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Abstract

Many modern tech companies, such as Google, Uber, and Didi, utilize online
experiments (also known as A/B testing) to evaluate new policies against existing ones.
While most studies concentrate on average treatment effects, situations with skewed
and heavy-tailed outcome distributions may benefit from alternative criteria, such
as quantiles. However, assessing dynamic quantile treatment effects (QTE) remains
a challenge, particularly when dealing with data from ride-sourcing platforms that
involve sequential decision-making across time and space. In this paper, we establish
a formal framework to calculate QTE conditional on characteristics independent of
the treatment. Under specific model assumptions, we demonstrate that the dynamic
conditional QTE (CQTE) equals the sum of individual CQTEs across time, even
though the conditional quantile of cumulative rewards may not necessarily equate to
the sum of conditional quantiles of individual rewards. This crucial insight significantly
streamlines the estimation and inference processes for our target causal estimand. We
then introduce two varying coefficient decision process (VCDP) models and devise an
innovative method to test the dynamic CQTE. Moreover, we expand our approach to
accommodate data from spatiotemporal dependent experiments and examine both
conditional quantile direct and indirect effects. To showcase the practical utility of
our method, we apply it to three real-world datasets from a ride-sourcing platform.
Theoretical findings and comprehensive simulation studies further substantiate our
proposal.
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1 Introduction

Online experiments, often referred to as A/B testing in computer science literature, are

widely utilized by technology companies (e.g., Google, Netflix, Microsoft) to assess the

effectiveness of new products or policies in comparison to existing ones. These companies

have developed in-house A/B testing platforms for evaluating treatment effects and providing

valuable experimental insights. Take ridesourcing platforms like Uber, Lyft, and Didi as

examples. These platforms operate within intricate spatiotemporal ecosystems, dynamically

matching passengers with drivers (see, for instance, Wang and Yang, 2019; Qin et al.,

2020). They implement online experiments to explore various order dispatch policies

and customer recommendation initiatives. These products hold the potential to enhance

passenger engagement and satisfaction, diminish pickup waiting times, and boost driver

earnings, ultimately leading to a more efficient and user-friendly transportation system.

In this study, we address the fundamental question of how to evaluate the difference

between the quantile return of a new product (treatment) and that of an existing one.

Although the average treatment effect (ATE) is widely used in the literature to quantify

the difference between two policies (Imbens and Rubin, 2015; Kong et al., 2022),it only

considers the average effect and does not account for variability around the expectation.

In applications with skewed and heavy-tailed outcome distributions, decision-makers are

more interested in the quantile treatment effect (QTE), which offers a more comprehensive

characterization of distributional effects beyond the mean and is robust to heavy-tailed

errors (see e.g., Abadie et al., 2002; Chernozhukov and Hansen, 2006). For example, in

ridesourcing platforms, policymakers may want to determine which policy more effectively

raises the lower tail of driver income. Furthermore, developing valid inferential tools for

QTE can reveal how treatment effects differ by quantile and provide valuable information

about the entire distribution.

Addressing the problem mentioned earlier presents two significant challenges. The first

challenge involves efficiently inferring the dynamic QTE (quantile treatment effect), which

is defined as the difference between the quantiles of cumulative outcomes under the new

and old policies, in long horizon settings with weak signals. In contrast to single-stage

decision-making, policy makers for ridesourcing platforms assign treatments sequentially over
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time and across various locations. Existing estimators, such as those based on (augmented)

inverse probability weighting (see e.g., Wang et al., 2018, Section 4), are subject to the

curse of horizon, as described by (Liu et al., 2018). This means their variances increase

exponentially with respect to the horizon (i.e., the number of decision stages). Such

approaches are inadequate in our context, where the horizon typically spans 24 or 48 stages

and most policies improve key metrics by only 0.5% to 2% (Qin et al., 2022). Furthermore,

unlike the average cumulative outcome, which can be broken down into the sum of individual

outcome expectations, the quantile of cumulative outcomes generally does not equal the

sum of individual quantiles. This makes estimating our causal effect extremely challenging.

Existing efficient evaluation methods designed for mean return, such as those proposed by

Kallus and Uehara (2022) cannot be easily adapted to our situation.

The second challenge arises from handling the interference effect caused by temporal

and spatial proximities in spatiotemporal dependent experiments. This interference effect

results in a treatment applied at one location influencing not only its own outcome, but also

the outcomes at other locations. The current treatment is likely to affect both present and

future outcomes. Neglecting these effects would produce a biased QTE estimator. As far as

we are aware, there is no existing test capable of concurrently addressing both challenges.

1.1 Related work

A/B testing has been extensively researched in the literature, as evidenced by the works

of Yang et al. (2017) and Zhou et al. (2020), among other references. In contrast to most

existing A/B testing methods that focus on the Average Treatment Effect (ATE), Quantile

Treatment Effects (QTE) have received less attention. Among the few available studies, Liu

et al. (2019) proposed a scalable method to test QTE and construct associated confidence

intervals. Moreover, Wang and Zhang (2021) developed a nonparametric method to estimate

QTEs at a continuous range of quantile locations, including point-wise confidence intervals.

More broadly, the estimation and inference of (conditional) QTEs have been considered in

the causal inference literature, as seen in the works of Chernozhukov and Hansen (2006),

Firpo (2007), and Blanco et al. (2020). However, these methods predominantly address

single-stage decision-making. To the best of our knowledge, this paper represents the first
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attempt to explore QTE in temporally and/or spatially dependent experiments.

Our paper is closely related to the rapidly expanding body of literature on off-policy

evaluation in sequential decision-making. The majority of existing studies primarily con-

centrate on inferring the expected return under a fixed target policy or a data-dependent

estimated optimal policy (Zhang et al., 2013; Shi et al., 2020; Kallus and Uehara, 2022). In

recent years, several papers have explored policy evaluation beyond averages (Wang et al.,

2018; Kallus et al., 2019; Qi et al., 2022). These works propose using (augmented) inverse

probability weighted estimators to evaluate specific robust metrics under a given target

policy. As noted previously, these methods are subject to the curse of horizon and become

less effective in long-horizon settings. Most notably, policy evaluation in spatiotemporal

dependent experiments remains unexplored in the aforementioned studies.

Analysis of temporal and spatial interference has received much attention recently. For

example, Tchetgen and VanderWeele (2012), Hudgens and Halloran (2008) and Liu and

Hudgens (2014) considered partial interference, where interference is possible between

individuals within the same group (or through social interactions) but not between groups.

This implies that potential outcomes are influenced not only by the treatment of the subject

under consideration but also by the treatments of other subjects within the same group.

Our focus differs from these studies as we delve into the realm of interference that extends

across both time and space. However, similar to the above literature, we employ the partial

interference assumption to handle the spatial interference as well. Recent proposals have

investigated causal inference with temporal or spatial interference, including studies by

Savje et al. (2021) and Hu et al. (2022), among others. However, these methods primarily

focus on the average effect. Furthermore, our paper is closely related to the literature on

distributional reinforcement learning (see e.g., Zhou et al., 2020). Despite this connection,

these studies primarily concentrate on the policy learning problem, and the uncertainty

quantification of a target policy’s quantile value remains unexplored.

Lastly, our paper is connected to a line of research on quantitative analysis of ridesharing

across various fields such as economics, operations research, statistics, and computer science

(see e.g., Shi et al., 2022; Zhao et al., 2022). Nevertheless, quantile policy evaluation has

not been examined in these papers.
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1.2 Contributions

Our proposal offers three valuable contributions to existing literature. First, we present a

framework for deducing dynamic conditional Quantile Treatment Effects (QTE), defined

as dynamic QTE dependent on market features, irrespective of treatment history. While

unconditional QTE may be of interest, as previously noted, it assumes a highly complex form

in long horizon settings and is extremely challenging to identify when the signal is weak. In

contrast, we demonstrate that under certain modeling assumptions, the proposed dynamic

conditional QTE (CQTE) is equal to the sum of individual CQTE at each spatiotemporal

unit, even though the conditional quantile of cumulative rewards does not necessarily

equate to the sum of conditional quantiles of individual rewards. This finding significantly

streamlines the estimation and inference processes for our causal estimand, making our

proposal easily implementable in practice. Additionally, the estimated CQTE can exhibit a

smaller variance compared to that of the unconditional counterpart.

Second, we introduce an innovative framework to test dynamic CQTE while accounting

for the interference effect. We propose two Varying Coefficient Decision Process (VCDP)

models, enabling the application of classical quantile regression (Koenker and Hallock, 2001)

for parameter estimation and subsequent inference. We then develop a two-step method for

estimating CQTE, along with a bootstrap-assisted procedure for testing CQTE. We further

extend our proposal to analyze spatiotemporally dependent data and to test Conditional

Quantile Direct Effects (CQDE) and Conditional Quantile Indirect Effects (CQIE).

Third, we thoroughly examine the theoretical and finite sample properties of our methods.

Theoretically, we prove the consistency of our proposed test procedure, allowing the horizon

to diverge with the sample size. Notably, classical weak convergence theorems (Van Der Vaart

and Wellner, 1996) necessitate a fixed horizon and are not directly applicable. Empirically,

we apply our proposed method to real datasets obtained from a leading ridesourcing platform

to assess the dynamic quantile treatment effects of new policies.

1.3 Organization of the paper

Section 2 describes data from online experiments. Section 3 covers temporally dependent

experiments, and estimation and inference procedures. Section 4 extends the proposal to
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spatiotemporally dependent data. Section 5 decomposes CQTE into CQDE and CQIE.

Section 6 evaluates ridesourcing dispatching and repositioning policies, and Section 7 assesses

the finite sample performance using real-data-based simulations. Additional simulation

studies, theoretical properties and their proofs are presented in the supplementary material.

2 Data Description

The purpose of this paper is to analyze three real datasets collected from Didi Chuxing,

one of the world’s leading ride-sharing companies. One dataset was collected during a

time-dependent A/B experiment conducted in a city from December 10, 2021 to December

23, 2021. The goal of this experiment was to evaluate the performance of a newly designed

order dispatching policy, which aimed to increase the number of fulfilled ride requests and

boost drivers’ total revenue. To protect privacy, we will not disclose the city name and

the specific policy used. During the experiment, each day was divided into 24 equally

spaced non-overlapping time intervals. The new policy (B) and the old policy (A) were

alternated and assigned to these intervals every day. On each day, we randomly selected

the treatment sequence from AB. . .AB and BA. . .BA with equal probability. Therefore, we

switched between A and B within and between days, ensuring that each policy was used

with equal probability at each time interval, meeting the positivity assumption. For more

details, see Section 3.1. It is worth noting that such an alternating-time-interval design,

also known as the switchback design, is commonly used in industries to reduce the variance

of treatment effect estimators (Hu and Wager, 2022; Shi et al., 2022; Xiong et al., 2023).

Further information can be found in the article by Lyft on experimentation in a ride-sharing

marketplace (Chamandy, 2016).

The second dataset comes from a spatiotemporal-dependent experiment conducted

in another city between February 19, 2020, and March 13, 2020. Each day is divided

into 48 non-overlapping, equal time intervals, and the city is partitioned into 12 distinct,

non-overlapping regions. On the first day of the experiment, the initial policy in each region

is independently set to either the new or old policy with a 50% probability. The temporal

alternation design for time-dependent experiments is then applied in each region.

In addition to the two datasets from A/B experiments mentioned earlier, we also analyze
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(a) (b) (c) (d)

Figure 1: Scaled drivers’ total income (a), request (b) and drivers’ online time (c) in the temporal
dependent A/B experiment and the estimated density of drivers’ total income (d) in the spatial
temporal dependent A/B experiment.

a third dataset collected from an A/A experiment. In this case, the two policies being

compared are identical, and the treatment effect is zero. The experiment took place in a

specific city from July 13, 2021 to September 17, 2021. This analysis serves as a sanity

check to examine the size property of the proposed test. We expect that our test will not

reject the null hypothesis when applied to this dataset, as the true effect is zero.

The ridesharing system dynamically connects passengers and drivers in real-time. All

three datasets include the number of call orders and the total online time of drivers for each

time interval. These metrics represent the supply and demand in this two-sided market.

The platform’s outcomes include the drivers’ total income, the answer rate (the number of

call orders responded to), and the completion rate (the number of call orders completed) for

each time interval. In our study, we are interested in determining whether the new policy

improves drivers’ total income at various quantile levels.

The datasets exhibit four distinct characteristics. First, the horizon duration is typically

much longer (e.g., 24 or 48) than the experiment duration, while the treatment effect is

usually weak (e.g., 0.5%-2%). Second, both demand and supply are spatiotemporal networks

that interact across time and location, as observed in panels (a) and (b) of Figure 1, which

display the number of call orders and drivers’ online time. Third, the outcome of interest

follows a non-normal and heavy-tailed distribution, illustrated in panels (c) and (d) of

Figure 1. Finally, there are interference effects over time and space, demonstrated in Figure

2, with temporal interference effects occurring when past actions impact future outcomes.

We focus on answering three key questions in these datasets:

(Q1) How can we quantify treatment effects across various quantile levels for the time-
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Figure 2: This example illustrates the temporal interference effect in ridesharing, where assigning
different drivers to pick up a passenger significantly impacts future ride requests. (a) A city with
10 regions has a passenger in region 6 needing a ride, with three drivers in region 3 and one in
region 10. Two actions are possible: assigning a driver from region 3 or region 10. (b) Assigning
a driver from region 3 might result in an unmatched future request due to the driver in region
10 being too far from region 1. (c) Assigning the driver in region 10 could lead to all future ride
requests being matched, preserving all three drivers in region 3.

dependent A/B experiment data in order to gain a comprehensive understanding of the

new policy’s effects within the city?

(Q2) How to evaluate the quantile treatment effects for the above spatiatemporal

dependent experiment data?

(Q3) How to determine whether or not to replace the old policy with the new one?

These questions drive the methodological development outlined in Sections 3 and 4.

3 Testing CQTE in temporal dependent experiments

In this section, we explicitly state the test hypotheses for our first research question (Q1) and

explore the primary challenge encountered in experiments exhibiting temporal dependence.

Subsequently, we detail the key technical assumptions that enable the cumulative quantile

treatment effect (CQTE) to be equivalent to the sum of individual CQTEs. Finally, to

address the third research question (Q3), we present the proposed estimation and testing

strategies for our investigation.

3.1 CQTE, test hypotheses and assumptions

We consider the temporal alternation design with a sequence of treatments over time.

Specifically, we divide each day into m non-overlapping intervals. The platform can
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implement either one of the two policies at each time interval. For any t ≥ 1, let At denote

the policy implemented at the tth time interval where At = 1 represents exposure to the

new policy and At = 0 represents exposure to the old policy. Let St and Yt denote the state

(e.g., the supply and demand) and the outcome at time t, respectively.

To formulate our problem, we adopt a potential outcome framework (Rubin, 2005).

Specifically, we define āt = (a1, . . . , at)
⊤ ∈ {0, 1}t as the treatment history up to time t.

We also define S∗
t (āt−1) and Y ∗

t (āt) as the counterfactual state and counterfactual outcome,

respectively, that would have occurred had the platform followed the treatment history

āt. Our primary interest lies in quantifying the difference between the τth quantile of the

cumulative outcomes under the new policy and that under the old policy, denoted as the

quantile treatment effect (QTE):

QTE = Qτ

( m∑
t=1

Y ∗
t (1t)

)
−Qτ

( m∑
t=1

Y ∗
t (0t)

)
,

where 1t and 0t are vectors of 1s and 0s of length t, respectively, and Qτ (·) denotes the

quantile function at the τth level.

However, learning such an unconditional dynamic QTE from our experimental dataset

is highly challenging. Remember that in our A/B experiment, the old and new policies are

assigned alternately over the m time intervals. Nevertheless, the target policy we aim to

evaluate corresponds to the global policy, which allocates the new or old policy globally

throughout each day. This leads to an off-policy setting where the target policy differs

from the behavior policy that generates the data. Existing off-policy quantile evaluation

methods based on inverse probability weighting, such as those presented by Wang et al.

(2018), are inefficient in our setting with a moderately large m. Off-policy evaluation (OPE)

methods, including Shi et al. (2020), Liao et al. (2021), and Kallus and Uehara (2022), are

semiparametrically efficient1 in long-horizon settings. Despite this, these methods primarily

focus on the mean return, making it difficult to adapt them for quantile evaluation due

to the nonlinear quantile function Qτ . To illustrate, note that there is no guarantee that

Qτ (
∑m

t=1 Y
∗
t (1t))−Qτ (

∑m
t=1 Y

∗
t (0t)) =

∑m
t=1

[
Qτ (Y

∗
t (1t))−Qτ (Y

∗
t (0t))

]
in general. This

1Shi et al. (2020) and Liao et al. (2021) proposed to use the direct method based on linear sieves or
kernels. However, the resulting estimators are semiparametrically efficient as well.
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observation motivates us to seek an alternative definition for QTE.

Second, let Et represent the set of features (e.g., extreme weather events) that have an

impact on the outcomes up to time t, but are not influenced by the treatment history. This

means that for any treatment history āt, the potential outcome of these features remains

the same, i.e., E∗
t (āt) = Et. By definition, S1 is an element of Et, which ensures that Et is

non-empty for any t. We introduce CQTE as follows:

CQTEτ = Qτ (
m∑
t=1

Y ∗
t (1t)|Em)−Qτ (

m∑
t=1

Y ∗
t (0t)|Em). (1)

The CQTE is a reasonable measure because the set of conditioning variables remains

consistent under both new and old policies. When m = 1, this definition reduces to

the one used in single-stage decision-making, as discussed in previous literature, such as

Chernozhukov and Hansen (2006).

Conditioning has several benefits. Firstly, it offers a more convenient way to estimate the

dynamic Quantile Treatment Effect (QTE) by aggregating individual QTEs over time. This

approach simplifies the estimation process and reduces computational complexity. Secondly,

conditioning can also help to reduce the variance of the resulting QTE estimator by removing

the need to account for variability in the relevant characteristics. By conditioning on certain

variables, researchers can effectively control for confounding factors and produce more

accurate estimates of treatment effects.

Third, we introduce the concept of Summed Conditional Quantile Treatment Effects

(SCQTE), which represents the sum of individual Conditional Quantile Treatment Effects

(CQTE) over time. The SCQTE is defined as follows:

SCQTEτ =
m∑
t=1

Qτ (Y
∗
t (1t)|Et)−

m∑
t=1

Qτ (Y
∗
t (0t)|Et).

Compared to CQTE, SCQTE is easier to learn from observed data. For example, one

can fit a quantile regression model at each stage, estimate individual CQTE values, and

then sum these estimators together. Although the quantile function is not additive, we

demonstrate in the following proposition that SCQTE is equal to CQTE under specific

modeling assumptions. Even in scenarios where the underlying assumptions may not
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strictly hold, focusing on SCQTE still offers valuable insights. It describes the average

of the marginal quantile treatment effect across all time intervals, which assesses how the

distribution of outcomes changes in response to the treatment at each time point.

Proposition 1. Suppose that for any time point t, Y ∗
t (āt) follows the structural quan-

tile model Y ∗
t (āt) = ϕt(Et, āt, U) for a specific deterministic function ϕt and a uniformly

distributed random variable U
d∼ Unif(0, 1), which is independent of {Et}t. Furthermore,

assume that ϕt(Et, 1t, τ) and ϕt(Et, 0t, τ) are non-decreasing functions of τ for any Et. Under

these conditions, we find that CQTEτ = SCQTEτ .

Proposition 1 establishes the equivalence between CQTE and SCQTE and serves as

a fundamental building block for our proposal. It allows us to focus on SCQTE, which

is a simplified version of CQTE. This simplification greatly facilitates the estimation and

inference procedures that follow, which rely on fitting a quantile regression model at each

time point to learn the SCQTE. For more details, see Sections 3.2 and 3.3. Moreover, the

proposed model in Proposition 1 is related to the structural quantile model in the quantile

regression literature (Chernozhukov and Hansen, 2005, 2006). These models assume that,

conditional on the covariate X = x, the potential outcome Y ∗(a) = q(a, x, U) for a = 0, 1

and U ∼ U(0, 1), where q(d, x, τ) is strictly increasing in τ . The uniformly distributed

variable U serves as a rank variable that characterizes the heterogeneity of the outcome

across different quantile levels. More discussion on the rank invariance assumption can be

found in Section E of the supplementary material. Under the non-decreasing constraint, the

τth conditional quantile of Y ∗(a)|X = x can be shown to equal q(a, x, τ ). The discussion on

this assumption can be found in Section F. Proposition 1 motivates us to focus on testing

the following hypotheses for each quantile level τ :

H0 : CQTEτ ≤ 0 versus H1 : CQTEτ > 0. (2)

These hypotheses test whether the treatment effect at the τth quantile is non-negative or

positive, respectively.

In this study, we utilize the consistency assumption (CA), sequential ignorability as-

sumption (SRA), and positivity assumption (PA) to identify the causal estimand. Similar

assumptions are frequently used in the dynamic treatment regime literature for learning
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optimal dynamic treatment policies (Gill and Robins, 2001). The consistency assumption

(CA) states that the potential state and outcome, given the observed data history, should

align with the actual observed state and outcome. The sequential ignorability assumption

(SRA) demands that the action be conditionally independent of all potential variables,

given the past data history. In our application, the SRA is inherently satisfied as the policy

is assigned according to the alternating-time-interval design, independent of data history.

The positivity assumption (PA) necessitates that the probability of {At = 1}, given the

current state, must be strictly confined between zero and one for any t ≥ 12. Under the

alternating-time-interval design, the PA can be easily satisfied if the treatment in the initial

time interval is randomized. It is essential to note that the CA, SRA, and PA enable the

consistent estimation of the potential outcome distribution using the observed data.

3.2 VCDP models

Suppose that the experiment is conducted over n consecutive days. Let (Si,j, Ai,j, Yi,j)

be the state-treatment-outcome triplet measured at the jth time interval of the ith day

for i = 1, . . . , n and j = 1, . . . ,m. We assume that these triplets are independent across

different days, but may be dependent within each day over time.

We begin by introducing two varying coefficient decision process models, one for the

outcome and the other for the state. The first model characterizes the conditional quantile

of the outcome and is given by

Yi,t = β0(t, Ui) + S⊤
i,tβ(t, Ui) + Ai,tγ(t, Ui) = Z⊤

i,tθ(t, Ui), (3)

where Zi,t = (1, S⊤
i,t, Ai,t)

⊤ ∈ Rd+2, θ(t, Ui) = (β0(t, Ui), β(t, Ui)
⊤, γ(t, Ui))

⊤ ∈ Rd+2 is a

vector of time-varying coefficients, and Ui ∼ U(0, 1) is the rank variable. Model (3) extends

the idea of using rank variables to represent unobserved heterogeneity across different

quantiles in a single-stage study to sequential decision making.

2Our positivity assumption is weaker than the standard positivity assumption which requires the
probability of {At = 1} given the observed data history to be strictly confined between zero and one. Such
a relaxation is facilitated by the Markov assumption, which allows us to model the current outcome and
future state solely based on the current state-action pair, as elaborated in Equations (7) and (8)
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The second model characterizes the conditional mean of the observed state variables,

Si,t+1 = ϕ0(t) + Φ(t)Si,t + Ai,tΓ(t) + Ei(t+ 1) = Θ(t)Zi,t + Ei(t+ 1), (4)

where ϕ0(t) and Γ(t) are d-dimensional vectors, Φ(t) is a d × d matrix of autoregressive

coefficients, and Θ(t) = [ϕ0(t) Φ(t) Γ(t)] is a d × (d + 2) coefficient matrix. The term

Ei(t+ 1) is a random error term whose conditional mean given Zi,t equals zero. In addition,

{Ei(t)}t are independent over time. It can be checked by testing the autocorrelation of the

residuals, such as the well-known Ljung-Box test. Therefore, the conditional expectation of

Si,t+1 given Zi,t is: E(Si,t+1|Zi,t) = Θ(t)Zi,t.

It is worth noting that models (3) and (4) belong to the class of varying-coefficient

regression models. The existing literature on this topic mainly focuses on estimating the

relationships between scalar predictors and scalar responses (Sherwood and Wang, 2016),

or between scalar predictors and functional responses (Zhang et al., 2022), or between

longitudinal predictors and responses (Wang et al., 2009). However, to the best of our

knowledge, none of these works have utilized varying-coefficient regression models for policy

evaluation in sequential decision making.

While we assume the residual process {Ei(t)} is independent over time, it is worthwhile

to note that the state process {Si,t} is correlated and dependent. Specifically, this state

process adheres to a martingale sequence that satisfies the Markov property. In the absence

of this independence assumption, the Markov assumption would be violated. It is well-known

that efficient policy evaluation is extremely challenging in non-Markovian environments

(see e.g., Uehara et al., 2022). Moreover, models (3) and (4) are valid when the potential

outcomes satisfy similar assumptions in the quantile varying coefficient models. Please refer

to equations (S2) and (S3) in the supplementary material for more details.

If the residual Ei(t+ 1) is independent of the treatment history and Ui, we can define

Et as {S1, E(1), · · · , E(t)}. Under this condition, the assumptions in Proposition 1 are

satisfied. Hence, under the proposed VCDP models, CQTE is equivalent to SCQTE. Next,
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we introduce the following function:

ϕt(Et, āt, U) = β0(t, U) + atγ(t, U) + β(t, U)⊤
( t−1∑

k=1

{ t−1∏
l=k+1

Φ(l)[ϕ0(k) + akΓ(k)]
})

+
t−1∏
l=1

Φ(l)S1 +
t∑

k=2

[
t−1∏
l=k

Φ(l)E(k)],

The subsequent proposition offers a closed-form formula for CQTE.

Proposition 2. Assuming that CA and Equations (S2) and (S3) in the supplementary

material hold, U is independent of {Et}t, and ϕt(Et, 1t, τ) and ϕt(Et, 0t, τ) are non-decreasing

in τ for any Et, then we have

CQTEτ = SCQTEτ =
m∑
t=1

γ(t, τ) +
m∑
t=2

β(t, τ)⊤

{
t−1∑
k=1

[
t−1∏

l=k+1

Φ(l)

]
Γ(k)

}
, (5)

where the product
∏t−1

l=k+1 Φ(l) = 1 when t− 1 < k + 1.

Proposition 2 enables us to estimate CQTE through SCQTE under certain assumptions.

Among these, the monotonicity assumption can be satisfied under various conditions. For

example, it holds when β0(t, τ), γ(t, τ), and all elements in β(t, τ) are strictly increasing in

τ , and ϕ0(t), all elements in Φ(t), and Γ(t) are positive. Additionally, when Γ(t) = 0 and

ϕ0(t) = 0 for any t, it suffices to require γ(t, τ) and β0(t, τ) to be strictly increasing in τ .

To evaluate policy value, we need to estimate the model parameters β, γ, Φ, and Γ.

Notice that under the conditions of Proposition 2, we have that:

Yi,t = β0(t, τ) + S⊤
i,tβ(t, τ) + Ai,tγ(t, τ) + ei(t, τ) = Z⊤

i,tθ(t, τ) + ei(t, τ), (6)

where ei(t, τ) is the error term, defined as Z⊤
i,t[θ(t, U) − θ(t, τ)], and its conditional τ -th

quantile given Zi,t equals zero. Therefore, we can employ ordinary quantile regression to

learn β and γ. Meanwhile, since the residuals Ei(t)s are independent over time, ordinary

least-squares regression is applicable to the state regression model to estimate Φ and Γ. We

detail our estimating procedure in the next section.
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3.3 Estimation and inference procedures

In this subsection, we outline the procedures for estimating and testing CQTE based on

the results in Proposition 2. We first estimate the regression coefficients in models (6)

and (4). We then plug these estimates into (5) to estimate CQTE. Finally, we develop a

bootstrap-assisted procedure to test CQTE.

Let S
(ν)
i,t+1, ϕ

(ν)
0 (t), and Γ(ν)(t) denote the ν-th entries of Si,t+1, ϕ0(t), and Γ(t), respectively.

Let Φ(ν)(t) and Θ(ν)(t) denote the ν-th rows of Φ(t) and Θ(t), respectively. It follows from

(4) that:

S
(ν)
i,t+1 = ϕ

(ν)
0 (t) + S⊤

i,tΦ
(ν)(t) + Ai,tΓ

(ν)(t) + E
(ν)
i (t+ 1) = Z⊤

i,tΘ
(ν)(t) + E

(ν)
i (t+ 1).

We propose a two-step procedure to estimate θ(t, τ) and Θ(t). In the first step, we

minimize the following functions:

θ̂(t, τ) = argmin
∑
i

ρτ (Yi,t − Z⊤
i,tθ(t, τ)), for t = 1, . . . ,m, (7)

Θ̂(ν)(t) = argmin
∑
i

[S
(ν)
i,t+1 − Z⊤

i,tΘ
(ν)(t)]2, for ν = 1, . . . , d; t = 1, . . . ,m− 1. (8)

These one-step estimates can be computed easily but suffer from large variances as they

rely solely on observations at time t. In contrast, the true coefficient θ(t, τ) and Θ(t) are

expected to possess smoothness across time t. To fully use the information across time, we

employ the kernel smoothing technique to reduce the variances of these initial estimators,

achieve smoothness, and identify weak signals (Zhu et al., 2014). Specifically, for a given

kernel function K(·), the second-step estimators θ̃(t, τ) and Θ̃
(ν)
τ (t) are defined as:

θ̃(t, τ) =
m∑
j=1

ωj,h(t)θ̂(j, τ), for t = 1, . . . ,m, (9)

Θ̃(ν)(t) =
m∑
j=1

ωj,h(t)Θ̂
(ν)(j), for ν = 1, . . . , d, t = 1, . . . ,m, (10)

where ωj,h(t) = K((j−t)/(mh))/
∑m

k=1 K((k−t)/(mh)) is the weight function and h denotes

the kernel bandwidth. Among various kernel functions, we adopt the widely used Gaussian

kernel K(t) = exp(−t2). Essentially, the estimates Θ̃(ν)(t) and θ̃(t, τ) are calculated as
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weighted averages of the one-step estimates {θ̂(j, τ), j = 1, . . . ,m}, with the weights being

modulated by the kernel function. This methodology facilitates a more stable and continuous

estimation, which is especially valuable in the presence of weak signals or when assessing

parameters that are expected to be consistent over time. Given θ̃(t, τ) and Θ̃
(ν)
τ (t), we can

compute the following CQTE estimator:

ĈQTEτ =
m∑
t=1

γ̃(t, τ) +
m∑
t=2

β̃(t, τ)⊤

{
t−1∑
k=1

[
t−1∏

l=k+1

Φ̃(l)

]
Γ̃(k)

}
. (11)

To test (2), we use the test statistic Tτ , which is set to ĈQTEτ . Under the null hypothesis,

Tτ is expected to be negative or close to zero. Therefore, we reject the null hypothesis for

a large value of ĈQTEτ . However, deriving the limiting distribution of Tτ for large m is

complicated due to the complex dependence of ĈQTEτ on the estimated model parameters.

To address this issue, we use the bootstrap method to simulate the distribution of ĈQTEτ

under the null hypothesis. Specifically, we modify the bootstrap method proposed by

Horowitz and Krishnamurthy (2018) and adapt it to our setting as follows. Horowitz and

Krishnamurthy (2018) proposed to resample the estimated residuals to infer the conditional

quantile function in a nonparametric quantile regression model. In our case, to handle the

dependence over time, we resample the entire error process (see Step 3 below for details).

The bootstrap method for ĈQTEτ is implemented as follows:

• Step 1. Compute the estimators θ̃(t, τ) and Θ̃(t) in (9) and (10).

• Step 2. Estimate the residuals by êi(t, τ) = Yi,t − Z⊤
i,tθ̃(t, τ) for t = 1, . . . ,m and

Êi(t+ 1) = Si,t+1 − Θ̃(t)Zi,t for t = 1, . . . ,m− 1.

• Step 3. For i = 1, ..., n, define the random vectors êi(τ) = (êi(1, τ), · · · , êi(m, τ)) and

Êi = (Êi(2), · · · , Êi(m)). For each bootstrap iteration indexed by b, we sample the

entire residual process with replacement. Specifically, we generate a bootstrap sample

consisting of n error processes {eb1(τ), . . . , ebn(τ)}, by resampling n random vectors

from the original set {ê1(τ), . . . , ên(τ)} with replacement. Similarly, we construct

another bootstrap sample of n error processes {Eb
1, . . . , E

b
n}, by resampling n random

vectors from {Ê1, . . . , Ên} with replacement. Next, we generate pseudo outcomes
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{Ŝb
i,t}i,t and {Ŷ b

i,t}i,t as follows,

Ŝb
i,t+1 = Θ̃(t)Ẑb

i,t + Eb
i (t+ 1) and Ŷ b

i,t = Ẑb⊤
i,t θ̃(t, τ) + ebi(t, τ). (12)

• Step 4. For each b, compute the bootstrap estimates θ̃b(t, τ) and Θ̃b(t) according to

equations (7)-(10) using the pseudo outcomes {(Ŝb
i,t, Ŷ

b
i,t) : i, t}.

• Step 5. For each b, compute the bootstrapped statistic T b
τ = ĈQTE

b

τ .

• Step 6. Repeat Steps 3-5 B times. Given a significance level α, reject H0 (see (2)) if

the statistic Tτ exceeds the upper αth empirical quantile of {T b
τ − Tτ}Bb=1.

In the supplementary material, we present Theorem S1, which rigorously establishes the

consistency of the aforementioned bootstrap method. It’s worth noting that the bootstrap

consistency theory elaborated in Horowitz and Krishnamurthy (2018) isn’t readily applicable

to our context, where m can increase along with the sample size.

In practice, we may select the bandwidth h by using K-fold cross-validation. To satisfy

the o(n−1/4) order condition, following a similar spirit to Seo and Linton (2007) and Porter

and Yu (2015), we choose h among Hn = [C1(log n)n
−1/2, C2(log n)n

−1/2] for some positive

constants C1 and C2. For each potential bandwidth parameter, the cross-validation criterion

is computed as the sum of the prediction errors after leaving out one of the K folds;

smaller errors are preferred. Specifically, we randomly split the full sample into K subsets,

denoted by {Dj : j = 1, . . . , K}. For j = 1, . . . , K and i ∈ Dj, let Ŝ
(−Dj)
i,t+1 (h) and Ŷ

(−Dj)
i,t (h)

represent the estimated mean for Si,t+1 and the estimated quantile for Yi,t, respectively.

These estimates are computed using bandwidth h based on the dataset that excludes the

observations in Dj. We then select the optimal bandwidths hθ for θ̃ and hΘ for Θ̃ by

minimizing the following objective functions:

CVθ(h) =
K∑
j=1

∑
i∈Dj

m∑
t=1

ρτ (Yi,t − Ŷ
(−Dj)
i,t (h)), CVΘ(h) =

K∑
j=1

∑
i∈Dj

m−1∑
t=1

(Si,t+1 − Ŝ
(−Dj)
i,t+1 (h))2.

We set K = 2 in our simulation studies and real data analysis.
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4 Extension to spatiotemporal dependent experiments

In this section, we aim to address (Q2) and expand upon the method proposed in Section 3 to

analyze data from spatiotemporal dependent experiments involving multiple non-overlapping

regions receiving distinct treatments in a sequential manner over time. Let r represent the

number of these non-overlapping regions. As previously discussed, these experiments are not

only subject to temporal interference effects but also exhibit spatial interference, whereby

the policy implemented in one location may influence the outcomes in other locations.

4.1 Test hypotheses

For the ι-th region, we use āt,ι = (ā1,ι, . . . , āt,ι)
⊤ to denote its treatment history up to time

t. Let āt,[1:r] = (āt,1, . . . , āt,r)
⊤ represent the treatment history across all regions. Similarly,

define S∗
t,ι(āt−1,[1:r]) and Y ∗

t,ι(āt,[1:r]) as the potential observation and outcome for the ι-th

region, respectively. The set of potential observations at time t is denoted as S∗
t,[1:r](āt−1,[1:r]).

In the spatiotemporal context, our focus is on the cumulative quantile treatment effects,

aggregated over all regions. We define CQTE and SCQTE at the τ -th quantile level as

CQTEτst = Qτ

( r∑
ι=1

m∑
t=1

Y ∗
t,ι(1t,[1:r])|Em,[1:r]

)
−Qτ

( r∑
ι=1

m∑
t=1

Y ∗
t,ι(0t,[1:r])|Em,[1:r]

)
,

SCQTEτst =
r∑

ι=1

m∑
t=1

Qτ

(
Y ∗
t,ι(1t,[1:r])|Et,[1:r]

)
−

r∑
ι=1

m∑
t=1

Qτ

(
Y ∗
t,ι(0t,[1:r])|Et,[1:r]

)
,

respectively, where Et,[1:r] denotes the set of characteristics independent of the treatment

history up to time t across all regions. For a given quantile level τ , our goal is to test

whether a new policy outperforms the old one as follows:

H0 : CQTEτst ≤ 0 versus H1 : CQTEτst > 0. (13)

Compared to the testing problem in (2), (13) focuses on global treatment effects aggregated

over time and regions. We assume the consistency assumption holds. Similar to Section

3, under the spatial alternating-time-interval design, one can show that the sequential

ignorability assumption and the positivity assumption are automatically satisfied, ensuring

that CQTE is identifiable from the observed data.
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4.2 Spatiotemporal VCDP models

Suppose that the experiment last for n days, and each day is divided into m time intervals.

For i = 1, . . . , n, t = 1, . . . ,m, and ι = 1, . . . , r, let (Si,t,ι, Ai,t,ι, Yi,t,ι) represent the state-

treatment-outcome triplet measured from the ιth region at the t-th time interval of the

i-th day. For each ι, Nι denotes the neighbouring regions of ι. To model the quantiles of

Yt,ι and St,ι, we extend the two VCDP models in Section 3 to two spatialtemporal VCDP

(STVCDP) models in this section.

The first STVCDP model describes the quantile structure of the outcome,

Yi,t,ι = β0(t, ι, Ui) + S⊤
i,t,ιβ(t, ι, Ui) + Ai,t,ιγ1(t, ι, Ui) + Āi,t,Nιγ2(t, ι, Ui) (14)

= Z⊤
i,t,ιθ(t, ι, Ui),

where Āi,t,Nι denotes the average of {Ai,t,k}k∈Nι , Zi,t,ι = (1, S⊤
i,t,ι, Ai,t,ι, Āi,t,Nι)

⊤, and θ(t, ι, Ui) =

(β0(t, ι, Ui), β(t, ι, Ui)
⊤, γ1(t, ι, Ui), γ2(t, ι, Ui))

⊤. Model (14) is based on two key assumptions.

Firstly, it is assumed that the effect of treatments in other regions on the conditional quantile

of Yi,t,ι is limited to those of its neighboring regions, as long as each experimental region is

large enough. This is because drivers can only travel between neighboring regions in one

time unit, meaning that treatments in non-neighboring regions are not expected to impact

Yi,t,ι. Secondly, it is assumed that the influence of treatments in neighboring regions on the

conditional quantile of Yi,t,ι is only through the mean of the treatments. This is a common

mean-field assumption used to model spillover effects (e.g., Hudgens and Halloran, 2008; Shi

et al., 2022). Following a similar spirit to Shi et al. (2022), the mean-field assumption can be

tested using observed data by investigating the conditional independence between Yi,t,ι and

treatments from the neighboring regions given {Si,t,ι, Ai,t,ι, Āi,t,Nι}. Our proposed method

is readily extensible to contexts where the effects of treatments in neighboring regions are

influenced solely through their quantiles. Specifically, the term Āi,t,N ι in Equations (14) and

(15) below can be replaced with the quantiles of the treatments {Ai,t,k}k∈N ι. The theoretical

results remain largely unchanged and can be established in a similar manner, as they are

derived on the framework of conditional quantile regression. In particular, variations in

some of the predictors do not impact the theoretical validity of our approach.

The second STVCDP model models the conditional distribution of the next state given
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the current state-action pair as follows:

Si,t+1,ι = ϕ0(t, ι) + Φ(t, ι)Si,t,ι + Ai,t,ιΓ1(t, ι) + Āi,t,NιΓ2(t, ι) + Ei(t+ 1, ι)

= Θ(t, ι)Zi,t,ι + Ei(t+ 1, ι),
(15)

where Θ(t, ι) = [ϕ0(t, ι),Φ(t, ι),Γ1(t, ι),Γ2(t, ι)] ∈ Rd×(d+3) and Φ(t, ι) is a d× d matrix of

autoregressive coefficients. The conditional mean of each entry in the error process Ei(t, ι)

given Zi,t,ι is zero. The error process is required to be independent over time, although

it may be dependent across different locations. The varying coefficients are required to

be smooth over the entire spatial domain, which will help to reduce the variances of the

model estimators and improve the accuracy of the CQTE estimator. The models (14) and

(15) hold under the assumption that the potential outcomes satisfy the quantile varying

coefficient models, as described in the supplementary material (models (S4) and (S5)).

The following proposition provides a closed-form expression for CQTEτst and proves

that CQTEτst = SCQTEτst. Let

ϕt,ι(Et,ι, āt,[1:r], U) = β0(t, ι, U) + at,ιγ1(t, ι, U) + āt,Nιγ2(t, ι, U)

+ β(t, ι, U)⊤
( t−1∑

k=1

{ t−1∏
l=k+1

Φ(l, ι)[ϕ0(k, ι) + ak,ιΓ1(k, ι) + ak,NιΓ2(k, ι)]
})

+
t−1∏
l=1

Φ(l, ι)S1,ι +
t∑

k=2

[
t−1∏
l=k

Φ(l, ι)E(k, ι)],

where Et,ι = {S1,ι, E(2, ι), . . . , E(t, ι)} and the product
∏t−1

l=k+1 Φ(j, ι) = 1 when t−1 < k+1.

Proposition 3. Suppose that CA and the conditions in equations (S4) and (S5) of the

supplementary material hold, and that U is independent of the collection of error processes

{Et,ι}t,ι. Furthermore, assume that the functions ϕt,ι(Et,ι, 1t,[1:r], τ) and ϕt,ι(Et,ι, 0t,[1:r], τ) are

non-decreasing in τ for any Et,ι. Then, we have

CQTEτst = SCQTEτst =
r∑

ι=1

m∑
t=1

{γ1(t, ι, τ) + γ2(t, ι, τ)}

+
r∑

ι=1

m∑
t=2

β(t, ι, τ)⊤

{
t−1∑
k=1

[
t−1∏

j=k+1

Φ(j, ι)

]
[Γ1(k, ι) + Γ2(k, ι)]

}
.
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Proposition 3 provides a foundation for constructing a plug-in estimator for CQTEτst.

This forms the basis of the proposed inference procedure, which we discuss in more detail

in the next section. Additionally, from models (14) and (15), we can obtain the expression

Yi,t,ι = β0(t, ι, τ) + S⊤
i,t,ιβ(t, ι, τ) + Ai,t,ιγ1(t, ι, τ) + Āi,t,Nιγ2(t, ι, τ) + ei(t, ι, τ),

where ei(t, ι, τ) is the residual term, defined as Z⊤
i,t,ι[θ(t, ι, U)−θ(t, ι, τ )], and its conditional τ -

th quantile given Zi,t,ι is equal to zero. It is worth mentioning that these models can be further

extended to incorporate the effects of states from neighboring regions on the immediate

outcome by including another mean-field term Φ2(t, ι)S̄i,t,Nι , where S̄i,t,Nι =
∑

ι′∈Nι
Si,t,ι′/Nι.

In this case, the closed-form expression for CQTEτst can be similarly derived.

4.3 Estimation and inference procedures

In this subsection, we outline the estimation and testing procedures for CQTEτst.

Firstly, we calculate raw estimators of the unknown coefficients in the two STVCDP

models. For each region ι, we employ standard quantile regression and linear regression as

shown in (7) and (8) to the data subsets {(Zi,t,ι, Yi,t,ι)}i,t and {(Zi,t,ι, Si,t+1,ι)}i,t to obtain the

initial estimators θ̂(t, ι, τ) and Θ̂(t, ι) for θ(t, ι, τ) and Θ(t, ι), respectively. Next, we apply

kernel smoothing techniques as illustrated in (9) and (10) to refine these initial estimators

over time. We denote the resulting estimators as θ̃0(t, ι, τ) and Θ̃0(t, ι).

Secondly, we further refine these raw estimators by employing kernel smoothing to

borrow information across space. Specifically, we define θ̃(t, ι, τ) =
∑r

ℓ=1 κℓ,h(ι)θ̃
0(t, ℓ, τ)

and Θ̃(ν)(t, ι) =
∑r

ℓ=1 κℓ,hst(ι)Θ̃
0(ν)(t, ℓ), where Θ̃0(ν)(t, ι) is the νth column of Θ̃0(t, ι) and

κℓ,hst(ι) is a normalized kernel function with bandwidth parameter hst. The kernel function

κℓ,hst(ι) is given by

κℓ,hst(ι) =
K((uι − uℓ)/hst)K((vι − vℓ)/hst)∑r
j=1K((uι − uj)/hst)K((vι − vj)/hst)

,

where (uι, vι) represents the longitude and latitude of region ι. Consequently, regions with

smaller spatial distances contribute more significantly.

Thirdly, we estimate CQTEτst by substituting the refined estimators θ̃τst(t, ι) and Θ̃st(t, ι)

and use the resulting estimator ĈQTEτst as the test statistic Tτst. Finally, we introduce
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a bootstrap method to test (13). During each iteration, we resample the estimated error

processes to obtain the bootstrap estimates θ̃bτst(t, ι) and Θ̃b
st(t, ι), and the bootstrapped

statistic T b
τst = ĈQTE

b

τst. We reject H0 in (13) if Tτst exceeds the upper αth empirical

quantile of {T b
τst − Tτst}Bb=1. As this approach is highly similar to the one presented in

Section 3.3, we omit further details for brevity.

Similar to the bandwidth selection method used in temporal-dependent experiments,

we employ the K-fold cross-validation to simultaneously optimize the two bandwidths for

both kernel smoothing procedures. Detailed formulations can be found in Section C of the

supplementary material.

5 Direct and indirect effects

Recall that Proposition 2 provides the closed-form expression of CQTEτ , which is

m∑
t=1

γ(t, τ) +
m∑
t=2

β(t, τ)⊤

{
t−1∑
k=1

[
t−1∏

l=k+1

Φ(l)

]
Γ(k)

}
.

Consequently, we can divide the quantile treatment effect into two components. Specifically,

the first term
∑m

t=1 γ(t, τ) of CQTEτ represents the direct effect of the treatment on the

immediate outcome, expressed as

CQDEτ = Qτ

( m∑
t=1

Y ∗
t (1t)|Em

)
−Qτ

( m∑
t=1

Y ∗
t (0,1t−1)|Em

)
.

Observe that for each t, the two potential outcomes Y ∗
t (1t) and Y ∗

t (0,1t−1) differ in the

treatment received at time t, but they share the same treatment history. The second term∑m
t=2 β(t, τ)

⊤ {∑t−1
k=1

[∏t−1
l=k+1Φ(l)

]
Γ(k)

}
quantifies the carryover effects of past treatments

on the current outcome, defined as

CQIEτ = Qτ

( m∑
t=1

Y ∗
t (0,1t−1)|Em

)
−Qτ

( m∑
t=1

Y ∗
t (0t)|Em

)
.

Similar decompositions have been considered in Li and Wager (2022) and Shi et al. (2022).
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The corresponding testing hypotheses are given by

HD
0 : CQDEτ ≤ 0 versus HD

1 : CQDEτ > 0, (16)

HI
0 : CQIEτ ≤ 0 versus HI

1 : CQIEτ > 0. (17)

Testing these hypotheses not only enables us to determine whether the new policy is

significantly better than the old one or not, but also helps us understand how the new (or

the old) policy outperforms the other.

To test (16) and (17), we use the two-step estimators in (9) and (10) to construct the

plug-in estimators ĈQDEτ and ĈQIEτ for CQDE and CQIE, respectively. Next, we employ

the bootstrap method in Section 3.3 to approximate the limiting distributions of ĈQDEτ and

ĈQIEτ under the null hypotheses. We note that although ĈQDEτ has a tractable limiting

distribution and is asymptotically normal, estimating its asymptotic variance without using

bootstrap remains challenging.

Finally, we can similarly define the direct effect and indirect effect in the spatiotemporal

design as follows,

CQDEτst =
r∑

ι=1

m∑
t=1

{γ1(t, ι, τ) + γ2(t, ι, τ)},

CQIEτst =
r∑

ι=1

m∑
t=2

β(t, ι, τ)⊤

[
t−1∑
k=1

(
t−1∏

j=k+1

Φ(j, ι)

)
{Γ1(k, ι) + Γ2(k, ι)}

]
.

The estimation and inference procedures can be derived similarly.

6 Real Data Analysis

To address (Q1)-(Q3), we apply the proposed test procedures to the three real datasets

obtained from Didi Chuxing introduced in Section 2.

Firstly, we examine the dataset from a temporally dependent A/B experiment conducted

from Dec 10, 2021 to Dec 23, 2021. As detailed in Section 2, two order dispatch policies

are tested in alternating one-hour time intervals. The new policy, in comparison to the

old one, is designed to fulfill more call orders and elevate drivers’ total income. As for
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the choices of the observation variables, our recommended approach is to carefully select

state variables that effectively capture the demand and supply dynamics of the ridesharing

platform while exerting a substantial influence on the outcome of interest. To bolster the

selection process, we advocate subjecting potential state variables to the Ljung-Box test.

State variables that pass this test tend to be more fitting; their residuals reflect a temporal

independence congruent with our modeling prerequisites. We set drivers’ total income as

the outcome, and the observation variables include the number of call orders and drivers’

total online time. To address question (Q1), we apply model (3) to elucidate the correlation

structure between supply and demand and model (4) to elucidate the temporal interference

effects. For question (Q3), we utilize the testing procedure described in Section 3.3 for

these temporally dependent experiments. As a means to validate the proposed test, we also

apply our procedure to the A/A dataset outlined in Section 2, where a single order dispatch

strategy is employed. We anticipate that our test will not reject the null hypothesis when

applied to this dataset.

In Figure 3, we display the estimated residuals of the outcome over time for τ ∈

{0.1, 0.5, 0.9} of the A/B experiment. As can be seen from Figure 3, some residuals

are significantly larger than others, suggesting that the outcome likely originates from

heavy-tailed distributions. This reinforces the use of quantile treatment effects for policy

evaluation. We further investigate the correlations of Ei(t) in real-world data scenarios. For

the temporally A/B experiment, involving observation variables such as the number of call

orders and drivers’ total online time, we apply the Ljung-Box test to assess the correlations

of the two residual processes. The resulting p-values for the residuals of the number of call

orders and drivers’ total online time are 0.083 and 0.162, respectively, indicating no/weak

autocorrelations over time. Table 1 presents the p-values of the proposed test for CQTEτ ,

CQDEτ , and CQIEτ , respectively. Furthermore, Figure 4 illustrates the estimated treatment

effects and the p−values across various quantiles for the A/B experiment. As expected,

the proposed test does not reject the null hypothesis at any quantile level when applied

to the A/A experiment. However, when applied to the A/B experiment, the new policy

demonstrates significant quantile direct effects on the business outcome at most quantile

levels. In contrast, the indirect effects are not significant. For comparison, we also report

the p-values for testing the average direct and indirect effects in Table 1. These p-values
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Figure 3: Estimated residuals of drivers’ total income at quantile levels 0.1, 0.5, and 0.9 in the
temporal dependent A/B experiment.

Table 1: p-values of the proposed test for CQDEτ and CQIEτ , as well as p-values of direct
effect and indirect effect for average effects for both datasets from the A/A experiment and
A/B experiment, utilizing the time-alternation design.

pvalues for AA pvalues for AB
τ CQDEτ CQIEτ CQDEτ CQIEτ

0.1 0.286 0.084 0.208 0.076
0.2 0.522 0.096 0.080 0.060
0.3 0.530 0.098 0.002 0.068
0.4 0.568 0.122 0.010 0.086
0.5 0.536 0.116 2e-4 0.072
0.6 0.464 0.100 0.002 0.068
0.7 0.548 0.102 7e-4 0.092
0.8 0.606 0.108 2e-4 0.068
0.9 0.322 0.102 7e-5 0.100

average effect 0.800 0.220 0.046 0.956

are calculated by replacing the quantile function in the proposed test procedure with the

mean function. Similar to the proposed test, in the A/A experiment, both the direct effect

and the indirect effect are not significant. For the A/B experiment, the direct effect is

significant at 5% significance level and the indirect effect is not significant. To the contrary,

the proposed quantile-based test suggests that the direct effect is significant only at higher

quantile levels (when τ ≥ 0.2). This highlights the strengths of our test. Namely, it enables

us to evaluate treatment effects across different quantiles, thereby providing a richer and

more comprehensive understanding than a sole focus on the average effect would allow.

Secondly, we analyze the dataset from the spatiotemporal dependent experiment as

described in Section 2. Recall that in this experiment, the city is divided into 12 regions.

Policies are implemented based on alternating 30-minute time intervals within each region.

We concentrate on a data subset collected from 7 am to midnight each day, as there are

relatively few order requests from midnight to 7 am. The drivers’ total income and the
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Figure 4: Estimates of CQDEτ and CQIEτ and their p-values across quantile levels for the A/B
experiment under the temporal design.

number of call orders are designated as the outcome and state variable, respectively. We

fit the spatiotemporal VCDP models (14) and (15) to address (Q2), and apply the testing

procedure from Section 4.3 to address (Q3) for this spatiotemporal dependent experiment.

Our aim is to determine whether the new policy has significant treatment effects on drivers’

total income across various quantile levels.

Before we fit the models, we conduct the conditional independence test the condi-

tional independence between Yi,t,ι and treatments from the neighboring regions given

{Si,t,ι, Ai,t,ι, Āi,t,Nι} in each region, leading to 12 p-values. The minimal p-value of the 12

regions is 0.144, indicating that the mean-filed assumption holds for this dataset. For each

quantile level, we implement the proposed estimation and testing procedures on the data.

The p-values are generated through the bootstrap procedure outlined in Section 4, utilizing

500 bootstrap samples. The estimation and testing results for CQDEτst and CQIEτst are

summarized in Table 2 and Figure 5. The treatment effects are significant at most quantile

levels, and both the estimated direct and indirect effects are positive across all quantiles.

Generally, these effects escalate with the quantile level. However, the new policy doesn’t

seem to boost the lower quantile of the outcome (e.g., τ = 0.1). These results underline

the heterogeneous effects of the new policy across different quantile levels. Furthermore,

we calculate the p-values for testing the average direct and indirect effects and report

them in Table 2. While both average effects are found to be statistically significant, our

proposed quantile-based test reveals that the direct effect is significant only when τ ≥ 0.1.

Additionally, while the mean of the estimated quantile effects—aggregated across various

quantile levels—closely approximates the ATE, these effects exhibit variability around ATE

across different quantiles. Once again, these findings underscore the merits of our proposed

quantile-based approach, which facilitates a more nuanced and comprehensive understanding
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Table 2: p-values and estimators of CQDEτst and CQIEτst for the spatiotemporal data, as well as
p-values of direct effect and indirect effect for average effects.

τ pvalueCQDEτst
pvalueCQIEτst

ĈQDEτst ĈQIEτst

0.1 0.290 0.024 1.566 14.153
0.2 0.072 0.036 3.403 15.002
0.3 0.026 0.020 4.022 16.032
0.4 0.032 0.016 3.678 16.939
0.5 0.010 0.022 5.482 17.725
0.6 0.004 0.020 5.902 18.559
0.7 0.004 0.022 7.139 19.535
0.8 0.006 0.014 5.746 20.473
0.9 7e-4 0.008 8.414 21.320

average effect 0.001 0.040 5.525 16.496

Figure 5: Estimates of CQDEτst and CQIEτst and pvalues for the spatiotemporal data across
quantiles.

of treatment effects across various quantile levels.

Finally, we display the scaled outcomes, and residuals for the representative region 5

over time, with τ ∈ {0.1, 0.5, 0.9}, in Figure S4. It is evident that there may be several

outliers in the data. This observation further supports the use of quantiles as the evaluation

metric. Similar patterns are observed for other regions as well.

7 Real data based simulations

In this section, we evaluate the finite sample performance of the proposed estimation and

testing procedures through simulations. Simulation experiments are conducted based on

the real dataset collected from the A/A experiment described in Section 2. Recall that one

hour is defined as a time unit, and drivers’ total income within each time unit is set as

the outcome of interest. The observation variables correspond to the number of call orders
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and drivers’ total online time. These variables characterize the demand and supply of the

ridesharing platform and have a substantial impact on the outcome.

Example 1. In this example, we investigate the finite sample performance of the proposed

test CQTE, CQDE and CQIE, respectively. For a given quantile level τ , we fit the proposed

VCDP models (3) and (4) to the data by setting γ(t, τ) = Γ(t) = 0, since the two policies

being compared are essentially the same. This enables us to obtain the estimated model

parameters β̃0τ (t), β̃τ (t), ϕ̃0(t), and Φ̃(t) and the estimated error processes ẽi(t, τ) and Ẽi(t)

for 1 ≤ t ≤ 24 and 1 ≤ i ≤ 68. To simulate data, we set γ̃(t, τ) = δQτ (Yt) and Γ̃(t) = δE(St)

for some constant δ ≥ 0, where Qτ (Yt) and E(St) denote the (elementwise) empirical τ -th

quantile of {Yit}i and empirical mean of {Sit}i, respectively. The constant δ controls the

strength of CQTE, no CQTE exists if δ = 0, and the new policy is better if δ > 0.

We employ the bootstrap method for data generation. Specifically, in each simulation

run, we randomly sample n initial observations and n error processes with replacement.

Then, we generate n days of data according to the proposed VCDP models:

Ỹi,t = β̃0(t, τ) + S̃⊤
i,tβ̃(t, τ) + Ai,tγ̃(t, τ) + ẽi(t, τ),

S̃i,t+1 = ϕ̃0(t) + Φ̃(t)S̃i,t + Ai,tΓ̃(t) + Ẽi(t+ 1),

based on these samples and the estimated model parameters. The treatments Ai,t are

generated according to the temporal alternation design. Specifically, we first implement

one policy for TI time units, then switch to the other policy for another TI time units,

and alternate between the two policies. We consider a wide range of simulation settings by

setting τ ∈ {0.2, 0.5, 0.8}, n ∈ {20, 40}, TI ∈ {1, 3}, and δ ∈ {0, 0.01, 0.025, 0.05, 0.075, 0.1}.

For each scenario, we generate 500 simulation runs to compute the empirical type-I error

rate and power. The significance level is fixed at 5% throughout the simulation.

Figure 6 presents the empirical rejection rates of the proposed test for CQTE (refer also

to Table S1 in the supplementary material). The type-I error is around the nominal level in

all cases. The empirical power generally increases with the sample size and approaches 1 as

the signal strength δ increases to 0.1. Furthermore, the empirical power increases with the

quantile level τ , which is expected since γ̃(τ, t) is set to be proportional to Qτ (Yt), whose

values increase with the quantile level. These results validate our theoretical assertions.
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Figure 6: Empirical rejection rates of the proposed test for CQTEτ . TI equals 1 for the top panels
and 3 for the bottom panels. The quantile level τ = 0.2, 0.5 and 0.8, from left to right plots.

We also report the empirical rejection rates of the proposed test for CQDE and CQIE in

Figures S1 and S2 of the supplementary material, respectively. The results are very similar

to those of CQTE. It is worth noting that the power for CQDE is generally larger than

that of CQTE, whereas the power for CQIE is generally smaller than that for CQTE. This

is because the test statistics of CQIE have larger variances than those of CQDE.

Example 2. In this example, following a suggestion from one of the reviewers, we compare

the proposed CQTE test with two baseline methods. The first method, denoted as “NoInt-

erference”, ignores temporal interference and treats each time interval as independent. The

second method is designed to test the average treatment effect (ATE), which is commonly

used in ridesharing platforms. We conduct the ATE test by replacing the quantile function

in the proposed test procedure with the mean function.

The data settings are similar to those in Example 1, with the exception that we scale

both the outcome and observation variables by their standard deviation. Additionally, we

fix γ̃(t, τ) = 0 and generate data from the following heterogeneous VCDP model,

Ỹi,t = β̃0(t, τ) + S̃⊤
i,tβ̃(t, τ) + Ai,tγ̃(t, τ) + 0.2(S̃

(1)
i,t )

2ẽi(t, τ),

S̃i,t+1 = ϕ̃0(t) + Φ̃(t)S̃i,t + Ai,tΓ̃(t) + 0.2(S̃
(1)
i,t )

2Ẽi(t+ 1),
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where S
(1)
i,t represents the first observational covariate. Consequently, the error processes at

each time point are heteroscedastic.

Figure 7 displays the empirical rejection rates of the proposed CQTE test and the

NoInterference method for CQTE, as well as the test for ATE when n = 40. The results for

n = 20 can be found in the supplementary material and exhibit a similar pattern to the

n = 40 results. Notably, the NoInterference method fails to detect the treatment effect in

all scenarios, as expected, since the treatment has no direct effect but exhibits an indirect

effect on the outcome. In contrast, both the proposed CQTE test and the ATE test not

only maintain Type-I error control but also effectively identify causal effects. It’s important

to note that heteroscedastic errors can impact the estimation of β̃(t, τ) and subsequently

affect the indirect effect. Since β̃(t, τ) behaves differently across various quantile levels,

the magnitude of this influence varies accordingly. Specifically, for the lower quantile level

τ = 0.2, the ATE test exhibits higher statistical power compared to the proposed method.

However, for quantile levels τ = 0.5 and τ = 0.8, the CQTE test demonstrates superior

power when contrasted with the ATE test. This difference in power is primarily due to the

influence of heteroscedastic errors on estimation and tests based on linear regression. In

contrast, the proposed test, which relies on quantile regression, proves to be robust even in

the presence of such heteroscedastic errors. These results highlight the value of the proposed

test in detecting treatment effects when compared to baseline methods.

Additionally, we conduct another simulation study in Example S2 of the supplementary

material where the causal effect exists but ATE=0. In this case, the test for ATE fails to

capture the treatment effect, while the proposed method not only captures distributional

treatment effects but also unveils distinct treatment effects at different quantile levels.

8 Discussion

As we did not impose any constraints, our proposed estimation procedure may not guarantee

monotonicity with respect to the quantile location. In the existing literature, three prevalent

approaches are employed to mitigate the issue of crossing quantile curves in quantile

estimation methods, the post-processing approach that involves sorting or monotonically

rearranging the original functions (e.g. Chernozhukov et al., 2010), the stepwise procedure

30



Figure 7: Empirical rejection rates of the proposed test and the NoInterference method for CQTEτ

and the test for ATE when n = 40. TI equals 1 for the top panels and 3 for the bottom panels.
The quantile level τ = 0.2, 0.5 and 0.8, from left to right plots.

that iteratively adds an extra set of non-crossing constraints to the quantile model (e.g.

Andriyana and Gijbels, 2017), and the simultaneous estimation approach that estimates

all quantiles concurrently while incorporating non-crossing constraints (e.g. Bondell et al.,

2010). To address the crossing issue in our proposed method, we could consider adapting

these existing strategies. For example, inspired by Bondell et al. (2010), we could impose a

non-crossing restriction such that z⊤θ(t, τj) ≥ z⊤θ(t, τj−1), j = 2, . . . , q for any z and any

desired quantile levels τ1 < · · · < τq when estimating the model parameters via (7). These

extensions are worthy of further investigation.
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