies (2022).

The SPF forecasts are available for only one- to four-quarter horizons and over a much
shorter sample than our baseline (starting from 1981:QQ3). Panel A of Table IA.IV reveals
that the SPF predictive ability is much lower (about half in most cases) than the one of our
conditional mean estimates in Panel A of Table 2. Furthermore, when used in conjunction
with our conditional mean (Panel B of Table IA.IV), the SPF forecasts do not drive out the
statistical significance of the former (albeit at the one-quarter horizon, but not others, the
coefficient is statistically smaller than one). Moreover, SPF forecasts only marginally improve
the predictive power achievable with our conditional mean model. Interestingly, while the

predictive ability of SPF forecasts three and four quarters ahead is small (see Panel A of

10 Specifically, we consider the Kalman filter estimate from an AR(1) latent expected growth model:
Act—Lt = He + Tt + wtca Ty = Prli—1 + wfa wtc ~ N(ngfuc)v ’LUZE ~ N<0’ 0'121;1)’ (11)

which implies that the latent state x; should predict future consumption growth.

"Two caveats are in order. First, the SPF forecasts are based on total real personal consumption (PCE).
Second, Liu and Matthies (2022) show that their news index has forecasting power for nondurable plus
service consumption. Our baseline consumption series is the nondurable one instead.
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Table 2: Validating the predictability of the conditional consumption mean

j= 1 2 3 4 5 6 7 8 9 10 11 12
Panel A. Regress Acyij_14; on E; [A(Tt+j71,t+j}
Et [ACH.]-_],H_]-] 0.998 0.964 0.964 0.965 0.932 0.913 0.963 1.129 1.021 0.984 1.075 1.080
s.e. (OLS) (0.146) (0.196) (0.202) (0.204) (0.271) (0.287) (0.313) (0.353) (0.409) (0.423) (0.561) (0.561)
s.e. (NW, lag=12) (0.196) (0.199) (0.195) (0.203) (0.190) (0.210) (0.182) (0.204) (0.330) (0.374) (0.461) (0.461)
Predictive R? 0.182  0.104  0.098  0.097  0.054 0.046  0.043  0.047 0.029  0.025 0.017  0.017
Panel B. Additional control: Lagged consumption growth
IEt [AcH]v_LH]-] 0.932 0.896 0.867 0.947 1.007 0.894 0.963 1.100 1.024 1.028 1.032 1.087
se. (OLS) (0.151)  (0.200) (0.210) (0.208) (0.278) (0.295) (0.314) (0.350) (0.411) (0.435) (0.572) (0.563)
se. (NW, lag=12) (0.192) (0.190) (0.213) (0.222) (0.241) (0.224) (0.185) (0.226) (0.325) (0.376) (0.453) (0.466)
Acy 0.107  0.103  0.110  0.032 -0.079  0.019 -0.024 -0.150 -0.006 -0.030 0.026 -0.017
s.e. (OLS) (0.064) (0.066) (0.067) (0.066) (0.068) (0.068) (0.067) (0.065) (0.064) (0.066) (0.066) (0.065)
se. (NW, lag=12) (0.067) (0.074) (0.074) (0.066) (0.111) (0.075) (0.058) (0.087) (0.057) (0.059) (0.065) (0.061)
Predictive R? 0.193  0.114 0.110  0.098  0.060  0.047  0.044 0.070 0.029 0.026 0.018 0.018
Panel C. Additional control: Lagged GDP growth
&, [Aceij-1,e4)] 0839 0.781  0.907 1.023 0.928 0.942 0957 1173  1.051  0.994  1.097  1.107
s.e. (OLS) (0.149) (0.211) (0.210) (0.208) (0.276) (0.287) (0.313) (0.353) (0.415) (0.436) (0.563) (0.563)
se. (NW, lag=12) (0.207) (0.223) (0.202) (0.224) (0.192) (0.211) (0.186) (0.198) (0.331) (0.342) (0.436) (0.491)
AGDP; 0.199 0.136 0.061  -0.079  0.004 -0.072 -0.061 -0.094 -0.025 -0.005 -0.028 -0.045
s.e. (OLS) (0.056) (0.062) (0.059) (0.058) (0.059) (0.059) (0.059) (0.058) (0.057) (0.058) (0.057) (0.057)
s.e. (NW, lag=12) (0.053) (0.052) (0.050) (0.072) (0.063) (0.055) (0.074) (0.080) (0.052) (0.052) (0.064) (0.074)
Predictive R? 0.229 0.124 0.103 0.105 0.054 0.053 0.048 0.058 0.030 0.025 0.018 0.020
Panel D. Additional control: Latent state (z;) of AR(1) expected growth model

Et [Act+j—l‘t+j] 0.901 0.853 0.866 0.963 1.010 0.919 0.965 1.141 1.033 1.014 1.050 1.086
se. (OLS) (0.152) (0.204) (0.213) (0.210) (0.281) (0.293) (0.313) (0.351) (0.415) (0.436) (0.571) (0.563)
s.e. (NW, lag=12) (0.197) (0.195) (0.227) (0.234) (0.253) (0.222) (0.187) (0.218) (0.322) (0.374) (0.460) (0.468)
4 0.299 0.272 0.213  0.006 -0.155 -0.014 -0.141 -0.285 -0.027 -0.042 0.035 -0.034
s.e. (OLS) (0.141) (0.147) (0.148) (0.144) (0.148) (0.147) (0.144) (0.142) (0.141) (0.143) (0.142) (0.140)
se. (NW, lag=12) (0.135) (0.158) (0.163) (0.166) (0.265) (0.176) (0.149) (0.199) (0.120) (0.131) (0.149) (0.146)
Predictive R? 0.200  0.118  0.107  0.097  0.059 0.046 0.048 0.065 0.029 0.026 0.018 0.018

The table summarizes the regressions in which future realized growth rates of nondurable consumption
(Aciyj—1,4+4, 1 < j < 12) are forecasted by several predictors. In Panel A, we regress Acit;_1,¢+; on the

conditional consumption mean (]Et [Acitj—1,+;]) implied by the MA model (see equation (9)). In Panels B~
D, we include additional controls, such as time-t consumption growth, time-t GDP growth, and time-t latent
state x; from the AR(1) latent expected growth model in equation (11). We report (1) the point estimates
of the slope coefficients, (2) the OLS and Newey-West (12 lags) standard errors within the parentheses, and
(3) the predictive R2. Sample: 1963:Q3-2019:Q4.
Table TA.IV), the one of our conditional mean model is substantial, with predictive R?s of
about 10% (see Panel A of Table 2). The robustness of our conditional model to the inclusion
of SPF forecasts is remarkable since professional forecasters are likely to use the information
in financial markets to predict future consumption growth.

As shown in Panel A of Table IA.V, after controlling for our MA-implied conditional
consumption mean, the news index of Liu and Matthies (2022) has no incremental predictive
power for our baseline nondurable consumption at any horizon (from one to 12 quarters).

Nevertheless, in Panel B, we confirm that the news index does help predict nondurable plus

service consumption.
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I11.2 Clustering and predictability of total consumption volatility

Note that the estimation of the conditional mean of consumption growth in equations (2)
and (5) is generally consistent even in the presence of time-varying consumption volatil-
ity. Therefore, the presence of volatility clustering can be assessed by analyzing the serial
correlation of the squared one-step-ahead forecast errors (see, e.g., Engle (1982)) of the
consumption growth process. This proxy for volatility has been used extensively in the
empirical consumption-based asset pricing literature, for example, Bansal, Khatchatrian,
and Yaron (2005), Bansal, Kiku, and Yaron (2012), Beeler and Campbell (2012), and Chen
(2017). That is, we examine the autocorrelation and predictability of @"t (Acipy1) =
<Act7t+1 — I/E\lt [Acmﬂ])z, where the conditional mean is computed at each ¢ using the es-
timated p; and 60; coefficients and latent state variables f,.; and b,<;.'? Note that this
nonparametric volatility proxy does not distinguish the nature of the volatility being cap-
tured. For example, under the null of the consumption volatility process of Schorfheide,
Song, and Yaron (2018), the square forecast errors would be a linear combination of the
variances of innovations to immediate consumption growth (short-run news) and expected
growth (long-run news). In Section III.6 we introduce a parametric model to be able to
distinguish these potentially different volatility processes.

Figure 8 reports the autocorrelation function (left panel) as well as the p-values of the
Ljung and Box (1978) and Box and Pierce (1970) tests (right panel) of joint significance of
the autocorrelations of @"t (Actr+1) and shows no evidence of volatility clustering in the
consumption growth process. Nevertheless, conditional consumption volatility might still,
in principle, be correlated with financial asset returns. We test this hypothesis by running
linear predictive regressions of @“t+h (AcCitht+ht1), at several horizons h, on the time-t first
eight principal components of stock and bond returns — that is, we check whether asset
returns can predict the nonparametric consumption volatility proxy. Note that, in line with
the previous literature (see, e.g., Liew and Vassalou (2000)), this is the same test used to
establish predictability of the first conditional moment of consumption growth, as shown in
Appendix D. The p-values of the F-tests for these predictability regressions are depicted by

the blue continuous line with circles in Figure 9. The p-values (which range from 0.2826 to

12@ [Act t41] is the posterior mean of . + Zle pjfeyi—j + Zle 0;bi+1—; at each t.
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Figure 8: Autocorrelation structure of consumption growth squared forecast errors.
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Left panel: Autocorrelation function of ‘7a\rt (Act,¢41) with 95% and 99% confidence bands. Right panel:
p-values of Ljung and Box (1978) (red triangles) and Box and Pierce (1970) (blue circles) tests.
0.922) show that asset returns are not significant predictors of future consumption volatility.
We conduct two robustness checks of the above result. First, in Figures TA.9 and TA.10
of Internet Appendix G, we show that extremely similar results to those above are ob-
tained in the mixed-frequency estimation setting, confirming that these are not due to a
time-aggregation bias. Second, in Table IA.VI of the Internet Appendix, we run univari-
ate regressions of ‘7(;",5 (Acyr41) on persistent predictors that are possibly more informative
about the level of volatility: the log price-dividend ratio of the market index as well as the
measures of financial, macro, and real uncertainty of Jurado, Ludvigson, and Ng (2015) and
Ludvigson, Ma, and Ng (2021). The regression R?s are extremely small, ranging from 0% to
1.8%, and in only one case (that of the real uncertainty) we find a regressor to be statistically
significant at canonical levels with one of the two types of standard errors that we consider.
Since the clustering in total consumption volatility is weak at best, for this feature of the
data to be revealed it is key to properly account for the conditional mean of the consumption
process. Indeed, given our finding that a common latent factor drives both asset returns and
consumption, if one were to erroneously model the conditional mean of consumption growth,
one would be likely to find spurious evidence of volatility clustering. For instance, if one
erroneously models the conditional mean of consumption as being constant, the autocorre-
lation of ‘7(1\7“t (Acy 1) would be mechanically different from zero. For example, the k-th

autocorrelation of (Acy 1 — MC)Q, for k < S, is proportional to
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Figure 9: Predictability of consumption squared forecast errors.
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To verify that a misspecification of the consumption mean process leads to spurious
evidence of time-varying volatility, we perform two exercises.

First, we again run predictability regressions of I7a\rt+h (Acithi+nt1) on the first eight
principal components of asset returns (the same predictive variables used in the preliminary
evidence presented in Appendix D) but, as a misspecification benchmark, we construct these
measures assuming a constant conditional mean for consumption growth. Summary statistics
for these regressions are depicted by the dashed red line with triangles in Figure 9. The
figure shows that the misspecification of the mean process generates spurious predictability
of consumption volatility in three of the eight horizons considered. That is, modeling the
mean of consumption growth without exploiting the information in asset returns and the
flexibility of the MA representation leads to spurious evidence of time-varying volatility of
consumption growth. Instead, with the robust MA specification of the mean process, there is
no evidence of predictability in the volatility proxy of consumption growth (blue continuous

line with circles of Figure 9).13

13This is in line with the evidence of Dew-Becker and Giglio (2016, Appendix D) who, proxying consump-
tion volatility with the realized volatility of the S&P500 index (as often assumed in the prior literature), find
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Table 3: Estimates of ARCH(1), GARCH (1,1), and IGARCH(1,1) for different models

Aciiy = iy + €141

2 2 2
Op = w + ae; + Boy

ARCH(1) GARCH(1,1) IGARCH(1,1)
w Q@ w Q@ I5) w Q@ I}

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: p = po + p§Acy

Estimate 0.917  0.041 0.133  0.139  0.727 0.000  0.026  0.974
Std error (0.200) (0.109) (0.076) (0.125) (0.108) (0.000) (0.034) (0.034)
Akaike 2.824 2.799 2.820
Bayes 2.887 2.878 2.883
Shibata 2.823 2.798 2.819
Hannan-Quinn 2.850 2.831 2.845
Panel B: ji; = jio + pu§Ac + 30, 175,
Estimate 0.902  0.087 0.000  0.000  0.999 0.000  0.000 1.000
Std error (0.138) (0.088) (0.001) (0.000) (0.000) (0.000) (0.004) (0.004)
Akaike 2.842 2.851 2.852
Bayes 2.874 2.899 2.884
Shibata 2.842 2.850 2.852
Hannan-Quinn 2.855 2.870 2.865
Panel C: py; = ug + Zis=1 Pifre1—i
Estimate 0.891  0.115 0.000  0.000  0.999 0.000  0.016  0.984
Std error (0.150) (0.102) (0.000) (0.000) (0.000) (0.000) (0.060) (0.060)
Akaike 2.843 2.850 2.856
Bayes 2.875 2.898 2.888
Shibata 2.843 2.850 2.856
Hannan-Quinn 2.856 2.869 2.869

ARCH(1), GARCH(1,1), and IGARCH(1,1) estimates for consumption growth volatility with different mod-
els for the conditional mean. Models estimated via QMLE. Robust standard errors constructed using Newey
and West (1987). The table also reports Akaike, Bayesian, Shibata, and Hannan-Quinn information criteria.

Second, in Table 3 we estimate ARCH(1), GARCH(1,1), and IGARCH(1,1) models'*
for consumption volatility under different assumptions about the mean process. In Panel
A, following the standard approach of Bansal, Khatchatrian, and Yaron (2005), Bansal,
Kiku, and Yaron (2012), Beeler and Campbell (2012), Tédongap (2014), Chen (2017), and
Zviadadze (2021), we identify the volatility process by postulating an AR(1) specification for
the conditional mean of consumption growth. The AR(1)-GARCH(1,1) formulation in Panel
A is the most often used in the literature to provide evidence of time-varying consumption

volatility.’® In this case, there is statistically significant evidence of volatility clustering

no predictability.
14Gee, respectively, Engle (1982), Bollerslev (1986), and Bollerslev and Engle (1986).
15In Section II1.6 we provide an extensive analysis of SV processes in consumption and asset returns, of
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(8 > 0 in Column (5)) with a half-life of volatility departures from the mean of about 5-6
quarters.'® These estimates are almost identical to those uncovered in the previous literature
(see, e.g., Table 6 in Chen (2017)). However, the statistically insignificant a (Column (4))
indicates a potential identification failure for the model parameters, including S. This is
why we also consider an IGARCH specification that once again yields (Columns (6)—(8))
a statistically significant § and an insignificant «, with point estimates compatible with
constant consumption volatility.

However, as shown in both the previous literature (see, e.g., Liu and Matthies (2022) and
Bansal, Dittmar, and Kiku (2007)) and in Appendix D, lagged consumption alone does not
capture the full extent of consumption predictability. Therefore, in Panel B, we add to the
AR(1), as drivers of the conditional mean, the same principal components of asset returns
that we found to predict consumption (see Appendix D). The resulting change is striking:
When we better control for consumption predictability, the evidence in favor of time-varying
volatility vanishes in all the model specifications, including the canonical GARCH(1,1). One
cannot reject the hypothesis of constant consumption volatility in any specification.!”

Finally, in Panel C, we use the conditional mean of our moving average specification
(without the contemporaneous shock) evaluated at its posterior mean. First, as in Panel B,
there is no evidence of volatility clustering. Second, the sharply different results in Panel A
relative to those in Panels B and C suggest that the AR(1) approximation of the conditional
mean is not innocuous for the identification of the volatility process. Moreover, if the AR(1)
were the true process, our MA(S) specification would closely approximate it (as shown in
Section II.1) and lead to similar implications for volatility. Empirically, however, using an
MA(S) parametrization for the conditional mean leads to drastically different estimations of

the volatility models and shows that the canonical results are driven by the misspecification

of the mean.

the type also commonly used in the literature.
16The half-life of a covariance-stationary GARCH (1,1) process is 1 + log(1/2)/log(a + 3).
1"Note that a () GARCH(1,1) with @ = w = 0 and 3 = 1 is identical to a constant volatility model.
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I1I.3 Time-series properties of stocks and bonds

We now turn to the time-series properties of stocks and bonds implied by our model in
equations (2)—(3) and (5)—(6). The loadings of equity portfolios on the latent factor f; are
depicted in Figure 10.

The size- and book-to-market-sorted portfolios are ordered first (e.g., Portfolio 2 is the
smallest decile of size and the second smallest decile of book-to-market ratio), followed by
the 12 industry portfolios (Portfolios 26-37 in the graph). All the portfolios have significant
and positive exposures to the factor driving the conditional mean of consumption growth.
Note, however, that this does not imply a single-factor model for returns, as our specification
allows for multiple systematic factors in the return space orthogonal to f; by the identification
restriction. The findings remain unchanged when a bond-specific factor is added to the model
as in equations (5)—(6) (see Figure IA.23 in the Internet Appendix).

The loadings are not only statistically but also economically significant, as shown in
Figure 11: The common factor f explains on average 79% of the time-series variation of
stock returns, ranging from 36% to nearly 95% for individual portfolios. Moreover, this
explanatory power in our model is produced by a single consumption-based factor, as opposed
to some alternative successful specifications that typically rely on three or more explanatory
variables. As shown in Figure IA.24 in the Internet Appendix, adding a bond-specific factor
leaves the variance decomposition of stock returns basically unaffected.

The loadings of the bond portfolios on the common consumption factor f; are reported
in Figures 12a and 12b, respectively, for the one- and two-latent-factor specifications. Both
sets of estimates show an upward-sloping term structure of the loadings, and the point
estimates are quite similar in the two specifications, with the main difference being that
allowing for a bond-specific factor (b;) delivers much sharper estimates of the loadings on
the common factor f;. The magnitude of these loadings is considerably smaller than that of
stocks. Although these numbers may not seem as impressive as those for the cross-section of
stocks, the pattern is highly persistent and significant, confirming a common factor structure
between nondurable consumption growth and asset returns.

The loadings on the bond-specific factor b; are reported in Figure 13. These loadings

are highly statistically significant and increase steeply and monotonically with maturity,

36



Figure 10: Common factor loadings (p") of the stock portfolios in the one-factor model.
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Figure 11: Share of stock portfolios’ return variance explained by the f component.
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returns explained by the f component in the one-factor model. Ordering of portfolios:

(1992) size- and book-to-market-sorted portfolios and 12 industry portfolios.

revealing a rather pronounced term structure pattern.

25 Fama and French

Finally, Figure 14 reports the share of time-series variation of bond returns explained by

the f; shocks (left panel) and the f; and b; shocks (right panel). It highlights the importance

of allowing for a bond-specific factor to characterize the time-series of bond returns. The

common factor f; accounts for a small (about 1%) but statistically significant proportion of

the time-series variation in bond returns. The bond-specific factor, in turn, captures most

of the residual time-series variation in returns. Although the model captures almost 55% of
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Figure 12: Bond loadings on common factor f;.
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(a) Bond loadings on f;, one-factor model. (b) Bond loadings on f;, two-factor model.

The figure shows posterior means of the bond factor loadings on f; (blue circles) and centered posterior 90%
(dashed line) and 68% (dotted line) coverage regions in the one- and two-factor models.

Figure 13: Bond loadings (8°) on the bond-specific factor (b;).
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Figure 14: Variance decomposition box plots of bond returns.
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the variation in the six-month bond returns, its performance rapidly improves with maturity
and results in a nearly perfect fit for time horizon of about five years.

Once again, our setting has an important testable implication that can be verified directly
from the data without making all of the ancillary assumptions of the state-space model. In
particular, equation (8) implies that, given our state-space results for the consumption load-
ings in Figure 3, the covariance between asset returns and multi-period consumption growth
should display an increase in both its level and cross-sectional dispersion. This conjecture is
supported by Figure IA.35 of the Internet Appendix, which depicts Cov(Ac; 1y145,75,,,) for
various assets j and horizons S. As we move away from the standard case of S = 0, two ob-
servations immediately arise. First, there is a substantial increase in the average exposure of
asset returns to consumption growth. Second, there is a strong “fanning out” effect observed
for the higher values of the consumption horizon S. This spread in covariances rationalizes

the finding of Parker and Julliard (2005), who use Ac; 44145 to price time ¢ asset returns.

I1I.4 External predictors of consumption and returns

The previous analysis assumes that asset returns are serially uncorrelated over time. How-
ever, our framework is flexible in incorporating other predictors in consumption growth
and asset returns. We use two predictors to introduce serial correlations: the market’s price-
dividend ratio and the Chicago Fed National Activity Index (CFNAI). The two-factor model

is as follows:

S S
Acrrg = et ) pifiog+ ) Oibiy +ipdis + y5efnai,y +wf, (13)
=0 =0
Stocks: 15 = per + p* fr + 7 pdi—1 +w;", and (14)
Bonds: 7§, = i + p" fi + 0°b, +~Acfnai,_y + wl, (15)

where the pd;_; is the lagged price-dividend ratio of the market portfolio and c¢fnai;_; is the

lagged CFNAIL' In addition, we allow these two predictors to drive the conditional dynamic

IBCFNALI is a weighted average of 85 monthly indicators of national economic activity, delivering a rough
measure of a common factor in these national economic data. In fact, this measure is similar to the canonical
measure proposed by James Stock and Mark Watson, which has been used to predict inflation since the late-
1990s.
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of consumption growth, with the goal of testing whether they can crowd out the importance
of the MA component of f;.

We first test whether the P/D ratio and CFNAI can predict consumption growth and asset
returns. Note that the CFNAI has been available since January 1967, so the sample used in
this subsection differs slightly from that of other parts. Figure IA.25 in the Internet Appendix
plots the distribution of 4¢, 4%, and 4* in equations (13)—(15). While the P/D ratio predicts
neither consumption growth nor stock returns, CFNAI is essential in characterizing the
conditional dynamics of longer-maturity bonds (3Y-10Y) and consumption growth. Because
we standardize the predictors to have unit variances, the estimate implies that if CFNAI
rises by one standard deviation, consumption growth will increase by 0.13% quarterly, with
a 95% confidence interval of [0.01%, 0.25%)].

Next, we study the identification of f; shock and consumption’s impulse responses. The
empirical results, as shown in Figure TA.27, are reassuring: We still detect the slow ad-
justment of consumption growth to f; shock, although the size slightly declines as CFNAI
captures part of the predictability. Moreover, the MA component, loadings on f;, and vari-

ance decompositions of consumption growth have almost identical patterns as previously.

II1.5 Multifactor analysis

The simulation study in Section I1.2 shows that our framework can identify the conditional
dynamic of consumption growth even if the common component, f;, is a small PC of asset
returns or a linear combination of several PCs. To ensure that the single-factor analysis in
the previous sections does not neglect important information in returns, we now consider a
five-factor model for asset returns in equations (2)—(3).

Figure IA.29 in the Internet Appendix plots the related results. First, all the important
estimates, including the MA component of consumption growth, impulse responses to f;
shock, stocks and bonds’ loadings on f; shock, and the variance decomposition of predicting
consumption growth, are almost unchanged using the five-factor model. Hence, the single-
factor model that we considered before can characterize the key patterns of the consumption
mean process in the simplest form. Second, it is worth noting that the multifactor model

introduces additional estimation noise. For instance, predictive R>, in Panels (e) and (f)
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are centered around the same estimates yet have wider posterior coverage than those in the
single-factor case. As more latent factors do not identify any additional useful information
but do increase estimation errors, we focus on the more parsimonious single-factor model in

the following section and report the multifactor results as robustness checks.

III.6 Short- and long-run stochastic volatilities

Although our state-space model for consumption and returns in equations (2)—(3) delivers
consistent estimates of the conditional mean parameters even in the presence of time-varying
volatility for the error terms, the literature has often focused on models with a joint SV
process for consumption and asset returns. This approach has been commonly used because
it provides time-varying risk premia for equilibrium asset returns in representative agent
models.

As shown in Section II1.2, ad hoc specifications for the mean process (e.g., constant or
AR(1)), which miss the true degree of predictability in the consumption process, mechanically
invalidate the identification of the consumption volatility process and its predictability. This
is why we rely on a long MA representation that can correctly capture the conditional mean
dynamics irrespective of its true functional form and, therefore, provides a robust way to
assess the nature and properties of the consumption volatility without taking a stand on
the data-generating process of the conditional mean. That is, our state-space representation
provides a reliable framework to manage inference on a class of structural models rather
than a particular parametrization.

We generalize our state-space model in equations (2)—(3) to allow for stochastic volatilities
in all innovations. Furthermore, we allow the volatilities to drive time-varying risk premia;
that is, the process for log excess returns is now

e = + p" fi + Be Jz,t—1 + By 0?21:—1 + Br Uz,t—l + wy (16)
Nx1 Nx1 Nx1 Nx1 Nx1 Nx1 Nx1
where 0.1 is the stochastic volatility of wf; 0,1 is the stochastic volatility of f;, the
innovation to expected consumption growth; and o, ;—; is a common market volatility process
that affects the volatility of all excess return shocks (w”). In the language of Schorfheide,

Song, and Yaron (2018), 0.;—; and os;_; are, respectively, the so-called short- and long-run
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volatilities of consumption, and the latter captures the time-varying volatility of expected
consumption growth.
We follow the past literature (e.g., Hull and White (1987) and Chesney and Scott (1989))

by assuming the following distributions for wy, f;, and wy:

wy i <O,exp(hct)), ft SN (0,exp(hft)>, and (17)
—— ———
03,1_1 Ufc,t71
» iid )
wi ~ N(0,3,4-1), Zppo1 = diag{o?,, 1., 00N 1} (18)

where 07, ,_, is the stochastic volatility of the i-th asset that is driven by both idiosyncratic

volatility shocks (e;,¢) and the common volatility process (o7, ; = exp(hy¢)); that is,

Gg,i,t—l = eXP{’fg) + ’fgl)hrt +é€rit} (19)
In what follows, for simplicity, we refer to o7, ; = exp(h,) as the “market” variance,

albeit in our formulation of asset return dynamics, the total volatility of market returns
is a combination of o, and oy.

The formulation above is rather general and encompasses the standard models in the
literature as particular cases. For instance, in the canonical long-run risk model of Bansal
and Yaron (2004), the short- and long-run volatilities of consumption are identical (o7, is
proportional to O']%’t), with the consumption dynamics summarized as follows:

c ¢ iid 9 iid
Aci 1y = e + 11 +wi, wp~ (Oa Ut_1) , and @, = ppxi1 + Qeoi_r16, € ~ N(0,1),

which implies that z; = ¢, Z?io p;Ut_j_let_j, where o; is the only time-varying economic
uncertainty. This formulation can be mapped into our general framework for the consump-
tion dynamics in equation (2), imposing the restrictions i) pp = 0 and p; = @ep’ and ii)
ft = o1—1e,. Hence, in this case, wy and f; follow the same SV process.

Schorfheide, Song, and Yaron (2018) further separate the volatility of consumption into

short- and long-run components, as follows:

A1t = fle + Tp—1 + Ocp—1Mer and xp = pxi—1 + /1 — p20s1-1M0 1,

where 0;; (i € {c,x}) denotes two distinct stochastic volatility processes, and 7.; and 7,

follow uncorrelated standard normal distributions. In this formulation, o.; (of,) is meant
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to capture the short-run (long-run) volatility in consumption. This setup also fits within
our general MA formulation in equation (2) after imposing the following restrictions: i)
w§ = Geprtler ~ N(0,02, ), i) 2 = \/T— p2 Y72 phowij—1nea—j, iii) po = 0 and p; =
\/qp;, and iv) f; = 0y ¢-1Mpr and ofp = 044.

In order to identify the model, without loss of generality, we normalize hs; and the com-
mon (log) market volatility component h,; to have zero mean and unit variance. The stochas-
tic volatility processes he, hy, and h,; are all modeled as independent AR(1) processes in
our unrestricted formulation. See Internet Appendix B.2 for further details, including the
MCMC algorithm needed to evaluate this model.

Using our general stochastic volatility formulation, the estimated parameters for the con-
sumption ({p, }fzo) and asset returns (p") loadings on the common shock f remain essentially
unchanged (see Figure IA.30 in the Internet Appendix). Similarly, the variance decompo-
sitions for consumption and returns are almost identical to those presented in the previous
sections. Although this is not surprising (because the formulations (2)—(3) are consistent for
mean equation parameters independently from the volatility process), this finding is quite
reassuring. In other words, it is clear that the returns significantly load on the shocks to
the consumption mean. These shocks drive more than a quarter of the consumption growth
variance. Overall, all of our results are robust to the modeling choice for volatility.

What do we learn about the volatility itself for both consumption and returns? Figure 15
reports the estimated volatility processes (posterior median and 95% credible intervals) under
a diffuse prior for the autoregressive coefficients of the processes. Several observations are
in order. First, there is clear evidence of time-varying volatility in stock returns (Panel C),
whereas our findings are more nuanced for the consumption volatilities. Second, for the short-
run consumption volatility (0., in Panel A), there is an entire range of constant values that
are within the posterior confidence bands. This finding holds even when we consider monthly
consumption data as well as the mixed-frequency state-space formulation that accounts
for time-aggregation bias, as we show in the Internet Appendix (see, respectively, Figures
IA.6 and IA.12). Third, instead, while the estimated long-run consumption volatility (o)
in Panel B of Figure 15 contains an entire range of constant values within the posterior

credible intervals, there is no such parameter region i) using monthly consumption data (see
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Table 4: Correlations among stochastic volatility processes and VXO index

Mean 2.5% 5% 50% 95% 97.5%
Panel A: correlations of vol processes with VXO? index
cor(02,VXO?) 0.18 -0.03 -0.00 0.18 0.39 0.43
cor(a?t, VXO0?) 045 022 025 045 0.62 065
cor(0?,,VXO0?) 0.52 037 040 0.53 0.62 0.63
Panel B: Pairwise correlations of vol processes
cor (o2, ‘7]2%) 0.07 -0.09 -0.07 0.06 0.26 0.30
cor(c?,02) 0.15 -0.02 0.00 0.14 0.32 0.36
cor(o},, 00) 0.22 0.06 0.08 021 0.38 041

The table summarizes posterior mean, 2.5%, 5%, 50%, 95%, and 97.5% quantiles of correlation among o2,
O'J%t, 02,, and the VXO index under a diffuse prior for the autoregressive coefficients of the vol processes.

Figure IA.6), ii) estimating a mixed-frequency model (see Figure IA.12), and iii) directly
incorporating a leverage effect into o, (see Figure IA.16)." In other words, the long-run
consumption volatility becomes more sharply identified in latter three cases. Note also that
the confidence bands in both Panels A and B are sufficiently wide to allow for potential
substantial time variation in both short-run and long-run consumption volatilities. Fourth,
all but two asset volatilities have significant loadings (k%) on the common financial market
volatility process.? Fifth, the common financial market volatility increases during recessions
and market crashes, whereas short- and long-run consumption volatilities do not display such
a clear pattern.

We further explore the correlation between the estimated volatilities and (the square of)
the VXO volatility index (a proxy for the underlying volatility process commonly used in
the literature) in Table 4.2 Both the financial market and long-run consumption volatilities
have nontrivial correlations with VXO (.53 for the former and .45 for the latter, at the
median, in Panel A), while being weakly correlated with each other (the median correlation
is only .21, Panel B). These correlations give an estimate of the variance decomposition for

the S&P100 (the index underling the VXO). Hence, Panel A of Table 4 implies that about

19 We extend our framework to allow for a leverage effect in the long-run consumption volatility following
Omori, Chib, Shephard, and Nakajima (2007). Details are reported in Internet Appendix J.

20Detailed tabulated results available upon request.

21'We use the VXO index, rather than VIX, due to the longer time-series available for the former. The VXO
(as is the VIX), measured in discrete time, is adapted to both the physical underlying volatility process and
the “true” latent stochastic discount factor. Hence, the correlations we measure are potentially generated
by either or both of them.
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Figure 15: Filtered stochastic volatilities of consumption and returns.
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Panel C: Common log volatility of asset return (h,; of equation (19)).

Estimated stochastic volatilities of the model in equations (2), and (16)—(19), and Section B.2 under a
diffuse prior for the autoregressive volatility coefficients. Solid blue lines depict the posterior median of the
log volatility, whereas dotted red lines denote 2.5% and 97.5% credible intervals. Shaded (patterned) areas
reflect constant volatility levels that would not be rejected given the credible intervals.
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Figure 16: Loadings of excess returns on consumption and returns volatilities.

Portfolio

Panel A: Posterior distribution of excess return loadings (3.) on the variance of short-run consumption

shocks (02, ;) in equation (16).

0.010
0.008
0.006
5T 0.004
§ o002
(2]
2 0.000 {mtmembe = =
o
§ -0.002
-0.004
-0.006
-0.008
FTAOTOwoOoN0o 22T 2 Il RIRERRRB5YIRIBBERZITILIee
Portfolio

Panel B: Posterior distribution of excess return loadings (8) on the variance of shocks to the conditional

consumption growth mean (0%, ;) in equation (16).

0.010

AN

-0.015

Loadings on of‘

-0.020

-0.025

O r-r A MTWONDODO - N O F O
—————————— SRR VIR SRR

Portfolio - - ”
Panel C: Posterior distributions of excess return loadings (83,) on the common financial return variance

~ @ 9
] q o

32
33
44

- < 0 © N 20 N ® 0 ©
- N M T WL ON© O ® » ® o o ®F v 99 < <

(07,_1) in equation (16).

This figure shows the box plots of the posterior distributions of the loadings of portfolio excess returns on
the variance of short-run consumption shocks (02, ), the variance of shocks to the conditional consumption

growth (afc,tfl), and the common financial returns variance(oZ, ;). Portfolios are ordered with bonds first
(1-9), Fama-French 25 size and book-to-market second (10-34), and industry portfolios last.
45% of the (option-implied) variance of the S&P100 index is generated by f;, the shocks to
the conditional mean of consumption. This is a strong external verification of our (rather
general) modeling choice for the joint dynamics of consumption and returns.

We provide additional external validation of our estimated volatility processes in Table

[A.IX of the Internet Appendix, which reports the correlation between the filtered stochastic
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volatilities and the real /macro/financial uncertainty measures in Jurado, Ludvigson, and Ng
(2015) and Ludvigson, Ma, and Ng (2021). We find that the long-run consumption and
asset-market volatilities significantly load on all three uncertainty indices. On the contrary,
the short-run consumption volatility weakly correlates with these uncertainty measures at
best.

Overall, our findings suggest, as in Schorfheide, Song, and Yaron (2018), different dy-
namics for the short- and long-run consumption volatilities, but also a distinct process for
the market common volatility.

But do the volatilities of returns and consumption drive excess return dynamics? Figure
16 reports the posterior distributions of the loadings in equation (16). Strikingly, none of
the excess return series loads significantly on short- and long-run consumption volatilities
(Panels A and B). This finding is robust even when we i) use monthly consumption data, ii)
estimate a mixed-frequency model, and iii) directly incorporate a leverage effect into o, (see,
respectively, Figures TA.7, TA.13 and TA.17 of the Internet Appendix). This evidence poses a
challenge to the literature that has modeled time-varying risk premia by assuming time vari-
ation in the volatility process of consumption. Panel C shows some support for the common
financial market volatility being negatively associated with excess returns. Nevertheless, this
latter finding is generally weak and fragile with respect to the various generalizations that
we consider (see Figures IA.7, IA.13, and TA.17 of the Internet Appendix).

The generality of our setting also allows us to formally evaluate a multiplicity of alterna-
tive formulations considered in the previous literature. We do so in Section I of the Internet
Appendix. The data favor a specification in which ) excess returns do not load on any of
the stochastic volatilities and i) short- and long-run consumption volatilities are different
from each other and distinct from the common market volatility — the posterior probability
of such a formulation is almost 100%.

The finding that excess returns do not significantly load on the volatilities is perhaps
not too surprising, given the mixed and inconclusive evidence on the volatility-return trade-
off in the literature (see, e.g., French, Schwert, and Stambaugh (1987), Nelson (1991), and
Campbell and Hentschel (1992)). However, Bandi and Perron (2008) show that this tradeoff

becomes stronger at longer horizons. Motivated by this, we explore whether the connection
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between returns and volatilities strengthens at lower frequencies. In particular, we exam-
ine whether the common market and (short- and long-run) consumption volatilities predict
multi-horizon excess returns.?? Predictive regression coefficients for four- to 12-quarter cu-
mulative returns are reported in Figures [A.42-TA .44 of the Internet Appendix. Overwhelm-
ingly, we find insignificant coefficients at all horizons. That is, volatilities do not seem to

predict excess returns even at these lower frequencies.

I11.7 Further Robustness Checks

We conduct an extensive set of additional robustness checks and show that all our key results
presented in the previous sections remain unchanged. In this section, we discuss the main
exercises and report additional ones in Section K of the Internet Appendix.

First, one may be concerned that our empirical results strongly depend on a particular
choice of the MA length of the consumption mean process, S. The data indicate that this
is not the case. When the MA component includes at least six quarters of data, our results
remain almost unchanged. Figure Al in the Appendix reproduces all the main findings
for the state-space formulation estimated with S = 20 quarters, that is, five years of data,
and shows that they are qualitatively and quantitatively identical to those presented in
the previous sections. We find that the similar size of the cumulative impulse response of
consumption is approximately 1%. The reason for this similarity is that the incremental
consumption impulse response to f; is almost zero after two to three years. Note that this
finding is consistent with the evidence in Bandi and Tamoni (2023), who show that most of
the (priced) consumption risks occur within the business cycle frequency.

Second, because the state-space estimation results may depend on the choice of the cross-
section of assets used for the analysis, we repeat our analysis using a multiplicity of alternative
base assets, as discussed in Section K of the Internet Appendix. In particular, Figures [A.34,
IA.40, and TA .41 of the Internet Appendix present all the key empirical findings of the paper,
estimated on a wide cross-section of characteristic-based anomaly portfolios used in Kozak,

Nagel, and Santosh (2020) (KNS). Our findings either remain virtually unchanged, or become

22Given the AR(1) nature of our log stochastic volatility processes, this exercise is equivalent to investigat-
ing whether the conditional variance of the multi-period consumption, var;(Ac; ¢+p) (H > 1), can forecast
cumulative excess returns, r{ ;. g.
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even stronger, which again emphasizes their robustness to the choice of test assets.

To summarize, our findings are robust to a plethora of perturbations to the baseline
specification, all supporting the same key takeaways: i) the conditional mean of consumption
growth is spanned by returns; i7) consumption reacts to financial market innovations slowly,
with the total cumulative effect peaking after two to three years; iii) short- and long-run
consumption shocks and returns have distinct volatility processes, and neither seems to drive

time-varying risk premia.

IV  Asset Pricing Implications

The first-order importance of financial markets in driving the consumption process that
we have uncovered raises the natural question of whether the conditional mean shocks are
priced in asset returns. Furthermore, can our identified consumption process improve the
performance of basic consumption-based representative-agent models with lower risk aver-
sion? Can we also explain the level and volatility of the risk-free rate? That is, can we
jointly provide an explanation of both the equity premium (Mehra and Prescott (1985)) and
risk-free rate (Weil (1989)) puzzles? The answers to all of these questions, as illustrated in

the next two subsections, are affirmative.

IV.1 Isthe predictable component of consumption growth priced?

We now turn to assessing the cross-sectional pricing ability of the shocks to the consumption
mean. We do not take a stand on the preferences determining risk prices, as we only want
to assess whether the f; shocks are part of the stochastic discount factor (SDF). Given the
evidence in Bryzgalova, Huang, and Julliard (2023) that the SDF in the economy is dense
in the space of observable factors, we need to account for the omitted variables. We do so
following Giglio and Xiu (2021) and Bryzgalova, Huang, and Julliard (2024); that is, we
maintain the assumption about asset return dynamics in equation (3) and further postulate

the following log linear SDF"

my=1— bsfy — b;—gt ) (20)
~ —
CCAPM  omitted factors
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where by is the risk price of the shock to conditional consumption mean, and the second
component, b;gt, is included to account for the omitted factor bias in estimating f;’s risk
price.?

Table 5 reports the estimates of f;’s risk prices in two cross-sections of excess returns:
(1) our baseline 37 stock and nine bond portfolios and (2) the KNS 74 characteristic-sorted
portfolios. We report results based on five latent factors, while similar findings can be found
for a six-factor specification in Table IA.X of the Internet Appendix. The estimation method
is based on Bryzgalova, Huang, and Julliard (2024), and details are presented in Internet
Appendix M.

First, f;, the shock to both asset returns and conditional consumption mean, is signifi-
cantly priced in the cross-sections, with statistically significant and stable risk price estimates
of about 0.24. Hence, portfolios with higher consumption risk exposure, on average, earn
higher returns.

Second, nevertheless, there are additional sources of risk driving the cross-section of
asset returns: although the Sharpe ratio of the consumption risk is about 0.5 per annum,
the Sharpe ratio of the entire SDF (which further includes the latent factors g;) is about

2
SRf
SRZ,

0.8-1.0. The column reporting E[ | data} — the share of SDF variance explained by
consumption mean shocks — further quantifies the importance of consumption risk in the
SDF. In Panel A, consumption risk explains about 37% of the SDF variance. This declines
to 26% in the cross-section of KNS characteristic-sorted portfolios since these capture a
much broader spectrum of anomalies in asset returns. In other words, consumption risk is a
first-order driver of risk premia, but there is also a significant amount of additional shocks,
orthogonal to consumption risk, that are priced in the cross-section of asset returns.

The cross-sectional R? indicates an overall good pricing ability of our postulated SDF.
Nevertheless, this measure of fit is still well below one (78% in Panel A and 41% for the
anomaly portfolios in Panel B), indicating a potentially substantial degree of misspecifica-

tion. Nevertheless, the estimated SDF can almost perfectly capture the 7% market risk

premium?* (column —cov (r;”’“, mt)), and it does so almost entirely, due to the consumption

23We can interpret b;—gt as the missing component in C-CAPM as in Ghosh, Julliard, and Taylor (2016).

24In the sample between 1963:Q3 and 2019:Q4, the time-series average of log market excess returns,
E[r{*] 4+ 0.5var(r}"), is around 6.8% per year.

50



Table 5: Cross-sectional pricing ability of the shock to conditional consumption mean

Estimating my = 1 — by f, — b} g E[rkt] =
by E[SR,, | data] E[SR; | data] E[% datal R? —cov (r™t my)  —cov (ri™t, —by f,)
Panel A. 37 stock and nine bond portfolios in a five-factor model
Posterior median 0.236 0.806 0.474 0.371 0.772 0.069 0.070
90% CI [0.079, 0.385]  [0.554, 1.128]  [0.180, 0.771]  [0.056, 0.756] [0.477, 0.903]  [0.033, 0.109] [0.025, 0.114]
Panel B. 74 Kozak, Nagel, and Santosh (2020) anomaly portfolios in a five-factor model
Posterior median 0.244 0.960 0.489 0.263 0.409 0.071 0.069
90% CI [0.109, 0.382]  [0.735, 1.200]  [0.220, 0.763]  [0.059, 0.563] [0.213, 0.580]  [0.034, 0.111] [0.030, 0.110]

Estimation results for two cross-sections of excess returns: 37 stock and nine bond portfolios (Panel A) and
Kozak, Nagel, and Santosh (2020) 74 characteristic-sorted portfolios (Panel B). We report: (1) risk price of
the shock to the conditional consumption mean f; (by); (2) annualized Sharpe ratio of the SDF in equation
(20), defined as the annualized volatility of the SDF (SR,,); (3) annualized Sharpe ratio of by f; (SRy); (4)
ratio of SR} to SR2,; (5) cross-sectional R?; (6) (annualized) market risk premium implied by the SDF,

—cov (ri™** m;); and (7) (annualized) market risk premium implied by the covariance between market excess
return and —by f;, —cov (r{”kt, —by ft). We estimate the risk prices using the Bayesian approach of Bryzgalova,

Huang, and Julliard (2024). Details are provided in Internet Appendix M. We consider five-factor models of
asset returns. Both the posterior median and the 90% Bayesian credible intervals are reported.
risk component (column —cov (r{™*, —b; f;)).

But what type of returns predict consumption? That is, what type of portfolios and
which industries are strongly correlated with the conditional consumption mean shocks?

Table 6 reports the correlation of the filtered f; shocks with common tradable risk factors
and leading principal components of returns for two different cross-sections of base assets: our
baseline one and the KNS anomaly portfolios. First and foremost, we observe a strong and
stable correlation of the consumption innovations with the overall market index (81 — 92%)
and the first principal component of the based assets (85 — 96%). That is, financial market-
wide shocks are the main drivers of the consumption mean process. This explains why,
in Table 5, the conditional mean shocks can, at least in reduced form, generate a risk
premium that almost perfectly matches the historical mean excess returns on the market
index. Second, the returns on small firms are particularly salient, with large loadings on
fi (see Figure 10) declining monotonically with the size characteristic of the portfolios.
This, in turn, leads to a strong correlation in Table 6 with the SMB factor (about 60%
in both cross-sections). Third, the correlation with the value anomaly (HML) is small
and not statistically significant due to the U-shaped pattern of loadings in Figure 10 in
the Growth/Value characteristic space. Fourth, the correlations with both the Robust-
Minus-Weak (operating profitability) portfolio and also the Conservative-Minus-Aggressive

(investment) portfolio are significantly negative and sizable (respectively, 22 — 30% and
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Table 6: What drives the consumption shocks spanned by financial markets?

Panel A: Baseline stock and bonds cross-section

MKT SMB HML RMW CMA
Correlation 0.917 0.605 -0.127 -0.221 -0.295
95% CI [0.863,0.959 ] [ 0.515, 0.700 ] [-0.292, 0.087 ] [-0.267,-0.173] [-0.425, -0.126 |

PC1 PC2 PC3 PC4 PC5h
Correlation 0.964 0.072 -0.007 -0.132 -0.024
95% CI [0.922,0.990 ] [-0.079, 0.258 ] [-0.136, 0.120 ] [-0.259, -0.048 ] [-0.048, 0.000 |

Panel B: Kozak, Nagel, and Santosh (2020) 74 anomaly portfolios

MKT SMB HML RMW CMA
Correlation 0.811 0.601 -0.0579 -0.299 -0.200
95% CI [0.71,0.909] [0.515,0.689] [-0.201,0.0757] [-0.405,-0.176] [-0.316,-0.083 ]

PC1 PC2 PC3 PC4 PC5
Correlation 0.851 0.291 0.0674 -0.0716 0.279
95% CI [0.761,0.937] [0.14,0441] [-0.117,0.244] [-0.209,0.0624] [0.126 , 0.406 |

Correlation coefficients between f; and Fama-French five factors and the first five principal components
of asset returns. We also report their 95% posterior credible intervals under the coefficient estimates. In
Panels A, the cross-section of base assets used to estimate f; includes 25 size-and-value-sorted portfolios, 12
industry portfolios, and nine bond portfolios, while in panel B we employ the Kozak, Nagel, and Santosh

(2020) cross-section of 74 characteristic-sorted portfolios.

20—30%). Fifth, there is more than solely the first PC of returns reflected in the consumption
process, with higher-order PCs being often significant predictors of consumption growth (PC4
in Panel A and both PC2 and PC5 in Panel B).

Figure 10 also reports the loadings of the 12 industry portfolios on the consumption
mean shocks. All industries have statistically significant and strong-to-moderate loadings on
the conditional consumption mean innovations. In particular, Consumer Durables, Business
Equipment, and Finance (Money) display the highest coefficients (11 — 12%) while Utilities,

Energy, and Telephones and Television Transmission (Telecom) have the lowest (5 — 6%).

IV.2 Implications for Structural Models

The reduced-form estimate of f;’s risk price obtained in the previous subsection (Table 5)
has direct implications for structural models, in particular, for the coefficient of relative
risk aversion (RRA) and the implied risk-free rate. We consider two types of representative
agent preferences: (1) additively separable CRRA and (2) Epstein-Zin (EZ) recursive utility
— that separates RRA from the elasticity of intertemporal substitution (IES). In Internet
Appendix N, we show how the estimated market price of consumption mean risk and our
estimated dynamics for the consumption process can be mapped into utility parameters and

preference-implied risk-free rate level and volatility.

52



Table 7: Implications for structural models

CRRA Epstein-Zin
S=0 2 4 6 8 10 12 14 =15 =05
Panel A. Aggregate consumption in 37 stock and nine bond portfolios (constant volatility)
RRA 144.3 52.1 33.7 28.5 28.3 26.7 24.7 25.1 26.0 27.0
90% CI [47.9,234.9] [17.3,84.9] [11.2,54.9] [9.5,46.5] [9.4, 46.1] [8.9, 43.4] [8.2,40.3] [8.4,40.9] [9.0,41.9] [10.1, 43.0]
E[ry] 29.40% 51.60% 39.03% 34.51% 34.32% 32.77% 30.87% 31.28% 1.71% 3.72%
o(ry) 103.27% 37.31% 24.11% 20.43% 20.29% 19.10% 17.69% 18.00% 0.48% 1.43%
Panel B. Aggregate consumption in 37 stock and nine bond portfolios (stochastic volatility)
RRA 180.2 76.5 41.4 32.6 30.2 25.0 20.8 20.1 21.1 22.3
90% CI [59.8, 293.4] [25.4, 124.6] [13.8, 67.4] [10.8,53.1] [10.0, 49.2] [8.3, 40.6] [6.9, 33.9] [6.7, 32.8] [7.4, 34.0] [8.6, 35.1]
E[ry] 12.86% 65.02% 46.60% 39.13% 36.88% 31.68% 27.28% 26.56% 2.08% 3.72%
o(ry) 192.96% 65.77% 32.62% 25.11% 23.10% 18.82% 15.51% 15.00% 0.49% 1.43%
Panel C. Aggregate consumption in Kozak, Nagel, and Santosh (2020) 74 anomaly portfolios (constant volatility)
RRA 150.7 42.6 27.7 21.7 19.9 17.7 16.0 15.7 16.5 17.7
90% CI [67.3, 235.4] [19.0, 66.5] [12.4, 43.2] [9.7,33.9] [8.9,31.1] [7.9,27.7] [7.1,24.9] [7.0,24.5] [7.7,25.5] [8.9, 26.7]
E[ry] 44.65% 47.59% 34.42% 28.28% 26.30% 23.87% 21.83% 21.55% 1.77% 4.28%
o(ry) 126.13% 35.66% 23.14% 18.17% 16.65% 14.84% 13.35% 13.15% 0.56% 1.67%
Panel D. Aggregate consumption in Kozak, Nagel, and Santosh (2020) 74 anomaly portfolios (stochastic volatility)
RRA 159.7 46.4 30.2 22.1 19.5 16.8 14.6 144 15.2 16.4
90% CI [71.3,249.4] [20.7, 72.4] [13.5,47.2] (9.9, 34.6] [8.7,30.5] [7.5,26.2] [6.5, 22.8] [6.4,22.4] [7.1,23.4] [8.3,24.6]
E[r/] 41.64% 50.78% 37.09% 28.83% 25.96% 22.86% 20.29% 20.00% 2.16% 3.86%
o(ry) 158.52% 40.89% 26.18% 19.00% 16.71% 14.33% 12.43% 12.22% 0.61% 1.71%
Panel E. Shareholders’ consumption in 37 stock and nine bond portfolios (constant volatility)

RRA 110.1 17.9 11.0 10.0 9.8 7.0 7.4 5.7 6.5 7.7
90% CI [36.5, 179.2]  [5.9, 29.1] (3.6,17.8] [3.3,16.2] [3.3,16.0] [2.3,11.5] [2.4,12.0] [1.9,94] [2.6,10.2] [3.8,11.4]
E[ry] 49.52% 23.58% 15.67% 14.46% 14.27% 10.81% 11.22% 9.15% 1.47% 5.51%
o(ry) 78.77% 12.78% 7.84% 7.13% 7.02% 5.04% 5.27% 4.11% 0.48% 1.43%

Estimates of RRA, average implied annualized risk-free rate, and its annualized volatility, using two cross-
sections of asset returns: (1) 37 stock and nine bond portfolios and (2) Kozak, Nagel, and Santosh (2020)
74 anomaly portfolios. The risk price of f; (and its 90% CIs), denoted by by, are from Table 5. Cumulative

impulse responses of nondurable consumption growth, Zf:o pj, are estimated using our MA model, with
S = 14 quarters. We consider specifications with and without SV. In models with SV, we assume three
separate SV processes, O’it, ajzc’t, and af’t, all of which are allowed to drive conditional mean returns.

In the CRRA case, the RRA coefficients are given by vg = bf/zf:() p;, where S € {0,2,...,14} (see
equation (IA.44) of the Internet Appendix). In the Epstein-Zin case, we consider two different values of

IES, ie., ¥ € {0.5,1.5}, and v = (bs + ;; Zle k1p;i)/(po+ Zle k1p;) (see equation (IA.54) of the Internet
Appendix). Mean and volatility of the risk-free rate are obtained using equations (IA.42) and (IA.48) of
the Internet Appendix, where 6 = 0.9965 (following the quarterly calibration of Bansal, Kiku, and Yaron
(2016, Table 6)). In Panels A-D, we consider the aggregate nondurable consumption data, while Panel E
uses shareholders’ consumption data.

Note that the estimated market price of consumption risk in Table 5 already generates

a market risk premium in line with its historical average. Hence, the questions to ask are

whether, given a preference setting, too high RRA is required to yield the estimated price of

risk and whether the implied risk-free rate is realistic. That is, we ask whether our uncovered

dynamics for the consumption process can jointly match the equity premium and risk-free

rate puzzles.

Panels A-D of Table 7 report the results based on the aggregate consumption data.
For CRRA preferences, we report the implied RRA level in the canonical C-CAPM (S =

0) and also using the ultimate consumption risk approach of Parker and Julliard (2005)
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(S = 2,...,14), which allows consumption to react slowly to return innovations.? For EZ
preferences, we considered two possible calibrated values for the IES, ¢ = 1.5 and ¢ =
0.5. Not surprisingly, when we consider only the contemporaneous response of consumption
growth to asset return shocks (S = 0), the implied RRA estimate in the CRRA preference
is larger than 100. As we allow for a slow reaction of consumption to asset return shocks,
for example, S = 14, the implied RRA is much lower (from 25 in Panel A to 15 in Panel D),
and values below 10 are now within the 90% confidence bands. However, the implied real
risk-free rate is too high (20 — 31%) and volatile (12 — 18%) with CRRA preferences.

Does our method improve the performance of the CRRA model compared to Parker
(2001)? Figure IA.36 of the Internet Appendix plots the RRA coefficients implied by the
VAR approach of Parker (2001). Similar to our state-space formulation, the VAR-implied
RRA declines from more than 100 to 28 at the three-year horizon. However, the RRA
coefficients based on our method can be significantly lower, particularly in the cross-section
of KNS anomalies. What drives the difference between VAR and our MA model? The former
assumes that shocks to the market index are the only spanned innovations in consumption.
Instead, our MA model, as we show in simulations, and which seems to be the case in the
data (see Table 6), can capture an arbitrary linear combination of systematic latent factors
spanned by financial markets. Hence, when consumption growth reacts to other factors
beyond only the market return (as in the cross-section of KNS anomalies), we detect a
significant difference between the VAR- and MA-implied estimates of RRA.

EZ preferences in Panels A-D of Table 7 yield moderate levels of risk aversion (15 — 27),
with a substantial likelihood of values below 10, irrespective of the calibrated IES coefficient.
Instead, the risk-free rate level and volatility are quite sensitive to the choice of 1. For
1 = 0.5, the implied level (3.7 — 4.3%) overshoots the historical average (1.68%), and the
implied volatility (1.43 — 1.71%) roughly matches its historical, ez-post, volatility (2.44%).2
For ¢) = 1.5, EZ preferences almost perfectly match the risk-free rate level (1.71 — 2.16%)
and provide reasonable values for its implied, ez-ante, volatility (0.48 — 0.61%).

Finally, in Panel E of Table 7, we compute the implied RRA coefficient and risk-free rate

258ee equations (IA.43)-(IA.44) of the Internet Appendix.

26Note that this historical volatility is an upper bound for the ex-ante real risk-free rate volatility that the
models should match.
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based on the impulse responses of shareholders’ consumption growth (in Figure 4). In this
case, due to the much larger responses of shareholders’ consumption to return shocks, the
RRA coefficients are about 6 — 8 for S = 14 and EZ preference.?” Nevertheless, only EZ

preferences with 1) = 1.5 can also match well the observed risk-free rate.

V Conclusions

We identify the stochastic process of consumption growth using the information contained
in financial returns. Our strategy relies on the central insight of the intertemporal Euler
equation of models that have consumption as one of the state variables entering the utility
function: Most shocks affecting the household force it to adjust both investment and con-
sumption plans. We confirm this mechanism by using the micro-data on shareholders’ and
non-shareholders’ consumption from Malloy, Moskowitz, and Vissing-Jorgensen (2009).

We show that a flexible parametric model with common factors driving returns and con-
sumption identifies the slow-varying conditional mean of consumption growth. This com-
ponent is persistent at business cycle frequency and is economically substantial, capturing
more than a quarter of the variance of consumption growth. Furthermore, the predictability
that we uncover does not appear to be caused by measurement issues of consumption such
as time averaging, measurement error, and benchmarking. Hence, our findings indicate that
the shocks spanned by financial markets are first-order drivers of consumption risk.

The conditional consumption mean shocks are priced in the cross-section of asset returns,
and demand an annualised Sharpe ratio of 0.5. Furthermore, we embed the estimated con-
sumption dynamics into an otherwise standard Epstein and Zin (1989) preference setting
with elasticity of intertemporal substitution above one (as in Bansal and Yaron (2004)).
Such a calibration can match both the unconditional equity premium and the risk-free rate
level and volatility, with low relative risk aversion.

We also show that detecting time variation in consumption volatility requires properly
accounting for both the conditional mean process that we uncover and the measurement

issues in consumption data. Nevertheless, we find no empirical evidence for the stochastic

27A caveat is that the risk price estimate, by, is based on a larger sample (1963:Q3-2019:Q4), whereas the
IRFs of shareholders’ consumption growth are based on a limited sample (1982:Q1-2004:Q3).
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volatility of consumption driving time-varying risk premia.

Compared to the previous literature, our findings are obtained using not only more
general and flexible specifications but also less restrictive priors and much richer asset return
data. In addition, we provide a sizable set of complementary evidence that does not rely on
our parametric formulation but rather supports the main findings of our state-space analysis.

Our findings have first-order implications not only for macro-finance models but also,
and arguably more importantly, for the assessment of the costs of business cycle fluctuations

and optimal fiscal and monetary policies. We defer the study of these effects to future work.
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Figure A1l: Robustness check: S = 20.
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The figure plots (a) the cumulative IRF of consumption growth (S = 20), (b) the MA component of con-
sumption growth, (c) stock loadings on f;, (d) bond loadings on f, (e) variance decomposition of ACy_1 ¢+5
(adjusted R?), and (f) variance decomposition of ACyy;j_1,+; (adjusted R?). We consider a single-factor
model in equations (2)—(3), with S = 20. The cross-section of test assets includes 25 size-and-value-sorted
portfolios, 12 industry portfolios, and nine bond portfolios. Red triangles in Panel (a) denote the cumulated
IRF of the long-run risk model (Bansal and Yaron (2004)) in the monthly calibration of Hansen, Heaton,
Lee, and Roussanov (2007) aggregated to quarterly frequency.
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A Simulation design

We assume the same data-generating process of the log consumption growth as in Bansal
and Yaron (2004), with the only exception being that we introduce a square-root process for

the variance, as in Hansen, Heaton, Lee, and Roussanov (2007); that is:

Act,t—f—l = U +x: + OtNt+1,

Tip1 = PTy + Qe0iesy1, and
2 2 2
Ot41 =0 (1 —v1) +v107 + 0woW1,

iid
where 1,11, €, wp ~

0.979, ¢ = 0.044, 0 = 0.0078,v; = 0.987, and o, = 0.00029487.

(0,1). The calibrated monthly parameter values are p = 0.0015, p =

We use this particular long-run risk (LRR) calibration because it ensures the nonnegativ-
ity of the volatility process and, most importantly, it gives the best chance of detecting the
predictability of consumption using the simple ARIMA selection methods commonly used in
empirical work: The contribution of the conditional mean to the variance of the consumption
growth in this calibration is about 12% at the quarterly frequency, the largest share among
leading LRR calibrations.

When also simulating return data, we further assume that log excess returns (rg, ;) follow

e . r r
Tit1 = Mr + P Epp1 Wiy,
Nx1 Nx1 Nx1 Nx1

where u, is a vector of average monthly log excess returns, p” is a vector of returns’ load-
ings on the contemporaneous shock, e;41, which drives the conditional mean of Ac; 41, and
Wy S (0,%,). For simplicity, we assume that 3, is diagonal and constant over time in
the simulations. Values of .., p”, and 3, are selected to be their sample estimates in the
main text.? After simulating monthly sequences of (Acy 1, 7§ 11), We aggregate them into

quarterly sequences by summing all three monthly observations within a quarter. We sim-

ulate 1,000 sample paths with 214 quarterly observations. Because we approximate the log

2More precisely, we obtain the estimates of p,., p”, and X, using quarterly data. In the simulation of
monthly returns, we divide all three parameters above by 3.



consumption growth using an MA(14) process, there are 200 effective quarterly observations.

B Additional methodological details

B.1 State-space estimation with constant volatilities

We can rewrite the dynamic model in equations (2) and (3) in state-space form, assum-

ing Gaussian innovations with constant volatility (the general SV version is presented in
Appendix B.2), as

2zt =Fz 1 +v, vi ~ N (0g,;7P), and (TA.1)

yi =p+Hz +w,, wy ~N(Oyy1,2), (IA.2)

/
Y

where Y = [Acbrf/]a 7 1= [ft7 i ft—§7g£] K= [Mmlﬁﬂ/ y Vi 1= [ft,olg,gﬂ/, Wi = [wtcaw;?l]la

1 0, 0, 0 0 ,
’ ) o; Oy o p1 o ps Oy
¥i=1 05 Osxs  Osxioy |- Fr=| g 03K = , H=

Oy %, Py On ... On pg
Ok-1 O_1yxs  Ix-1 Ox—1)x5 Ox—1)xK —_—

(N+1)x(N+1) (N+1)x (S+K)

(5+K)x(5+K) (S+K)x(S+K)
(IA.3)

and Is and Og, s denote an identity matrix and a matrix of zeros of dimension S.
Similarly, the dynamic system in equations (5)—(6) can be represented in the state-space

form (IA.1)-(IA.2) with z, := [f;, ..., fi_g. by, .., by_g]'s Vi i= [ft,O’g,bt,Og,}/ ~ N (0;0); U

and F being block diagonal with blocks repeated twice and given by the first two matrices

in equation (IA.3) (when K = 1); and space equation matrix of coefficients given by

Po e e Pg 90 Hg
i 0 .. 0 & 0
Haoo | o e e e e | (1A.4)
Py, O 0 6% 0 0
0 .. 0 0 0 0
Pk 0 ... 0 0 0 .. 0
(N+1)x2(5+1)

The state-space model above implies the following conditional likelihood for the data,

yt|It—1auaH7\IJvZ7Zt NN(”+HZt7E) ) (IA5)



where Z;_; denotes the history of the state variables until time ¢ — 1. Hence, under a diffuse
(Jeffreys’) prior, conditional on the history of z; and y;, and given the diagonal structure of
Y, we have the standard Normal-Inverse-Gamma posterior distribution for the parameters
of the model (see, e.g., Bauwens, Lubrano, and Richard (1999)). Moreover, the posterior
of the unobservable z;, conditional on the data and the parameters, is constructed using a
standard Kalman filter and smoother approach (see, e.g., Primiceri (2005)).

Let IT" := [pu,H] and ] := [1,2;]. Under a diffuse prior, the likelihood of the data in

equation (IA.5) implies the posterior distribution

T T - -1
02 {2}, Ayl ~ N (Mo o @) ).
where & contains the stacked regressors, and the posterior distribution of each element on
the main diagonal of ¥ is given by®
2 T T ~2
Uj’ {2}y AYi} ey ~ Inv-T ((T —m; —1)/2, TJj,OLS/Q) )

where m; is the number of estimated coefficients in the j-th equation. That is, the conditional
posterior has a Normal-Inverse-Gamma structure. Moreover, F and W have a Dirac posterior

distribution at the points defined in equation (IA.3). Therefore, the missing part necessary

for taking draws via MCMC using a Gibbs sampler is the conditional distributions of z;.

)

where Q := Var,_ (y;) = HVH' + X, z; can be drawn using a standard Kalman filter and

Because
Q H

H ¥

Yyt )

Fz;,_,

)

I HU.X~ N ([

Zy

smoother approach.

B.1.1 Kalman filter algorithm

Let zy, := E [z|y”, H,¥,X] and V. := Var (z|y”, H,¥,X), where y” denotes the history
of y; until 7. Then, given zg|o and Vo, the Kalman filter delivers: z,;_; = leff”tfl; Vi1 =
FV,  F + ¥ K, = Vg H (HVy H +3) 5 2 = 20 + K (v — 0 — Hzgy )5
and Vi, = Vi1 — KkHV ;1. The last elements of the recursion, zrr and Vg, are the

mean and variance of the normal distribution used to draw zr. The draw of zp and the

output of the filter can then be used for the first step of the backward recursion, which

3By relaxing the diagonality assumption, the posterior distribution of ¥ ~! becomes a Wishart centered
at the OLS estimates.



delivers the zp_y 7 and Vp_y 1 values necessary to make a draw for zp_; from a Gaussian
distribution. The backward recursion can be continued until time zero, drawing each value
of z; in the process, with the following updating formulas for the following generic time-¢
TeCUrsion: Zjy 41 = Zy + Vt|tF’Vt_+11|t (zt+1 — th|t) and Vi1 = Vi — Vt|tF’Vt_+11|tFVt|t.

Hence, parameters and states can be drawn via the Gibbs sampler, as follows:

1. Begin with a guess of IT' and £~* (e.g., the frequentist maximum likelihood estimates)
and use it to construct initial draws for g and H. Using F and ¥, draw the z,; history

using the Kalman recursion above with (Kalman step): z; ~ N (Zt\t+1; Vt|t+1).

2. Conditioning on {z},_, (drawn in the previous step) and {y;},_,, run OLS imposing
the zero restrictions and get IT}, ¢ and 3L, and draw II' and 3! from the Normal-
Inverse-Gamma (N-i-I" step). Use these draws as the initial guess for the previous point

of the algorithm, and repeat.

B.2 A generalized model with stochastic volatilities

To complete the specification in equations (2) and (16)—(19), we need to formalize the au-
toregressive volatility processes and the prior formulations. We do so in what follows, and we
also provide the sampling algorithm for the generalized state-space model for consumption,

returns, and their volatilities.

B.2.1 Stochastic volatility of w{

Let %, = log((wf)?) = ha+1log(eZ) and he = e+ 0c(het—1—1e) + Opeter, Where €y ~ N(0,1)
and 1 S N(0,1), and they are independent. Let e = log(€%) ~ log(x*(1)). We estimate
the model following Kim, Shephard, and Chib (1998). More specifically, we approximate e
using a mixture of Gaussian distributions, e, = 2]7‘:1 q; N (m;—1.2704, 1)]2»), or, equivalently,
eet | Set = j ~ N(mj — 1.2704,v7), where 237':1 q; = 1, and values of {m;}]_, and {v;}i_,
can be found in Table 4 of Kim, Shephard, and Chib (1998).

Following is the algorithm used to estimate the unknown parameters {he:, Set, e, Oc, Oye }:
Step 1: Initialize {Se}1, Ve, ey Ope.
Step 2: Sample {hq}{, from he | y2, Se, e, 0c, 0pe (Kalman Smoother step).



Step 3: Sample S, from p(Se | ¥, het), Where
P(Set = J | Yy het) q; X P2 | het, St = )
o q; X fn(Ysy | he +mj —1.2704,07).

Step 4: Update 9., d., 0. An inverse-gamma prior for o7, that is, o7, ~ I"'(%, %), yields

p(asc | yZ7SC)wC7(SC)h' ) O(p(h |1/)C7 CH nc) (U%C) “p(hc,l | wC7 C7 nc Hp Ct+1 | wc; (3] nc) ( )

17 v
o (02,) 7 exp {_ i1 s = e = Ol — )| + (heq — ¥e)?(1 = 52)} (62) 2 texp {— % } :

2 ne 2
20'77C 20nc

Therefore, the conditional posterior is

T + 00 So + Z’f:_ll [hC,t+1 - wc - 5c(hct - ¢c)]2 + (hc,l - d)c)Q(l - 63))
2 2 '

07276 ‘ y:) chwc,(sca hc ~ 1—‘_1 (
Let 0, = 2¢ — 1, and ¢ ~ Beta(¢™M,$?). Therefore, the prior distribution of J, is
7(6e) o (14 6,)%"~1(1 — §,)?”~1. The posterior distribution of 4, is

P(8e | Ve, he, o) o w(de)p(he | e, Oc, 7).

T 1
Pl | e, 02,0%) oc (1-02)ex {— — (Ct_wc)]2+(h°’1_1/)0)2(1—53)}’and

2
20,,

thll[ ct+1 — 1/1c - c( ct — wc)]2 + (h’c,l — 1/)c)2(1 _ 53) L (1 — 53)

log p(he | e, 5(;,0,270) x 572 + 5 log
nc

The function above is concave in 6, for all values of ¢(!) and ¢®. Hence, 6, can be

sampled using a reject-accept algorithm. Let

T 1

5= t:l[ et+1 — wc][ — 1] and Vj, = 030

o 1 Thes zpc] N e — vl

We first sample a proposal §* from a normal distribution N/ (SC, Vs.) and accept the new value
6 with probability min{1, exp(g(&¥) — g(6:7'))}, where
(heq — We)* (1 —0%) 1

_ . > c - 52
9(6.) = log(x(6.)) g g los(1= ).




Finally, we assign a diffuse prior for 1., as follows:

p(d}c | hm Cy 770) X exp { Z [hc t+1 — wc - 5C<h6t - ¢c)]2 + (hc,l - wc)z(l — (52) } ‘

2
20;,

Therefore, we obtain the posterior distribution of v.: ¥, | h ~N (Q/AJC, ai), where

CH C7 nc

o2

c c 7(50 = C 5 C
oy, = ez s and e = ol {(1 62)h 1y Ui (et 1=0chet] }

o} Ore

Step 5: Return to Step 2 until convergence.

B.2.2 Stochastic volatility of f;

The shock f; follows a normal distribution with the stochastic volatility process given by

Yre = log(f7) = hye +1og(e}), g = Ophge + Vi~ Onse:

where €, S N(0,1) and 77, ¢ A(0,1), and they are independent. Let ey, = log(€7,) ~
log(x?(1)). The process above for hy, is simply an AR(1) normalized to have unconditional
zero mean and unit variance. As previously, we approximate ey, using a mixture of Gaussians;
that is, e, = 237':1 q; N(m; — 1.2704,v7). The sampling algorithm is given below.

Step 1: Initialize {S;}]_, d

Step 2: Sample {hy}/_; from hy |y}, Sy, 05 (Kalman smoother step).

Step 3: Sample Sy; from p(Sy; | Y%, hse)-

Step 4: Update oy using the Metropolis algorithm. Similar to the prior distribution of 4.,
we assume that d; = 2¢ — 1, and ¢ ~ Beta(¢™M), ). The posterior distribution of Of is

p0s [ by ¥y, vy =0) o< w(0p)p(hy | Y5, 05,75 = 0)

T 2
1 2 T-1 _o(hp —Ophyiq)*  h%y
146 oW-101 50011 _ 52)- 5 exp _Ztg( It Lkt Pl VAN S O
o (L+6,)"" 711 = 87" (1 = ) =57 .

We draw d; using the Metropolis algorithm: (M1) initialize 69; (M2) draw 6% from a nor-

)*; (M3) calculate p(d} (5(1 Yy = min{1, #Ifh))} (M4) set

5f = 5(1 Y with probability 1 — (0%, 5](f_ ) and 5;) = 0% with probability p(0% (5(Z 1)).

mal distribution N (d; (-1

Jmh

Step 5: Return to Step 2 until convergence.

4¢mn determines the step size in the Metropolis algorithm. We aim to choose ¢, such that the frequency

of accepting a new 4y is about 50%.



B.2.3 Stochastic volatility of asset returns

Let y} = ko + K1 hy + € and hyy = 6,01 + /1 — 6214, where
Nx1 Nx1 Nx1
log(wf,)? Er 1t log(et;)
y:t = y Ept = = 9

log(wh,)? €rNt log(€;)

and the €;; shocks are independent across different assets. In the model above, we assume that
one hidden state, h,;, drives the common component of asset-specific stochastic volatilities.
In order to identify the model, we normalize h,; to have zero mean and unit variance. In
order to simplify the estimation, we further exclude k¢ by demeaning y}, to have the same

sample mean as e,;. Therefore, the model is simplified as
Ko = y:t - g:ty ’g:t = Kllhrt + €Ert, hrt = 5rhr,t—1 + 1-— 5377%)

fori =1,2,...,N, e,y = 2]7.:1 g N(m; — 1.2704,1)]2), or equivalently, €;,;+ | Siyt = j ~

N (m; —1.2704,v5). Therefore, 77, | 5 Bty Sive = G 1 N (5 g +my — 1.2704, v7). Let

g:i(i) —my;1 + 1.2704 01'21 h,1
?r*’(i) = ) Vr(Z) = - 7H'I’ = )

_*,(7)

Yop —mir + 1.2704 Vi hyT

where m;; = m; and Vi = ’UJQ- if S;; = j. Assuming a diffuse prior for mﬁi’, we have
p(st) | Y20, Hy (S} y) o p(00 | 61 Hy {Sii} )
1 —. . , , _ . .
x exp{—5 (V@ — Hy) (V)T (YO — Hos?)), and

ligi) | 177‘*,(11)7HT’ {Si,rt}le NN(:‘%gz), [H;r(‘/r(i))—lHr]—l),

where 2" = [HT (V) H, ' H (V;%))=1Y,»®  Finally, we update {S;+}E, as follows:
D(Size =3 105" oty 57) o 4 X PG | Byt Sie = 5, 1)

o< g; % fn(G® | K hee +my — 1.2704,02).

The posterior draws of h,; and d, are then obtained in a similar way as previously.



B.2.4 The consumption growth excess return mean-equation coefficients

Because shocks in equations (2) and (16) are uncorrelated, we can sample the unknown

parameters equation by equation. We introduce the following notations:

e ACOJ 0'3’0 0 e 0 1 fl e fl—S'
0 AC » 0 o2, ... 0 1 fo ... fo_g
pe=| | ac=| T |ome= T T | xe= | g}
P3 ACT—LT 0 0 U?,T—l 1 fT fos
L
7: 1 fi o2 O‘%O o2 ofﬂv’o 0o ... 0
Pi 2 2 2 2
1 fo o o s 0 oLy .- 0
p: = ﬁci ’ er = . . C',l Jf,l 7'71 5 and Zwr,i = Tl
81 : : :
B,s L fr JE,T—I 0)2“,T—1 Jg,T—l 0 U Uz,i,T—1
T

Then the posterior distribution of p¢ under a flat prior is as follows:”
P AC, X% 8, ~ N(pgts, [(X9)T(B5) 71X ) ars = [(X9)T(25) 71X (X9)T(35,) ' AC

The conditional posterior for the return equation coefficients under a flat prior is then

pi | Ry, X7 {0t }iso Aoritize ~ N (B giar [(X7) B X717, and

wr,t

P g = [(X]) ' Sh X7 H(X]) S R

wr,t wr,t

B.2.5 Drawing the conditional consumption mean shocks

To sample {f;}L,, let

ACt—l,t - He pPo P1 --- PG
Yt = y = ) ) ) , H= ;
re Hr+ Beoi, 1+ Brof, 1+ Brori 4 pt On ... On

® The likelihood function of the data is AC | p©, X¢, X ~ N (X ¢p®©, X¢,). By applying the diffuse prior
for p©, the posterior distribution of p© becomes

1 R _ R
p(p® | AC, X 55,) x p(AC | p© X €, 55,) oc exp{—5 (p° — Pgts) (X)T(25,) 7 X (p° — pts)}-



_ 2
Jies 0 0 <o OpN—1

Hence, the joint distribution of observables and f shocks is

Yt ~ /1 Qt H
| It—lall'aHa Eha%t—l NN ) T ) (IA6)
Zt th—l H \I/t

o2, , 0L 0. 0 T
where ¥, = | /'~ S |,F:=| 8 ,and Q, = HY,H" +3,. We then use the
05 Osxs Iz 03

Kalman smoother to draw f;, following the same procedure as in Internet Appendix B.1.1.

B.3 Model comparison

The model comparison for the restricted and unrestricted specification in Table TA.I of
Section [ is performed using Bayes factors (i.e., the the marginal likelihoods of the various
models) and posterior probabilities. Based on equation (IA.6), the likelihood function of the
observed data {y;}1, (after integrating out f;) is

T
p(Y | i HASY {07 b)) = [ ] Av(we | 2, 0)

_T(N+1)

= (2m) T T I exp{ 5 (e — ) e — )

T
= (2m) "% [[1HY.H + AR eXp{_%(?Jt — ) (HYH' + %) (y, — 1)}
t=1
A full Bayesian analysis requires us to specify a proper prior for g, H and the parameters
underlying stochastic volatility processes. The difficulty is that there is no closed-form
solution for the marginal likelihood of data. Furthermore, a flat prior for (u, H, By, By) is
improper, hence, the marginal likelihood of the data is unnormalized and there would be an
undetermined constant term in model comparison. And even if we were to assign a proper
prior, the numerical integration would be imprecise due to the high dimensionality of the

parameter and hidden state spaces. Therefore, we follow the literature and approximate the
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marginal likelihood of the data using the Schwartz criterion (i.e., a Laplace, or particular

second-order approximation of the marginal likelihood), as follows

. . di —d
log(BFi2) ~logp(Y | 0(M;)) —logp(Y | 6(My)) — - 2

log(T), (IA.7)

where Y is the observed data, T' is the sample size, M; and M, represent Models 1 and 2,
0(M,) and 6(M,) are the posterior mean of parameter # under Models 1 and 2, and d; and
ds are model dimensions.® The Bayes factor in equation (IA.7) ignores the prior distribution;
hence, we do not need to change our current improper prior. Note that the model selection
based on the above is analogous to likelihood ratio testing (the LR statistic is proportional
to the first two terms in the equation (IA.7)) or the BIC-based model selection.

Posterior model probabilities are then computed using the approximation above of the

Bayes factor and equal prior probability for all specifications; for example, the posterior

BF
>, BF;.

probability of Model 1 is computed as where the identity of the reference Model ¢

is irrelevant.

C Data description

Bond holding returns are calculated on a quarterly basis using the zero coupon yield data
constructed by Gurkaynak, Sack, and Wright (2007),” which fit the Nelson-Siegel-Svensson
curves daily since June 1961, and excess returns are computed by subtracting the return on
a three-month Treasury bill. We consider the following maturities: six months, one, two,
three, four, five, six, seven, and 10 years, which gives us a set of nine bond portfolios.

We consider several portfolios of stock returns. In addition to the bond portfolios,
the baseline specification relies on the 25 size and book-to-market Fama-French portfolios
(Fama and French (1992)) and 12 industry portfolios. In robustness checks, we consider
four additional sets of characteristic-sorted portfolios, including (1) 32 size-profitability-

investment-sorted portfolios, (2) 32 size-value-investment-sorted portfolios, (3) 32 size-value-

6Note that the vector of parameters encompasses both the frequentist parameters
(s By B By P, P7 s We, Ocy Oy 05, Ko, Ko, Or) and the latent states ({fi, 02, Uj%t,aft}f:l).

"The data are regularly updated and available at
http://www.federalreserve.gov /pubs/feds/2006/200628 /200628abs.html.
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profitability-sorted portfolios, and (4) 74 decile 1 and 10 portfolios from Kozak, Nagel, and
Santosh (2018). These portfolios are sorted by 37 firm characteristics that have data since
July 1963.% The stock portfolio data of the first three cross-sections are available from the
Kenneth French data library, while we obtain the data of 74 decile 1 and 10 portfolios from
Serhiy Kozak’s website. We consider monthly returns from July 1963 to December 2019 and
accumulate them to form quarterly returns, matching the frequency of consumption data.
Excess returns are then formed by subtracting the corresponding return on the three-month
Treasury bill.

Consumption flow is measured as the real (chain-weighted) expenditure on nondurable
goods per capita available from the National Income and Product Accounts (NIPA). As
in, for example, Parker and Julliard (2005), we do not include services in our baseline
definition of consumption because these are likely to mechanically bias both the persistence
of the consumption proxy (due to, e.g., utilities and health care) and the comovement with
market returns (due to, e.g., financial services and insurance). Furthermore, nondurable
consumption seems less affected by interpolation and other measurement issues (see, e.g.,
Savov (2011) and Kroencke (2017)). Our results are robust to the usage of alternative
measures and refinements of the consumption proxy (e.g., the exclusion of shoes and clothing,
as in Lettau and Ludvigson (2001, 2001b), due to their semi-durable nature). We use the
end-of-period timing convention and assume that all of the expenditure occurs at the end
of the period between ¢t and t + 1. We make this (common) choice because, under this
convention, the entire period covered by time ¢ consumption is part of the information set
of the representative agent before time ¢ + 1 returns are realized. All the returns are made
real using the corresponding consumption deflator.

In Section II1.1.2, we conduct horse races with the canonical predictors to explore whether
the conditional consumption mean process uncovered by our state-space formulation indeed
captures the consumption predictability. In particular, the real GDP growth comes from
FRED St. Louis. The SPF forecasts are downloaded from the Federal Reserve Bank of
Philadephia. The news indices in Liu and Matthies (2022) are obtained from the authors’

8The author provides the data of portfolios sorted by more than 50 firm characteristics. However, some
characteristic-sorted portfolios do not have available data before the 1970s; hence, we use 37 characteristics
to ensure that the time-series sample is consistent with the baseline analysis.
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websites. Shareholders’ and nonshareholders’ consumption growth are downloaded from
Tobias Moskowitz’s website.

In some analyses, we include the market’s price-dividend (P /D) ratio and the Chicago Fed
National Activity Index (CENAI) to predict stock and bond portfolio returns, respectively.
We download the CFNAI data from the Federal Reserve Bank of Chicago, and the sample
begins in January 1967.

We estimate the P/D ratio by comparing the gross return with the ex-dividends return.
Suppose we have a cross-section of test assets, ¢ = 1,2,..., N, and D; and P; are the
dividends and market prices of portfolio 7 between time ¢ — 1 and ¢. The total and ex-

dividend portfolio returns are defined as follows:

P+ Dyt — Py Py — Py D; P;
it + it it 1’ Rit g= it i,t—1 — it :Rit_Rit,—da and Pi,tfl _ 7

Ry = ; —
' P ’ P P 1+ Rit,—q

We define the market’s P/D ratio as follows:
Zi]il P
Zi:o Zf\il Dl',tfs ’
which is a smooth version P/D ratio used in past research, such as Welch and Goyal (2008)

and Campbell and Thompson (2008).

PDt:

Finally, we use several uncertainty measures commonly studied in the previous literature.
Specifically, the VXO volatility index is downloaded from CRSP (and has been publicly
available since 1986:QQ1). The financial/real/macro uncertainty measures from Jurado, Lud-
vigson, and Ng (2015) and Ludvigson, Ma, and Ng (2021) are downloaded from the authors’

websites.

D Preliminary empirical evidence

To motivate the structure of the state-space model for consumption and asset returns, we
first establish a set of empirical facts via model-free reduced-form approaches. We document
that a) consumption growth is autocorrelated and b) not only asset returns predict future
levels of consumption growth, but they also do it better than the past values of consumption

itself. A detailed description of the data is reported in Appendix C.
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First, Figure [A.1 plots the autocorrelation function (left panel), and the p-values (right
panel) of the Ljung and Box (1978) and Box and Pierce (1970) tests of joint significance of
the autocorrelations, of the one quarter log consumption growth (Ac;s41). The figure shows
that the autocorrelations are individually statistically significant up to the one-year horizon
(left panel) and jointly statistically significant (right panel) at the 1% level, even after 14
quarters (and significant at lower confidence levels at even longer horizons). That is, there

is substantial persistence in the time-series of consumption growth.”

Figure IA.1: Autocorrelation structure of consumption growth.
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Left panel: Autocorrelation function of consumption growth (Acg ¢41) with 95% and 99% confidence bands.
Right panel: p—values of Ljung and Box (1978) (triangles) and Box and Pierce (1970) (circles) tests.

Second, we run multivariate linear predictive regressions of cumulated log consumption
growth Ac; ;145 (for several values of S) on the first eight principal components of time ¢
asset returns.!® Figure IA.2 depicts summary statistics for these predictive regressions at
different horizons (S). In particular, the left panel plots the time-series adjusted R? of these
regressions, and the right panel plots the p-value of the F-test of joint significance of the
regressors for this as well as other additional specifications.

Several observations are to be mentioned. At S = 0, the time-series adjusted R? is quite
large, being about 6.3%. Moreover, the regressors are jointly statistically significant (the

p-value of the F-test is less than 1%). For S > 0, because Aci 1145 = A1 + Acti1 14145,

9Note that, even in the seminal examination of the random walk hypothesis of Hall (1978), the presence
of predictability in consumption growth could not be rejected.

10We use the first eight principal components of the 25 size and book-to-market Fama-French portfolios, 12
industry portfolios, and nine bond portfolios, because they explain about 95% of the asset returns variance.
Using fewer, or more, principal components, or even directly the asset returns series, we have obtained very
similar results to those reported.
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Figure IA.2: Predictive regressions of Ac; 145 on time ¢ asset returns and consumption.
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The figure shows the predictive regressions of Ac; ;4145 on the first eight principal components of asset
returns between time ¢ — 1 and ¢ for different values of S. Left panel: Adjusted R? (blue line with circles)
and theoretical adjusted R? (yellow dashed line with triangles) if all the predictability was driven by the first
period. The red dashed line with pluses stands for the adjusted R? when only ¢ — 1 consumption growth is
used as a predictor. The dotted line with rhombi corresponds to using asset returns to predict the unfiltered
consumption growth of Kroencke (2017). Right panel: p-value of the F-test of joint significance of the
covariates, as well as the 10%, 5%, and 1% significance thresholds.

if asset returns did not predict the autocorrelated component of future consumption growth,
the adjusted R? should actually decrease monotonically in S, as depicted by the yellow dashed
lines with triangles in the left panel of Figure IA.2. Instead, for S > 0, the figure shows no
such decrease in the data (blue dashed line with circles). In fact, predictability increases at
intermediate horizons. Moreover, the regressors are jointly statistically significant for any
horizon up to 12 quarters following the returns.

Could one achieve the same level of predictability by using only consumption data, either
due to a persistent component (independent of returns) propagating through the actual
consumption growth (as, e.g., an AR(1)), or through accumulated non-classical measurement
errors that display a certain degree of persistence? This is unlikely. The red crosses in Figure
IA.2 depict the degree of predictability obtained using only lagged consumption growth,
Ac;_1 4. Although highly significant at horizons up to six quarters, using lagged consumption
as a predictor is inferior to extracting information from asset returns: Not only does this
variable fail to capture the long range of true predictability, but even at the short horizon,
it is almost always underperforming stock and bond returns.

Measurement errors in consumption are unlikely to yield such a persistent level of pre-

dictability either. Although non-classical errors could possibly contribute to a wide range of
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statistical artefacts, most of their impact should either disappear within a horizon of about
one year (if it is related to seasonal smoothing) or be much smaller in magnitude. In order to
test this conjecture, we repeat the same predictive exercise with the unfiltered consumption
data of Kroencke (2017)'! (purple diamonds in Figure TA.2). If the predictability result is
an accidental by-product of a countercyclical measurement error due to smoothing, it must
go away when using the unfiltered data. If anything, as the figure shows, the power of asset
returns to forecast consumption becomes even more apparent. Unfortunately, because only
yearly data are available for unfiltered consumption, the sample is naturally shorter, which
increases standard errors and leads to the feasible use of only three predictive horizons within
our time window. However, even taking these limitations into account, asset returns still
remain significant predictors of future consumption.

The results above highlight that not only is there substantial predictability in consump-

tion growth, but it is also best captured by asset returns.

E Dew-Becker (2017) bounds

Dew-Becker (2017) provides bounds for the long-run standard deviation (LRSD) of con-
sumption growth. Within our framework, this can be expressed as
S

LRSD = std(AE, Z Aciyj) = std((z pi)fr +wf) =
j=0 j=0

In our baseline analysis using nondurable consumption growth, we find that the posterior
mean of (annualized) LRSD is about 2.3%, with [1.2%,3.9%] as 95% CI. Using instead
nondurable plus service consumption, Dew-Becker (2017) estimates that the LRSD of con-
sumption growth in the postwar sample is 2.5% per year, with an upper bound being the 95%
confidence interval of 4.9%. Using the same consumption measure, we estimate a posterior
mean of 2.2% for the LRSD, with [1.1%, 4.0%)] as 95% CI. Hence, the estimates of the LRSD
implied by our state-space method are close to the one in Dew-Becker (2017) and within his

bounds.

1We are grateful to Tim Kroenke for making the data available on his website.
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F Estimation with monthly consumption data

In this section, we consider the consumption dynamics at the monthly frequency. We down-
load the real nondurable consumption data from Table 2.8.3 of BEA and the monthly US
population from FRED St. Louis to calculate the real monthly nondurable consumption
growth per capita.!?

We first consider the estimation without stochastic volatility. Figure IA.3 plots the
cumulative response function of monthly consumption growth to a one-standard-deviation
fi shock. Even at the monthly frequency without the concern of time-aggregation bias, we
find that consumption growth slowly adjusts to the asset return shocks. The cumulative
effects are substantial: They keep increasing even after 15 months, and they jointly explain
about 11% of the time-series variation of (one-period) monthly consumption growth, as can
be seen in Figure IA.4. Moreover, monthly consumption growth shows significantly negative
autocorrelations (see the left panel of Figure IA.5), which may potentially originate from
the mean-reverting measurement error in the monthly consumption data. Consequently, the
null hypothesis of uncorrelated forecast errors in consumption growth is rejected in the data

(see the right panel of Figure IA.5).

F.1 Stochastic Volatility at the monthly frequency

To study the stochastic volatilities of consumption at the monthly frequency, we need to
explicitly model the mean-reverting measurement error; otherwise, we would obtain spurious
volatility clustering (see Figure IA.5). We consider a simple IID measurement error in

monthly log consumption level (as in Schorfheide, Song, and Yaron (2018)),

iid
Ct = C} + Oce v €0y, Where €., ~ N (0, 1),

12 The monthly consumption data are used by previous literature, such as Hansen and Singleton (1983) and
Heaton (1995). However, Breeden, Gibbons, and Litzenberger (1989) show several reasons for using quarterly
consumption rather than monthly data, such as sampling error and infrequent reporting of consumption.
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Figure TA.3: Cumulative response function of consumption growth to a one-standard-
deviation shock spanned by asset returns: Monthly frequency.
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The graph presents posterior means of the cumulative impulse response function of consumption growth
(solid line with circles), along with the centered posterior 90% (dotted lines) and 68% (dashed lines) coverage
regions. These shocks account for 11% of monthly consumption growth time-series variation (monthly data,

07/1963-12/2019).

Figure IA.4: Share of consumption growth variance driven by its moving average compo-
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The figure presents box plots (posterior 95% coverage area) of the percentage of time-series variances of con-
sumption growth explained by the MA component. These plots report the unadjusted R-squared. Left panel:
Cumulated consumption growth Ac;—1;+g. Right panel: One-period consumption growth Ac;—14;+;. We
study a single-factor model of asset returns, with S = 36. The cross-section of test assets includes 25 size- and
value-sorted portfolios, 12 industry portfolios, and nine bond portfolios (monthly data, 07/1963-12/2019).
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Figure IA.5: Autocorrelation structure of consumption growth & its forecast errors.
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Autocorrelation function of Acy.4q1 (left panel) and its forecast error (right panel) with 95% and 99%
confidence bands (monthly data, 07/1963-12/2019).

where c¢; is the latent true log consumption level without measurement errors, and this

implies the following consumption growth dynamics,

S
Acy = e + ijft_j + 0 (€ct — €cp1) twi, wi~N (O, exp(hct)> , (IA.8)
=0 h N g o2
,’7 , measurement error t=1

MA(S)

where we assume that the measurement error is uncorrelated with the innovation to expected
consumption growth, f;, and the short-run consumption shock, w;. The measurement error
in monthly consumption growth, o.. - (€.+ — €.4—1), can explain the significantly negative
one-lag autocorrelation coefficient in Figure TA.5. The return dynamics is the same as in
equation (16).

To estimate the system with an additional measurement error, we need to expand the

space of latent states. Specifically, we write down the following state-space model:

2z =Fzi 1+ vy, vi ~N (05,5, %,;), and (TA.9)

ye=pe + Hz +wy, wy ~ N 0y, 3), (IA.10)

where y; := [Aci_14, 1], vy := [ft,O’g,ec,t,O}/, w, = [, wi'],
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In the monthly data, the measurement error, quantified by o, is sizable. The posterior
mean of o.. is 0.0036. Note that the volatility of the monthly consumption growth is 0.0072;
hence, ignoring measurement errors would induce mechanical volatility clustering.

Results are reported in Figures IA.6 and IA.7. First, the short-run consumption volatility
is still hard to detect. As Panel A of Figure IA.6 shows, there is an entire range of constant
volatility levels for ait. Second, the long-run consumption volatility, 0-]2‘,t7 is sharply identified
using the monthly data. Third, the common market volatility, 037“ becomes much spikier
at the monthly than quarterly frequency, especially in the early 2000s. Finally, neither
short- nor long-run consumption volatility (ait or J]%’t) significantly predicts excess returns
(see Panels A and B of Figure IA.7). In contrast, the common market volatility negatively

predicts the next-month excess returns, although most of the coefficients are not significant.

G Mixed-frequency state-space estimation

In the main analysis of the quarterly consumption growth, we ignore the fact that consump-
tion is measured over a time interval, whereas asset prices are observed at a higher frequency
(e.g., monthly). In this section, we derive a mixed-frequency state-space model to handle
the time-aggregation bias. Specifically, we assume that we observe only the quarterly con-
sumption growth in the final month of a quarter but monthly portfolio returns. However,
the estimation in this section does not rely on monthly consumption growth. The estimation
based on monthly consumption data is reported in Section F.

Throughout this section, we use ¢ to denote the month ¢. For instance, r{ denote the

excess returns in month ¢. Consumption data, C}, are observed at the quarterly frequency,
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Figure IA.6: Filtered stochastic volatilities of monthly consumption and returns.
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Panel C: Common log volatility of asset return (h,; of equation (19)).

The figure shows the estimated stochastic volatilities of the model in equations (16) and (IA.8). Solid blue
lines depict the posterior median of the log volatility, whereas dotted red lines denote 2.5% and 97.5%
credible intervals. Shaded (patterned) areas reflect constant volatility levels that would not be rejected given
the credible intervals. Both consumption and asset returns are observed at the monthly frequency.
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Figure IA.7: Loadings of excess returns on monthly consumption and returns volatilities.
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(07,_1) in equation (16).

The figure shows the box plots of the posterior distributions of the loadings of portfolio excess returns on
the variance of shocks to the conditional consumption growth and the common financial returns variance.
Portfolios are ordered with bonds first (1-9), Fama-French 25 size and book-to-market second (10-34), and
industry portfolios last. Both consumption and asset returns are observed at the monthly frequency.

which equals the sum of the monthly consumption within the quarter: C; = C;+C;_, +C},,

where C} denotes the unobserved monthly consumption. Using the log-linearization (see,

for example, Schorfheide, Song, and Yaron (2018)), we obtain log C; = 3 (log Cf +log C;_; +
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log Ct*_z). Hence, the quarterly consumption growth, for all ¢, is

1
3

2
3

2
3

1

Act—B,t =log C; —logCy_3 = 3

Ac; + s Ac 1 + Aci_y + s Aci_g + Ay, (TA.11)

where Acy = log Cf —log C}_; denotes the unobserved monthly consumption growth.

We assume the same data-generating process of asset returns as before,
¥ = py o+ P+ W, (1A.12)

where the only difference is that we now observe r{ at the monthly frequency. Moreover,

monthly consumption growth can react slowly to the f; shocks, as follows:

5
AG =i+ Y pifig +ui, (IA.13)
=0

H,_/
MA(S)

which implies the following MA representation of quarterly consumption growth Ac;_3;:

g
1 2 2 1
Aci-gi = e+ ) pj <§ft—j t3fiitfimi2t 3fij-s t gft—j—4> +wy, and  (IA.14)
§=0

1 2 2 1
pe = 3pg, wi = gwtc* + gwgil +wiy + gwtcig + §w§i4.

We take an agnostic view on the dynamics of w{*; hence, we do not impose a MA(4) process
for wg. It is worth noting that the distribution of w§ does not affect the consistency of p,.

and p°, as long as it is a zero-mean process and uncorrelated with f;.

We introduce the following matrix notations:

A 3 [0 ] [0 ] [0 ] [0 ]
fi—s P3 P5-1 P52 P5-3 P54
2= \fis_1|> Po=[0|> P1=1 ps |+ P2= |ps_1|> P3= |ps_a|> P2= |ps_s|>
Ji—5-2 0 0 Ps P51 P52
fi—5-3 0 0 0 Ps P5—1
—y | 0] L 0] L 0 ] L 0] | p5 ]

23



which imply the following dynamics for quarterly consumption growth:

1, 2 2 1
Tz +wf, where: p® = Zpf+ 2pi + o5+ 2p5 + 5p5 (IA15)

Act—3,t = e + (PC) 3 3 3 3

Note that we observe Ac,_3; only once per quarter. To handle the missing data issue,

we follow Mariano and Murasawa (2003) and define Ac;” 5, as follows:

N Ac;_34, tis the last month of the quarter,
Act73,t =

d;, otherwise,

where d; is a random draw from a distribution that does not depend on the model parameters
(denoted by 6). As in Mariano and Murasawa (2003), we assume d; ~ N (0, 1), yielding the
likelihood

p({AC;?),t:rf}?:l | 9) = p({ACt—?),t,rf}tT:l | 0) Hp(dt),

teA
where Ac,_3, is missing for all t € A. Therefore, the inference for € does not depend on d,.
For simplicity, we follow Mariano and Murasawa (2003) and set d; = 0 for all ¢.

We can now write down a mixed-frequency state-space system,

7z =Fz 1 +vy, vi ~N (05,5, ¥), and (IA.16)
ye = e + Hyzy +wy, Wy~ N (Onsq, 3) (IA.17)
+ el Al / ' po—
where Yt = [Act—3,t7rt :|7 Mt = [MC,tu“r] y Vi 1= |:ft70§+4:| y Wi 1= [wt7wt ] )

1 0’; 0’ 0 a2, 0 H,,
U= S+ , F.=| ot , Xy i= LN , H; = . ,
0514 0(544)x(5+4) Is,, 054y Oy 3, Py On ... Oy
—_——

(5+5)x(5+5) (5+5)x(5+5) (N+1)x(N+1) (N+1)x(5+5)
e, tis the last month of the quarter (p°)T, tis the last month of the quarter
fhet = H ;=
. T .
0, otherwise 0g +5) otherwise
R Wet, tis the last month of the quarter ) o2, tis the last month of the quarter
We,t = Oct =
ds, otherwise 1, otherwise
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There are two major differences from the benchmark analysis based on the time-aggregated
quarterly data. First, there is a measurement error, denoted by d;, in the consumption growth
equation when Ac,_3, is missing (that is, when ¢ is not the last month of the quarter). Sec-
ond, we infer the common factor f; using monthly asset returns and quarterly observed
consumption growth. However, when Ac,_3, is missing, it does not play a role in estimating

fi- To see the last point, let’s consider the standard Kalman filter,

-1
Zijt—1 = Fzé_l\t_l; Vt|t—1 = FVt—l\t—lF/ +¥; Ky = Vt|t—1H:5 (HtVt|t—1Ht, + Et)

Zy|t = Zejt—1 T K; (Yt — Kt — tht|t—1) ; Vt|t = Vt|t—1 - KthVt|t—1;

2, =Elz |y, H,, ¥,%,]; and Vy, :=Cov(z |y, H, ¥, 5%,).

When t is not the final month of a quarter, the first row of H; consists of zeros, so the
Kalman gain K; depends only on the factor loadings of asset returns (p). Moreover, the
first element of y, — p¢ — H;zy—1 is zero when Ac,_3, is not observed. This observation
echoes our previous argument that the assumption of d;’s data-generating process is not

essential as long as it does not rely on 6.

Figure TA.8: MA component of consumption growth: Mixed-frequency estimation.
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The figure shows the posterior mean of the moving average f; component of quarterly consumption growth.
Grey areas denote NBER recessions. We study a mixed-frequency single-factor model in equations (3) and
(IA.14), with S = 36 (months). The cross-section of test assets includes 25 size- and value-sorted portfolios,
12 industry portfolios, and nine bond portfolios.
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Figure TA.9: Autocorrelation structure of consumption growth squared forecast errors:
Quarterly frequency.
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Left panel: Autocorrelation function of @"t (Actt41) with 95% and 99% confidence bands. Right panel:
p-values of Ljung and Box (1978) (red triangles) and Box and Pierce (1970) (blue circles) tests (quarterly
data, 1963:Q3-2019:Q4). The model is based on the mixed-frequency state-space estimation.

Figure IA.10: Predictability of consumption squared forecast errors.
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Predictive regressions of @"Hh (Actth t+n+1) on the time-t first eight principal components of quarterly
asset returns at several horizons h. We report the p-value of the F-test of joint significance of the covariates
as well as the 10% and 5% significance thresholds (respectively, horizontal dot-dashed and dotted lines). The
solid blue line with circles denotes statistics for the correctly specified conditional mean for the consumption
growth process, while the dashed red line with triangles corresponds to the assumption of a constant con-
ditional mean. In the correct mean process, we estimate a mixed-frequency state-space model of quarterly
consumption growth and monthly asset returns.

G.1 Incorporating stochastic volatility at mixed frequencies

We consider the following return dynamics at the monthly frequency:

e = e + P fi+ By Uj2‘,t—1 + Nﬁr U?,t—l +wy, fi~N|0exp(hy) |, (I1A.18)
x1 2

Nx1 Nx1 Nx1 Nx1 Nx1 0%t

where 07, | is a common market volatility process that affects the volatility of all excess

return shocks (w"), and o7, ; is the long-run consumption volatility (in equation (IA.15)).
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Figure IA.11: Cumulative response function of consumption growth to a one-standard-
deviation shock spanned by asset returns: Mixed-frequency estimation with S = 0.
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The figure presents posterior means of the cumulative response function of consumption growth (solid line
with circles), along with the centered posterior 90% (dotted lines) and 68% (dashed lines) coverage regions.
We estimate a mixed-frequency state-space model of quarterly consumption growth and monthly asset re-
turns, with S = 0. These monthly f; shocks account for 6.4% of quarterly consumption growth time-series
variation (quarterly data, 1963:Q3-2019:Q4).

The key distinction from the analysis in the main text is that we consider monthly asset
returns in equation (TA.18) and, hence, monthly stochastic volatility of f; and w]; meanwhile,
we still estimate the stochastic volatility process of the quarterly consumption growth shock
(wf). At the mixed frequency, we do not include o7, ; into equation (IA.18). In Section
F.1, we consider monthly consumption data and further incorporate the short-run stochastic

volatility of consumption, o2,_;, into the return dynamics.

We next consider the consumption dynamics, as follows:

S
1 2 2 1
Acy_34 = ﬂc‘*‘z pj(gft—j+§ft—j—1+ft—j—2+gft—j—3+§ft—j—4)"f‘wtca wy ~ N (anxp(hct)> . (IA.19)
2

I t—1

=0

We can now write a mixed-frequency state-space system with three separate stochastic

volatility processes,
7z, =Fz 1+ vy, vi~N (05,5, %), and (TA.20)

Y = Kt + tht + Wi, Wi~ N (ON+1, Et) (IA21)

/ ! ~
where y; := [ch_&t,rf’}, JTIRES [;Lc,t,u%t] , Vo= [ft,O’gH] Wy = [wf, W],

exp(h 0’ 0’ 0 &2 0, H
v, = p(fs1) S+4 , F:= S+4 , X = ot N , H; = bt ,
054 0(544)x(5+4) Is.y 054y Oy Xpi Py Oy ... Oy
(8+5)x(5+5) (8+5)x(5+5) (N+1)x(N+1) (N+1)x(5+5)
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e, tis the last month of the quarter (p©)T, tis the last month of the quarter

He,t = s Hl,t = )
. T .
0, otherwise 0g 457 otherwise
~ Wet, tis the last month of the quarter e exp(het), t is the last month of the quarter
Wet = y Oct =
d¢, otherwise 1, otherwise

Finally, we apply the Kalman smoother to extract the latent state f;. The estimation method

of other parameters is the same as in the previous analysis.

H Benchmarking

The covariance between consumption growth and asset returns can be biased by the bench-
marking process used by the US Bureau of Economic Analysis (BEA). The benchmarking of
NIPA data have been discussed in the past literature (see, e.g., Wilcox (1992) and Triplett
(1997)). Simply speaking, the Monthly Retail Trade Survey (MRTS), which is used to con-
struct monthly and quarterly consumption estimates, is of lower quality than the Annual
Retail Trade Survey (ARTS). Hence, the four quarters of consumption will never precisely
equal the corresponding annual measure; consequently, the quarterly estimates are ex post
revised to benchmark the annual ones. As explained in Chapter 4, estimating methods,
of the NIPA handbook,'® “for the periods for which annual estimates are available and the
quarterly estimates must be forced to average to these annual totals”.

Without observing the unfiltered data, we cannot directly incorporate the benchmarking
equation into our state-space model. Nevertheless, we can explore the mechanical effect origi-
nating from benchmarking through simulation. However, the exact benchmarking procedure
(e.g., how BEA smoothes the consumption data) is unknown. Therefore, in this section, we
consider several simulation settings and aim to explore when the benchmarking process will
(and will not) distort the impulse responses of quarterly consumption growth to asset return
shocks.

We simulate monthly consumption in log units; that is, ¢f = ¢;_; + pe + po fi +wy, w§ s

N(0,0?), and f; " N(0,1). Note that the true monthly consumption growth is IID and

correlates with only the contemporaneous f; in simulations. However, we do not observe c}

13See https://www.bea.gov/resources/methodologies/nipa-handbook/pdf/chapter-04.pdf.
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Figure IA.12: Filtered stochastic volatilities of consumption and returns: Mixed-frequency
state-space model.
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The figure shows the estimated stochastic volatilities of the mixed-frequency model in equations (IA.18)-
(IA.19). Solid blue lines depict the posterior median of the log volatility, whereas dotted red lines denote
2.5% and 97.5% credible intervals. Shaded (patterned) areas reflect constant volatility levels that would not
be rejected given the credible intervals.
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Figure TA.13: Loadings of excess returns on consumption and returns volatilities: Mixed-
frequency state-space model.
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This figure shows the box plots of the posterior distributions of the loadings of portfolio excess returns on
the variance of shocks to the conditional consumption growth and the common financial returns variance.
Portfolios are ordered with bonds first (1-9), Fama-French 25 size and book-to-market second (10-34), and
industry portfolios last.

but only its noisy proxy based on the MRT'S,
e = B¢+ (1= Bt + €cty €cy S N(0,02), (TA.22)

where f < 1, and €., is the measurement error. Equation (IA.22) implies the following

dynamics of monthly consumption growth:
ACt = ,BAC: + (1 — ,B),U/c + (ec,t — ec,t—l)- (IA23)

That is, monthly consumption growth from MRTS (Ac;) has the same unconditional mean
te as the pseudo-true process (Ac}) that we do not observe.
We further observe the annual consumption data from the ARTS, which is considerably

more comprehensive than the MRTS. Suppose that t is the final month of the year. The an-
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nual consumption flow is denoted by CY,, 15, which equals Zjlil exp(cfy ;). Since Cf; 1, never
matches the sum of monthly consumption flows obtained from the MRTS (Z;il exp(cit4)),

benchmarking implies the following revision of the monthly estimates:

12
Zj:l exp(ciy;)
12 ’
Zj:l exp(Ce;)

exp(Cryj) = exp(crys) X (TA.24)
where ¢;,; denotes the revised estimates of monthly consumption in log units. Using ¢,
we compute the quarterly consumption growth (denoted by ¢ ;) and estimate its impulse
responses to quarterly asset return shocks, defined as f 5, = (fi + fio1 + fi—2)/V3.

There are two representative simulation settings to consider: (1) =1 and (2) 5 < 1in
equation (IA.22). First, when = 1, the benchmarking process in equation (IA.24) does not
distort (in population) the impulse responses of quarterly consumption growth to f; shocks.

To see this intuitively, we can rewrite the adjustment factor in equation (IA.24) as follows:

12 . 12 N
Zj:1 exp(cj ;) Zj:l exp(ciy;)

2;11 exp(ce+;) 23111 exp(ciy; + €ctts) '

Smoothing the monthly estimates based on the MRTS to match the annual ones, on average,
reallocates only measurement errors over different periods and, hence, does not change the
impulse responses to f;. Note that assuming f = 1 is a common way of modeling consumption
measurement error in the literature (see, e.g., Schorfheide, Song, and Yaron (2018)).

Second, instead, when § < 1, benchmarking introduces a mechanical autocorrelation
between f; shocks and observed consumption growth. The intuition is that, in this case,
benchmarking smooths both measurement errors and f; shocks over 12 months, leading to
the slow adjustment of consumption growth to f; shocks.

To illustrate the above points, we simulate consumption data following equations (IA.22)-
(IA.23). In the simulations, the contemporaneous correlation between the true monthly
consumption growth (Ac}) and f; is 0.40, whereas the measurement error is calibrated such
that the observed monthly consumption growth (Ac;) has a correlation of 0.30 with f;.
After obtaining the monthly growth rates, we aggregate the simulated data to quarterly

consumption growth, which is then normalized to have the same standard deviation (0.0072)
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Figure TA.14: Simulated cumulative response function of quarterly consumption growth.
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The figure plots the cumulative impulse response function (CIRF) of quarterly consumption growth. The
blue lines with circles show the impulses responses with the time aggregation bias, whereas the orange lines
with triangulars display those with both the time aggregation bias and benchmarking. Panels (a) and (b),
which assume 8 = 1 and § = 0.5 in equation (IA.23) respectively, consider the impulse responses at the
quarterly frequency, i.e., how quarterly consumption growth responds to quarterly f; shocks. Panels (¢) and
(d), instead, study the mixed-frequency CIRFs of quarterly consumption growth to a one-standard-deviation
monthly f; shock. We simulate 100,000 years of data. Quarterly consumption growth is standardized to
have the same standard deviation (0.0072) as in the data.

as in the true data.

Panel (a) of Figure IA.14 shows the simulated impulse responses based on = 1 at
the quarterly frequency. Due to the time-aggregation bias (the blue line with circles), the
cumulative impulse responses increase from 0.002 to about 0.0035 at S = 1 and stay flat
after one quarter. The benchmarking process does not introduce additional autocorrelations

between consumption growth and f; (see orange line with triangles). Panel (b) displays
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the case with § = 0.5 at the quarterly frequency. Unlike Panel (a), quarterly consumption
growth responds to both the one-quarter lagged f; shocks and the lagged f; of the preceding
four quarters. The cumulative impulse responses become flat after four quarters. Panels (c)
and (d) of Figure TA.14 repeat similar simulations with mixed-frequency estimation; that is,
it displays how quarterly consumption growth responds to a one-standard-deviation monthly
fi shock. With only the time-aggregation bias, quarterly consumption growth reacts to both
contemporaneous and four lagged monthly f; shocks. However, as we further incorporate
benchmarking of consumption data, the CIRFs continue to increase until 12 months after
the impulse and stay flat afterwards.*

We further explore the impulse responses with time-aggregation bias and benchmarking
of consumption data, assuming different contemporaneous correlations between true monthly
consumption growth and f;. Figure [A.15 plots these CIRFs for correlations ranging from
0.10 to 0.40. In the monthly data, this contemporaneous correlation coefficient is estimated to
be about 0.17; hence, the assumption of a correlation of 0.20 (the solid green line) represents
the most realistic case.

A crucial observation is that the benchmarking process cannot fully explain the patterns
that we detected in the real data. First, in Figures 3 and 6, the CIRF's continue to increase
until the seventh quarter (or 21 months), whereas the benchmarking process in our simula-
tions leads to slowly increasing CIRF's within only the first four quarters. Second, the CIRF's
of the IID consumption data with benchmarking are less than 0.002 at the quarterly fre-
quency (0.003 at the mixed frequency) under the assumption of 0.2 correlation (in the most
realistic calibration), as shown in green solid lines. Instead, we estimate much more sizable
CIRFs of about 0.01 at the quarterly frequency in Figure 3 (0.015 in the mixed-frequency

estimation in Figure 6).

14 Note that the quarterly CIRFs roughly equal the mixed-frequency estimates divided by v/3.
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Figure TA.15: Simulated cumulative response function of quarterly consumption growth:
Different coefficients of corr(Ac}, f;).
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The figure plots the cumulative impulse response function (CIRF) of quarterly consumption growth. We
consider both time-aggregation bias and benchmarking (8 = 0.5 in equation (IA.23)). The contempora-
neous correlation between true monthly consumption growth and f;, corr(Ac}, fi), ranges from 0.10 to
0.40. Panel (a) considers the impulse responses at the quarterly frequency, i.e., how quarterly consumption
growth responds to quarterly f; shocks. Panel (b), instead, presents the mixed-frequency CIRFs of quarterly
consumption growth to a one-standard-deviation monthly f; shock. We simulate 100,000 years of data.
Quarterly consumption growth is standardized to have the same standard deviation (0.0072) as in the data.

I Model selection: Consumption mean and volatility
risks in asset returns

Commonly, time-varying risk premia in consumption-based asset pricing models are induced
by the time variation in the volatility of consumption shocks; that is, the models (a) assume
the existence of time-varying volatility and (b) postulate that returns are linear in this
volatility. Our state-space formulation allows us to formally test these common theoretical
assumptions because it nests, as particular cases, the most popular structural models.
Table IA.I, Panel A, reports Bayes factors and posterior probabilities for several restricted
and unrestricted versions of the specification in equations (2) and (16)—-(19), and Section B.2.
In particular, we test both commonalities in the various volatility processes (for returns and
consumption mean shocks) and their impact on excess returns. Note that the posterior model
probabilities (and Bayes factors) are particularly appropriate for this type of test because
they yield valid model selection even over the space of misspecified models. That is, they

select the model that has the highest probability of being the true data-generating process

34



Table TA.I: Model comparison using log Bayes factors: Baseline stock and bond portfolios

Models
1 11 111 v v VI VII VIII X X
Panel A: Model probabilities and Bayes factors
Log of Bayes factor: 0 -27 -37 -51 -85 -105 -161 -223 -236 -332
Posterior probability.: 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Panel B: Variance Decomposition of Returns
[t 62.3% 62.4% 62.2% 62.3% 62.2% 57.6% 57.8% 57.7% 58.4% 57.8%
o2, 0.2%
o2, 0.3% 0.3% 0.3%
Oria 5.1% 1.8% 4.9% 4.5% 1.9%
Panel C: Correlations among stochastic volatility processes
cor(0%, 07%,) 0.06 0.12 0.14 0.08 0.07
[-0.09, 0.29]  [-0.03, 0.32] [-0.02, 0.35] [-0.08, 0.31] [-0.09, 0.30]
cor(o?,02) 0.12 0.12 0.12 0.14 0.15 0.15
[-0.03, 0.32]  [-0.03, 0.32] [-0.03, 0.32] [-0.02, 0.35] [-0.02, 0.36] [-0.02, 0.36]
cm‘((r?t,nft) 0.23 1 0.23 1 0.22 0.22 0.22
[0.07, 0.42] [1, 1] [0.07, 0.43] [1, 1] [0.06, 0.41]  [0.06, 0.41]  [0.06, 0.41]

Model I: wf, f; and wy follow SV processes, and rf = p, + p" fi + wy.

Model II: wy, f; and wy follow SV processes, ¢ = pr + p" fr + wy, and hyy = hyy.
Model III: wy and wy follow SV processes, fi s N(0,1), and 7§ = pr + p" fr + wi.
Model IV: f; and w] follow SV processes, w§ B N(0,02), and 7§ = py + p" fr + wyi.

iid

Model V: w follows SV process, w¢ > N'(0,02), f, = N(0,1), and ¢ = pu, + p" f, + w?.

Model VI: w§, f; and wi follow SV processes, r§ = p, + p" fi + ,@‘fo']%’t71 +wy, and hyp = hyy.
Model VII: w! follows SV process, w¢ 5 N'(0,02), f, = N(0,1), and 7€ = p, + p" f; + Brof, | +wj.
Model VIII: w§, f; and wj follow SV processes, and r§ = p,. + p" f; + ,Bfa‘?-’t71 + Brof, 1 +wy.
Model IX: f; and wy follow SV processes, w§ Y N(0,02), and 7§ = pr+p" fr+ 8707, +Brop, 1 +wyi.

Model X: wf, f; and wf follow SV processes, and r§ = pp +p” f +Be02,_, +,3f0%t_1 +Bro,  +wj.

The table summarizes the model comparison for restricted and unrestricted versions of the specification in
equations (2) and (16)—(19), and Section B.2. Panel A reports log Bayes factors and posterior probabilities.
We approximate the Bayes factor using the Schwartz criterion. We use Model I as a benchmark and calculate
the (log) odds of each model compared to Model I. A negative number implies that the chosen model is less
likely than Model I conditional on the observed data. The model posterior probabilities are computed under
the prior of the specifications being all equally likely. Panel B reports the variance decomposition of asset
returns for the model-specific sources of time variation. Panel C reports the correlations among the stochastic
volatility processes.

(not solely the model with the highest likelihood). See, for example, Schervish (1996).

The data favor a specification in which ) volatilities do not affect excess returns (Mod-
els I-V) and i) returns and consumption have distinct volatility processes—the posterior
probability of such a formulation (Model I) is almost 100%.

Panel B of Table IA.I shows that the share of variance of asset returns explained by

the shock spanned by consumption (f;) is stable across specification, even when we include

15 As shown in Table IA.II, these results are stable if we exclude bond returns from the state-space model.
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the stochastic volatilities in the return equation (Models VI-X). This stresses the robust-
ness of our identification approach to recover the conditional mean shocks to consumption.
Furthermore, Panel C emphasizes that even when allowing for stochastic volatility in all
the latent shocks, the correlation between the variances of consumption and asset returns
remains considerably small.

One may wonder whether our model selection findings are largely driven by the likelihood
function for the joint dynamics of returns and consumption being dominated by the former
due to their much higher volatility and, hence, reflect only a model for returns, rather than
their joint dynamics. Consequently, Table TA.VII repeats the same model selection exercise
after scaling returns to have unit variance and consumption to have variance equal to the
number of assets. Again, we find that there is no support for stochastic volatilities driving
time-varying risk premia or for the volatility of consumption and returns being proportional

to each other.

J Stochastic volatility with leverage

In Section III.6, we consider stochastic volatility models without the leverage effect; that is,
shocks to asset returns are independent of the shocks to their stochastic volatility processes.
In this Appendix, we further consider the leverage effect in the stochastic volatility of shocks
to the conditional consumption mean, f;. Specifically, f; follows a normal distribution with

the stochastic volatility process given by
h
fi = exp (%)Eft, Y = log(f?) = hft+log(efct), hpr="0fhpi1+4/1— 5%77f,t—1> (TA.25)

where €, KN (0,1) and ny, KN (0,1). Although macro-finance literature normally assumes
that ey, and 7y, are independent, many earlier papers (e.g., Black (1976), Nelson (1991), and
Yu (2005)) document strong leverage effects in asset returns: An increase in volatility often

follows a drop in equity returns; that is, ef; and 74 tend to be negatively correlated.
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Table TA.II: Model comparison using log Bayes factors with only equity portfolios

Models
1 11 111 v Y VI VII VIII X X
Panel A: Model probabilities and Bayes factors
Log of Bayes factor: 0 -26 -39 -48 -87 -103 -146 -185 -201 -278
Posterior probability.: 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Panel B: Variance Decomposition of Returns
fi 77.3% 77.3% 77.0% 77.2% 77.0% 73.2% 71.4% 71.5% 71.8% 71.2%
o2, 4 0.2%
oh 0.2% 0.2% 0.2%
Tria 3.4% 5.2% 5.4% 4.9% 5.2%
Panel C: Correlations among stochastic volatility processes
cor(0%, %) 0.07 0.12 0.12 0.07 0.07
[-0.09, 0.29]  [-0.03, 0.34] [-0.03, 0.34] [-0.09, 0.30] [-0.09, 0.30]
cor(o?,02) 0.12 0.12 0.12 0.12 0.13 0.14
[-0.03, 0.34]  [-0.03, 0.34] [-0.03, 0.33] [-0.03, 0.34] [-0.02, 0.36] [-0.02, 0.38]
cor(a},, o) 0.25 1 0.25 1 0.22 0.21 0.23
[0.07, 0.45] [1, 1] [0.08, 0.46] [1, 1] [0.05, 0.45]  [0.05, 0.44]  [0.06, 0.45]

Model I: w§, f; and wi follow SV processes, and r§ = p, + p" fr + wy.

Model II: wy, f; and wy follow SV processes, ¢ = pr + p" fr +wy, and hyy = hyy.

Model III: wi and wy follow SV processes, f: s N(0,1), and 7§ = pr + p" fr + wi.

Model IV: f; and w] follow SV processes, w§ & N(0,02%), and 7§ = pp + p" fr + WY

Model V: w follows SV process, w¢ > N'(0,02), f; = N(0,1), and ¢ = pu, + p" f, + w?.

Model VI: w§, f; and wi follow SV processes, r§ = pr + p" fi + ﬂfo']%’t71 +wy, and hyp = hyy.
Model VII: w} follows SV process, w§ " N(0,02), f S N(0,1), and 7§ = pr + p" fr + Broz, | +wy.
Model VIII: w§, f; and w} follow SV processes, and r§ = ., + p" f; + 5f0;,t71 + ﬂraf’t_l +w}.
Model IX: f; and wy follow SV processes, wy " N(0,02), and 7§ = p+p" fr+B507 , 1 +Brop, 1 +wyi.

Model X: wf, f; and wf follow SV processes, and r§ = pp +p” fr +Be02, +,3f0%t_1 +Bro,  +wj.

The table summarizes the model comparison for restricted and unrestricted versions of the specification in
equations (2) and (16)—(19), and Section B.2. Panel A reports log Bayes factors and posterior probabilities.
We approximate the Bayes factor using the Schwartz criterion. We use Model I as a benchmark and calculate
the (log) odds of each model compared to Model I. A negative number implies that the chosen model is less
likely than Model I conditional on the observed data. The model posterior probabilities are computed under
the prior of the specifications being all equally likely. Panel B reports the variance decomposition of asset
returns for the model-specific sources of time variation. Panel C reports the correlations among the stochastic
volatility processes.

To incorporate the leverage effect, we consider the following distributional assumption:

€ft | iid 0 1 ¢

Nt ¢ 1

: (IA.26)

where ¢ < 0 if the leverage effect exists: A negative shock to y}, (negative €y;) leads to a

spike in 7,; therefore, the stochastic volatility of fiy1, exp(hy41/2), tends to increase.

We follow the solution proposed by Omori, Chib, Shephard, and Nakajima (2007). In
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particular, they approximate the joint distribution of (e, 1) using a mixture of bivariate

Gaussian densities:

K

plese,npe | di) = ZQi N (ege | mi,v?) - N (npe | diC exp(m;/2)[a; + bileqr —my)], 1 — ¢2), (IA.27)
=1

where A (z | m,v?) means that x ~ N(m,v?), d; = sign(f:), {(q:, ms,v?, a;,b;) X, are fixed

real numbers given by Table 1 of Omori, Chib, Shephard, and Nakajima (2007). As they
do, we select K = 10, so ten different normal distributions are used to approximate the joint
distribution of (es, 1)

The SV model can be expressed as

y;t iy €ri

= +
hf,t+1 5fhf,t \/ - 5?077f,t

Using the mixture approximation (IA.27) and introducing the mixture component indicator

Spoe {1,..., K}, we have that

e m; + vz z .
TV Sy =iy d, = cr coand | ] B A0, L.

Nft diC exp(m;/2)[a; + bviz] + /1 — (22F zf

Since (e, ny¢) are not independent of each other, we augment the space of latent states as
follows:

Yr —mi = hyy +viz;, (observation equation), (IA.28)

and we treat both hy; and z; as latent states, with the following state equation:

hf i1 8 diCexp(m;/2)bviy /1 — (5? diCexp(m;/2)a; /1 — (5]% By (1-¢2)(1 - 5?)2’2‘

Zt+1 = 0 0 0 Zt + 241
Ct+1 0 0 1 Ct 0
(TA.29)
where ¢; is introduced to remove the mechanical drift term: ¢;1 =¢; = -+ = ¢9 = 1. Using

the system (IA.28)—(IA.29), we can use the Kalman smoother to estimate (hy, 2¢).
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The inference for Sy, and d; are the same as before. The posterior distribution of Sy, is

p(Sft =1 | ef,tanf,hc’dt)

—mi)®  [npe — diCexp(mi/2)[a; + bi(esr —mi)]]” }
202 2(1 - ¢2) '

K3

o Pr(Sy :i)-vi_lexp{ _ Lot

We update 6 using a Metropolis algorithm as before.
Finally, we discuss the posterior inference for (, the key parameter governing the leverage

effect. We rely on the distributional assumption in equation (IA.26),

h
fe - exp(= ft) iidN L ¢
hyty1—0phy ~ 0, ’

V12 ¢ 1

which implies the following posterior distribution of ¢ under a flat prior 7(¢) o 1:

p(C ‘ hf7f75f) x (1 N 62)7% exp{ B SSE(hf’fa(Sf’C) }7 and

2
T-1 h 5eh 1 ¢ - ft-exp(—%)
t A1 ot
SSE(hys. f.07,0) = [ft exp(— ] +17§f2 s } eyt
t=1 v f ¢ 1 1-62
V1%

We draw ( using a Metropolis algorithm, as follows:
a. initialize ¢?;
b. draw ¢ from a normal distribution ¢* ~ A (CV~Y, 2 ,);

c. calculate p(¢*, (YY) = min{l, %‘14])1{,”0),)}

d. set ¢V = (U= with probability 1 — p(¢*,¢U=Y) and (V) = ¢* with probability
p(¢*,¢U™).
Cmp determines the step size in the Metropolis algorithm. We choose ¢,,, such that the
frequency of accepting a new ( is about 50%.

We repeat the analysis in Section II1.6 but allow for the leverage effect in f;. First, we de-

tect significantly negative (: The posterior median of ¢ is —0.38, with 90% CIs [—-0.59, —0.08].
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Figure TA.16: Filtered stochastic volatilities of consumption and returns with leverage
effect in the stochastic volatility of f;.
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The figure shows the estimated stochastic volatilities of the model in equations (2) and (16)—(19), and Section
B.2 under a diffuse prior for the autoregressive volatility coefficients. Solid blue lines depict the posterior
median of the log volatility, whereas dotted red lines denote 2.5% and 97.5% credible intervals. Shaded
(patterned) areas reflect constant volatility levels that would not be rejected given the credible intervals. f;
follows the stochastic volatility process with the leverage effect (see equations (IA.25)—(IA.26)).
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Figure TA.17: Loadings of excess returns on consumption and returns volatilities with
leverage effect in the stochastic volatility of f;.
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The figure shows the box plots of the posterior distributions of the loadings of portfolio excess returns on
the variance of short-run consumption shocks (02, ), the variance of shocks to the conditional consumption

growth (0%, ), and the common financial returns variance(o7, ). Portfolios are ordered with bonds first
(1-9), Fama-French 25 size and book-to-market second (10-34), and industry portfolios last. f; follows the
stochastic volatility process with the leverage effect (see equations (IA.25)—(IA.26)).

This finding is consistent with the leverage effect. Second, as we show in Figure IA.16, the es-
timates of long-run consumption volatility, ofct, become sharper after introducing the leverage

effect. Third, Figure TA.17 suggests that the returns loadings on three stochastic volatility

processes are almost unchanged after we introduce the leverage effect to f;.
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K Additional robustness checks

Because the state-space estimation results may depend on the choice of the cross-section of
assets used for the analysis, we repeat our analysis using alternative test assets and report
the results in Figures IA.31 —-TA.33. They present all the key empirical results for a five-factor
consumption-returns model estimated on 12 industry portfolios, nine bond portfolios, and
different cross-sections of stock returns (32 size-profitability-investment-sorted portfolios,
32 size-value-investment-sorted portfolios, and 32 size-value-profitability-sorted portfolios,
respectively). Figures IA.31-TA.33 indicate that all our results remain almost unchanged.
We also observe the same fanning-out pattern in the term structure of consumption exposure
for different cross-sections of test assets, as shown in Figure TA.37.

Throughout all the empirical analyses in the main text, we have used only nondurable
consumption growth per capita. However, another popular choice for empirical work in
macro-finance is a combination of nondurable consumption growth and services. We rees-
timate the state-space formulation of our model using this proxy for consumption growth.
Because adding services might introduce additional latent dynamics, we present our findings
in Figures IA.38 and TA.39 that allow for up to five latent factors. Our results are similar
both qualitatively and quantitatively. In particular, the five-factor model, as shown in Fig-
ure TA.39, displays the cumulative impulse response function of consumption of about 1%
after three years (Panel (a)), and the variance decompositions are rather similar to those
previously reported (but with larger confidence bands due to a higher number of parame-
ters). One caveat is that the estimation is more demanding in the five-factor model than the

single-factor setup due to a much larger parameter space, hence, leading to more disperse

2

distributions of, for instance, R,

L VAR estimation of the conditional consumption mean

As a benchmark for comparison of our method, in this Appendix, we employ the Parker
(2001) VAR-based estimation of the conditional mean of consumption. Specifically, we es-
timate a three-variable VAR in market excess return (17", ,), the log consumption level

(log(Ct-14)), and the dividend-to-price ratio of the market portfolio (D;/P;—1) at the quar-
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terly frequency. The number of lags is four, the same as in Parker (2001). Let y; denote the

three-variable vector in quarter ¢, yielding the following VAR system:

4
Y = Hy + Z A]’ytfj + €yt- (IA30)

j=1
According to Parker (2001, equation (15) therein), the impulse responses of log consump-
tion level to innovations in excess return measures the covariance between future cumulative

consumption growth and excess returns, as follows:

cov| 1og( L), 11, | = o(0T3) - TRE, log(C)), (1A.31)

where I RF;(log(C')) represents the impulse response of the log consumption at horizon s to
one-standard-deviation asset return shock. We can compare I RF;(log(C')) with the cumula-
tive impulse responses of log consumption growth implied by our MA model. The estimation
of equation (IA.30) attempts to fit the unit root in the log consumption level. We use the
Bootstrap to estimate the 90% confidence intervals of I RF;(log(C)).

Figure IA.18 displays the impulse responses to a one-standard-deviation shock to excess
returns. The left two panels report the IRF of excess returns and the dividend-price ratio,
while Panels (b) and (d) report (twice) the IRF of the consumption level with overlay the one
estimated in our state-space framework using our two cross-sections: our baseline stock and
bond portfolios (Panel (b)) and the Kozak, Nagel, and Santosh (2020) anomaly portfolios.

First, we confirm that the patterns and magnitudes of impulse responses in Figure IA.18
are similar to those in Parker (2001). In particular, quarterly consumption slowly adjusts to
the market excess return shock, as can be seen in Panel (b). Nevertheless, the VAR approach
seems to underestimate the consumption responses in the medium- to long-run compared to
the state-space framework. The long-horizon covariance at S = 14 quarters implied by our
MA model is 28.7% larger than that implied by the VAR(4) in Panel (b), and almost twice
as large as the VAR one in Panel (d).

What drives the difference between Parker (2001) VAR and our MA model? The VAR
model assumes that the shock in market excess return is the only source of asset return driver

in consumption growth. Instead, our MA model, as we show in simulations, can capture an
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Figure TA.18: VAR impulse responses to a one-standard-deviation shock to excess returns.
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The blue lines present the impulse response functions of quarterly market excess return (Panel (a)), log non-
durable consumption (Panels (b) and (d)), and dividend-price ratio (Panel (¢)) to a one-standard-deviation
market excess return shock, along with the centered posterior 90% coverage regions. In Panels (b) and (d),
we include the cumulative impulse responses of log nondurable consumption growth estimated based on our
MA model (see the pink lines).

arbitrary linear combination of systematic latent factors, which are identified by a large
cross-section of portfolio returns. Hence, when consumption growth reacts to other factors
beyond solely the market excess return (as shown in Table 6), we can detect a significant
difference between the VAR- and MA-implied IRFs.

But which model-—the VAR one or our state-space formulation—does a better job at
capturing the conditional consumption mean? To answer this question, we first rewrite the

VAR(4) in companion form; that is,

Zt = Uy + th—l + €2t (IA32)
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Table IA.III: Predicting nondurable consumption growth using VAR(4) in Parker (2001)

5= 1 2 3 4 5 6 7 8 9 10 11 12
B T [Aciig1ies] 0984 1028 1024 0958 0853 0468 0389 0307 0516 0692 0531 0462
s.e. (OLS) (0.137)  (0.212) (0.252) (0.285) (0.469) (0.481) (0.508) (0.535) (0.546) (0.551) (0.559) (0.566)
se. (NW, lag=12)  (0.172) (0.228) (0.256) (0.298) (0.654) (0.636) (0.656) (0.760) (0.773) (0.792) (0.785) (0.780)
Predictive R2 0200 0.103 0074 0052 0.016 0.005 0.003 0.002 0004 0008 0004 0.003

We regress the future realized growth rates in nondurable consumption on the conditional consumption mean
(E; [ACK:}E%EH]) implied by the VAR(4) model in Parker (2001). s ranges from one to 12 quarters. We
report (1) the point estimates of the slope coefficients, (2) the OLS and Newey-West (12 lags) standard
errors within the parentheses, and (3) the predictive R2. Sample: 1963:Q3-2019:Q4.

Yt My A Ay Az Ay €yt
_ 0 I 0 0 0 0
zZr = Y-t , M= , B= s , and €,; =
Yi—2 0 0 I3 O 0 0
Yi—3 0 0 0 I3 0 0

Using equation (IA.32), we can then predict the future log consumption:
Ei[zi1s] = p. + BEy[z115-1], s > 2, and Ey[z;11] = p, + Bz;. (TIA.33)

It then follows that the VAR-implied expected consumption growth between horizon t+s—1
and t + s is E;[log(Ciys)] — Ei[log(Chris—1)]-

Then, to verify the accuracy of the VAR conditional mean approximation, we can regress
Aciys—1+s on Eflog(Crys)] — E[log(Ciis—1)] and test whether the slope coefficients are
close to one (as we do for the state-space forecasts in Table 2). The results of the predictive
regressions are reported in Table TA.III. Compared with the MA model (see Panel A of Table
2 in the main text), the predictions for one- and two-period ahead consumption growth are
similar in VAR(4). However, as the forecast horizon increases, the performance of the VAR (4)
prediction tends to deteriorate. Starting from s > 5, the predictive R? is close to zero in the
VAR(4), with slope coefficients much smaller than one, although we cannot reject the null
hypothesis of the slope coefficients being equal to one.

Finally, under the assumption of additively separable CRRA preferences, we can compute

the coefficient of relative risk aversion implied by the VAR specification,
E[rfi ] + %Var(r?ftﬂ) Elri, ] + %Var(rfftﬂ)

T = . (IA.34)
cov | log( J<Tt7t+1) IRF;(log(C))

Cl+t+s m
C, ), T+
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M Cross-sectional pricing: Estimation details

We now describe the estimation of f;’s risk price in Section IV.1 of the main text. The
Bayesian framework comes from Bryzgalova, Huang, and Julliard (2024), and details can be
found therein.

As in our generalized return dynamics in equation (7), we postulate an approximate
factor structure for the cross-section of excess returns, as follows:

iid

Ty = e+ p u +wl, u, ~N(Og,Ix), (p")p" =1k, w] S Oy, 2,),  (IA.35)

where u; are K largest latent factors of asset returns. As in equation (2), consumption
growth slowly adjusts to asset return shocks wu;, as follows:
S
Aci_14 = e + ij nTUt_j +wy, n'n=1, var(f,) =1, (IA.36)
——

—
J fiej

so f; is the common driver of consumption growth and asset returns. g;, the additional
(K — 1) latent factors in equations (3) and (20) of the main text, are linear combinations
of u; orthogonal to f;. It is worth noting that since asset return drivers, u;, are latent, we
cannot identify the exact rotation of g;. However, f; is uniquely identified (up to the sign
restriction) due to equation (IA.36).

Moreover, to model the cross-sectional dimension, we consider a log linear SDF as follows:
_ T, _ T
my = 1— Au Uy = 1-— bfft — bg g, (IA37)

where A, are the risk prices associated with u; (also their risk premia since cov(u;) = Ik).
The last equality is due to the fact that we can always find a non-singular linear rotation
of u, such that (f;,g, )" = Hu, and (bs, b)) = Aj H™', where H is a K x K non-singular
matrix.

As standard, we postulate that the exposures to latent factors, p”, can partially explain
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the cross-sectional variation of expected returns:
- 1 .
[y = My + §Vr =p" A, + (TA.38)

where we allow for pricing errors a but require them to be orthogonal to the factor loadings
p". The latter requirement is standard in the literature (e.g., Giglio and Xiu (2021)) and
acts as an identification assumption to recover risk premia estimates. We also include the

LV, (a vector of asset returns’ variances), into equation (IA.38).

Jensen correction term, 3

Finally, after identifying A, the risk price of f; is
by = —cov(my, fi) = —cov(l — Al u,m w) =n' Ay, (TA.39)

where the first equality comes from the fact that f; is orthogonal to ¢g; and has a unit variance.

In the data, asset return drivers, u;, are unidentified. That is, we can identify only a
linear rotation of w,, denoted by @, = Hu,, and X; = cov(ty) = HHT. However, the risk
price of f; is point-identified due to the rotation invariance property emphasized in Giglio

and Xiu (2021). To show the rotation invariance of by, we rewrite the equation system as

L 1 S
r'=a+p H'H\, — §VT+pTH_1Hut+w:,
pr Aa pr Ut

S
Acpry=pe+ ) pin H 'Hup o +wj, and (IA.40)
W

jZO ’F]T atfs

my=1-AN(H Y H 4, =1-A]3;'a, by=n"H 'H,.
N e e~

n A

The posterior sampler for this estimation framework, as well as its finite-sample performance

based on simulation studies, is provided in Bryzgalova, Huang, and Julliard (2024).

N Mapping to structural models

In this Appendix, we show how our state-space formulation can be used to deliver the

calibration in Section IV.2 of the main text. In particular, we show how to map the reduced-
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form estimate of f;’s risk price to the structural parameters governing investors’ preferences.
We consider two types of investor preferences.

First, in the additively separable power utility setting, the log SDF is!S:
my = log(d) — YAci—14, and AE[my] :=my — Ei_q[my] = —v - AE[Aci—14], (TA.41)

where —log(d) is the real risk-free rate in a hypothetical economy without growth or uncer-
tainty, and ~ is the coefficient of relative risk aversion (RRA). Assuming the log normality

of the consumption shock wf, we obtain a closed-form solution for the real interest rate:

ria = —108(8) £ - Eoor[Der—r.i] — VQVE‘”*?(ACH*” = —log(8) + - (Nc‘f’ipjftfj) - 72“”*12(&““),
= (IA.42)

where var, 1 (Aci14) = 02,1 + 507Gy
Our MA representation of consumption growth implies that AE,[m;] = —ypofi — ywy.

As seen in the previous analysis, the contemporaneous covariance between consumption
growth and f;, pp, is small, which implies an unreasonably high RRA — the canonical equity
premium puzzle. Parker and Julliard (2005) show that, iterating forward the intertemporal

Euler equation, a valid log SDF can be constructed as

mf =Tftit+S — ’YSACt—l,IH—S' (IA43)

When pricing the time-¢ excess returns, only the time-¢ shocks to the SDF matters, as follows:

AE[mf] = (rfeers — Eeoalrases]) — vs (EelAcio1 5] — Eeo1[Aci—1445])
s

= (Tf,t,t+S - Etfl[rf,t,ws]) — s ( Z Pj) fr — ’stf-
j=0
The first term in the above equation is the shock to the long-term risk-free rate, which is
relatively small compared to the f; shock. wy is orthogonal to excess returns and, therefore,
unpriced. Hence, the SDF representation in equation (20) implies that we can elicit the
RRA coefficient as follows:
by

ijo Pj

6Note that only the shocks to the time-t SDF matter for the pricing of time-t excess returns.
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where by is the risk price of the f shock. An extremely high risk price, or a low cumulative
impulse response in consumption growth, lead to a extremely high RRA. Moreover, a high
RRA implies high mean and volatility of the risk-free rate in equation (IA.42).

The second setting that we consider is the Epstein-Zin recursive utility,

Vi {(1 —0)C. 7 +0 (E [Vti‘ﬂ]) ] - (IA.45)

where 0 < § < 1 is the time preference parameter, 1 is the elasticity of intertemporal

substitution (IES), and § = 11__1 The intertemporal budget constraint of the representative
v
agent is

Wt+1 - (1 + Rw,t+1)(Wt - Ct), (IA46)

where Wy, denotes the total wealth and R, ;41 is the gross return on the wealth portfolio.

The log SDF is then
0
my; = 0logd — @Act_l,t — (1 = @)rys, where 1y = log(l + Ry4). (TA.47)
Assuming jointly lognormal r,,; and Ac;_;,, we obtain the risk-free rate as

— 10g5 + iEt—l[ACt—l,t] — %V&I‘t_1<ACt_17t> + g%vart_l(rw,t), lf 1/) 7é 1,
T‘ﬁt =
— 10g(5 + Et—l[Act—l,t] — (’}/ — %)Vart_1<ACt_17t>, if 1/) = 1,

(IA.48)
where var;_(r, ) is the variance of the shock to r,, ;. Note that var;_;(ry ) and var;_1 (Aci—14)
are closely related because of the budget constraint in equation (IA.46). Using the log-linear

return approximation of Campbell (1993) and the state-space formulation, we have

1 =
A]Et['r'wi] = A]Et[ACt—l,t] -+ (]_ - a)AEt Z /{‘;Act+j_1’t+j (IA49)
j=1
1
= [po +(1- @) > Hipj] o+ w§, (IA.50)
j=1

49



which implies

S 2

1 .

v s(rae) = [t (1= ) S das| o+ o2, (1A.51)
i=1

where k, is a constant determined by the steady-state consumption-to-wealth ratio. In

Bansal and Yaron (2004), . = 0.997.

Using the same logic, we can express the shock to the log SDF as follows:

1 =
=) AR, Y KIAC 10y (IA52)

A]Et[mt] = My — ]Et,l[mt] = =" AEt[Athl,t] — (’}/ — w
j=1

When the inverse IES equals RRA, equation (IA.52) can be simplified to the CRRA prefer-
ence in equation (IA.41). Replacing the MA representation of Ac;_1, in equation (IA.52),

and ignoring the unpriced component —ywy, yields

AEm] = —ypofe — (v — — Zﬁzpyft (IA.53)

Finally, fixing the value of IES, and matching the above to the risk price of f; in equation

(20), we can reverse engineer y as

g .
by + i Z]’:1 KLp;
g - .
po + Zj:l K%P;

(IA.54)

@l*—‘

S
Yoo + (v Z Klpj=by = 7=

Using the estimated impulse responses {,0]} we can infer the risk price of the con-

Jj=0
ditional consumption mean shock given the values of v and ¥. We can further use these
calibrated risk prices to infer the equity risk premium, which equals cov(b; f;, r"*). For ex-
ample, assuming that v = 10, ¢ = 1.5, and there is no stochastic volatility in consumption,
the implied annualized equity risk premium is about 2.6% and 4.1%, respectively, in the
baseline cross-section of 46 assets and KNS anomalies. If we consider the estimates with

stochastic volatilities, the implied annualized equity risk premium is 3.2% and 4.4% in those

two cross-sections.
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O Additional figures

Figure IA.19: Variance decomposition of asset returns (average of 1,000 simulations).
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The figure shows the box plots (95% percentiles) of the percentage of time-series variances of individual
stock portfolio returns explained by the f component in the one-factor model, as estimated by the state-
space model. Red circles denote hypothetical true calibrated values.

Figure IA.20: Share of consumption growth variance driven by its moving average com-

ponent.
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The figure shows the box plots (posterior 95% coverage area) of the percentage of time-series variances of
consumption growth explained by the MA component. These plots report the adjusted R-squared, Ridj =
1- Tfl__l df(l — R?), where df denotes the degree of freedom, which equals 15 in this model. Left panel:
Cumulated consumption growth Ac;_1;4g. Right panel: One-period consumption growth Ac;_14;+;. We
study a single-factor model in equations (2) and (3), with S = 14. The cross-section of test assets includes

25 size-and-value-sorted portfolios, 12 industry portfolios, and nine bond portfolios.
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Figure TA.21: Consumption growth response to the latent factors f; and b; shocks.
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The figure shows the posterior means (continuous solid line) and centered posterior 90% (dashed line) and
68% (dotted line) coverage regions. The estimation is based on the two-factor model in equations (5) and
(6). Left panel: Cumulated consumption response to common factor (f;) shocks. Right panel: Cumulated

consumption response to bond factor (b;) shocks.

Figure IA.22: Variance of consumption growth explained by the MA components f and b.
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The figure shows the box plots (posterior 95% coverage area) of the percentage of time-series variances of
consumption growth explained by the MA components f and b. These plots report the adjusted R-squared,
R? 4 =1 -1 _(1— R?), where df denotes the degree of freedom, which equals 30 in this model. Left panel:

T T-1-df
Cumulated consumption growth Acy—1;+g. Right panel: One-period consumption growth Acyyj_1¢4;.
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Figure IA.23: Common factor loadings (p") of the stock portfolios in the two-factor model.
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The graph presents posterior means of the stocks factor loadings on f; (circles) and centered posterior 90%
(dashed line) and 68% (dotted line) coverage regions in the two-factor model. Ordering of portfolios: 25
Fama and French (1992) size- and book-to-market-sorted portfolios (e.g., portfolio 2 is the smallest decile of
size and the second smaller decile of book-to-market ratio) and 12 industry portfolios.

Figure IA.24: Share of stock portfolios’ return variance explained by the f component in
the two-factor model.
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The figure shows the box plots (posterior 95% coverage area) of the percentage of time-series variances
of individual stock portfolio returns explained by the f component in the two-factor model. Ordering of
portfolios: 25 Fama and French (1992) size- and book-to-market-sorted portfolios (e.g., portfolio 2 is the
smallest decile of size and the second smaller decile of book-to-market ratio) and 12 industry portfolios.
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Figure IA.25: Box plots of v¢, v*, and 4* in equations (13)—(15).
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This figure plots the distribution of the predictors’ coefficient estimates in equations (13)—(15).

Figure TA.26: Box plots of cay.
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The two-factor model is as follows:
S S
Aci_1t = pe + ijft—j + Z 0bi—j + v cayi—1 + wy,
=0 =0

Stocks: 75, = psr + p° fr + yicay—1 +wi", and
Bonds: g, = iy + p™" fr + 06y + A cay; 1 + w7,

where cay;—1 comes from Lettau and Ludvigson (2001).
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Figure IA.27: Plots of the two-factor model with P/D ratio and CFNAI in Section III.4.
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(e) Variance decomposition of ACy_j ;4 (f) Variance decomposition of ACy4 -1+

The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c) stock loadings on f;, (d) bond loadings on f, (e) variance
decomposition of AC_1 ¢4, and (f) variance decomposition of ACy4 ;1 ¢4,. We consider a two-factor model
for asset returns, including the market’s P/D ratio and the CFNAI index as the predictors for stock and
bond portfolios, respectively. The cross-section of test assets includes 25 size-and-value-sorted portfolios, 12
industry portfolios, and nine bond portfolios. Details can be found in Section III.4.
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Figure IA.28: Plots of the two-factor model with cay in Section I11.4.
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(e) Variance decomposition of ACy_j ;4 (f) Variance decomposition of ACy4 -1+

The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c) stock loadings on f;, (d) bond loadings on f, (e) variance
decomposition of AC;_144s, and (f) variance decomposition of ACi;_1+4;. We consider a two-factor
model for asset returns, including cay in Lettau and Ludvigson (2001) as the predictors for stock and
bond portfolios, respectively. The cross-section of test assets includes 25 size-and-value-sorted portfolios, 12
industry portfolios, and nine bond portfolios. Details can be found in Secion III.4.
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Figure IA.29: Plots of a five-factor model in Section IIL.5.
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The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c) stock loadings on f;, (d) bond loadings on f;, (e) variance
decomposition of AC;_1 1+, and (f) variance decomposition of ACty;_14+;. We consider a five-factor model
for asset returns. The cross-section of test assets includes 25 size-and-value-sorted portfolios, 12 industry
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portfolios, and nine bond portfolios. Details can be found in Secion IIL.5.
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Figure TA.30: Plots under the stochastic volatility assumption in Section III.6.
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The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c) stock loadings on f;, (d) bond loadings on f;, (e) variance
decomposition of AC;_1 ¢1g, and (f) variance decomposition of ACty;_1+4;. We assume different stochastic
volatility processes for f;, wf, and w]. The cross-section of test assets includes 25 size-and-value-sorted
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portfolios, 12 industry portfolios, and nine bond portfolios. Details can be found in Secion III.6.
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Figure TA.31: Robustness check: 32 size-profitability-investment-sorted portfolios, 12 in-
dustry portfolios, and nine bond portfolios in a five-factor model.
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The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c¢) stock loadings on f;, (d) bond loadings on f;, (e) variance
decomposition of AC;_1 415, and (f) variance decomposition of ACy1;_1+4;. We study the cross-section of
32 size-profitability-investment-sorted portfolios, 12 industry portfolios, and nine bond portfolios. Moreover,
asset returns are modeled using a five-factor model, with S = 14.
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Figure TA.32: Robustness check: 32 size-value-investment-sorted portfolios, 12 industry
portfolios, and nine bond portfolios in a five-factor model.
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The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c¢) stock loadings on f;, (d) bond loadings on f;, (e) variance
decomposition of AC;_1 415, and (f) variance decomposition of ACy1;_1+4;. We study the cross-section of
32 size-value-investment-sorted portfolios, 12 industry portfolios, and nine bond portfolios. Moreover, asset
returns are modeled using a five-factor model, with S = 14.
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Figure TA.33: Robustness check: 32 size-value-profitability-sorted portfolios, 12 industry
portfolios, and nine bond portfolios in a five-factor model.
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The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c¢) stock loadings on f;, (d) bond loadings on f;, (e) variance
decomposition of AC;_1 415, and (f) variance decomposition of ACy1;_1+4;. We study the cross-section of
32 size-value-profitability-sorted portfolios, 12 industry portfolios, and nine bond portfolios. Moreover, asset
returns are modeled using a five-factor model, with S = 14.

61



Figure IA.34: Robustness check: Kozak, Nagel, and Santosh (2020) 74 portfolios in a

five-factor model.
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The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving av-
erage component of consumption growth, (c) stock loadings on f, (d) variance decomposition of AC;_1 4,
and (e) variance decomposition of AC;y;j_1 4. We study the cross-section of 74 characteristic-sorted port-
folios used in Kozak, Nagel, and Santosh (2020). Specifically, they create value-weighted decile portfolios
sorted by firm characteristics, and we use the long and short legs (those in deciles 1 and 10) that have
data since July 1963. Hence, we end up with 74 portfolios (both long and short legs of 37 characteristics).
Moreover, asset returns are modeled using a five-factor model, with S = 14.
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Figure TA.35: Term structure of consumption exposure.
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The figure shows the spreads of consumption betas measured as Cov(Acy,t41+5,75 1) for different horizon S
(0-14) and asset j: nine bonds (circle), 25 Fama-French size and book-to-market (triangle), and 12 industry
(cross) portfolios. The asset exposures are in basis point units.

Figure I1A.36: Implied coefficients of relative risk aversion.
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The figure reports the point estimates of the coefficients of relative risk aversion (RRA) implied by our
MA(14) state-space formulation and the VAR(4) in Parker (2001). We consider the additively separable
CRRA preferences. Details can be found in the footnote of Table 7 and Internet Appendices L and N.
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Figure IA.37: Cross-sectional spread of exposure to slow consumption adjustment risk.
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(b) 32 size-value-investment-sorted portfolios
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(c) 32 size-value-profitability-sorted portfolios

The figure presents the spread of consumption betas measured as Cov(Acy ¢+1+5,75,41) for different horizon
S (0-14) and asset j: (a) 32 size-profitability-investment-sorted portfolios, (b) 32 size-value-investment-sorted
portfolios, and (c) 32 size-value-profitability-sorted portfolios. The asset exposures are in basis point units.
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Figure IA.38: Robustness check: Modeling the growth rate in nondurable consumption
goods plus service in a single-factor model of asset returns.
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The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c) stock loadings on f;, (d) bond loadings on f, (e) variance
decomposition of ACi_1 4+, and (f) variance decomposition of ACiy;_1++;. We consider a single-factor
model in equations (2) and (3), but AC;_1; is the quarterly growth rate in nondurable consumption goods
and service. Moreover, asset returns are modeled using a single-factor model, with S = 14. The cross-section
of test assets includes 25 size-and-value-sorted portfolios, 12 industry portfolios, and nine bond portfolios.
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Figure IA.39: Robustness check: Modeling the growth rate in nondurable consumption
goods plus service in a five-factor model of asset returns.
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The figure plots (a) cumulative impulse response function of consumption growth (S = 14), (b) moving
average component of consumption growth, (c) stock loadings on f;, (d) bond loadings on f, (e) variance
decomposition of ACi_1 4+, and (f) variance decomposition of ACiy;_1++;. We consider a single-factor
model in equations (2) and (3), but AC;_1; is the quarterly growth rate in nondurable consumption goods
and service. Moreover, asset returns are modeled using a five-factor model, with S = 14. The cross-section
of test assets includes 25 size-and-value-sorted portfolios, 12 industry portfolios, and nine bond portfolios.
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Figure IA.40: Filtered SVs with Kozak, Nagel, and Santosh (2020) 74 portfolios.
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Panel B: Log volatility of the shock to the conditional mean of consumption growth (f;).
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Panel C: Common log volatility of asset return (h,; of equation (19)).

The figure shows the estimated stochastic volatilities of the model in equations (2) and (16)—(19), and
Section B.2 under a diffuse prior for the autoregressive volatility coefficients. Solid blue lines depict the
posterior median of the log volatility, while dotted red lines denote 2.5% and 97.5% credible intervals. Shaded
(patterned) areas reflect constant volatility levels that would not be rejected given the credible intervals.
We study the cross-section of 74 characteristic-sorted portfolios used in Kozak, Nagel, and Santosh (2020).
Specifically, they create value-weighted decile portfolios sorted by firm characteristics, and we use the long
and short legs (those in deciles 1 and 10) that have data since July 1963. Hence, we end up with 74 portfolios
(both long and short legs of 37 characteristics).
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Figure IA.41: Loadings of excess returns on consumption and returns volatilities in Kozak,
Nagel, and Santosh (2020) 74 portfolios.
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The figure shows the box plots of the posterior distributions of the loadings of portfolio excess returns on the
variance of short-run consumption shocks (af’t_l), the variance of shocks to the conditional consumption
growth (012%_1), and the common financial returns variance (02, ;). We study the cross-section of 74
characteristic-sorted portfolios used in Kozak, Nagel, and Santosh (2020). Specifically, they create value-
weighted decile portfolios sorted by firm characteristics, and we use the long and short legs (those in deciles
1 and 10) that have data since July 1963. Hence, we end up with 74 portfolios (both long and short legs of
37 characteristics).
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Figure IA.42: Loadings of excess returns on consumption and returns volatilitie: Predicting
cumulative excess returns over the next four quarters.
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Panel B: Posterior distribution of excess return loadings on the variance of shocks to the conditional

consumption growth mean (0}2%_1).
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The figure shows the box plots of the posterior distributions of the loadings of portfolio excess returns on
the variance of short-run consumption shocks (02, _,), the variance of shocks to the conditional consumption

growth (a?,t_l), and the common financial returns variance (07, ;). Portfolios are ordered with bonds first
(1-9), Fama-French 25 size and book-to-market second (10 — 34), and industry portfolios last. f; follows the
stochastic volatility process with the leverage effect (see equations (IA.25)—(IA.26)).
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Figure IA.43: Loadings of excess returns on consumption and returns volatilitie: Predicting
cumulative excess returns over the next eight quarters.
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This figure shows the box plots of the posterior distributions of the loadings of portfolio excess returns on
the variance of short-run consumption shocks (02, _,), the variance of shocks to the conditional consumption

growth (a?,t_l), and the common financial returns variance (07, ;). Portfolios are ordered with bonds first
(1-9), Fama-French 25 size and book-to-market second (10-34), and industry portfolios last. f; follows the
stochastic volatility process with the leverage effect (see equations (IA.25)—(IA.26)).

70



Figure IA.44: Loadings of excess returns on consumption and returns volatilitie: Predicting
cumulative excess returns over the next 12 quarters.
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The figure shows the box plots of the posterior distributions of the loadings of portfolio excess returns on
the variance of short-run consumption shocks (02, _,), the variance of shocks to the conditional consumption
growth (a?,t_l), and the common financial returns variance (07, ;). Portfolios are ordered with bonds first
(1-9), Fama-French 25 size and book-to-market second (10 — 34), and industry portfolios last. f; follows the
stochastic volatility process with the leverage effect (see equations (IA.25)—(IA.26)).
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P Additional tables

Table TA.IV: Predicting nondurable consumption growth using SPF forecasts

j= 1 2 3 4
Panel A. Only SPF Forecast
EXPFIAC 1,04 0.957  1.305  0.465  1.029

s.e. (OLS) (0.224) (0.315) (0.373) (0.425)

s.e. (NW) lag=12) (0.221) (0.294) (0.472) (0.397)

Predictive R? 0.117 0.111 0.011 0.041
Panel B. MA Model vs. SPF Forecast

E, [Actﬂ;l,tﬂt] 0.580 0.622 0.856 0.829

s.e. (OLS) (0.165) (0.213) (0.218) (0.214)

se. (NW, lag=12) (0.140) (0.192) (0.194) (0.209)
ESPF[Aciyj 1] 0718 0980 0297  0.935

se. (OLS) (0.225) (0.326) (0.357) (0.406)
se. (NW, lag=12) (0.157) (0.277) (0.403) (0.366)
Predictive R2 0.190  0.163  0.112  0.135

The table summarizes the regressions in which future realized growth rates of nondurable consumption are
forecasted by several predictors. In Panel A, we regress the future one-period nondurable consumption
growth on the mean SPF expected consumption growth EZ7F [Acttj—1,t45], where j ranges from one to four
quarters. In Panel B, we further include the conditional consumption mean implied by our MA model (see
equation (9)). We report (1) the point estimates of the slope coefficients, (2) the OLS and Newey-West (12
lags) standard errors within the parentheses, and (3) the predictive R?. Sample: 1981:Q3-2019:Q4.

Table TA.V: Validating the predictability of the conditional consumption mean

j= 1 2 3 4 5 6 7 8 9 10 11 12
Panel A. Predicting nondurable consumption growth
&, [A(:Hj_l,tﬂv] 0997 0964 0970 0973  0.946 0921 0974 1.119  1.027 0971 1.039  1.025
s.e. (OLS) (0.149) (0.200) (0.206) (0.206) (0.276) (0.291) (0.318) (0.358) (0.416) (0.431) (0.571) (0.572)
s.e. (NW, lag=12) (0.213) (0.212) (0.211) (0.217) (0.203) (0.219) (0.185) (0.202) (0.314) (0.343) (0.446) (0.446)
HNI, 0.167  0.161  0.153  0.139  0.149 0.155 0.158 0.168  0.145 0.137  0.133  0.127
s.e. (OLS) (0.070) (0.073) (0.072) (0.072) (0.074) (0.074) (0.074) (0.074) (0.071) (0.072) (0.072) (0.072)
s.e. (NW, lag=12) (0.081) (0.094) (0.095) (0.101) (0.116) (0.117) (0.118) (0.119) (0.112) (0.108) (0.105) (0.103)
Predictive R? 0.201  0.123 0.117  0.115  0.073  0.068  0.065 0.070  0.048  0.042  0.033  0.031
Panel B. Predicting nondurable plus service consumption growth

E, [Actﬂ-,uﬂ-] 1.002 0.893 0.831 0820 0.678 0.635 0.604 0.517 0.542  0.550  0.469  0.376
s.e. (OLS) (0.124) (0.144) (0.147) (0.147) (0.183) (0.186) (0.193) (0.228) (0.231) (0.252) (0.364) (0.515)
s.e. (NW, lag=12) (0.132) (0.123) (0.140) (0.160) (0.226) (0.251) (0.237) (0.274) (0.296) (0.301) (0.406) (0.578)
HNI, 0.216 0208 0.202  0.197 0.210 0.219 0.225 0.231 0220 0.219 0.221  0.223
s.e. (OLS) (0.039) (0.041) (0.042) (0.042) (0.043) (0.043) (0.043) (0.043) (0.042) (0.042) (0.042) (0.043)
s.e. (NW, lag=12) (0.049) (0.048) (0.047) (0.049) (0.054) (0.053) (0.053) (0.054) (0.054) (0.055) (0.056) (0.056)
Predictive R? 0.341  0.256  0.230 0.223  0.165 0.165 0.163  0.149 0.147 0.142  0.130  0.125

The table summarizes the regressions in which future realized growth rates of consumption (Acy4j—1,445, 1 <
j < 12) are forecasted by several predictors. We regress Acy4;_1¢+; on the conditional consumption mean
(I/E\lt [Aci4j-1,+;]) implied by the MA model and the HN-index in Liu and Matthies (2022) (one-sided HP
filter of the news index). Panels A and B report the results for nondurable consumption and nondurable
plus service consumption growth. We report (1) the point estimates of the slope coefficients, (2) the OLS
and Newey-West (12 lags) standard errors within the parentheses, and (3) the predictive R%. Sample:
1963:Q3-2013:Q4. The sample ends at 2013:Q4 due to the availability of the HN-index data.
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Table IA.VI: Predicting squared forecast errors of consumption growth

Market P/D ratio Financial uncertainty Macro uncertainty Real uncertainty

Coefficient -0.007 0.123 0.069 0.134
s.e. (OLS) (0.069) (0.068) (0.069) (0.068)
s.e. (NW, lag=12) (0.068) (0.080) (0.079) (0.051)
R? 0.000 0.015 0.005 0.018

We regress the squared forecast error, (Acy 41 — Et[Act)t+1])2, on several persistent economic variables
measured at time ¢, including the market price-dividend ratio and financial /real /macro uncertainty measures
from Jurado, Ludvigson, and Ng (2015) and Ludvigson, Ma, and Ng (2021). All variables are standardize to
have unit variances in the regressions. The uncertainty measures have horizons of three months, consistent
with the quarterly frequency of consumption growth.

Table TA.VII: Model comparison using log Bayes factors with scaled consumption growth
and asset returns: var(r,) =1fori=1,..., N, and var(A¢_14) = N

Models
I Ir 1mr v v VvI VII VII IX X
Log of Bayes Factor: 0 -156 -38 -49 -87 -233 -165 -439 -234 -551
Posterior Probability.: 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Model I: w§, f; and wi follow SV processes, and r§ = p,. + p" fr + wy.

Model II: wy, f; and wy follow SV processes, r§ = pr + p" f; + wyi, and hy; = hpy.

Model IITI: w§ and wj follow SV processes, fi . N(0,1), and 7§ = pr + p" f + wi.

Model IV: f; and wy follow SV processes, wy s N(0,02), and 7§ = py + p" fi + wi.

Model V: wj follows SV process, w§ B N(0,02), fi s N(0,1), and 7§ = pr + p" fr + wi.

Model VI: w§, f; and w; follow SV processes, r§ = pr + p" fi + ﬂf0?7t_1 +wy, and hyy = hyy.
Model VII: w} follows SV process, ws S N(0,02), fi S N(0,1), and 7§ = pp + p" fr + Brop, | + wi.
Model VIII: wg, f; and wy follow SV processes, and r¢ = p, + p" f; + ,Bfait_l + BroZ, 1 +wy.
Model IX: f; and w} follow SV processes, w¢ S N(0,02), and 7§ = pp+p" fi+ B0, +Br07 1 +wy.

Model X: wf, f; and wy follow SV processes, and 7§ = pir + p” fi+Be0o, 1 +B507 ;1 +Brop,_y +wyi.

The table summarizes the model comparison for restricted and unrestricted versions of the specification in
equations (2) and (16)—(19), and Section B.2. We approximate the Bayes factor using the Schwartz criterion.
We use Model I as a benchmark and calculate the (log) odds of each model compared to Model I. A negative
number implies that the chosen model is less likely than Model I conditional on the observed data. The
model posterior probabilities are computed under the prior of the specifications being all equally likely.
Different from Table IA.VII, we rescale the variance of consumption growth and asset returns: var(r§,) =1
fori=1,...,N, and var(Ac;—1+) = N. Under such a normalization, we ensure that we put equal weights
to fit consumption growth and asset returns equations.
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Table IA.VIII: Correlations of stochastic volatility processes and VXO: Kozak, Nagel, and
Santosh (2020) 74 portfolios

Mean 2.5% 5% 50% 95% 97.5%

Panel A: correlations of vol processes with VXO? index
cor(o%,VXO?) 0.10 -0.12 -0.09 0.09 0.31 0.35
cor(a?t, VXO0?) 043 022 026 044 058 0.60
cor(0?,,VXO0?) 053 041 044 0.53 0.63 0.65

Panel B: Pairwise correlations of vol processes

cor (o2, 0,2%) 0.07 -0.11 -0.08 0.05 0.27 0.31

cor(o?, a?t) 0.08 -0.09 -0.07 0.06 0.26 0.31

cor(a},, 00) 0.30 0.12 0.14 0.30 048 0.52

7t

The table summarises the posterior mean, 2.5%, 5%, 50%, 95%, and 97.5% quantiles of correlation among
%, Uj%t, o2, and the VXO index under a diffuse prior for the autoregressive coefficients of the volatility
processes. We study the cross-section of 74 characteristic-sorted portfolios in Kozak, Nagel, and Santosh
(2020). Specifically, they create value-weighted decile portfolios sorted by firm characteristics, and we use
the long and short legs (those in deciles 1 and 10) that have data since July 1963. Hence, we end up with
74 portfolios (both long and short legs of 37 characteristics).

Table IA.IX: Correlations of stochastic volatility processes and real/macro/financial un-
certainty

Posterior Mean 2.5% 5% 50% 95% 97.5%
Panel A: correlations of vol processes with real uncertainty

cor(a?,, real?) 0.22 0.02 004 022 042 045
cor(ay,, realf) 0.26 0.05 0.08 026 044 047
cor(a?,, real?) 0.36 025 027 037 044 0.46
Panel B: correlations of vol processes with macro uncertainty
cor (o2, macro}) 0.16 -0.03 -0.01 0.15 0.36 041
cor (o}, macroy) 0.28 0.07 0.10 0.28 0.47 0.51
cor (o2, macro?) 0.50 0.36  0.39 0.51 0.59 061
Panel C: correlations of vol processes with financial uncertainty

cor(o?,, financial?) 0.16 -0.04 -0.01 0.15 0.34 0.38
cor(a3,, financial}) 0.45 021 0.25 046 0.62 0.64
cor(c?,, financial?) 0.54 0.43 046 0.55 0.61 0.62

The table summarizes posterior mean, 2.5%, 5%, 50%, 95%, and 97.5% quantiles of correlation among o2,
0}1» 07y, and the squared financial /real /macro uncertainty measures from Jurado, Ludvigson, and Ng (2015)
and Ludvigson, Ma, and Ng (2021). The uncertainty measures have horizons of three months, consistent

with the quarterly frequency of consumption growth.
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Table TA.X: Cross-sectional pricing in six-factor models

Estimating m; = 1 — bsf, — b} g¢ E[rj*) =
‘2
by E[SR,, | data] E[SR; | data] E[;:{ | data) R? —cov (r"f my)  —cov (ri*ft, —by f;)
Panel A. 37 stock and nine bond portfolios
Posterior median 0.264 0.969 0.529 0.325 0.784 0.068 0.073
90% Cls 0.062, 0.460] [0.652, 1.496] [0.156, 0.919] [0.022, 0.688] [0.497, 0.905]  [0.031, 0.107] [0.018, 0.123]

Panel B. Kozak, Nagel, and Santosh (2020) 74 anomaly portfolios

Posterior median 0.247 0.975 0.495 0.260 0.422 0.072 0.068
90% Cls [0.106, 0.374]  [0.754, 1.212]  [0.217, 0.749]  [0.056, 0.548]  [0.216, 0.592]  [0.034, 0.108] [0.029, 0.108]

The table reports estimation results for two cross-sections of excess returns: (1) 37 stock and nine bond
portfolios and (2) Kozak, Nagel, and Santosh (2020) 74 characteristic-sorted portfolios. We report seven
statistics: (1) the risk price of the shock to the conditional consumption mean f; (by), (2) the annualized
Sharpe ratio of the SDF in equation (20), defined as the annualized volatility of the SDF (SR,,), (3) the
annualized Sharpe ratio of bs f; (SRy), (4) the ratio of SR} to SRy, (5) the cross-sectional R-squared (R?),
(6) the (annualized) market risk premium implied by the SDF, —cov(r{"**,m;), and (7) the (annualized)
market risk premium implied by the covariance between market excess return and —by f;, —cov (r{"**, by f;).
We estimate the risk prices using the Bayesian approach developed in Bryzgalova, Huang, and Julliard
(2024). Details are provided in Internet Appendix M. We consider six-factor models of asset returns. Both
the posterior median and the 90% Bayesian credible intervals are reported.

Table TA.XI: What drives the consumption shocks spanned by financial markets?

Panel A: Single-factor model in nondurable consumption growth

MKT SMB HML RMW CMA

Correlation 0.938 0.634 -0.123 -0.224 -0.297

95% CI [0.930,0.946 ] [0.613,0.654] [-0.150,-0.097] [-0.238,-0.210 ] [-0.318, -0.276 ]
PC1 PC2 PC3 PC4 PC5

Correlation 0.994 0.052 -0.043 -0.027 -0.001

95% CI [0.991, 0.996 ] [0.024,0.080] [-0.070,-0.016 ] [-0.051,-0.003 ] [-0.018, 0.015 |

Panel B: Two-factor model in nondurable consumption growth (P/D, CFNAI as predictors)

MKT SMB HML RMW CMA

Correlation 0.937 0.626 -0.132 -0.231 -0.288

95% CI [0.924 ,0.946] [0.605, 0.647 ] [-0.160,-0.105] [-0.247,-0.214 ] [-0.310, -0.266 |
PC1 PC2 PC3 PC4 PC5

Correlation 0.991 0.060 -0.037 0.030 0.001

95% CI [0.982,0.995] [0.031,0.089] [-0.064,-0.009] [0.012,0.047 ] [-0.016, 0.017 ]
Panel C: Two-factor model in nondurable consumption growth (cay as predictor)
MKT SMB HML RMW CMA

Correlation 0.938 0.619 -0.136 -0.225 -0.29

95% CI [0.929,0.947] [0.596, 0.641] [-0.163,-0.109] [-0.243,-0.207 | [-0.311], -0.269 ]
PC1 PC2 PC3 PC4 PC5

Correlation 0.990 0.058 -0.030 0.032 -0.003

95% CI [0.981,0.995] [0.030, 0.086] [-0.058,-0.002] [0.016, 0.049 ] [-0.019, 0.014 |

The table reports the correlation coefficients between f; and Fama-French five factors and the first five
principal components of asset returns. We also report their 95% posterior credible intervals under the
coefficient estimates. Moreover, asset returns are modeled using a single-factor model in Panel A and two-
factor models in Panels B and C (as in Section I11.4), with S = 14. The cross-section of test assets includes

25 size-and-value-sorted portfolios, 12 industry portfolios, and nine bond portfolios.
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