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Abstract

This paper studies executive pay with fairness concerns: if the CEO’s wage falls below

a perceived fair share of output, he suffers disutility that is increasing in the discrepancy.

Fairness concerns do not always lead to fair wages; instead, the firm threatens the CEO with

unfair wages for low output to induce effort. The contract sometimes involves performance-

vesting equity: the CEO is paid a constant share of output if it is sufficiently high, and

zero otherwise. Even without moral hazard, the contract features pay-for-performance, to

address fairness concerns and ensure participation. This rationalizes pay-for-performance

even if effort incentives are unnecessary.
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Standard executive compensation models assume that CEOs care about pay only for the con-

sumption it enables. As a result, the marginal consumption utility of the bonus from improving

performance must weakly exceed the marginal cost of effort to do so. Such models have contributed

substantially to our understanding of executive compensation and inspired a stream of empirical

research.

However, it is not clear that consumption utility is the only, or even the most important, driver

of pay, given that CEOs are typically wealthy and most of their consumption needs are already

met. Edmans, Gosling, and Jenter (2023) survey directors and investors on how they set executive

contracts. Both sets of respondents highlight how pay is also driven by the need to ensure the CEO

feels fairly treated, consistent with experimental evidence that agents have fairness concerns (see

Fehr, Goette, and Zehnder (2009) for a survey). They also suggest that firm value is an important

determinant of what the CEO views as fair. If firm value has increased due to CEO effort, he

expects to be rewarded. If firm value has increased (decreased) due to luck outside his control, he

should share in this good (bad) luck. These findings echo the widely-replicated ultimatum game

(e.g. Roth et al., 1991): if one party has been gifted an endowment, the other believes she should

be offered a sizable share.

This paper studies optimal contracts when the CEO is motivated by both consumption utility

and fairness concerns. The CEO believes that he deserves a given share of output, which we call

the (perceived) fair wage. If his wage is below this fair wage, he suffers disutility that is linear in

the discrepancy; his utility is otherwise linear. The principal is risk-neutral and both parties are

protected by limited liability.

One might think that fairness concerns would imply that the CEO is paid a fair wage for all

output levels, but we show that unfairness can be a powerful motivator. If output is below a

threshold, the optimal contract pays the most unfair possible wage of zero. Once output crosses

that threshold, the CEO is paid the fair wage. If fairness concerns are sufficiently high and

reservation utility sufficiently low, he receives the fair wage for all outputs above the threshold.

This contract contrasts Innes (1990), who studies a risk-neutral agent without fairness concerns.

He shows that the optimal contract is “live-or-die” – zero if output is below a (higher) threshold,

and the entire output above it. The intuition is that paying maximum rewards, for only very high

outputs, efficiently induces effort. However, such a contract is inefficient under fairness concerns.

Even if the CEO works, output may fall below the threshold due to bad luck. If the CEO is paid

zero, he perceives significant unfairness, which erodes his incentives to work. Thus, it is efficient

to offer him a lower threshold and pay a fair wage once output crosses it.

A linear contract that drops discontinuously to zero resembles performance-vesting equity,

where the CEO is given equity but forfeits it upon poor performance, which is a common feature

of real-life contracts. Standard models, such as Holmström (1979), do not predict discontinuous

contracts. In Innes (1990), pay jumps from zero to the entire output, but such sharp discontinu-

ities do not exist in practice. We predict a milder and thus more realistic discontinuity – when

performance crosses a threshold, the wage jumps from zero, but not to the entire output. Like
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Innes (1990), our contract involves a zero wage when output is below a threshold, but unlike Innes

(1990), the wage is a constant fraction of output rather than the entire output above the threshold.

Intuitively, performance-vesting equity provides fair wages if performance is good and unfair wages

if performance is bad, thus motivating good performance.

If fairness concerns are sufficiently low, there is an additional upper threshold above which the

CEO receives the entire output. Then, the contract involves three regions: zero for low outputs,

the fair wage for moderate outputs, and the entire output for high outputs. Low fairness concerns

lead to a hybrid with Innes (1990), where maximum rewards for high outputs efficiently induces

effort.

When the incentive constraint is slack, pay remains increasing in output. Intuitively, satisfying

the participation constraint at least cost involves paying the fair wage over a range of outputs,

to avoid the disutility from unfair wages. Since the fair wage is increasing in output, pay is

increasing in output, and the firm can induce effort “for free”. In a standard moral hazard model,

implementing higher effort is always costly to the firm. Critics of high incentives argue that they

should not be necessary – the CEO should be intrinsically motivated, and/or the board should

monitor him. Our model demonstrates that pay-for-performance may be used not to induce effort,

but to attract a CEO with fairness concerns.

This paper is related to the theoretical literature on executive compensation, surveyed by

Edmans and Gabaix (2016) and Edmans, Gabaix, and Jenter (2017). The vast majority of these

theories feature moral hazard and only consumption utility. More closely related are CEO pay

models with reference points. In de Meza and Webb (2007), the reference point is the median

of the wage distribution; in Dittmann, Maug, and Spalt (2010), it is last year’s wage. Our key

innovation is that the reference point is increasing in output. This leads to a very different optimal

contract, in which pay-performance sensitivity is positive even if incentives are not a concern; if

incentives are a concern, pay-performance sensitivity is driven by the perceived fair wage rather

than the trade-off between incentives and risk sharing.1 Some other models feature the CEO’s

utility depending on variables other than pay, although not output. For example, DeMarzo and

Kaniel (2023) and Liu and Sun (2023) incorporate relative wealth concerns.

An important literature, surveyed by Sobel (2005), studies the effect of fairness concerns on

non-CEO contracts. Fehr and Schmidt (1999) explore inequity aversion, where an agent dislikes

another agent receiving less than him, and dislikes even more another agent receiving more than

him. In such models, subjects are ex ante symmetric, and so they compare their consumption.

They do not apply to a CEO setting, where the firm’s objective function is shareholder value, which

is orders of magnitude in excess of CEO pay. An inequity aversion explanation for rewarding CEO

for performance is that the board feels sorry for the CEO as his pay is so low, which seems at

odds with real-life perceptions. (If the board represents individual shareholders, inequity aversion

1In Akerlof and Yellen (1990), the fair wage is output-independent, so the optimal contract does not have
performance-vesting equity (payments increasing in output). Hart and Moore (2008) study buyer-seller relationships
under the assumption that the reference point is the best outcome permitted by the contract.
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would have no bite as shareholders would always want to lower pay as in a standard model). In our

model, CEO’s utility function does not contain others’ utility; he cares about output not because

others are receiving it, but due to a desire to be rewarded fairly.

1 The Model

We consider a standard principal-agent model with one added feature: the agent (manager,

“he”) has fairness concerns, specified below.

At time t = −1, the principal (firm, “she”) offers a contract to the agent. At t = 0, the agent

privately chooses an effort level e ∈ R+ at cost C(e), where C(·) is strictly increasing, strictly

convex, and satisfies C(0) = C ′(0) = 0 and lime↗∞C ′(e) = ∞. At t = 1, output q ∈ [0, q]

is realized, where q may be finite or infinite, and the agent is paid a wage w (q). Output is

distributed according to a twice continuously differentiable density function ϕ(q|e) with full support

that satisfies the monotone likelihood ratio property (“MLRP”). For realism, both parties are

protected by limited liability, so that 0 ≤ w(q) ≤ q ∀q. The agent’s reservation utility is U and

his utility function is:

u(w, q) =

{
w if w(q) ≥ w∗(q)

w − γ (w∗ (q)− w) if w(q) < w∗(q)
(1)

where w∗ (q) ≡ ρq is the perceived fair wage for output q.2

The new parameters are γ and ρ. The parameter γ ≥ 0 represents the agent’s fairness concerns:

the disutility he suffers if his wage falls below the perceived fair wage, which is a given share ρ

of output. When γ = 0, the agent has no fairness concerns and so he has a standard risk-neutral

utility function as in Innes (1990). When γ > 0, the agent is concerned with fairness, as found by

Edmans, Gosling, and Jenter (2023), who also discover that firm output is a major determinant

of the perceived fair wage. For example, their Table 7 finds that recent CEO performance is the

most important driver of the level of pay. Since CEOs have substantial equity holdings, good

performance likely already leads to sufficient increases in consumption utility to induce effort

without the need for pay rises. The free text responses and interviews suggest that pay rises are

instead used to provide ex-post recognition of performance so that the CEO feels fairly treated.

One investor explained that pay rises are important to acknowledge good performance otherwise

the CEO might feel unappreciated and leave. Another pointed out that, if a CEO is denied a pay

rise upon good performance, he infers that the board and shareholders do not value him highly,

causing him to be demotivated. Table 11 in Edmans, Gosling, and Jenter (2023) shows that the

main reason why CEOs receive variable flow pay is “to motivate the CEO to improve long-term

shareholder value.” As a director explained, this is “to recognize achievement – the retrospective

2Our results are qualitatively unchanged with a nonlinear fair wage which is strictly increasing in output and
such that w∗(0) = 0 and w∗(q) ∈ (0, q̄) for q > 0.
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acknowledgement of exceptional performance is important.”

Fairness concerns also explain why pay is tied to output even though it may be driven by luck.

In Table 11, 84% of directors and 79% and of investors state that a reason for variable pay is

“so that the CEO shares risks with investors and stakeholders, even if out of the CEO’s control”.

Table 14 finds that the main reason for the absence of relative performance evaluation is “the CEO

should benefit from an industry upswing, since investors and stakeholders do.”

The parameter ρ ∈ (0, 1] represents the CEO’s perceived fair share of output. A key de-

terminant is the importance of effort for output: Edmans, Gosling, and Jenter (2023) find that

“how much the CEO can affect firm performance” is the main driver of how variable pay is with

performance.

Overall, the utility function (1) is piecewise linear with a slope of 1 above the fair wage and a

slope exceeding 1 below.3 It is the simplest and most transparent specification for fairness concerns,

and allows us to conduct comparative statics with respect to γ and ρ. In the Online Appendix,

we show that the key results remain robust to a utility function that is weakly concave above the

fair wage and weakly convex below.

For each target level eT , the principal finds the cheapest contract that induces effort of at least

eT , similar to the first stage in Grossman and Hart (1983):

min
w(·),e∗

∫ q

0

w(q)ϕ(q|e∗)dq (2)

s.t. e∗ ∈ argmax
e

{∫ q

0

u(w(q), q)ϕ(q|e)dq − C(e)

}
≥ eT (3)∫ q

0

u(w(q), q)ϕ(q|e∗)dq − C(e∗) ≥ U (4)

0 ≤ w(q) ≤ q ∀q (5)

w(q) ≥ w(q′) ∀q > q′ (6)

where (3) is the incentive compatibility constraint (“IC”), (4) is the individual rationality con-

straint (“IR”), (5) are limited liability constraints, and (6) is the agent’s monotonicity constraint

which ensures that the wage is non-decreasing in output (otherwise the principal would borrow to

artificially increase output). If the IC is slack, the manager’s chosen effort e∗ will exceed eT .

The above formulation is the standard moral hazard model where the agent exerts effort and

then receives pay, similar to Holmström (1979) and Innes (1990), with the only departure being

his utility function. As a result, any deviation in the contract can be attributed to fairness con-

cerns. Another formulation would be for the agent to receive pay and then choose effort. However,

such a formulation would be more ad hoc, as we would need to hard-wire the link between per-

ceived unfairness and effort, rather than fairness entering the utility function. It would also be less

3In (1), the agent’s utility depends on the fair wage below w∗ (q) but not above. Since preferences are invariant
to a monotonic transformation, (1) also represents the case where the agent derives utility from above-fair wages
(in addition to his consumption utility) and a greater amount of disutility from unfair wages.
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comparable with standard models.

2 Analysis

Define the likelihood ratio LR (q|e) as follows:

LR(q|e) ≡
∂ϕ
∂e
(q|e)

ϕ(q|e)
,

and let qe0 be the output for which the likelihood ratio is zero: LR(qe0|e) = 0. By MLRP and the

differentiability of ϕ, qe0 exists and is unique.

Lemma 1 below derives a sufficient condition for the validity of the first-order approach (“FOA”),

which we henceforth assume holds.4 Let K+
e (q) and K−

e (q) denote the positive and negative parts

of the second derivative of ϕ(q|e) with respect to effort:

K+
e (q) := max

{
∂2ϕ

∂e2
(q|e), 0

}
,

K−
e (q) := min

{
∂2ϕ

∂e2
(q|e), 0

}
.

Lemma 1 (First-Order Approach): The FOA is valid if∫ q

0

(
K−

e (q)u(0, q) +K+
e (q)u(q, q)

)
dq < C ′′(e)

for all e ∈ R+.

To simplify the analysis, we assume:

∫ qe
T

0

0

u(0, q)
∂ϕ

∂e
(q|eT )dq +

∫ q

qe
T

0

u(ρq, q)
∂ϕ

∂e
(q|eT )dq ≥ C ′(eT ) (7)∫ q

0

u(0, q)ϕ(q|0)dq < U (8)∫ q

0

u(ρq, q)ϕ(q|ê)dq − C(ê) ≥ U, where ê = e∗ as defined in (3) with w(q) = w∗(q) ∀q. (9)

These assumptions are not needed, but reduce the number of cases to consider. Assumption

(7) ensures that an incentive-compatible contract that elicits eT exists even if the firm never pays

more than the fair wage. Assumption (8) implies that a contract that always pays zero violates

the IR. Assumption (9) implies that a contract that always pays the fair wage satisfies the IR.

4This is related to the condition for the FOA in Chaigneau, Edmans, and Gottlieb (2022), with limited liability
but without fairness concerns.
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We first focus on the participation constraint only by considering eT = 0. As we show, the

optimal contract may still end up inducing effort because the manager chooses effort optimally

(see (3)) given the contract.

Proposition 1 (Zero target effort level): Fix eT = 0. If U is sufficiently low, the principal

implements e∗ = 0; if U is sufficiently high and C(ê) is sufficiently low, the principal implements

e∗ > 0 if γ > 0.

If U is sufficiently high, the principal needs to pay fair wages for a wide range of outputs to

ensure the agent’s participation. Since the fair wage is increasing in output, the actual wage is

increasing in output for a sufficiently large range of outputs that it induces effort as a by-product:5

the principal gets effort “for free”. This result contrasts the case without fairness concerns. In

standard models like Holmström (1979), it is always more costly to implement positive than zero

effort, because doing so requires an output-contingent wage and thus inefficient risk-sharing. As a

result, any effort level in R+ can in principle be optimal, depending on parameters. This is not true

with fairness concerns. Providing low effort incentives requires paying either unfair wages for high

outputs (which causes the agent disutility) or above the fair wage for low outputs (which is costly).

A by-product of fair pay is that it incentivizes effort, even if such incentives are unnecessary. This

result may extend beyond the C-suite: equity might be given to rank-and-file employees, despite

their limited incentive effect, if they believe it is fair to share in the firm’s fortunes.6 In contrast,

if U is low, the principal only needs to pay fair wages for a narrow range of outputs, which does

not induce effort.

We now move to the optimal contract when the IC binds, which arises when eT is sufficiently

high. This will be the case if U is sufficiently low, in which case any eT > 0 leads to the IC binding.

It will also be the case if the principal optimally induces a high eT because effort has a large effect

on firm value, for example if the firm is large and CEO effort is scalable across the firm (Edmans

and Gabaix, 2011). Define qmin
m as the highest value that satisfies the following:∫ qmin

m

0

u(0, q)
∂ϕ

∂e
(q|eT )dq +

∫ q

qmin
m

ρq
∂ϕ

∂e
(q|eT )dq = C ′(eT ). (10)

In this contract, qmin
m is the threshold below which the payment is zero and above which it is the

fair wage.

Proposition 2 (Binding incentive constraint): Fix eT sufficiently high. The principal implements

5A wage increasing in output does not automatically induce effort, because even though output increases the
wage, it also increases the fair wage. To induce effort, the wage needs to be increasing for enough outputs.

6Oyer (2004) offers a different explanation: equity-based pay ensures that wages match outside opportunities.
However, it only has this effect if output is correlated with industry conditions; if it arises from effort, equity values
will not match outside opportunities.
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e∗ = eT and offers the following contract:

w(q) =


0 for q < qm

w∗(q) for q ∈ [qm, qM)

q for q ≥ qM

. (11)

(i) If γ <
LR(q|eT )

LR(qmin
m |eT )

−1 and U is sufficiently low that the IR is slack, then LR
(
qm|eT

)
(1+γ) =

LR
(
qM |eT

)
and qm ≥ qe

T

0 ;

(ii) If U is sufficiently high that the IR binds, then generically LR(qm|eT ) (1 + γ) ≤ LR(qM |eT );
(iii) If γ >

LR(q|eT )
LR(qmin

m |eT )
− 1 and

U ≤ −γρ

∫ qmin
m

0

qϕ(q|eT )dq + ρ

∫ q

qmin
m

qϕ(q|eT )dq − C(eT ), (12)

then qm = qmin
m and qM = q.

Without fairness concerns (γ = 0), the model is similar to Innes (1990). Due to MLRP, the

principal concentrates rewards on very high outputs and so qm = qM : the optimal contract is

“live-or-die”. There is a single threshold below which the agent is paid the minimum (zero) and

above which he is paid the maximum (the entire output).

slope=ρ

slope=1

0 1 2
qm 3

qM 4 5
q

1

2

3

4

5
w(q)

(a)

slope=ρ

0 1 2
qm 3 4 5

q

1

2

3

4

5
w(q)

(b)

Figure 1: The manager has preferences γ = 2, ρ = 1
2
. Output follows a truncated lognormal

distribution on [0, 10] with e = 1, σ = 1. Optimal contract for U = −0.6, C ′(1) = C(1) = 2.25

(panel (a)); U = −0.5, C ′(1) = C(1) = 1.8 (panel (b)).

With fairness concerns (γ > 0), the optimal contract is given in Figure 1, panel (a). Parts (i)

and (ii) establish that, when γ is low or the IR binds, the optimal contract has a third region: for

intermediate outputs q ∈ [qm, qM), the agent is paid the fair wage. The Innes (1990) contract is

suboptimal for two reasons. First, it does not satisfy the IR efficiently. The agent receives an unfair
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wage (zero) for outputs below the threshold, which causes disutility. Second, it does not satisfy

the IC efficiently. The agent receives an unfair wage even for some output levels with positive

likelihood ratios that suggest he has exerted effort, reducing his incentives to do so. Since the

utility function is steeper below w∗ (q) rather than above it, it is efficient to increase the rewards

for moderately low outputs (that nevertheless have positive likelihood ratios) from 0 to w∗ (q), and

simultaneously reduce the rewards for moderately high outputs from q to w∗ (q).

While the above explains the intuition by starting from a moral hazard model and adding fair-

ness, we can alternatively start with a fairness model and add moral hazard. With fairness but no

moral hazard, the contract might involve always paying the fair wage, to ensure the agent’s par-

ticipation efficiently, but such a contract does not provide incentives efficiently. Doing so involves

punishing him with the most unfair possible wage of zero if output is sufficiently low (fairness con-

cerns can justify unfair wages because avoiding unfairness is a motivator) and rewarding him with

everything if output is sufficiently high (incentive provision concentrates rewards in the highest

likelihood ratio states).

Part (iii) shows that, when γ is sufficiently high and U is sufficiently low that the IR is slack,

qM increases all the way to q. The highest region disappears, so the agent is never paid the entire

output. The contract only has two regions – zero for low outputs and the fair wage for high outputs

– as shown in Figure 1, panel (b). Intuitively, the disutility γ from unfair wages is sufficiently high

that it already provides the agent with enough incentives to exert effort. The principal does not

need to incentivize him with very high payments for very high outputs.

When part (iii) holds, the contract represents performance-vesting equity, where the agent is

given shares worth ρq that are forfeited if q < qm, as widely used in practice (Bettis et al., 2018).7

In standard models where the likelihood ratio is continuous in output, such as Holmström (1979),

the contract is also continuous in output and so does not involve discontinuities. In our model,

the likelihood ratio is also continuous in output, yet discontinuities are optimal because the threat

of a zero wage incentivizes effort. In the Innes (1990) model without a monotonicity constraint,

the optimal contract is discontinuous but the agent receives either nothing or everything; we are

unaware of such a contract being offered in reality. To obtain more realistic contracts, Innes (1990)

assumes a monotonicity constraint on the principal, but this leads to a pay-performance sensitivity

of 1 which is not the case for any real-world CEO (except for 100% owner managers); here, pay-

performance sensitivity is ρ. In addition, in Innes (1990), the monotonicity constraint leads to a

continuous contract; our contract features a mild discontinuity as is common in reality.

As discussed earlier, a key determinant of ρ is the importance of effort for output. Thus, ρ

is plausibly higher in new-economy industries, where the CEO has many growth opportunities to

exploit, than old-economy or regulated ones. For similar reasons, it is likely higher in less-regulated

7Performance-vesting equity is not the only feature of observed contracts. CEOs also receive base salaries,
potentially due to the CEO’s interim consumption needs: the period between t = 0 where effort is exerted and
t = 1 where output is realized may be long, particularly for actions with long-term consequences. CEOs also
receive (short-term) bonuses, which have similar features to (long-term) performance-vesting equity: they are zero
if performance falls below a threshold.
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countries such as the U.S. This is consistent with the higher-powered incentives in new-economy

industries and less regulated countries.8

Corollary 1 gives comparative statics for the threshold qm.

Corollary 1 (i) If U , eT , and γ are sufficiently high that the IR and IC bind, then qm is decreasing

in γ and in ρ.

(ii) If U is sufficiently low and γ is sufficiently high that case (iii) of Proposition 2 applies,

then qm is decreasing in eT .

Starting with part (i), stronger fairness concerns increase the agent’s disutility from receiving

zero. This reinforces effort incentives, but reduces the expected utility. To reduce effort incentives

and increase expected utility, the principal decreases qm, because this increases the range of outputs

(qm, q
eT

0 ) over which the agent receives the fair wage even though they are bad news about effort.

Fairness concerns γ are plausibly lower in the U.S. than continental Europe. This increases

the likelihood that the CEO is paid zero for poor performance, which is analogous to being fired.

They may also be lower in new economy industries, where it is more common for CEOs to receive

nothing; indeed, CEOs who suffer lower disutility from unfair wages may self-select into such

industries. This also leads to a higher threshold qm and thus likelihood of being fired.

A higher ρ increases the fair wage, which increases the manager’s pay for outputs that pay

the fair wage. It also decreases his expected utility and increases his incentives by a factor γ

for outputs that pay zero. When γ is sufficiently high, the latter effect dominates. As above, to

decrease incentives and increase the manager’s expected utility, qm falls.

For part (ii), implementing a higher effort eT requires higher incentives, which are achieved by

paying the agent the fair wage rather than zero for a greater range of outputs that are good news

about effort. Thus, qm falls. Similar to ρ, eT is likely higher in new-economy industries where the

CEO has greater effect on output.

3 Conclusion

This paper studied optimal contracting under fairness preferences, where the agent’s perceived

fair wage depends on output. We showed that fairness concerns do not lead to the agent being paid

fair wages for all output levels; in contrast, unfair wages can induce effort efficiently. The optimal

contract involves two thresholds for output. The agent receives zero below the lower threshold, the

entire output above the upper threshold, and the fair wage in between. When fairness concerns

are sufficiently strong, the top region disappears, and the contract becomes performance-vesting

equity. Most other contracting theories predict continuous contracts, or extreme discontinuities

where the agent’s pay switches from zero to the entire output.

8In a model without fairness, with a fixed target effort eT , incentives are weaker if the CEO has a greater effect
on output, as fewer incentives are needed to implement that target effort: see Edmans and Gabaix (2016).
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Even if the incentive constraint is slack, pay is increasing in output – paying the agent the fair

wage over a range of outputs reduces perceived unfairness and satisfies the participation constraint

efficiently. As a result, the firm can induce CEO effort “for free”, potentially rationalizing why

incentives are given even to intrinsically motivated agents.

This paper is a first step in modeling CEO pay under fairness preferences, using the standard

model to make transparent how fairness concerns affect the optimal contract. For future research,

it may be fruitful to explore other determinants of the fair wage suggested by the survey of Edmans,

Gosling, and Jenter (2023), such as peer firm pay in a model of multiple firms, employee pay in a

model of multiple agents, or last year’s pay in a dynamic model.9

9Edmans, Gosling, and Jenter (2023) suggest that shareholders also have fairness concerns. However, this may be
a less promising research direction as the principal makes no decisions beyond offering the contract, and so fairness
concerns do not affect effort incentives. In addition, fairness concerns for the principal are similar to contracting
restrictions, which have been explored in prior work, e.g. Innes (1990).
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4 Proofs

Proof of Lemma 1:

Given contract w(q), the agent’s effort choice can be written:

max
e

∫ q

0

u (w(q), q)ϕ(q|e)dq − C(e).

The objective is concave in e if:∫ q

0

u (w(q), q)
∂2ϕ

∂e2
(q|e)dq < C ′′(e) ∀e.

The expression on the LHS can be written:∫ q

0

u (w(q), q)min

{
∂2ϕ

∂e2
(q|e), 0

}
dq +

∫ q

0

u (w(q), q)max

{
∂2ϕ

∂e2
(q|e), 0

}
dq

≤
∫ q

0

(
K−

e (q)u(0, q) +K+
e (q)u(q, q)

)
dq, (13)

because u (w(q), q) ∂2ϕ
∂e2

(q|e) ≤ u(0, q)∂
2ϕ

∂e2
(q|e) whenever ∂2ϕ

∂e2
(q|e) ≤ 0 and u (w(q), q) ∂2ϕ

∂e2
(q|e) ≤

u(q, q)∂
2ϕ

∂e2
(q|e) whenever ∂2ϕ

∂e2
(q|e) ≥ 0. Integrating over q gives the inequality. ■

Proof of Proposition 1:

With a nonbinding IC, the IR for e∗ ≥ 0 must bind (the contract w(q) = 0 would not satisfy

IR because of (8)). With a nonbinding IC (eT = 0), e∗ is such that:∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq ≤ C ′(e∗) (14)

with an equality for e∗ > 0.

Consider the following contract:

w(q) =

{
w∗(q) if q < qc

w∗(qc) if q ≥ qc
(15)

Denote by q∗c the unique threshold such that IR is satisfied as an equality. With contract (15), an

increase in qc increases the LHS of (14):

∂

∂qc

{∫ qc

0

w∗(q)
∂ϕ

∂e
(q|e∗)dq +

∫ q

qc

(w∗(q) + (1 + γ) (w∗(qc)− w∗(q)))
∂ϕ

∂e
(q|e∗)dq

}
= (1 + γ)ρ

∫ q

qc

∂ϕ

∂e
(q|e∗)dq > 0, (16)

by MLRP. For qc = 0, the LHS of (14) is strictly negative. Thus, e∗ = 0 when qc is sufficiently
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low. Let q̂c be implicitly defined by:∫ q̂c

0

w∗(q)
∂ϕ

∂e
(q|0)dq +

∫ q

q̂c

(w∗(q) + (1 + γ) (w∗(q̂c)− w∗(q)))
∂ϕ

∂e
(q|0)dq = C ′(0). (17)

U c is defined by:∫ q̂c

0

w∗(q)ϕ(q|0)dq +
∫ q

q̂c

(w∗(q) + (1 + γ) (w∗(q̂c)− w∗(q)))ϕ(q|0)dq = U c

Lemma 2 The LHS of (14) is strictly lower at e∗ = 0 with contract (15) with qc = q∗c than with

any alternative contract such that w(q) ≤ w∗(q).

Thus, e∗ = 0 can be induced by a feasible contract such that w(q) ≤ w∗(q) if and only if it can

be induced by contract (15).

Proof of Lemma 2:

With w(q) ≤ w∗(q), u(w, q) is linear in w. To satisfy IR at a given effort, any alternative

contract ŵ(q) must satisfy: ∫
ŵ(q)ϕ(q|0)dq ≥

∫
w(q)ϕ(q|0)dq (18)

Because of contracting constraints, any alternative contract crosses contract (15) once, at q = q̌.

Let:

ζ(q) ≡ w(q)− ŵ(q)

{
≥ 0 ∀q ≤ q̌

≤ 0 ∀q ≥ q̌

We will show that∫
w(q)

∂ϕ

∂e
(q|0)dq −

∫
ŵ(q)

∂ϕ

∂e
(q|0)dq =

∫
ζ(q)

∂ϕ

∂e
(q|0)dq

is strictly negative, using a proof technique similar to Innes (1990). Rewrite:∫ q

0

ζ(q)
∂ϕ

∂e
(q|0)dq =

∫ q̌

0

ζ(qL)ϕ(qL|0)∫ q

q̌
ζ(q)ϕ(q|0)dq

∂ϕ
∂e
(qL|0)

ϕ(qL|0)

(∫ q

q̌

ζ(qH)ϕ(qH |0)dqH
)
dqL

+

∫ q

q̌

ζ(qH)
∂ϕ

∂e
(qH |0)dqH

∫ q̌

0

ζ(qL)ϕ(qL|0)∫ q̌

0
ζ(q)ϕ(q|0)dq

dqL (19)

where qL and qH denote the variables of integration over [0, q̌) and [q̌, q] respectively. Let:

δ(qL) ≡ − ζ(qL)ϕ(qL|0)∫ q

q̌
ζ(q)ϕ(q|0)dq

≤ ζ(qL)ϕ(qL|0)∫ q̌

0
ζ(q)ϕ(q|0)dq
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where we used (18). Thus, since ζ(qH) ≤ 0 and ζ ′(qH) ≤ 0 because of the definition of contract

(15) and monotonicity, (19) is smaller than:

∫ q̌

0

∫ q

q̌

δ(qL)ζ(qH)ϕ(qH |0)

(
∂ϕ
∂e
(qH |0)

ϕ(qH |0)
−

∂ϕ
∂e
(qL|0)

ϕ(qL|0)

)
dqHdqL < 0

where the inequality follows from MLRP, δ(qL) ≥ 0 for qL ≤ q̌, and ζ(qH) ≤ 0 for qH ≥ q̌, both

with strict inequality on non-empty intervals. ■

In sum, if U ≤ U c then q∗c ≤ q̂c, the contract is as in (15) with qc = q∗c and e∗ = 0. If U > U c

then q∗c > q̂c, i.e. any contract that induces e∗ = 0 must involve w(q) > w∗(q) on non-empty

subinterval(s).

Suppose U > U c but is still sufficiently low that a feasible contract that induces e∗ = 0 exists,

and compare two contracts. Contract A induces e∗ = 0 at minimum cost. Because of MLRP and

contracting constraints, it takes the following form.

Lemma 3 The contract that induces e∗ = 0 at the lowest cost is such that:

w(q) =


min{w∗(qf ), q} if q < qf

w∗(q) if q ∈ [qf , qd]

w∗(qd) if q ≥ qd

,

where 0 ≤ qf ≤ qd ≤ q.

Proof of Lemma 3:

There are three steps.

1. We take w(q) as given on the subset Qb of outputs s.t. w(q) ∈ (w∗(q), q], and consider the

subset Qa of outputs s.t. w(q) ∈ [0, w∗(q)]. The optimization problem is:

min
w(q) s.t. q∈Qa

∫
w(q)ϕ(q|0)dq s.t.

∫
u(w(q), q)

∂ϕ

∂e
(q|0)dq ≤ C ′(0)∫

u(w(q), q)ϕ(q|0)dq ≥ U

0 ≤ w(q) ≤ w∗(q) ∀q ∈ Qa

ẇ(q) ≥ 0 ∀q ∈ Qa

Let x(q) ≡ ẇ(q). We use Theorem 3.60 from Grass et al. (2008). The Hamiltonian and

Lagrangian are:

H = −w(q)ϕ(q|0)− ξu(w(q), q)
∂ϕ

∂e
(q|0) + θu(w(q), q)ϕ(q|0) + λ(q)x(q) (20)

L = H + µ(q)x(q) + ν(q)w(q) + ω(q)(w∗(q)− w(q)) (21)
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The optimality condition w.r.t. the control variable x is ∂L
∂x

= 0 ⇔ λ(q) = −µ(q). By

complementary slackness, µ(q) ≥ 0, µ(q) = 0 if x(q) > 0. Thus, λ(q) ≤ 0, and λ(q) = 0 if

x(q) > 0. The equation of motion for the costate variable is:

λ̇(q) = −∂L
∂w

⇔ λ̇(q) = ϕ(q|0) + ξ(1 + γ)
∂ϕ

∂e
(q|0)− θ(1 + γ)ϕ(q|0)− ν(q) + ω(q)

By complementary slackness, if w(q) ∈ (0, w∗(q)) then:

λ̇(q) = ϕ(q|0) + ξ(1 + γ)
∂ϕ

∂e
(q|0)− θ(1 + γ)ϕ(q|0) (22)

If ẇ(q) > 0 then λ(q) = 0, i.e. λ̇(q) = 0; λ̇(q) = 0 combined with (22) would imply:

1

1 + γ
= θ − ξ

∂ϕ
∂e
(q|0)

ϕ(q|0)
,

which is impossible by MLRP. In sum, we cannot have w(q) ∈ (0, w∗(q)) and ẇ(q) > 0 on

any non-empty subinterval: either w(q) = w∗(q) or ẇ(q) = 0.

2. We take w(q) as given on the subset Qa of outputs s.t. w(q) ∈ [0, w∗(q)], and consider

the subset Qb of outputs s.t. w(q) ∈ (w∗(q), q]. As above, if w(q) ∈ (w∗(q), q] then either

ẇ(q) = 0 or w(q) = q.

3. Standard arguments rule out upward discontinuities in a contract that minimizes effort in-

centives. Thus, we can only have w(q) = q for q ∈ [0, qu], for some qu ∈ [0, q]. From the

arguments in steps above, if we never have w(q) = q, then either w(q) = w∗(q) or ẇ(q) = 0,

so that the contract is as in (15). But as established this contract cannot induce e∗ = 0 if

U > U c. Therefore, for U > U c, we have qu > 0. For q > qu, by monotonicity we have

w(q) ≥ w(qu) = qu, and by step 2 we have ẇ(q) = 0 ⇔ w(q) = qu for q ∈ [qu, qf ], with qf

such that qu = w∗(qf ). For q > qf , by step 1 we have w(q) = min{w∗(q), w∗(qd)} for some

qd ∈ [qf , q]. ■

The thresholds qd and qf are such that IR binds and e∗ = 0. With U > U c, we have qf > 0

since there does not exist a contract as in (15) that induces e∗ = 0.

Contract B is w(q) = w∗(q) ∀q. Suppose that U is so high that:∫ q

0

w∗(q)ϕ(q|e∗)dq − C(e∗) = U, (23)

where e∗ is the equilibrium effort induced by contract B. Then, contract B satisfies IR. It induces

e∗ = ê > 0 (see (9)).

Compare contract B to contract A defined in Lemma 3, with qd < q. By contradiction, if
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qd = q, then wA(q) ≥ w∗(q)∀q and:∫
wA(q)ϕ(q|0)dq − C(0) >

∫
wA(q)ϕ(q|ê)dq − C(ê) >

∫
w∗(q)ϕ(q|ê)dq − C(ê) = U, (24)

by optimal effort choice, qf > 0, and (23). The agent’s expected utility under contracts A and B

is respectively: ∫ q

0

wA(q)ϕ(q|0)dq − γ

∫ q

qd

(w∗(q)− w∗(qd))ϕ(q|0)dq = U∫ q

0

wB(q)ϕ(q|ê)dq − C(ê) = U

Thus, ∫ q

0

wB(q)ϕ(q|ê)dq <
∫ q

0

wA(q)ϕ(q|0)dq

if and only if:

C(ê) < γ

∫ q

qd

(w∗(q)− w∗(qd))ϕ(q|0)dq.

With γ > 0 and full support, the RHS is strictly positive. ■

Proof of Proposition 2:

We first establish that contract (11) is optimal. We ignore the monotonicity constraint and

verify that the optimal contract satisfies it. By contradiction, suppose that the solution at any q

is either w(q) ∈ (0, w∗(q)) or w(q) ∈ (w∗(q), q). The first-order condition (“FOC”) for an interior

solution w(q) ∈ (0, w∗(q)) is:

−ϕ(q|eT ) + µ(1 + γ)
∂ϕ

∂e
(q|eT ) + λ(1 + γ)ϕ(q|eT ) = 0 ⇔ 1

1 + γ
= λ+ µ

∂ϕ
∂e
(q|eT )

ϕ(q|eT )

where λ and µ are the Lagrange multipliers associated with the IR and IC. Thus, the FOC is

satisfied only if the likelihood ratio
∂ϕ
∂e

(q|eT )

ϕ(q|eT )
is constant, which is impossible by MLRP. A similar

argument can be made for w(q) ∈ (w∗(q), q). Finally, we have w(q) = 0 for q < qm, w(q) = w∗(q)

for q ∈ [qm, qM), and w(q) = q for q ≥ qM , where 0 ≤ qm ≤ qM ≤ q. Suppose not. Then,

w(q) > w(q′) for some q < q′, and, using standard arguments and MLRP, it would be possible to

perturb the contract to strictly increase the LHS of IC, which is binding, while leaving the cost

of the contract unchanged and the LHS of IR either unchanged or increased, contradicting the

optimality of the contract.

We establish the values of qm and qM for a given e∗. The optimization problem with qm ∈ [0, q]
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and qM ∈ [qm, q] is as in equations (2)-(4) but with e∗ given by the FOA and the following contract:

w(q) =


0 for q < qm

w∗(q) for q ∈ [qm, qM)

q for q ≥ qM

.

Denote by ηIC and ηIR the Lagrange multipliers associated with IC and IR. The FOCs for an

interior solution are:

−ρqmϕ(qm|e∗)− ηIC

(
−γρqm

∂ϕ

∂e
(qm|e∗)− ρqm

∂ϕ

∂e
(qm|e∗)

)
−ηIR (−γρqmϕ(qm|e∗)− ρqmϕ(qm|e∗)) = 0

ρqMϕ(qM |e∗)− qMϕ(qM |e∗)− ηIC

(
ρqM

∂ϕ

∂e
(qM |e∗)− qM

∂ϕ

∂e
(qM |e∗)

)
−ηIR (ρqMϕ(qM |e∗)− qMϕ(qM |e∗)) = 0

which, for qm ̸= 0 and qM ̸= 0, are equivalent to:

−1 + ηIC

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
(1 + γ) + ηIR (1 + γ) = 0 (25)

−1 + ηIC

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
+ ηIR = 0 (26)

The optimal qm is generically not a corner solution. We can only have qm = 0 when (9) is

satisfied with equality at e∗ = eT . Likewise, we cannot have qm = q, which would imply qM = q:

this would violate the IC. Thus, the optimal qm is generically given by (25).

There are two cases.

Nonbinding IR. The IC for any eT > 0 must bind. Suppose not. Then, the contract that

solves the optimization problem in (2), (5), and (6) is w(q) = 0 ∀q, so that u(0, q) = −γρq

∀q ∈ [0, q], and: ∫ q

0

u(0, q)
∂ϕ

∂e
(q|e)dq = −γρ

∫ q

0

q
∂ϕ

∂e
(q|e)dq < 0 < C ′(e).

If the optimal qm and qM are interior, (25) and (26) with ηIR = 0 and ηIC > 0 give:

(1 + γ)
∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
=

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
. (27)

With ηIR = 0 and ηIC > 0, we have qm > qe
∗

0 because of (25) and MLRP. Denote the subset of

values of {qm, qM} that satisfy the IC by QIC , and denote the values of {qm, qM} in this subset by
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{qICm , qICM }. Totally differentiating the LHS of the IC w.r.t. qICm gives:

dqICM
dqICm

= −(1 + γ)w∗(qICm )

qICM − w∗(qICM )

∂ϕ
∂e
(qICm |e∗)

∂ϕ
∂e
(qICM |e∗)

, (28)

where ∂ϕ
∂e
(qICm |e∗) > 0 and ∂ϕ

∂e
(qICM |e∗) > 0 since qe

∗
0 < qm ≤ qM . Now consider the subset Qc of

values of {qm, qM}, denoted {qcm, qcM}, that leaves the expected cost in (2) unchanged:

dqcM
dqcm

= − w∗(qcm)

qcM − w∗(qcM)

ϕ(qcm|e∗)
ϕ(qcM |e∗)

. (29)

Using qe
∗

0 < qm ≤ qM and MLRP:

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
≤

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
⇔

∂ϕ
∂e
(qm|e∗)

∂ϕ
∂e
(qM |e∗)

≤ ϕ(qm|e∗)
ϕ(qM |e∗)

, (30)

with strict inequalities for qM > qm.

For any given element in QIC , there are two cases:

1. For qICm and qICM s.t. (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) <

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) and qm ≥ qe

∗
0 , a marginal increase in qm

and associated decrease in qM as in (28) reduces cost because of (29) and (30).

2. For qICm and qICM s.t. (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) >

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) and qm ≥ qe

∗
0 , a marginal increase in qm

and associated decrease in qM as in (28) increases cost because of (29) and (30).

Consider the smallest qICm and corresponding highest qICM in the subset QIC , denoted qmin
m and

qmax
M . We have qmax

M = q: an incentive-compatible contract with qm ≥ qe
∗

0 and qM = q exists (see

(7)). Since IR is nonbinding, qmin
m is implicitly defined by incentive compatibility with qmax

M = q in

(10).

If (1 + γ)
∂ϕ
∂e

(qmin
m |e∗)

ϕ(qmin
m |e∗) >

∂ϕ
∂e

(q|e∗)
ϕ(q|e∗) , then due to MLRP and

dqICM
dqICm

< 0, for any element of QIC , we

have (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) >

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) , so that case 2 above applies for any element of QIC . Therefore,

qm = qmin
m and qM = q.

If (1 + γ)
∂ϕ
∂e

(qmin
m |e∗)

ϕ(qmin
m |e∗) <

∂ϕ
∂e

(q|e∗)
ϕ(q|e∗) , then for low values of qICm , case 1 above applies. Moreover, since

γ > 0 and LR(q|e) is continuous in q, for high values of qICm , case 2 applies. Then, the optimal

thresholds belong to QIC and satisfy (27) with e∗ = eT .

Binding IR. The IC binds for eT sufficiently large – larger than the effort optimally induced

by the principal for eT = 0. When both IC and IR bind, qm and qM must satisfy:

−γρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq + ρ

∫ qM

qm

q
∂ϕ

∂e
(q|e∗)dq +

∫ q

qM

q
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (31)

−γρ

∫ qm

0

qϕ(q|e∗)dq + ρ

∫ qM

qm

qϕ(q|e∗)dq +
∫ q

qM

qϕ(q|e∗)dq − C(e∗) = U (32)
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If qM = qm or qM = q, then generically we cannot have IC and IR binding. If the optimal qm and

qM are interior, (25) and (26) give:

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
(1 + γ) +

ηIR
ηIC

γ =
∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)

■

Proof of Corollary 1:

We start with (i). When U and eT are sufficiently high, IR and IC bind, and the contract is

given by Proposition 2, part (ii), with qm < qe
T

0 if U and γ are sufficiently high. The IC is:∫ qm

0

(−γw∗(q))
∂ϕ

∂e
(q|e∗)dq +

∫ q

qm

w(q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (33)

The derivatives of the LHS of IC and IR w.r.t. γ and ρ are respectively:

−ρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq > 0 and −ρ

∫ qm

0

qϕ(q|e∗)dq < 0∫ qm

0

(−γq)
∂ϕ

∂e
(q|e∗)dq +

∫ qM

qm

q
∂ϕ

∂e
(q|e∗)dq > 0 and

∫ qm

0

(−γq)ϕ(q|e∗)dq +
∫ qM

qm

qϕ(q|e∗)dq < 0

for γ sufficiently high. The derivatives of the LHS of the IC and IR w.r.t. qm and qM are

respectively:

−(1 + γ)w∗(qm)
∂ϕ

∂e
(qm|e∗) > 0 and −(1 + γ)w∗(qm)ϕ(qm|e∗) < 0,

(v(w∗(qM))− v(qM))
∂ϕ

∂e
(qM |e∗) < 0 and (v(w∗(qM))− v(qM))ϕ(qM |e∗) < 0.

Thus, for γ sufficiently high: if γ increases, qm must decrease; if ρ increases, qm must decrease.

For (ii), qm = qmin
m > qe

T

0 in (10). Totally differentiating the binding IC w.r.t. qm and solving

for de∗

dqm
shows that e∗ is decreasing in qm. ■
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Supplemental Appendix

A Theory of Fair CEO Pay

Pierre Chaigneau, Alex Edmans, Daniel Gottlieb

1 Nonlinear model

The agent’s utility function is:

u(w, q) =

{
v(w) if w(q) ≥ w∗(q)

v(w∗(q))− (1 + γ)ξ (w∗(q)− w) if w(q) < w∗(q)
, (34)

where v′ > 0, v′′ ≤ 0, ξ′ > 0, ξ′′ ≤ 0, and γ ≥ 0 parametrizes fairness concerns. If the wage is

fair (w ≥ w∗ (q)), the agent’s utility is v(w). If the wage is unfair (w < w∗ (q)), the agent suffers

disutility which is increasing in both the discrepancy w∗(q) − w and his fairness concerns γ. We

assume limw↘0 v
′(w) < 1 + γ and limx↗q ξ

′(x) ≥ 1, so that the utility function is always steeper

below the fair wage than above it. The kink at the fair wage means that the agent is loss-averse:

his sensitivity to losses exceeds his sensitivity to gains, consistent with empirical and experimental

evidence that the disutility from unfair wages exceed the utility from above-fair wages (see the

survey of Fehr, Goette, and Zehnder (2009)). The function ξ (·) means that the agent’s utility is

weakly convex below the fair wage, as in prospect theory. The unique feature of our model is that

the fair wage depends on output and is thus endogenously determined ex post, in contrast to loss

aversion models where the reference point is independent of output and thus known ex ante. The

main paper studies a special case of (34) is where the agent’s utility is piecewise linear (v(w) = w

and ξ(x) = x).

Figure 2 displays the agent’s utility as a function of w for various output realizations and two

different utility functions.
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Figure 2: Function u(w, q) as defined in equation (34) as a function of w for γ = 1, ρ = 1
2
, and

output q ∈ {0, 1, 2, 3, 4}. Top row: v(w) = w. Bottom row: v(w) = ln(w + 1), ξ(x) = x1/1.2.
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To simplify the analysis, we assume:

∫ qe
T

0

0

u(0, q)
∂ϕ

∂e
(q|eT )dq +

∫ q

qe
T

0

u(ρq, q)
∂ϕ

∂e
(q|eT )dq ≥ C ′(eT ) (35)∫ q

0

u(0, q)ϕ(q|0)dq − C(0) < U (36)∫ q

0

u(ρq, q)ϕ(q|ê)dq − C(ê) ≥ U, where ê = e∗ as defined in (3 ) with w(q) = w∗(q) ∀q. (37)

Proposition 3 (Zero target effort level): Fix eT = 0. The contract has pay-for-performance:

w(q) > w(q′) for some q > q′.

Define qmin
m as the highest value that satisfies the following:∫ qmin

m

0

u(0, q)
∂ϕ

∂e
(q|eT )dq +

∫ q

qmin
m

v(ρq)
∂ϕ

∂e
(q|eT )dq = C ′(eT ). (38)

Proposition 4 (Binding incentive constraint): Fix eT sufficiently high. The principal implements

e∗ = eT and offers the following contract:

1

u′
w(w(q), q)

=


1

u′
w(0,q)

for q < qm
1

v′(w∗(q))
for q ≥ qm and λIR + λICLR(q|e∗) < 1

v′(w∗(q))

λIR + λICLR(q|e∗) for q ≥ qm and 1
v′(w∗(q))

≤ λIR + λICLR(q|e∗) ≤ 1
v′(q)

1
v′(q)

for q ≥ qm and 1
v′(q)

< λIR + λICLR(q|e∗)
(39)

Moreover, if v′(0) ≤ 1, γ > LR(q|eT )
LR(qmin

m |eT )
− 1, and U is sufficiently low that IR is nonbinding, then

w(q) = 0 for q < qm and w(q) = w∗(q) for q ≥ qm.

The optimal contract is now given by (up to) four regions. As with v′′ = 0, there are three

regions in which the agent is paid zero, the fair wage, and the entire output. However, there is an

additional region where output is sufficiently high that the principal pays more than the fair wage.

It is inefficient to pay the entire output, since the agent exhibits diminishing marginal utility and

so does not value this additional reward highly. Thus, unlike in the model with v′′ = 0, the optimal

contract is only discontinuous at qm. As output rises, the likelihood ratio increases further and

so the actual wage exceeds the fair wage by more. The contract will generally be convex in this

region.10 When the likelihood ratio is very high, the principal pays the entire output. If fairness

concerns are sufficiently high, then as in the linear model, the contract comprises only the first

two regions and corresponds to performance-vesting equity.

10However, the contract will be concave if the likelihood ratio is concave, so that very high output is only
slightly more indicative of effort, and if risk aversion is sufficiently important compared to prudence (see Chaigneau,
Sahuguet and Sinclair-Desgagné, 2017). The latter condition will typically not be satisfied for CEOs who have low
absolute risk aversion due to their wealth.
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Example 1 illustrates how the optimal contract is affected by the underlying parameters. When

v′′ < 0, the contract resembles performance shares, where the number of shares that vest increase

with performance, in contrast to performance-vesting equity where the number of shares is fixed

as long as performance exceeds a threshold. Performance shares, like performance-vesting equity,

are widely used in practice (see Figure 2 in Bettis et al. (2018)).

Example 1 The agent’s preferences are given by γ = 2, ρ = 1
2
, and v(w) = ln(w + 1), ξ(x) = x,

and output follows a truncated normal distribution on [0, 10] with parameters e∗ = 1 and σ = 1 .

Optimal contract for (c) U = −0.5 and C(1) = C ′(1) = 0.4; (d) U = −1 and C(1) = C ′(1) = 0.45.

0.5 1.0 1.5 2.0 2.5 3.0
q

0.5

1.0

1.5

2.0

2.5
w(q)

(c)

0.5 1.0 1.5 2.0 2.5 3.0
q

0.5

1.0

1.5

2.0

2.5
w(q)

(d)

Figure 3: The contract w(q) as a function of q for parameter values described in Example 1.

2 Proofs

Proof of Proposition 3:

We show by contradiction that an optimal contract is characterized by w(q) > w(q′) for some

q > q′. Suppose that it is not. Due to the monotonicity constraint, this implies that w(q) = w̄,

which is a constant, for all q ∈ [0, q]. A fixed wage induces e∗ = 0 and IR binds in the optimal

contract: ∫
u(w̄, q)

∂ϕ

∂e
(q|0)dq < C ′(0) and

∫
u(w̄, q)ϕ(q|0)dq − C(0) = U

Consider the following perturbation which does not change the corner solution e∗ = 0. Let q̌ be

such that w̄ = w∗(q̌). For arbitrarily small ϵ and ε, let the new contract be described as:

w(q) =


w̄ − ρϵ if q < q̌ − ϵ

w∗(q) if q ∈ [q̌ − ϵ, q̌ + ε]

w̄ + ρε if q ≥ q̌ + ε

, (40)
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such that the agent’s expected utility is unchanged:∫ q̌−ϵ

0

v(w̄ − ρϵ)ϕ(q|0)dq +
∫ q̌+ε

q̌−ϵ

v(w∗(q))ϕ(q|0)dq +
∫ q

q̌+ε

u(w̄ + ρε, q)ϕ(q|0)dq

=

∫ q̌

0

v(w̄)ϕ(q|0)dq +
∫ q

q̌

u(w̄, q)ϕ(q|0)dq

Since ϵ and ε are arbitrarily small, this implies:∫ q̌

0

ρϵv′(w̄)ϕ(q|0)dq ≈ ρε

∫ q

q̌

uw(w̄, q)ϕ(q|0)dq (41)

Likewise, the change in the cost of compensation is approximately:

−
∫ q̌

0

ρϵϕ(q|0)dq +
∫ q

q̌

ρεϕ(q|0)dq,

which is strictly negative by equation (41) with the assumption v′(w) < uw(w, q) for any w. ■

Proof of Proposition 4:

With the FOA, the IC (3) can be replaced by the first-order condition (“FOC”) for interior

solutions: ∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (42)

with e∗ = eT > 0.

We derive the optimal contract while ignoring the monotonicity constraint ẇ(q) ≥ 0, and we

verify later that the optimal contract thus derived is monotonic.

In the first step, we take as given the payment w(q) on the subset Qb of outputs s.t. w(q) ∈
(w∗(q), q], and we consider the subset Qa of outputs s.t. w(q) ∈ [0, w∗(q)]. We have:

max
w(q) s.t. q∈Qa

∫
(−w(q))ϕ(q|eT )dq s.t.

∫
u(w(q), q)

∂ϕ

∂e
(q|eT )dq = C ′(eT ) (43)∫

u(w(q), q)ϕ(q|eT )dq − C(eT ) ≥ U

0 ≤ w(q) ≤ w∗(q) ∀q ∈ Qa

The first-order necessary condition (“FONC”) for an interior solution w(q) ∈ (0, w∗(q)) is:

−ϕ(q|eT ) + µuw(w(q), q)
∂ϕ

∂e
(q|eT ) + λuw(w(q), q)ϕ(q|eT ) = 0

where λ and µ are respectively the Lagrange multipliers associated with the participation constraint

and the incentive constraint, and, since 0 ≤ w(q) ≤ w∗(q), we have uw(w(q), q) = (1+γ)ξ′(w∗(q)−
w) > 0.

4



In the case ξ′′ = 0, the FONC is satisfied only if the likelihood ratio
∂ϕ
∂e

(q|eT )

ϕ(q|eT )
is constant, which

is impossible by MLRP. In the case ξ′′ < 0, the second-order condition with respect to w(q) is not

satisfied at any w(q) that satisfies the FONC. Indeed, the FONC can be rewritten as:

1

uw(w(q), q)
= λ+ µ

∂ϕ
∂e
(q|eT )

ϕ(q|eT )
(44)

where the LHS is strictly positive, so that the RHS must be strictly positive for any w(q) that

satisfies the FONC. The second-order condition is satisfied if and only if:

µuww(w(q), q)
∂ϕ

∂e
(q|eT ) + λuww(w(q), q)ϕ(q|eT ) < 0 (45)

which given uww(w(q), q) > 0 (due to ξ′′ < 0 in this case) can be rewritten as:
∂ϕ
∂e

(q|eT )

ϕ(q|eT )
< −λ

µ
, where

λ ≥ 0 and µ > 0. Thus, for ξ′′ < 0, the optimum cannot be an interior solution, i.e. it cannot be

w(q) ∈ (0, w∗(q)). We conclude that, for w(q) ∈ [0, w∗(q)], the optimum is not characterized by an

interior solution.

Thus, for some Q− ⊆ [0, q] we have w(q) = 0, and for q ∈ Q+ ⊆ [0, q] we have w(q) ∈ [w∗(q), q].

This implies u(w, q) = v(w) for q ∈ Q+. In sum, for a given Q−, the relaxed optimization problem

that induces e∗ = eT can be rewritten:

min
w(q)

∫
Q+

w(q)ϕ(q|eT )dq (46)

s.t.

∫
Q−

u(0, q)
∂ϕ

∂e
(q|eT )dq +

∫
Q+

v(w(q))
∂ϕ

∂e
(q|eT )dq = C ′(eT ) (47)∫

Q−

u(0, q)ϕ(q|eT )dq +
∫
Q+

v(w(q))ϕ(q|eT )dq ≥ U (48)

w(q) ∈ [w∗(q), q] ∀q (49)

The program in equations (46)-(49) has a solution because of the assumptions in equations (35)

and (37)). Using the notation in Jewitt, Kadan, and Swinkels (2008), we have m(q) = w∗(q) and

m(q) = q. We apply their Proposition 1 to derive the optimal contract on Q+ given that w(q) = 0

for q ∈ Q− (the first terms on the LHS of equations (47) and (48) are independent of w(q) and

can therefore be treated as constants in the program (46)-(49)). Thus, for some Q−, the optimal

contract is defined implicitly by:

1

u′
w(w(q), q)

=


1

u′
w(0,q)

for q ∈ Q−
1

v′(w∗(q))
for q ∈ Q+ and λIR + λICLR(q|e∗) < 1

v′(w∗(q))

λIR + λICLR(q|e∗) for q ∈ Q+ and 1
v′(w∗(q))

≤ λIR + λICLR(q|e∗) ≤ 1
v′(q)

1
v′(q)

for q ∈ Q+ and 1
v′(q)

< λIR + λICLR(q|e∗)

Finally, with a binding IC and MLRP, standard arguments show that we must have w(q) = 0 if

5



and only if q ≤ qm for some qm ∈ [0, q], so that the optimal contract is defined implicitly by:

1

u′
w(w(q), q)

=


1

u′
w(0,q)

for q < qm
1

v′(w∗(q))
for q ≥ qm and λIR + λICLR(q|e∗) < 1

v′(w∗(q))

λIR + λICLR(q|e∗) for q ≥ qm and 1
v′(w∗(q))

≤ λIR + λICLR(q|e∗) ≤ 1
v′(q)

1
v′(q)

for q ≥ qm and 1
v′(q)

< λIR + λICLR(q|e∗)

where λIC > 0 and λIR ≥ 0 are the Lagrange multipliers associated with the constraints (47) and

(48), and which therefore depend on qm.

We now establish the second part of the proof. The optimal contract is described in equation

(39). Under the conditions stated in the second part of the Proposition, we will show that any

contract as in equation (39) which is not such that w(q) = 0 for q < qm and w(q) = w∗(q) for q ≥ qm

is dominated. Consider a given incentive-compatible “contract A” as in equation (39) such that

w(q) > w∗(q) for a non-empty interval of outputs. We will show that this contract is dominated by

an incentive-compatible “contract B” such that w(q) = 0 for q < qm and w(q) = w∗(q) for q ≥ qm.

First of all, we cannot have wA(q) = w∗(q) for q < qmin
m since then contract A as in equation

(39) would involve a strictly higher cost than contract B, i.e. it would be dominated. The other

possibility is that these two contracts differ on two (possibly empty) subintervals: (qmin
m , q1) where

wA(q) = 0 < w∗(q) = wB(q), and (q2, q) where wA(q) > w∗(q) = wB(q). The subintervals must be

such that qmin
m ≤ q1 ≤ q2 ≤ q because of the monotonicity assumption.

Then, consider a switch from contract A to contract B. The implied change in the LHS of the

IC, which must be zero by incentive compatibility, is:

0 =

∫ q1

qmin
m

(v(w∗(q))− (v(w∗(q))− (1 + γ)w∗(q)))
dϕ

de
(q|eT )dq +

∫ q

q2

(v(w∗(q))− v(wA(q)))
dϕ

de
(q|eT )dq

= (1 + γ)

∫ q1

qmin
m

w∗(q)
dϕ

de
(q|eT )dq +

∫ q

q2

(v(w∗(q))− v(wA(q)))
dϕ

de
(q|eT )dq

where, with v′′ ≤ 0: v(wA(q)) ≤ v(w∗(q)) + v′(w∗(q)) (wA(q)− w∗(q)) for q ∈ (q2, q), and
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v′(w∗(q)) ≤ v′(0) ≤ 1, so that:

0 = (1 + γ)

∫ q1

qmin
m

w∗(q)
dϕ

de
(q|eT )dq +

∫ q

q2

(v(w∗(q))− v(wA(q)))
dϕ

de
(q|eT )dq

≥ (1 + γ)

∫ q1

qmin
m

w∗(q)
dϕ

de
(q|eT )dq +

∫ q

q2

((v(w∗(q))− v(w∗(q))− v′ (w∗(q)) (wA(q)− w∗(q))))
dϕ

de
(q|eT )dq

≥ (1 + γ)

∫ q1

qmin
m

w∗(q)
dϕ

de
(q|eT )dq − v′(0)

∫ q

q2

(wA(q)− w∗(q))
dϕ

de
(q|eT )dq

> (1 + γ)

∫ q1

qmin
m

w∗(q)
dϕ

de
(q|eT )dq −

∫ q

q2

(wA(q)− w∗(q))
dϕ

de
(q|eT )dq

= (1 + γ)

∫ q1

qmin
m

w∗(q)
dϕ
de
(q|eT )

ϕ(q|eT )
ϕ(q|eT )dq −

∫ q

q2

(wA(q)− w∗(q))
dϕ
de
(q|eT )

ϕ(q|eT )
ϕ(q|eT )dq

where: ∫ q1

qmin
m

w∗(q)
dϕ
de
(q|eT )

ϕ(q|eT )
ϕ(q|eT )dq >

dϕ
de
(qmin

m |eT )
ϕ(qmin

m |eT )

∫ q1

qmin
m

w∗(q)ϕ(q|eT )dq∫ q

q2

(wA(q)− w∗(q))
dϕ
de
(q|eT )

ϕ(q|eT )
ϕ(q|eT )dq <

dϕ
de
(q|eT )

ϕ(q|eT )

∫ q

q2

(wA(q)− w∗(q))ϕ(q|eT )dq

Overall:

0 > (1 + γ)

∫ q1

qmin
m

w∗(q)
dϕ
de
(q|eT )

ϕ(q|eT )
ϕ(q|eT )dq −

∫ q

q2

(wA(q)− w∗(q))
dϕ
de
(q|eT )

ϕ(q|eT )
ϕ(q|eT )dq

> (1 + γ)
dϕ
de
(qmin

m |eT )
ϕ(qmin

m |eT )

∫ q1

qmin
m

w∗(q)ϕ(q|eT )dq −
dϕ
de
(q|eT )

ϕ(q|eT )

∫ q

q2

(wA(q)− w∗(q))ϕ(q|eT )dq (50)

The implied change in contract cost is:∫ q1

qmin
m

w∗(q)ϕ(q|eT )dq +
∫ q

q2

(w∗(q)− wA(q))ϕ(q|eT )dq

Because of qmin
m ≥ qe

T

0 (see equations (35) and (38)) and MLRP, the change in cost has the same

sign as:

dϕ
de
(qmin

m |eT )
ϕ(qmin

m |eT )

∫ q1

qmin
m

w∗(q)ϕ(q|eT )dq +
dϕ
de
(qmin

m |eT )
ϕ(qmin

m |eT )

∫ q

q2

(w∗(q)− wA(q))ϕ(q|eT )dq

< (1 + γ)
dϕ
de
(qmin

m |eT )
ϕ(qmin

m |eT )

∫ q1

qmin
m

w∗(q)ϕ(q|eT )dq +

dϕ
de

(q|eT )

ϕ(q|eT )
dϕ
de

(qmin
m |eT )

ϕ(qmin
m |eT )

dϕ
de
(qmin

m |eT )
ϕ(qmin

m |eT )

∫ q

q2

(w∗(q)− wA(q))ϕ(q|eT )dq

= (1 + γ)
dϕ
de
(qmin

m |eT )
ϕ(qmin

m |eT )

∫ q1

qmin
m

w∗(q)ϕ(q|eT )dq +
dϕ
de
(q|eT )

ϕ(q|eT )

∫ q

q2

(w∗(q)− wA(q))ϕ(q|eT )dq

7



where the inequality follows from 1 + γ >
dϕ
de

(q|eT )

ϕ(q|eT )

/ dϕ
de

(qmin
m |eT )

ϕ(qmin
m |eT )

. The RHS is negative because of

equation (50). Thus, under the conditions stated in the second part of Proposition 4, the change

in the contract is incentive compatible and it involves a negative change in cost, which establishes

that the initial contract is dominated since IR is nonbinding. ■
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