
Sustainability in a Risky World

By John Y. Campbell and Ian W. R. Martin∗

How much consumption is sustainable, if “sustainability” re-
quires that welfare should not be expected to decline over time?
We impose a sustainability constraint on a standard consump-
tion/portfolio choice problem. The constraint does not distort
portfolio choice, but it imposes an upper bound on the sustain-
able consumption-wealth ratio, which must lie between the riskless
interest rate and the expected return on wealth (and if risky capital
evolves according to a geometric Brownian motion, it lies exactly
halfway between the two). Sustainability requires an upward drift
in wealth and consumption to compensate future generations for
the increased risk they face.

Do ethical considerations restrict the rate at which society consumes, or its pref-
erence for the present over the future? Economists have answered this question
in different ways.

One view is that preferences, social or individual, must be taken as given. If
society discounts the future at a high rate, strongly preferring present consump-
tion over future consumption, that preference must be respected; and if it leads
to high consumption today, declining over time, that outcome must be accepted.

An alternative view, famously expressed by Ramsey (1928), is that at least for
long-term discounting over the lifetimes of multiple generations, society should
not discount the future at all because to do so is unethically to privilege the
generation alive today over those yet unborn. Recently, this view has found
powerful expression in the Stern Review (Stern, 2006), which argues for aggressive
action to combat climate change in large part on the basis of a social rate of time
preference close to zero.

A third view is that social choices over consumption and saving should be sub-
jected to an external “sustainability” constraint. Sustainability was defined by
the World Commission on Environment and Development (1987) as a consump-
tion plan that “meets the needs of the present without compromising the ability of
future generations to meet their own needs.” Economists including Pezzey (1992),
Solow (1993), Howarth (1995), Arrow et al. (2004), Asheim (2007), and Llavador
et al. (2015) have formalized this as a requirement that social value—the ex-
pected discounted value of utility from the present to the infinite future—should
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not decline over time. In the words of Solow (1993),

A sustainable national economy is one that allows every future gen-
eration the option of being as well off as its predecessors. The duty
imposed by sustainability is to bequeath to posterity not any par-
ticular thing . . . but rather to endow them with whatever it takes to
achieve a standard of living at least as good as our own and to look
after their next generation similarly.

The concept of sustainability as a constraint, rather than an objective, is con-
sistent with the moral philosophy of Rawls (1999).1 It can be understood as a
prior principle that an ethical society should impose on itself because it would
be agreed to by an individual who does not know into which of a sequence of
generations they will be born. Since the time of birth is “morally arbitrary”, it
should not influence expected utility.

As Arrow et al. (2004) discuss, in a deterministic economy with a single form
of capital that has a constant riskless rate of return the sustainability constraint
requires that the social rate of time preference does not exceed the exogenous
riskless interest rate. When the constraint binds, the constrained rate of time
preference equals the riskless interest rate, implying that society consumes the
riskless return generated by its wealth and leaves the capital stock unchanged.
Wealth, consumption, the utility and marginal utility of current consumption,
and social value are then all constant over time. Sustainable consumption is only
feasible when the riskless interest rate is positive. When it is, the sustainability
constraint responds to the availability of an investment opportunity with a posi-
tive rate of return by allowing a greater rate of time preference and higher current
consumption than would be required by Ramsey.2

In this paper we extend the concept of sustainability to allow for risk. In a risky
economy, with an uncertain return on capital, it is not possible to guarantee that
social value remains constant over time. Instead, we impose a weaker sustainabil-
ity constraint that social value—expected utility, which is itself a random variable
because it is a function of current wealth—should not be expected to decline over

1Rawls (1999, §6) writes, “In justice as fairness, on the other hand, persons accept in advance a
principle of equal liberty and they do this without knowledge of their more particular ends. They
implicitly agree, therefore, to conform their conceptions of the good to what the principles of justice
require, or at least not to press claims which directly violate them. . . . The principles of right, and so
of justice, put limits on which satisfactions have value; they impose restrictions on what are reasonable
conceptions of one’s good. In drawing up plans and deciding on aspirations men are to take these
constraints into account.”

2By adjusting the rate of time preference to available rates of return, the sustainability constraint
responds to a critique of Ramsey made by Koopmans (1960, 1967). Koopmans (1967) summarized his
argument by writing: “The moral is, in my opinion, that one cannot adopt ethical principles without
regard to . . . the anticipated technological possibilities. Any proposed optimality criterion needs to be
subjected to a mathematical screening, to determine whether it does indeed bear on the problem at
hand, under the circumstances assumed. More specifically, too much weight given to generations far in
the future turns out to be self-defeating. It does nobody any good. How much weight is too much has
to be determined in each case.”
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time. This constraint, which has also been suggested though not formally ana-
lyzed by Howarth (1995), acknowledges the reality that social welfare is subject
to random shocks, some of which cannot be controlled. In the deterministic case,
our constraint reduces to the one considered by Arrow et al. (2004).

We study a continuous-time model with two forms of capital, one safe and one
risky, so that society faces an asset allocation problem as well as a consumption-
savings decision. While we use the terminology of financial economics—referring,
for example, to assets, wealth, consumption, and saving—we emphasize two ways
in which these financial concepts should be interpreted broadly.

First, the assets we discuss are forms of capital that can be accumulated under
constant returns to scale. Our model is a two-capital extension of a standard
endogenous growth or Ak model such as Romer (1986) or more recently Barro
(2023). We also consider a version of the model in which only a single form of
risky capital is physically available, so risk is inescapable for society. In this case
riskless capital is in zero net supply and the riskless interest rate adjusts to ensure
zero net demand for riskless investment. This version of the model is standard in
the endogenous growth literature.

Second, the financial concepts we use should be interpreted to include not
only the standard objects measured in national income accounts, but also other
conditions relevant for human well-being and productivity including particularly
environmental conditions. The risky asset, for example, could represent the Earth
itself, while consumption should be understood as a catch-all for, among other
things, the rate at which society consumes, rather than sustains, the biosphere. In
these terms, the consumption-savings decision we consider is intended as a mod-
elling metaphor that encompasses questions of resource depletion, environmental
degradation, and so on. Having said that, we should be clear that our frame-
work does not address certain important aspects of environmental sustainability,
notably issues related to the economics of exhaustible resources (as studied in a
deterministic setting by Dasgupta and Heal (1974), Solow (1974), and Hartwick
(1977)).

Returning to the financial terminology we use in the remainder of the paper,
we assume that the returns on the risky asset are i.i.d., with a flexible specifica-
tion that is driven both by a Brownian motion and by a Poisson jump process.
The assumption of i.i.d. returns is consistent with an Ak model of capital accu-
mulation. It implies that there is a unique consumption-wealth ratio at which
the sustainability constraint is binding.3 By allowing for jumps, we accommo-
date the literature that emphasizes the importance of rare disasters, or fat tails
more generally, in the macroeconomy (Rietz 1988, Barro 2006, Weitzman 2007a,
Backus, Chernov and Martin 2011). We assume that society has a time-separable
power utility function defined over aggregate consumption, and we impose the
sustainability constraint on this.

3In a model with diminishing returns to capital, by contrast, any constant savings rate can be
sustainable although different savings rates imply different levels of steady-state consumption.
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Our main results are as follows.

First, when the sustainability constraint binds, the sustainable consumption-
wealth ratio equals the certainty-equivalent return: the hypothetical riskless rate
of return that would deliver the same expected utility to society as the actual
menu of available assets. This depends on the risk aversion but not on the rate
of time preference of an unconstrained representative individual in our economy.4

Second, the sustainability constraint does not distort portfolio choice, which is
always the same whether or not the constraint binds. In the absence of jumps,
the portfolio rule is the classic one derived by Merton (1969, 1971).

Third, the sustainable consumption-wealth ratio exceeds the riskless interest
rate but is less than the expected return on optimally invested wealth. In the
absence of jumps, the sustainable consumption-wealth ratio lies exactly at the
midpoint between these two rates of return. In the presence of jumps of determin-
istic size, the sustainable consumption-wealth ratio is higher than the midpoint
when the jumps are downward, that is, when jumps represent bad news.

Fourth, sustainability does not require that consumption and wealth are ex-
pected to remain constant over time. In fact, consumption and wealth have
positive drift in the constrained equilibrium. Intuitively, this is because risky
investment causes the distribution of consumption and wealth to spread out over
time, imposing more risk on later generations. To prevent risk from reducing
the welfare of later generations relative to earlier ones, later generations must be
compensated by higher average levels of consumption and wealth.

Fifth, the sustainable consumption-wealth ratio is higher (by a factor of risk
aversion divided by risk aversion minus one) than the consumption-wealth ratio
required by the Ramsey zero-time-preference rule. The difference between the
two is small for very high levels of risk aversion, but substantial at levels of risk
aversion normally considered plausible.

The sustainable rate of time preference is not the same as the discount rate that
society should apply to riskless investment projects. That discount rate is given
by the riskless interest rate in the sustainable equilibrium, which is lower than
the sustainable rate of time preference when the economy is exposed to risk. As a
salient example, investments to mitigate climate change should be discounted at
low rates if the investments are riskless and the sustainable equilibrium has a low
riskless interest rate. They should be discounted at even lower rates if climate
investments pay off in bad states of the world—that is, if they are analogous
to insurance policies—an important point emphasized by Weitzman (2009) and
Gollier (2021).

Our main analysis defines utility over aggregate consumption, in effect treating

4This is consistent with the view of Rawls (1999, §45), who writes: “Of course, a present or near
future advantage may be counted more heavily on account of its greater certainty or probability . . . But
none of these things justifies our preferring a lesser present to a greater future good simply because of
its nearer temporal position . . . The just savings principle for society must not, then, be affected by pure
time preference, since as before the different temporal position of persons and generations does not in
itself justify treating them differently.”
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each generation equally regardless of population. This is only equivalent to treat-
ing each individual equally if population is constant over time. Population growth
creates notoriously difficult issues for intertemporal ethics (Parfit 1984, Dasgupta
2001), particularly when population is itself a choice variable. However we show
in an online appendix that if population growth is exogenous and constant, then
we can modify the sustainability constraint to prevent the expected utility of an
individual from declining over time. This is equivalent to subtracting the rate
of population growth from all rates of return, and therefore from the sustainable
consumption-wealth ratio and the sustainable rate of time preference.

The literature on discounting and sustainability is enormous, and we do not
attempt a complete review here. Dasgupta (2008, 2021) and Zeckhauser and
Viscusi (2008) provide recent surveys. Within the literature on climate change,
there has been debate between those such as Cline (1992) and Stern (2006, 2016)
who argue for a very low social rate of time preference, and Nordhaus (1994) who
uses a higher rate of time preference. Our analysis implies that a substantial rate
of time preference can be consistent with the ethical criterion of sustainability in
a risky world.

The organization of the paper is as follows. Section 1 sets up our unconstrained
continuous-time model with portfolio choice over a safe and a risky asset. Section
2 introduces the sustainability constraint and solves the constrained model. Sec-
tion 3 compares the sustainable consumption-wealth ratio with the consumption-
wealth ratio implied by the Ramsey rule of a zero social rate of time preference.
Section 4 concludes. When not included in the main text, proofs of results are in
the appendix.

I. Unconstrained Consumption and Portfolio Choice

We consider a representative agent faced with two assets or technologies, one
riskless and one risky. The agent chooses society’s aggregate consumption, Ct,
and risky portfolio share, α, to maximize the expected discounted value of a power
utility function,

(1) U0 = E0

∫ ∞
0

e−ρt
C1−γ
t

1− γ
dt.

We take as given this representation of utility derived from aggregate consump-
tion. It can be derived from individual utility of individual consumption under
assumptions that permit aggregation across consumers. For example, we could
assume that individuals have a constant probability of death following Blanchard
(1985), that they have power utility defined over their own consumption, that
they are unable to annuitize their wealth, and that the wealth of those who die
is allocated to an equal number of newly born individuals. In this case utility at
each point of time is both the welfare of the generation born at that moment and
the welfare of all agents alive at that time. This microfoundation for equation
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(1) assumes a constant population; we discuss the impact of population growth
further in the online appendix.

We assume that the rate of time preference ρ > 0. If individuals have a constant
probability of death and do not care about their descendants, then as Blanchard
(1985) shows, ρ is the sum of the pure individual rate of time preference and the
probability of death. In a more general model with intergenerational altruism, ρ
will also be affected by (and declining in) the degree of altruism.

We assume that the coefficient of relative risk aversion γ > 1. In the appendix,
we show that our main Results 1 and 2 extend in the expected way to the log
utility case, γ = 1. It would also be easy to handle the case 0 < γ < 1, but as this
case requires occasional sign flips in our logic below, we rule it out to streamline
the exposition.

The riskless asset has gross return Rf . It will generally be convenient to think
in terms of the log riskless rate, rf = logRf .

We require assumptions about the return on wealth that is invested rather than
consumed. It will be convenient to work in continuous time for tractability. As
sustainability is inherently a long-run issue, we abstract away from high frequency
variation in mean, volatility, and so on by modelling the risky return as i.i.d. over
time (that is, as a Lévy process), as in Martin (2013). We specialize slightly,
within this class of processes, by specifying the risky asset’s value using a com-
bination of a Brownian motion and a Poisson process. This is a more general
assumption than it may appear: as we allow for an arbitrary jump size distribu-
tion, the only cases we are ruling out, within the family of Lévy processes, are
those in which infinitely many jumps can occur in a finite time interval.

We assume that the risky asset has constant expected excess return µ =
log(ER/Rf ) > 0, Brownian volatility σ, and is exposed to jumps arriving ac-
cording to a Poisson counting process Nt with constant arrival rate ω, where µ,
σ, and ω are each constant. We write Wt for wealth at time t and θ = Ct/Wt for
the consumption-wealth ratio. Under our assumptions, θ is also constant. Thus

(2)
dCt
Ct

=
dWt

Wt
=

[
rf + α (µ+ ωEL)︸ ︷︷ ︸

µ̂

−θ
]
dt+ ασ dZt − αLdNt.

(In what follows we will often suppress time subscripts on the random variables
Ct, Wt, Zt and Nt to streamline the notation.)

Jumps are captured by the third term on the right-hand side of equation (2).
When a jump occurs, an agent who is fully invested in the risky asset loses a
fraction L of her capital. We assume that L is a random variable that is drawn
in i.i.d. fashion each time a jump occurs. We also assume (with one eye on an
equilibrium we study below, in which α = 1) that L is strictly less than 1, so that
someone who invests fully in the risky asset is not bankrupted. We can allow L
to take negative values; these represent good news for the risky asset. We write
µ̂ = µ+ ωEL to denote the expected excess return in the absence of jumps.
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It follows that
(3)

EC1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂− 1

2
γα2σ2 − θ

)
t+ ωE

[
(1− αL)1−γ − 1

]
t

}
.

This is a standard calculation, but we provide details in the appendix for conve-
nience. Hence the objective function (1) can be evaluated explicitly as

(4) U0 =
W 1−γ

0

1− γ
θ1−γ

ρ− (1− γ)
(
rf + αµ̂− 1

2γα
2σ2 − θ

)
− ωE

[
(1− αL)1−γ − 1

] .
The unconstrained optimal investment and consumption choices are identified

by maximizing (4) with respect to α and θ. Maximizing with respect to θ, we
find that the unconstrained optimal consumption-wealth ratio, θunc, is

(5) θunc =
ρ+ (γ − 1)

(
rf + αµ̂− 1

2γα
2σ2
)
− ωE

[
(1− αL)1−γ − 1

]
γ

.

We assume that θunc is positive. This condition implies that the denominator of
(4) is positive. If it does not hold, then the integral in the definition of expected
utility does not converge, and expected utility is not well defined.

The optimal risky portfolio share is defined implicitly by

(6) µ̂− αγσ2 = ωE
[
L (1− αL)−γ

]
.

In the absence of jumps, where the risky asset follows a pure Brownian motion,
this simplifies to the classic Merton formula,

(7) α =
µ

γσ2
.

The certainty-equivalent return
These equations can be simplified by introducing the concept of the certainty-

equivalent return, rCE, defined as the hypothetical riskless return that would give
the investor the same expected utility as the actual menu of assets, conditional
on the investor’s choice of α and θ. Equation (4) shows that

(8) rCE = rf + αµ̂− 1

2
γα2σ2 +

ωE
[
(1− αL)1−γ − 1

]
1− γ

,

which depends on risk aversion γ (both directly and indirectly through the effect
of γ on the risky portfolio share α) but not on the rate of time preference ρ.5

5Although α, which appears in equation (8), is an equilibrium object, Result 2 shows that it does
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Using this notation, the objective function in equation (4) can be rewritten as

(9) U0 =
W 1−γ

0

1− γ
θ1−γ

ρ− (1− γ) (rCE − θ)
,

and the solution for the unconstrained optimal consumption-wealth ratio can be
simplified to

(10) θunc =
1

γ
ρ+

(
1− 1

γ

)
rCE.

The unconstrained optimal consumption-wealth ratio is a weighted average of
the rate of time preference ρ and the certainty-equivalent return rCE, where the
weights are risk tolerance and one minus risk tolerance.

II. A Sustainability Constraint

We formalize the notion of sustainability by imagining representatives of each
generation agreeing on a time-invariant consumption-investment policy that re-
spects a constraint that welfare should not be expected to decline over time. In
doing so, we are committing to a cardinal measure of utility, as in Harsanyi (1955),
that permits welfare comparisons to be made across generations.

This implies that at time t the representative agent will solve the consumption-
investment problem studied above, subject to the extra constraint that the drift
of expected utility should be nonnegative. If the representative agent is thought
of as the currently living generation in an infinite dynasty, then the constraint is
appropriate if she does not want her descendants to expect a lower quality of life
than she does.6

Result 1. The largest possible sustainable consumption-wealth ratio, θcon, satis-
fies

(11) θcon = rCE,

where rCE is defined in equation (8). Unlike the unconstrained consumption-
wealth ratio, the sustainable consumption-wealth ratio is independent of ρ if the
constraint binds.

PROOF:

not depend on ρ.
6One might imagine imposing other types of constraint. We could, for example, allow for a type

of risk aversion over future expected utility by requiring that some concave function of future expected
utility should have non-decreasing expectation. This is analytically intractable in the constant relative
risk aversion (power) case, however; and indeed it is infeasible in the limit as risk aversion over future
expected utility approaches infinity, as it would require expected utility—and hence wealth itself—to be
non-decreasing, which is not possible unless society can entirely eliminate risk.
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Equation (4) shows that expected utility at time t, Ut, is proportional to

W 1−γ
t /(1− γ). (Expected utility is itself a random variable, because it is a func-

tion of current wealth.) To understand how expected utility evolves over time,
it is convenient to multiply by 1 − γ—which is negative under our maintained
assumption that γ > 1—and work with a rescaled variable Xt = W 1−γ

t . By Itô’s
lemma, this follows the process
(12)
dX

X
= (1−γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+(1−γ)ασdZ+

[
(1− αL)1−γ − 1

]
dN .

This is a standard calculation but we provide further detail in the appendix. The
drift of dX/X is therefore
(13)

(1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
+ ωE

[
(1− αL)1−γ − 1

]
= (1− γ)(rCE − θ) ,

where we have used the fact that E dN = ω dt. Sustainability requires that the
drift of X is nonpositive: that is, θ ≤ rCE . Equation (11) follows.

If the consumption-wealth ratio, θ, is larger than θcon then X has positive
drift, and hence expected utility has negative drift: the optimal consumption-
investment decision induces declining expected utility over time, on average.

The optimal sustainable consumption-wealth ratio, θsus, is given by whichever
of θcon and θunc is smaller. If the unconstrained case features a lower consumption-
wealth ratio, then it certainly satisfies the constraint and delivers higher utility.
If not, the unconstrained case does not satisfy the constraint, so that θcon is the
best we can do. Thus

(14) θsus = min {θunc, θcon} .

Equivalently, θcon is the highest possible sustainable consumption-wealth ratio.

It follows from equations (10) and (11) that

(15) θunc =
1

γ
ρ+

(
1− 1

γ

)
θcon.

Equations (14) and (15) have several interesting implications. First, the sus-
tainability constraint binds if and only if ρ > θcon = rCE (or, equivalently, if
and only if ρ > θunc). Related to this, we can show that in the absence of a
sustainability constraint,

(16) E0Xt = X0e
(ρ−θunc)t .

The term ρ − θunc in equation (16) equals (1 − 1/γ)(ρ − rCE). If impatience

is sufficiently high that ρ > θunc, or equivalently ρ > rCE, then Xt = W 1−γ
t
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is expected to grow without limit in an unconstrained equilibrium, so expected
utility is expected to decline without limit.7 The sustainability constraint binds
in this circumstance.

Second, equation (15) shows that the moderating influence of ρ makes θunc less
sensitive than θcon to changes in other parameters of the model, holding ρ fixed.

Third, equation (15) implies that the behavior of an extremely risk-averse indi-
vidual is little affected by the presence or absence of a sustainability constraint,
as θunc ≈ θcon if γ is large. This reflects the fact that highly concave utility leads
an agent to choose a flat consumption path that is close to sustainable, regardless
of the level of ρ.

Fourth, equations (14) and (15) show that θsus and θunc can easily be calculated
from knowledge of θcon, so we can focus our analysis on the determinants of θcon.

Finally, we can use this analysis to analyse how and why the social discount rate
used in, say, the Stern Review (2006), might differ from the quantity ρ that enters
an individual’s utility function. The Stern Review emphasizes the importance of
the discount rate in making welfare comparisons across generations separated by
long tracts of time, eventually settling on a value of 0.1%. Weitzman’s (2007b)
review of the Review describes this as “a decidedly minority paternalistic view”
and worries that “For most economists, a major problem . . . is that people are
not observed to behave as if they are operating with [the discount rate] δ ≈ 0”.

In our setting, individuals unconstrained by sustainability will use the discount
rate ρ > 0 in calculations. Might sustainability justify a lower social discount
rate suitable for use in a Stern Review -like exercise?8

To answer this question, define the social discount rate ρ̂ via the equation
θunc (ρ̂) = θsus. With this definition, ρ̂ is the hypothetical discount rate that
should be used by a social planner who wants to impose sustainability. Equations
(14) and (15) imply that

(17) ρ̂ = min {ρ, θcon} = min {ρ, rCE} .

If the sustainable consumption-wealth ratio is lower than the unconstrained time
discount rate ρ, this represents an alternative justification for using a social dis-
count rate lower than an individual’s discount rate, ρ; nonetheless, it suggests a
higher social discount rate than does the Ramsey rule, which sets ρ̂ equal to zero.
We return to the comparison of the sustainable and Ramsey rules in Section III.

We now turn to the implications of sustainability for the portfolio choice de-
cision. The next result shows that our sustainability constraint does not af-
fect the optimal investment choice, so that its impact is felt purely through the
consumption-savings decision, as analyzed above.

Intuitively, it is not optimal to distort portfolio choice because doing so affects
expected utility in the same way in all periods. Distorting the portfolio choice

7Expected wealth will decline toward zero if ρ is sufficiently large; but if ρ is sufficiently close to θcon
then wealth has positive drift despite the negative drift in expected utility.

8Weitzman (2007b) points out that model uncertainty provides another justification.
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decision away from the unconstrained optimum therefore does not relax the con-
straint; nor (by definition) does it directly benefit the objective function. By
contrast, in papers such as Dybvig (1995) or Campbell and Sigalov (2022) that
feature constraints on consumption as opposed to welfare, it may be optimal to
distort portfolio choice relative to the unconstrained optimum in order to relax
the constraint.

Result 2. The optimal investment choice is unaffected by the presence of the sus-
tainability constraint. The optimal risky asset allocation, α, continues to satisfy

(18) µ̂− αγσ2 = ωE
[
L (1− αL)−γ

]
,

as in the unconstrained case (6).

PROOF:
If the constraint binds, we can use it to eliminate θ from the objective function

(4), giving

(19) Ucon,0 =
W 1−γ

0

1− γ

(
rf + αµ̂− 1

2γα
2σ2 + ω

E[(1−αL)1−γ−1]
1−γ

)1−γ

ρ
.

Maximizing equation (19) with respect to α, we find the first-order condition (18).
As a corollary of Results 1 and 2, the sustainable strategy is Pareto-efficient

because it is identical to the unconstrained-optimal strategy for some choice of ρ.

A. Bounding the sustainable consumption-wealth ratio

If there are no jumps, as is commonly assumed in the literature, we can use the
Merton formula (7) to eliminate α from equation (8), giving

(20) θcon = rf +
1

2

µ2

γσ2
.

Equation (20) can be rewritten, again using condition (7), as

(21) θcon =
1

2
× rf +

1

2
× [(1− α) rf + α (rf + µ)]︸ ︷︷ ︸

expected return on optimally invested wealth

.

This shows that—in the absence of jumps—the certainty-equivalent return and
hence the constrained consumption-wealth ratio lie halfway between the riskless
return and the expected return on wealth. With plausible parameter values,
the maximum sustainable consumption-wealth ratio θcon is therefore considerably
higher than the riskless rate. If, say, the riskless rate is rf = 2%, the expected
return on risky capital is µ+rf = 10%, its volatility is σ = 20%, and risk aversion
is 2, then the constrained consumption-wealth ratio is 6%.
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More generally, we have the following result.

Result 3. We have the bounds

(22) rf +
1

2
γα2σ2 ≤ θcon ≤ rf + αµ− 1

2
γα2σ2.

In particular, the sustainable consumption-wealth ratio lies between the riskless
rate (rf ) and the expected return on wealth (rf + αµ).

If there are no jumps, the sustainable consumption-wealth ratio is exactly halfway
between the riskless rate and the expected return on wealth.

With jumps of deterministic size L, and assuming α > 0, the sustainable
consumption-wealth ratio is higher than the halfway point if jumps represent bad
news, L > 0, and lower if jumps represent good news, L < 0.

Result 3 shows that the constrained consumption-wealth ratio must lie between
the riskless return and the expected return on wealth, with the precise location
determined by the arrival rate and distribution of jump sizes. Importantly, the
upper and bounds on the sustainable consumption-wealth ratio do not require
knowledge of the frequency or size distribution of jumps, though jumps are cap-
tured indirectly via their influence on the riskless rate, expected return on risky
capital, and the optimal allocation to risky capital, α. In an equilibrium in which
risk is inescapable, α must equal one: in this case, only the riskless rate and
average return on risky capital must be estimated. These quantities are relatively
easy to estimate even in economies with jumps, as Barro (2006) points out.

Result 3 also suggests, as a rule of thumb, that if we think of rare events as
representing bad news rather than good news, then the maximum sustainable
consumption-wealth ratio should be higher than the halfway point between the
riskless rate and the expected return on wealth, so that the halfway point itself
is sustainable.9

B. Sustainable growth

We have seen that sustainability places an upper limit on the rate at which
wealth is consumed. Put differently, the sustainability constraint requires that
there is enough saving that the expected growth rate of the economy10 is no less
than some lower limit.

Result 4. Sustainability requires that consumption and wealth have positive drift
in levels: that is, g = E dC

C = E dW
W is positive.

If γ > 1, sustainability even requires that consumption and wealth have positive
drift in logs: that is, glog = E d logC = E d logW is positive.

9The proof of Result 3 provides a general condition for arbitrary jump size distributions under which
the sustainable consumption-wealth ratio exceeds the halfway point.

10As measured by the growth rate either of wealth or of consumption. The two are equivalent because
the consumption-wealth ratio is constant in our setting.
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If equilibrium requires that α = 1—that is, if risk is inescapable—then

(23) g =
1

2
γσ2 +

ω

γ − 1
E
[
(1− L)1−γ − 1− (γ − 1)L

]
and

(24) glog =
1

2
(γ − 1)σ2 +

ω

γ − 1
E
[
(1− L)1−γ − 1 + (γ − 1) log(1− L)

]
when the sustainability constraint binds. Lower growth rates are not sustainable.
All four terms on the right-hand sides of equations (23) and (24) are positive if
γ > 1.

The intuition for this result is straightforward. Growth, g, reflects the portion
of the return on invested wealth, rf + αµ, that is not consumed. Thus, when the
sustainability constraint binds,

(25) g = rf + αµ− θcon = rf + αµ− rCE .

This difference is always positive and equals half the risk premium on invested
wealth in the case where there are no jumps.

When the sustainability constraint binds, expected utility in the distant future
is expected to be the same as expected utility today. But because risk cumulates
over time, later generations, who are exposed to more risk, must be compensated
with higher average levels of wealth and hence consumption if their expected
utility is to be held constant.11

A counterintuitive implication of Result 4 is that as one looks into the far-
distant future expected utility is overwhelmingly likely to be higher than its
current value: in an economy that grows on average, expected utility at time
t approaches its upper bound (of zero) almost surely as t approaches infinity.
Nonetheless, expected utility is constant over time in expectation because (echo-
ing the result of Martin, 2012) there is a sting in the tail: there are a vanishingly
small number of extreme paths in which expected utility in the future is arbitrarily
low.

C. Numerical examples

Table 1 presents some numerical examples to illustrate the properties we have
discussed.

The first line of the table considers a case with no jumps. The riskless return
and risk premium are each equal to 4.5%, so that the risky asset’s expected

11Result 4 illustrates the distinction between our sustainability constraint and the arithmetic and
geometric constraints considered by Campbell and Sigalov (2022), which impose zero drift in wealth or
in log wealth, respectively. Moreover, the Campbell and Sigalov constraints generally distort portfolio
choice, whereas our sustainability constraint does not.
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Table 1—Numerical examples

rf µ σ ω L α θcon g glog halfway
No disasters 0.045 0.045 0.15 0 0 1 0.0675 0.0225 0.0113 0.0675
Avoidable disasters 0.045 0.045 0.15 0.02 0.5 0.698 0.0617 0.0147 0.0076 0.0607
Unavoidable disasters 0.015 0.075 0.15 0.02 0.5 1 0.0575 0.0325 0.0174 0.0525

return is 9%, and the risky asset’s volatility is 15%. With risk aversion γ = 2
(as is assumed throughout the table) Result 2 implies that it is optimal to put
all wealth into the risky asset, α = 1. The maximum sustainable consumption-
wealth ratio is θcon = 6.75%, by Result 1: this is exactly halfway between the
riskless return and the expected return on wealth, as shown in equation (21) and
reported in the final column of the table. The minimum expected growth rate
that is consistent with sustainability is 2.25%, by Result 4. These numbers add
up to the expected return on wealth, 9%, as required by equation (25).

The second line of Table 1 holds the riskless return and risk premium con-
stant, but adds disasters that destroy 50% of wealth on arrival, and which arrive
at rate 2% per year. These make the risky asset less attractive, so the optimal
response is to reduce risk exposure, setting α = 0.698. The maximum sustain-
able consumption-wealth ratio declines to 6.17%, and this is associated with the
minimum sustainable growth rate g = 1.47%. Again, the sustainable consump-
tion wealth ratio and growth rate add up to the expected return on wealth,
θcon + g = rf + αµ.

In the economy described in the second line, the scale of two technologies—one
risky, the other riskless—can be adjusted arbitrarily. But we might imagine an
equilibrium in which society cannot eliminate risk no matter how much it might
wish to do so. If we impose this requirement, holding the total return on the risky
technology constant at 9%, as in the first two lines, then the riskless rate must
adjust endogenously so that society is content to bear the inescapable risk of its
invested wealth—that is, so that α = 1.

The third line of Table 1 considers this case. The interest rate declines to
1.5%, so that the risk premium on the risky asset is 7.5%. At these levels, it is
indeed optimal to invest fully in the risky technology. The maximum sustainable
consumption-wealth ratio of 5.75% lies slightly above the halfway point between
the riskless return and the expected return on the risky technology, consistent
with Result 3.

Figure 1 expands on this last calibration to show how the sustainable consumption-
wealth ratio varies with the severity of jumps. As in the third line of Table 1,
we set risk aversion γ = 2 and assume an expected return on risky capital of 9%,
Brownian volatility σ = 15%, a jump probability ω = 2%, and jumps of determin-
istic size L. The horizontal axis shows different values for L, where positive values
correspond to negative jumps (losses) in wealth, and negative values correspond
to positive jumps in wealth. In the left panel, the constrained consumption-wealth
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Figure 1. θcon and the upper and lower bounds for various deterministic jump sizes L, with

γ = 2, σ = 0.15, ω = 0.02, µ+ rf = 0.09. Jumps are bad news if L is positive and good news if L

is negative. The dashed line in the left panel indicates the midpoint of the riskless rate and

expected return on the risky technology.

ratio θcon is plotted along with the expected risky asset return rf + µ (constant
at 9%) and the endogenously determined riskfree interest rate rf . The maximum
sustainable consumption-wealth ratio is halfway between the two returns in the
Brownian case; it is closer to the risky asset return in the bad-jump region where
L > 0, and closer to the riskfree interest rate in the good-jump region where
L < 0. In the right panel, the maximum sustainable consumption-wealth ratio
is plotted along with the upper and lower bounds from Result 3. The bounds
are tight in the Brownian case (L = 0), and widen out as the absolute jump size
increases.

III. Sustainability and the Ramsey Rule

We have interpreted sustainability as requiring that expected utility should
not be allowed to decline over time. One can imagine representatives of each
generation attempting to agree (at time 0, behind the veil of ignorance) on a
savings policy that gives each generation the same expected utility. Put another
way, these representatives maximize the expected utility of the worst-off gener-
ation, following the “difference principle” of Rawls (1999). Equation (4) shows

that this is equivalent to ensuring that E0W
1−γ
t /(1 − γ) (or equivalently, as the

consumption-wealth ratio is constant, E0C
1−γ
t /(1− γ)) is constant across t.

As an alternative rule, one might also imagine considering the possibility that
the representatives aim to maximize average utility across generations. This is
equivalent to maximizing

(26)

∫ ∞
t=0

E0
C1−γ
t

1− γ
dt = E0

∫ ∞
t=0

C1−γ
t

1− γ
dt .
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This is the problem faced by an unconstrained agent with pure time preference
rate ρ = 0. It leads to the savings rule proposed by Ramsey (1928), who argued
on ethical grounds that the rate of pure time preference should be zero. Setting
ρ = 0 in equation (10), we arrive at the Ramsey consumption-wealth ratio

(27) θRamsey =

(
1− 1

γ

)
rCE.

The next result follows by comparing (27) with (11).

Result 5. There is a simple relationship between the sustainable consumption-
wealth ratio and the Ramsey consumption-wealth ratio:

(28) θRamsey =

(
1− 1

γ

)
θcon.

The two rules are similar at high levels of risk aversion, but the Ramsey rule is
substantially more conservative at plausible values of γ. The Ramsey rule dictates
10% less consumption than our sustainable rule if γ = 10; 25% less consumption
if γ = 4; and 50% less consumption if γ = 2. In the log utility case γ = 1, the
Ramsey rule cannot be implemented at all, as it sets the consumption-wealth
ratio equal to the Ramsey rate of time preference—that is, to zero.

IV. Conclusion

We have argued, in the spirit of Koopmans (1960, 1967), that the implication
of an ethical criterion—sustainability—for social discounting and consumption
decisions depends on the production technology available to society. Specifically,
in a risky world with a binding sustainability constraint, the sustainable social
rate of time preference and consumption-wealth ratio, which equal one another,
are not equal to either the riskless interest rate or the risky return on invested
wealth, but lie in between these two. In the special case where invested wealth
has only Brownian risk and no jump risk, the sustainable social rate of time
preference is the equal-weighted average of the riskless interest rate and the risky
return.

We have made this point in the context of a model in which the parameters gov-
erning the distribution of returns are known. We have therefore ignored parameter
uncertainty, a phenomenon emphasized by Weitzman (2007a, 2007b, 2009). We
have also ignored the possibility that returns may not be i.i.d., because expected
returns or risks change over time. Models with non-i.i.d. returns in general imply
time-varying consumption growth and a term structure of discount rates. When
consumption growth is persistent, this term structure is generally downward-
sloping for safe investments and upward-sloping for risky ones as in the long-run
risk model of Bansal and Yaron (2004). Gollier (2002) emphasizes the potential
importance of a downward-sloping term structure of discount rates for social dis-
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counting. Our i.i.d. model has discount rates that are invariant to the horizon of
an investment.

Although we have emphasized the sustainable social rate of time preference,
we conclude by noting that this is not the same as the appropriate social dis-
count rate that should be applied to an investment project. That discount rate
depends on the project’s risk. For a riskless project, the appropriate discount
rate is the riskless interest rate, which is lower than the sustainable social rate of
time preference in a risky world; and for a project that has the same risk as soci-
ety’s invested wealth, the appropriate discount rate is the expected risky return,
which is higher than the sustainable social rate of time preference. Some previous
discussions of social discounting have obscured these distinctions by ignoring the
risk that society faces. Our analysis is deliberately simple in order to achieve
clarity about these issues.
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Appendix

Details regarding the derivation of equation (3). It follows by applying Itô’s
formula for semimartingales to (2) that

(A1) d logC =

(
rf + αµ̂− 1

2
α2σ2 − θ

)
dt+ ασ dZ + log (1− αL) dN.

See, for example, Proposition 8.19 of Cont and Tankov (2004). Heuristically, we
can derive (A1) by writing

d logC =
1

C
dC − 1

2!

1

C2
(dC)2 +

1

3!

2

C3
(dC)3 − 1

4!

6

C4
(dC)4 + · · ·

and using the relationships dt dN = dZ dN = 0 and dNk = dN for all k > 0,
in addition to the standard properties of dZ and the fact that log (1 + x) =
x− x2/2 + x3/3− x4/4 + · · · if |x| < 1, which holds when x = −αL because the
agent will never risk bankruptcy.

Integrating forwards, exponentiating, using C0 = θW0, and raising to the power
1− γ, we have

(A2) C1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂−

1

2
α2σ2 − θ

)
t+ α(1− γ)σZt

} Nt∏
i=1

(1− αLi)1−γ .

Writing L for a representative of the i.i.d. Li, we have
(A3)

EC1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂− 1

2
γα2σ2 − θ

)
t+ ωE

[
(1− αL)1−γ − 1

]
t

}
.

This holds because Nt, Zt, and Li are independent, and using (i) the law of
iterated expectations, (ii) the fact that Nt is a Poisson random variable with
parameter ωt, (iii) the i.i.d. nature of the Li, and (iv) the series definition of the
exponential function to calculate

E

Nt∏
i=1

(1− αLi)1−γ (i)
= E

[
E

(
Nt∏
i=1

(1− αLi)1−γ
∣∣∣∣ Nt

)]
(ii)
=

∞∑
n=0

e−ωt
(ωt)n

n!
E

n∏
i=1

(1− αLi)1−γ

(iii)
=

∞∑
n=0

e−ωt
(ωt)n

n!

(
E
[
(1− αL)1−γ

])n
(iv)
= exp

{
ωE
[
(1− αL)1−γ − 1

]
t
}
.
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Details regarding the derivation of equation (12). As above, equation (12)
follows directly from Itô’s lemma, but we can understand the evolution of the
rescaled variable X = W 1−γ heuristically by writing

dX = (1−γ)W−γ dW +
γ(γ − 1)

2
W−γ−1 dW 2− γ(γ − 1)(γ + 1)

6
W−γ−2 dW 3 + · · ·

Rearranging, we have

dX

X
= (1− γ)

dW

W
+
γ(γ − 1)

2

(
dW

W

)2

− γ(γ − 1)(γ + 1)

6

(
dW

W

)3

+ · · ·

= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

+

[
(γ − 1)αL+

γ(γ − 1)

2
α2L2 +

γ(γ − 1)(γ + 1)

6
α3L3 + · · ·

]
dN

= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

[
(1− αL)1−γ − 1

]
dN ,

as required, where we use the binomial expansion of (1− αL)1−γ in the last line.
PROOF OF RESULT 3:

Define m(x) = E
[
(1− αL)−x

]
. This is the moment-generating function of the

random variable J = − log(1 − αL), so m(x) is a convex function of x (indeed,
the cumulant-generating function logm(x) is convex). By Result 1 we can write
the maximum sustainable consumption-wealth ratio either as

θcon = rf +
1

2
γα2σ2 + ω

[
m(γ)−m(γ − 1)− m(γ − 1)−m(0)

γ − 1

]
or as

θcon = rf + αµ− 1

2
γα2σ2 − ω

[
m(γ − 1)−m(0)

γ − 1
− (m(0)−m(−1))

]
.

The upper and lower bounds follow by noting that the expressions in the square
brackets are (collectively) positive in each equation, by virtue of the convexity of
m(x).

Adding the two together and dividing by two, it follows that

θcon =
rf + rf + αµ

2
+
ω

2

[
m(γ)−m(γ − 1)− 2

m(γ − 1)−m(0)

γ − 1
+ (m(0)−m(−1))

]
.

The condition for θcon ≥
rf+rf+αµ

2 is therefore that

(A4) m(γ)−m(γ − 1)− 2
m(γ − 1)−m(0)

γ − 1
+ m(0)−m(−1) ≥ 0.
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This may or may not hold for different size distributions L. Suppose, however,
that L is deterministic and L ≥ 0. Then m(x) = eJx where J = − log(1−αL) ≥ 0.
In this case, condition (A4) becomes

eJγ − eJ(γ−1) − 2
eJ(γ−1) − 1

γ − 1
+ 1− e−J ≥ 0.

We fix γ > 1 and view the left-hand side of this inequality as a function of J .
Defining

h(J) = eJγ − eJ(γ−1) − 2
eJ(γ−1) − 1

γ − 1
+ 1− e−J ,

we must show that h(J) ≥ 0 for arbitrary J ≥ 0. As h(0) = 0, it is enough to show
that h′(J) ≥ 0 for J ≥ 0. By direct calculation, h′(J) = γeJγ−(γ+1)eJ(γ−1)+e−J .
As h′(0) = 0, it remains to show that h′′(J) ≥ 0 for J ≥ 0, as this will establish
that h′(J) ≥ 0 for arbitrary J ≥ 0, and hence that h(J) ≥ 0 for arbitrary J ≥ 0.
But this holds:

h′′(J) = γ2
(
eJγ − eJ(γ−1)

)
+ e−J

(
eJγ − 1

)
≥ 0.

If L ≤ 0 and hence J ≤ 0, the same logic applies but the inequality is reversed.

PROOF OF RESULT 4:

As

(A5)
dW

W
=

{
1

2
γα2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1

]}
dt+ ασ dZ − αLdN,

the drift of wealth is

(A6) E
dW

W
=

(
1

2
γα2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1 + αL(1− γ)

])
dt,

and both terms in the brackets are positive. (To see that the second term is
positive, note that Bernoulli’s inequality states that (1 + x)r ≥ 1 + rx if 1 + x is
positive and r ≤ 0 or r ≥ 1. Under our maintained assumption that γ > 1, it
follows that (1− αL)1−γ ≥ 1 + (γ − 1)αL.)

Similarly,
(A7)

E d logW =

(
1

2
(γ − 1)α2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1− (1− γ) log(1− αL)

])
dt .

Again both terms in the brackets are positive. This is obvious for the first term;
for the second, write

E
[
(1− αL)1−γ − 1− (1− γ) log(1− αL)

]
= E

[
e(γ−1)J − 1− (γ − 1)J

]
,
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where J = − log(1− αL), and use the fact that ey ≥ 1 + y for all y ∈ R.

Sustainability with population growth. The analysis in the body of the paper
imposes sustainability on a social welfare function defined over aggregate con-
sumption. This is equivalent to sustainability of individual utility only if the
population is constant. We now show how to modify our analysis to make in-
dividual utility sustainable given constant exogenous population growth at rate
g.

If there is population growth, then wealth at time t is shared between more
people. Normalizing the initial population size to 1, the wealth of an average
individual at time t is Wte

−gt, where g > 0 is the population growth rate. To
ensure that such an average individual’s expected utility is nondecreasing, we
require12 that X̃t has nonpositive drift, where X̃t = eg(γ−1)tXt.

As dX̃/X̃ = g(γ − 1) dt+ dX/X, the sustainability constraint (11) becomes

(A8) θ ≤ rCE − g.

The right-hand side of (A8) subtracts the population growth rate g from the
previous formula for the sustainable consumption-wealth ratio. Sustainability of
individual utility is a more demanding requirement in the presence of population
growth. However, for realistic population growth rates the central message of the
paper remains unchanged: in the presence of risk, the sustainable consumption-
wealth ratio exceeds the riskless interest rate rf and substantially exceeds rf − g,
which would be its value in the riskless economy considered by Arrow et al. (2004).

The case of multiple assets. Our results generalize without modification if there
are multiple assets whose returns are i.i.d. over time (but potentially correlated
across assets), as for any portfolio of asset holdings consumption growth will
continue to satisfy equation (2) for appropriate µ, σ, ω, and L.

The log utility case. With log utility, the investor’s objective function is

U = E

∫ ∞
0

e−ρt logCt dt , where ρ > 0.

It follows from equation (A1) that

logCt = logC0 +

(
rf + αµ̂− 1

2
α2σ2 − θ

)
t+ ασZt +

Nt∑
i=1

log (1− αLi) ,

12This condition also ensures nondecreasing expected utility for any class of individuals who have a
constant share of the wealth of society. For example, a Blanchard (1985) model with population growth
implies that a newborn person has lower wealth than the average currently living person, because more
people are born than die at each instant; however, with a constant population growth rate the wealth

share of newborn individuals is constant over time. Thus, the constraint that X̃t has nonpositive drift
ensures that the expected utility of newborn individuals does not decline over time.
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and hence

E logCt = logC0 +

(
rf + αµ̂− 1

2
α2σ2 − θ

)
t+ ωE [log (1− αL)] t.

Thus the objective function can be evaluated explicitly as

U =
logW0 + log θ

ρ
+
rf + αµ̂− 1

2α
2σ2 − θ + ωE [log (1− αL)]

ρ2
.

Maximizing with respect to θ and α we find the first-order conditions for an
unconstrained optimum,

θ = ρ and µ̂− ασ2 = ωE
[
L (1− αL)−1

]
.

The objective function at time t is affine in logWt, so the sustainability condi-
tion requires that d logWt, or equivalently d logCt, is driftless, i.e. that

θ ≤ rf + αµ̂− 1

2
α2σ2 + ωE [log (1− αL)] .

We define the constrained solution as before, giving

θcon = rf + αµ̂− 1

2
α2σ2 + ωE [log (1− αL)] .

When the constraint binds, we have

U =
logW0 + log θ

ρ
,

so α is chosen to maximize the constrained consumption-wealth ratio. We end
up with the same first-order condition as in the unconstrained case. Thus the
optimal investment choice is the same in the constrained and unconstrained cases,
as before. Equations (14) and (15) also hold as before.


