

Living and Experiencing: Response to Commentaries

Eva Jablonka^{1,2*} and Simona Ginsburg³

¹The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Israel; Centre for Philosophy of Natural and Social Science; ²London School of Economics and Political Science, UK; ³Natural Science Department, The Open University of Israel, 1 University Road, POB 808, Raanana 4353701, Israel

*Corresponding author: Eva Jablonka, jablonka@tauex.tau.ac.il

Abstract

In our target article, “Learning and the evolution of conscious agents” we outlined an evolutionary approach to consciousness, arguing that the evolution of a form of open-ended, representational, and generative learning (unlimited associative learning, UAL) drove the evolution of consciousness. Our view highlights the dynamics and functions of consciousness, delineates its taxonomic distribution and suggests a framework for exploring its developmental and evolutionary modifications. The approach we offer resonates with biosemioticians’ views, but as the responses to our target article show, our proposal also faces challenges and has led to suggestions that extend, develop and qualify it. Our response to the 14 varied and rich commentaries starts with the recurring and deep question raised by many of them – the relation between life and sentience. We explore this question by introducing and expanding on “vivaciousness”, a term we coined to describe the turbulent, flexible exploration-stabilization processes inherent in the living condition, as well as addressing the related concepts of *Umwelt* and selfhood. We then consider the question of the adequacy of unlimited associative learning (UAL) as an evolutionary transition marker (ETM) of *minimal* consciousness (rather than as a marker of a complex form of sentience), and the possible precursors of sentience. The engagement with these broad themes is entangled with a discussion of evolutionary transitions, constitutive emergence and the function/s of consciousness. The suggestions of our commentators, urging us to explore new concepts and new avenues of research within the framework of a richer view of evolution are then discussed. We end by briefly considering what we regard as a conceptual lacuna, which is leading to the indiscriminate use of the term “sentience” and which awaits further investigation.

34 1. Introduction

35 We are very grateful to all commentators on our target article, “Learning and the
36 evolution of conscious agents” (Jablonka & Ginsburg 2022) and thankful for the
37 opportunity to engage with views that often challenge ours yet share enough common
38 ground to allow fruitful discussion. As Sharov (2022) has shown, our evolutionary
39 transition approach mostly matches the semiotic competence levels of organisms
40 discussed by biosemioticians. Olteanu too (2022) points to the resonance between our
41 theory and the biosemiotic approach to learning and consciousness, while other
42 biosemioticians [Campbell (2022), Hendlin (2023), Tønnesson (2022)] emphasize both
43 the common ground and the need to incorporate terms such as Umwelt into our
44 framework and to expand on the continuity between life and mind. Trestman (2023)
45 discusses the correspondence between our approach and the phenomenological
46 perspective, emphasizing the notion of duration, temporal flow and goal-directed
47 behavior that were seen as fundamental to conscious experiencing. He notes that within
48 the phenomenological school of thought, learning is regarded as intrinsic to
49 consciousness, since “the dynamics of consciousness can be seen as a learning
50 process as a whole.” Irwin (2023) too sees value in the methodological road map we
51 provided, but like several other commentators, points to open questions, presents
52 important challenges and emphasizes new research directions. Nevertheless, he
53 believes that there is enough common ground between his approach and ours to open a
54 productive dialogue.

55

56 We cannot do justice and discuss all the topics raised by our commentators, but in the
57 following sections we address concerns that were central to most of them, many of
58 which overlap in spite of their different emphases. The suggestions and critiques of the
59 commentators open up new avenues of philosophical and evolutionary investigation and
60 are an opportunity to further clarify our position, extending and qualifying our approach
61 to the evolution of sentience. The dominant themes we address here are: The relation
62 between life, cognition and sentience and the notion of vivaciousness (section 2); The
63 Umwelt of living and living-sentient organisms (section 3); The status of UAL as a
64 marker of minimal consciousness (section 4) and the transitions in the evolution of

65 consciousness that we have suggested (section 5); Constitutive emergence and the
66 functions and goals of consciousness (section 6); Evolutionary trends in the evolution of
67 consciousness (section 7), and the incorporation of conscious choices in the Extended
68 Evolutionary Synthesis (section 8). All these topics are brought together in the
69 conclusion (section 9), which also points to a conceptual lacuna in current discussions
70 of subjectivity and subjecthood.

71

72 **2. Life and Sentience**

73 The assumption that there is no life without sentience is reflected in the biopsychic
74 stance of some of our commentators, who regard all living beings, from bacteria to
75 humans, as sentient. This biopsychic assumption is clearly stated by Reber, Baluška &
76 Miller (2022) and by Meincke (2023), but a biopsychic stance is also implied in the
77 commentaries of Hendlin (2023), Tønnessen (2022), and Riskin (2023). Interestingly,
78 the Buddhist Abhidharma school makes a similar assumption with regard to the
79 necessary relation between life and sentience but reaches a diametrically different
80 conclusion. According to the view expressed by this influential school of Buddhism, only
81 sentient beings are alive; since plants are not regarded as sentient/conscious beings,
82 plants are not regarded as living organisms (Lama, 2005).

83

84 Like other modern biologists, we reject both the biopsychists' approach and the
85 untenable Buddhist Abhidharma position. The view held by us and some of our
86 commentators [most explicitly, Irwin (2023), Moreno (2023), Noble (2022) and
87 Trestman, (2023)] is that living beings include all organic autonomously reproducing
88 organisms, but that not all living beings are sentient/conscious. Our research project is
89 based on the assumption of an *evolved* qualitative distinction between conscious and
90 non-conscious modes of being, although we recognize the evolutionary continuity
91 between them and are aware of grey areas that defy categorization. On our view, the
92 question of how consciousness evolved from a non-conscious, living, mode of being is
93 crucial. For biopsychists, who regard consciousness as a primitive of life, this question
94 is identical to the origins of life question, although, interestingly, biopsychists do not
95 seem to engage with the origin of life research project.

96

97 Before we go on to address the life-sentience relation and some of the biopsychists'
98 concerns and intuitions, we would like to note that, as stressed by Campbell (2022), the
99 topics of consciousness (and the evolution of consciousness) were avoided by most
100 biosemioticians, so the necessity of making distinctions between conscious and non-
101 conscious beings was not a central question within this theoretical framework. The
102 reluctance to make qualitative distinctions between forms of life was seen as the
103 necessary consequence of an adherence to the evolutionary continuity between living
104 organisms, although evolutionary continuity does not preclude major, qualitative
105 evolutionary transitions (Maynard Smith & Szathmáry, 1995), a point which is
106 acknowledged and discussed by Sharov (2022) and developed by other biosemioticians
107 (e.g., Hoffmeyer & Stjernfelt, 2016) and to which we return in a subsequent section.

108

109 *2.1 Sentience and Vivaciousness, Subjectivity and Subjecthood*

110 Reber, Baluška & Miller (2022) suggest that biological systems are cognitive systems
111 and that all cognitive systems are sentient, equating biological cognition with sentience.
112 As we indicated in our target article and in previous publications, we do not regard
113 cognition and sentience as synonyms. We defined a cognitive system as a system that
114 can learn and argued that learning is an ancient capacity of living organisms, which
115 preceded sentience. We wrote: "Learning encompasses or enables all the features that
116 have been listed as capacities or mechanisms of cognition [i.e., mechanisms and
117 processes that underlie information acquisition, storage, processing, and use, at any
118 level of organization] so any system with the capacity to learn can be described as a
119 cognitive system." (Ginsburg & Jablonka, 2021a, p. 2). Indeed, based on their
120 mechanisms of acquiring storing and using information, all living systems are cognitive
121 systems: Lyon (2015) attributed cognition to bacteria on the basis of their sophisticated
122 information processing capacities; protists like ciliates and amoeba are cognitive
123 systems since they can learn by sensitization and/or habituation, and so can some
124 plants and fungi, and as simple models have suggested, very limited associative
125 learning can occur in single cells based on cellular networks (Fernando et al., 2009;
126 Ginsburg & Jablonka, 2009). Sentience on the other hand, is, we suggested, much

127 more evolutionarily recent and depends on a particular type of complex cognition,
128 operationalized by UAL. As we argued, sentience requires complex dynamic
129 architecture (it is no surprise to us that learning machines are relatively easy to
130 construct but sentient machines do not exist). Just as life requires complex interactions
131 among different systems (metabolic networks, membranes, heredity-memory
132 mechanisms that together allow regulated self-production), so, we argued, does
133 sentience depend on the dynamics of complex cognition.

134

135 The claim that not all living and cognizing organisms are sentient has been challenged
136 by several of our commentators. Meincke (2023), following Hans Jonas' view of life and
137 mind, claims that a more inclusive notion of consciousness than the one we suggest, a
138 notion that includes all living organisms, is required to do justice to the intricacy of living
139 processes. She attributes the capacities "choice", "self-transcendence", and "taking a
140 stand on life" to all living agents. However, this metaphorical language is, in our view,
141 tautological – it is part of the definition of living rather than an argued for and justified
142 attribute. An attempt to justify the need for sentience in all life forms is offered by Reber,
143 Baluška & Miller (2022) who state that something they call "self-referencing" (which is
144 assumed to require sentience) is necessary for living processes. Self-referencing is not
145 clearly defined, but we assume that it requires regulatory mechanisms that sense
146 deviations from homeostasis and recruit systems that lead to repair and re-equilibration.
147 Reber, Baluška & Miller attribute to us a position which we have never held: they claim
148 that we assume that each of the regulatory control mechanisms in living organisms
149 evolved independently and state that "There is no model of evolutionary biology that we
150 are aware of that allows for such a wide variety of mechanisms to emerge independent
151 of a self-referencing, internal instantiation". To the best of our knowledge, all origin of
152 life theories are based on both the coming together and the co-evolution of complex
153 chemical systems, rather than on the autonomous evolution of each singular
154 mechanism. As Gánti's model of minimal life suggests, minimal living organisms are
155 complex entities, having the partially overlapping capacities for metabolism,
156 individuality, dynamic regulation-based stability, informational control, growth, hereditary
157 continuity, and irreversible dissolution. Open-ended plasticity is afforded by the material

158 organic constitution of such beings and is operationalized by the *coupling* of the
159 processes that enable the above capacities (modeled by Gánti's chemoton) through
160 processes that harness stochasticity, which as Noble (2021, 2022) states, is recruited
161 through natural and intentional selection to enable adaptive responses to changing
162 external and internal conditions. This stochastic and semi-stochastic exploration
163 underlies the precarious life-cycles of individuals and is the basis for the evolutionary
164 continuity of lineages of living organisms. However, the recognition of co-evolution and
165 co-dependence among the chemical mechanisms that enable ontogenetic self-
166 preservation and evolutionary continuity does not require the attribution of mentality – of
167 feeling or of perception. None of the current origin of life theories (with which, as we
168 noted, the biopsychists seem reluctant to engage), suggest mentality.

169

170 The dynamics of life as we know it, are, as we suggested in the target article, very
171 different from the dynamics of inanimate matter. Vivaciousness was the term we
172 introduced to characterize the intrinsic dynamics of living beings. We defined
173 vivaciousness as “the inner, plastic, default dynamic state of a living system which is
174 necessary for sustained active living” and suggested that this dynamic state defines the
175 inwardness of individual living entities with a certain type of material (water-based)
176 plasticity that are distinct from their milieu though always interacting with it. We fail to
177 understand why Meincke (2023) considers the notion of a non-sentient inwardness as
178 an oxymoron. It seems to us that Meincke is equating inwardness with mental
179 subjectivity.

180

181 Interestingly, Aristotle's discussion of the concept of food (*On the Soul*, 1984) is a de
182 facto recognition of the process we now call metabolism, which Meincke regards as an
183 indicator of mentality. The processes that render a substance food, were, for Aristotle,
184 the hallmark of the *nutritive soul* not necessitating a *sensitive soul*, although he
185 recognized that the nutritive soul is the dynamic scaffold on which sensitive living souls
186 are built. Meincke adopts Jonas' position linking life and sentience, assuming that
187 intrinsic value has to be mental (rather than inherent in the non-mental dynamics of the
188 mechanisms of self-preservation). Jonas' and Meincke's position is an a-priori claim that

189 cannot therefore provide an answer to Thompson's challenge to Jonas: "Why can't
190 there be intrinsically purposive, autopoietic agents that respond to values as norms of
191 flourishing but without feeling hedonic value or affective valence?" (Thompson, 2022). A
192 self/world registration coupled with minimal metabolic control are indeed necessary, as
193 Campbell (2022) notes, for the construction of a mental self, but on our theory, this is
194 not sufficient. All organisms have minimal metabolic control, and all have some
195 distinction between self-generated and world-generated (sensorially identical) stimuli.
196 However, this does not mean that the intrinsic valence underlying these capacities are
197 mentally experienced.

198

199 Maybe the a priori assumption that intrinsic value must be mentally experienced is
200 related to a different understanding of the terms "subject" and "subjective experiencing".
201 Subjective experiencing, as Tønnessen (2022) defines it, is "the experiencing of the
202 subject". However, a "subject", as we understand the term, does not necessarily have
203 mental states. A subject does have closure (and hence also a necessary inwardness
204 and individuality) and is an agent that interacts with object/s external to it, reacting
205 differently to world-generated and self-generated identical stimuli. Such reafferent
206 reactions, were, we suggested, the non mental precursors of the mental sense of self,
207 and such reactions may be thought of as constituting "subjecthood". But such
208 subjecthood is as yet not *mental subjecthood*. Olteanu (2022) may have interpreted our
209 usage of the term "subjective" in biosemiotic terms (as belonging to a subject, as
210 subjecthood) and not in the common sense of equating "subjective experiencing" with
211 "mental experiencing", implying private, mental states such as perceiving the taste of
212 banana ice cream and feeling fear.

213

214 We lack a concept that captures non-mental subjecthood, and we believe that
215 biopsychists use the notion of sentience to cover this conceptual gap. If their notion of
216 sentience is indeed used to refer to subjecthood, then the notion of phenomenal
217 consciousness or sentience that they employ is radically different from our notion, which
218 is defined in terms of perception (mental experiencing of sensory stimuli) and feeling
219 (mental evaluations). It is never concretely stated by biopsychists what the sentience of

220 non-neural organisms entails. Do single-celled organisms, plants and fungi feel
221 pleasure? Pain? Fear? Do bacteria and plants have mental experiences of smells and
222 sights? What does the notion of *unconsciousness* mean with regard to these
223 organisms? For example, what is the state of an unconscious living bacterium? How do
224 living cells interact to generate both an anesthetized, unconscious animal states, and
225 conscious states? What is the difference? We are *not* assuming, as Meincke claims,
226 that the interactions between such sentient cells in an unconscious or a conscious
227 animal are additive rather than emergent. Most complex biological interactions are non-
228 linear and in this sense the outcomes of the interactions are emergent. However, the
229 onus is on the biopsychists to address and explain the distinction between conscious
230 and unconscious living organisms at both the level of the organism as a whole, (e.g., a
231 mammal) versus the level of the parts, (e.g., the cells comprising the animal). Such an
232 analysis may lead to the conclusion that the sentience of cells and the sentience of
233 multicellular organisms has very different meanings, and necessitates new conceptual
234 distinctions (Ginsburg & Jablonka, 2021b).

235

236 Although we introduced the term vivaciousness to distinguish between living and non-
237 living matter and to point to the hiatus between living organisms and inanimate matter,
238 we did not attempt to compare vivaciousness in different kingdoms. We did note that the
239 vivaciousness characteristic of nervous systems has a neural aspect that is not found in
240 nerveless plants, but we did not compare intensities of vivaciousness and nowhere
241 have we attributed, as Riskin (2023) claims, less vivaciousness to plants than to
242 animals. As Lamarck emphasized, the way that plants interact with the a-biotic
243 environment is very different from that of animals, and their survival strategies are, as a
244 result, profoundly different, so the way their vivaciousness is expressed is likely to be
245 different too. Fecundity, however, is not a very good measure of overall vivaciousness,
246 although like other living processes (e.g., thinking) it does require energy and a level of
247 arousal which Trestman (2023) calls vivacity. We did not try to construct a scale of
248 vivaciousness, although we believe that the energetic considerations that Trestman
249 discusses are important and that access to energy sources, which as Lamarck noted, is

250 different for plants and animals, is crucial for any response, of any living organism, to
251 changing conditions.

252

253 **3. The Umwelt of Living and Living-Sentient Organisms**

254 Riskin (2023) wants us to emphasize the interactions between different living beings
255 and products of living beings. In the target article we discussed the effect of sentient
256 animals on the physiology and morphology of non-sentient organisms such as plants.
257 As we proposed, during the Cambrian era, conscious animals, mainly arthropods,
258 exerted enormous pressure on all living organisms through their interactions with them
259 and led to the evolution of camouflage, of poisons, new cooperative and parasitic
260 interactions as well as to learning arms-races. There were reciprocal interactions and
261 on-going co-evolution between sentient and non-sentient living organisms, and, as
262 Lamarck noted and Riskin emphasizes, within the large ecological picture of our planet,
263 these interactions included the products of living beings, of metabolism-derived
264 minerals, which were both products and facilitators of evolving life forms. Lamarck
265 indeed stressed, as Riskin reminds us, the multi-directional interactions within the
266 planet's ecology, but he also repeatedly emphasized the special mode of living of
267 animals, whose hallmark structure, which underwent many transformations during the
268 evolutionary history of animals, was the nervous system, a system he regarded as
269 crucial for mental life. In chapter 6-9 of our book (Ginsburg & Jablonka, 2019), we
270 described the geological, geo-chemical, ecological and developmental conditions that
271 enabled the evolutionary emergence of the sentient mode of being; the whole of chapter
272 9 is devoted to the ecological context in which sentience emerged and evolved. Maybe
273 we should have widened, as Riskin suggests, our discussion of the interacting web of
274 which we are all part and engaged more with the effects of sentience on niche
275 construction and the evolution of ecological, developmental and social systems. There
276 is no doubt that a more in-depth discussion of the interactions of animals, plants, fungi,
277 unicellular organisms and minerals, would enrich our understanding of evolution
278 including the special case of the evolution of sentience. Still, we are not clear what
279 fundamental difference this richer picture would make for our view of the distribution of
280 sentience.

281
282 A similar point to that raised by Riskin arises within the context of our commentators'
283 discussion of Umwelt, the self-centered world of a living being, which involves the
284 generation of species-specific models of the environment. As Uexküll & Kriszat [(1934),
285 cited by Kull & Favareau, 2022] explained: "All that a subject perceives becomes his
286 perceptual world and all that he does, his effector world. Perceptual and effector worlds
287 together form a closed unit, the Umwelt". In current ecological terminology, "Umwelt" is
288 closely related to the notion of niche, since organisms living in the same environment
289 ("same" as measured by an external observer) can have different *relevant*
290 environments, depending on their sensory, motor and cognitive capacities. The notion
291 of Umwelt implies niche construction and active and reciprocal environmental,
292 developmental, cognitive and social scaffolding, since there are mutually constructing
293 and on-going relations between the organism and the relevant milieu which it senses
294 and in which it acts. The significance of such reciprocal interactions has been
295 accommodated and stressed by early evolutionists like Lamarck and Darwin, but it was
296 downplayed by the standard neo-Darwinian evolutionary theory that has dominated
297 evolutionary theorizing for much of the 20th century. It has become again of central
298 importance to the current rethinking of evolutionary theory (the Extended Evolutionary
299 Synthesis, the EES), a 21st century version of evolutionary theory which stresses
300 agency, niche construction, plasticity and the multiple ways of information transmission
301 within and between generations (Laland et al., 2015). The role of consciousness and
302 intentional selection within this framework is one of the topics that are only now
303 beginning to receive attention (Noble, 2021; Jablonka, 2021).
304
305 As Tønnessen (2022) rightly points out, the origin of the Umwelt is very ancient. We
306 believe, as we think he does, that the co-construction of organisms and their relevant
307 environment is as ancient as life itself. We also agree with him that a "sense saturated"
308 Umwelten emerged during the Cambrian (with UAL), but we do not understand the
309 basis of his claim that a primitive, *mental* sense of self preceded the Umwelten of
310 sentient, Cambrian animals, and that the notion of Umwelt presupposes sentience. The
311 latter assumption is also apparent in Kull & Favareau's commentary (2022). They claim

312 that “umwelt per se, as sentience, appears long before consciousness in the world of
313 living organisms”. They therefore seem to equate Umwelt and sentience and assume
314 that consciousness is different from sentience. Their view is that the appearance of
315 perceptual space and a specious present mark sentience, and that the latter is the
316 outcome of the interactions of the organism-environment. The first mental expressions
317 of “togetherness with the world”, they suggest, may have already been in place in
318 organisms that could only learn in a limited way, but could nevertheless perceive
319 composite wholes. As we suggest in the next sections, these assumptions need re-
320 packing.

321

322 **4. Is UAL a Marker of *Minimal Consciousness*?**

323 Most commentators including Irwin (2023), Meincke (2023), Campbell (2022), Kull &
324 Favareau (2022) and Belardinelli and Pievani (2023) question our specific criteria for
325 minimal consciousness, as operationalized by UAL, because, they claim, these criteria
326 are too demanding. Meincke concedes that “... the evolution of the nervous system has
327 facilitated subjective experience or ‘consciousness’ in a more robust sense, while
328 insisting that there were precursors. Indeed, this is what we ought to expect given how
329 evolution works”. We have no doubt that there were indeed precursors, and in our 2019
330 book we devoted two chapters (chapters 6 and 7) to the evolution of the precursors of
331 UAL, but we argued that we have no *positive arguments* suggesting that the animals
332 displaying limited forms of associative learning (precursors of UAL) were sentient.
333 Criteria for defining sentience in a more minimal manner than that suggested by us and
334 listed in the target article, are needed, and this is the route taken by Irwin’s commentary.

335

336 Irwin’s main point, like that of the other commentators who take issue with UAL as a
337 transition marker of minimal consciousness is that “the list of criteria proposed by
338 Jablonka & Ginsburg (2022) is too expansive for truly minimal consciousness”,
339 proceeding to ask: “Does “minimal consciousness” equate to the simplest form of
340 consciousness, of which no simpler form of consciousness can be experienced, or does
341 it mean the minimal mode of being in which some form of consciousness is fully
342 emergent?” As we stated in previous publications (Birch, Ginsburg & Jablonka 2020,

343 2021) as well as in the target article, we can only *positively* identify which animals are
344 conscious, but we cannot decisively say which animals are not conscious, because the
345 UAL dynamics that satisfy all the consciousness criteria we have listed are only clearly
346 evident when the transition to UAL has gone to completion, in other words, when
347 consciousness is fully emergent. However, when living organisms show no UAL-like
348 dynamic architecture, these organisms are unlikely to be sentient in the sense
349 employed in discussions of phenomenal consciousness (which is the notion of
350 consciousness we are interested in). These include unicellular organisms, fungi, plants,
351 as well as some animals (e.g., cnidarians). All these organisms show remarkable
352 adaptive plasticity and all display limited learning, but, on our view, they are unlikely to
353 have mental experiences (perceive and feel; although we are, as we repeatedly
354 stressed, aware of the alarming gaps in our knowledge, so our position with regard to
355 the distribution question is open to qualified changes).

356

357 Irwin suggests that our minimal consciousness is not minimal, but rather a fairly late
358 stage in the evolution of consciousness, preceded by a much simpler form of
359 consciousness that does not require the demanding list of capacities that we suggest.
360 He proposes that three capacities: (i) *unification and differentiation*, (ii) *selective*
361 *attention and vigilance* (which require exploration-stabilization mechanisms) and (iii) *a*
362 *sense of self*, are sufficient for minimal consciousness. The additional capacities we list
363 – global accessibility, working memory/specious present, flexible value system,
364 mapping of world, body and their relations, and goal-directed behavior – have, he
365 argues, evolved later and contributed to a more advanced form of consciousness, which
366 is operationalized by UAL.

367

368 We believe that the minimal list suggested by Irwin, includes, implicitly, all the eight
369 capacities that we listed. Consciousness is a system property and the capacities that we
370 listed are partially overlapping and form a coupled, integrated, dynamic system. For
371 example, there can be no unification and differentiation of composite sensory stimuli
372 without global accessibility and interaction between different modalities, memory traces
373 and evaluations. All these interactions require world and body mapping and are based

374 on back-and-forth feedbacks and reentrant interactions that require time, so some form
375 of working memory to sustain the ongoing past and future oriented integrations and
376 evaluations is necessary for this kind of associations to form. As Trestman (2023) notes,
377 duration (which includes retention and protention) is central to the phenomenological
378 view of consciousness as well as to ours – when stimuli are presented for a very short
379 time they are not consciously processed. Since discrimination between composite
380 sensory stimuli and selection among composite actions is context-dependent, a value
381 system that requires the flexible ability to prioritize evaluations is needed, and this
382 requires some enduring reference point which enables a stable perspective. Indeed,
383 some of the testable predictions of the UAL theory are that there will be ontogenetic,
384 medical and phylogenetic correlations among the different aspects of UAL
385 (discrimination, working memory, flexible value system and second order conditioning).
386 Trestman points, in addition, to the dynamics of surprisal (the mismatch between
387 expectation and actuality), a process that we discussed at length in our 2019 book but
388 did not give it enough space in the target article. These dynamics are intimately related
389 to the dynamics of learning and highlight the importance of attention.

390

391 Although we believe that our list of capacities characterizes consciousness as we
392 defined it in the target article, we are aware that the scope and richness of
393 consciousness may vary, and as Hendlin (2023) rightly point out, there are tradeoffs
394 among different cognitive and sensory capacities (language, for example, led to
395 emotional and perceptual costs; see Jablonka, Ginsburg & Dor, 2012). Consciousness,
396 we suggested, evolved several times and was probably lost in some lineages during
397 evolution (for example, when in some lineages animals lost their brains). We recognize
398 the different sensory and motor aspects of consciousness in different animals, as well
399 as dimensions and degrees of conscious experience which may be more or less rich
400 and unified (Birch, Schnell, & Clayton, 2020). Nevertheless, these many variations,
401 which Hendlin emphasizes, do not mean that a distinction between conscious and non-
402 conscious organisms is impossible – the recognition of gradations does not preclude
403 qualitative distinctions between sentient and non-sentient living states. Just as the
404 project of minimal life focuses on the most basic features of life, which underlie the

405 endless diversity of living forms, so too, we have focused on the transition between non-
406 conscious and minimally conscious animals, from which all the many diverse varieties of
407 consciousness subsequently evolved.

408

409 But even if one accepts these caveats one can legitimately ask how rich UAL needs to
410 be, for example how multidimensional the integration between modalities needs to be,
411 how unified the sense of self needs to be, or how extended working-memory must be
412 (Birch, Schnell, & Clayton, 2020). Meta-analysis of fear conditioning when the
413 predictive stimuli are subliminal (e.g., under masking or distracting conditions) suggests
414 that such conditioning may require consciousness (Mertens & Engelhard 2020).

415 Furthermore, a recent study by Skora & Scott (2023) suggests that in humans all
416 instrumental learning, even when not requiring composite action-representation,
417 requires consciousness and cannot be performed under masking conditions. One
418 interpretation is that in humans, who have a fully operational consciousness and very
419 strong top-down cognitive control, even simple learning often involves consciousness
420 (just as reflex reactions, such as the blink reflex are mentally experienced). However,
421 the alternative interpretation is that even simple forms of instrumental learning are
422 indicative of consciousness, because, as Skora & Scott (2023) suggest, instrumental
423 learning requires highly complex cognitive dynamics.

424

425 **5. Transitions in the Evolution of Consciousness**

426 If there was a transition to a new, sentient mode of being, does this suggest that a
427 saltational, punctuated, evolutionary change has occurred? How gradual was the
428 evolutionary transition to sentience?

429

430 Synechism, the philosophical approach advocated by Peirce, which focuses on
431 continuities instead of assumed discontinuities, is, as Campbell (2022) notes, part of the
432 basic conceptual toolkit of biosemioticians. However, the recognition of fundamental
433 continuities between all stages of evolution and development does not imply that
434 qualitative distinctions between different evolutionary or developmental stages cannot or
435 should not be made. There is a qualitative distinction between black and white even if

436 there are all shades of grey in between. Similarly, there is a qualitative difference
437 between non-linguistic and linguistic-symbolic communication even though there is
438 evolutionary continuity between them. There is also a qualitative difference between the
439 blastula stage and the organogenesis stage in the embryogenesis of mammals,
440 although some of the intermediate points along the trajectories between these
441 developmental stages may be impossible to classify. As noted by Sharov (2022), some
442 biosemioticians, though committed to the continuity thesis, recognize qualitative stages
443 in the evolution of semiosis and even subscribe to a great chain of semiosis (although a
444 bush would have been a better frame of thinking than a chain), investigating the steps in
445 the evolution of semiotic competence (e.g., Hoffmeyer & Stjernfelt, 2016) and
446 suggesting distinctions and evolutionary transitions between different semiotic systems.
447 To repeat: gradations do not imply that qualitative distinction cannot be made. The
448 whole evolutionary transitions research project (Maynard Smith & Szathmáry, 1995) is
449 based on the assumption that qualitative changes did occur during evolutionary history
450 and that the study of these qualitative changes, the rates and patterns of their evolution,
451 can illuminate important questions such as the evolution of the genetic code,
452 multicellularity and human language. There is no a-priori commitment to particular
453 evolutionary rates or particular evolutionary patterns. Hence, our answer to Belardinelli
454 and Pievani's question about the nature of the evolutionary transition to consciousness
455 – whether UAL is the result of gradual or saltational evolution – is that we are not
456 committed to either, especially since the time scale implied by the term “saltational” or
457 “punctuated change” needs to be specified. The Cambrian explosion took millions of
458 years, but was very rapid at the geological time scale, given the immense changes that
459 occurred during this era.

460
461 As we have noted, in the animal kingdom, limited associative learning (LAL) is much
462 more wide-spread than UAL, and had first emerged, probably, in the late Ediacaran or
463 very early Cambrian. LAL was enormously advantageous and enabled, as Kull &
464 Favareau (2022) noted, the formation of on-line distinctions between images (including
465 images made up of many parts). However, it *did not* enable context sensitive
466 discrimination learning, which requires, we argued, global accessibility, mapping, a

467 flexible value system, working memory, a sense of self and selective attention – the
468 whole list of overlapping capacities that we describe when describing minimal
469 consciousness.

470

471 **6. Constitutive Emergence and the Functions and Goals of Consciousness**

472 The question of the relation between UAL and consciousness and the related question
473 of the function/s of consciousness when it first emerged, is another important question
474 raised by Belardinelli & Pievani (2023). Can we conceive of consciousness, they ask, as
475 an emergent property, “a side effect of new learning abilities [and was] later coopted for
476 new functions, and to enhance learning abilities”? In our opinion the notion of a side-
477 effect or a by-product is inappropriate in this context. As we stress throughout the paper
478 (and in our 2019 book), we see consciousness as a system property that is *constituted*
479 by the processes and structures that underlie the capacity for UAL.

480

481 This is an opportunity to clarify what we mean by constitutive or componential
482 emergence, and how we distinguish it from what we shall call spin-off emergence. With
483 spin-off emergence there is a causal outcome of the target process that need not
484 contribute to the functioning of this target process. An example is the sound of heart
485 beats, which is caused by the operations of the heart and the circulatory system but
486 does not itself contribute to the function of the heart. With constitutive/componential
487 emergence on the other hand, the outcome is constituted by the parts and causal
488 outcome processes themselves – the operations of the heart are constituted by heart-
489 muscle cells and their systemic interactions; these are the kind of emergent causal
490 interactions that explains whole-part relations. If consciousness was a spin-off causal
491 emergent property it could be an exaptation as Belardinelli and Pievani suggest, but if
492 consciousness is *constituted* by UAL dynamics, the notion that it is a by-product makes
493 no sense (it is like saying that the heart’s pumping activity is a by-product of heart cells’
494 organization and activity). In other words, if sentience is constituted by the cognitive
495 processes operationalized by UAL, there cannot be UAL dynamics without
496 consciousness, and consciousness cannot be an originally functionless exaptation that
497 only at later evolutionary stages was coopted for its current function. This means that

498 the functions of the cognitive dynamics that constitute the capacity for UAL are also the
499 functions of consciousness. As we write in the target article “We see subjective
500 experiencing as constituted by cognitive-neurological functional operations such as
501 integration within and between modalities, sensory-motor mappings, memory and
502 evaluation processes, and regard the functions of these constitutive processes as some
503 of the specific functions of subjective experiencing”.

504

505 We argued that thinking about the goals of consciousness may illuminate the functions
506 of consciousness in a more general way. We suggested that the goal of symbolic-
507 rational consciousness is to define and satisfy abstract symbolic values like freedom
508 and justice, while the goal of sentience is to define and satisfy felt needs. There are
509 whole realms of new functions that sentience and symbolic-rational consciousness
510 open-up because consciousness and reflectiveness define new spaces of exploration
511 and selection and define new goals. We used Kant’s term “purposefulness without
512 purpose” to define these new exploration spaces, which are open-ended and cannot be
513 described in terms of specific goals. Kant used this term to explain the notion of
514 aesthetic judgment, which allows what he called the “free play of imagination”, the
515 exploratory freedom that art allows. This freedom is, however, bound by the “common
516 sense”, the shared sensory, cognitive and cultural-aesthetic biases of the judging
517 individuals, who are thus able to meaningfully communicate about their judgments. Our
518 discussion of the teleological transitions to living, sentient and rational-symbolic modes
519 of being emphasizes the evolution of open-endedness and distinguishes these
520 transitions from other types of evolutionary transitions (we discuss this topic in more
521 detail in Ginsburg & Jablonka, 2020).

522

523 **7. Evolutionary Trends in the Evolution of Consciousness**

524 Although our main goal was to uncover principles of sentience that can be applied to
525 animals with very different nervous systems, the study of the patterns of consciousness-
526 evolution, and especially the study of the progressive trend in the evolution of
527 consciousness in vertebrates that Moreno highlights, can reveal important constraints
528 and affordances in the evolution of consciousness. There are, as Moreno (2023)

529 pointed out, important differences between arthropods, cephalopods and vertebrates in
530 the extent and scope of both cognition and conscious awareness. This, as he admits,
531 does not exclude the existence of some form of minimal consciousness in some
532 arthropods and cephalopods, but it tells us something important about the evolutionary
533 history of consciousness. He argues that the embodiment of vertebrates, the multiple
534 degrees of freedom of their movement and the necessary coordination between neural
535 and muscle systems, which their body plan allows, enabled this progressive evolution.
536 Although the importance of embodiment in the evolution of consciousness in all three
537 phyla was explored by Trestman (2013) and we discussed this topic in our book (2019,
538 pp. 395-398), Moreno points to additional important and specific aspects of *vertebrate*
539 development and physiological-morphological organization, which enabled the
540 progressive evolution of consciousness in this clade. These include internal skeleton
541 and fine-tuned controlled cardio-circulatory system facilitating rapid motility, and an
542 autonomic nervous system (ANS) that controls fundamental homeostatic functions,
543 which enabled vertebrates to cope with newly met and often stressful conditions. These
544 affordances do not exist in arthropods and cephalopods, so the complexification and
545 diversification of consciousness in invertebrates, was, Moreno, argued, constrained.
546

547 We are grateful to Moreno for the evolutionary perspective he has offered and agree
548 with him that the evolution of consciousness in vertebrates has taken more open-ended
549 routes than those taken in arthropods and cephalopods (although we must caution that
550 the huge diversity of forms in the many species of arthropods is as yet poorly studied).
551 His suggestions call for a comparative study of different groups within and between
552 phyla focusing on *differences* rather than similarities between their embodied cognitive
553 systems. Our concentration on the similarities of consciousness-supporting structures
554 and processes in vertebrates and invertebrates was necessary to establish some
555 general principles of conscious-supporting organization, but we agree that in order to go
556 forward we need analyses of the differences among the co-evolved brains and bodies in
557 different animal groups. We recently focused on basal vertebrates – fish – and analyzed
558 the neural structures of UAL, which correspond to the structures of a global neural
559 workspace (GNW) in basal fish (Zacks & Jablonka 2023). We found that in fish, the

560 GNW is instantiated by the event-memory system in the hippocampal homologue, a
561 finding that suggests a strong connection between the evolution of declarative-like
562 memory and the evolution of consciousness and may require some modification of the
563 original UAL model that we offered. It will be very informative to study the differences
564 between the three UAL-displaying lineages in view of our current knowledge of their
565 cognitive embodiment and the evolutionary history of their nervous systems and extend
566 this study to animals that show limited associative learning.

567

568 The vertebrate trend towards progressive sophistication of cognition and sentience is
569 dramatically manifest in the idiosyncratic consciousness of humans. The evolution of
570 human symbolic consciousness is a big topic which we hardly touched in our target
571 article (but see Dor & Jablonka, 2010; Jablonka, Ginsburg & Dor, 2012; Shilton et al.,
572 2020, and Shilton, 2022 for discussions of different aspects of symbolic language
573 evolution and musicking), but since the topic was addressed by some of our
574 commentators, especially Campbell (2022) and Olteanu (2022), we shall briefly
575 comment on it here.

576 In our target article we did not define symbols, but since we realize that the term
577 “symbol” is open to several interpretations, we would like to clarify how we use it. Our
578 notion of symbols follows Cassirer (1953-1957) and Deacon (1997) and we define
579 symbols as (i) learned conventional signs that refer to objects, processes, and their
580 attributes and relations, as well as (ii) to other symbols within the symbolic system,
581 forming a self-referential system that (iii) obeys rules linking symbols into symbol-
582 combinations that are likely to be meaningful (Jablonka & Lamb, 2014). The evolution of
583 a symbolic system of representation and communication is most obviously instantiated
584 in human language, and we indeed believe, as Olteanu rightly pointed out, that the
585 evolution of the symbolic-linguistic world created a qualitative difference between
586 human and non-human consciousness. As we indicated in our target article, we follow
587 Dor’s (2015) functional characterization of language as a technology for the instruction
588 of imagination, which enables communication about virtual realities. Dor’s view
589 emphasizes analogical reasoning, which was central to James’ view of the evolution of

590 language (James, 1890) and points to relevant precursors in the evolution of this
591 capacity (Dor, 2023) as well as to the role of social, within-group interactions in the
592 process (Jablonka, 2017). Although the transition to the symbolic realm is very different
593 from the transition to sentience, we believe that all teleological transitions (to life, to
594 sentience, to the symbolic-rational) show communalities (discussed in chapter 10 of our
595 2019 book and in a Ginsburg & Jablonka, 2020). Both differences and communalities
596 can be illuminated by biosemiotic analyses.

597 In the age of AI, the ways in which technology may extend human (and non-human)
598 cognition and consciousness is becoming, as Olteanu notes, an urgent and practical
599 issue. In our recent book (Ginsburg & Jablonka, 2022) we discussed the human
600 manufacturing and use of tools “that become, literally, neurologically, part of the
601 definition of what we call our “self”, extending and altering not only our cognitive reach
602 but the very representation and feel of our bodies”. This cyborg facet of human nature
603 has been discussed by Clark (2004), but current 21st century AI-based technologies are
604 dissolving boundaries between human and non-human biological individuals and
605 between biological individuals and machines in ever accelerating and deepening
606 manner. Learning to incorporate these technologies is scaffolding the construction of
607 new forms of human cognition and consciousness. The possibility of sentient robots
608 raises additional fundamental questions about the significance of material embodiment,
609 the necessity for physiological and morphological ontogenetic sequences, and the need
610 for a nested hierarchy of value (or valence) systems (Bronfman, Ginsburg & Jablonka,
611 2021). If sentient robots can be built from non-biological materials, this will
612 problematize, in a new way, the relation between life (as we currently know it) and
613 sentience.

614 **8. Conscious Choices and the Extended Evolutionary Synthesis**

615 All the commentators of our target article emphasized the importance of agency, niche
616 construction (i.e., Umwelt dynamics) and plasticity, which entails exploration and the
617 harnessing of stochasticity. These processes are central to the evolutionary re-thinking
618 that the extended evolutionary synthesis (EES) is promoting, and all are indeed
619 discussed and studied within the EES framework (for a current review see Chiu, 2022).

620 The same processes and the general view of evolution as driven by the actions of
621 proactive agents has also been, as our commentators have illustrated, central to the
622 biosemiotic perspective.

623

624 In line with the EES view, we argue, as Olteanu (2022) notes, that some biological
625 processes are both evolutionary and ontogenetic: how we define them may depend on
626 the level of biological organization we focus on. For example, neural selection in the
627 nervous system is an evolutionary process when we focus on the changes within the
628 nervous system during embryogenesis and learning, but it is, at the same time, an
629 ontogenetic (maturation and learning) process at the level of the whole life-cycle of the
630 organism. We also highlighted the interactions of ontogeny and phylogeny through the
631 processes of genetic accommodation, which, we believe, were central to the evolution
632 of learning strategies, including UAL, as well as to the evolution of behavior-related
633 morphological and physiological traits.

634

635 We would like to highlight here one aspect that was discussed in Noble's (2022)
636 commentary and is tied up with the EES' emphasis on agency and active niche
637 construction: selection that depends on mentally felt desires, aversions and other
638 feelings. This type of "selection by mental choice", which we briefly discussed in the
639 target article, is part of what Noble calls intentional selection and is related to Darwin's
640 notion of sexual selection by mate choice. As Noble observed, while Darwin's distinction
641 between natural selection and human, rational, design-driven (artificial) selection has
642 been widely accepted (although here too there are interesting and ambiguous cases
643 that are hard to classify), sexual selection by mate choice as distinct from natural
644 selection was often challenged. Moreover, although Darwin did assume that sexual
645 selection through mate choice is based on mental faculties (Darwin, 1871) very little
646 attention has been given, even by Darwin himself, to the difference between the
647 evolutionary outcomes of selection driven by feelings and mentally perceived percepts
648 and goals and selection that is not based on mentally experienced choices. It has been
649 widely assumed that Monod's famous 1954 aphorism "What is true of *E. coli* must also
650 be true of elephants", which points to the basic molecular communality between all

651 forms of life, implies that what is true of elephants must also be true of *E. coli*. This
652 reciprocal claim is obviously wrong, and Monod never made such a claim (and not just
653 because elephants, unlike bacteria are conscious being). However, the significance of
654 the fact that elephants and other animals make choices based on their mental
655 evaluations while organisms such as bacteria and plants do not, makes, we argued, a
656 big difference to evolutionary dynamics. If the capacities we listed as characterizing
657 consciousness are seen as sufficient, and if these capacities are operationalized by
658 UAL dynamics, then selection by mental choice enormously expands the cognitive,
659 social-selection-relevant Umwelt of animals. We discussed the intricate and subtle
660 perceptual and behavioral patterns in the living world that would never have evolved if
661 animals were not able to perceive and evaluate them, but the effects of mental choice
662 go beyond that. “The sense for the beautiful” that Darwin discussed in the context of
663 sexual selection through mate choice, as well as the sense of social self-identity and
664 social care that we share with other conscious social animals are cognitive-affective
665 constructions resulting from social selection that would not exist but for the evolution of
666 mental experiencing. We believe that the similarities and differences between mentally-
667 blind, mental-choice driven, and rationally-driven types of selection and their many
668 consequences need to be a central research project of the EES.

669

670 **9. Conclusions: A Missing Concept?**

671 One of the problems that was emphasized both by us and by most of our commentators
672 is that the concepts of consciousness and sentience are vague umbrella terms covering
673 not only the many varieties and facets of consciousness about which there is some
674 general consensus but also cases about which there is much less consensus. The fact
675 that notions such as “choice” and “meaning” are liberally and metaphorically used
676 aggravates this problem. We may have added to the confusion, by using the mentally-
677 laden term “value” instead of valence (a complaint made by Belardinelli & Pievani2023),
678 although we did carefully define “value” in Table 1 of the target article.

679

680 One way of dealing with this terminological muddle is to avoid the use of the term
681 consciousness/sentience or even mentality altogether (as many biosemioticians of the

682 20th century chose to do) and apply different types of distinctions when discussing
683 different living organisms. This is not acceptable from our point of view because we
684 assume that consciousness can be characterized in a way that acknowledges the
685 obvious and important fact that we and some other organisms go through mental states
686 such as joy, pain, and fear and that the emergence of these states and of the conscious
687 mode of being are the outcomes of biological evolution. A second possibility is to define
688 mentality broadly enough so that it can cover all living beings. We found no broad
689 definition of mentality or sentience that does not identify it with an active, adaptively
690 plastic living state. The adoption of this broad notion means that the distinction between
691 living and mentally-experiencing neural organisms disappears, and with it the notion of
692 unconscious living states.

693

694 The third possibility is to apply mentality on the basis of an acceptable characterization
695 of phenomenal consciousness (not necessarily the one we suggested), and at the same
696 time to acknowledge that we lack a concept that does justice to the internal, self-
697 preserving, plastic state of living organisms that distinguishes them from nonliving, and
698 that can bridge the gap between non-sentient and sentient organisms. We realize that
699 this third option will be regarded with derision by most bio-psychists, but we believe that
700 distinctions that acknowledges the subjecthood, the vivacious inwardness of some living
701 organisms without identifying or endowing them with subjectivity (which presupposes
702 mentality) can be useful. Such a concept (or a group of concepts) can help us
703 understand how organisms with a mental kind of subjecthood had evolved, what kind of
704 subjecthood can be attributed to non-neural organisms, and whether parts of organisms
705 such as isolated brains or brain organoids may have “islands of consciousness” as
706 some cognitive scientists suggested (Bayne, Seth & Massimini, 2020). Our suggested
707 term “vivaciousness” is a step towards the development of a concept of subjecthood
708 that can be applied to the autopoietic exploratory-turbulent inwardness of all living
709 beings without implying mentality (i.e., phenomenal consciousness).

710

711 Vivaciousness cannot, however, do all the conceptual bridging work. Already in our
712 earliest publications we suggested that something we called “overall sensation” may

713 have been the precursor of mental inwardness. In our 2019 book we wrote: “Animals
714 with a ceaselessly active, interconnected nervous system and multiple sensors have
715 what we call “overall sensation” – the kind of overall sensory buzz that was first alluded
716 to by Lamarck when he described the internal activity underlying the “inner feeling”, the
717 feeling of existence. The overall sensation is made up of spontaneous neural activities,
718 neural activities resulting from homeostatic maintenance like those of pacemakers, and
719 neural activities occurring as the animal responds to contingent conditions. As a
720 metaphor, the overall sensation can be regarded as white-noise. We see it as a
721 functionless, as-yet feelingless by-product of a sensory-motor system that dynamically
722 processes electrical and chemical signals. Overall sensation is constantly changing.
723 Different sensations may become distinguishable from each other when persistent
724 stimuli activate a particular local circuit. Other overall sensations may be generated
725 when there is transient selective stabilization of altered neural states, and when simple
726 forms of learning add their temporary signatures to the overall buzz of neural activity.
727 Although the overall sensation with its various signatures is not subjective experiencing,
728 it is, we suggest, the evolutionary raw material from which it emerged, and the specific
729 patterns and “signatures” it manifests are therefore of special interest to us.” (Ginsburg
730 & Jablonka, 2019, p. 279). Whether this notion is useful and in what ways it can be
731 applied to non-neural multicellular organisms is open to discussion and further study.

732

733 Another notion that was important for us, was Damasio’s notion of proto-self (Damasio,
734 2010). When discussing the notion of the self we followed the ideas of Merker (2007)
735 and Metzinger (2007) who, from different starting points, came to a similar notion of
736 minimal self, based on the ability of organisms to represent their world and their body as
737 interacting with the world yet distinct from it. We suggested (in chapter 4 of our 2019
738 book) that the precursor of these complex representations was an evolutionary
739 elaboration, in the context of learning composite associations among sensory stimuli
740 and actions, of the ability of animals to distinguish between the effects of sensory stimuli
741 that are the outcomes of their own activity from identical sensory inputs received from
742 the external world. An example is the difference in our response to the darkness caused
743 by our eye blinks (which is not experienced as darkness) and the brief episodes of

744 darkness that we do experience when identical “blinks” are externally imposed. The
745 ability to respond differently to self- and world-imposed stimuli does not require mental
746 states, but it may be an important precursor, a proto-self, that was necessary for the
747 emergence of a feeling of self, of ownership of one’s actions.

748

749 These are as yet insufficiently developed suggestions, but we hope that thinking along
750 these lines may yield interesting results. We believe that the urging of our
751 commentators to look more closely at what we called the “gray areas”, is very important.
752 We are grateful to them for this and for all the other important and enlightening
753 comments on our target article.

754 **Bibliography**

755 Aristotle (1984). *On the Soul* (J. Barnes, Ed., J. A. Smith, Trans.). The Complete Works
756 of Aristotle. The revised Oxford translation, vol. 1. Princeton University Press.
757

758 Bayne, T., Seth, A. K., & Massimini, M. (2020). Are there islands of awareness? *Trends*
759 *in Neurosciences* 14(1), 6–16. <https://doi.org/10.1016/j.tins.2019.11.003>

760

761 Belardinelli, S., & Pievani, T. (2023). What if consciousness has no function?
762 *Biosemiotics* --- <https://doi.org/10.1007/s12304-023-09533-y>

763

764 Birch, J., Schnell, A.K., & Clayton, N. S. (2020). Dimensions of animal consciousness.
765 *Trends in Cognitive Sciences* 24(10), 789–801. doi: 10.1016/j.tics.2020.07.007

766

767 Birch, J., Ginsburg, S., & Jablonka, E. (2020). Unlimited associative learning and the
768 origins of consciousness: a primer and some predictions. *A Target Article to*
769 *Biology and Philosophy* 35, 56. <https://doi.org/10.1007/s10539-020-09772-0>

770

771 Birch, J., Ginsburg, S. & Jablonka, E. (2021) The learning-consciousness connection.
772 *Biology and Philosophy* 36, 49. DOI: 10.1016/j.neubiorev.2019.11.012

773

774 Bronfman, Z.Z., Ginsburg, S., & Jablonka, E. (2021) When will robots be sentient?
775 *Journal of Artificial Intelligence and Consciousness*, 8(2), 183–203.
776 <https://doi.org/10.1142/S2705078521500168>

777

778 Campbell, C. (2022). Embracing the learning turn: the ecological context of learning.
779 *Biosemiotics* 15, 469–481. <https://doi.org/10.1007/s12304-022-09507-6>

780

781 Cassirer, E. (1953–1957). *The Philosophy of Symbolic Forms*, 3 vols. New Haven, CT:
782 Yale University Press. Translation by R. Manheim of *Philosophie der*
783 *Symbolischen Formen*, 3 vols. 1923–1929. Berlin: Bruno

784

785 Chiu, L. (2022). *Extended Evolutionary Synthesis*. https://www.templeton.org/wp-content/uploads/2022/08/EES_Review_FINAL.pdf

786

787

788 Clark, A. (2004) *Natural-Born Cyborgs: Minds, Technologies, and the Future of Human*
789 *Intelligence*. Oxford University Press.

790

791 Damasio, A. (2010). *Self Comes to Mind – Constructing the Conscious Brain*. London:
792 Heinemann.

793

794 Darwin, C. (1871). *The Descent of Man, and Selection in Relation to Sex*. 1st edition.
795 London: John Murray.

796

797 Deacon, T. W. (1997). *The Symbolic Species: The Co-evolution of Language and the*
798 *Brain*. New York: W.W. Norton & Co.

799

800 Dor, D. (2015). *The Instruction of Imagination: Language as a Social Communication*
801 *Technology*. Oxford: Oxford University Press.

802

803 Dor, D. (2023) Communication for collaborative computation: two major transitions in
804 human evolution. *Philosophical Transactions of the Royal Society B* 378:
805 20210404. <https://doi.org/10.1098/rstb.2021.0404>

806

807 Dor, D., & Jablonka, E. (2010). Canalization and plasticity in the evolution of linguistic
808 communication. In R.K. Larson, V. Deprez & H. Yamakido (Eds.), *The Evolution*
809 *of Human Language*, pp. 135–147. Cambridge, UK: Cambridge University Press.

810

811 Fernando, C. T., Liekens, A. M., Bingle, L. E. H., Beck, C., Lenser, T., Stekel, D. J., &
812 Rowe, J. E. (2009). Molecular circuits for associative learning in single-celled
813 organisms. *Journal of the Royal Society Interface*. 6(34), 463–469.
814 <https://doi.org/10.1098/rsif.2008.0344>

815

816 Ginsburg, S., & Jablonka, E. (2009). Epigenetic learning in non-neural organisms.
817 *Journal of Biosciences* 34(4), 633–646. doi: 10.1007/s12038-009-0081-8. PMID:
818 19920348.

819

820 Ginsburg, S., & Jablonka, E. (2019). *The Evolution of the Sensitive Soul: Learning and*
821 *the Origins of Consciousness*. Cambridge, MA: The MIT Press

822

823 Ginsburg, S., & Jablonka, E. (2020). Consciousness as a mode of being. *Journal of*
824 *Consciousness Studies* 27(9-10), 148–162.

825

826 Ginsburg S., & Jablonka, E. (2021a). Evolutionary transitions in learning and cognition.
827 *Philosophical Transitions of the Royal Society B* 376: 20190766.
828 <https://doi.org/10.1098/rstb.2019.0766>

829

830 Ginsburg S., & Jablonka, E. (2021b). Sentience in plants. A green herring? *Journal of*
831 *Consciousness Studies* 28(1-2), 17–33.

832

833 Ginsburg, S., & Jablonka E. (2022) *Picturing the Mind: Consciousness Through the*
834 *Lens of Evolution*. Illustration by Anna Zeligowski. Cambridge, MA: MIT Press.

835

836 Hendlin, Y. H. (2023). Sensitive souls and biosemiotic agency as emergence.
837 *Biosemiotics* 16, 15–20 <https://doi.org/10.1007/s12304-023-09524-z>

838

839 Hoffmeyer, J., & Stjernfelt, F. (2016). The great chain of semiosis. Investigating the
840 steps in the evolution of semiotic competence. *Biosemiotics*, 9(1), 7–29. DOI:
841 10.1007/s12304-015-9247-y

842

843 Irwin, L. N. (2023). How minimal can consciousness be? *Biosemiotics* 21–26.
844 <https://doi.org/10.1007/s12304-022-09518-3>

845

846 Jablonka, E. (2017). Collective narratives, false memories, and the origins of
847 autobiographical memory. *Biology and Philosophy* 32, 839–853.
848 doi:10.1007/s10539-017-9593-z
849

850 Jablonka, E. (2021). Signs of consciousness? *Biosemiotics* 14(1), 25–29. <https://doi.org/10.1007/s12304-021-09419-x>
851

852 Jablonka, E. and Lamb, M.J. (2014, 2nd edition). *Evolution in Four Dimensions*.
853 Cambridge, MA: MIT Press.
854

855 Jablonka, E., Ginsburg, S. and Dor, D. (2012). The co-evolution of language and
856 emotions. *Philosophical Transactions of the Royal Society B* 367, 2152–2159.
857 doi:10.1098/rstb.2012.0117
858

859 Jablonka, E., & Ginsburg, S. (2022). Learning and the evolution of conscious agents.
860 *Biosemiotics* 15, 401–437. <https://doi.org/10.1007/s12304-022-09501-y>
861

862 James, W. (1890). *The Principles of Psychology*. New York: Dover Publications.
863

864 Kull, K., & Favareau, D. (2022). There is Umwelt before consciousness, and learning
865 transverses both. *Biosemiotics* 15, 491–495. <https://doi.org/10.1007/s12304-022-09513-8>
866

867 Laland, K. N., Tobias, U., Feldman, M. W., Sterelny K., Müller, G. B., Moczek , A.,
868 Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: its
869 structure, assumptions and predictions. *Proceedings of the Royal Society B*.
870 2282(1813): 20151019. doi: 10.1098/rspb.2015.1019.
871

872 Lama, His Holiness the Dalai (2005). *The Universe in a Single Atom: The Convergence
873 of Science and Spirituality*. New York: Harmony/Rodale.
874

875 Lyon, P. (2015). The cognitive cell: bacterial behaviour reconsidered. *Frontiers in
876 Microbiology* 10, 331–335.
877

878 Maynard Smith, J., & Szathmáry, E. (1995). The Major Transitions in Evolution. Oxford
879 University Press.
880

881 Meincke, A.S. (2023). The metaphysics of living consciousness: metabolism, agency
882 and purposiveness. *Biosemiotics* 16, <https://doi.org/10.1007/s12304-023-09531-0>
883

884 Merker, B. (2007). Consciousness without a cerebral cortex: A challenge for
885 neuroscience and medicine. *Behavioral and Brain Sciences* 30, 63–134.
886 doi:10.1017/S0140525X07000891.
887

888

889

890

891

892 Mertens, G., Engelhard, I. M. (2020). A systematic review and meta-analysis of the
893 evidence for unaware fear conditioning. *Neuroscience and Biobehavioral*
894 *Reviews* 108, 254–268. doi: 10.1016/j.neubiorev.2019.11.012.

895

896 Metzinger, T. (2007). Self models. *Scholarpedia* 2, 4174.
897 doi:10.4249/scholarpedia.4174

898

899 Moreno, A. (2023). Some reflections on the evolution of conscious agents: the
900 relevance of body plans. *Biosemiotics* 35–43. <https://doi.org/10.1007/s12304-023-09525-y>

902

903 Noble, D. (2021). The illusions of the modern synthesis. *Biosemiotics* 14, 5–24.
904 <https://doi.org/10.1007/s12304-021-09405-3>

905

906 Noble, D. (2022). The evolution of consciousness and agency. *Biosemiotics* 15, 439–
907 446. <https://doi.org/10.1007/s12304-022-09509-4>

908

909 Olteanu, A. (2022). Learning as becoming conscious: A note on Jablonka and
910 Ginsburg's Notion of learning. *Biosemiotics* 15, 457–467.
911 <https://doi.org/10.1007/s12304-022-09510-x>

912

913 Reber, A. S., Baluška, F. & Miller, W. B. (2022). UAL is a token, not a type. *Biosemiotics*
914 15, 447–450. <https://doi.org/10.1007/s12304-022-09505-8>

915

916 Riskin, J. (2023). Questions for Jablonka and Ginsburg drawn from Lamarck's life-made
917 world. *Biosemiotics* 27–34. <https://doi.org/10.1007/s12304-023-09523-0>

918

919 Sharov, A. A. (2022). Consciousness and learning from the biosemiotic perspective.
920 *Biosemiotics* 15, 483–490. <https://doi.org/10.1007/s12304-022-09511-w>

921

922 Shilton, D., Breski, M., Dor, D., & Jablonka, E. (2020). Human social evolution: Self-
923 domestication or self-control? *Frontiers in Psychology* 11:134. doi:
924 10.3389/fpsyg.2020.00134.

925

926 Shilton, D. (2022). Sweet Participation: The evolution of music as an interactive
927 technology. *Music & Science*, 5. <https://doi.org/10.1177/20592043221084710>

928

929 Skora, L., & Scott, R. B. (2022). Stimulus awareness is necessary for both instrumental
930 learning and instrumental responding to previously learned stimuli. *PsyArXiv*, 13
931 July 2022. <https://doi.org/10.31234/osf.io/e6sw8>

932

933 Thompson, E. (2022). Could all life be sentient? *Journal of Consciousness Studies*, 29,
934 229–265.

935

936 Tønnessen, M. (2022). The Evolutionary Origin(s) of the Umwelt. *Biosemiotics* 15, 1–5.
937 DOI: 10.1007/s12304-022-09506-7

938
939 Trestman, M. (2013). The Cambrian explosion and the origins of embodied cognition.
940 *Biological Theory* 8, 80–92.
941
942 Trestman, M. (2023). Energy and expectation: the dynamics of living consciousness.
943 *Biosemiotics* 16, <https://doi.org/10.1007/s12304-023-09529-8>
944
945 Uexküll, J. v., & Kriszat, G. (1934). *Streifzüge durch die Umwelten von Tieren und*
946 *Menschen: Ein Bilderbuch unsichtbarer Welten*. Julius Springer.
947
948 Zacks, O., & Jablonka, E. (2023)). The evolutionary origins of the Global Neuronal
949 Workspace in vertebrates. *Neuroscience of Consciousness*. doi:
950 10.1093/nc/niad020