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Abstract

Many modern tech companies, such as Google, Uber, and Didi, utilize online
experiments (also known as A /B testing) to evaluate new policies against existing ones.
While most studies concentrate on average treatment effects, situations with skewed
and heavy-tailed outcome distributions may benefit from alternative criteria, such
as quantiles. However, assessing dynamic quantile treatment effects (QTE) remains
a challenge, particularly when dealing with data from ride-sourcing platforms that
involve sequential decision-making across time and space. In this paper, we establish
a formal framework to calculate QTE conditional on characteristics independent of
the treatment. Under specific model assumptions, we demonstrate that the dynamic
conditional QTE (CQTE) equals the sum of individual CQTEs across time, even
though the conditional quantile of cumulative rewards may not necessarily equate to
the sum of conditional quantiles of individual rewards. This crucial insight significantly
streamlines the estimation and inference processes for our target causal estimand. We
then introduce two varying coefficient decision process (VCDP) models and devise an
innovative method to test the dynamic CQTE. Moreover, we expand our approach to
accommodate data from spatiotemporal dependent experiments and examine both
conditional quantile direct and indirect effects. To showcase the practical utility of
our method, we apply it to three real-world datasets from a ride-sourcing platform.
Theoretical findings and comprehensive simulation studies further substantiate our
proposal.
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1 Introduction

Online experiments, often referred to as A/B testing in computer science literature, are
widely utilized by technology companies (e.g., Google, Netflix, Microsoft) to assess the
effectiveness of new products or policies in comparison to existing ones. These companies
have developed in-house A /B testing platforms for evaluating treatment effects and providing
valuable experimental insights. Take ridesourcing platforms like Uber, Lyft, and Didi as
examples. These platforms operate within intricate spatiotemporal ecosystems, dynamically
matching passengers with drivers (see, for instance, Wang and Yang, 2019; Qin et al.
2020). They implement online experiments to explore various order dispatch policies
and customer recommendation initiatives. These products hold the potential to enhance
passenger engagement and satisfaction, diminish pickup waiting times, and boost driver
earnings, ultimately leading to a more efficient and user-friendly transportation system.

In this study, we address the fundamental question of how to evaluate the difference
between the quantile return of a new product (treatment) and that of an existing one.
Although the average treatment effect (ATE) is widely used in the literature to quantify
the difference between two policies (Imbens and Rubin, 2015; Kong et al., [2022),it only
considers the average effect and does not account for variability around the expectation.
In applications with skewed and heavy-tailed outcome distributions, decision-makers are
more interested in the quantile treatment effect (QTE), which offers a more comprehensive
characterization of distributional effects beyond the mean and is robust to heavy-tailed
errors (see e.g., [Abadie et al., 2002; |Chernozhukov and Hansen| [2006). For example, in
ridesourcing platforms, policymakers may want to determine which policy more effectively
raises the lower tail of driver income. Furthermore, developing valid inferential tools for
QTE can reveal how treatment effects differ by quantile and provide valuable information
about the entire distribution.

Addressing the problem mentioned earlier presents two significant challenges. The first
challenge involves efficiently inferring the dynamic QTE (quantile treatment effect), which
is defined as the difference between the quantiles of cumulative outcomes under the new
and old policies, in long horizon settings with weak signals. In contrast to single-stage

decision-making, policy makers for ridesourcing platforms assign treatments sequentially over



time and across various locations. Existing estimators, such as those based on (augmented)
inverse probability weighting (see e.g., Wang et al., 2018, Section 4), are subject to the
curse of horizon, as described by (Liu et al.,; 2018). This means their variances increase
exponentially with respect to the horizon (i.e., the number of decision stages). Such
approaches are inadequate in our context, where the horizon typically spans 24 or 48 stages
and most policies improve key metrics by only 0.5% to 2% (Qin et al., [2022). Furthermore,
unlike the average cumulative outcome, which can be broken down into the sum of individual
outcome expectations, the quantile of cumulative outcomes generally does not equal the
sum of individual quantiles. This makes estimating our causal effect extremely challenging.
Existing efficient evaluation methods designed for mean return, such as those proposed by
Kallus and Ueharal (2022) cannot be easily adapted to our situation.

The second challenge arises from handling the interference effect caused by temporal
and spatial proximities in spatiotemporal dependent experiments. This interference effect
results in a treatment applied at one location influencing not only its own outcome, but also
the outcomes at other locations. The current treatment is likely to affect both present and
future outcomes. Neglecting these effects would produce a biased QTE estimator. As far as

we are aware, there is no existing test capable of concurrently addressing both challenges.

1.1 Related work

A /B testing has been extensively researched in the literature, as evidenced by the works
of [Yang et al. (2017) and Zhou et al.| (2020), among other references. In contrast to most
existing A/B testing methods that focus on the Average Treatment Effect (ATE), Quantile
Treatment Effects (QTE) have received less attention. Among the few available studies, |Liu
et al.| (2019) proposed a scalable method to test QTE and construct associated confidence
intervals. Moreover, Wang and Zhang] (2021) developed a nonparametric method to estimate
QTEs at a continuous range of quantile locations, including point-wise confidence intervals.
More broadly, the estimation and inference of (conditional) QTEs have been considered in
the causal inference literature, as seen in the works of |Chernozhukov and Hansen! (2006)),
Firpo| (2007), and Blanco et al.| (2020)). However, these methods predominantly address

single-stage decision-making. To the best of our knowledge, this paper represents the first



attempt to explore QTE in temporally and/or spatially dependent experiments.

Our paper is closely related to the rapidly expanding body of literature on off-policy
evaluation in sequential decision-making. The majority of existing studies primarily con-
centrate on inferring the expected return under a fixed target policy or a data-dependent
estimated optimal policy (Zhang et al., 2013; [Shi et al., [2020; Kallus and Uehara, [2022)). In
recent years, several papers have explored policy evaluation beyond averages (Wang et al.
2018; Kallus et al., 2019; |Qi et al., 2022). These works propose using (augmented) inverse
probability weighted estimators to evaluate specific robust metrics under a given target
policy. As noted previously, these methods are subject to the curse of horizon and become
less effective in long-horizon settings. Most notably, policy evaluation in spatiotemporal
dependent experiments remains unexplored in the aforementioned studies.

Analysis of temporal and spatial interference has received much attention recently. For
example, [Tchetgen and VanderWeele| (2012), [Hudgens and Halloran (2008) and Liu and
Hudgens| (2014]) considered partial interference, where interference is possible between
individuals within the same group (or through social interactions) but not between groups.
This implies that potential outcomes are influenced not only by the treatment of the subject
under consideration but also by the treatments of other subjects within the same group.
Our focus differs from these studies as we delve into the realm of interference that extends
across both time and space. However, similar to the above literature, we employ the partial
interference assumption to handle the spatial interference as well. Recent proposals have
investigated causal inference with temporal or spatial interference, including studies by
Savje et al.| (2021)) and Hu et al.|(2022)), among others. However, these methods primarily
focus on the average effect. Furthermore, our paper is closely related to the literature on
distributional reinforcement learning (see e.g., Zhou et al., [2020). Despite this connection,
these studies primarily concentrate on the policy learning problem, and the uncertainty
quantification of a target policy’s quantile value remains unexplored.

Lastly, our paper is connected to a line of research on quantitative analysis of ridesharing
across various fields such as economics, operations research, statistics, and computer science
(see e.g., [Shi et al., 2022} Zhao et al., [2022)). Nevertheless, quantile policy evaluation has

not been examined in these papers.



1.2 Contributions

Our proposal offers three valuable contributions to existing literature. First, we present a
framework for deducing dynamic conditional Quantile Treatment Effects (QTE), defined
as dynamic QTE dependent on market features, irrespective of treatment history. While
unconditional QTE may be of interest, as previously noted, it assumes a highly complex form
in long horizon settings and is extremely challenging to identify when the signal is weak. In
contrast, we demonstrate that under certain modeling assumptions, the proposed dynamic
conditional QTE (CQTE) is equal to the sum of individual CQTE at each spatiotemporal
unit, even though the conditional quantile of cumulative rewards does not necessarily
equate to the sum of conditional quantiles of individual rewards. This finding significantly
streamlines the estimation and inference processes for our causal estimand, making our
proposal easily implementable in practice. Additionally, the estimated CQTE can exhibit a
smaller variance compared to that of the unconditional counterpart.

Second, we introduce an innovative framework to test dynamic CQTE while accounting
for the interference effect. We propose two Varying Coefficient Decision Process (VCDP)
models, enabling the application of classical quantile regression (Koenker and Hallock, 2001])
for parameter estimation and subsequent inference. We then develop a two-step method for
estimating CQTE, along with a bootstrap-assisted procedure for testing CQTE. We further
extend our proposal to analyze spatiotemporally dependent data and to test Conditional
Quantile Direct Effects (CQDE) and Conditional Quantile Indirect Effects (CQIE).

Third, we thoroughly examine the theoretical and finite sample properties of our methods.
Theoretically, we prove the consistency of our proposed test procedure, allowing the horizon
to diverge with the sample size. Notably, classical weak convergence theorems (Van Der Vaart
and Wellner| 1996) necessitate a fixed horizon and are not directly applicable. Empirically,
we apply our proposed method to real datasets obtained from a leading ridesourcing platform

to assess the dynamic quantile treatment effects of new policies.

1.3 Organization of the paper

Section [2| describes data from online experiments. Section [3| covers temporally dependent

experiments, and estimation and inference procedures. Section 4] extends the proposal to



spatiotemporally dependent data. Section [5| decomposes CQTE into CQDE and CQIE.
Section [6] evaluates ridesourcing dispatching and repositioning policies, and Section [7] assesses
the finite sample performance using real-data-based simulations. Additional simulation

studies, theoretical properties and their proofs are presented in the supplementary material.

2 Data Description

The purpose of this paper is to analyze three real datasets collected from Didi Chuxing,
one of the world’s leading ride-sharing companies. One dataset was collected during a
time-dependent A /B experiment conducted in a city from December 10, 2021 to December
23, 2021. The goal of this experiment was to evaluate the performance of a newly designed
order dispatching policy, which aimed to increase the number of fulfilled ride requests and
boost drivers’ total revenue. To protect privacy, we will not disclose the city name and
the specific policy used. During the experiment, each day was divided into 24 equally
spaced non-overlapping time intervals. The new policy (B) and the old policy (A) were
alternated and assigned to these intervals every day. On each day, we randomly selected
the treatment sequence from AB...AB and BA...BA with equal probability. Therefore, we
switched between A and B within and between days, ensuring that each policy was used
with equal probability at each time interval, meeting the positivity assumption. For more
details, see Section [3.1] It is worth noting that such an alternating-time-interval design,
also known as the switchback design, is commonly used in industries to reduce the variance
of treatment effect estimators (Hu and Wager|, 2022 Shi et al.| 2022; Xiong et al., 2023)).
Further information can be found in the article by Lyft on experimentation in a ride-sharing
marketplace (Chamandy), 2016)).

The second dataset comes from a spatiotemporal-dependent experiment conducted
in another city between February 19, 2020, and March 13, 2020. Each day is divided
into 48 non-overlapping, equal time intervals, and the city is partitioned into 12 distinct,
non-overlapping regions. On the first day of the experiment, the initial policy in each region
is independently set to either the new or old policy with a 50% probability. The temporal
alternation design for time-dependent experiments is then applied in each region.

In addition to the two datasets from A/B experiments mentioned earlier, we also analyze
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Figure 1: Scaled drivers’ total income (a), request (b) and drivers’ online time (c) in the temporal
dependent A/B experiment and the estimated density of drivers’ total income (d) in the spatial
temporal dependent A /B experiment.

a third dataset collected from an A/A experiment. In this case, the two policies being
compared are identical, and the treatment effect is zero. The experiment took place in a
specific city from July 13, 2021 to September 17, 2021. This analysis serves as a sanity
check to examine the size property of the proposed test. We expect that our test will not
reject the null hypothesis when applied to this dataset, as the true effect is zero.

The ridesharing system dynamically connects passengers and drivers in real-time. All
three datasets include the number of call orders and the total online time of drivers for each
time interval. These metrics represent the supply and demand in this two-sided market.
The platform’s outcomes include the drivers’ total income, the answer rate (the number of
call orders responded to), and the completion rate (the number of call orders completed) for
each time interval. In our study, we are interested in determining whether the new policy
improves drivers’ total income at various quantile levels.

The datasets exhibit four distinct characteristics. First, the horizon duration is typically
much longer (e.g., 24 or 48) than the experiment duration, while the treatment effect is
usually weak (e.g., 0.5%-2%). Second, both demand and supply are spatiotemporal networks
that interact across time and location, as observed in panels (a) and (b) of Figure [l which
display the number of call orders and drivers’ online time. Third, the outcome of interest
follows a non-normal and heavy-tailed distribution, illustrated in panels (¢) and (d) of
Figure |1, Finally, there are interference effects over time and space, demonstrated in Figure
with temporal interference effects occurring when past actions impact future outcomes.

We focus on answering three key questions in these datasets:

(Q1) How can we quantify treatment effects across various quantile levels for the time-



Figure 2: This example illustrates the temporal interference effect in ridesharing, where assigning
different drivers to pick up a passenger significantly impacts future ride requests. (a) A city with
10 regions has a passenger in region 6 needing a ride, with three drivers in region 3 and one in
region 10. Two actions are possible: assigning a driver from region 3 or region 10. (b) Assigning
a driver from region 3 might result in an unmatched future request due to the driver in region
10 being too far from region 1. (c) Assigning the driver in region 10 could lead to all future ride
requests being matched, preserving all three drivers in region 3.

dependent A /B experiment data in order to gain a comprehensive understanding of the
new policy’s effects within the city?

(Q2) How to evaluate the quantile treatment effects for the above spatiatemporal
dependent experiment data?

(Q3) How to determine whether or not to replace the old policy with the new one?

These questions drive the methodological development outlined in Sections 3 and 4.

3 Testing CQTE in temporal dependent experiments

In this section, we explicitly state the test hypotheses for our first research question (Q1) and
explore the primary challenge encountered in experiments exhibiting temporal dependence.
Subsequently, we detail the key technical assumptions that enable the cumulative quantile
treatment effect (CQTE) to be equivalent to the sum of individual CQTEs. Finally, to
address the third research question (Q3), we present the proposed estimation and testing

strategies for our investigation.

3.1 CQTE, test hypotheses and assumptions

We consider the temporal alternation design with a sequence of treatments over time.

Specifically, we divide each day into m non-overlapping intervals. The platform can



implement either one of the two policies at each time interval. For any ¢t > 1, let A; denote
the policy implemented at the tth time interval where A; = 1 represents exposure to the
new policy and A; = 0 represents exposure to the old policy. Let S; and Y; denote the state
(e.g., the supply and demand) and the outcome at time ¢, respectively.

To formulate our problem, we adopt a potential outcome framework (Rubin) 2005)).
Specifically, we define @; = (ay,...,a;)" € {0,1} as the treatment history up to time t.
We also define S;(a;—1) and Y,*(a;) as the counterfactual state and counterfactual outcome,
respectively, that would have occurred had the platform followed the treatment history
a;. Our primary interest lies in quantifying the difference between the 7th quantile of the
cumulative outcomes under the new policy and that under the old policy, denoted as the

quantile treatment effect (QTE):

m m

QTE = Q. ( Y7 (1) - (Yo7 (0),

t=1 t=1

where 1; and 0; are vectors of 1s and 0Os of length ¢, respectively, and Q. (-) denotes the
quantile function at the 7th level.

However, learning such an unconditional dynamic QTE from our experimental dataset
is highly challenging. Remember that in our A/B experiment, the old and new policies are
assigned alternately over the m time intervals. Nevertheless, the target policy we aim to
evaluate corresponds to the global policy, which allocates the new or old policy globally
throughout each day. This leads to an off-policy setting where the target policy differs
from the behavior policy that generates the data. Existing off-policy quantile evaluation
methods based on inverse probability weighting, such as those presented by Wang et al.
(2018)), are inefficient in our setting with a moderately large m. Off-policy evaluation (OPE)
methods, including |Shi et al.| (2020), [Liao et al.| (2021), and Kallus and Uehara/ (2022)), are
semiparametrically efﬁcientﬂ in long-horizon settings. Despite this, these methods primarily
focus on the mean return, making it difficult to adapt them for quantile evaluation due

to the nonlinear quantile function @),. To illustrate, note that there is no guarantee that

Q-7 V(1) — Q-0 Yr(0) = >0, 1Q-(Y (1) — Q- (Y*(0,)) | in general. This

IShi et al. (2020) and [Liao et al. (2021) proposed to use the direct method based on linear sieves or
kernels. However, the resulting estimators are semiparametrically efficient as well.



observation motivates us to seek an alternative definition for QTE.

Second, let & represent the set of features (e.g., extreme weather events) that have an
impact on the outcomes up to time ¢, but are not influenced by the treatment history. This
means that for any treatment history a;, the potential outcome of these features remains
the same, i.e., & (a;) = &. By definition, S; is an element of &, which ensures that & is

non-empty for any t. We introduce CQTE as follows:
CQTE, = Q-(3_ Y (1)) = Q- Y/ (0)|Em). (1)
t=1 t=1

The CQTE is a reasonable measure because the set of conditioning variables remains
consistent under both new and old policies. When m = 1, this definition reduces to
the one used in single-stage decision-making, as discussed in previous literature, such as
Chernozhukov and Hansen| (2006)).

Conditioning has several benefits. Firstly, it offers a more convenient way to estimate the
dynamic Quantile Treatment Effect (QTE) by aggregating individual QTEs over time. This
approach simplifies the estimation process and reduces computational complexity. Secondly,
conditioning can also help to reduce the variance of the resulting QTE estimator by removing
the need to account for variability in the relevant characteristics. By conditioning on certain
variables, researchers can effectively control for confounding factors and produce more
accurate estimates of treatment effects.

Third, we introduce the concept of Summed Conditional Quantile Treatment Effects
(SCQTE), which represents the sum of individual Conditional Quantile Treatment Effects
(CQTE) over time. The SCQTE is defined as follows:

SCQTE, = Q- (Y (1)I&) = Y Q- (¥ (0,)|&).

Compared to CQTE, SCQTE is easier to learn from observed data. For example, one
can fit a quantile regression model at each stage, estimate individual CQTE values, and
then sum these estimators together. Although the quantile function is not additive, we
demonstrate in the following proposition that SCQTE is equal to CQTE under specific

modeling assumptions. Even in scenarios where the underlying assumptions may not

10



strictly hold, focusing on SCQTE still offers valuable insights. It describes the average
of the marginal quantile treatment effect across all time intervals, which assesses how the

distribution of outcomes changes in response to the treatment at each time point.

Proposition 1. Suppose that for any time point t, Y, (a;) follows the structural quan-
tile model Y, (a;) = ¢1(Eyar, U) for a specific deterministic function ¢y and a uniformly
distributed random variable U ~ Unif(0,1), which is independent of {&}. Furthermore,
assume that ¢y(&;, 14, 7) and ¢(E;, 0y, T) are non-decreasing functions of T for any &. Under

these conditions, we find that CQTE. = SCQTE.,.

Proposition [1| establishes the equivalence between CQTE and SCQTE and serves as
a fundamental building block for our proposal. It allows us to focus on SCQTE, which
is a simplified version of CQTE. This simplification greatly facilitates the estimation and
inference procedures that follow, which rely on fitting a quantile regression model at each
time point to learn the SCQTE. For more details, see Sections and 3.3l Moreover, the
proposed model in Proposition |1} is related to the structural quantile model in the quantile
regression literature (Chernozhukov and Hansen, [2005| 2006). These models assume that,
conditional on the covariate X = x, the potential outcome Y*(a) = ¢q(a,z,U) for a =0, 1
and U ~ U(0,1), where q(d,z,7) is strictly increasing in 7. The uniformly distributed
variable U serves as a rank variable that characterizes the heterogeneity of the outcome
across different quantile levels. More discussion on the rank invariance assumption can be
found in Section E of the supplementary material. Under the non-decreasing constraint, the
7th conditional quantile of Y*(a)|X = x can be shown to equal ¢(a, z, 7). The discussion on
this assumption can be found in Section F. Proposition [I| motivates us to focus on testing

the following hypotheses for each quantile level 7:
Hy: CQTE, <0 versus H;:CQTE, > 0. (2)

These hypotheses test whether the treatment effect at the 7th quantile is non-negative or
positive, respectively.

In this study, we utilize the consistency assumption (CA), sequential ignorability as-
sumption (SRA), and positivity assumption (PA) to identify the causal estimand. Similar

assumptions are frequently used in the dynamic treatment regime literature for learning
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optimal dynamic treatment policies (Gill and Robins, [2001). The consistency assumption
(CA) states that the potential state and outcome, given the observed data history, should
align with the actual observed state and outcome. The sequential ignorability assumption
(SRA) demands that the action be conditionally independent of all potential variables,
given the past data history. In our application, the SRA is inherently satisfied as the policy
is assigned according to the alternating-time-interval design, independent of data history.
The positivity assumption (PA) necessitates that the probability of {A, = 1}, given the
current state, must be strictly confined between zero and one for any t > 1ﬂ Under the
alternating-time-interval design, the PA can be easily satisfied if the treatment in the initial
time interval is randomized. It is essential to note that the CA, SRA, and PA enable the

consistent estimation of the potential outcome distribution using the observed data.

3.2 VCDP models

Suppose that the experiment is conducted over n consecutive days. Let (S;;, Ai;,Y:; )
be the state-treatment-outcome triplet measured at the jth time interval of the ith day
fori=1,...,nand j = 1,...,m. We assume that these triplets are independent across
different days, but may be dependent within each day over time.

We begin by introducing two varying coefficient decision process models, one for the
outcome and the other for the state. The first model characterizes the conditional quantile

of the outcome and is given by
Yii = Bo(t,U;) + S;B(t, Us) + Ay (t,U;) = ZiTtQ(t, Us), (3)

where Z;; = (1,5}, Aiz)"T € R™2, 0(t,U;) = (Bo(t,Uy), B(t,U;) T, v(t, U;) T € R*2 is a
vector of time-varying coefficients, and U; ~ U(0, 1) is the rank variable. Model extends
the idea of using rank variables to represent unobserved heterogeneity across different

quantiles in a single-stage study to sequential decision making.

2Qur positivity assumption is weaker than the standard positivity assumption which requires the
probability of {A; = 1} given the observed data history to be strictly confined between zero and one. Such
a relaxation is facilitated by the Markov assumption, which allows us to model the current outcome and
future state solely based on the current state-action pair, as elaborated in Equations @ and

12



The second model characterizes the conditional mean of the observed state variables,
Site1 = ¢o(t) + P(t)Sit + A L(t) + Ei(t+1)=0(t) 2 + Ei(t + 1), (4)

where ¢o(t) and I'(¢) are d-dimensional vectors, ®(t) is a d x d matrix of autoregressive
coefficients, and O(t) = [po(t) P(t) I['(t)] is a d x (d + 2) coefficient matrix. The term
E;(t+1) is a random error term whose conditional mean given Z;; equals zero. In addition,
{E;(t)}; are independent over time. It can be checked by testing the autocorrelation of the
residuals, such as the well-known Ljung-Box test. Therefore, the conditional expectation of
Siti1 given Z;y is: E(S;¢41|Zit) = O() Z; 4.

It is worth noting that models and belong to the class of varying-coefficient
regression models. The existing literature on this topic mainly focuses on estimating the
relationships between scalar predictors and scalar responses (Sherwood and Wang, [2016]),
or between scalar predictors and functional responses (Zhang et al. 2022), or between
longitudinal predictors and responses (Wang et al.. [2009). However, to the best of our
knowledge, none of these works have utilized varying-coefficient regression models for policy
evaluation in sequential decision making.

While we assume the residual process { E;(t)} is independent over time, it is worthwhile
to note that the state process {S;:} is correlated and dependent. Specifically, this state
process adheres to a martingale sequence that satisfies the Markov property. In the absence
of this independence assumption, the Markov assumption would be violated. It is well-known
that efficient policy evaluation is extremely challenging in non-Markovian environments
(see e.g., Uehara et al., 2022)). Moreover, models and are valid when the potential
outcomes satisfy similar assumptions in the quantile varying coefficient models. Please refer
to equations (S2) and (S3) in the supplementary material for more details.

If the residual E;(t + 1) is independent of the treatment history and U;, we can define
& as {S1,E(1),---,E(t)}. Under this condition, the assumptions in Proposition (1| are
satisfied. Hence, under the proposed VCDP models, CQTE is equivalent to SCQTE. Next,

13



we introduce the following function:

6 anU) = Bo(t,U) +ar(t,U) + B(t,U) ( {H D(0)[go(k) + arT (k)] } )
H Sl+21:[<1>
=1 =2 I=k

The subsequent proposition offers a closed-form formula for CQTE.

Proposition 2. Assuming that CA and Equations (S2) and (S3) in the supplementary
material hold, U is independent of {&:}¢, and ¢y(E, 14, 7) and ¢(E;, 0y, T) are non-decreasing

in T for any &, then we have

CQTE, = SCQTE, = Y ~(t,7)+ > At 7)" {z_: [ 1:[ @(Z)] F(k)} : (5)

t=1 =2
where the product Hf;,iﬂ O(l) =1 whent—1<k+1.

Proposition |2 enables us to estimate CQTE through SCQTE under certain assumptions.
Among these, the monotonicity assumption can be satisfied under various conditions. For
example, it holds when Sy(t,7), v(t,7), and all elements in 5(t, ) are strictly increasing in
7, and ¢g(t), all elements in ®(t), and I'(t) are positive. Additionally, when I'(¢) = 0 and
¢o(t) = 0 for any ¢, it suffices to require y(¢,7) and Sy(t, 7) to be strictly increasing in 7.

To evaluate policy value, we need to estimate the model parameters 3, v, ®, and T

Notice that under the conditions of Proposition [2] we have that:
Yie = Bo(t, )+ S, tﬁ(t T)+ Ay (t,7) +e(t, 7) = Z;H(t, )+ ei(t, 7), (6)

where ¢;(t,7) is the error term, defined as Z;,[0(t,U) — 0(t,7)], and its conditional 7-th
quantile given Z,; equals zero. Therefore, we can employ ordinary quantile regression to
learn 5 and 7. Meanwhile, since the residuals F;(t)s are independent over time, ordinary
least-squares regression is applicable to the state regression model to estimate ® and I'. We

detail our estimating procedure in the next section.
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3.3 Estimation and inference procedures

In this subsection, we outline the procedures for estimating and testing CQTE based on
the results in Proposition . We first estimate the regression coefficients in models @
and . We then plug these estimates into to estimate CQTE. Finally, we develop a
bootstrap-assisted procedure to test CQTE.

Let Si(f;}rl, o)(t), and T®) () denote the v-th entries of G441, do(t), and T'(t), respectively.
Let ®)(¢) and ©®)(¢) denote the v-th rows of ®(¢) and O(t), respectively. It follows from

that:
SU =0 () + ST () + ALV () + BEX(E+ 1) = Z1,0W (1) + B (¢ + 1).

We propose a two-step procedure to estimate 6(¢,7) and ©(t). In the first step, we

minimize the following functions:

~

O(t,7) = arg mianT(Yi,t — Z0(t, 7)), fort=1,...,m, (7)

(:)(”)(t) = argmin Z[Sf'ﬁrl — Z;@(”)(t)]z, forv=1,...,d; t=1,...,m—1.(8)

These one-step estimates can be computed easily but suffer from large variances as they
rely solely on observations at time ¢. In contrast, the true coefficient 0(¢,7) and ©(t) are
expected to possess smoothness across time ¢. To fully use the information across time, we
employ the kernel smoothing technique to reduce the variances of these initial estimators,
achieve smoothness, and identify weak signals (Zhu et al., 2014)). Specifically, for a given

kernel function K(-), the second-step estimators 6(¢,7) and o (t) are defined as:

0t,7) = > win®)0(j,7), fort=1,....m, (9)
j=1

OM(t) = Y win)O¥(j), forv=1,....d, t=1,..m, (10)
j=1

where wj;,(t) = K((j—t)/(mh))/ > 1, K((k—t)/(mh)) is the weight function and h denotes

the kernel bandwidth. Among various kernel functions, we adopt the widely used Gaussian

kernel K (t) = exp(—t2). Essentially, the estimates ©®)(¢) and 6(t,7) are calculated as
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weighted averages of the one-step estimates {0(j,7),7 = 1,...,m}, with the weights being
modulated by the kernel function. This methodology facilitates a more stable and continuous
estimation, which is especially valuable in the presence of weak signals or when assessing
parameters that are expected to be consistent over time. Given 6(,7) and é(TV)(t), we can

compute the following CQTE estimator:

CQTE, =3 7(t,7) +Zﬁ<mf{ Y [ IT &0

t=2 l=k+1

f(k)}. (11)

To test , we use the test statistic T}, which is set to C/Q-T\ET- Under the null hypothesis,
T, is expected to be negative or close to zero. Therefore, we reject the null hypothesis for
a large value of CQ/T\ET. However, deriving the limiting distribution of T, for large m is
complicated due to the complex dependence of @T on the estimated model parameters.
To address this issue, we use the bootstrap method to simulate the distribution of C/QﬁT
under the null hypothesis. Specifically, we modify the bootstrap method proposed by
Horowitz and Krishnamurthy| (2018) and adapt it to our setting as follows. [Horowitz and
Krishnamurthy| (2018) proposed to resample the estimated residuals to infer the conditional
quantile function in a nonparametric quantile regression model. In our case, to handle the
dependence over time, we resample the entire error process (see Step 3 below for details).

The bootstrap method for (@T is implemented as follows:

e Step 1. Compute the estimators 6(¢, 7) and O(t) in (9 and (L0).

e Step 2. Estimate the residuals by e;(t,7) = Y;; — ZiTtg(t,T) for t = 1,...,m and
El(t —+ 1) = Si,tJrl - é(t)ZLt for t = 1, e, — 1.

e Step 3. For i = 1,...,n, define the random vectors ¢;(7) = (e;(1,7),- - ,e;(m, 7)) and
E; = (EZ(2), e ,E(m)) For each bootstrap iteration indexed by b, we sample the
entire residual process with replacement. Specifically, we generate a bootstrap sample

consisting of n error processes {€4(7),...,el(7)}, by resampling n random vectors

from the original set {€e;(7),...,e,(7)} with replacement. Similarly, we construct
another bootstrap sample of n error processes {E?, ..., E’}, by resampling n random

vectors from {El, . ,En} with replacement. Next, we generate pseudo outcomes
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{S\zbt}zt and {SA/,bt}” as follows,

Shior = OWM)Z), + Bt +1) and Y}, = Z76(t,7) + € (t, 7). (12)

e Step 4. For each b, compute the bootstrap estimates 6°(¢,7) and ©°(¢) according to
equations ([7)-(10) using the pseudo outcomes {(@bt, f/lbt) Dy}

—_— b
e Step 5. For each b, compute the bootstrapped statistic T = CQTE..

e Step 6. Repeat Steps 3-5 B times. Given a significance level «, reject Hy (see ) if

the statistic T, exceeds the upper ath empirical quantile of {T° — T, }2 ..

In the supplementary material, we present Theorem S1, which rigorously establishes the
consistency of the aforementioned bootstrap method. It’s worth noting that the bootstrap
consistency theory elaborated in |Horowitz and Krishnamurthy| (2018]) isn’t readily applicable
to our context, where m can increase along with the sample size.

In practice, we may select the bandwidth h by using K-fold cross-validation. To satisfy
the o(n~'/*) order condition, following a similar spirit to |Seo and Linton| (2007) and [Porter
and Yu| (2015), we choose h among H,, = [C}(logn)n~"/2, Cy(logn)n~'/?] for some positive
constants C'; and Cs. For each potential bandwidth parameter, the cross-validation criterion
is computed as the sum of the prediction errors after leaving out one of the K folds;
smaller errors are preferred. Specifically, we randomly split the full sample into K subsets,
denoted by {D; : j=1,...,K}. For j=1,...,K and i € Dj, let S\, 7 (h) and Y, ™ (h)
represent the estimated mean for S;;;; and the estimated quantile for Y;,, respectively.
These estimates are computed using bandwidth h based on the dataset that excludes the
observations in D;. We then select the optimal bandwidths hg for 0 and he for ) by

minimizing the following objective functions:

1

CVo(h) =333 0 (Vi = V™ (0), CVe(h) =Y (Sicer — Sierd) (A))2.

j=1i€D; t=1 j=14€D; t

3
|

Il
—

We set K = 2 in our simulation studies and real data analysis.
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4 Extension to spatiotemporal dependent experiments

In this section, we aim to address (Q2) and expand upon the method proposed in Section [3[to
analyze data from spatiotemporal dependent experiments involving multiple non-overlapping
regions receiving distinct treatments in a sequential manner over time. Let r represent the
number of these non-overlapping regions. As previously discussed, these experiments are not
only subject to temporal interference effects but also exhibit spatial interference, whereby

the policy implemented in one location may influence the outcomes in other locations.

4.1 Test hypotheses

For the «-th region, we use a;, = (ay,,. .. ,dm)T to denote its treatment history up to time
t. Let @y = (Geas - - - d;,)" represent the treatment history across all regions. Similarly,
define S}, (@;—1,1.,)) and Y}, (@y147) as the potential observation and outcome for the (-th
region, respectively. The set of potential observations at time t is denoted as SZ[M] (Qp—1,[1:9)-

In the spatiotemporal context, our focus is on the cumulative quantile treatment effects,

aggregated over all regions. We define CQTE and SCQTE at the 7-th quantile level as

CQTETst = QT < Z Z YZL(lt,[lzr]”gm,[l:r]) - QT ( Z Z YZL(Ot,[lzr]) |gm,[1:7"]) P

=1 t=1 =1 t=1

SCQTE,, = 330 (VL&) — 330 0 (V2 0l

=1 t=1 =1 t=1

respectively, where &, 1., denotes the set of characteristics independent of the treatment
history up to time t across all regions. For a given quantile level 7, our goal is to test

whether a new policy outperforms the old one as follows:

Hy: CQTE,,, <0 versus H;:CQTE,, > 0. (13)

TSt

Compared to the testing problem in ([2), focuses on global treatment effects aggregated
over time and regions. We assume the consistency assumption holds. Similar to Section
[B) under the spatial alternating-time-interval design, one can show that the sequential
ignorability assumption and the positivity assumption are automatically satisfied, ensuring

that CQTE is identifiable from the observed data.
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4.2 Spatiotemporal VCDP models

Suppose that the experiment last for n days, and each day is divided into m time intervals.
Fori=1,....n,t=1,...,m,and ¢ = 1,...,7, let (Sit,, Air., Yit,) represent the state-
treatment-outcome triplet measured from the (th region at the t-th time interval of the
i-th day. For each ¢, N, denotes the neighbouring regions of ¢. To model the quantiles of
Y;, and S;,, we extend the two VCDP models in Section 3| to two spatialtemporal VCDP
(STVCDP) models in this section.

The first STVCDP model describes the quantile structure of the outcome,

Y;,t,L = BO(ta L, Uz) + S;7L5(t7 L, Uz) + Ai,t,Lﬁ)/l (ta L, Uz) + Ai,t,NbfYQ(u Ly UZ) (14)
=7 0(t,,U),

it

IRAR) Ai,t,w Ai,t,NL)T7 and e(tv L, UZ) =
(Bo(t, e, Us), Bt 1, U) Ty (t, 1, Us), ya(t, 0, U;)) . Model is based on two key assumptions.

where A; ; v, denotes the average of { A; ; . bren;, Zir. = (1,5,

Firstly, it is assumed that the effect of treatments in other regions on the conditional quantile
of Y;;, is limited to those of its neighboring regions, as long as each experimental region is
large enough. This is because drivers can only travel between neighboring regions in one
time unit, meaning that treatments in non-neighboring regions are not expected to impact
Yi:.. Secondly, it is assumed that the influence of treatments in neighboring regions on the
conditional quantile of Y;,, is only through the mean of the treatments. This is a common
mean-field assumption used to model spillover effects (e.g., Hudgens and Halloran| 2008; |Shi
et al., [2022). Following a similar spirit to [Shi et al.| (2022)), the mean-field assumption can be
tested using observed data by investigating the conditional independence between Y;;, and
treatments from the neighboring regions given {S;;,, A; .., 14_12-7,5, A, }. Our proposed method
is readily extensible to contexts where the effects of treatments in neighboring regions are
influenced solely through their quantiles. Specifically, the term A, ; x, in Equations and
below can be replaced with the quantiles of the treatments {A; ¢ s }xen,. The theoretical
results remain largely unchanged and can be established in a similar manner, as they are
derived on the framework of conditional quantile regression. In particular, variations in
some of the predictors do not impact the theoretical validity of our approach.

The second STVCDP model models the conditional distribution of the next state given
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the current state-action pair as follows:

Sitt, = do(t,0) + @(t,0)Sie, + Aig Li(t0) + Ajgn Dot o) + Ei(t+1,0)
=O(t,0)Ziy, + Ei(t+1,0),

(15)

where O(t, 1) = [¢o(t, 1), ®(t, 1), T1(t, 1), Ta(t,1)] € R>*E@H3) and ®(¢,1) is a d x d matrix of
autoregressive coefficients. The conditional mean of each entry in the error process E;(t, )
given Z;,, is zero. The error process is required to be independent over time, although
it may be dependent across different locations. The varying coefficients are required to
be smooth over the entire spatial domain, which will help to reduce the variances of the
model estimators and improve the accuracy of the CQTE estimator. The models and
hold under the assumption that the potential outcomes satisfy the quantile varying
coefficient models, as described in the supplementary material (models (S4) and (S5)).

The following proposition provides a closed-form expression for CQTE_,, and proves

that CQTE,,, = SCQTE..,,. Let

Tst*

¢t,L(€t,L7 at,[l:r]a U) = /60(1;7 L, U) + a’t,L’Yl <t7 L, U) + &t,NL'72 (ta L, U)

t—1 t—1
+ B0 (3 { T @ 0loo(k,0) + ar Lk, ) + agTa(k, 0] )
k=1 lk+1
t—1
+ H<1>JLSU+ZH<1>ZL
=1 k=2 l=k

where &, = {S1,, E(2,¢), ..., E(t,.)} and the product HE;;H ®(j,0) =1whent—1< k+1.

Proposition 3. Suppose that CA and the conditions in equations (S4) and (S5) of the
supplementary material hold, and that U is independent of the collection of error processes
{& .} i, Furthermore, assume that the functions ¢y, (Exy, i, 7) and ¢y, (Ery, Opp1iy, T) are
non-decreasing in 7 for any & ,. Then, we have

CQTE,y = SCQTE,, = > > {m(t,e,7) +7(t,,7)}

=1 t=1

+ iiﬁtmT{iLH O(j, 0 ] (L (R, 1) + o (k, L)]}
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Proposition |3| provides a foundation for constructing a plug-in estimator for CQTE_,,.
This forms the basis of the proposed inference procedure, which we discuss in more detail

in the next section. Additionally, from models and , we can obtain the expression
Yie. = Bo(t, e, 7) + S;}ﬁ(t, 0, T) + Aot (b6, 7) + A a2 (t 0, 7) + et 0, 7),

where ¢;(t, ¢, 7) is the residual term, defined as Z, ,[0(t, ¢, U)—0(t, ¢, 7)], and its conditional 7-
th quantile given Z; ; , is equal to zero. It is worth mentioning that these models can be further
extended to incorporate the effects of states from neighboring regions on the immediate
outcome by including another mean-field term ®4(t, ¢)S; s n;, where Sipn, = >, e, Sit JN,.

In this case, the closed-form expression for CQTE_,, can be similarly derived.

4.3 Estimation and inference procedures

In this subsection, we outline the estimation and testing procedures for CQTE_,.

Firstly, we calculate raw estimators of the unknown coefficients in the two STVCDP
models. For each region ¢, we employ standard quantile regression and linear regression as
shown in and (8) to the data subsets {(Z; 1., Yit.) }ir and {(Zit., Sit41.) }ie to obtain the
initial estimators 5(157 t,T) and @(t, t) for O(t, ¢, 7) and ©(t, ), respectively. Next, we apply
kernel smoothing techniques as illustrated in @ and to refine these initial estimators
over time. We denote the resulting estimators as 6°(¢, ., 7) and ©°(t, ).

Secondly, we further refine these raw estimators by employing kernel smoothing to
borrow information across space. Specifically, we define (¢, 1, 7) = Yot I{&h(L)go(t,g, T)
and OW(t,1) = S0_, kup,, (1)) (L, £), where ©°M) (¢, 1) is the vth column of ©°(t, 1) and
Ko, () is a normalized kernel function with bandwidth parameter hg. The kernel function

Ko, (1) 1s given by

_ K((u, — ug)/hs) K ((v, — ve) /Dt
Z§:1 K((u, = uy)/hst) K ((v, = v5)/hst)’

Keha (L)

where (u,,v,) represents the longitude and latitude of region ¢. Consequently, regions with
smaller spatial distances contribute more significantly.

Thirdly, we estimate CQTE,_, by substituting the refined estimators 575;:(757 t) and ést(t, L)

Tst

and use the resulting estimator C/Qﬁm as the test statistic 7T;4. Finally, we introduce
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a bootstrap method to test (| . During each iteration, we resample the estimated error
processes to obtain the bootstrap estimates 62, (¢, ¢) and ©%,(¢, ), and the bootstrapped
statistic T, = CQTETst. We reject Hy in it T, exceeds the upper ath empirical
quantile of {T%, — T, }2 ;. As this approach is highly similar to the one presented in
Section [3.3, we omit further details for brevity.

Similar to the bandwidth selection method used in temporal-dependent experiments,
we employ the K-fold cross-validation to simultaneously optimize the two bandwidths for
both kernel smoothing procedures. Detailed formulations can be found in Section C of the

supplementary material.

5 Direct and indirect effects

Recall that Proposition [2 provides the closed-form expression of CQTE., which is

> ot )+ BT {Z [ f[ cp(l)] F(k)} .

t=1 t=2 k=1 Ll=k+1

Consequently, we can divide the quantile treatment effect into two components. Specifically,
the first term Y ", v(¢,7) of CQTE_ represents the direct effect of the treatment on the

immediate outcome, expressed as

m

CQDET—@T(XT: “(1)1€n) (Z (0,11-1)[€n ).

=1

Observe that for each ¢, the two potential outcomes Y;*(1;) and Y;*(0,1,_1) differ in the
treatment received at time ¢, but they share the same treatment history. The second term
o, Bt T) {Z [T k+1 ®(1)] T'(k)} quantifies the carryover effects of past treatments

on the current outcome, defined as

COIE, = Q. (V70 1)18n) - @ (Ve OlE ).

t=1

Similar decompositions have been considered in |Li and Wager| (2022)) and |Shi et al.| (2022).
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The corresponding testing hypotheses are given by

HP :CQDE, <0 versus H{ :CQDE_ >0, (16)
H!:CQIE, <0 versus H{:CQIE, > 0. (17)

Testing these hypotheses not only enables us to determine whether the new policy is
significantly better than the old one or not, but also helps us understand how the new (or
the old) policy outperforms the other.

To test and (17)), we use the two-step estimators in (9) and to construct the
plug-in estimators C/QEEJT and @T for CQDE and CQIE, respectively. Next, we employ
the bootstrap method in Section to approximate the limiting distributions of CTQD\ET and
C/QI\ET under the null hypotheses. We note that although C/QFET has a tractable limiting
distribution and is asymptotically normal, estimating its asymptotic variance without using
bootstrap remains challenging.

Finally, we can similarly define the direct effect and indirect effect in the spatiotemporal

design as follows,

CQDE,,, = Z{% (e, ) +72(t, 0, 7)1
=1 t=1
r m t—1 t—1

CQIE,,, = Y > Bt,,7)" Z(H ®(j, ¢ ){FlkL)Jng(k L)}].
1=1 t=2 k=1 \j=k+1

The estimation and inference procedures can be derived similarly.

6 Real Data Analysis

To address (Q1)-(Q3), we apply the proposed test procedures to the three real datasets
obtained from Didi Chuxing introduced in Section [2]

Firstly, we examine the dataset from a temporally dependent A /B experiment conducted
from Dec 10, 2021 to Dec 23, 2021. As detailed in Section [2] two order dispatch policies
are tested in alternating one-hour time intervals. The new policy, in comparison to the

old one, is designed to fulfill more call orders and elevate drivers’ total income. As for
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the choices of the observation variables, our recommended approach is to carefully select
state variables that effectively capture the demand and supply dynamics of the ridesharing
platform while exerting a substantial influence on the outcome of interest. To bolster the
selection process, we advocate subjecting potential state variables to the Ljung-Box test.
State variables that pass this test tend to be more fitting; their residuals reflect a temporal
independence congruent with our modeling prerequisites. We set drivers’ total income as
the outcome, and the observation variables include the number of call orders and drivers’
total online time. To address question (Q1), we apply model to elucidate the correlation
structure between supply and demand and model to elucidate the temporal interference
effects. For question (Q3), we utilize the testing procedure described in Section for
these temporally dependent experiments. As a means to validate the proposed test, we also
apply our procedure to the A/A dataset outlined in Section [2| where a single order dispatch
strategy is employed. We anticipate that our test will not reject the null hypothesis when
applied to this dataset.

In Figure [3] we display the estimated residuals of the outcome over time for 7 €
{0.1,0.5,0.9} of the A/B experiment. As can be seen from Figure [3| some residuals
are significantly larger than others, suggesting that the outcome likely originates from
heavy-tailed distributions. This reinforces the use of quantile treatment effects for policy
evaluation. We further investigate the correlations of E;(¢) in real-world data scenarios. For
the temporally A/B experiment, involving observation variables such as the number of call
orders and drivers’ total online time, we apply the Ljung-Box test to assess the correlations
of the two residual processes. The resulting p-values for the residuals of the number of call
orders and drivers’ total online time are 0.083 and 0.162, respectively, indicating no/weak
autocorrelations over time. Table [1| presents the p-values of the proposed test for CQTE,,
CQDE,, and CQIE,, respectively. Furthermore, Figure ] illustrates the estimated treatment
effects and the p—values across various quantiles for the A/B experiment. As expected,
the proposed test does not reject the null hypothesis at any quantile level when applied
to the A/A experiment. However, when applied to the A/B experiment, the new policy
demonstrates significant quantile direct effects on the business outcome at most quantile
levels. In contrast, the indirect effects are not significant. For comparison, we also report

the p-values for testing the average direct and indirect effects in Table [I} These p-values
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Figure 3: Estimated residuals of drivers’ total income at quantile levels 0.1, 0.5, and 0.9 in the
temporal dependent A/B experiment.

Table 1: p-values of the proposed test for CQDE, and CQIE,, as well as p-values of direct
effect and indirect effect for average effects for both datasets from the A/A experiment and
A /B experiment, utilizing the time-alternation design.

pvalues for AA pvalues for AB
T CQDE, CQIE. CQDE,. CQIE,
0.1 0.286 0.084 0.208 0.076
0.2 0.522 0.096 0.080 0.060
0.3 0.530 0.098 0.002 0.068
0.4 0.568 0.122 0.010 0.086
0.5 0.536 0.116 2e-4 0.072
0.6 0.464 0.100 0.002 0.068
0.7 0.548 0.102 Te-4 0.092
0.8 0.606 0.108 2e-4 0.068
0.9 0.322 0.102 7e-5 0.100
average effect 0.800 0.220 0.046 0.956

are calculated by replacing the quantile function in the proposed test procedure with the
mean function. Similar to the proposed test, in the A/A experiment, both the direct effect
and the indirect effect are not significant. For the A/B experiment, the direct effect is
significant at 5% significance level and the indirect effect is not significant. To the contrary,
the proposed quantile-based test suggests that the direct effect is significant only at higher
quantile levels (when 7 > 0.2). This highlights the strengths of our test. Namely, it enables
us to evaluate treatment effects across different quantiles, thereby providing a richer and
more comprehensive understanding than a sole focus on the average effect would allow.
Secondly, we analyze the dataset from the spatiotemporal dependent experiment as
described in Section [2 Recall that in this experiment, the city is divided into 12 regions.
Policies are implemented based on alternating 30-minute time intervals within each region.
We concentrate on a data subset collected from 7 am to midnight each day, as there are

relatively few order requests from midnight to 7 am. The drivers’ total income and the
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Figure 4: Estimates of CQDE; and CQIE, and their p-values across quantile levels for the A/B

experiment under the temporal design.

number of call orders are designated as the outcome and state variable, respectively. We
fit the spatiotemporal VCDP models and to address (Q2), and apply the testing
procedure from Section to address (Q3) for this spatiotemporal dependent experiment.
Our aim is to determine whether the new policy has significant treatment effects on drivers’
total income across various quantile levels.

Before we fit the models, we conduct the conditional independence test the condi-
tional independence between Y;;, and treatments from the neighboring regions given
{Situs At Ai,t,M} in each region, leading to 12 p-values. The minimal p-value of the 12
regions is 0.144, indicating that the mean-filed assumption holds for this dataset. For each
quantile level, we implement the proposed estimation and testing procedures on the data.
The p-values are generated through the bootstrap procedure outlined in Section {4} utilizing
500 bootstrap samples. The estimation and testing results for CQDE,,; and CQIE,; are
summarized in Table 2| and Figure || The treatment effects are significant at most quantile
levels, and both the estimated direct and indirect effects are positive across all quantiles.
Generally, these effects escalate with the quantile level. However, the new policy doesn’t
seem to boost the lower quantile of the outcome (e.g., 7 = 0.1). These results underline
the heterogeneous effects of the new policy across different quantile levels. Furthermore,
we calculate the p-values for testing the average direct and indirect effects and report
them in Table [2l While both average effects are found to be statistically significant, our
proposed quantile-based test reveals that the direct effect is significant only when 7 > 0.1.
Additionally, while the mean of the estimated quantile effects—aggregated across various
quantile levels—closely approximates the ATE, these effects exhibit variability around ATE
across different quantiles. Once again, these findings underscore the merits of our proposed

quantile-based approach, which facilitates a more nuanced and comprehensive understanding
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Table 2: p-values and estimators of CQDE, ¢ and CQIE,,; for the spatiotemporal data, as well as
p-values of direct effect and indirect effect for average effects.

T pvaluecgpe,,, pvaluecqre., CQDE_,  CQIE
0.1 0.290 0.024 1.566 14.153
0.2 0.072 0.036 3.403 15.002
0.3 0.026 0.020 4.022 16.032
0.4 0.032 0.016 3.678 16.939
0.5 0.010 0.022 5.482 17.725
0.6 0.004 0.020 5.902 18.559
0.7 0.004 0.022 7.139 19.535
0.8 0.006 0.014 5.746 20.473
0.9 Te-4 0.008 8.414 21.320
average effect 0.001 0.040 5.525 16.496
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Figure 5: Estimates of CQDE,s and CQIE,4 and pvalues for the spatiotemporal data across
quantiles.

of treatment effects across various quantile levels.

Finally, we display the scaled outcomes, and residuals for the representative region 5
over time, with 7 € {0.1,0.5,0.9}, in Figure . It is evident that there may be several
outliers in the data. This observation further supports the use of quantiles as the evaluation

metric. Similar patterns are observed for other regions as well.

7 Real data based simulations

In this section, we evaluate the finite sample performance of the proposed estimation and
testing procedures through simulations. Simulation experiments are conducted based on
the real dataset collected from the A/A experiment described in Section [2} Recall that one
hour is defined as a time unit, and drivers’ total income within each time unit is set as

the outcome of interest. The observation variables correspond to the number of call orders
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and drivers’ total online time. These variables characterize the demand and supply of the

ridesharing platform and have a substantial impact on the outcome.

Example 1. In this example, we investigate the finite sample performance of the proposed
test CQTE, CQDE and CQIE, respectively. For a given quantile level 7, we fit the proposed
VCDP models (3)) and (4] to the data by setting (¢, 7) = I'(t) = 0, since the two policies
being compared are essentially the same. This enables us to obtain the estimated model
parameters EOT(t), 37(15), %{](t), and &)(t) and the estimated error processes €;(t, 7) and Ez(t)
for 1 <t<24and1<i< 68 Tosimulate data, we set 3(¢,7) = 0Q,(Y;) and ['(t) = 6E(S,)
for some constant § > 0, where @, (Y;) and E(S;) denote the (elementwise) empirical 7-th
quantile of {Y};}; and empirical mean of {S;;};, respectively. The constant § controls the
strength of CQTE, no CQTE exists if § = 0, and the new policy is better if § > 0.

We employ the bootstrap method for data generation. Specifically, in each simulation
run, we randomly sample n initial observations and n error processes with replacement.

Then, we generate n days of data according to the proposed VCDP models:

Y;' t = EO(ta 7_) + g;g(t’ T) + Ai,t&/(ta T) + g’t(ta 7—)7

Sitt1 = go(t) + Ef)(t)gzt + Ai,tf(t) + Ez(t +1),

based on these samples and the estimated model parameters. The treatments A;; are
generated according to the temporal alternation design. Specifically, we first implement
one policy for TI time units, then switch to the other policy for another TI time units,
and alternate between the two policies. We consider a wide range of simulation settings by
setting 7 € {0.2,0.5,0.8}, n € {20,40}, TI € {1,3}, and § € {0,0.01,0.025,0.05,0.075,0.1}.
For each scenario, we generate 500 simulation runs to compute the empirical type-I error
rate and power. The significance level is fixed at 5% throughout the simulation.

Figure |§| presents the empirical rejection rates of the proposed test for CQTE (refer also
to Table S1 in the supplementary material). The type-I error is around the nominal level in
all cases. The empirical power generally increases with the sample size and approaches 1 as
the signal strength ¢ increases to 0.1. Furthermore, the empirical power increases with the
quantile level 7, which is expected since 7(7,t) is set to be proportional to Q,(Y;), whose

values increase with the quantile level. These results validate our theoretical assertions.
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Figure 6: Empirical rejection rates of the proposed test for CQTE.. TI equals 1 for the top panels
and 3 for the bottom panels. The quantile level 7 = 0.2, 0.5 and 0.8, from left to right plots.

We also report the empirical rejection rates of the proposed test for CQDE and CQIE in
Figures S1 and S2 of the supplementary material, respectively. The results are very similar
to those of CQTE. It is worth noting that the power for CQDE is generally larger than
that of CQTE, whereas the power for CQIE is generally smaller than that for CQTE. This
is because the test statistics of CQIE have larger variances than those of CQDE.

Example 2. In this example, following a suggestion from one of the reviewers, we compare
the proposed CQTE test with two baseline methods. The first method, denoted as “Nolnt-
erference”, ignores temporal interference and treats each time interval as independent. The
second method is designed to test the average treatment effect (ATE), which is commonly
used in ridesharing platforms. We conduct the ATE test by replacing the quantile function
in the proposed test procedure with the mean function.

The data settings are similar to those in Example [T} with the exception that we scale
both the outcome and observation variables by their standard deviation. Additionally, we

fix ¥(t,7) = 0 and generate data from the following heterogeneous VCDP model,

Yie = Bolt,m) +SLA(T) + AuA(t,m) +0.2(S0)%&(t, 1),

Sier1 = o(t) + B(t)Si, + A L(t) +0.2(S))2Ei(t + 1),
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where SZ-(;) represents the first observational covariate. Consequently, the error processes at
each time point are heteroscedastic.

Figure [7| displays the empirical rejection rates of the proposed CQTE test and the
Nolnterference method for CQTE, as well as the test for ATE when n = 40. The results for
n = 20 can be found in the supplementary material and exhibit a similar pattern to the
n = 40 results. Notably, the Nolnterference method fails to detect the treatment effect in
all scenarios, as expected, since the treatment has no direct effect but exhibits an indirect
effect on the outcome. In contrast, both the proposed CQTE test and the ATE test not
only maintain Type-I error control but also effectively identify causal effects. It’s important
to note that heteroscedastic errors can impact the estimation of E (t,7) and subsequently
affect the indirect effect. Since B (t,7) behaves differently across various quantile levels,
the magnitude of this influence varies accordingly. Specifically, for the lower quantile level
7 = 0.2, the ATE test exhibits higher statistical power compared to the proposed method.
However, for quantile levels 7 = 0.5 and 7 = 0.8, the CQTE test demonstrates superior
power when contrasted with the ATE test. This difference in power is primarily due to the
influence of heteroscedastic errors on estimation and tests based on linear regression. In
contrast, the proposed test, which relies on quantile regression, proves to be robust even in
the presence of such heteroscedastic errors. These results highlight the value of the proposed
test in detecting treatment effects when compared to baseline methods.

Additionally, we conduct another simulation study in Example S2 of the supplementary
material where the causal effect exists but ATE=0. In this case, the test for ATE fails to
capture the treatment effect, while the proposed method not only captures distributional

treatment effects but also unveils distinct treatment effects at different quantile levels.

8 Discussion

As we did not impose any constraints, our proposed estimation procedure may not guarantee
monotonicity with respect to the quantile location. In the existing literature, three prevalent
approaches are employed to mitigate the issue of crossing quantile curves in quantile
estimation methods, the post-processing approach that involves sorting or monotonically

rearranging the original functions (e.g. (Chernozhukov et al., 2010), the stepwise procedure
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Figure 7: Empirical rejection rates of the proposed test and the Nolnterference method for CQTE,,
and the test for ATE when n = 40. TI equals 1 for the top panels and 3 for the bottom panels.
The quantile level 7 = 0.2, 0.5 and 0.8, from left to right plots.

that iteratively adds an extra set of non-crossing constraints to the quantile model (e.g.

‘Andriyana and Gijbels|, 2017)), and the simultaneous estimation approach that estimates

all quantiles concurrently while incorporating non-crossing constraints (e.g. Bondell et al.

2010). To address the crossing issue in our proposed method, we could consider adapting

these existing strategies. For example, inspired by Bondell et al.| (2010), we could impose a

non-crossing restriction such that z'0(¢,7;) > 2760(¢,7;_1),7 = 2,...,q for any z and any
desired quantile levels 74 < --- < 7, when estimating the model parameters via @) These

extensions are worthy of further investigation.
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