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Abstract
A central concern of the book is the importance to being able to distinguish “trustworthy subjects
— who increase the epistemic welfare of our communities — from those untrustworthy individuals,
who instead do not deserve our epistemic credit”’. We address this question from the
perspective of theory and data from the cognitive psychology of expertise. We will argue that
trustworthy subjects, or “true experts”, are different from “untrustworthy subjects” in three ways.
First, true experts can only develop in a regular environment in which there are reliable
relationships between cues and outcomes that are “learnable”, whether by humans or
algorithms. We will note that some environments are much more regular than others, and
therefore provide a foundation for expertise to potentially develop. Note that this feature is a
property of the environment, rather than the individual. Second, individuals need to have the
opportunity to learn relationships between cues and outcomes. This will usually require the
presence of a kind learning environment. A kind learning environment involves the receipt of
continuous, fast, and accurate feedback from the environment. Third, individuals will need the
opportunity to engage in long periods of structured practice. Over time, performance becomes
more accurate (less bias) and less variable (less noise). Of course, there may be individual
differences in learning rates in the same learning environment. In some domains, there is little
ambiguity as to what constitutes accuracy, but in other domains the context can make accuracy
harder to define. We also compare human experts with machine experts in a number of
domains. Overall, true experts can be found in regular learning environments when they have
had the opportunity to learn relationships over a long period of time, and these individuals, who

are accurate and consistent, deserve our epistemic credit.



Introduction

One central concern of the edited volume is the importance to being able to distinguish
“trustworthy subjects — who increase the epistemic welfare of our communities — from those
untrustworthy individuals, who instead do not deserve our epistemic credit”. A second concern
is the question of whether possessing what we call “true expertise” (or “epistemic authority by
virtue of reference to scientific criteria and methods”) can automatically make an individual’s
assertions necessarily more grounded than others. A third concern, as revealed in the book’s
title, is how expertise is viewed in the post-pandemic world, given competing inputs from human
experts and other stakeholders who may weigh variables differently, as well as the role of “non-
human experts” in the form of computer algorithms.

In this chapter, we address these three questions from the perspective of theory and
data from the cognitive psychology of expertise. We will argue that trustworthy subjects, or “true
experts”, are different from “untrustworthy subjects”, in three ways. First, true expertise can only
develop in a regular environment in which there are reliable relationships between cues and
outcomes that are “learnable”, whether by humans or algorithms. We will note that some
environments are much more regular than others, and therefore provide a foundation for
expertise to potentially develop. Note that this feature is a property of the environment, rather
than the learner. Second, individuals need to have the opportunity to learn relationships
between cues and outcomes. This will require a kind learning environment. A kind learning
environment involves the receipt of continuous, fast and accurate feedback from the
environment. Third, future true experts need to have the motivation to engage in sufficient
structured practice, such as “deliberate practice” (Ericsson et al., 1993).

This chapter draws on ideas from the cognitive psychology literature on expertise to
include those expressed in Shanteau (1992a, b), Kahneman (2011), Gobet (2016), and

Kahneman et al. (2021). Therefore, the material and perspective presented in this chapter is not



novel. However, the contribution of this chapter is the application of these ideas to the
framework of the book.
Note on Terminology

In this chapter, we shall use terminology from cognitive psychology. So, we will start by
defining some terms. We refer to expertise as the learning of relationships between cues and
outcomes. In this context, we use the term “cue” in a broad sense to refer to patterns of stimuli
in the environment. We use the term “outcome” to refer to decisions/actions taken in response
to cues. We use the term “feedback” to refer to the visible result of the decisions/actions that are
taken. This can involve objective feedback from reality (winning or losing a chess match) or
subjective feedback from other humans. Regarding the cognitive processes underlying
decisions/actions, we use the term “chunk” to refer to the mental representation of cues in the
environment. When we refer to performance with “low bias”, we mean performance that is
generally accurate, and when we refer to performance with “low noise”, we mean performance
which does not vary much from trial to trial, that is, performance which is consistent.

Finally, as described by Gobet (2016), there is no consensus regarding the definition of
“expertise”. In this chapter we will use the definition provided by Gobet (2016, p. 5) and define
an expert as “somebody who obtains results that are vastly superior to those obtained by the
majority of the population”. As noted by Gobet (2016), this definition has the advantage that it
can be applied to different subpopulations, and that we can define a “super-expert”, such as a
chess super-grandmaster, as somebody whose performance is generally superior to the
majority of grandmasters.

1. Trustworthy vs Untrustworthy Subjects

From the perspective of cognitive psychology, there are three dimensions to be
considered. The first dimension concerns the properties of the task environment. We will note
that some environments are much more regular than others, and therefore provide a foundation

for expertise to potentially develop. Note that this feature is a property of the environment, rather



than the individual. True expertise can only develop in a regular environment in which there are
reliable relationships between cues and outcomes that are “learnable”, whether by humans or
algorithms.

The second dimension is the learning environment. Specifically, individuals need to have
the opportunity to learn relationships between cues and outcomes. Different types of learning
environments can either promote or inhibit learning of the relationships between cues and
outcomes. Learning will be enhanced by a kind learning environment, which involves the receipt
of continuous, fast, and accurate feedback from the environment. Learning will be inhibited in an
unkind learning environment in which feedback is inconsistent or delayed. In an extreme case,
feedback is inaccurate (a “wicked” learning environment), meaning that the learner, rather than
failing to learn the correct relationships, or learning nothing at all, will end up learning incorrect
relationships. Expertise can only develop in a kind learning environment. Note that the learning
environment is also, by definition, a property of the environment rather than the individual.
However, in contrast to the task environment, the learning environment is modifiable, in that it
can change for the better or worse.

The third dimension is related to engaging in sufficient structured practice, such as
“deliberate practice” (Ericsson et al., 1993), to be able to learn relationships. Learners will need
to have high levels of motivation to be able to engage in long periods of structured practice in
the context of a kind learning environment. In this sense, this third dimension reflects a property
of the individual. A detailed description of deliberate practice is beyond the scope of the current
chapter. Stated briefly, deliberate practice can be described as a training method in which the
learner is: 1) Given a task exceeding his or her current skill level; 2) Motivated to practice
extensively and improve (a generally effortful endeavor); 3) Provided with rapid, comprehensive,
and accurate feedback; and 4) Prompted to reflect on the learning experience. Once this goal

has been met, the trainee advances to a more difficult task.



The concept of deliberate practice was first identified as the critical factor in achieving
expertise in “motor skills”, such as in sports or music performance. The concept has since been
extended to more “cognitive domains”, such as chess (Gobet & Campitelli, 2007) and clinical
psychology (Miller et al., 2020). One can distinguish two forms of the deliberate-practice
hypothesis. In the weak form, extended deliberate practice (e.g., for 10,000 hours) is a
necessary cause of expertise. That is, in order to be an expert you need to practice (i.e., it is not
possible to become an expert without practice), although other attributes are required. This
implies that not everyone can be an expert. In the strong form, practice is both a necessary and
sufficient cause of expertise. That is, in order to be an expert, you need to practice, and nothing
else is required. The strong form appears to be wrong in many domains of expertise, for
example chess and music (Gobet, 2016; Hambrick et al., 2014).

To summarize, to develop true expertise in a particular task the following conditions
must be met: 1) There must be reliable relationships between cues and outcomes in the
environment that are “learnable”, 2) The learner is in a kind learning environment, and 3) The
learner engages in long periods, usually at least ten years, of structured “deliberate practice”. If
all these conditions are met, then expertise is likely to develop.

An extreme example of a highly regular task environment, with (typically) a kind learning
environment, is chess. Here, all information is available to the two players. There are clear
relationships between cues (patterns of chess pieces) and outcomes that can be learned. That
is, the outcome is predictable from the cues that a chess player is exposed to while playing.
Expertise can potentially develop in such an environment. Generally, the learner receives fast
and accurate feedback through play. For example, they learn whether they win or lose the
game, and they also learn some information about specific moves (e.g., that a move is weak
because it allows the opponent to employ a tactical motive). Of course, human coaches and
chess engines are another source of feedback regarding the quality of moves and chess

analysis.



An extreme example of an irregular (or chaotic) task environment is a roulette wheel.
Here, assuming a balanced wheel, there are no relationships between cues and outcome to be
learned. That is, the outcome is not predictable from the myriad of cues that a gambler is
exposed to while playing. Expertise cannot of course develop in such an environment, and,
absent compelling evidence to the contrary, we would discount claims of expertise on
performance on roulette wheels. Note that for roulette wheels, the would-be learner has
exposure to lots of rapid and accurate feedback (where the ball lands after each spin), so one
can describe it as a kind learning environment. In addition, the would-be learner could invest
unlimited amounts of time in “practicing” certain techniques and strategies while performing the
task. But the problem is that there are no relationships to learn, and therefore expertise cannot
develop. Unfortunately, as is shown with problem gambling “expertise”, spurious patterns and
regularities might be found in such environments. They are not predictive of anything, but the
hapless gambler believes that they are, and keeps playing until his or her last dollar is lost
(Gobet & Schiller, 2014).

Although playing a roulette wheel and problem gamblers may seem like an extreme
example, there may be many real-world examples that bear more of a resemblance to the
roulette wheel than to chess. In particular, experts’ mid- to long-term political predictions have
been shown to be surprisingly poor, and no better than chance performance (Tetlock, 2005).
Kahneman (2011) also argues that the performance of stock pickers is rarely much better than
chance performance, and does not constitute a true expertise. The poor performance of mid- to
long-term predictions is likely mainly due to two factors. First, the environment may be largely
unpredictable over a longer timescale. That is, in common with the roulette wheel, there may be
few true relationships between cues and outcomes that are learnable over this timescale. Stated
more informally, longer-term predictions may be an impossible task. Second, in contrast to the
roulette wheel, even if there were some weak relationships that are in principle learnable in
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“trials” to learn relationships, meaning that the learning environment is not kind. This makes
learning difficult due to a lack of opportunity to engage in a sufficient amount of deliberate
practice. For example, it is difficult to make predictions regarding Putin’s actions of the war in
Ukraine when there are insufficient data for learning any pertinent relationships. It would be like
trying to learn how to master an opening in chess from a review of a handful of games.

So far, we have emphasized chess as a high-validity domain, and roulette wheels as a
zero-validity domain, because they reflect two extremes. In reality, many domains likely involve
a mix of lower- and higher-validity environments for different tasks. For example, in clinical
psychology, Kahneman (2011, p. 242) notes that therapeutic skills (a particular type of task)
may develop in high-validity environments, because of the fast and continuous feedback that
individuals receive during these activities. In contrast, long-term prediction of clinical outcomes
(another type of task), such as anticipating how likely a particular patient is to benefit from a
treatment, may involve a low-validity environment, because the learner will be unlikely to get the
information required to learn any relationships. Therefore, although beyond the scope of the
current chapter, a thorough analysis of each domain should involve separate analyses of
different tasks within each domain, as they may have different characteristics.

A broader issue with the development of expertise in many domains is summarized by
Gilovich (1993, p. 3), who writes that: “The world does not play fair. Instead of providing us with
clear information that would enable us to ‘know’ better, it presents us with messy data that are
random, incomplete, unrepresentative, ambiguous, inconsistent, unpalatable, or secondhand.”
Stated in terms of the current framework, in many domains learners may be operating in an
unkind learning environment, at least for some tasks, and this learning environment does not
support efficient learning of whatever relationships are in principle learnable.

So far, we have focused on outlining the framework for understanding trustworthy and
untrustworthy experts, but have described expert performance itself in vague terms. In many

domains, there is a clear objective measure of performance by which one can identify experts



(Gobet, 2016). For example, chess ratings, such as Elo ratings, capture performance in relation
to patterns of results (wins, draws, losses) over a period of time, taking into account the strength
of the opponents. In athletics, performance in various events is captured by running times, for
example. During the development of expertise, performance on objective measures improves,
or becomes more accurate and less variable, or, equivalently, more consistent. In some
domains, there are fewer obvious objective markers of performance (such as running times in a
100m race). In those domains, performance is assessed by more subjective measures, such as
evaluation by peers. To draw the distinction with the expert performance based on objective
measures, the term “respect experts” has been used (Kahneman et al., 2021).

To reiterate, the combination of the properties of the task environment, the kindness of
the learning environment, and the extent of structured or deliberate practice will generate
different types of expertise (Figure 1). When all three come together, we argue that true
expertise is observed. This is located at the top right corner of Figure 1, and is the case for
chess masters. Individuals located in this space are “trustworthy subjects”. At other places in

Figure 1, we will be dealing with less trustworthy subjects.

Figure 1 about here

2. Experts vs Other Experts vs Other Stakeholders

If we assume that an expert has at least some level of trustworthiness, the question
arises as to whether we should “follow the expert’. In many domains, this is uncontroversial. For
example, if our life depended on finding the best move in a chess position, we would seek
advice of the top human player/s. If we consulted multiple top human players, we could take the
most popular choice as our move. Alternatively, if we were allowed to consult chess engines, we
would use their recommendations. In this scenario, there is limited doubt that we should “follow

the expert”, whether derived from human or machine expertise.



However, in many domains, particularly in the social, political, and medical sciences,
there are at least four complications. First, as already noted, expertise in these domains may
involve less trustworthy expertise, at least for some tasks. Second, two experts working in the
same domain may disagree widely. This is of course routinely observed in the legal domain
(Mieg, 2001), as described in more detail below. Third, an expert working in one domain may
arrive at a different conclusion regarding appropriate actions than an expert working in a
different domain. Last, as noted earlier, “there is a growing tension between experts’
recommendations and alternative views — not necessarily grounded on the scientific method —,
which appeal to and necessarily involve a different set of norms and values”. How should
alternative views, based on different values, be weighed against those of the expert/s? And
should this depend on the level of trustworthiness of the expert/s?

As noted above, the legal domain provides compelling examples of where experts can
be recruited to argue for different, even opposite, positions. This is particularly apparent in legal
systems using Common Law, used for example in the United States and the United Kingdom,
which rely heavily on precedents (cases). An expert withess may be selected by the prosecution
and so that they will argue in favor of the prosecutor’s case. An expert witness selected by the
defense will of course be expected to argue in favor of the defendant. Expert witnesses
generally, but not always, have a scientific background. Expert testimonies are delivered in an
adversarial setting, with the opportunity for cross-examination from the opposing team. As noted
by Mieg (2001), three points can be highlighted. First, as noted above, experts can be expected
to contradict each other. Second, experts are not used primarily to establish the “truth”, but to
support the case made by the prosecution and/or the defense. Third, the most effective expert
witnesses are those who are able to communicate their viewpoint, perhaps with great
confidence, rather than those who have the greatest subject matter expertise or those who are

most likely to be “correct”.



How, then, do we decide to “follow the expert” if there are two experts with opposite
arguments? More broadly, how can we develop trust in these experts? The short answer is that
it is probably unwise to put too much trust in experts in the legal context, but that it is easier to
trust experts in other domains (such as chess). The financial scandals of the 2000s (the Enron
case, and the subprime mortgage crisis) are other examples where trust in experts can be
eroded which can make it more difficult to follow the expert (Mieg, 2006).

However, from a broader perspective, Giddens (1990) has taken a different view and
has emphasized the merit of “expert systems” which are defined as “systems of technical
accomplishment or professional expertise that organize large areas of the material and social
environments in which we live today” (1990, p. 27). Expert systems are everywhere and we
rarely notice them. For example, for example, if we take a train we must trust that it will transport
us effectively, even though we have little to no knowledge of the engineering behind the
operation of the transport system. Giddens (1990) argues that in general we have to trust expert
systems, and that although problematic counterexamples can be found, in aggregate expert
systems are beneficial to individuals and society.

3. Expertise for a New World

In addition to competing viewpoints from other experts, and non-experts and other
stakeholders, the application of machine learning and artificial intelligence will provide another
input for decision making beyond to those provided by the human experts. Indeed, it is
important to consider how machine expertise will interact with human expertise in this context.
Another way to think about this is that there are three sources of inputs for decision making:
human expert/s (with potentially differing opinions), machine expert/s (with potentially differing
“opinions”), and other stakeholders (with potentially differing opinions). As above, we can
consider how these three sources of information should be weighed.

One should note that there is long history of research comparing human decision making
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outcomes. As already noted, human experts’ prediction of mid- to longer term outcomes have
often been shown to be poor, so it is reasonable to ask whether algorithms could do better. In a
typical study, a set of predictor variables (e.g., for a personnel selection task, the ratings of
candidates on leadership, communication, interpersonal skills, job-related technical skills,
motivation) are used to predict a target outcome (subsequent job evaluations of the same
people). Expert human judges make their predictions. An algorithm rule (such as multiple
regression) uses the same predictors to produce mechanical predictions of the same outcomes.
Overall accuracy of human and mechanical predictions is compared. The typical result is that
the algorithms do no worse than the human judges, and often perform better (for personnel
selection, see Kuncel et al., 2013; for clinical prediction, see Gardner et al., 1996).

For example, in one study in personnel selection (Yu & Kuncel, 2020), doctoral-level
psychologists, employed by an international consulting firm to make such predictions, achieved
a correlation of .15 with subsequent performance evaluations, whereas multiple regression
yields a correlation of .32 (Multiple R) with subsequent performance evaluations. In another
prototypical study examining admissions described in Kahneman (2011), subjective impressions
of trained professionals were compared against a simple rule in predicting end-of-year grades.
Trained counselors predicted end-of-year grades using the following information: 45-min
interview; high-school grades; multiple aptitude tests; and a 4-page personal statement. These
judgements were compared against a statistical model that incorporated a smaller number of
predictors. The regression equation predicted end-of-year grades using only high-school grades
and one aptitude test. Once again, the algorithmic judgment performed better than the human
judgments.

One may wonder why the subjective impressions of trained professionals perform poorly
at these kinds of prediction tasks, usually no better (and often worse) than simple algorithms.
One possibility is that the human experts try to be too clever in their evaluation and combine the
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humans are “noisy”, and often give different answers to the same information. If human experts
are noisy in this task, we would not expect low-reliability judgements to be good predictors of
real-world outcomes.

The examples referred to above, i.e., prediction in personnel selection, prediction of
academic performance, and prediction of mental health outcomes, are clearly not zero-validity,
because both human and algorithmic prediction was better than chance. That is, there are some
relationships between cues and outcomes that are learnable and useful. But overall prediction
was not very high, so they can be considered relatively low-validity domains.

A recent example of a study of forecasting in the social sciences is illustrative of these
general themes (The Forecasting Collaborative, 2023). Two forecasting tournaments tested the
accuracy of predictions of societal change in a number of domains in the social sciences
(ideological preferences, political polarization, life satisfaction, sentiment on social media, and
gender—career and racial bias). Volunteer forecasting teams comprising of social scientists were
provided with historical trend data on the relevant domains, and teams submitted monthly
forecasts for a year (Tournament 1: 86 teams, 359 forecasts), with an opportunity to update
forecasts based on new data six months later (Tournament 2: 120 teams, 546 forecasts). The
main finding was that social scientists’ forecasts were in aggregate no more accurate than those
of simple algorithms (e.g., means of past data, linear regressions). Social scientists’ forecasts
were also no more accurate than the aggregate forecasts of a sample from the general public
(N=2802).

The authors offer a range of possible explanations for the apparent poor predictions of
the social scientists. Most important for our current purposes, they note that social systems may
be largely chaotic (our word, used in an informal sense) meaning that accurate prediction is a
hard task. The authors use the following language to express this idea: “Like other dynamical
systems in economics, physics or biology, societal-level processes may also be genuinely

stochastic rather than deterministic” (p. 10). Stated in terms of the language used in the chapter,



predictions in the study were poor because the domains assessed may constitute low-validity
environments in which both humans and algorithms do not achieve good accuracy.

It should be noted that in addition to the chaotic nature of social systems, the authors
offer a number of other possible explanations for the relatively poor accuracy of forecasts of
social scientists. First, teams self-selected into the study, and therefore may not be
representative of social scientists in general. Second, they may not have been sufficiently
motivated to perform well. Third, their knowledge and understanding of effects, often of small
size, observed in controlled laboratory settings may not generalize well to real-world settings.
Fourth, they may not have received sufficient training in predictive modelling to maximize
performance on the task. Last, the study took place during the pandemic, which may have
complicated the application of theoretical models. Performance may have been better during a
more “normal” period.

The paper did note that there was some role of expertise in the accuracy of forecasts.
Specifically, although effect sizes were generally small, scientists were more accurate if they
had scientific expertise in a prediction domain, if there were interdisciplinary, and if they used
simpler models and based their predictions on historical data. In particular, publication track
record on a topic, rather than subjective confidence in domain expertise or confidence in the
forecast, contributed to greater accuracy. In addition, the fact that it was possible to identify
some predictors of accuracy of forecasts suggests that the domains were low validity, rather
than zero-validity. Finally, it is also important to point out that forecasting is only one type of
tasks of social scientists may carry out. Of course, they engage in other tasks and have
presumably developed expertise in other tasks such as designing and carrying out experimental
studies, developing theoretical models, processing and analyzing data, and writing scholarly
articles. As noted earlier, it is important to consider the range of tasks that individuals engage in
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To summarize, for zero-validity domains, there are no relationships that can be learned,
and therefore prediction is not possible for humans or algorithms. For low-validity domains,
algorithms tend to perform no worse, or perform better, than human experts. One might wonder
how human experts and algorithms fare on high-validity domains, and this is what we consider
next.

Once again, we will use chess as an example domain to consider these issues. A
computer algorithm, or “chess engine”, Deep Blue, first beat a chess world champion, Garry
Kasparov, in 1997 (Campbell et al., 2002). Since that time, chess engines running on a personal
computer or handheld computer are so strong that top grandmasters have stopped playing
matches against them. Thus, the short answer to the question posed in the previous paragraph
is that chess engines are much stronger than the top human players in the domain of chess. We
will also provide a longer answer focusing on the evolution of AlphaZero (Silver et al., 2018).

AlphaZero is an artificial intelligence system developed by DeepMind, which uses
machine learning to master various games, including chess (Silver et al., 2018). It uses three
mechanisms, Monte Carlo tree search, Deep Learning, and reinforcement learning. Rather than
searching the tree of possible moves in a systematic way, Monte Carlo tree search generates
games by randomly picking moves for the two players. The idea is that, if a move in the current
position is better than the alternatives, this move should lead to better results on average, when
many such games are played, even though each individual move is selected randomly. With
more sophisticated variations of this technique, the choice of moves is biased by previous
experience.

Deep Learning consists of adjusting the weights of an artificial neural network, using
techniques recently developed (LeCun, Bengio, & Hinton, 2015). AlphaZero uses two networks:
the first suggests a move in a given position, and the second evaluates the position as a whole.
The program learns by playing a large number of games against itself (“self play”), tuning the
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used to evaluate the potential of each possible move, and the Monte Carlo tree search
algorithm is used to select the best move based on this evaluation. This technique uses the
feedback obtained by the outcome of games to further learn.

Stated simply, in chess AlphaZero starts by training a neural network on the basic rules
of the game and then improves its understanding through self-play, where it repeatedly plays
games against itself and learns from its mistakes. AlphaZero's approach is highly flexible,
allowing it to learn and play new games with little or no prior knowledge of the rules. This makes
it a highly sophisticated and powerful Al system, capable of defeating top human players and
other computer programs in a variety of games.

There are three especially striking features of AlphaZero that we wish to elaborate on
here. First, AlphaZero learns very quickly, and after about 4 hours of training can beat other
strong programs (and, presumably, the top human players). Second, AlphaZero plays to a very
high standard even if it is not allowed to search positions. The importance of pattern recognition
in human experts has been long emphasized (Gobet, 2016) and therefore raises the possibility
that AlphaZero is a model for human expertise. Last, the play of AlphaZero led to new insights
in chess theory as described in a book, Game Changer (Sadler & Regan, 2019). In Game
Changer, new advances in chess theory are described that have been developed after study of
the play of AlphaZero (that had no human tutor). If machine learning can enhance
understanding of chess theory, this raises the question as to whether it can enhance
understanding of theory in other domains.

To summarize, at least in one high validity domain, machine expertise easily
outperforms the top human players, and in one case appears to do so using mechanisms that
may be similar to humans. Moreover, machine expertise can provide concrete information that
can elevate human expertise. This suggests a model for how human and machine expertise

may interact in the future and provides a glimpse of “Expertise in the New World”.



Alternative Perspectives

We now expand the discussion to connect with alternative perspectives on expertise in
different domains. First, Von Bertalanffy (1973, p. 39) distinguishes closed systems, “i.e.
systems which are considered to be isolated from their environment”, with open systems — all
living organisms — which have interactions with their surroundings through input and output
flows (e.g. exchanges of energy or information). Traditional physics and chemistry deal with
closed systems and highly precise predictions are possible. With other domains — weather
forecasting, global warming — one deals with open systems, and the accuracy of prediction
drops sharply.

We note that the most regular domains (e.g., chess, tennis, physics, music) are closed
systems. As discussed earlier, true expertise can develop in these domains with suitable
feedback, practice and motivation. However, with domains that have a high impact for society
(e.g., political science and economics), we are often dealing with open systems, which come
with more variables, more interactions between processes and variables, and more difficulty
learning relationships. The consequence is that it is much harder to learn through practice and
study, and therefore that true expertise may not develop. Thus, some of the most trustworthy
experts may be found in domains with modest societal importance.

Second, and related, it could also be argued that many domains in which computers
display real expertise (e.g., board games, music) are closed systems, and therefore likely to be
of little societal import. While the fact that AlphaGo played a brilliant move against human
champion Lee Sedol might be fascinating for Go aficionados, it does not help solve pressing
societal issues. Furthermore, it has been argued that there is a difference between making a
decision, in which computers excel, at least in some domains, and making a choice, which
according to authors such as Weizenbaum (1976) and Cisek (1999), is beyond the competence
of computers as it entails the question of responsibility (Konigs, 2022). They make the argument

that the domains that are important for society require choices, not decisions. However, in



recent years, the boundary between domains that are both important for society and where Al
systems perform well has blurred. For example, Al systems are increasingly used to make
scientific discoveries in biology (Jumper et al., 2021), medicine (Abd-Alrazaq et al., 2020) and
clinical psychology (Morales et al., 2017).

Third, as noted earlier, it is striking that domains that have a large impact on society are
often open systems, where predictions are difficult. In domains such as political science, experts
are typically valued for their ability to explain events post hoc, and rarely for their ability to draw
successful predictions. For example, Putin’s annexing of Crimea was predicted by few political
scientists but explained after the fact by many. Another interesting observation is that experts in
these fields are characterized by use of primarily declarative knowledge (knowing that;
knowledge of facts that is accessible consciously), whereas experts in closed systems such as
chess tend to use primarily procedural knowledge (knowing how, knowledge of actions to carry
out given a certain situation). The distinction between these two types of knowledge has been
discussed in great depth in philosophy (Gobet, 2012; Snowdon, 2004; Winch, 2009), and further
discussion is beyond the scope of this chapter. However, the differential use of these two types
of knowledge in open and closed systems warrants further analysis.

Last, whilst some Al systems such as AlphaZero display superhuman expertise, it is
clearly the case that many do not. The question then arises as to whether humans in general
trust Al algorithms. In an intriguing series of online experiments, Krigel et al. (2022) show that
people tend to trust Al-powered algorithms, even when they were told that the algorithm is
unreliable and therefore should not to be trusted. Participants received advice from an algorithm
about the decision to make about ethical dilemmas. They received different types of information
about the algorithm. Krlgel et al. found that participants trusted the algorithm even when they
knew nothing about how it was trained, or even when they were told that it should not be trusted
(the algorithm imitated convicted criminals). The results of this study resemble the public’s
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educating the public about the reliability and limitations of such Al systems, particularly with
respect to their level of expertise, are two important tasks for the industry and society in general.
Conclusion

A central concern of the book is the importance of being able to distinguish trustworthy
subjects from untrustworthy individuals. We have addressed this question from the perspective
of theory and data from the cognitive psychology of expertise. We have argued that to develop
true expertise (i.e., become a trustworthy subject) in a particular task the following conditions
must be met: 1) There must be reliable relationships between cues and outcomes in the
environment that are “learnable”, 2) The learner is in a kind learning environment, and 3) The
learner engages in long periods, usually at least ten years, of structured “deliberate practice”. If
all these conditions are met, then expertise is likely to develop. We have also compared human
experts with machine experts in a number of domains and found that the latter are often
superior, or no worse, than the former. Therefore, human expertise may be enhanced by
judicious application of machine expertise, potentially enhancing trustworthiness of human

experts.
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Figure 1 Caption
Figure 1 shows the three dimensions to be considered when evaluating expert
performance, the validity of the task environment (ranging from zero to high), the learning
environment (ranging from unkind to kind), and amount of structured practice. True expertise
(shown in green) can only develop when 1) there are reliable relationships between cues and
outcomes in the environment that are “learnable”, 2) The learner is in a kind learning
environment, and 3) The learner engages in long periods, usually at least ten years, of

structured “deliberate practice”.
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