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Abstract

This paper studies executive pay with fairness concerns: if the CEQ’s wage falls below
a perceived fair share of output, he suffers disutility that is increasing in the discrepancy.
Fairness concerns do not always lead to fair wages; instead, the firm threatens the CEO with
unfair wages for low output to induce effort. The contract sometimes involves performance-
vesting equity: the CEO is paid a constant share of output if it is sufficiently high, and
zero otherwise. Even without moral hazard, the contract features pay-for-performance, to
address fairness concerns and ensure participation. This rationalizes pay-for-performance

even if effort incentives are unnecessary.
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Standard executive compensation models assume that CEOs care about pay only for the con-
sumption it enables. As a result, the marginal consumption utility of the bonus from improving
performance must weakly exceed the marginal cost of effort to do so. Such models have contributed
substantially to our understanding of executive compensation and inspired a stream of empirical
research.

However, it is not clear that consumption utility is the only, or even the most important, driver
of pay, given that CEOs are typically wealthy and most of their consumption needs are already
met. Edmans, Gosling, and Jenter (2023) survey directors and investors on how they set executive
contracts. Both sets of respondents highlight how pay is also driven by the need to ensure the CEO
feels fairly treated, consistent with experimental evidence that agents have fairness concerns (see
Fehr, Goette, and Zehnder (2009) for a survey). They also suggest that firm value is an important
determinant of what the CEO views as fair. If firm value has increased due to CEQO effort, he
expects to be rewarded. If firm value has increased (decreased) due to luck outside his control, he
should share in this good (bad) luck. These findings echo the widely-replicated ultimatum game
(e.g. Roth et al., 1991): if one party has been gifted an endowment, the other believes she should
be offered a sizable share.

This paper studies optimal contracts when the CEO is motivated by both consumption utility
and fairness concerns. The CEO believes that he deserves a given share of output, which we call
the (perceived) fair wage. If his wage is below this fair wage, he suffers disutility that is linear in
the discrepancy; his utility is otherwise linear. The principal is risk-neutral and both parties are
protected by limited liability.

One might think that fairness concerns would imply that the CEO is paid a fair wage for all
output levels, but we show that unfairness can be a powerful motivator. If output is below a
threshold, the optimal contract pays the most unfair possible wage of zero. Once output crosses
that threshold, the CEO is paid the fair wage. If fairness concerns are sufficiently high and
reservation utility sufficiently low, he receives the fair wage for all outputs above the threshold.
This contract contrasts Innes (1990), who studies a risk-neutral agent without fairness concerns.
He shows that the optimal contract is “live-or-die” — zero if output is below a (higher) threshold,
and the entire output above it. The intuition is that paying maximum rewards, for only very high
outputs, efficiently induces effort. However, such a contract is inefficient under fairness concerns.
Even if the CEO works, output may fall below the threshold due to bad luck. If the CEO is paid
zero, he perceives significant unfairness, which erodes his incentives to work. Thus, it is efficient
to offer him a lower threshold and pay a fair wage once output crosses it.

A linear contract that drops discontinuously to zero resembles performance-vesting equity,
where the CEO is given equity but forfeits it upon poor performance, which is a common feature
of real-life contracts. Standard models, such as Holmstrém (1979), do not predict discontinuous
contracts. In Innes (1990), pay jumps from zero to the entire output, but such sharp discontinu-
ities do not exist in practice. We predict a milder and thus more realistic discontinuity — when

performance crosses a threshold, the wage jumps from zero, but not to the entire output. Like



Innes (1990), our contract involves a zero wage when output is below a threshold, but unlike Innes
(1990), the wage is a constant fraction of output rather than the entire output above the threshold.
Intuitively, performance-vesting equity provides fair wages if performance is good and unfair wages
if performance is bad, thus motivating good performance.

If fairness concerns are sufficiently low, there is an additional upper threshold above which the
CEO receives the entire output. Then, the contract involves three regions: zero for low outputs,
the fair wage for moderate outputs, and the entire output for high outputs. Low fairness concerns
lead to a hybrid with Innes (1990), where maximum rewards for high outputs efficiently induces
effort.

When the incentive constraint is slack, pay remains increasing in output. Intuitively, satisfying
the participation constraint at least cost involves paying the fair wage over a range of outputs,
to avoid the disutility from unfair wages. Since the fair wage is increasing in output, pay is
increasing in output, and the firm can induce effort “for free”. In a standard moral hazard model,
implementing higher effort is always costly to the firm. Critics of high incentives argue that they
should not be necessary — the CEO should be intrinsically motivated, and/or the board should
monitor him. Our model demonstrates that pay-for-performance may be used not to induce effort,
but to attract a CEO with fairness concerns.

This paper is related to the theoretical literature on executive compensation, surveyed by
Edmans and Gabaix (2016) and Edmans, Gabaix, and Jenter (2017). The vast majority of these
theories feature moral hazard and only consumption utility. More closely related are CEO pay
models with reference points. In de Meza and Webb (2007), the reference point is the median
of the wage distribution; in Dittmann, Maug, and Spalt (2010), it is last year’s wage. Our key
innovation is that the reference point is increasing in output. This leads to a very different optimal
contract, in which pay-performance sensitivity is positive even if incentives are not a concern; if
incentives are a concern, pay-performance sensitivity is driven by the perceived fair wage rather
than the trade-off between incentives and risk sharing[l] Some other models feature the CEO’s
utility depending on variables other than pay, although not output. For example, DeMarzo and
Kaniel (2023) and Liu and Sun (2023) incorporate relative wealth concerns.

An important literature, surveyed by Sobel (2005), studies the effect of fairness concerns on
non-CEO contracts. Fehr and Schmidt (1999) explore inequity aversion, where an agent dislikes
another agent receiving less than him, and dislikes even more another agent receiving more than
him. In such models, subjects are ex ante symmetric, and so they compare their consumption.
They do not apply to a CEO setting, where the firm’s objective function is shareholder value, which
is orders of magnitude in excess of CEO pay. An inequity aversion explanation for rewarding CEO
for performance is that the board feels sorry for the CEO as his pay is so low, which seems at

odds with real-life perceptions. (If the board represents individual shareholders, inequity aversion

In Akerlof and Yellen (1990), the fair wage is output-independent, so the optimal contract does not have
performance-vesting equity (payments increasing in output). Hart and Moore (2008) study buyer-seller relationships
under the assumption that the reference point is the best outcome permitted by the contract.



would have no bite as shareholders would always want to lower pay as in a standard model). In our
model, CEQ’s utility function does not contain others’ utility; he cares about output not because

others are receiving it, but due to a desire to be rewarded fairly.

1 The Model

We consider a standard principal-agent model with one added feature: the agent (manager,
“he”) has fairness concerns, specified below.

At time t = —1, the principal (firm, “she”) offers a contract to the agent. At t = 0, the agent
privately chooses an effort level e € R, at cost C(e), where C(-) is strictly increasing, strictly
convex, and satisfies C(0) = C’'(0) = 0 and lim, »o, C'(e) = c0. At t = 1, output ¢ € [0,7]
is realized, where § may be finite or infinite, and the agent is paid a wage w (¢q). Output is
distributed according to a twice continuously differentiable density function ¢(¢|e) with full support
that satisfies the monotone likelihood ratio property (“MLRP”). For realism, both parties are
protected by limited liability, so that 0 < w(q) < ¢ Vq. The agent’s reservation utility is U and

his utility function is:

o) =3 ¢ if w(q) > w*(q)
) {w—WWWw—M if w(g) <w*(q) .

where w* (q) = pq is the perceived fair wage for output q.ﬂ

The new parameters are v and p. The parameter v > 0 represents the agent’s fairness concerns:
the disutility he suffers if his wage falls below the perceived fair wage, which is a given share p
of output. When v = 0, the agent has no fairness concerns and so he has a standard risk-neutral
utility function as in Innes (1990). When v > 0, the agent is concerned with fairness, as found by
Edmans, Gosling, and Jenter (2023), who also discover that firm output is a major determinant
of the perceived fair wage. For example, their Table 7 finds that recent CEO performance is the
most important driver of the level of pay. Since CEOs have substantial equity holdings, good
performance likely already leads to sufficient increases in consumption utility to induce effort
without the need for pay rises. The free text responses and interviews suggest that pay rises are
instead used to provide ex-post recognition of performance so that the CEO feels fairly treated.
One investor explained that pay rises are important to acknowledge good performance otherwise
the CEO might feel unappreciated and leave. Another pointed out that, if a CEO is denied a pay
rise upon good performance, he infers that the board and shareholders do not value him highly,
causing him to be demotivated. Table 11 in Edmans, Gosling, and Jenter (2023) shows that the
main reason why CEOs receive variable flow pay is “to motivate the CEO to improve long-term

shareholder value.” As a director explained, this is “to recognize achievement — the retrospective

20ur results are qualitatively unchanged with a nonlinear fair wage which is strictly increasing in output and
such that w*(0) = 0 and w*(q) € (0,q) for ¢ > 0.



acknowledgement of exceptional performance is important.”

Fairness concerns also explain why pay is tied to output even though it may be driven by luck.
In Table 11, 84% of directors and 79% and of investors state that a reason for variable pay is
“so that the CEO shares risks with investors and stakeholders, even if out of the CEQO’s control”.
Table 14 finds that the main reason for the absence of relative performance evaluation is “the CEO
should benefit from an industry upswing, since investors and stakeholders do.”

The parameter p € (0, 1] represents the CEQO’s perceived fair share of output. A key de-
terminant is the importance of effort for output: Edmans, Gosling, and Jenter (2023) find that
“how much the CEO can affect firm performance” is the main driver of how variable pay is with
performance.

Overall, the utility function is piecewise linear with a slope of 1 above the fair wage and a
slope exceeding 1 below.E| It is the simplest and most transparent specification for fairness concerns,
and allows us to conduct comparative statics with respect to v and p. In the Online Appendix,
we show that the key results remain robust to a utility function that is weakly concave above the
fair wage and weakly convex below.

For each target level e, the principal finds the cheapest contract that induces effort of at least

el', similar to the first stage in Grossman and Hart (1983):

min, [ wlgotale)dy @)

st o€ angmax{ [ ulw)o(dlends - C@) | = ¢ ®)
/0 "u(wle), dlale)dq — C(e) > T (4)
0 <w(q) <qVq (5)
w(q) > w(q') Vg > ¢ (6)

where is the incentive compatibility constraint (“IC”), is the individual rationality con-
straint (“IR”), are limited liability constraints, and () is the agent’s monotonicity constraint
which ensures that the wage is non-decreasing in output (otherwise the principal would borrow to
artificially increase output). If the IC is slack, the manager’s chosen effort e* will exceed e”.

The above formulation is the standard moral hazard model where the agent exerts effort and
then receives pay, similar to Holmstrom (1979) and Innes (1990), with the only departure being
his utility function. As a result, any deviation in the contract can be attributed to fairness con-
cerns. Another formulation would be for the agent to receive pay and then choose effort. However,
such a formulation would be more ad hoc, as we would need to hard-wire the link between per-

ceived unfairness and effort, rather than fairness entering the utility function. It would also be less

31n , the agent’s utility depends on the fair wage below w* (¢) but not above. Since preferences are invariant
to a monotonic transformation, also represents the case where the agent derives utility from above-fair wages
(in addition to his consumption utility) and a greater amount of disutility from unfair wages.



comparable with standard models.

2 Analysis

Define the likelihood ratio LR (g|e) as follows:

% (qgle)
dlqle)’

and let ¢ be the output for which the likelihood ratio is zero: LR(g§le) = 0. By MLRP and the
differentiability of ¢, ¢§ exists and is unique.

Lemma below derives a sufficient condition for the validity of the first-order approach (“FOA”),
which we henceforth assume holds[l] Let K (g) and K (¢) denote the positive and negative parts

of the second derivative of ¢(g|e) with respect to effort:

LR(qle) =

Lemma 1 (First-Order Approach): The FOA is valid if

/Oq (K (q)u(0,q) + K (q)ulg, q)) dg < C"(e)
for alle € R,.

To simplify the analysis, we assume:

% 0 @ 9
[ w05+ [ o) Gl = ")

/OqU(O,Q)cb(qm)dq <U (8)

q —_—
/ u(pg, q)¢(qlé)dg — C(é) > U, where é = €* as defined in (3) with w(q) =w*(¢) Vq.  (9)
0

These assumptions are not needed, but reduce the number of cases to consider. Assumption
ensures that an incentive-compatible contract that elicits e’ exists even if the firm never pays
more than the fair wage. Assumption implies that a contract that always pays zero violates

the IR. Assumption @D implies that a contract that always pays the fair wage satisfies the IR.

4This is related to the condition for the FOA in Chaigneau, Edmans, and Gottlieb (2022), with limited liability
but without fairness concerns.



We first focus on the participation constraint only by considering e’ = 0. As we show, the
optimal contract may still end up inducing effort because the manager chooses effort optimally
(see (3)) given the contract.

Proposition 1 (Zero target effort level): Fiz e© = 0. If U is sufficiently low, the principal
implements e* = 0; if U is sufficiently high and C(é) is sufficiently low, the principal implements
e* >0 v>0.

If U is sufficiently high, the principal needs to pay fair wages for a wide range of outputs to
ensure the agent’s participation. Since the fair wage is increasing in output, the actual wage is
increasing in output for a sufficiently large range of outputs that it induces effort as a by—productﬁ
the principal gets effort “for free”. This result contrasts the case without fairness concerns. In
standard models like Holmstrom (1979), it is always more costly to implement positive than zero
effort, because doing so requires an output-contingent wage and thus inefficient risk-sharing. As a
result, any effort level in R, can in principle be optimal, depending on parameters. This is not true
with fairness concerns. Providing low effort incentives requires paying either unfair wages for high
outputs (which causes the agent disutility) or above the fair wage for low outputs (which is costly).
A by-product of fair pay is that it incentivizes effort, even if such incentives are unnecessary. This
result may extend beyond the C-suite: equity might be given to rank-and-file employees, despite
their limited incentive effect, if they believe it is fair to share in the firm’s fortunesﬁ In contrast,
if U is low, the principal only needs to pay fair wages for a narrow range of outputs, which does
not induce effort.

We now move to the optimal contract when the IC binds, which arises when e’ is sufficiently
high. This will be the case if U is sufficiently low, in which case any e’ > 0 leads to the IC binding.
It will also be the case if the principal optimally induces a high e’ because effort has a large effect
on firm value, for example if the firm is large and CEO effort is scalable across the firm (Edmans
and Gabaix, 2011). Define g™ as the highest value that satisfies the following:

m

min

q

m 0 0
[ voaganins [ g =) (10)

min

In this contract, ¢

is the threshold below which the payment is zero and above which it is the

fair wage.

Proposition 2 (Binding incentive constraint): Fiz el sufficiently high. The principal implements

5A wage increasing in output does not automatically induce effort, because even though output increases the
wage, it also increases the fair wage. To induce effort, the wage needs to be increasing for enough outputs.

6Q0yer (2004) offers a different explanation: equity-based pay ensures that wages match outside opportunities.
However, it only has this effect if output is correlated with industry conditions; if it arises from effort, equity values
will not match outside opportunities.



e* = el and offers the following contract:

0 for q < qpm
w(g) =q w(q) forq€ [gm qu) - (11)
q for q > qu

(1) If v < L;R%l:l )T) 1 and U is sufficiently low that the IR is slack, then LR (qy,|e”) (1+~) =

LR (qule”) and gm > q5
(i1) If U is sufficiently high that the IR binds, then generically LR(gm|eT) (14 7) < LR(qule?);

LR(gleT
(1i3) If v > W —1 and

min

U<~ / " golaleT)dg + p / " goale)dg — C(eT), (12)

min
m

min

then gm = q'" and qu = q.

Without fairness concerns (y = 0), the model is similar to Innes (1990). Due to MLRP, the
principal concentrates rewards on very high outputs and so ¢, = qu: the optimal contract is
“live-or-die”. There is a single threshold below which the agent is paid the minimum (zero) and

above which he is paid the maximum (the entire output).

(a) (b)
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Figure 1: The manager has preferences v = 2, p = % Output follows a truncated lognormal

distribution on [0,10] with e = 1, ¢ = 1. Optimal contract for U = —0.6, C'(1) = C(1) = 2.25
(panel (a)); U = —0.5, C'(1) = C(1) = 1.8 (panel (b)).

With fairness concerns (y > 0), the optimal contract is given in Figure 1, panel (a). Parts (i)
and (ii) establish that, when ~ is low or the IR binds, the optimal contract has a third region: for
intermediate outputs ¢ € [gm,qun), the agent is paid the fair wage. The Innes (1990) contract is

suboptimal for two reasons. First, it does not satisfy the IR efficiently. The agent receives an unfair
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wage (zero) for outputs below the threshold, which causes disutility. Second, it does not satisfy
the IC efficiently. The agent receives an unfair wage even for some output levels with positive
likelihood ratios that suggest he has exerted effort, reducing his incentives to do so. Since the
utility function is steeper below w* (¢) rather than above it, it is efficient to increase the rewards
for moderately low outputs (that nevertheless have positive likelihood ratios) from 0 to w* (¢), and
simultaneously reduce the rewards for moderately high outputs from ¢ to w* (q).

While the above explains the intuition by starting from a moral hazard model and adding fair-
ness, we can alternatively start with a fairness model and add moral hazard. With fairness but no
moral hazard, the contract might involve always paying the fair wage, to ensure the agent’s par-
ticipation efficiently, but such a contract does not provide incentives efficiently. Doing so involves
punishing him with the most unfair possible wage of zero if output is sufficiently low (fairness con-
cerns can justify unfair wages because avoiding unfairness is a motivator) and rewarding him with
everything if output is sufficiently high (incentive provision concentrates rewards in the highest
likelihood ratio states).

Part (iii) shows that, when 7 is sufficiently high and U is sufficiently low that the IR is slack,
qn increases all the way to g. The highest region disappears, so the agent is never paid the entire
output. The contract only has two regions — zero for low outputs and the fair wage for high outputs
— as shown in Figure 1, panel (b). Intuitively, the disutility v from unfair wages is sufficiently high
that it already provides the agent with enough incentives to exert effort. The principal does not
need to incentivize him with very high payments for very high outputs.

When part (iii) holds, the contract represents performance-vesting equity, where the agent is
given shares worth pg that are forfeited if ¢ < g,,, as widely used in practice (Bettis et al., 2018)ﬂ
In standard models where the likelihood ratio is continuous in output, such as Holmstrém (1979),
the contract is also continuous in output and so does not involve discontinuities. In our model,
the likelihood ratio is also continuous in output, yet discontinuities are optimal because the threat
of a zero wage incentivizes effort. In the Innes (1990) model without a monotonicity constraint,
the optimal contract is discontinuous but the agent receives either nothing or everything; we are
unaware of such a contract being offered in reality. To obtain more realistic contracts, Innes (1990)
assumes a monotonicity constraint on the principal, but this leads to a pay-performance sensitivity
of 1 which is not the case for any real-world CEO (except for 100% owner managers); here, pay-
performance sensitivity is p. In addition, in Innes (1990), the monotonicity constraint leads to a
continuous contract; our contract features a mild discontinuity as is common in reality.

As discussed earlier, a key determinant of p is the importance of effort for output. Thus, p
is plausibly higher in new-economy industries, where the CEO has many growth opportunities to

exploit, than old-economy or regulated ones. For similar reasons, it is likely higher in less-regulated

"Performance-vesting equity is not the only feature of observed contracts. CEOs also receive base salaries,
potentially due to the CEO’s interim consumption needs: the period between ¢ = 0 where effort is exerted and
t = 1 where output is realized may be long, particularly for actions with long-term consequences. CEOs also
receive (short-term) bonuses, which have similar features to (long-term) performance-vesting equity: they are zero
if performance falls below a threshold.



countries such as the U.S. This is consistent with the higher-powered incentives in new-economy
industries and less regulated countries

Corollary [1] gives comparative statics for the threshold g,,.

Corollary 1 (i) IfU, €”, and v are sufficiently high that the IR and IC bind, then q,, is decreasing
mn vy and in p.
(i) If U is sufficiently low and v is sufficiently high that case (i) of Proposition @ applies,

then q, is decreasing in e’

Starting with part (i), stronger fairness concerns increase the agent’s disutility from receiving
zero. This reinforces effort incentives, but reduces the expected utility. To reduce effort incentives
and increase expected utility, the principal decreases g,,, because this increases the range of outputs
(Grms qST) over which the agent receives the fair wage even though they are bad news about effort.

Fairness concerns 7 are plausibly lower in the U.S. than continental Europe. This increases
the likelihood that the CEO is paid zero for poor performance, which is analogous to being fired.
They may also be lower in new economy industries, where it is more common for CEOs to receive
nothing; indeed, CEOs who suffer lower disutility from unfair wages may self-select into such
industries. This also leads to a higher threshold g, and thus likelihood of being fired.

A higher p increases the fair wage, which increases the manager’s pay for outputs that pay
the fair wage. It also decreases his expected utility and increases his incentives by a factor ~
for outputs that pay zero. When ~ is sufficiently high, the latter effect dominates. As above, to
decrease incentives and increase the manager’s expected utility, ¢,, falls.

For part (ii), implementing a higher effort e? requires higher incentives, which are achieved by
paying the agent the fair wage rather than zero for a greater range of outputs that are good news
about effort. Thus, ¢, falls. Similar to p, €T is likely higher in new-economy industries where the

CEO has greater effect on output.

3 Conclusion

This paper studied optimal contracting under fairness preferences, where the agent’s perceived
fair wage depends on output. We showed that fairness concerns do not lead to the agent being paid
fair wages for all output levels; in contrast, unfair wages can induce effort efficiently. The optimal
contract involves two thresholds for output. The agent receives zero below the lower threshold, the
entire output above the upper threshold, and the fair wage in between. When fairness concerns
are sufficiently strong, the top region disappears, and the contract becomes performance-vesting
equity. Most other contracting theories predict continuous contracts, or extreme discontinuities

where the agent’s pay switches from zero to the entire output.

8Tn a model without fairness, with a fixed target effort e, incentives are weaker if the CEO has a greater effect
on output, as fewer incentives are needed to implement that target effort: see Edmans and Gabaix (2016).

10



Even if the incentive constraint is slack, pay is increasing in output — paying the agent the fair
wage over a range of outputs reduces perceived unfairness and satisfies the participation constraint
efficiently. As a result, the firm can induce CEO effort “for free”, potentially rationalizing why
incentives are given even to intrinsically motivated agents.

This paper is a first step in modeling CEO pay under fairness preferences, using the standard
model to make transparent how fairness concerns affect the optimal contract. For future research,
it may be fruitful to explore other determinants of the fair wage suggested by the survey of Edmans,
Gosling, and Jenter (2023), such as peer firm pay in a model of multiple firms, employee pay in a

model of multiple agents, or last year’s pay in a dynamic modelﬂ

9Edmans, Gosling, and Jenter (2023) suggest that shareholders also have fairness concerns. However, this may be
a less promising research direction as the principal makes no decisions beyond offering the contract, and so fairness
concerns do not affect effort incentives. In addition, fairness concerns for the principal are similar to contracting
restrictions, which have been explored in prior work, e.g. Innes (1990).
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4 Proofs

Proof of Lemma [1k

Given contract w(q), the agent’s effort choice can be written:

max / " (wlq), @) dlale)dq — C(e).

e

The objective is concave in e if:

[ utwiar0 G5 talerin <) v

The expression on the LHS can be written:

/oqu (w(g), ¢) min {%@Ie), O}dq + /Oqu (ola). g mas {%@6)’ O}dq

q
< / (K7 (9)u(0,9) + K (9)ulq, ) dg, (13)
0
2 2 2 2
because 1 (w(g),q) £2(ale) < u(0,9)22(gle) whenever 22(qle) < 0 and u (w(a).q) 22(qle) <
u(q, q)%(qk) whenever %(cﬂe) > 0. Integrating over ¢ gives the inequality. [ |

Proof of Proposition [1}
With a nonbinding IC, the IR for e* > 0 must bind (the contract w(q) = 0 would not satisfy
IR because of (§)). With a nonbinding IC (¥ = 0), e* is such that:

[ w05 wlenyin < € (14

with an equality for e* > 0.

Consider the following contract:

(15)

w(q):{ w'(q) if g <qe

w*(q.) ifq > q.

Denote by ¢! the unique threshold such that IR is satisfied as an equality. With contract , an
increase in ¢, increases the LHS of :

8?10 {/Oq w*(q)%(qle*)dq + /q (w*(q) + (1 +7) (w*(ge) — w*(q))) %(q’6*>dq}

qc

70
= (1) [ o) > (16)
dc

by MLRP. For ¢. = 0, the LHS of is strictly negative. Thus, e* = 0 when ¢, is sufficiently
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low. Let ¢. be implicitly defined by:
(A%wmﬁfmmmq+[7w%@+«r+w@m@a—w%@»%Qmmwzwnm. (17)
U, is defined by:
A%w%@mmmmry[ﬂw%@+«1+w@w@a—uﬂ@»¢@quzvc

Lemma 2 The LHS of 15 strictly lower at e* = 0 with contract with q. = ¢ than with

any alternative contract such that w(q) < w*(q).

Thus, e* = 0 can be induced by a feasible contract such that w(q) < w*(q) if and only if it can
be induced by contract .

Proof of Lemma [2k
With w(q) < w*(q), u(w,q) is linear in w. To satisfy IR at a given effort, any alternative

contract w(q) must satisfy:

/bmwwmmz/@mwwm@ (18)

Because of contracting constraints, any alternative contract crosses contract once, at ¢ = q.
Let:

We will show that

[ @50~ [ o520 = [ c5 s

is strictly negative, using a proof technique similar to Innes (1990). Rewrite:

6¢> q1)9(qc|0) % (q10) ( d )d
[ e (/fq qmw S ([ camotanans ) .

qr ¢ QL|0)
4—/£ Clam) 22 (gu0) L/°‘% ST (19)

where ¢, and gy denote the variables of integration over [0, ¢) and [g,q| respectively. Let:

C(qL)$(qr)0) < C(qL)$(qr]0)
J2¢(@)¢(ql0)dg JE¢(q)b(gl0)dg

o(qr) = —
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where we used (L8)). Thus, since ((gy) < 0 and ('(gn) < 0 because of the definition of contract
and monotonicity, is smaller than:

“rt a_f(QHfo) 6—(5(%’0)
[ st (;(qmo) - 2(qL|O))ququ<0

where the inequality follows from MLRP, 6(qz) > 0 for ¢, < ¢, and ((qg) < 0 for gy > ¢, both
with strict inequality on non-empty intervals. [

In sum, if U < U, then ¢* < g, the contract is as in with ¢, = ¢ and e* = 0. If U > U,

*

then ¢ > §., i.e. any contract that induces e* = 0 must involve w(q) > w*(¢) on non-empty

subinterval(s).
Suppose U > U, but is still sufficiently low that a feasible contract that induces e* = 0 exists,
and compare two contracts. Contract A induces e* = 0 at minimum cost. Because of MLRP and

contracting constraints, it takes the following form.
Lemma 3 The contract that induces e* = 0 at the lowest cost is such that:

min{w*(qy),q} if ¢ < qr
w(q) = w*(q) if ¢ € [qr,q4]
w*(qa) if ¢ > qa

where 0 < gy < qa < 7.

Proof of Lemma 3k

There are three steps.

1. We take w(q) as given on the subset @, of outputs s.t. w(q) € (w*(q),q], and consider the
subset @, of outputs s.t. w(q) € [0,w*(¢)]. The optimization problem is:

win  fuw@ods st [ w(w(q),9) 2 (410)dq < C'(0)

w(q) s.t. ¢€Qa de
[ wtwta. 0ot > T
0 <w(q) <w(q) Vg € Qa
w(q) > 0Vq € Q,

Let x(q) = w(q). We use Theorem 3.60 from Grass et al. (2008). The Hamiltonian and
Lagrangian are:

H = —w(g)e(q|0) — éu(w(qm)g—f(qm) + 0u(w(q), )9(ql0) + A(q)z(q) (20)
L = H+ plg)r(q) +v(qQuw(q) +wlq)(w*(q) —w(q)) (21)
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The optimality condition w.r.t. the control variable x is % =0 & Xg) = —ulg). By
complementary slackness, u(q) > 0, pu(q) = 0 if z(¢) > 0. Thus, A(¢) < 0, and A(q) = 0 if

z(q) > 0. The equation of motion for the costate variable is:

oL

}\(Q) = T ow

: 0

Aq) = ¢(ql0) +£(1 + 'y)a—f(qm) —0(1+7)0(4|0) — v(q) + w(q)
By complementary slackness, if w(q) € (0,w*(q)) then:

¢
de

Ag) = 6(g|0) + £(1 4+ ) ==(g|0) — 6(1 + ) ¢(q|0) (22)

If w(q) > 0 then A(¢q) =0, i.e. )\(q) = 0; M(¢) = 0 combined with would imply:

1 % (q)0)
=0 — Oe
1+~ : ¢(ql0) ’

which is impossible by MLRP. In sum, we cannot have w(q) € (0,w*(q)) and w(q) > 0 on

any non-empty subinterval: either w(q) = w*(q) or w(q) = 0.

2. We take w(q) as given on the subset @), of outputs s.t. w(q) € [0,w*(q)], and consider
the subset @, of outputs s.t. w(q) € (w*(q),q]. As above, if w(q) € (w*(q),q| then either

w(q) =0 orw(g) =g

3. Standard arguments rule out upward discontinuities in a contract that minimizes effort in-
centives. Thus, we can only have w(q) = ¢ for ¢ € [0, ¢q,], for some ¢, € [0,g]. From the
arguments in steps above, if we never have w(q) = ¢, then either w(q) = w*(q) or w(q) =0,
so that the contract is as in (15]). But as established this contract cannot induce e* = 0 if
U > U,. Therefore, for U > U,, we have ¢, > 0. For ¢ > ¢,, by monotonicity we have
w(q) > w(qu) = qu, and by step 2 we have w(q) = 0 & w(q) = g, for q € [qu, g7, with ¢
such that ¢, = w*(¢qr). For ¢ > ¢, by step 1 we have w(q) = min{w*(q), w*(¢q)} for some
qa € g7, 7). u

The thresholds g4 and g are such that IR binds and e* = 0. With U > U,, we have qr >0
since there does not exist a contract as in that induces e* = 0.
Contract B is w(q) = w*(q) Yq. Suppose that U is so high that:

q _
| v @staleras - () =T (23)
0
where e* is the equilibrium effort induced by contract B. Then, contract B satisfies IR. It induces

e* =¢é>0 (see (9)).

Compare contract B to contract A defined in Lemma [3] with ¢; < §. By contradiction, if
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qq = G, then wa(q) > w*(q) Vq and:

by optimal effort choice, g5 > 0, and . The agent’s expected utility under contracts A and B

is respectively:

/0 " wal@)é(gl0)dg — / "0 (q) = w(aa)) $(al0)dg = T

qd

/0 " wn(@)o(ale)dg — C(E) =T

Thus, _ _
/0 ws(q)6(qlé)dg < / wa()6(q/0)dg

if and only if:

c@) < [ " (w*(q) = w*(qu)) 9(gl0)dg.

d

With v > 0 and full support, the RHS is strictly positive. [ |

Proof of Proposition [2}

We first establish that contract is optimal. We ignore the monotonicity constraint and
verify that the optimal contract satisfies it. By contradiction, suppose that the solution at any ¢
is either w(q) € (0,w*(q)) or w(q) € (w*(q),q). The first-order condition (“FOC”) for an interior
solution w(q) € (0,w*(q)) is:

96 1 82 (gle™)
—p(qle’) + p(1 + 7)%(q|eT) +A1+7)o(gle’) =0 « 1+y At 8(/b(q|eT)

where A and p are the Lagrange mgltipliers associated with the IR and IC. Thus, the FOC is
99 (g1eT
satisfied only if the likelihood ratio 2=

d(qleT)
argument can be made for w(q) € (w*(q), ¢q). Finally, we have w(q) = 0 for ¢ < ¢, w(q) = w*(q)

is constant, which is impossible by MLRP. A similar

for ¢ € [gm,qun), and w(q) = ¢ for ¢ > qu, where 0 < ¢, < gy < G. Suppose not. Then,
w(q) > w(q') for some g < ¢/, and, using standard arguments and MLRP, it would be possible to
perturb the contract to strictly increase the LHS of IC, which is binding, while leaving the cost
of the contract unchanged and the LHS of IR either unchanged or increased, contradicting the
optimality of the contract.

We establish the values of g, and gy for a given e*. The optimization problem with ¢, € [0,7]

18



and gy € [¢m, g 1s as in equations — but with e* given by the FOA and the following contract:

0 for ¢ < qm,
w(q) = w*(q) for q € [gm,qum)
q for ¢ > qm

Denote by n;c and n;r the Lagrange multipliers associated with IC and IR. The FOCs for an
interior solution are:

0 0
—Pgm®(qml€") — Nic (—wqma—f(qmle*) - pqma—i)(qmle*))
=R (=7P4mP(Gm|€”) — pgm@(gmle™)) =0
paelanle”) =~ auolanle’) = me (k) = a5 awle”))

—nrr (pamd(qule”) — audlaule’)) =0
which, for g,, # 0 and ¢;; # 0, are equivalent to:

le] *
92 (gune*)

—1+7710W (1+79)+mr(1+v)=0 (25)
3¢ «
-1+ 7710—26((61%5)) +nr =10 (26)

The optimal g, is generically not a corner solution. We can only have ¢,, = 0 when @ is
satisfied with equality at e* = e’. Likewise, we cannot have g,, = g, which would imply qa; =
this would violate the IC. Thus, the optimal ¢, is generically given by .

There are two cases.

Nonbinding IR. The IC for any e > 0 must bind. Suppose not. Then, the contract that
solves the optimization problem in (2), (5), and (6) is w(q) = 0 Vg, so that u(0,q) = —vpq
Vq € 10,q|, and:

q 8¢ q a¢
_ da = — d / )
/0 u(0, q) e (qle)dq vp/o 150 (qle)dg < 0 < C'(e)
If the optimal ¢, and ¢y, are interior, (25)) and (26)) with n;zr = 0 and ;¢ > 0 give:

o (amle”) _ 5elqurle”)
Hamler) — dlamler)

With n;r = 0 and 1;¢ > 0, we have ¢,, > ¢S because of and MLRP. Denote the subset of
values of {q, qar} that satisfy the IC by Q' and denote the values of {g,,,qas} in this subset by

(1+7)

(27)
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{q2¢, ¢t¢}. Totally differentiating the LHS of the IC w.r.t. ¢!¢ gives:

dgif (147w (gh0) o lan le) (28)
dgi¢ aif —wiary) 2(qlfler)’

where %(q{f]e*) > 0 and 8‘i’(q le*) > 0 since ¢§ < ¢n < qu- Now consider the subset Q° of
values of {gmn, qur}, denoted {¢,, ¢, }, that leaves the expected cost in (2)) unchanged:

dqs, w*(qs,)  o(qs,le)
- _ . 29
da @ = (@) o) (29)

Using ¢f < ¢ < qar and MLRP:

%2(gmle”) _ Llawle’)

¢(gmle*) ~ dlauler) (30)

with strict inequalities for gy > .
For any given element in Q'¢, there are two cases:

9¢
L. For ¢, and ¢jf s.t. (1+7) 66((3’8\6*)) < i);((%”cﬂ ))

and associated decrease in ¢y as in (28)) reduces cost because of (29)) and ( .

and ¢, > ¢ , a marginal increase in ¢,

o¢

2. For ¢!¢ and ¢i¢ st. (1+7) 66((3’8”;)) > i’;((q,”gk )) and ¢, > ¢S, a marginal increase in ¢,

and associated decrease in q,; as in increases cost because of (29) and (| .

Consider the smallest ¢/¢ and corresponding highest ¢1¢ in the subset Q¢ denoted ¢™" and

. We have ¢3* = q: an incentive compatible contract with ¢, > ¢§ and qy; = @ exists (see

1' Since IR is nonbinding, ¢/»'™ is implicitly defined by incentive compatibility with ¢} = ¢ in
(£O).
e (am™le”) 2 (gle” dajf’ Ic
If (1+ )66( nf‘?n‘e 5 > ?;(q\ , then due to MLRP and dq% < 0, for any element of Q'“, we
have (14 ) af((‘?gé@;) > f;((‘%" )) so that case 2 above applies for any element of Q'¢. Therefore,
Gm = qp " and gy = 7.
If (147) aﬁ(((fn"fn‘lee)) < 35(;1*) , then for low values of ¢/, case 1 above applies. Moreover, since

v > 0 and LR(qg|e) is continuous in ¢, for high values of ¢!¢, case 2 applies. Then, the optimal
thresholds belong to Q¢ and satisfy . with e* = e’

Binding IR. The IC binds for e’ sufficiently large — larger than the effort optimally induced
by the principal for e = 0. When both IC and IR bind, g, and g;; must satisfy:

Im g . am % . q % § P
w/o qae(QIe )dq+p/qm C]ae(Q|€ )dq+/qu8€(qle )dg = C'(e") (31)

=P /qu qd(gle*)dg + p /qM qp(qle”)dq + /q qo(gle*)dg — C(e*) =T (32)

qm qM
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If gpr = g Or qar = @, then generically we cannot have IC and IR binding. If the optimal ¢, and
qu are interior, and give:
MR %(qm(e*)

% (4. e")
Qe NI /. A —
olame) T T 00T ol

Proof of Corollary [1}
We start with (i). When U and e’ are sufficiently high, IR and IC bind, and the contract is
given by Proposition [2| part (ii), with ¢,, < qST if U and ~ are sufficiently high. The IC is:

[ @) Falen+ [ w@S e = e (33)

qm

The derivatives of the LHS of IC and IR w.r.t. v and p are respectively:

dm a¢ qm
—p/ 05, (ale")dq >0 and —p/ qo(gle”)dg <0
0 e 0
qm a¢ . am a¢ . qm . qm .
/ (=7a) 5 (dle )dQ+/ 05, (ale")dg >0 and / (—=vq) ¢(gle )dQ+/ q¢(qle”)dg <0
0 € dm € 0 qm

for v sufficiently high. The derivatives of the LHS of the IC and IR w.r.t. ¢, and g, are

respectively:

S ) @l >0 ad () (g dlanle) < 0.
(o () ~ o)) Solale) <0 and (o(w (o)) ~ vlaw))dlawle’) <O

Thus, for ~ sufficiently high: if v increases, ¢,, must decrease; if p increases, ¢,, must decrease.

For (i), g¢n = ™" > qST in . Totally differentiating the binding IC w.r.t. ¢, and solving
de*
dgm

for shows that e* is decreasing in ¢,,. |
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Supplemental Appendix
A Theory of Fair CEO Pay

Pierre Chaigneau, Alex Edmans, Daniel Gottlieb

1 Nonlinear model

The agent’s utility function is:

. a) — 1 VW) if w(g) = w*(q)
) {U(w*(Q)>—(1+’Y>5(W*(Q)—w) if w(q) <w*(q) .

where v/ > 0, v <0, & >0, ¢ <0, and v > 0 parametrizes fairness concerns. If the wage is
fair (w > w* (q)), the agent’s utility is v(w). If the wage is unfair (w < w* (¢)), the agent suffers
disutility which is increasing in both the discrepancy w*(¢) — w and his fairness concerns v. We
assume limy\ o v'(w) < 14 v and lim, ~ &' (x) > 1, so that the utility function is always steeper
below the fair wage than above it. The kink at the fair wage means that the agent is loss-averse:
his sensitivity to losses exceeds his sensitivity to gains, consistent with empirical and experimental
evidence that the disutility from unfair wages exceed the utility from above-fair wages (see the
survey of Fehr, Goette, and Zehnder (2009)). The function £ () means that the agent’s utility is
weakly convex below the fair wage, as in prospect theory. The unique feature of our model is that
the fair wage depends on output and is thus endogenously determined ex post, in contrast to loss
aversion models where the reference point is independent of output and thus known ex ante. The
main paper studies a special case of is where the agent’s utility is piecewise linear (v(w) = w
and £(x) = z).

Figure [2 displays the agent’s utility as a function of w for various output realizations and two
different utility functions.

Figure 2: Function u(w, q) as defined in equation as a function of w for y =1, p = %, and
output ¢ € {0,1,2,3,4}. Top row: v(w) = w. Bottom row: v(w) = In(w + 1), &(x) = /2,



To simplify the analysis, we assume:

[ oG [ a5 2 cen (35)

/0 "u(0, @)é(gl0)dg — C(0) < T (36)

q
/ u(pq, q)p(glé)dg — C(é) > U, where é = €* as defined in (3) with w(q) = w*(q) Vg.  (37)
0

Proposition 3 (Zero target effort level): Fix ef' = 0. The contract has pay-for-performance:
w(q) > w(q') for some q > ¢ .

min
m

Define ¢2™ as the highest value that satisfies the following:

min

[ w005 N da+ [ oo S aleyda = ') (39)

min
m

Proposition 4 (Binding incentive constraint): Fiz €T sufficiently high. The principal implements

e* = el and offers the following contract:

oD for q < qm
1 _ v,(w—l*(q)) for q > qm and A\jg + A\;jcLR(qle*) < m
w,(w(q),q) | Air+ MicLR(qle*) forq > qn and m < Aig + AicLR(gle*) < U,%q)
U,%q) for q > q,, and ﬁ < Arr + ArcLR(q|e®)
(39)

Moreover, if v'(0) < 1, v > —Léﬁﬂiiﬁ%)

w(q) =0 for q < gm and w(q) = w*(q) for ¢ > qpm.

— 1, and U s sufficiently low that IR is nonbinding, then

The optimal contract is now given by (up to) four regions. As with v” = 0, there are three
regions in which the agent is paid zero, the fair wage, and the entire output. However, there is an
additional region where output is sufficiently high that the principal pays more than the fair wage.
It is inefficient to pay the entire output, since the agent exhibits diminishing marginal utility and
so does not value this additional reward highly. Thus, unlike in the model with v” = 0, the optimal
contract is only discontinuous at ¢,,. As output rises, the likelihood ratio increases further and
so the actual wage exceeds the fair wage by more. The contract will generally be convex in this
regionm When the likelihood ratio is very high, the principal pays the entire output. If fairness
concerns are sufficiently high, then as in the linear model, the contract comprises only the first

two regions and corresponds to performance-vesting equity.

OHowever, the contract will be concave if the likelihood ratio is concave, so that very high output is only
slightly more indicative of effort, and if risk aversion is sufficiently important compared to prudence (see Chaigneau,
Sahuguet and Sinclair-Desgagné, 2017). The latter condition will typically not be satisfied for CEOs who have low
absolute risk aversion due to their wealth.



Example [1]illustrates how the optimal contract is affected by the underlying parameters. When
v” < 0, the contract resembles performance shares, where the number of shares that vest increase
with performance, in contrast to performance-vesting equity where the number of shares is fixed
as long as performance exceeds a threshold. Performance shares, like performance-vesting equity,
are widely used in practice (see Figure 2 in Bettis et al. (2018)).

Example 1 The agent’s preferences are given by v = 2, p = %, and v(w) = In(w + 1), {(z) = =z,
and output follows a truncated normal distribution on [0,10] with parameters e* =1 and 0 =1 .
Optimal contract for (¢) U = —0.5 and C(1) = C"(1) = 0.4; (d) U = —1 and C(1) = C'(1) = 0.45.

(c) (d)
w(q) w(q)
257 250

2.0f 2.0r

1.0F / 1.0F

0.5F 0.5F

0.5 1.0 15 20 25 3.0 0.5 1.0 15 20 25 3.0

Figure 3: The contract w(q) as a function of ¢ for parameter values described in Example

2 Proofs

Proof of Proposition [3}

We show by contradiction that an optimal contract is characterized by w(q) > w(q’) for some
q > ¢'. Suppose that it is not. Due to the monotonicity constraint, this implies that w(q) = w,
which is a constant, for all ¢ € [0,g]. A fixed wage induces e* = 0 and IR binds in the optimal

contract:

[ wtw.0 30 < C0) and [ utw.gotao)da - C0) =T

Consider the following perturbation which does not change the corner solution e* = 0. Let ¢ be

such that w = w*(§). For arbitrarily small € and ¢, let the new contract be described as:

w—pe ifg<g—e
w(q) ifgelj—eqte] (40)
w+pe ifqg>q+e



such that the agent’s expected utility is unchanged:

q

o(w(¢))é(al0)dg + / w(@ + pe, q)é(ql0)dq

g+e

G+e

éflm—WWM®@+é

—€

— /qu(w)¢(q]0)dq+ /qu(w,q)cb(q|0)dq

Since € and ¢ are arbitrarily small, this implies:

/ " ped ()6(q10)dq ~ pe / " o (0, 9)(q]0)dg (41)

Likewise, the change in the cost of compensation is approximately:

_ / ped(q|0)dq + / ped(a|0)da,
0 V

q

which is strictly negative by equation (41f) with the assumption v'(w) < u,(w, q) for any w. W

Proof of Proposition [}
With the FOA, the IC can be replaced by the first-order condition (“FOC”) for interior

solutions:

| w05 aleryin = ') (42

with e* = e? > 0.

We derive the optimal contract while ignoring the monotonicity constraint w(q) > 0, and we
verify later that the optimal contract thus derived is monotonic.

In the first step, we take as given the payment w(q) on the subset @), of outputs s.t. w(q) €
(w*(q), q], and we consider the subset @), of outputs s.t. w(q) € [0,w*(¢)]. We have:

max / (—w(@) dale")dg s, / w(w(@), )2 (qT)dg = C(T)  (43)

w(q) s.t. g€Qa Oe
/ w(w(q), )dlaleT)dg — C(T) > T
0 <w(q) <w*(q) Vg € Qq

The first-order necessary condition (“FONC”) for an interior solution w(q) € (0, w*(q)) is:

—p(qle") + puw(w(q), Q)%(Q|€T) + My (w(q), 9)o(gle”) =0

where A\ and p are respectively the Lagrange multipliers associated with the participation constraint
and the incentive constraint, and, since 0 < w(q) < w*(q), we have u, (w(q), q) = (14+v)& (w*(q) —
w) > 0.



In the case £’ = 0, the FONC is satisfied only if the likelihood ratio "(’;((T‘TT)) is constant, which
is impossible by MLRP. In the case £” < 0, the second-order condition with respect to w(q) is not

satisfied at any w(q) that satisfies the FONC. Indeed, the FONC can be rewritten as:

% (gle™)
— Oe
@9 T

where the LHS is strictly positive, so that the RHS must be strictly positive for any w(q) that
satisfies the FONC. The second-order condition is satisfied if and only if:

it (0(a), ) 90 ale") + Na(0(a), )0(ale™) < 0 (4

(44)

52 (gleT)
#(qle™)
A >0 and p > 0. Thus, for £’ < 0, the optimum cannot be an interior solution, i.e. it cannot be

which given ,, (w(q),q) > 0 (due to ” < 0 in this case) can be rewritten as:

< —2 where
“w

w(q) € (0,w*(q)). We conclude that, for w(q) € [0, w*(q)], the optimum is not characterized by an
interior solution.

Thus, for some @ C [0,q] we have w(q) = 0, and for ¢ € Q4 C [0,q| we have w(q) € [w*(q), q].
This implies u(w, ¢) = v(w) for ¢ € Q4. In sum, for a given @)_, the relaxed optimization problem
that induces e* = el can be rewritten:

min | wla)olale" i (40

st [ w00 G+ [ vl(a) 3 ale g = e (47)
| uto0otdeda+ [ otwianotale s > T (49

- Q+
w(q) € [w*(q),q] Vg (49)

The program in equations (46 . has a solution because of the assumptions in equations
and (37)). Using the notation in Jewitt, Kadan, and Swinkels (2008), we have m(q) = w (q) and
m(q) = q. We apply their Proposition 1 to derive the optimal contract on Q) given that w(q) =0
for ¢ € @Q_ (the first terms on the LHS of equations and are independent of w(q) and
can therefore be treated as constants in the program —). Thus, for some ()_, the optimal
contract is defined implicitly by:

m for g € Q_
1 B W for ¢ € Q4 and )\IR + AicLR(gle*) < W
ul,(w(q),q) | Mg+ McLR(qle*) for ¢ € Q4 and ,(w @1 < Atr+ ArcLR(gle”) < }q)
U,%q) for g € @, and ,(q < )\IR + ArcLR(qle*)

Finally, with a binding IC and MLRP, standard arguments show that we must have w(q) = 0 if



and only if ¢ < ¢, for some ¢, € [0,q], so that the optimal contract is defined implicitly by:

m for ¢ < qm,
1 B m for ¢ > ¢, and A\jgr + A\jcLR(qle*) < m
w,(w(q),q) | Arr+ AicLR(gle*) for ¢ > g and m < Aig + AicLR(qle*) < U,%q)
U,%q) for ¢ > q,, and ﬁ < Air + ArcLR(qle*)

where A\;c > 0 and A\;g > 0 are the Lagrange multipliers associated with the constraints and
, and which therefore depend on ¢,,.

We now establish the second part of the proof. The optimal contract is described in equation
(39). Under the conditions stated in the second part of the Proposition, we will show that any
contract as in equation (39)) which is not such that w(q) = 0 for ¢ < ¢,, and w(q) = w*(q) for ¢ > ¢,
is dominated. Consider a given incentive-compatible “contract A” as in equation such that
w(q) > w*(q) for a non-empty interval of outputs. We will show that this contract is dominated by
an incentive-compatible “contract B” such that w(q) = 0 for ¢ < ¢, and w(q) = w*(q) for ¢ > q,.

First of all, we cannot have w4 (q) = w*(q) for ¢ < ¢™™ since then contract A as in equation

(39) would involve a strictly higher cost than contract B, i.e. it would be dominated. The other
possibility is that these two contracts differ on two (possibly empty) subintervals: (g™, ¢;) where
wa(q) =0 < w*(q) = wp(q), and (g2,q) where wa(q) > w*(q) = wp(q). The subintervals must be
such that ¢ < ¢; < go < @ because of the monotonicity assumption.

Then, consider a switch from contract A to contract B. The implied change in the LHS of the

IC, which must be zero by incentive compatibility, is:

0= [ 00 @)~ 00 @)~ (9w @) el + [0 (@) —vwata)) G el
=1+ /q; w*(q)%(qleT>dq+/qj (v(w*(q)) —U(wA(q)))%(q\eT)dq

where, with v" < 0: v(wa(q)) < v(w*(q)) + v'(w*(q)) (walq) —w*(q)) for ¢ € (g2,4G), and



v'(w*(q)) < v'(0) <1, so that:

0 = 4y [ w@P e+ [ o @)~ olwa@) Flaledg
> (149) [ w0 @F g+ [ (@) — vl (@) — o @) (wale) v @) el

> (149 1w @@= 0) [ ale) — w @) Pl

: )

min
m

> ) [ @l g~ [ wale) — (@) el

min
m

. N %((A T) T _ g ok %(CHGT) T
= ) [ S i [ (wato) - w0 L5 ool i

where:

a @(qleT) @(qmin|eT) @
* de T de \Ym " T
/w (@ Gigleny PN =gy /w (@lale)da

m

7 * di(Ql T) T d_f(q’eT) 7 . T
| wate) @) =0 oty < EEE [ ata) — (@) olale
Overall:
q1 do T q do el
0 > 1) [ wl@E S st - [ wate) - (o) £ 0 otale g
e (g™ o (gleT) 1
de w* eT _ de W —w* €T
> (s | @t ds — 22 | watw) — @) olale g 50)

The implied change in contract cost is:

/::n w*(Q>¢(Q|€T)dq + /q (w*(q) — walq)) ¢(q|€T)dq

q2

Because of g™t > qST (see equations and ) and MLRP, the change in cost has the same

sign as:

&l [ w @t s ) [ @)~ wata) otaie g
ST Sy Sl J,
do (= T
@( in| T q1 & d¢ ( min| T
gmnle”) T o@e)  a@nle’)
< (1 A — * d e~
B4 g qmme) /%w DA+ 2 iy o(gin]eT)

/ " (w(q) — wala)) Hlale")dg

dlam™le”)
6 (qun]eT) o Lgle) [T
_ de \1m * T de * o T
= (s | v @otaen g+ 25 [ ) —wata) otai



do (= €T d¢ ( min 6T . .
where the inequality follows from 1+~ > Céf((a(f‘eT)) ‘j;(gn’?nllT)). The RHS is negative because of

equation . Thus, under the conditions stated in the second part of Proposition , the change

in the contract is incentive compatible and it involves a negative change in cost, which establishes

that the initial contract is dominated since IR is nonbinding. [
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