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The purpose of a consensus protocol is to keep a distributed network of nodes “in sync,” even in the presence
of an unpredictable communication network and adversarial behavior by some of the participating nodes. In
the permissionless setting relevant to modern blockchain protocols, these nodes may be operated by a large
number of unknown players, with each player free to use multiple identifiers and to start or stop running the
protocol at any time. Establishing that a permissionless consensus protocol is "secure" thus requires both a
distributed computing argument (that the protocol guarantees consistency and liveness unless the fraction of
adversarial participation is sufficiently large) and an economic argument (that carrying out an attack would be
prohibitively expensive for a potential attacker). There is a mature toolbox for assembling arguments of the
former type; the goal of this paper is to lay the foundations for arguments of the latter type. For example, the
Ethereum protocol is oft-claimed to be "more economically secure" after "the merge," meaning in its current
proof-of-stake incarnation relative to the (proof-of-work) original. What, formally, does this assertion mean?
Is it true? Could there be alternative protocols that are "still more economically secure" than Ethereum? How
do the answers depend on the assumptions imposed on, for example, the reliability of message delivery or the
active participation of non-malicious players?

An ideal permissionless consensus protocol would, in addition to satisfying standard consistency and
liveness guarantees, render consistency violations prohibitively expensive for the attacker without collateral
damage to honest participants—for example, by programatically confiscating an attacker’s resources without
reducing the value of honest participants’ resources, as is the intention for slashing in a proof-of-stake protocol.
We make this idea precise with our notion of the EAAC (expensive to attack in the absence of collapse) property,
and prove the following results:

o In the synchronous and dynamically available setting (in which the communication network is reliable
but non-malicious players may be periodically inactive), with an adversary that controls at least one-half
of the overall resources, no protocol can be EAAC. In particular, this result rules out EAAC for all
typical longest-chain protocols (be they proof-of-work or proof-of-stake).

o In the partially synchronous and quasi-permissionless setting (in which resource-controlling non-
malicious players are always active but the communication network may suffer periods of unreliability),
with an adversary that controls at least one-third of the overall resources, no protocol can be EAAC. In
particular, slashing in a proof-of-stake protocol cannot achieve its intended purpose if message delays
cannot be bounded a priori.

o In the synchronous and quasi-permissionless setting, there is a proof-of-stake protocol with slashing
that, provided the adversary controls less than two-thirds of the overall stake, satisfies the EAAC
property.

All three results are optimal with respect to the size of the adversary. With respect to Ethereum, our work
formalizes the potential security benefits of proof-of-stake sybil-resistance coupled with slashing and the com-
mon belief that the merge has increased Ethereum’s economic security. Our work also provides mathematical
justifications for several key design decisions behind the post-merge Ethereum protocol, ranging from long
cooldown periods for unstaking to economic penalties for inactivity.



Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden 1

1 INTRODUCTION
1.1 The Security of Permissionless Consensus Protocols

The core functionality of a blockchain protocol such as Bitcoin or Ethereum is permissionless
consensus, with a potentially large and ever-evolving set of participants kept in sync on the state
of the blockchain via a consensus protocol. Compared to the traditional setting of permissioned
consensus protocols (with a fixed and known participant set), permissionless protocols must cope
with three novel challenges (cf., [30]):

e The unknown players challenge. The set of participants is unknown at the time of protocol
deployment and is of unknown size.

e The player inactivity challenge. Participants can start or stop running the protocol at any
time.

e The sybil challenge. One participant may masquerade as many by using many identifiers
(ak.a. “sybils”).

Reasoning about the security of a permissioned consensus protocol is, to a large extent, a purely
computer science question. (Here “security” means that the protocol satisfies both liveness and
consistency—as long as there’s work to be done it gets done, and without any two participants
ever committing to conflicting decisions.) Consider, for example, a corporation that wants to grant
customers access to a database while keeping its downtime percentage to 0.0001%. One approach
would be to replicate the database on many different servers and use a consensus protocol to
keep those replicas in sync. How many replicas are necessary and sufficient to achieve the desired
uptime? Or, in two parts:

(Q1) For a given value of k, how many replicas n(k) are necessary and sufficient to guarantee
security even when k of the replicas have failed?

(Q2) For a given target downtime percentage §, what is the smallest value of k such that the
probability that at least k + 1 of n(k) replicas fail simultaneously is at most §?

The distributing computing literature resolves question (Q1) for a staggering variety of settings
(with n(k) = 2k + 1 and n(k) = 3k + 1 being two of the most common answers); see, e.g., [11, 31]
for an introduction. Given a probabilistic model of replica failures, question (Q2) then boils down
to a calculation, providing the corporation with the appropriate value of k and the corresponding
number n(k) of servers that it should buy.

Reasoning about the security of a permissionless consensus protocol fundamentally requires the
synthesis of computer science and economic arguments. First, the sybil challenge generally forces
such a protocol to measure “size” in terms of some resource that is, unlike identifiers, scarce and
therefore costly. Common examples include hashrate (as in a proof-of-work protocol) and staked
cryptocurrency (as in a proof-of-stake protocol). Second, while misbehaving replicas in a permis-
sioned protocol are generally attributed to hardware failures and software bugs, permissionless
protocols must tolerate deliberately malicious behavior by a motivated attacker (a hacker, designers
of a competing protocol, or even an unfriendly nation-state). The analogs of questions (Q1) and (Q2)
are then:

(Q3) What is the largest value of p for which a protocol can guarantee security even when a p
fraction of the costly resource is controlled by an attacker?

(Q4) How unlikely is it that an attacker controls more than a p fraction of the costly resource and
then carries out an attack?

Question (Q3) is well defined, and the last decade of research on blockchain protocols has answered
it in a range of settings. Question (Q4) makes no sense without an economic model for the cost
of carrying out an attack. The goal of this paper is to develop a mathematical framework for
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quantifying this cost and for designing permissionless consensus protocols in which this cost is as
large as possible.

1.2 The Economic Consequences of an Attack: Scorched Earth vs. Targeted Punishment

In the Bitcoin white paper, Nakamoto [32] noted that an attacker controlling 51% of the over-
all hashrate could force consistency violations and thereby carry out double-spend attacks, but
suggested that the consequent economic cost might make such an attack unprofitable:

If a greedy attacker is able to assemble more CPU power than all the honest nodes, he
would have to choose between using it to defraud people by stealing back his payments,
or using it to generate new coins. He ought to find it more profitable to play by the
rules, such rules that favour him with more new coins than everyone else combined,
than to undermine the system and the validity of his own wealth.

This argument rests on the assumption that a double-spend attack would cause a significant and
permanent drop in the USD-denominated market price of Bitcoin’s native currency BTC, with the
attacker then foregoing most of the USD-denominated value of the future BTC block rewards that
it’s positioned to receive.

More recently, this initial narrative around the security of Bitcoin and other proof-of-work
blockchain protocols has evolved into a second narrative, for two reasons. First, empirical evidence
for the “double-spends will crash the cryptocurrency price” hypothesis has been weak. Second,
the “CPUs” that Nakamoto referred to have been almost entirely replaced by ASICs that serve no
purpose other than to evaluate a hard-coded cryptographic hash function such as SHA-256. Now,
the story goes: if an attacker with 51% of the hashrate were to carry out a double-spend attack on
(say) the Bitcoin protocol, the Bitcoin ecosystem could respond with the “nuclear option,” changing
the cryptographic hash function used for proof-of-work mining via a coordinated upgrade to the
protocol (a “hard fork”). Such an upgrade would render existing ASICs useless, leaving the attacker
with a defunct pile of scrap metal. Hopefully, the mere threat of this nuclear option would deter
any potential attackers, and the option would never have to actually be exercised.

An alarming aspect of both narratives is the “scorched earth” nature of an attack’s consequences:
honest participants (passive holders of BTC or ASIC-owning honest miners, respectively) are
harmed as much as the attacker. Is scorched earth-style punishment fundamental to permissionless
consensus, or an artifact of the specific design decisions made in Bitcoin and other proof-of-work
protocols?

Ideally, a blockchain protocol could punish an attacker that carries out a double-spend attack
in a targeted and non-scorched-earth way, leaving honest participants unharmed. The hope for
such “asymmetric punishment” has long rested with proof-of-stake blockchain protocols, in which
the “power” of a participant is proportional to how much of the protocol’s native currency they
have locked up in a designated staking contract. Intuitively, with the scarce and costly resource
controlled directly by the protocol (rather than “off-chain,” as with hashrate), such a protocol is
positioned to directly and surgically confiscate resources from specific participants (perhaps as
part of a hard fork, or perhaps programmatically as part of the protocol’s normal operation) [6, 27].

The Ethereum protocol, which famously migrated from proof-of-work to proof-of-stake (among
many other changes) in September 2022 in an event known as “the merge,” offers an interesting
case study. Ethereum’s lead founder, Vitalik Buterin, wrote in the early design stages that “The
‘one-sentence philosophy’ of proof of stake is ... ‘security comes from putting up economic value-
at-loss’” [8] and “The intention is to make 51% attacks extremely expensive, so that even a majority
of validators working together cannot roll back finalized blocks without undertaking an extremely
large economic loss” [9]. Today, post-merge, the protocol’s official documents echo the aspirations
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above, asserting that “proof-of-stake offers greater crypto-economic security than proof-of-work”
and “economic penalties for misbehavior make 51% style attacks more costly for an attacker
compared to proof-of-work”? What would be a rigorous phrasing of these assertions? Are they
true? Could there be alternative protocols—perhaps wildly different from the proof-of-work or proof-
of-stake protocols considered to date—that are “still more economically secure” than Ethereum?
How do the answers depend on the assumptions imposed on, for example, the reliability of message
delivery or the active participation of non-malicious players?

1.3 Overview of Results

Defining the cost of an attack. We augment the permissionless consensus framework of Lewis-
Pye and Roughgarden [30] with a new model for reasoning about the cost of causing consistency
violations. Informally, we call such an attack cheap if the attacker suffers no economic consequences
following the consistency violation, and expensive otherwise. We call the attack expensive due to
collapse if the attacker is harmed for the wrong (“scorched earth”) reasons, with honest protocol
participants also suffering, as in the two narratives around the security of proof-of-work protocols
described in Section 1.2. We call the attack expensive in the absence of collapse if the attacker is
harmed for the right reasons—targeted punishment that avoids collateral damage to the honest
participants, as is the goal of slashing in a proof-of-stake protocol. Our key definition is that of an
EAAC protocol (for “expensive to attack in the absence of collapse”) which states, informally, that
every attack on the protocol is expensive in the absence of collapse. We then interpret a protocol
that guarantees the EAAC property as “more economically secure” than one that does not.

Impossibility of EAAC in the dynamically available setting. Our first main result (Theorem 4.1)
states that, in the synchronous and dynamically available setting (in which the communication
network is reliable but non-malicious players may be periodically inactive), with an adversary
that controls at least one-half of the overall resources, no protocol can be EAAC. This result is
optimal with respect to the size of the adversary, as the Bitcoin protocol (among others) guarantees
(probabilistic) consistency and liveness in the synchronous and dynamically available setting when
the adversary controls less than one-half of the overall hashrate [24], and is thus vacuously EAAC
in this case (Figure 1). In particular, this result rules out non-trivial EAAC guarantees for all typical
longest-chain protocols (be they proof-of-work protocols like Bitcoin or proof-of-stake protocols
such as Ouroboros [26] and Snow White [19]).

0 p-bounded adversary, p < 1/2 1 p-bounded adversary, p = 1/2 1

can design protocol so that no consistency violations possible
consistency violations possible 172 and cannot be asymmetrically
(trivially EAAC) punished (not EAAC)

Fig. 1. Theorem 4.1. No non-trivial EAAC guarantees are possible in the dynamically available setting, even
with synchronous communication: once an adversary is large enough to cause consistency violations, it is
also large enough to avoid asymmetric punishment. A p-bounded adversary is one that controls at most a p
fraction of each resource (such as hashrate or stake) used by a protocol.

To give the flavor of the proof, consider two disjoint sets of players X and Y that each own an
equal amount of resources. Liveness in the dynamically available setting implies that if one of these
sets never hears from the other, it must forge ahead and continue to confirm transactions. So imagine
that the players in X are malicious, don’t talk to Y, and behave as if they were honest and never

ISee https://ethereum.org/developers/docs/consensus-mechanisms/pos.
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heard from Y, confirming transactions to themselves that conflict with the transactions confirmed
by Y during the same period. Now suppose that, at some later point, players in X disseminate all the
messages that they would have disseminated if honest in their simulated execution. At this point,
it is not possible for late-arriving players to determine whether the players in X or the players in Y
are honest. If the protocol happens to make this particular attack expensive (by harming the players
in X), there is a symmetric execution (with the players in X honest and those in Y malicious) in
which the honest players are the ones who are harmed.

Impossibility of EAAC in the partially synchronous setting. Our second result (Theorem 4.2) states
that, in the partially synchronous and quasi-permissionless setting (in which resource-controlling
non-malicious players are always active but the communication network may suffer periods of
unreliability), with an adversary that controls at least one-third of the overall resources, no protocol
can be EAAC. (In fact, something stronger is true: no protocol can make consistency violations
expensive for the attacker, even allowing for collateral damage to honest players. In particular,
slashing in a proof-of-stake protocol cannot achieve its intended purpose if message delays cannot
be bounded a priori. This result is optimal with respect to the size of the adversary, as there is
a proof-of-stake PBFT-style protocol that guarantees consistency and liveness in the partially
synchronous and quasi-permissionless setting when the adversary controls less than one-third of
the overall stake [30], which is therefore vacuously EAAC in that regime (Figure 2).

0 p-bounded adversary, p <1/3 | p-bounded adversary, p = 1/3 1
can design protocol so that 1'/3 consistency violations possible and cannot be
no consistency violations (even symmetrically) punished (not EAAC)

possible (trivially EAAC)

Fig. 2. Theorem 4.2. No non-trivial EAAC guarantees are possible with partially synchronous communication,
even in the quasi-permissionless setting: once an adversary is large enough to cause consistency violations, it
is also large enough to avoid (even symmetric) punishment.

To give a sense of the proof of this result, consider three sets of players X, Y, and Z, all with equal
resources, with the players in X and Z honest and the players in Y malicious. Suppose that messages
disseminated by players in X are received by players in X U Y right away but not by players in Z
for a very long time (which is a possibility in the partially synchronous model). Symmetrically,
suppose Y and Z but not X promptly receive messages sent by players in Z. Suppose further that
the malicious players in Y pretend to the players in X that they’ve never heard from anyone in Z
and to the players in Z that they’ve never heard from anyone in X. Liveness dictates that the
players in X and the players in Z must each forge ahead and confirm transactions, even though no
messages between players in X and Z have been delivered yet. These uncoordinated confirmed
transactions will generally conflict, resulting in a consistency violation. Moreover, this violation
may not be noticed by the players of X and Z for a very long time (again due to the arbitrarily long
delays in the partially synchronous model), giving the players of Y the opportunity to sell off their
resources and avoid any possible punishment in the meantime.

Possibility of EAAC in the synchronous and quasi-permissionless setting. Our final result (Theo-
rem 5.1) states that, in the synchronous and quasi-permissionless setting, there is a proof-of-stake
protocol with slashing that, provided the adversary controls less than two-thirds of the overall
stake, satisfies the EAAC property. In fact, our protocol is designed for a version of the synchronous
setting defined by two known parameters: one parameter A that represents typical network speed,
perhaps on the order of milliseconds or seconds; and a second parameter A* that represents the time



Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden 5

required for players to communicate when the network is unreliable (whether over the network or
by out-of-band coordination), perhaps on the order of days or weeks.? Intuitively, when there’s
no attack, the protocol operates at a speed proportional to A; under attack, it recovers at a speed
proportional to A*. More precisely, we give a protocol that: (i) is live and consistent in the partially
synchronous setting (with respect to the parameter A) provided the adversary controls less than
one-third of the overall stake; and (ii) is EAAC so long as the adversary controls less than two-thirds
of the overall stake and message delays are no larger than A*. A recent result of Tas et al. [39], when
translated to our model, implies that our result is optimal with respect to the size of the adversary:
even in the permissioned and synchronous setting, if a protocol guarantees liveness with respect to
an adversary that controls less than one third of the overall resources, it cannot guarantee EAAC
with respect to an adversary that controls at least two-thirds of the overall resources (Figure 3).

p-bounded adversary,

0 p-bounded adversary, p < 1/3 pin [1/3,2/3) lp-bounded adversary, p = 2/3 1
can design protocol s.t. no 1;3 consistency violations Y consistency violations
consistency violations possible and can be possible and cannot be
possible, even in partially asymmetrically punished in asymmetrically punished,
synchronous setting w.r.t. A the synchronous setting w.r.t. even in synchronous
(trivially EAAC) A* (non-trivially EAAC) setting (not EAAC)

Fig. 3. Theorem 5.1. Non-trivial EAAC guarantees are possible in the quasi-permissionless and synchronous
setting. The parameter A is an upper bound on message delays during “normal operation,” while A* bounds
the time required for honest players to communicate (over the network or out-of-band) when the protocol is
under attack.

Achieving asymmetric punishment via slashing in a proof-of-stake protocol would seem to
require addressing the following challenges.

(1) There should be a “smoking gun” behind every consistency violation, in the form of a
“certificate of guilt” that identifies (at least some of) the Byzantine players responsible for the
violation.

(2) All honest players should learn such a certificate of guilt promptly after a consistency violation,
before the adversary has had the opportunity to cash out its assets.

(3) Given the prompt receipt of a certificate of guilt, honest players should be able to reach
consensus on a new (post-slashing) state.

Further, the second and third challenges must be met despite interference from an adversary that is
so large as to be able to cause consistency violations.

At a very high level, our protocol resolves these three challenges as follows. (Section 6 provides
a more technical overview of the protocol, with the full details deferred to Section 9. The protocol
is designed to be as simple as possible subject to a non-trivial EAAC guarantee; optimizing the
performance of such protocols is an interesting direction for future work.) Some PBFT-style
protocols provide certificates of guilt in the form of votes on conflicting blocks, and accordingly our
starting point is the Tendermint protocol [2, 3]. (Extending the permissioned Tendermint protocol
to a proof-of-stake protocol with guaranteed consistency and liveness in the quasi-permissionless
setting is non-trivial, but we show that it can be done.) The standard Tendermint protocol uses two
stages of voting per view, and we show that this fails to guarantee the prompt receipt of certificates of
guilt by honest players. On the other hand, we show that, provided the adversary controls less than

20One interpretation of the parameter A* is as the speed of communication through social channels, as referenced in, for
example, Buterin’s discussion of “weak subjectivity” [7].
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two-thirds of the stake, three stages of voting suffice for the prompt dissemination of certificates
of guilt. Finally, after a consistency violation, honest players attempt to reach consensus on an
updated genesis block (in which slashing has been carried out) using a variant of the Dolev-Strong
protocol [21].

Interpretation for Ethereum. Our results make precise a number of common beliefs about the
Ethereum protocol (post-merge). Most obviously, our work formalizes the potential security benefits
of proof-of-stake sybil-resistance coupled with slashing logic.

Our impossibility result for the dynamically available setting (Theorem 4.1) shows that such
security guarantees are impossible both for any protocol that relies on only off-chain resources
(such as proof-of-work protocols) and for any standard longest-chain protocol (even if it is a proof-
of-stake protocol). Thus, two of the biggest changes made to the Ethereum protocol during the
merge—the switch from proof-of-work to proof-of-stake, and the addition of the Casper finality
gadget [10]—are both necessary for provable slashing guarantees (neither change alone would
enable asymmetric punishment). Our result also provides a justification for the “inactivity leaks”
used in the Ethereum protocol to punish seemingly inactive players, which can be viewed as an
economic mechanism for enforcing the (necessary) assumptions of the quasi-permissionless setting.

Our impossibility result for the partially synchronous setting (Theorem 4.2) justifies the common
assumption that honest Ethereum validators could, in the case of emergency, communicate out of
band within some known finite amount of time. Further, this result justifies the long “cooldown
period” for unstaking in post-merge Ethereum, with a delay that is roughly proportional to the
assumed time required for out-of-bound communication.

The protocol we design to prove our positive result (Theorem 5.1) resembles post-merge Ethereum
in several high-level respects: the use of proof-of-stake sybil-resistance, an accountable PBFT-type
approach to consensus (in our case, Tendermint rather than Casper), slashing for asymmetric
punishment, equal-size validators, and regularly scheduled updates to the validator set. One notable
difference is our protocol’s reliance on three stages of voting to ensure the prompt dissemination
of certificates of guilt, for the reasons discussed in Section 9.3.

1.4 Discussion

The economic cost of controlling resources. This paper follows the tradition of Nakamoto [32] (as
in the quote in Section 1.2), among many others, in concentrating on the economic consequences
to an attacker of causing a consistency violation (e.g., in order to execute a double-spend attack) in
a permissionless consensus protocol. Our focus complements previous work of Budish [4, 5], which
provides an economic model for quantifying the cost that a potential attacker must absorb to control
sufficient resources to be able to cause a consistency violation. The main conclusion in Budish [4, 5]
is that, for the current major blockchain protocols, this cost is surprisingly cheap, scaling as a flow
cost rather than a stock cost. This analysis suggests that the economic consequences that follow
an attack are the ones with the greatest potential to deter an attacker, and in this sense provides
strong economic justification for the focus of this paper.

Budish’s analysis. In more detail, Budish’s analysis is framed in terms of proof-of-work protocols
but applies more generally to protocols that use arbitrary external or on-chain resources, including
proof-of-stake protocols. For example, consider a protocol that uses a single type of resource
(e.g., ASICs in Bitcoin or coins in Ethereum), and let ¢ denote the cost per timeslot to supply one
unit of resources. For simplicity, assume that all protocol participants face the same cost. For a
proof-of-work protocol, ¢ is the cost per timeslot to run one ASIC, including variable costs such as
electricity and an ongoing cost of capital applied to the hardware. So, in this case, ¢ may be specified
by ¢ = rC + n, where C is the cost of one unit of hardware, rC is the capital cost of one unit of



Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden 7

hardware per timeslot (with r the per-timeslot interest rate), and 1 is the variable cost of electricity
per unit of hardware per timeslot. For a proof-of-stake protocol, ¢ represents the opportunity cost
of locking up stake, so ¢ may be specified by ¢ = rC where C is the cost of one unit of stake.

Let d denote the total (expected) reward earned by all validators combined per timeslot (perhaps
a combination of inflationary rewards paid out by the protocol, transaction fees paid by users,
and additional “MEV” extracted from the application layer). For a blockchain protocol like Bitcoin
or Ethereum, the barriers to enter or exit the set of miners or validators is low; thus, we expect
the marginal miner or validator to break even. Mathematically, this translates to the zero-profit
condition that ¢ = d/N* or equivalently N*c = d, where N* denotes the number of resource units
held by protocol participants at equilibrium. Because the reward d is paid out to miners or validators
every single timeslot, it is presumably a small fraction of the total value of the protocol’s native
currency. Now suppose that causing a consistency violation requires the attacker to hold AN*
units of the resource, say for some A < 2. If an attack takes T timeslots to complete, then the cost
incurred by the attacker in holding sufficient capital for the attack is only AN*cT = AdT < 2dT.
(This bound holds even after setting aside the rewards that the attacker would earn during these T
timeslots and whatever off-chain value it might obtain from its double-spend attack.) If d and T
are small and there are no economic consequences to the attacker subsequent to its attack, the
conclusion is that consistency violations and double-spend attacks are relatively cheap, with cost
scaling with the recurring per-block costs d = N*c of securing the blockchain protocol, rather
than the total value N*C of the resources devoted to securing the protocol. The EAAC property
introduced in the present paper loosely corresponds to the insistence that the economic cost of
causing a consistency violation should scale with C rather than with c.

Consistency vs. liveness violations. One reason we focus on consistency violations (as opposed to
liveness violations) is that they are the ones that can be unequivocally attributed to deviations from
the intended protocol by an attacker (as opposed to network delays or other vagaries outside the
control of honest participants). A second is that, in practice, consistency violations are generally
considered much more serious than liveness violations (akin to money permanently disappearing
from your bank account vs. the bank’s computer system going down for a few hours).

1.5 Further related work

1.5.1  Accountability: positive results. The closest analog to our work in the distributed computing
literature is a sequence of papers, including Buterin and Griffith [10], Civit et al. [15], and Shamis et
al. [36], about protocols that satisfy accountability, meaning protocols that can provide certificates
of guilt in the event of a consistency violation. Further examples of papers in this sequence include
Sheng et al. [37], who analyze accountability for well-known permissioned protocols such as
HotStuff [41], PBFT [12], Tendermint [2, 3], and Algorand [13]; and Civit et al. [16, 17], who
describe generic transformations that take any permissioned protocol designed for the partially
synchronous setting and provide a corresponding accountable version.

None of these papers describe how to carry out asymmetric punishment (e.g., slashing) and thus
fall short of our goals here. The one exception to this point is the ZLB protocol of Ranchal-Pedrosa
and Gramoli [35], which is a permissioned blockchain protocol (with a fixed and known player set)
that is able to implement slashing when the adversary controls less than a 5/9 fraction of the player
set. Sridhar et al. [38] specify a “gadget” that can be applied to blockchain protocols operating
in the synchronous setting to reboot and maintain consistency after an attack, but they do not
implement slashing and assume that an honest majority is somehow reestablished out-of-protocol.

Even more significantly, with the exception of [38] and [34, 39, 40] (described below), the entire
literature on accountability considers only permissioned protocols. Turning a permissioned protocol
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into a permissionless one is generally technically challenging (if not impossible) due to the three
additional challenges listed in Section 1.1. For example, while Dwork et al. [22] showed in 1988
how to achieve consistency and liveness in the partially synchronous setting with an adversary
that controls less than one-third of the players, the first permissionless analog of this result was
proved only last year [30]. Our positive result here (Theorem 5.1) provides a (permissionless)
proof-of-stake protocol that, for an adversary controlling less than two-thirds of the total stake,
provably implements slashing: It reaches consensus on slashing conditions, even in the face of
consistency violations, before the adversary is able to remove their stake, thereby guaranteeing
the EAAC property. As the protocol overview in Section 6 makes clear, a number of new ideas
are required to obtain this result. Our positive result constitutes a significant advance even in the
permissioned setting (relative to [35]) in that our protocol can punish adversaries that control
less than two-thirds (as opposed to five-ninths) of the overall player participation. As noted in
Section 1.3, this bound of 2/3 is the best possible.

1.5.2  Accountability: negative results. The literature on accountability has focused primarily on
positive results. One exception is Neu et al. [34], who prove that no protocol operating in the dy-
namically available setting can provide accountability: Our Theorem 4.1 is an economic counterpart
to their result. The authors then provide an approach to addressing this limitation by describing a
“gadget” that checkpoints a longest-chain protocol. The “full ledger” is then live in the dynamically
available setting, while the checkpointed prefix ledger provides accountability. Another exception
is Tas et el. [39, 40] who, in addition to positive results on defending against long-range attacks,
prove negative results on accountability for adversaries that control at least two-thirds of the player
set.

1.5.3  The cost of double-spend attacks. On the economics side, the most closely related work to
ours is that of Budish [4, 5], which is reviewed briefly in Section 1.4; see the references therein and
Halaburda et al. [25] for a broader view of economics research on blockchain protocols. Bonneau [1],
Leshno et al. [29], and Gans and Halaburda [23] provide additional arguments that, at least for
Bitcoin-like protocols, double-spend attacks may be very cheap to execute if there are no post-attack
consequences. Leshno et al. [29] also propose a variant of the Bitcoin protocol that halts whenever a
consistency violation is detected (in effect, making consistency violations impossible by converting
them into liveness violations).

1.5.4 The game theory of slashing. Deb et al. [20] consider the game theory of slashing from an
angle that is complementary to ours, in a model in which the adversary need not own resources
to carry out an attack, but can instead offer bribes to players. (Bonneau [1] and Leshno et al. [29]
similarly consider the possibility of bribery by an attacker.) The authors argue that, without slashing,
rational players can be incentivized to accept small bribes to deviate from the protocol, even when
such deviations by a large number of players causes a consistency violation and a collapse in the
value of their resources. Fundamentally, the reason for this is that the price collapse is non-targeted,
while bribe pay-offs depend directly on individual actions. The authors point out that targeted
slashing, assuming it could be somehow implemented, could ensure that a unilateral deviation by a
single player would lead to significant punishment by the protocol, in which case bribes would be
effective only if they were large.

2 THE MODEL

Impossibility results such as Theorems 4.1 and 4.2 require a precise model of the permissionless
consensus protocol design space; we adopt the one defined by Lewis-Pye and Roughgarden [30]. In
brief:
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e There is a set of players (unknown to the protocol). Each player can control an unbounded
number of identifiers and at each timeslot could be active or inactive.

e Messages are disseminated (e.g., via a gossip protocol) rather than sent point-to-point. Dis-

seminated messages are eventually received by their recipients, possibly after a delay.

In the synchronous setting, there is a finite upper bound, known to the protocol, on the

worst-possible message delay. In the partially synchronous setting, there is an initial period

of unknown finite duration in which message delays may be arbitrary.

e The behavior of a player is a function of the timeslot, its internal state, and the information it
has received to-date from other players and from “oracles” (described below). Formally, a
protocol is a specification of (the intended version of) this function.

e Each player maintains a running (ordered) list of transactions that it regards as confirmed.

e Players can own resources, which may be “external” to the protocol (e.g., hashrate) or

“on-chain” (e.g., registered stake). External resources evolve independently of the protocol,

while the values of on-chain resources generally depend on the transactions that have been

confirmed thus far.

A p-bounded adversary is one that never controls more than a p fraction of the overall amount

of an (external or on-chain) resource that is controlled by the currently active players.

Protocols may make use of “oracles” that represent cryptographic primitives. External re-

sources are modeled as a special type of oracle (called a “permitter”) to which the allowable

queries depend on a player’s resource balance.

e A protocol satisfies consistency if players’ running transaction lists are consistent across

players and across time (if T and T’ are the lists of honest players p and p’ at timeslots ¢

and t’, then either T is a prefix of T’ or vice versa).

A protocol satisfies liveness if, during periods of synchrony, honest players regularly add

new confirmed transactions to their running lists.

Sections 2.1-2.6 provide the mathematical details, and further discussion of the model can be found
in [30].

In addition to this design space, we adopt the “hierarchy of permissionlessness” proposed in [30].
Intuitively, and phrased here specifically for proof-of-stake protocols, the two key definitions are
the following (see Section 2.7 for details):

e In the dynamically available setting, at every timeslot, at least one non-malicious player with
a non-zero amount of registered stake is active.

e In the quasi-permissionless setting, at every timeslot, every non-malicious player with a
non-zero amount of registered stake is active.

The rest of this section fills in the details of these definitions. The reader interested in attack
cost modeling can skip to Section 3, referring back to this section as needed (e.g., when reading the
proofs of Theorems 4.1 and 4.2).

2.1 The set of players and the means of communication

The set of players. We consider a potentially infinite set of players #. Each player p € P is
allocated a non-empty and potentially infinite set of identifiers id(p). One can think of id(p) as an
arbitrarily large pre-generated set of public keys for which p knows the corresponding private key;
a player p can use its identifiers to create an arbitrarily large number of sybils. Identifier sets are
disjoint, meaning id(p) N id(p’) = 0 when p # p’; intuitively, no player knows the private keys
that are held by other players.
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Permissionless entry and exit. Time is divided into discrete timeslots t = 1,2,..., and each
player may or may not be active at each timeslot. A player allocation is a function specifying id(p)
for each p € P and the timeslots at which each player is active. Because protocols generally require
some active players to achieve any non-trivial functionality, we assume that a non-zero but finite
number of players is active at each timeslot. The player allocation is exogenous, in that we do not
model why a player might be active or inactive at a given timeslot.

Inputs. Each player is given a finite set of inputs, which capture its knowledge at the beginning of
the execution of a protocol. If a variable is specified as one of p’s inputs, we refer to it as determined
for p, otherwise it is undetermined for p. If a variable is determined/undetermined for all p then
we refer to it as determined/undetermined. For example, to model a permissionless environment
with sybils, we assume that id(p) and the timeslots at which p is active are determined for p but
undetermined for p’ # p.

Message sending. At each timeslot, each active player may disseminate a finite set of messages
(each of finite length), and will receive a (possibly empty) multiset of messages that have been
disseminated by other players at previous timeslots. Inactive players do not disseminate or receive
any messages. We consider two of the most common models of communication reliability, the
synchronous and partially synchronous models. These models have to be adapted, however, to deal
with the fact that players may not be active at all timeslots:

Synchronous model. There exists some determined A € N, such that if p disseminates m at ¢, and
if p” # pisactive att’ > t + A, then p’ receives that dissemination at a timeslot < t’.

Partially synchronous model. There exists some determined A € N, and undetermined timeslot
GST such that, if p disseminates m at ¢t and p’ # p is active at t’ > max{GST, ¢t} + A, then p’ receives
that dissemination at a timeslot < t’.

2.2 Players and oracles

Using an approach that is common in distributed computing, we model player behavior via state
machine diagrams. The description of a protocol also specifies a (possibly empty) set of oracles
O ={0y,...,0;}, which are used to capture idealized cryptographic primitives. Players may send
queries to the oracles and will then receive responses in return. At each timeslot ¢, the state transition
made by player p therefore depends on the oracle responses received by p at t, as well as ¢, p’s
present state, and the messages received by p at t. We refer the reader to [30] for a simple description
of how oracles can be used to model standard cryptographic primitives such as signature schemes,
verifiable delay functions, and ephemeral keys. Section 2.3 and Appendix A describe precisely how
oracles can be used to model external resources such as ASICs (for proof-of-work protocols) and
memory chips (for proof-of-space protocols).

Byzantine and honest players. To ensure that our impossibility results are as strong as possible,
we consider a static adversary. In the static adversary model, each player is either Byzantine or
honest and an arbitrary and undetermined subset of the players may be Byzantine. The difference
between Byzantine and honest players is that honest players must have the state diagram specified
by the protocol, while Byzantine players may have arbitrary state diagrams.®> To model a perfectly
coordinated adversary, we also allow that the instructions carried out by each Byzantine player
can depend on the messages and responses received by other Byzantine players. That is, if p is

3While one might suppose that honest players are incentivized by inflationary rewards (e.g., block rewards or staking
rewards paid out in newly minted coins by the protocol to those that appear to run it honestly) and Byzantine players are
motivated by off-chain gains (e.g., profit from a double-spend attack or a judiciously chosen short position), we do not
attempt to microfound why a given player might choose to be honest or Byzantine.
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Byzantine, the messages p disseminates, the queries p sends, and p’s state transition at a timeslot ¢
are a function not only of p’s state and the multiset of messages and oracle responses received by p
at t, but also of the corresponding values for all the other Byzantine players.

2.3 Modeling external resources

External vs. on-chain resources. We suppose blockchain validation requires resources, which can
either be external or on-chain. External resources are the hardware (such as ASICs or memory chips)
required by validators in proof-of-work (PoW) or proof-of-space (PoSp) protocols. By contrast,
on-chain resources are those such as stake that are recorded on the blockchain. From the perspective
of our analysis here, a key distinction between external and on-chain resources is that the latter
can be confiscated by consensus amongst validators.

External resources and permitters. Permitter oracles, or simply permitters, are required for
modeling external resouces (but not for on-chain resources). A protocol may use a finite set of
permitters. These are listed as part of the protocol amongst the oracles in O, but have some
distinguished features.

The resource allocation. For each execution of the protocol, and for each permitter oracle O, we
are given a corresponding resource allocation, denoted RC. We assume that R® is undetermined, as
befits an “external” resource. The resource allocation can be thought of as assigning each player
some amount of the external resource at each timeslot. That is, for all p € # and ¢, we have
RO(p,t) € N. We refer to RO(p, t) as p’s balance at t. Because balances are unknown to a protocol,
an inactive player might as well have a zero balance: R?(p, t) = 0 whenever p is not active at ¢. For
each t, we also define RO(t) := 2 RO(p, ).

Restricting the adversary. An arbitrary value RS, is given as a protocol input. This value is

determined, but the protocol must function for any given value of R, > 1. Let B denote the set

of Byzantine players and define Rg(t) = Y peB RO(p, t). For p € [0, 1], we say that RY is p-bounded
if the following conditions are satisfied for all ¢:

e RO(t) € [1,RY,_].

max
e RO(1)/RO(1) < p.
The smaller the value of p, the more severe the restriction on the combined “power” of the Byzantine
players. If all resource allocations corresponding to permitters in O are p-bounded, then we say
the adversary is externally p-bounded.

Permitter oracles. At each timeslot, a player may send queries to each permitter oracle. These
queries can be thought of as requests for proof-of-work or proof-of-space, and the player will then
receive a response to each query at the same timeslot. The difference between permitter oracles
and other oracles is that the queries that a player p can send to a permitter oracle O at timeslot ¢
depend on R(p, t). If a player p sends a query to the permitter oracle O at timeslot ¢, the query
must be of the form (b, o) such that b € N and b < RY(p, t). Importantly, this constraint applies
also to Byzantine players. In the case of a proof-of-work protocol, the query (b, o) can be thought
of as a request for a proof-of-work for the string o, to which hashrate b is committed at timeslot .

Single and multi-use permitters. A player may make multiple queries (b1, 01), ..., (bg, 0%) to a
permitter in a single timeslot ¢, subject to the following constraints. With a single-use permitter—the
appropriate version for modeling the Bitcoin protocol (see Appendix A for details)—these queries

“The upper bound RQ, on the total resource balance can be very loose, for example representing all of the silicon on planet

earth.
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are restricted to satisfy 25:1 b; < RO(p, t). (Interpreting the b;’s as hashrates devoted to the queries,
this constraint asserts that none of a player’s overall hashrate can be “reused.”) With a multi-use
permitter—the more convenient version for modeling protocols that incorporate proof-of-space
such as Chia [18]—the only restriction is that b; < RO (p,t) for each i = 1,2,..., k. (Intuitively,
space devoted to storing lookup tables can be reused across different “challenges.”)

Permitter responses. If O is deterministic, then when p sends the query (b, o) to O at timeslot ¢,
the values ¢, b, and ¢ determine the response r of the permitter. To prevent responses from being
forged by Byzantine players, r is a message signed by the permitter. If O is probabilistic, then t, b,
and o determine a distribution on responses.

2.4 Modeling stake

For the sake of simplicity, we restrict attention here to on-chain resources that are forms of stake.
We refer the reader to [30] for further discussion of other forms of on-chain resources, and note
that the results we present here are easily adapted to accommodate general on-chain resources.

The approach to modeling stake. This section defines stake allocation functions, which take
transactions as inputs. Section 2.5 describes how blockchain protocols are required to select specific
sets of transactions to which stake allocation functions can be applied so as to specify the stake of
each player at a given point in a protocol execution.

The environment. For each execution of a blockchain protocol, there exists an undetermined
environment, denoted En, which sends transactions to players.> Transactions are messages signed by
the environment. If En sends tr to p at timeslot ¢, then p receives tr at t as a member of its multiset
of messages received at that timeslot. Formally, the environment En is simply a set of triples of
the form (p, tr, t) such that p is active at t. We stipulate that, if (p, tr, t) € En, then p receives the
transaction tr at ¢, in addition to the other disseminations that it receives at t. We assume that, for
each p € P and each t, there exist at most finitely many triples (p, tr, t) in En.

We allow a protocol to specify a finite set of stake allocation functions, representing one or more
forms of stake (e.g., stake amounts held in escrow in a designated staking contract).

The initial stake distribution corresponding to a stake allocation function. Corresponding
to each stake allocation function S is an initial distribution, denoted S*, which is given to every
player as an input. This distribution allocates a positive integer amount of stake to each of a finite
and non-zero number of identifiers, and can be thought of as chosen by an adversary, subject to
any constraints imposed on the fraction of stake controlled by Byzantine players.

Stake allocation functions. If T is a sequence of transactions, then S(S*, T, id) (€ N) is the stake
owned by identifier id after execution of the transactions in T. It will also be notationally convenient
to let S(S*, T) denote the function which on input id gives output S(S*, T, id). If T is a sequence of
transactions, then T * tr denotes the sequence T concatenated with tr.

We conclude this section with some baseline assumptions about how stake works.® We as-
sume that players’ initial allocations can be transferred. Formally, given stake allocation functions
{S1,...,S;}, we assume that: for all initial distributions S}, ..., S; and every finite subset I of identi-
fiers, there exists a set of transactions T such that, no matter how they are ordered, S, (S}, T, id) =0

5For convenience, in the description of the PosT protocol in Section 9, we also allow players to issue and sign special types
of transactions, for example to signal the end of an “epoch.”

®These are important only in the proof of Theorem 4.2. They hold for the PosT protocol described in Section 5.1, and would
presumably be satisfied by any reasonable PoS protocol.
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for every h € [j] and id € 1.7 We also assume that some transactions tr are benign in the sense
that they do not destroy this property: for every Si,..., S} and I, there exists T such that, no matter
how the transactions of T are ordered, S, (S;, tr =T, id) = 0 for every h € [j] and id € 1.8 We do not
assume that all transactions are benign in this sense; for example, the PosT protocol in Section 9
uses (non-benign) transactions that are “certificates of guilt” which have the effect of freezing the
assests of the implicated identifiers.

2.5 Blockchain protocol requirements

Confirmed transactions. Each blockchain protocol specifies a confirmation rule C, which is a
function that takes as input an arbitrary set of messages M and returns a sequence T of the
transactions among those messages. At timeslot ¢, if M is the set of all messages received by an
honest player p at timeslots < t, then p regards the transactions in C(M) as confirmed. For a set of
messages M, define S(S*, M, id) := S(S*, C(M), id) and S(S*, M) = S(S*, C(M)).

The requirements on a blockchain protocol are that it should be live and consistent. For the sake
of simplicity (to avoid the discussion of small error probabilities), in this paper we consider versions
of liveness and consistency that apply to deterministic protocols. The proofs of our negative results
(Theorems 4.1 and 4.2) will apply directly to deterministic protocols, but are easily extended to give
analogous impossibility results for probabilistic protocols, simply by accounting for the appropriate
error probabilities. The proof of our positive result (Theorem 5.1) uses a deterministic protocol,
which only strengthens the result.

Defining liveness. We say a protocol is [ive if there exists a constant 7;, which may depend on
the message delay bound A and the other determined protocol inputs, such that, whenever the
environment sends a transaction tr to an honest player at some timeslot ¢, tr is among the sequence
of confirmed transactions for every active honest player at every timeslot t’ > max{t, GST} + T;.
(In the synchronous model, GST should be interpreted as 0.)

Defining consistency. Suppose the sequence of confirmed transactionsfor pattiso = (try, ..., trg),
and that the sequence of confirmed transactions for p” at t’ > tis ¢’ = (trf,..., tr‘;c,). We say a
blockchain protocol is consistent if it holds in all executions that, whenever p and p’ are honest:

o If p = p’ then ¢’ extends o, meaning that k’ > k and tr; = tr] for each i € [1,k].
e Either o extends ¢’, or ¢’ extends o.

2.6 Protocols, executions, and p-bounded adversaries

Specifying blockchain protocols and executions. A blockchain protocol is a tuple (2, 0, C, S),
where X is the state machine diagram determining honest players, O is a set of oracles (some of
which may be permitters), C is a confirmation rule, and S = {S;, ..., S;} is a set of stake allocation
functions. An execution of the protocol (Z, O, C, S) is a specification of the set of players P, the
player allocation, the state diagram of each player and their inputs, and the following values for
each player p at each timeslot: (i) p’s state at the beginning of the timeslot; (ii) the multiset of
messages received by p; (iii) the oracle queries sent by p; (iv) the oracle responses received by p; (v)
the messages disseminated by p.

Defining p-bounded adversaries. We say that an execution of a protocol is p-bounded if:

"For example, if a stake allocation function represents native cryptocurrency, T could comprise payments transferring all
stake initially owned by identifiers in I to identifiers outside of I. If the stake allocation function tracks stake-in-escrow, T
could include one unstaking transaction for each id € I.

8For example, a simple payment between two identifiers outside of I would presumably be a benign transaction.
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e The adversary is externally p-bounded (in the sense of Section 2.3).

e For each stake allocation function S € S, and among active players, Byzantine players never
control more than a p fraction of the stake. Formally, for every honest player p at timeslot ¢,
if T is the set of transactions that are confirmed for p at ¢ in this execution, then at most
a p fraction of the stake allocated to players active at t by S(S*, T) is allocated to Byzantine
players.

When we say that “the adversary is p-bounded,” we mean that we restrict attention to p-bounded
executions. We say that a protocol is p-resilient when it it live and consistent under the assumption
that the adversary is p-bounded. We say that a protocol is p-resilient for liveness when it it live
under the assumption that the adversary is p-bounded, and that it is p-resilient for consistency when
it is consistent under the assumption that the adversary is p-bounded.

2.7 The dynamically available and quasi-permissionless settings

Lewis-Pye and Roughgarden [30] describe a “degree of permissionlessness” hierarchy that parame-
terizes what a protocol may assume about the activity of honest players. This hierarchy is defined
by four settings. Informally:

(1) Fully permissionless setting. At each moment in time, the protocol has no knowledge about
which players are currently running it. Proof-of-work protocols are typically interpreted as
operating in this setting.

(2) Dynamically available setting. At each moment in time, the protocol is aware of a dynamically
evolving list of identifiers (e.g., public keys that currently have stake committed in a designated
staking contract). The protocol may assume that at least some honest members of this list are
active and participating in the protocol, but must function even when levels of participation
fluctuate unpredictably. Proof-of-stake longest-chain protocols are typically designed to
function correctly in this setting.

(3) Quasi-permissionless setting. At each moment in time, the protocol is aware of a dynamically
evolving list of identifiers (as in the dynamically available setting), but now the protocol may
assume that all honest members of the list are active. Proof-of-stake PBFT-style protocols are
typically interpreted as operating in this setting.

(4) Permissioned setting. The list of identifiers is fixed at the time of the protocol’s deployment,
with one identifier per participant and with no dependence on the protocol’s execution.
At each moment in time, membership in this list is necessary and sufficient for current
participation in the protocol. PBFT is a canonical example of a blockchain protocol that is
designed for the permissioned setting.

Each level of the hierarchy is a strictly easier setting (for possibility results) than the previous level.
For example, an impossibility result for the dynamically available setting such as Theorem 4.1
automatically holds also in the fully permissionless setting.

Formally defining the dynamically available setting. In the dynamically available setting, no
assumptions are made about participation by honest players, other than the minimal assumption
that, if any honest player owns a non-zero amount of stake, then at least one such player is active.’

Consider the protocol (2, 0, C, S). By definition, an execution of the protocol is consistent with
the dynamically available setting if, for each stake allocation function S € S:

9 Additional assumptions about the fraction of stake controlled by active honest players are phrased using the notion of
p-bounded adversaries from Section 2.6.
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Whenever p is honest and active at ¢, with T the set of transactions confirmed for p at ¢ in this
execution, if there exists an honest player assigned a non-zero amount of stake by S(S*, T),
then at least one such player is active at t.

Formally defining the quasi-permissionless setting. Consider the protocol (2, 0,C, S). By
definition, an execution of the protocol is consistent with the quasi-permissionless setting if, for each
stake allocation function S € S:

Whenever p is honest and active at ¢, with T the set of transactions confirmed for p at ¢ in
this execution, every honest player that is assigned a non-zero amount of stake by S(S*, T) is
active at ¢.
Thus, the quasi-permissionless setting insists on activity from every honest player that possesses
any amount of any form of stake listed in the protocol description.

3 THE COST OF AN ATTACK
3.1 An Overly Simplified Attempt

Consider an attacker poised to execute an attack, in the form of a consistency violation, on a
permissionless consensus protocol. When would carrying out such an attack have negative economic
consequences for the attacker, meaning that, ignoring off-chain gains (from double-spends, short
positions, etc.), it’s “worse off” than before? (Ideally, with honest players “no worse off” than
before.) A first cut might be to track the market value of all the protocol-relevant resources owned
by each (honest or Byzantine) player. That is, consider a blockchain protocol that uses k resources,
and let R;(p, t) denote the number of units of the ith resource (e.g., ASICs or coins) owned by
player p at timeslot ¢. Let C;(¢) denote the per-unit market price of the ith resource at timeslot ¢

5

and define p’s “net worth” at timeslot ¢ by

k
V(p,t) = ) Ri(p,1) - Gild). (1)

i=1
The “consequences of an attack” carried out by a set B of Byzantine players at some timeslot t*
could then be measured by the value of B’s resources immediately before and after the attack:

ZPEB V(p’ tj—)
ZpeB V(P, ti) '
with lower values of this ratio corresponding to more severe economic consequences of an attack.

The idea that “the honest players H should be no worse off” would then translate to the condition
that

@)

Vp.t;) 2 V(p,t2) ®3)
for every p € H.
We can then consider how the different scenarios laid out in Section 1.2 would translate to this
formalism.

Scenario 1: status quo. Suppose the Bitcoin protocol suffers a consistency violation and yet neither
of the narratives in Section 1.2 plays out as expected, with both the cryptocurrency price and the
cryptographic hash function used for proof-of-work mining unchanged following the attack. Then
the new market price C(]) of an ASIC would equal the old price C(¢*) and hence V (p, t}) would
equal V(p,t*) for every player p. (In this example, there’s only one resource—hashrate—and so
we drop the dependence on i.) Thus, while the condition (3) would hold (which is good), the ratio
in (2) would be 1, indicating an attack without any economic consequences. We will call such an
attack cheap.
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Scenario 2: price collapse (proof-of-work). Nakamoto’s original narrative posited that a double-
spend attack on the Bitcoin protocol would significantly decrease the USD value of BTC (and
hence of ASICs for Bitcoin mining), an assumption that translates to C(t}) < C(#*) and hence,
for any (honest or Byzantine) ASIC-owning miner p, V(p, t;) < V(p,t*). In this case, the attack
is expensive, meaning that the ratio in (2) is less than one. It is expensive for the wrong reasons,
however, in the sense that the conditon in (3) fails. We therefore say that the attack is expensive due
to collapse.

Scenario 3: a hard fork (proof-of-work). The second narrative in Section 1.2, in which a
double-spend attack on a proof-of-work protocol is punished through a hard fork that changes
the cryptographic hash function used for proof-of-work mining, is mathematically equivalent to
the first, with existing ASICs losing much of their value and so C(#}) < C(t*). This again is an
example of an attack that is expensive, but expensive due to collapse.

Scenario 4: price collapse (proof-of-stake). Consider now a proof-of-stake protocol—be it
longest-chain, PBFT-type with slashing, or anything else—in which case C(#) denotes the USD-
denominated market price at time ¢ of one coin of the protocol’s native cryptocurrency. If a double-
spend attack harms this cryptocurrency’s price, then, as in Scenario 2, the attack is expensive due
to collapse.

Scenario 5: successful slashing. Can any protocol—a proof-of-stake protocol, say—make attacks
expensive for the right reasons, not due to collapse? To make this question precise, let’s assume that
a double-spend attack has no effect on the price of the protocol’s native currency, i.e., C(t}) = C(¢%).
Suppose further that a protocol is able to fulfill the promises of slashing outlined in Section 1.2,
identifying (at least some of) the Byzantine players and surgically confiscating their stake (without
inadvertently destroying any stake owned by honest players). Then, R(p, t;) would be less than
R(p, t*) (and hence V(p, t) would be less than V (p, t*)) for at least some p € B, while V(p, t}) =
V(p,t*) for all p € H. As a result, the ratio in (2) would be less than 1 even as the condition in (3)
holds. In this case, we call the attack expensive even in the absence of collapse. A protocol would
then be called EAAC if every possible consistency violation would be expensive in this sense.

3.2 The Formal Definitions

Delayed economic consequences. The definitions proposed in Section 3.1 convey the spirit of
our approach, but they are inadequate for a number of reasons. For example, there is no hope of
designing a protocol that is EAAC in the sense above: the expression in (2) considers only the
immediate economic cost suffered by an attack, while any protocol-inflicted punishment would
require some time to take effect. For example, to enact slashing in a proof-of-stake protocol, honest
players need time to communicate, confirm evidence of a consistency violation, and carry out the
appropriate slashing instructions. (Changes in the price of the protocol’s native currency, should
they occur, would presumably also play out over a period of time.) Thus, we must instead insist
that Byzantine players suffer economic consequences from a consistency violation at some timeslot
tr after the timeslot t* in which the consistency violation is seen by honest players (here the “f”
stands for “final”). Intuitively, ¢ is a timeslot by which the aftermath of the attack has played out,
with the currency price re-stabilized (possibly at a new level) and any protocol-inflicted punishment
complete.

Investment functions. Next, the definition of the functions R;(p, t), henceforth called investment
functions, requires more care. For an external resource i, R;(p, t) denotes the (objective) number of
units of that resource owned by p at t, as before. For a resource i that corresponds to some form
of stake or other on-chain resource, R;(p, t) may depend on the current state of the blockchain
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protocol that controls the resource, meaning the sets of messages that have been received by each
player by timeslot t. (We generally abuse notation and continue to write R;(p, t), suppressing the
dependence on the sets of received messages and the protocol that generates them.) We allow
flexibility in exactly how investment functions are defined, but the rough idea is that R; (p, t) should
update once a resource-changing transaction has been “sufficiently processed” by the protocol (e.g.,
confirmed by an appropriate honest player). Our three main results concern investment functions
of the following types:

o Our negative result for the dynamically available setting (Theorem 4.1) holds for any choice
of investment functions, and thus requires no further modeling.

e Our negative result for the partially synchronous setting (Theorem 4.2) holds assuming
only that, provided no consistency violation has been seen, zeroing out one’s stake balance
eventually zeroes out the corresponding investment function (i.e., the user eventually recoups
their investment).

Formally, consider an investment function R; that corresponds to a stake allocation function S.

Suppose that, in any execution E in which:

— tis a timeslot >GST;

- no honest player has seen a consistency violation by timeslot t +I';

— for some player p and honest player p’, S(S*, Ty, id) = 0 for all id € id(p) and ¢’ € [t,t+T],
where T, denotes the transactions confirmed for p’ at timeslot #’;

it holds that R; (p, t +I') = 0 and, moreover, that R;(p, ¢ +T') = 0 also in every execution that is

indistinguishable from E for p” up to timeslot ¢ + I (i.e., every execution in which p’ receives

the same inputs, messages, and oracle responses at each timeslot < t + I' as in E). In this

case, we call R; a I'-liquid investment function. (Intuitively, barring a consistency violation

seen by honest players, p can eventually recoup its investment from p’, or more generally

from any third party that uses p’ as its “source of truth” about which transactions have been

confirmed.)

e For our positive result in Theorem 5.1, we use what we call a canonical PoS investment
function. Here, there is a single resource, representing the amount of stake that a player has
locked up in escrow. The resource balance of a player changes only through staking and
unstaking transactions. A canonical investment function R(p, t) increases by x after a valid
staking transaction (with staking amount x) is first confirmed by some honest player (possibly
after a delay), and decreases by x after a valid unstaking transaction is first confirmed by
some honest player (again, possibly after a delay). Such a function is I'-liquid, where T is
the maximum delay before the investment function reflects a newly confirmed staking or
unstaking transaction.

In all these cases, we can interpret the economic investment of a player p at some timeslot ¢ by the
expression in (1), as before.!

Valuation functions. Finally, we must specify the allowable behavior of a value function that
represents the economic value of on-chain resources following a consistency violation. In general,
we allow a quite abstract notion of a valuation function v that is a nonnegative function of a set P
of players, a timeslot ¢, player investments at that time (the R;(p, t)’s), market prices at that time
(the C;(t)’s), and the sets of messages that have been received by each player by that time. Our
impossibility results (Theorems 4.1 and 4.2) apply to all such valuations, and thus require no further
modeling.

t
10As an aside, the “flow cost of an attack” discussed in Section 1.4 would then be defined as ZpeB Zﬁ;l Zt'; ci-Ri(p, ),
where B denotes the attacking players and the c;’s are defined as in that section.
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For our positive result (Theorem 5.1), we use what we call a canonical PoS valuation function,
which imposes two much stronger restrictions (thereby strengthening the result). First, we require
it to be consistency-respecting, in the sense that it is defined only for timeslots ¢ at which consistency
holds (i.e., if T and T’ are the confirmed transactions for honest p and p’ at t, then one of T, T’ is a
prefix of the other).!! Second, at timeslots at which consistency does hold, the valuation function
equals the value of the as-yet-unslashed stake-in-escrow of the players in question (at the current
market prices).!?

EAAC protocols. We now proceed to our formal definition of an “EAAC” protocol. As noted in the
last scenario of Section 3.1, to have any hope of avoiding collateral damage to honest participants,
we must assume that a consistency violation does not affect the market prices of the relevant
resources. Thus, in the following definition, we consider a fixed price C; for each resource rather
than an arbitrary price sequence {C;(#)};»1.

Definition 3.1. A protocol is EAAC with respect to investment functions {R;(-, ) }ie[x] and valuation
function v in a given setting if, for every choice {C;};c[x] of fixed resource prices, every external
resource i, and every choice {R;(p,t)}ep,s»1 of players’ investments in i:

(a) for every execution of the protocol consistent with the setting and every timeslot ¢ > 1,

k
o(H, t{Ri(p, ) hpemieril ACi}ier M) 2 D D Rilp,t) - G, @)

peH i=1

where H denotes the set of honest players and M the sets of messages received by each
player by timeslot ¢ in the execution; and

(b) for every execution of the protocol consistent with the setting with a consistency violation
that is first seen by honest players at a timeslot t*, there exists a timeslot ¢y > ¢* such that:

k
o(B, tf, {Ri(p, ty)}pemieril {Ciicii, M) < ) > Rilpity) - G, 5)

peB i=1

where B denotes the set of Byzantine players and M the sets of messages received by each
player by timeslot ¢ in the execution.!

Intuitively, part (a) of Definition 3.1 requires that honest players can always recoup whatever
they may have invested (e.g., they are never slashed in a proof-of-stake protocol). Part (b) asserts
that an attacker will be unable to fully cash out, with some of their investment lost to the protocol.

For brevity, we sometimes denote by ay the ratio between the left- and right-hand sides of (4),
and by ap the analogous ratio for (5). (If the right-hand side is 0 or the left-hand side is undefined,
we can interpret the ratio as 1.) Thus, the EAAC condition states that oy > 1 should always hold
(i.e., if attacks are expensive, it’s for the right reasons, not due to collapse) and that ag < 1 should
hold at some point after a consistency violation (i.e., attacks are indeed expensive). If Definition 3.1

'Without this requirement, a protocol could achieve the EAAC property by addressing only the first two challenges on
page 5 and not the third. For example, the valuation function could be defined to discount any stake implicated by some
certificate of guilt known to some honest player, even while honest players disagree on what the “post-slashing” state
should be.

12See Section 9.9 for the precise definition used in the proof of Theorem 5.1.

13For the purposes of inequalities (4) and (5), we interpret an undefined valuation function as +co.
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holds with condition (b) always satisfied with some ag < a < 1, then we say that the protocol is
a-EAAC (with respect to {R; (-, ) }iex] and v)."*

4 IMPOSSIBILITY RESULTS

Our first result establishes that blockchain protocols that are live and consistent in the dynamically
available setting are always cheaply attackable in the absence of collapse. In other words, once
an adversary is large enough to cause consistency violations, they are also large enough to avoid
asymmetric punishment. The proof of Theorem 4.1 appears in Section 7.

THEOREM 4.1 (IMPOSSIBILITY RESULT FOR THE DYNAMICALLY AVAILABLE SETTING). In the dynam-
ically available setting, with a %—bounded adversary, for every choice of investment functions and
valuation function, no protocol can be live and EAAC. This holds even in the synchronous model and
with Byzantine players that have fixed (i.e., time-invariant) resource balances.

Recall the hierarchy of settings described in Section 2.7. Theorem 4.1 establishes that, if we want
to work with protocols that are non-trivially EAAC in some level of this hierarchy, then we cannot
work in the fully permissionless or dynamically available settings and must instead focus on the
quasi-permissionless or permissioned settings.

The next theorem shows that, even should we work in the quasi-permissionless setting, protocols
cannot be non-trivially EAAC if we work in the partial synchrony model. The proof of Theorem 4.2
appears in Section 8.

THEOREM 4.2 (IMPOSSIBILITY RESULT FOR THE PARTIALLY SYNCHRONOUS SETTING). In the quasi-
permissionless setting and the partial synchrony model, with a 1 — 2p;-bounded adversary, for every
choice of liquid investment functions and valuation function, no protocol can be p;-resilient for liveness
and EAAC.

For example, suppose we restrict attention to the standard case of protocols which have the same
resilience for liveness and consistency. The seminal result of Dwork, Lynch and Stockmeyer [22]
establishes that protocols for the partial synchrony model can be p-resilient only for p < 1/3.
Theorem 4.2 establishes that, if the adversary can own at least 1/3 of the resources, then the protocol
cannot be EAAC. In fact, the proof establishes a stronger result: a %—bounded adversary can cause
consistency violations without any punishment, asymmetric or otherwise (i.e., can carry out attacks
that are cheap even when there is a collapse in the value of resources after the consistency violation
is seen).

5 PROVABLE SLASHING GUARANTEES: A POSSIBILITY RESULT

Theorem 4.2 might seem to end the quest for PoS protocols with ‘slashing’ in the partial synchrony
model. To circumvent this difficulty, we can consider protocols that are live and consistent in
partial synchrony (for some small A) so long as the adversary is p-bounded for p < 1/3, and which,
furthermore, implement slashing when the adversary owns more than 1/3 of the resources but
message delivery prior to GST always occurs within some large known time bound A* (which may
not be O(A)). We argue that this is a realistic setting: while blockchain protocols are commonly
expected to be live and consistent in the partial synchrony model with a liveness parameter T;
determined by some small value of A (of the order of 1 second, say), it may also be reasonable to
assume that messages will always eventually be delivered, either via the communication network
or some “out-of-band” mechanism, within some sufficiently large time bound (of the order of a
14While “1” is arguably the most natural threshold when using these ratios to define “expensive” and “collapse,” a different

constant x € (0, 1) could be used instead. Our impossibility results would then hold, with essentially the same proofs, for
any choice of x.
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day or a week, say).!”> Theorem 4.2 does not rule out non-trivial EAAC protocols in this setting,
provided that the time required for an attacker to recoup its investment following an attack scales
with the worst-case delay A*; see also the discussion at the end of Section 8.

Formally, we say a blockchain protocol is (p, p*)-EAAC with respect to investment functions
{Ri (", *) }ie[x] and valuation function v if it satisfies the following two conditions, given any deter-
mined values of A and A* > A, and where p* is determined:

(i) The protocol is live and consistent for the partial synchrony model with respect to A, so long
as the adversary is p-bounded. Here, we allow (as in Section 2.5) the liveness parameter Tj
to depend on A and other determined inputs, but require it to be independent of A*. In
particular, A* may be much larger than T.

(ii) The protocol is EAAC (with respect to {R;(-, ) }ie[x] and o) so long as the adversary is p*-
bounded and message delays prior to GST are always at most A* (i.e., if p disseminates m at ¢,
and if p’ # p is active at t’ > t + A*, then p’ receives that dissemination at a timeslot < ¢’).!¢

If in (ii) the protocol is a-EAAC in the sense of Section 3.2, then we say that the protocol is
(a, p, p*)-EAAC (with respect to {R; (-, -) }ie[x] and ).

Our main positive result is the following; we provide the proof in Section 9. Canonical PoS
investment and valuation functions are defined informally in Section 3.2, and formally in Section 9.

THEOREM 5.1 (NoN-TR1viaL EAAC PROTOCOLS IN THE QUASI-PERMISSIONLESS SETTING). For
every p < 1/3 and p* < 2/3, there exists a PoS protocol for the quasi-permissionless setting that is
(a, p, p*)-EAAC with respect to a canonical PoS investment function and a canonical PoS valuation,
where

a =max{0, (p* - 3)/p"}.

This result is optimal in several senses. First, an easy adaptation of the classic proof of Dwork,
Lynch and Stockmeyer [22] shows that protocols cannot be (p, p*)-EAAC for p > 1/3. Second,
the bound of 2/3 on p* is tight: an argument of Tas et al. [39], when translated to our framework,
implies that, even in the synchronous setting, a protocol that is p;-resilient for liveness cannot be
EAAC with a (1 — p;)-bounded adversary. Third, the bound on « cannot be improved: an adversary
with a p* fraction of the overall resources can cause a consistency violation using only one-third
of the overall resources in a dishonest way [22]; because honest players cannot be punished, the
adversary can guarantee that it retains a (p* — %) fraction of the overall original resources following
its attack.

6 OVERVIEW OF THE POST PROTOCOL AND THE PROOF OF THEOREM 5.1

We describe a PoS version of Tendermint, which we refer to as PosT. A quick review of permissioned
Tendermint is given in Section 9. To specify PosT, we envisage that players can add and remove
stake from a special staking contract, allowing them to act as ‘validators’. While added to the staking
contract, stake is regarded as being ‘in escrow’ and cannot be transferred between players. Removal
of stake from escrow is subject to a delay (of time more than A*). The stake allocation function S
indicates the stake that an identifier has in escrow and which has not been marked for removal
from escrow. This is the balance that describes an identifier’s weight as a validator: we’ll refer to an
identifier’s S-balance as their validating stake. Under the assumptions of the quasi-permissionless

15We note also that our proof of Theorem 5.1 only requires that message delays prior to GST are bounded by A* for a limited
period around the time of an attack. This observation is made precise in Section 9.

19The fact that A* may be much larger than Ty means that a protocol aiming to be (p, p*)-EAAC cannot ignore A and
simply assume that message delays will always be bounded by A*.
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setting (see Section 2.7), all honest players that possess a non-zero amount of validating stake at
some timeslot are active at that timeslot.

The use of epochs. Recall that the instructions for Tendermint are divided into views. In each
view, a designated leader proposes the next block of transactions, and other validators may vote
on the proposal to form (one or two) quorum certificates (QCs) for the block. The instructions for
PosT are divided into epochs, where each epoch is a sequence of consecutive views. Removal of
stake from escrow is achieved via confirmation of an appropriate transaction. If this transaction is
confirmed by the start of epoch e, then the corresponding stake remains in escrow until the end of
the epoch, but no longer contributes to the weight of the corresponding identifier as a validator
(their S-balance). It is only at the end of each epoch that the S-balance of an identifier can change,
meaning that the set of validators is fixed during each epoch.

Certificates of guilt. Recall that p* < 2/3 is determined and that our protocol is required to be
EAAC only so long as the adversary is p*-bounded. We use standard methods (e.g., see [37]) to
ensure that any consistency violation causes the production of a certificate of guilt, which is a set
of signed messages proving Byzantine action on the part of some of the validating stake during a
certain epoch. If a consistency violation occurs in some least epoch e, then the fact that p* < 2/3
becomes crucial. This means that honest stake must participate in the confirmation of each block
while in epoch e. If message delay prior to GST is always at most A*, then honest validators will
end epoch e within time A* of each other and, by modifying Tendermint to utilize three stages of
voting rather than two,'” we will be able to argue that a certificate of guilt must be received by all
active honest players within time 2A* of any honest player entering epoch e + 1. Defining epochs
to be of sufficient length therefore ensures that any consistency violation in epoch e will produce
a certificate of guilt which is seen by all active honest players before the end of epoch e + 1, and
before the stake used to create the consistency violation is removed from escrow.

The recovery procedure. The remaining challenge is to design a recovery procedure for honest
players to use, after receiving a certificate of guilt, to reach consensus on a new state in which
slashing has been carried out. In more detail, suppose a consistency violation occurs in some least
epoch e, with all active honest players receiving a certificate of guilt before the end of epoch e + 1.
The goal of the recovery procedure is for all honest validators (for epoch e) to output some common
block b—an updated genesis block, in effect—which includes all transactions confirmed by the end
of epoch e — 1, and which ‘slashes’ (renders unspendable) at least 1/3 of the validating stake for
epoch e (with certificates of guilt provided for all slashed stake).

One potential difficulty in implementing such a recovery procedure is that a consistency violation
is only guaranteed to produce a certificate of guilt for 1/3 of the validating stake. If the adversary pos-
sesses > 5/9 of the validating stake, then they may possess at least a fraction (5/9—-1/3)/(2/3) = 1/3
of the validating stake that remains after slashing. If one were to naively employ some Tendermint-
like protocol to reach consensus on an updated genesis block (including slashing conditions) for
the next iteration of the protocol, such an adversary could threaten liveness.

The simplest approach to address this issue, and the one we follow here given our focus on
fundamental possibility and impossibility results (as opposed to more fine-grained performance
considerations), is to base the recovery procedure instead on the classic protocol of Dolev and
Strong [21], with delay A* between each round of the protocol. In a first instance of the Dolev-Strong
protocol, a designated leader is asked to propose an updated genesis block. If this instance results
in consensus amongst honest players on such a block b, then the honest majority of validating

17HotStuff [41] also makes use of three stages of voting in each view but, as explained in Section 9.3, the motivation in that
case is rather different.
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stake that remains after slashing (since p* < 2/3) can “sign off” on this value, producing a form of
certificate that acts as proof that b can be used as an updated genesis block. If not, a second leader
for another instance of the Dolev-Strong protocol is then asked to propose an updated genesis
block, and so on. Whenever an honest leader is chosen (if not before), the corresponding instance of
the Dolev-Strong protocol will conclude with consensus on an updated genesis block, from which
the main protocol can then resume.

The full details of the PosT protocol and the proof of Theorem 5.1 are provided in Section 9.

7 IMPOSSIBILITY RESULT FOR THE DYNAMICALLY AVAILABLE SETTING: THE
PROOF OF THEOREM 4.1

It suffices to prove the result for the synchronous model. (The following proof will be valid even
if A = 1.) Suppose the protocol (2, O, C, S) is live (with liveness parameter T;) and consistent in
the dynamically available setting.

The intuition. Consider two disjoint sets of players X and Y that each own an equal amount of
resources. Consider first an execution of the protocol in which players in X are Byzantine, while
players in Y are honest. Players in X do not initially communicate with players in Y, but rather
simulate between them an execution in which they are the only ones active. Because the protocol
is live in the dynamically available setting, this simulated execution must produce a non-empty
sequence T of confirmed transactions (even without contribution from the players in Y): Note that
this conclusion would not hold if operating in the quasi-permissionless or permissioned settings,
because the protocol might then require active participation from players owning a majority of
resources to confirm transactions. Meanwhile, and for the same reason, the honest players in Y
must eventually confirm a sequence of transaction T’ that may be incompatible with T.

Now suppose that, at some later point, players in X disseminate all the messages that they would
have disseminated if honest in their simulated execution. At this point, it is not possible for late
arriving players to determine whether the players in X or the players in Y are honest. If ap < x,
then ay < x in a symmetrical execution, in which it is the players in X who are honest, while the
players in Y are Byzantine and run their own simulated execution. (The notation ay and ap is
defined in the discussion following Definition 3.1.)

The formal proof. We consider two non-empty sets of players, X and Y of equal size, and four
protocol executions in which all parameters remain the same unless explicitly stated otherwise.
For the sake of simplicity, we suppose all active players in X U Y always hold a single unit of each
external resource (if any), and all players in X U Y begin with one unit of each form of stake (if any).
If S is non-empty, then we suppose that, for each S € S, the transactions tr; and tr; mentioned
below do not affect the stake controlled by players in X U Y (e.g., they are simple transfers between
players outside of X U Y). If S is empty, then the form of these transactions is of no significance.

Execution 1. The only active players are those in X, who are active at all timeslots. The environment
sends a single transaction tr; to one of the players, p; say, at timeslot 1, and does not send any
further transactions. All players are honest. By liveness, tr; is confirmed for all active players by
timeslot 1+ Tj.

Execution 2. The only active players are those in Y, who are active at all timeslots. The environment
sends a single transaction try (with try # try) to one of the players, p, say, at timeslot 1, and does

18For simplicity, our protocol description and analysis conclude with the successful agreement by honest players on a
post-slashing state following a consistency violation. This suffices to establish the EAAC property and prove Theorem 5.1.
More generally, the protocol could be run repeatedly, triggering the recovery procedure as needed to punish a consistency
violation and produce a new genesis blocks for the next instance of the protocol.
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not send any further transactions. All players are honest. By liveness, tr; is confirmed for all active
players by timeslot 1 + T;.

Execution 3. The active players are X U Y, and those players are active at all timeslots. Choose
t* > 14T;. The environment sends tr; to p; and try to p; at timeslot 1, and does not send any further
transactions. Players in X are Byzantine, ignore messages from players in Y until t*, and simulate
the players in Execution 1 precisely (carrying out instructions as if they receive precisely the same
messages at the same timeslots), except that they delay the dissemination of all messages until
t* — 1. At t* — 1, players in X disseminate all messages that the players in Execution 1 disseminate
at timeslots < t*, and these messages are received by all active players by timeslot ¢*. At timeslots
> t* players in X act precisely like honest players, except that they pretend all messages received
from players in Y at timeslots < t* were received at t*. Players in Y are honest.

Execution 4. This is the same as Execution 3, but with the roles of X and Y reversed. The set
of active players is X U Y, and those players are active at all timeslots. Timeslot ¢* is defined as
before. Again, the environment sends tr; to p; and tr; to p;, at timeslot 1, and does not send any
further transactions. Now players in Y are Byzantine, ignore messages from players in X until t*,
and simulate the players in Execution 2 precisely (carrying out instructions as if they receive
precisely the same messages at the same timeslots), except that they delay the dissemination of all
messages until t* — 1. At t* — 1, players in Y disseminate all messages that the players in Execution 2
disseminate at timeslots < t*. At timeslots > ¢* players in Y act precisely like honest players, except
that they pretend all messages received from players in X at timeslots < t* were received at t*.
Players in Y are honest.

Analysis. We first prove that at least one of Executions 3 and 4 must see a consistency violation. To
see this, suppose towards a contradiction that Execution 3 does not. Note that, until ¢*, Execution 3
is indistinguishable from Execution 2 as far as the honest players in Y are concerned, i.e. they
receive precisely the same inputs, messages and oracle responses at each timeslot < ¢*. It must
therefore be the case that all players in Y regard tr; as confirmed and tr; as not confirmed (because
it has not yet been received by those players) by timeslot t* — 1. Let M* be the set of messages
received by all honest players by timeslot ¢*. If there is no consistency violation then it must be the
case that C(M™) is a sequence in which tr; does not precede trs.

In this case, consider Execution 4. Note that, until t*, Execution 4 is indistinguishable from
Execution 1 as far as the honest players in X are concerned, i.e. they receive precisely the same
inputs, messages and oracle responses at each timeslot < ¢*. It must therefore be the case that
all players in X regard tr; as confirmed and tr; as not confirmed by timeslot ¢* — 1. Note next,
however, that the set of messages received by all honest players by timeslot t* is precisely the
same set M* in Executions 3 and 4. We concluded above that tr; does not precede tr; in C(M"),
meaning that Execution 4 sees a consistency violation at ¢*.

To complete the proof, without loss of generality, suppose Execution 3 sees a consistency violation;
the case that Execution 4 sees a consistency violation is symmetric. Towards a contradiction,
suppose the protocol is EAAC with respect to the investment functions {R;(-, -) };[x] and valuation
function v. In that case, we must have ag < 1 at some timeslot t; > t* in Execution 3 (and ag > 1
for all t). In that case, however, consider Execution 4. Because the set of messages received by
each player by time ¢ is the same in both executions, R;(p, tf) is also the same for every i € [k]
and p € X U Y. It follows that the valuation o is also the same (for both X and Y) at time # in the
two executions, and hence ey < 1 when evaluated at ¢ = t7 in Execution 4. This gives the required
contradiction (violating (1) from Definition 3.1).



Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden 24

8 IMPOSSIBILITY RESULT FOR THE PARTIALLY SYNCHRONOUS SETTING: THE
PROOF OF THEOREM 4.2

Consider the quasi-permissionless setting and the partial synchrony model and suppose the
blockchain protocol (2,0, C, S) is p;-resilient for liveness. We consider three non-empty and
pairwise disjoint sets of players, X, Y and Z, such that:

e P=XUYULZ, |P|=n (say);
e IX| =12 = [np1] and;
o Y] =n-2lnpi).

The intuition. For the sake of simplicity, consider a pure proof-of-stake protocol, meaning a
protocol that does not make use of external resources (although the formal proof below treats the
general case). Suppose all players begin with a single unit of each form of stake and are active at all
timeslots. The players in X and Z are honest, while the players in Y are Byzantine.

Because we are in the partial synchrony model, we may suppose that messages disseminated by
players in X are received by players in X U Y at the next timeslot, but are not received by players
in Z until after GST. Symmetrically, we may suppose that messages disseminated by players in Z
are received by players in Z U Y at the next timeslot, but are not received by players in X until after
GST. Suppose that the players in Y initially act towards those in X as if GST= 0 but the players
in Z are Byzantine and are not disseminating messages. Because the players in Z own at most a p;
fraction of the stake and the protocol is p;-resilient for liveness, the players in X must eventually
confirm a sequence of transactions, which may include transactions transferring all stake from
players in Y. If the players in Y simultaneously act towards those in Z as if GST= 0 but the players
in X are Byzantine and are not disseminating messages, then the players in Z must eventually
confirm a sequence of transactions, which may include transactions transferring all stake from
players in Y. When GST arrives, this means that the honest players see a consistency violation, but
by this time the players in Y have already cashed out all of their stake.

The formal proof. Fix arbitrary I'-liquid investment functions and an arbitrary valuation function.
We consider three protocol executions in which all parameters remain the same unless explicitly
stated otherwise. The player set is always X U Y U Z (as described above), and each player uses a
single identifier (which we identify with the player). All players begin with a single unit of each
form of stake (if there exist any such) and are always active. Let try, tr, denote distinct transactions
that are benign in the sense of Section 2.4 and preserve the total amount of resources controlled by
the players in each of X, Y, and Z (e.g., a simple transfer between two players of X). For i = 1,2,
let T; denote a set of transactions such that, no matter how they ordered, Sh(S;;, tr;*T,y) =0
for all stake allocation functions S, € S and players y € Y. (The sets T; and T, exist according to
the assumptions in Section 2.4.) For the sake of simplicity, we suppose that A = 1, but the proof is
easily adapted to deal with larger values for A.

Execution 1. GST= 0. Players in X and Y are honest. Players in Z are Byzantine and do not
disseminate messages. Players in X have a single unit of each form of external resource at each
timeslot, while players in Y and Z do not own external resources. The environment sends a single
transaction tr; to a player p; € X at timeslot 1. At timeslot 27;, the environment sends the
transactions in T to p;.

Execution 2. This is similar to Execution 1, but with the roles of X and Z reversed. GST= 0. Players
in Y and Z and honest. Players in X are Byzantine and do not disseminate messages. Players in Z
have a single unit of each form of external resource at each timeslot, while players in X and Y do



Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden 25

not own external resources. The environment sends a single transaction tr, to a player p, € Z at
timeslot 1. At timeslot 27T}, the environment sends the transactions in T to p.

Execution 3. The execution is specified as follows:

- Players in X U Z are honest, while players in Y are Byzantine.

- GST=3T; + I'. Any message disseminated by a player in X at any timeslot ¢ is received by
players in X UY at the next timeslot, but is not received by players in Z until max{GST, ¢ + 1}.
Any message disseminated by a player in Z at any timeslot t is received by playersin Y U Z
at the next timeslot, but is not received by players in X until max{GST, ¢ + 1}.

Players in X U Z have a single unit of each form of external resource at each timeslot, while
players in Y do not own external resources.

The environment sends tr; to p; and tr, to p, at timeslot 1. At timeslot 27;, the environment
sends the transactions in Ty to p; and the transactions in T, to p;. The environment then
sends no further transactions.

Each Byzantine player simulates two honest players. The first of these players acts honestly,
except that they pretend messages sent by players in Z prior to GST do not arrive until GST.
A message disseminated by this player at any timeslot ¢ is received by players in X U Y at the
next timeslot, but is not received by players in Z until max{GST, t + 1}. The second of these
simulated players acts honestly, except that they pretend messages sent by players in X prior
to GST do not arrive until GST. A message disseminated by this player at any timeslot ¢ is
received by players in Y U Z at the next timeslot, but is not received by players in X until
max{GST, t + 1}.

Analysis. Note that, in Execution 1, the adversary is p;-bounded. Since GST= 0, tr; must be
confirmed for all honest players by timeslot 1 + T; (while tr; is not, because this transaction is
not received by any player). Similarly, the transactions sent to p; at 27; must be confirmed by 37;;
by the definition of Ty, players in Y own no stake (of any form) at timeslots > 37;. Because the
investment functions corresponding to Sy, ..., S; are assumed to be I'-liquid, Ry (p, 3T; + T') = 0 for
all such investment functions and all p € Y.

In Execution 2, the adversary is also p;-bounded. Since GST= 0, tr, must be confirmed for all
honest players by timeslot 1 + T; (while tr; is not, because this transaction is not received by any
player). Similarly, the transactions sent to p, at 2T; must be confirmed by 37T}, meaning that players
in Y own no stake (of any form) at timeslots > 37;. Because the investment functions corresponding
to Sy,...,S; are assumed to be I'-liquid, Ry (p, 3T; + ') = 0 for all such investment functions and all
pey.

To complete the argument, note that, for players in X, Execution 3 is indistinguishable from
Execution 1 at all timeslots <GST, i.e. those players receive precisely the same inputs, messages
and oracle responses at all timeslots <GST. It follows that tr; is confirmed for all players in X by
timeslot 1 + T}, and that the transactions of Ty are confirmed for all players in X by timeslot 37;.
Similarly, for players in Z, Execution 3 is indistinguishable from Execution 2 at all timeslots <GST.
It follows that tr, is confirmed for all players in Z by timeslot 1 + T}, and that the transactions
of T, are confirmed for all players in Z by timeslot 37;. It further follows that, in Execution 3,
Ru(p, 3Ty +T) = 0 for every investment function R, and p € Y."’

YThe definition of a I'-liquid investment function allows a player to cash out after some honest player sees a zero balance
on-chain for at least I' consecutive time steps; here, in fact, all honest players witness this.
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A consistency violation is first seen by honest players at GST. For all choices of ty >GST, the
Byzantine players have already cashed out their stakes (and never possessed any external resources):

k
ZZRi(P’tf)-C,-zo

pey i=1

and hence ap = 1. The protocol therefore fails to be EAAC.

Interpretation for the synchronous model. As alluded to in Section 5, the proof of Theorem 4.2
continues to hold in the synchronous model if 3T; + I is less than the worst-case message delay A.
That is, to avoid the impossibility result in Theorem 4.2, either the time to transaction confirmation
or the time to recoup an investment off-chain (following a transaction confirmation on-chain) must
scale with the worst-case message delay. For example, if typical network delays are much smaller
than worst-case delays and the speed of transaction confirmation in some PoS protocol scales with
the former, then the “cooldown period” required before stake can be liquidated must scale with the
latter (as it does, roughly, in the current Ethereum protocol).

9 A POSSIBILITY RESULT: THE PROOF OF THEOREM 5.1
9.1 Review of (permissioned) Tendermint

To motivate the definition of our PoS protocol, in this subsection we give a somewhat informal
description of a simplified specification of (permissioned) Tendermint. In this subsection, we
therefore consider a set of n players, of which at most f may be Byzantine, where n = 3f + 1.

Technical preliminaries. In Section 2, we supposed that a player’s state transition at a given
timeslot can depend on the number of the current timeslot. This modeling choice serves to make
our impossibility results as strong as possible, but is a stronger assumption than is sometimes
made when working in the partially synchronous model. For the sake of simplicity, we present a
PoS version of Tendermint which makes use of this assumption to avoid the necessity of using a
special procedure for view synchronization.?’ Similarly, we do not concern ourselves with issues
of efficiency (e.g. communication complexity and latency) and aim only to present the simplest
protocol meeting the required conditions.
In what follows, we assume that all messages are signed by the player disseminating them.

Views in Tendermint. The protocol instructions are divided into views. Within each view, we run
two stages of voting, each of which is an opportunity for players to vote on a block (or blocks) of
transactions proposed by the leader for the view (all these notions will be formalized in Section 9.4).
If the first stage of voting establishes a stage 1 quorum certificate (QC) for a block b, then the second
stage may establish a stage 2 QC for b. Instructions within views are deterministic, so to ensure the
protocol as a whole is deterministic one can simply specify a system of rotating leaders, e.g. if the
players are {pq, ..., pn—1}, then one can specify that the leader of view v, denoted lead(v), is p;,
where i = v mod n.

Each block of transactions b records the view to which it corresponds in the value v(b). If Q is
a QC for b, then v(Q) = v(b) and b(Q) = b. The value s(Q) records whether Q is a stage 1 or a
stage 2 QC.

201f one wanted to drop this assumption of the model, then one would need to augment the proof given here so as to
implement an appropriately modified version of some standard protocol for view synchronization (e.g. [33])). We avoid
such matters, as complicating the proof in this way would distract from the primary considerations of the paper.



Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden 27

Each player also maintains a variable Q* for the purpose of implementing a locking mechanism.
Upon seeing a stage 1 QC while in view o, for b which is proposed by the leader of view v, an
honest player p sets Q% to be that stage 1 QC for b.

When view v is executed. View v begins at time 30A and ends when view v + 1 begins.

Block proposals in Tendermint. Upon entering view v, the leader for the view lets Q be the
stage 1 QC amongst all those it has seen such that v(Q) is greatest. Let " := b(Q). The leader then
disseminates a block proposal b, which records its parent b’ in the value par(b), which records the
view corresponding to the block in the value v(b), and which records a QC for the parent block in
the value QCprev(b) := Q. Any honest player receiving a proposal b while in view v will regard it
as valid if it is signed by lead(v) and if v(b) = v, QCprev(b) is a QC for the parent block par(b),
and if O* < v(Q) for Q = QCprev(b). If they regard the proposal as valid, honest players will then
disseminate a stage 1 vote for b. Upon seeing a stage 1 QC for b (a set of 2f + 1 stage 1 votes signed
by distinct players) while in view v, they will set Q" to be that QC and will disseminate a stage 2
vote for b. Upon seeing any block with stage 1 and 2 QCs, honest players consider that block and
all ancestors confirmed. (Terms such as ‘ancestor’ will be formally defined in Section 9.4.)

The genesis block. We consider a fixed genesis block, denoted by, with v(by) := 0. All players
begin having already received a QC for the genesis block and with Q* equal to that QC for the
genesis block.

An informal version of the instructions is shown below:

The instructions for player p in view v > 1.

At timeslot ¢ = 30A: If p = lead(v), then disseminate a new block, as specified above.

At timeslot t = 30A + A: If p has seen a first valid block b for view v signed by lead(v), i.e. if
v(b) = v, QCprev(b) is a QC for the parent block par(b), and if Q* < v(Q) for Q = QCprev(b),
then p disseminates a stage 1 vote for b.

At timeslot t = 3vA + 2A: If p has seen a stage 1 QC for a block b signed by lead(v), then set Q*
to be that QC and disseminate a stage 2 vote for b.

Consistency and liveness for Tendermint. To argue that the protocol satisfies consistency,
suppose towards a contradiction that there exists a least v such that:

e Some b with v(b) = v receives stage 1 and 2 QCs, Q; and Q; say.

e For some least v’ > v, there exists b’ such that b’ is incompatible with b (i.e. neither b or b’
are ancestors of each other), with v(b’) = v" and QCprev(d’) = Qo (say), and the block &’
receives a stage 1 QC, Q3 say.

If v = v’ then, since Q; and Q3 both consist of 2f + 1 votes and n = 3f + 1, some honest player must
have votes in both Q; and Qs. This gives a contradiction since each honest player sends at most
one stage 1 vote in each view. So, suppose v’ > v. Then some honest player p must have votes in
both Q, and Qs. This gives the required contradiction, since p must set Q" so that v(Q*) = v while
in view v, but our choice of (v, v”) means that v(Qp) < v, so that p would not regard the proposal b’
as valid while in view v” and would not produce a vote in Qs.
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To argue briefly that the protocol satisfies liveness, let v be a view with honest leader p, which
begins at time at least A after GST. Amongst all the values Q* for honest players at time 30A — A,
let Q be that such that v(Q) is greatest. Then p must see Q by the beginning of view v, and will
therefore produce a block proposal b that all honest players regard as valid (since they cannot
subsequently have updated their local value Q*). All honest players will therefore produce stage 1
and stage 2 votes for b, meaning that b is confirmed for all honest players.

9.2 Review of the Dolev-Strong protocol

In our protocol, honest players will reach consensus following a consistency violation using a
recovery procedure based on (repeated instances of) a variant of the classic protocol of Dolev and
Strong. In a first instance of the Dolev-Strong protocol, a designated leader is asked to propose
an updated genesis block. If this instance results in consensus amongst honest players on such
a block b, then the honest majority of validating stake that remains after slashing can “sign off”
on this value, producing a form of certificate in support of b. If not, a second leader for another
instance of the Dolev-Strong protocol is then asked to propose an updated genesis block, and so on.

In this section, we briefly review the Dolev-Strong protocol. The version we present below is
a general form of the protocol for solving Byzantine Broadcast [28] given a set P of n players, of
which at most f may be Byzantine, and one of which is the designated leader. In our recovery
procedure, a modified form of the protocol will be used, in which honest players will ignore values
proposed by leaders unless they are a suitable proposal for an updated genesis block.

Notation for signed messages. For any message m, and for distinct players py, ..., p;, we let
Mp,,...p, e m signed by py, ..., p; in order, i.e., for the empty sequence 0, my is m, and for each
i€ [1,t],mp, p, is my,  ,,_, signed by p;. Let X; be the set of all messages of the form m,, _,,
such that py, ... p; are all distinct players in P and p; is the leader.

Initial setup. Each player p maintains a set O, which can be thought of as the set of values that p
recognises as having been sent by the leader, and which is initially empty. The leader begins with
an input value z.

The instructions for player p.

Time 0. If p is the leader, then disseminate z, to all players and enumerate z into O,.

Time tA* with 1 <t < f + 1. Consider the set of messages m € X; received by time tA*. For each
such message m = y,, ..p,, if y € O,, proceed as follows: Enumerate y into O, and, if t < f +1,
disseminate m,, to all players.

The output for player p. After executing all other instructions at time (f + 1)A*, p outputs y
if O, contains the single value y, and otherwise p outputs L.

Proving that the protocol functions correctly. The key claim is that all honest players produce
the same output (possibly L), whether the leader is honest or Byzantine. If the leader is honest
and begins with input z, then every honest player p other than the leader enumerates z into O,
at time A*, and does not enumerate any other value into this set at any time. All honest players
therefore produce a common output z which, moreover, is the input of the honest leader.

We can complete the proof by showing that, if any honest player p enumerates a particular
value y into O,, then all honest players do so (even if the leader is Byzantine). There are two cases
to consider:

e Case 1. Suppose that some honest p first enumerates y into O, at time tA* with t < f+1.In
this case, p receives a message of the form m = y,, . ,, € X; at tA*. Player p then adds their
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signature to form a message with t + 1 distinct signatures and disseminates this message to
all players. This means every honest player p” will enumerate y into O, by time (¢ + 1)A*.
e Case 2. Suppose next that some honest p first enumerates y into O, at time (f + 1)A*. In
this case, p receives a message of the formm =y, _ .., € Xg4; at time (f +1)A", which has
f + 1 distinct signatures attached. At least one of those signatures must be from an honest
player p’ (since there are at most f Byzantine players), meaning that Case 1 applies w.r.t. p’.

9.3 Overview of further required changes

Recall that PosT is our proof-of-stake version of Tendermint, used to prove Theorem 5.1. Section 6
described, at a high level, some of the innovations involved: the holding of stake ‘in escrow’, the use
of epochs, certificates of guilt, the use of a recovery procedure, and so on. One further significant
point concerns how to deal appropriately with the change of validators at the end of each epoch.

How to complete an epoch. The complication is as follows.

The problem. We claimed in Section 6 that, should message delay prior to GST be bounded by A*, any
consistency violation during epoch e will lead to active honest players receiving a corresponding
certificate of guilt within time 2A* of any honest player beginning epoch e + 1. The basic idea to
specify the length of each epoch is therefore that we wish to choose some x such that xA > A*, so
that 3xA (the time to complete x views?!) is certainly larger than 2A*, and then have epoch e be
responsible for confirming blocks of heights in (ex, (e + 1)x] (block height will be formally defined
in Section 9.4). The way the Tendermint protocol functions (at least as specified in Section 9.1),
however, a block may only receive a stage 1 QC and become confirmed because a descendant
subsequently receives a stage 2 QC. If b is of height (e + 1)x, and so potentially ends an epoch, and
if b only receives a stage 1 QC, then the question becomes, who do we have propose and vote on
children of b? We cannot allow the validator change at the end of the epoch to be dictated by the
transactions in b and its ancestors (and immediately have the new validators propose descendants
of b), because b is not confirmed. Another block b’ of height h might also receive a stage 1 QC,
leading to different opinions as to who should be the validator set for the next epoch.

The solution. The solution we employ is to allow the validators for epoch e to continue proposing
and voting on blocks of heights greater than (e + 1)x, until they produce a confirmed block of
height (e + 1)x. Once they do so, the blocks they have produced of height > (e + 1)x (together with
the votes for those blocks) are kept as part of the ‘chain data’ that verifies the validity of the chain,
but are not used to constitute part of the chain of confirmed transactions, i.e. the validators for
the next epoch begin building above b of height (e + 1)x. It is crucial that the transactions in these
extra blocks not be considered confirmed because the validators for the next epoch have not been
present to implement the locking mechanism during epoch e, meaning that if one of these blocks b’
is confirmed, then we cannot guarantee that at least a third of the new validators (weighted by
stake) are honest and locked on b’.22

The need for three stages of voting in each view. Similar to HotStuff [41], we will use three
stages of voting in each view. The motivation for doing so, however, is different than for HotStuff

2In fact, the time to complete each view will be 4xA once we add in an extra stage of voting for each view.

22To see the issue, suppose b’ and b”’ are both blocks of height > (e + 1)x which are produced during epoch e, such that
b” is a child of b’, and which both receive stage 2 QCs; this is possible because the stage 2 QC for b”” may be produced
during asynchrony before GST and before any player has seen the stage 2 QC for b’. If we were to regard the transactions
in b’ and b” as confirmed, then some of the new validators may initially see b’ as confirmed, while most have only seen a
stage 2 QC for b’. The new validators might then confirm new blocks that are descendants of b’ incompatible with b"’.
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(where the goals were performance-driven, specifically to achieve a form of ‘optimistic responsive-
ness’). The motivation here is to ensure that, if there is a consistency violation amongst the blocks
for epoch e — 1, then active honest players will receive a corresponding ‘certificate of guilt’ before
the end of epoch e.?®

The problem. To see the problem if we only use two stages of voting, consider the following possible
sequence of events. Suppose a block b is proposed during view v and receives a stage 1 QC. The
block then receives stage 2 votes from a fraction of the honest stake that is small, but sufficient
that the adversary can produce a stage 2 QC for b at any later time of its choosing. In view v + 1,
a block b’ that is incompatible with b then receives stage 1 and stage 2 QCs, ending the epoch.
Note that, in this case, the adversary can produce the stage 2 QC for b and the corresponding
consistency violation after any delay of its choosing. Once it does so, the stage 2 QC for b, together
with the stage 1 QC for b’, will constitute a certificate of guilt (so long as votes are defined to
include the QCprev value for the block they vote on), but by the time this is seen by honest players,
the adversary’s validating stake may no longer be in escrow.

The solution. Now suppose that we use three stages of voting within each view and that, as before,
an honest player sets their lock (redefines Q%) upon seeing a stage 1 QC for the block proposal
during view u. Suppose message delay prior to GST is bounded by A*. A block is confirmed when
some descendant (possibly the block itself) receives stage 1, 2 and 3 QCs. A player enters epoch e +1
upon seeing any confirmed block for epoch e of height (e + 1)x. Suppose there exists a consistency
violation amongst the epoch e blocks. In this case, there must exist a least v and a least v" > v such
that some block b with v(b) = v receives stage 1, 2 and 3 QCs, and some incompatible block b’ with
v(b”) = v’ also receives stage 1, 2 and 3 QCs. Crucially, because p* < 2/3, the production of any QC
requires the participation of at least one honest player. Let v’ be the least view > v such that some
block b" that is incompatible with b (with v(b”) = v”") receives a stage 1 QC, Q; say, that is seen by
some honest player p; before they enter epoch e + 1. Note that o’” < v’. Let Q, be a stage 2 QC for b
that is seen by an honest player p; before sending a stage 3 vote during view v. Since we will be
able to argue (essentially just as in Section 9.1) that Q; and Q, constitute an appropriate certificate
of guilt, it remains to show that these QCs will be seen by all active honest players within time 2A*
of any honest player entering epoch e + 1.

If some first honest player enters epoch e + 1 at timeslot ¢, then all active honest players do so by
t + A*. This means p; (for i € {1, 2}, as specified above) must enter epoch e + 1 by ¢ + A* and, since
pi sees Q; before t + A*, Q; must be seen by all active honest players by time ¢t + 2A*. All active
honest players therefore see Q; and Q, by time ¢ + 2A*, as required.

Overall summary of the PosT protocol. Before giving a formal protocol specification, we
informally review the different phases of the PosT protocol.

Before the recovery procedure is triggered. During “normal” operation (i.e., while not under attack),
PosT acts essentially like a version of Tendermint, but with three phases of voting in each view, and
with the set of players that are responsible for proposing and voting on blocks (i.e., the ‘validators’)
changing with each epoch. To act as a validator, players must place stake in-escrow. Removal of
stake from escrow is subject to a delay of one epoch, with the duration of each epoch greater
than 2A™. Since any consistency violation during epoch e will be seen by honest players before
epoch e +1 is completed, this suffices to ensure that Byzantine players contributing to a consistency
violation can be ‘slashed’ before their stake is removed from escrow. Since PosT acts essentially
like Tendermint in all other respects, in the case that the adversary is p-bounded for p < 1/3,

20ne concrete difference between the protocols is that, with a p-bounded adversary with p < 1/3, stage 2 QCs for
conflicting blocks are possible in the HotStuff protocol but impossible in the PosT protocol.
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the protocol achieves liveness with respect to a parameter T; that depends on A only (i.e., T} is
independent of A*) and also satisfies consistency.

Once the recovery procedure is triggered. If a consistency violation occurs in some least epoch e, then
active honest players will see a corresponding certificate of guilt before epoch e + 1 completes, and
will trigger the recovery procedure. Once the recovery procedure is triggered, the validators for
epoch e then carry out repeated instances of the Dolev-Strong protocol to determine an updated
genesis block. This updated genesis block will contain all transactions confirmed prior to epoch e,
and also certificates of guilt for at least 1/3 of the validating stake for epoch e, and will be signed by
the honest majority of validating stake that remains after slashing (using that p* < 2/3). If desired,
the main protocol can resume operation from this new genesis block.

9.4 The formal specification of the main protocol (prior to recovery)

We give a specification that is aimed at simplicity of presentation, and do not concern ourselves
with issues of efficiency, such as communication complexity and latency. It is convenient to assume
that whenever honest p disseminates a message at some timeslot ¢, p regards that dissemination as
having been received (by p) at the next timeslot. We assume that all messages are signed by the
player disseminating the message.

Transaction gossiping and the variable T*. We assume that, whenever any honest player first
receives a transaction tr, they disseminate tr at the same timeslot. Each honest player p maintains
a variable T*, which is the set of all transactions received by p thus far.

The stake allocation function. We take as given an initial distribution S*. The stake allocation
function S should be thought of as specifying the amount of stake a player has in escrow and
which has not been earmarked for removal from escrow (after one epoch), i.e. a player’s validating
stake. For the sake of simplicity, we suppose that the total number of units of currency is fixed at
some value N € N, and that, for some determined x* € N, each identifier can hold either 0 or
N /x* units of currency in escrow (this still allows a player to put large amounts of stake in escrow
by using multiple identifiers). Stake is added or removed from escrow via special transactions:
an add-to-escow transaction corresponding to identifier id is used to put stake in escrow, while
a remove-from-escrow transaction corresponding to id is used to remove stake from escrow. To
specify how the stake may be updated, we stipulate that players may create and disseminate ‘epoch’
transactions that will be used to mark the end of each epoch. ‘Certificates of guilt’ will also be
formally defined in what follows as a special form of transaction. For any given certificate of guilt G
and any identifier id, G may or may not implicate the identifier id. We require that S satisfies the

following conditions:?*

(1) If T, does not contain any epoch transactions, then S(S*, Ty * Ty, id) = S(S*, Ty, id), i.e. S only
updates at the end of an epoch.

(2) Suppose T ends with an epoch transaction. If T contains an add-to-escrow transaction corre-
sponding to id that is not followed (in T) by a remove-from-escrow transaction corresponding
to id, and also T contains no certificate of guilt implicating id, then S(S* T,id) = N/x*.
Otherwise, S(S*, T,id) = 0.2

The length of an epoch. Choose x > 2x* (where x* is as specified above) and such that xA > A*.
We think of epoch e as being responsible for confirming blocks of heights in (ex, (e + 1)x] (block

%Throughout this paper, we use ‘*’ to denote concatenation.

BWhile a remove-from-escrow transaction impacts a player’s S-balance immediately at the end of an epoch, the stake
should be considered as remaining in escrow for one further epoch; this will be reflected in the definitions of the investment
and valuation functions in Section 9.9.
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height will be formally defined below). We will later specify a value e(b) corresponding to each
block b, which records the epoch of the block. We will say a block b is epoch e ending if e(b) = e
and b is of height (e + 1)x.

The genesis block. We consider a fixed genesis block b,. We set h(b,) = e(by) = v(by) = 0. These
values indicate the height of the block, and the epoch and view numbers corresponding to the
block respectively. We consider the empty set, denoted 0, a stage 1 QC for by, and set b(0) = by,
e(0) = v(0) = 0. No set of messages is a stage 2 QC for b,. The block b, has no parent, has only
itself as an ancestor and is M-valid for any set of messages M.

The variable M. Each player p maintains a variable M, which is the set of all messages received
by p thus far: Intially M is set to be {b,}.

Blocks. A block b other than the genesis block is entirely specified by the following values:
h(b): The height of b.
v(b): The view corresponding to b.
e(b): The epoch corresponding to b.
par(b): The parent of b. We also call b a child of par(b). The ancestors of b are b and all ancestors
of par(b). The descendants of any block b are b and all the descendants of its children. Two blocks
are incompatible if neither is an ancestor of the other. For b to be M-valid it must hold that:
e beM;
e par(b) is M-valid;
e The ancestors of b include b;
* h(b) = h(par(b)) +1;
o If par(b) is epoch e = e(par (b)) ending, then e(b) ise or e +
o If par(b) is not epoch e = e(par(b)) ending, then e(b) =e.

1.26

QCprev(b): This value plays a similar role as in Section 9.1. For b to be M-valid:

e M must contain QCprev(b);

e QCprev(b) must be a stage 1 QC for par(b).
T(b): The sequence of transactions in b. For b to be M-valid, we require that T(b) ends with an
epoch transaction iff b is epoch e(b) ending.?’
Tr(b): The sequence of transactions in all ancestors of b. For b to be M-valid, we require Tr(b) =
Tr(par(b)) = T(b).
Tval(b): The sequence of transactions used to determine who should vote on b. We set Tval(b,) = 0.
For b to be M-valid, we require:

e If e(b) = e(par(b)) then Tval(b) = Tval(par(b));
e Ife(b) = e(par(b)) + 1 then Tval(b) = Tr(par(b)).

Votes. A vote V is entirely specified by the following values:
b(V): The block for which V is a vote.

¢(V): The amount of stake corresponding to the vote.

s(V): The stage of the vote (1, 2 or 3).

26Thus, a block whose parent is epoch e ending can still belong to the same epoch. This is due to the considerations outlined
in Section 9.3, i.e. further blocks may need to be built in the same epoch so as to confirm the block that is epoch e ending.
Once that block b is confirmed, the first blocks of the next epoch will be children of b.

?TThis condition is important because epoch transactions inform S of the end of an epoch.
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id(V): For the vote to be valid, it must be signed by id(V).
vprev(V): For the vote to be valid, this must equal v(QCprev(b(V))).

Quorum certificates. Let T := Tval(b) and set:

N(b) ::Z Z S(S*, T, id).

peP ideid(p)

For any block b other than by, and for s € {1,2, 3}, we say a set of valid votes Q is a stage s QC for b
if the following conditions are all satisfied:
(i) For each V € Q we have b(V) = b, and s(V) =s;

(ii) For each V € Q it holds that S(S*, T, id(V)) = c(V);

(iii) There do not exist V # V’ in Q with id(V) = id(V’);

(iv) Zyeoc(V) = 3N(b).
If Q is a stage s QC for b, we define b(Q) = b, e(Q) := e(b), v(Q) = v(b), vprev(Q) =
v(QCprev(d)), and s(Q) :=s.
In an abuse of notation, we’ll say Q € M when every element of Q is in M.

Recall that Tval(b) is the sequence of transactions used to determine who should vote on b. So, this
sequence determines the “validating stake’. The conditions above stipulate that votes from 2/3 of the
validating stake are required to form a QC.

Defining the confirmation rule. A block b is M-confirmed if there exists a descendant b” of b
with e(b’) = e(D), such that b’ is M-valid with stage 1, 2 and 3 QCs in M, and if it also holds that
b is of height < (e(b) + 1)x. Let b be of greatest height amongst the M-confirmed blocks. The
sequence of M-confirmed transactions is Tr(b).28

For any block b other than b, to be M-valid we require that:

e If e(b) > e(par(b)), then par(b) is M-confirmed.

M-validity. A block is M-valid if it satisfies all of the conditions for M-validity listed above (in this
section).

Defining certificates of guilt. A certificate of guilt for epoch e (considered a special form of
transaction) is a pair of QCs (Q, Q") such that:

e Qs a stage 2 QC for some b with e(b) = e and v(b) = v (say);

e (' is astage 1 QC for some b’ with e(b’) = e and v(b’) = v’ (say);

e b’ is incompatible with b;

e v’ > v and vprev(Q’) < o.
A certificate of guilt (Q, Q’) implicates id if there exist votes V € Q, V' € Q' with id(V) = id(V’) =
id.
The local variable Q*. This plays a similar role as in Section 9.1. Initially Q* := 0, i.e. Q* is set to
be a stage 1 QC for b,.

The local variable e. The value e records the current epoch for p. Initially, e = 0.

The local value rec. This is initially 0, and is set to 1 to indicate that p should start executing
instructions for the recovery procedure.

280nce an honest player p sees that the recovery procedure has been triggered and has terminated, outputting a new genesis
block b’g, it is technically convenient for p to regard b’g as the only confirmed block. If a consistency violation occurs in
some least epoch e, then by, will contain all transactions confirmed by the end of epoch e — 1.
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The eupdate procedure. The following procedure called eupdate is responsible for updating e:

(1) If rec = 0, then let e be greatest such that there exists a block b which is M-confirmed and
epoch e ending, or, if there exists no such e, let e = —1. Set e := e+ 1. If this is the first timeslot
at which e = e + 1, then we say epoch e + 1 begins at t for p.

(2) If rec = 1 and M contains a certificate of guilt for epoch e — 1, sete := e — 1.

(1) above specifies the present epoch for p before the recovery procedure is triggered. This is defined in
the obvious way: p looks to see which epoch it has seen completed and begins work on the next epoch.
(2) updates the epoch when the recovery procedure is triggered because of a consistency violation in
epoch e — 1. If the recovery procedure is triggered because of a consistency violation in epoch e, there is
no need to update e.

When p is ready to enter the recovery procedure. We say p is ready to enter the recovery
procedure if either:

e M contains a certificate of guilt for epoch e — 1, or;
e Epoch e began for p at a timeslot ’ < t—2A*, and M contains a certificate of guilt for epoch e.

The conditions above specify when the recovery procedure is triggered, and stipulate that one must
wait time 2\ after entering epoch e before triggering the recovery procedure because of a consistency
violation in epoch e. This is to give sufficient time for a consistency violation in the previous epoch
to be revealed, and to ensure that the recovery procedure is only triggered because of a consistency
violation in a single epoch.

The function Qset. This function is used to update Q* after entering a new epoch, and is defined
as follows. Amongst the M-confirmed and epoch e — 1 ending blocks, choose b such that v(b) takes
the greatest value. Let Q be some stage 1 QC for b and define Qset(M, e) := Q.

Defining lead(M, e, v). Player p’s belief as to who should be the leader for view v depends on
their values M and e. If there does not exist a unique b € M which is M-confirmed and epoch
e — 1 ending, then lead(M, e, v) is undefined.?’ Otherwise, let b be such a block and set T := Tr(b)
and v := v(b). Recall our assumption that, for some determined x* € N, if S(5* T, id) > 0 then
S(S*,T,id) = N/x*. Letidy, . .., idr_1 be an enumeration of the identifiers id such that S(S* T, id) >
0. For i € N5, we define lead(M, e,v + i) to be the identifier id;, where j = i mod k.

Admissible blocks. When p determines whether to vote on a block b in view v, it will only do so
if the block is admissible. At any point, p regards b as admissible for view v if all of the following
conditions are satisfied:

e b is M-valid;

e v(b) = v and b is signed by lead(M, e, v);
v(Q*) < v(QCprev(b));
o e(b)=¢

The disseminate new block procedure. If lead(M, e,v) (as locally defined for p) is an identifier
id € id(p) then, at the beginning of view v, p proceeds as follows in order to specify and disseminate
a new block:

(1) Amongst the M-valid b’ with a stage 1 QC in M such that e(b’) = e, choose b’ such that
v(b’) is maximal and set Q to be a stage 1 QC for b” in M. Or, if there exists no such block in
M, set Q :=Qset(M,e) and let b’ := b(Q).

2 Generally, we write x 1 to indicate that the variable x is undefined, and we write x | to indicate that x is defined.
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(2) Let T be the set of transactions in T* — Tr(b’). Let b be a new block with e(b) = e, v(b) = v,
par(b) = b’, QCprev(b) = Q, T(b) the transactions of T (in some arbitrary order and, if
appropriate, concluding with a transaction indicating the end of epoch e), and which satisfies
all conditions for M-validity (note that these conditions suffice to specify Tval(b) and h(b)).

(3) Disseminate b, signed by id.

The pseudocode. The pseudocode is described in Algorithm 1.

9.5 The formal specification of the recovery procedure

Upon setting rec := 1, indicating that the recovery procedure is triggered, player p will run the
eupdate procedure, which will set e to be the least epoch in which a consistency violation occurs.
The aim of the recovery procedure is then to reach consensus on an updated genesis block b/
at which the slashing instructions have been carried out. To specify by, one need only specify
the transactions in by, although honest players will also produce votes for by, ensuring that it is
uniquely determined.

M-admissible genesis proposals. Let M and e be as locally defined for p during the recovery
procedure. Let b be an epoch e — 1 ending block that is M-confirmed, and set T := Tr(b). A genesis
proposal (by, i) is M-admissible if T(b;) = T = G = tr, where G is a certificate of guilt for epoch e
and tr is an epoch transaction. The second coordinate i in the genesis proposal (b/, i) indicates
that the proposal is made during the i instance of the Dolev-Strong protocol.

Defining reclead(M, i) and signed(M, i, j). We use a similar notation for signed messages as in
Section 9.2. For any message m, and for distinct identifiers idy, . . ., id;, we let miq, .. ia, be m signed by
idy, ..., id; in order. As above, let M and e be as locally defined for p during the recovery procedure.
Let b be an epoch e — 1 ending block that is M-confirmed, and set T := Tr(b). Let idy, . . ., idi_; be
an enumeration of the identifiers id such that S(S*, T, id) > 0 and set Id(M) := {id,, ..., idx_1}. For
i € N3¢, we define reclead(M, i) to be the identifier id;, where j = i mod k. This value specifies
the leader for the i instance of the Dolev-Strong protocol.

For i € Ny and j € N3, we define signed(M, i, j) to be the set of all messages in M which are
of the form Mid,.....id)> such that m is an M-admissible genesis proposal (b;,i) and id;, ..., id} are

all distinct members of Id(M), with id] = reclead(M, i).
The variable O,. This plays the same role as in Section 9.2.

Votes for the final output. Honest players will disseminate output votes for a value b, that may
be used as an updated genesis block. These output votes V are entirely specified by three values
b(V), c(V) and id(V), and must be signed by id(V) to be valid.

The pseudocode. The pseudocode is described in Algorithm 2.

9.6 Certificates of guilt and consistency

In this section, we show that the protocol is consistent for p-bounded adversaries when p < 1/3.
In the next section, we show liveness.

Further terminology. We let M* be the set of all messages disseminated during an execution. If
id € id(p) and p is Byzantine, then we say id is Byzantine.

LEmMA 9.1. If a certificate of guilt in M* implicates id, then id is Byzantine.

Proor. Let (Q, Q) be a certificate of guilt for epoch e, and let b, b’, v, 0" be as specified in the
definition of certificates of guilt in Section 9.4. Suppose there exist votes V € Q and V' € Q” with
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Algorithm 1 The instructions for player p before the recovery procedure is triggered.

1: At timeslot 1:

2 Set end := 0, rec := 0;

3:

4: At every timeslot ¢ if end = 0:

5. eupdate; > Defined in Section 9.4, responsible for updating e
6:  If epoch e begins at t for p then set Q" := Qset(M, e); > Set Q" at start of epoch
7. If pis ready to enter the recovery procedure then: > Condition defined in Section 9.4
8 Set rec := 1 and perform eupdate; > Start recovery procedure
9: Set end := 1.
10:
11: At timeslot 40A for v € N, if end = 0:
122 If lead(M, e,v) € id(p) then disseminate new block; > Disseminate a new block
13:

14: At timeslot 40A + A for v € N, if end = 0:
15: Set b* to be undefined;
16:  If there exists a first b enumerated into M which is admissible for view v then:

17: Setb* :=band T := Tval(b), Q := QCprev(b);

18: For each id € id(p) such that S(S*,T,id) > 0: > Disseminate stage 1 votes
19: Let ¢ := S(S%,T,id);

20: Disseminate V with b(V) = b*, ¢(V) =¢, s(V) =1, id(V) = id, vprev(V) = v(Q);

21:

22: At timeslot 40A + 2A for v € Ny if end = 0:
23 If b* | and M contains a stage 1 QC for b* then:

24: Set Q% to be a stage 1 QC for b* in M; > Set new lock
25: For each id € id(p) such that S(S*,T,id) > 0: > Disseminate stage 2 votes
26: Let ¢ := S(S%,T,id);

27: Disseminate V with b(V) = b*, c(V) =¢, s(V) = 2, id(V) = id, vprev(V) = v(Q);

28:

29: At timeslot 40A + 3A for v € N, if end = 0:
30:  If b* | and M contains a stage 2 QC for b* then:

31: For each id € id(p) such that S(S*, T, id) > 0: > Disseminate stage 3 votes
32: Let ¢ := S(S%, T,id);
33: Disseminate V with b(V) = b*, c(V) = ¢, s(V) =3, id(V) = id, vprev(V) = v(Q);

id(V) = id(V’) = id and let p be such that id € id(p). If v = v’, then the claim is immediate
because honest players do not vote for two different blocks in the same view. If v” > v, then the
claim follows because, if p is honest, then it must set O* := v upon disseminating V while in view o,
and then could not disseminate V' € Q’ because vprev(Q’) < v, i.e. p would not regard b(Q’) as
admissible when voting in view v’. O

Next, recall that p* < 2/3. In particular, every quorum certificate must contain at least one vote
from an honest player. Thus, for s = 2, 3, no stage s QC can be formed for a block b without some
honest player previously seeing a stage s — 1 QC for b. Similarly, no stage 1 QC can be formed for a
block b without some honest player seeing a stage 1 QC for b’s parent.

LEMMA 9.2. Suppose two incompatible blocks for epoch e are both M*-confirmed. Then M* contains
a certificate of guilt for epoch e. Let t be the first timeslot at which any honest player enters epoch e + 1
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Algorithm 2 Recovery procedure instructions for p: to be carried out when rec = 1.

1: At timeslot 4A((e +2)x + 1): > Initialization
2 Set recend := 0;

3 Let b be epoch e — 1 ending and M-confirmed; Set T := Tr(b);

4 Setk=|{id: S(S%T,id) > 0}|; > Number of participants
5. Sett; :=4A((e+2)x+1) + (k+ 1)iA*, i € Ny¢; > First instance of Dolev-Strong begins at t,
6

7

8

9

: At timeslot t; for i € Ny if recend = 0: > Begin i" instance of Dolev-Strong
Set O, = 0;
If reclead(M, i) € id(p) then: > Propose updated genesis block
10: Disseminate a genesis proposal (b, i) signed by reclead(M, i) which is M-admissible;

11:
12: At timeslot t; + jA* for i € N5y and j € [1,k] if recend = 0:

.....

14: Ify¢Opandj<k:

15: For each id € id(p) such that S(S* T,id) > 0, disseminate m;g;

16: If y ¢ Op, enumerate y into Op;

17:

18: At timeslot t; + kA™ if recend = 0: > End of i" instance of Dolev-Strong
19:  If O, contains a single value (by, i) then: > Send votes for updated genesis block
20: For each id € id(p) such that S(S*,T,id) > 0:

21: Let ¢ := S(S%,T,id);

22: Disseminate output vote V with b(V) = b, c(V) = ¢, id(V) = id;

23: Set recend := 1. > Terminate

or sets their local value rec := 1 (i.e. starts the recovery procedure). If message delay prior to GST is
bounded by A*, then all active honest players receive a certificate of guilt for epoch e by time t + 2A*.

ProoF. In the argument that follows, we restrict attention to blocks b with e(b) = e. Given the
conditions in the statement of the lemma, there must exist a least v, a least v’ > v, and incompatible
blocks b and b’ which both receive stage 1, 2 and 3 QCs in M?*, such that v(b) = v and v(b’) = 0".
Let 0" be the least view > v such that some block b”’ that is incompatible with b (with v(b"") = 0")
receives a stage 1 QC, Q; say, that is seen by some honest player p; before they enter epoch e + 1
or start the recovery procedure. As b’ is one such block, v"" < v’. Let Q; be a stage 2 QC for b that
is seen by an honest player p, before disseminating a stage 3 vote during view v. Then (Q,, Q;) is a
certificate of guilt for epoch e since, by our choice of v”, vprev(Q;) < v.

It remains to show that Q; and Q, will be seen by all active honest players by time ¢ + 2A*. If
some first honest player enters epoch e + 1 or starts the recovery procedure at timeslot ¢, then all
active honest players do so by t + A*. This means p; (for i € {1, 2}, as specified above) must enter
epoch e + 1 or start the recovery procedure by ¢ + A*. Player p; must therefore have seen Q; before
t+ A", and so Q; must be seen by all active honest players by time ¢ + 2A*. All active honest players
therefore see Q; and Q, by time ¢ + 2A*, as required. O

The validating stake. Suppose there exists a unique M*-confirmed block b that is epoch e ending.
By the validating stake for epoch e+ 1, we mean the set of identifiers id such that S(S*, Tr(b), id) > 0.

LEMMA 9.3. PosT is consistent for p-bounded adversaries when p < 1/3.
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Proor. This follows almost directly from Lemmas 9.1 and 9.2. Suppose the adversary is p-
bounded for p < 1/3 and that there exists a least epoch e that sees a consistency violation, i.e.
such that incompatible blocks b and b’ with e(b) = e(b’) = e are both M*-confirmed. Because
QCs for blocks in epoch e require votes from at least 2/3 of the validating stake for epoch e, any
certificate of guilt implicates at least 1/3 of the validating stake for epoch e. By Lemma 9.2, M*
contains a certificate of guilt for epoch e, which implicates at least 1/3 of the validating stake for
epoch e. By Lemma 1, all the implicated identifiers must be Byzantine. This gives the required
contradiction. O

9.7 Establishing liveness

Suppose the adversary is p-bounded for p < 1/3. Lemma 9.3 establishes consistency in this case,
which means that, if two honest players are in the same epoch e, then their local values lead(M, e, v)
agree for all v. We may therefore refer unambiguously to the value lead(e, v) for each e, v. Let k*
take the minimum value > 1 such that, for any e and v, at least one v’ € (v,v + k*] must satisfy
the condition that lead(e,v’) is honest. Note that k* is a function of x* (the maximum number of
validators), but is independent of A*.

LEMMA 9.4. Suppose the adversary is p-bounded for p < 1/3. Then the protocol is live with respect
to a liveness parameter T; that is O(k*A).

Proor. The proof shows (essentially) that each honest leader after GST confirms a new block of
transactions, but is complicated slightly by transitions at the end of an epoch. Recall that, by the
assumptions of the quasi-permissionless setting, honest validators are always active.

Suppose the adversary is p-bounded for p < 1/3. As noted above, we can refer unambiguously to
the value lead(e, v) for each e, v. Suppose that the environment sends a transaction tr to an honest
player at t and let tp = max{t, GST} + A. Let e be the greatest epoch that any honest player is in at
to, and suppose that all active honest players are in view vy at fy. Let v; > v, be the least such that
lead(e,v1) is honest (noting that v; < vy + k*). There are now various possibilities to consider. If
no honest player enters epoch e + 1 by timeslot 40, A + 3A, then let O* be the lock amongst honest
players at time 40;A — A such that v(Q%) is greatest. The leader for view v; will receive Q* and
tr by time 40;A. Assuming tr has not already been confirmed, this leader will therefore propose
a block containing tr that is admissible for all honest players (when they judge admissibility at
timeslot 401 A + A). All honest players will then produce stage 1, 2 and 3 votes for that block b, and
b will be confirmed by the end of view v;.

If h(b) < (e + 1)x then tr will also be confirmed by the end of view vy, and so the argument is
complete in that case. If either h(b) > (e + 1)x or some honest player enters epoch e + 1 before
timeslot 401 A + 3A, all honest players will be in epoch e + 1 by timeslot 4(v; + 1)A. In this case, let
vy > v1 + 1 be the least such that lead(e + 1, v;) is honest (noting that v, < v; + 1 + k*). Then all
honest players will be in epoch e + 1 for the entirety of view v,. Let O be the lock amongst honest
players at time 40, A — A such that v(Q™) is greatest. The leader for view v, will receive Q* and tr
by time 40,A. Assuming tr has not already been confirmed, this leader will therefore propose a
block containing tr that is admissible for all honest players at timeslot 4v,A + A. All honest players
will then produce stage 1, 2 and 3 votes for that block, and the block (and tr) will be confirmed by
the end of view v,. ]

9.8 Proving that the recovery procedure carries out slashing

LEMMA 9.5. Suppose the adversary is p*-bounded for p* < 2/3 and that all message delays prior to
GST are at most A*. If a consistency violation occurs in some least epoch e, then the recovery procedure
produces a unique updated genesis block b} such that:
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® Tr(by) contains a certificate of guilt that implicates at least 1/3 of the validating stake for
epoch e.

e by receives output votes from more than half the validating stake for epoch e that is not implicated
by certificates of guilt in Tr(by).

Proor. The argument resembles that in Section 9.2. We again use the fact, implied by the
assumptions of the quasi-permissionless setting, that honest validators are always active.

Assume the conditions in the statement of the lemma, and let b be an epoch e —1 ending block that
is M*-confirmed. Because e is the least epoch in which a consistency violation occurs, b is uniquely
determined. Set T := Tr(b). Let idy, . .., idx_; be the enumeration of the identifiers id such that
S(S*,T,id) > 0 as specified in Section 9.5, and set Id := {idy, ..., idx_1}. Let P be the set of players
with identifiers in Id. For i € Ny, define reclead(i) to be the identifier id;, where j = i mod k.
Note that reclead(i) = reclead(M, i) however M is locally defined during the recovery procedure
for honest p € P.

For each i € Ny, let t; be as defined in Algorithm 2, so that the i? instance of Dolev-Strong begins
at time #;. Note that the recovery procedure might not be triggered by time t;. If p = reclead(i)
is honest, and if p has not received a certificate of guilt for epoch e by t;, then O, will remain
empty for every honest p’ € P during the i instance of Dolev-Strong, and no honest player in P
will output a vote in this instance. If p = reclead(i) is honest, and if p has received a certificate
of guilt for epoch e by t; and has not terminated the recovery procedure by time t;, then p will
disseminate a genesis proposal (b, i) which is M-admissible, where M is as locally defined for any
honest p” € P during the recovery procedure. Tr(b;) will contain a certificate of guilt G implicating
at least 1/3 of the validating stake for epoch e. Every honest player p” € P will trigger the recovery
procedure by time t; + A* and will enumerate this single value (b, i) into O, during this instance
of Dolev-Strong. All honest players in P will then produce output votes for by in this instance. Since
the honest players control a majority of the validating stake for epoch e that is not implicated by G
(using that p* < 2/3), b; receives output votes from more than half the validating stake for epoch e
that is not implicated by certificates of guilt in Tr(by).

If p = reclead(i) is Byzantine and if p” € P is honest and enumerates some value into O, during
the i" instance of Dolev-Strong, it remains to show that every honest p”’ € P will do the same.
This suffices to show that either all honest players in P will vote for a common updated genesis
block and end the recovery procedure, or none will. The argument is the same as in Section 9.2.
There are two cases to consider:

e Case 1. Suppose that some honest p’ € P first enumerates y into O, at time t; + jA* with
t; + jA*. Player p’ then adds their signature to form a message with j + 1 distinct signatures
and disseminates this message. This means every honest player p”” € P will enumerate y
into Oy~ by time (j + 1)A*.

e Case 2. Suppose next that some honest p’ first enumerates y into O, at time ¢; + kA*. In
this case, p’ receives a message of the form m = Yid,,...id, € Signed(M, i, k) at time ¢; + kA¥,
which has k distinct signatures attached. At least one of those signatures must be from an
honest player p”’, meaning that Case 1 applies w.r.t. p”’.

]

A further relaxation of the synchronicity assumption. As foreshadowed in footnote 15,
bounded message delays are required only during a limited period around the time of an attack.
Specifically, suppose there exists a consistency violation in some least epoch e. Let t; be the least



Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden 40

timeslot at which some honest player enters epoch e + 1 or triggers the recovery procedure. While
the statements of Lemmas 9.2 and 9.5 assume for the sake of simplicity that message delays prior
to GST are always bounded by A*, the following weaker assumption suffices for the proofs: If p
disseminates a message at any timeslot ¢}, and if honest p’ is active at ¢ := max{t], t; } + A", then p’
receives that message at a timeslot < ;.

9.9 Completing the proof of Theorem 5.1: Establishing the EAAC property

To complete the proof of Theorem 5.1, we must specify t7, as well as the investment and valuation
functions.

Defining t¢. If there is a consistency violation in some least epoch e, let tf be any timeslot
after which all honest players active during epoch e have terminated the recovery procedure and
outputted an updated genesis block bj. By Lemma 9.5, such a timeslot ¢ exists, and by is uniquely
defined and can be determined from the locally defined M values of active honest players at ty.

The canonical PoS investment function. Let C be the cost of each unit of stake. To specify
R(p. t), we define R(id, t) for each identifier id and then set R(p, ) = X4cid(p) R(id, t). The rough
idea is that a player’s investment should correspond to the value of their validating stake, the value
of any of their stake which is no longer validating but remains in escrow, and the value of any of
their stake which was lost to slashing. Formally, for a timeslot ¢, denote by e(t) the greatest epoch
such that, for all e < e(t), there exists a unique epoch e ending block that is confirmed for some
honest player at ¢. (If no such epoch exists, define b; (t) and b, (¢) as the genesis block.) Let by (t) be
the unique epoch e(t) ending block that is confirmed for some honest player at ¢, and b;(t) the
unique epoch e(t) — 1 ending block that is confirmed for some honest player at ¢. (Or if e(t) = 0,
define b,(t) as the genesis block.) First, suppose that no honest player has triggered the recovery
procedure by t. Then, if either:

(i) the identifier is currently a validator (i.e., S(S*, Tr(by(t)), id) > 0);

(ii) the identifier no longer controls a validator but their stake has not yet been removed from

escrow (i.e., S(S*, Tr(by(t)), id) > 0); or
(iii) the identifier has been slashed (i.e., Tr(b;(¢)) includes a certificate of guilt implicating id),
we define R(id, t) = N/x*; otherwise, R(id, t) = 0.

Now suppose that some honest player has triggered the recovery procedure by ¢, due to a
consistency violation in epoch e(t) + 1. Here, because the validating stake from epoch e(¢) — 1 need
not still be in escrow, we consider only b; (). That is, we define R(id, t) = N/x* if (i) or (iii) holds,
and R(id, t) = 0 otherwise.

This investment function is I'-liquid in the sense of Section 3.2, provided I' is chosen to be
larger than the maximum time needed to complete an epoch after GST (which is proportional to
A-x > A",

The canonical valuation function. If there is no consistency violation at timeslots < ¢, then, for
any set of players P, we define the valuation function as the value (at the market price C) of the
investments made (and not already recouped) by P:

o(P,t, R(p, 1)} per, G M)) = D R(p,1) - C,

peEP

where M specifies the sets of messages received by each player by timeslot t in the execution.

If the event of a consistency violation, the valuation function should discount stake that has
been slashed. Formally, consider a consistency violation and let ¢y and by be as specified above. Let
Id be the set of identifiers that are not implicated by any certificates of guilt in Tr(by). For any set
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of players P and t > tr, we set:

o(P,tAR(p, D}per, M) = D0 > R(id 1) -G,

pEPideid(p)nId

where M specifies the sets of messages received by each player by timeslot ¢ in the execution.
This valuation function is consistency-respecting in the sense of Section 3.2. (It is generally unde-
fined following a consistency violation, up until the timeslot ¢ at which the recovery procedure
completes.)

Because Lemma 9.1 establishes that certificates of guilt can implicate only Byzantine identifiers,
condition (a) in Definition 3.1 is satisfied. By Lemma 9.5, in the case of a consistency violation in
some least epoch e, Tr(by) contains certificates of guilt for at least 1/3 of the validating stake for
epoch e, so condition (b) in Definition 3.1 is also satisfied and the protocol is («, p, p*)-EAAC for
a =max{0, (p* - 3)/p*}. D

How is the impossibility result in Theorem 4.2 avoided? As discussed at the end of Section 8,
the proof of Theorem 4.2 shows that non-trivial EAAC protocols are possible only if the protocol’s
liveness parameter or the investment function’s liquidity parameter scales with the worst-case
message delay. In Theorem 5.1, crucially, we do assume a finite bound A* on the worst-case message
delay. The liveness parameter T; of the protocol scales only with A and the maximum number x* of
validators, and thus may be arbitrarily smaller than the worst-case message delay A*. The canonical
PoS investment function, however, is I'-liquid only for values I' that exceed the minimum length
of an epoch, which is, by our choice of the number x of blocks per epoch, at least 4Ax > 4A*
timeslots. This delay, combined with our use of three stages of voting (and using the fact that
p* < 2/3), allows us to ensure that any consistency violation is seen by honest players before those
responsible for it can cash out of their positions (with honest players learning of a consistency
violation in epoch e within 2A* timeslots of any honest player completing the epoch).
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A MODELING POW IN BITCOIN

In this section, we show how to model proof-of-work, as used in the Bitcoin protocol, using the
permitter formalism. The basic idea is that, at each timeslot, a player should be able to request
permission to publish a certain block, with the permitter response depending on the player’s
resource balance (i.e., hashrate). To integrate properly with the “difficulty adjustment” algorithm
used by the Bitcoin protocol to regulate the average rate of block production (even as the total
hashrate devoted to the protocol fluctuates), we define the permitter oracle so that its responses
can have varying “quality” Each PoW oracle response will be a 256-bit string 7, and we can regard
the quality of 7 as the number of 0s that it begins with.

An example. As an example, suppose that R (p, t) = 5. Then p might send a single query (5, o)
at timeslot ¢, and this should be thought of as a request for a PoW for ¢ (which could represent a
block proposal, for example). If p does not get the response that it’s looking for, it might, at a later
timeslot ¢’ with R?(p, t’) = 5, send another query (5, o) to the PoW oracle.

Formal details. We consider a single-use permitter. All queries to the permitter must be of
the form (b, o), where o is any finite string. As already stipulated in Section 2.3, the fact that
O is a single-use permitter means that p can send the queries (b1, 01),... (bk, 0x) at the same
timeslot ¢ only if Z]le b; < RO(p,t). If p submits the query (b, o) to the permitter at ¢, then the
permitter independently samples b-many 256-bit strings uniformly at random and lets 7 be the
lexicographically smallest of these sampled strings. Player p then receives the response r := (o, 7)
signed by the oracle.
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