

1

Violent instability and modern contraception: 2 Evidence from Mali

3

4

5 **Introduction**

6 In the late 2000s, after nearly two decades of multiparty politics, Mali was considered a “democratic
7 success story” in the otherwise volatile region of the Sahel-Sahara (Solomon, 2013; Wing, 2013).
8 However, in January 2012, a rebel insurrection in its Northern territories turned the country into an
9 epicentre of conflict and instability. While the origins of the conflict can be traced back to long-lasting
10 grievances and separatist drives of the Tuareg minority, the 2012 violence outbreak occurred suddenly,
11 after the return from Libya of heavily armed Malian Tuareg mercenaries who had fought in the army of
12 Muammar Gaddafi until his fall (Chena & Tisseron, 2013). In just 12 months, Tuareg rebels supported
13 by militant jihadist groups attacked government security posts, prompted an army mutiny and a *coup d'état*
14 in the capital Bamako, and proclaimed the independence of Mali’s Northern half. Despite the deployment
15 of international special missions and the establishment of a United Nations (UN)-led peacekeeping
16 operation, the conflict is still unsettled. Rather, Mali has witnessed a proliferation of jihadist groups,
17 ethnic militias, and growing insecurity since (Thurston, 2020a).

18 The conflict has had dramatic impacts on the Malian people. After years of improvements, under-5
19 mortality rates deteriorated markedly in the North (Masset, 2022). Health facilities were occupied, looted
20 and destroyed (World Bank, 2016). Schooling was disrupted (UNESCO & Ministères de l'éducation,
21 2014) and agricultural productivity fell, causing growing food insecurity (Kimenyi et al., 2014). Daily
22 mobility was restricted and vulnerability to gender-based violence increased (Ekhator-Mobayode et al.,
23 2021). The insurrection caused a displacement crisis: in 2012, between 375-500,000 Malians were forced
24 to leave their homes and seek security in other areas within Mali or neighbouring countries (Etang-Ndip
25 et al., 2015; Lendorfer et al., 2016). Those who returned after the initial peak of the crisis found their
26 assets and livestock decimated (Hoogeveen et al., 2019). Only a handful of humanitarian organisations

1 have managed to continue their relief operations in conflict-affected zones due to a lack of donor funding,
2 threats and insecurity (Ataullahjan et al., 2020). Despite these reports, systematic assessments of the
3 consequences of the 2012 insurrection on population health in Mali remain scarce, even when compared
4 to similar instances of violence like the jihadist insurrections in North-Eastern Nigeria (e.g., Chukwuma
5 & Ekhator-Mobayode, 2019; Ekhator-Mobayode et al., 2022; Ekhator-Mobayode & Abebe Asfaw, 2019).

6 Sexual and reproductive health (SRH) – the need, right and access to safe and effective modern
7 contraceptive methods of choice in particular – remains particularly neglected in Mali and humanitarian
8 settings more broadly (McGinn, 2000; Tunçalp et al., 2015). It is well-established that good SRH and
9 family planning bring several benefits to individuals and society, including reductions in maternal
10 mortality, morbidity, unsafe abortion and sexually transmitted infections (STIs) (Bongaarts & Westoff,
11 2000; Cleland et al., 2006), greater empowerment and human capital formation (Prata et al., 2017;
12 Stevenson et al., 2021), improved community health and poverty alleviation (Canning & Schultz, 2012).

13 The provision and use of modern contraceptive methods are recognised components of sustainable
14 global development (Osotimehin, 2015; Starrs et al., 2018) and, in African countries in particular, they
15 are considered important determinants for fertility reduction (Casterline, 2017; Tsui et al., 2017). Despite
16 these well-known benefits and the growing recognition of SRH as a critical health issue in humanitarian
17 crises (Austin et al., 2008), SRH services are still rarely prioritised in conflict settings (Sachs et al., 2022;
18 Starrs et al., 2018). Similarly, research efforts in this area continue to be modest, despite the World Health
19 Organization (WHO) recently called for more robust evaluations of SRH needs and contraceptive service
20 provision in fragile settings (Kobeissi et al., 2021).

21 To date, only two quantitative studies have comprehensively examined the consequences of armed
22 conflict on modern contraceptive use (MCU), with mixed results. Williams et al. (2012) documented an
23 increase in first use of modern contraception during the civil war in Nepal and attributed it to conflict-
24 induced downward shifts in fertility preferences. Conversely, Svalfors and Billingsley (2019) found that
25 local armed violence in Colombia reduced women's MCU, and only in small part because of higher
26 fertility demand. In related studies on non-violent shocks, evidence is also mixed: Behrman and

1 Weitzman (2016) and Hapsari et al. (2009) observed reductions in women's use of contraceptive
2 injections after, respectively, the 2010 Haitian earthquake and the 2004 Indian Ocean tsunami. In Africa,
3 economic shocks have been linked to increasing contraception (Abiona, 2017), including greater use of
4 traditional methods (Alam & Pörtner, 2018), but in Indonesia, they had no impact on contraceptive
5 prevalence (McKelvey et al., 2012). The few other rigorous studies that touch upon the relationship
6 between armed violence and MCU are post-conflict program evaluations (Casey et al., 2013; Casey &
7 Tshipamba, 2017) or research articles that discuss contraception either tangentially as a pathway for
8 fertility changes (Rotondi & Rocca, 2021; Thiede et al., 2020) or in relation to measurement (Le Voir,
9 2022). No study has specifically focused on the consequences of conflict on MCU in the Sahel-Sahara –
10 a region where violence intersects with various other gender and SRH issues, including barriers to
11 reproductive autonomy and female empowerment (Senderowicz et al., 2018; Shekar et al., 2016) and
12 characterised by stable high fertility and low contraceptive prevalence (Spoorenberg, 2019) – nor has any
13 explicitly considered the implications for both women and men.

14 This study adds to knowledge by providing a first systematic investigation of whether insurrectionist
15 violence influenced MCU among individuals of reproductive age in Mali, and offers suggestive evidence
16 on plausible driving mechanisms. I combine data on MCU from the Demographic and Health Surveys
17 collected in Mali before and after conflict onset with geocoded information on conflict events and
18 leverage spatial and temporal variation in conflict intensity in a difference-in-difference (DID)
19 framework. Findings suggest that the insurrection is associated with reduced current use of modern
20 contraception. For women, the conflict is also linked to greater likelihood of being currently pregnant,
21 with an unwanted pregnancy, and of intending to use family planning in the future. Results are robust to
22 several tests, including checks for selective migration, alternative definitions, and data sources on
23 violence, and do not appear to be driven by pre-existing trends.

24 I examine several mechanisms that may explain the observed results. Among these, I find that the
25 insurrection likely made it harder for women to know where to access contraceptives. While access
26 knowledge is not directly testable for men, the fact that the conflict is concurrently linked to an upward

1 shift in their sexual activity and a downward shift in fertility preferences may be an indication of access
2 issues and “supply-side” unmet need (Senderowicz & Maloney, 2022). Moreover, where violence was
3 more intense, the insurrection appears to have undermined women’s reproductive autonomy in two ways:
4 (i) directly, by reducing their ability to ask partners to use condoms and refuse sex and (ii) indirectly, by
5 fostering gender-unequal attitudes towards SRH and contraception among men. Such attitudinal shifts
6 may be related to the increasingly jihadist connotation of the conflict in high-violence areas.

7 This study makes three main contributions. First, it adds to the literature on the consequences of violent
8 crises on population health and reproductive outcomes as the first to show that conflict negatively
9 influences contraception, largely as a result of supply-side issues. This, in turn, has consequences for
10 childbearing outcomes. Second, by studying women’s and men’s responses together and separately, it
11 contributes to the literature on the gendered outcomes of war. While impacts and pathways are gender-
12 specific, examining women and men in tandem is important because contraceptive (non-)use results from
13 dyadic interactions and power relations that often precede and are exacerbated by violence (Blanc, 2001).
14 At the same time, evidence on gender-specific contraceptive behaviour can offer some clues to research
15 on the health of vulnerable and marginalised groups, e.g., unpartnered youths and sexual minorities, in
16 the context of violence, where data is often minimal and discrimination increases (Casey et al., 2020; Kiss
17 et al., 2020). In turn, this can support the development of comprehensive programs that can cater to
18 diverse SRH needs (Prata et al., 2005). Third, this paper contributes to theory-building and expectations
19 about the demographic development of the Sahel-Sahara, a region where fertility rates have often not yet
20 embarked on a decline (Spoorenberg, 2019) and where violence is spreading, with consequences that are
21 potentially unprecedented in their magnitude.

22 **Armed conflict and modern contraceptive use: perspectives and pathways**

23 Theoretical and empirical knowledge on MCU in theatres of war is scant (McGinn, 2000) and mostly
24 comes from research not concerned with MCU *per se*, but more broadly with fertility changes in wartime
25 (in this sense, work by Svalfors (2021) is an important exception). This literature often discusses MCU
26 as a mechanism for fertility shifts (e.g., Krahnert et al., 2019; Rotondi & Rocca, 2021; Thiede et al.,

1 2020), but rarely tests the channel directly. Furthermore, the fact that the empirical record on conflict
2 and fertility is inconclusive as to both the direction and existence of a relationship implies that
3 expectations about MCU in times of conflict are ambiguous.

4 As Svallfors and Billingsley (2019) suggest, a “Ready-Willing-Able” framework represents a useful point
5 of departure to bring clarity and map out factors and pathways that may influence MCU in violent
6 settings. The model identifies three necessary factors for family planning to occur: *readiness*, *willingness* and
7 *ability*. The *readiness* factor reflects economic utility: if contraceptive use appears advantageous to
8 individuals’ and couples’ cost-benefit calculations, this will work as an incentive for them to limit family
9 size. The *willingness* dimension suggests that family planning must also be perceived as morally acceptable
10 on a personal and societal level, regardless of utility gains. The *ability* component designates the
11 institutional and technical conditions determining the feasibility of family planning, including knowledge,
12 access and availability of (or a lack thereof) contraceptive methods. Next, I draw on the “Ready-Willing-
13 Able” framework to outline the directions and pathways whereby armed violence may influence women’s
14 and men’s MCU.

15 **Reduced contraception in armed conflict**

16 Armed conflict can reduce MCU by modifying the costs associated with childbearing and thus the *readiness*
17 and *willingness* to use contraception. Conflict-induced economic hardship and uncertainty may, for
18 example, incentivise individuals and households to opt for larger families. This may translate into upward
19 shifts in fertility preferences and demand for children and downward ones in their use and intention to
20 use contraception (Thiede et al., 2020; Verwimp et al., 2020; Verwimp & Van Bavel, 2005). This scenario
21 can be expected where having children is valued as an insurance strategy against economic shocks
22 (Berrebi & Ostwald, 2015) and where violence increases child mortality. As families experience or
23 anticipate the loss of a child, they may desire more children to replace deceased ones or compensate for
24 their potential loss (Krahnert et al., 2019; Nobles et al., 2015), leading to intentional contraception non-
25 use. Where polygamy is common, as in Sahelian Africa, conflict-related incentives for larger families may

1 result in changes in marriage structure and increases in polygamous unions (Fenske, 2015), which have
2 been associated with lower use of contraception (Baschieri et al., 2013; Millogo et al., 2022).

3 Increased fertility demand and the resultant decline in MCU may reflect uncertainty around sexual
4 partnerships and depend on gender roles in armed conflict (Svallfors & Billingsley, 2019). For example,
5 men's greater risk of engagement in conflict activities, conscription, physical morbidity and mortality
6 (Brunborg & Urdal, 2005; Hill et al., 2004) may encourage them to discount the future more heavily and
7 indulge more frequently in unprotected sex (Dupas & Robinson, 2012; Raschky & Wang, 2012). Greater
8 threats to life may boost men's desire to have children, for example, to maintain the family lineage
9 (Mavisakalyan & Minasyan, 2021) or because they may motivate them to take life-altering actions in
10 romantic relationships that they would have not taken (as quickly) under normal circumstances (Cohan
11 & Cole, 2002). For similar reasons, lower MCU in conflict settings may result from greater demand for
12 children if women fear or experience separation from their partners or their death (Svallfors & Billingsley,
13 2019).

14 Conflict may affect the *ability* to access contraception due to factors that intersect at the individual,
15 institutional and societal levels. For example, economic resources previously allocated to contraception
16 may be no longer available. (Desiring) users may no longer know where to obtain modern methods,
17 especially if healthcare services and the infrastructures providing family planning deteriorate, are
18 destroyed or are unable to re-stock (McGinn et al., 2011). Conflict also brings several challenges,
19 particularly (but not limited) to women, such as increases in sexual violence (Bendavid et al., 2021; Schulz,
20 2021), intimate partner violence (IPV) (Svallfors, 2023; Torrisi, 2023), trafficking and exploitation (Chi et
21 al., 2015), which are all disempowering experiences that relate to lack of reproductive self-efficacy and
22 control over contraceptive choices (Kidman et al., 2015; Maxwell et al., 2015).

23 Healthcare systems in conflict-affected areas often suffer from infrastructural damage, scarce human and
24 technical resources, weak management and ineffective coordination – even when humanitarian actors
25 and resources are promptly mobilised (Checchi et al., 2016; Orcutt et al., 2019). Thus, delivering and
26 accessing basic services may prove extremely difficult, particularly for the poorest segments of the

1 population (Krause et al., 2015). Access may be further hampered if travel routes are disrupted/unsafe,
2 mobility restrictions are imposed on the population, health personnel and/or relief organisations or if
3 providers are directly attacked by armed groups (Mock et al., 2004; Ramos Jaraba et al., 2020). Finally,
4 conflict may affect the ability to access contraception if institutional healthcare resources are relocated
5 from SRH to emergency intervention, governmental resources are shifted towards the military sector or
6 the flow of financial resources from international donors is interrupted (Claeys, 2010; O'Hare & Southall,
7 2007).

8 **Increased contraception in armed conflict**

9 For many similar factors, armed conflict can be expected to increase MCU. For instance, conflict-related
10 economic instability, the threat of harm, and separation from partners due to military mobilisation or
11 displacement may shift fertility preferences downward and encourage childbearing delay/limitation,
12 eventually increasing the *willingness* to utilise contraception (Abiona, 2017; Williams et al., 2012). Where
13 childbearing is closely connected with marriage, MCU may expand if conflict influences the timing of
14 marriages towards postponement (DiGiuseppe & Haer, 2023; Shemyakina, 2013; Torrisi, 2022b).

15 Fearing deteriorations of medical care, loss of family and social support as well as increasingly precarious
16 living conditions, individuals and couples may become more cautious about unwanted pregnancies and
17 aware of the health costs of unprotected sex (Speizer, 2006), thus increasing their demand for modern
18 contraception, and arguably long-acting methods (Casey et al., 2013). Where the prevalence of STIs is
19 high, demand may increase if people anticipate conflict-related surges in infections (Chi et al., 2015). The
20 adoption of modern contraception can also rise if sexual violence is systematically used as a weapon of
21 war and/or conflict escalates IPV (Svallfors & Billingsley, 2019).

22 As to *ability*-related factors, research in African countries has shown that when family planning services
23 are provided to conflict-affected populations, women specifically will choose to use them (Casey &
24 Tshipamba, 2017; Curry et al., 2015). Moreover, while reversible methods may decline during armed
25 conflicts, this reduction may be due to an increase in the uptake of sterilisation, especially where abortion
26 laws are restrictive (Svallfors, 2022).

1 Overall, although there are reasons to expect that conflict violence will alter MCU, extant knowledge
2 does not allow to generate clear *a priori* hypotheses about which direction this shift may take and whether
3 responses may vary by gender. The overarching aim of this study is thus to determine as neatly as possible
4 the relationship between exposure to conflict and MCU, for women and men. Then only, to examine
5 potential explanatory processes that may inform practical intervention.

6 **The Malian context**

7 **Sexual and reproductive health in Mali**

8 Before the insurrection, Mali had one of the lowest rates of MCU in the Sahel, estimated at 6% for both
9 women and men of reproductive ages (Cellule de Planification et de Statistique et al., 2007). This low
10 uptake has been a significant contributor to the country's high fertility rates (around 6.5 children per
11 woman in the pre-conflict period) (UNDESA, 2012).

12 To promote family planning, in the early 2000s, the government launched several national initiatives and
13 programmes and re-organised the healthcare system in a decentralised and community-based manner,
14 aiming to integrate family planning services into all levels of intervention (i.e., national, regional, health
15 catchment area, etc.) and offer contraceptive methods through various providers (Gage, 2007; Johnston
16 et al., 1998). Despite varying by method, most modern methods are provided through local public
17 services (e.g., community health centres) or NGO visits (USAID, 2021; Sidibe et al., 2020). For pills and
18 condoms, private pharmacies, shops and street vendors have become, over time, the most common
19 source (Castle, 2003; Pallin et al., 2013).

20 Government efforts to encourage family planning led to improvements in the availability of
21 services/facilities (e.g., in the share of people living within 15 km from a health centre) and child survival
22 (Assaf et al., 2020; Johnston et al., 1998; Masset, 2022), but they had limited influence on the adoption
23 of modern contraceptive methods (Mariko et al., 2009; O'Regan & Thompson, 2017). Before the
24 insurrection, only 4% of women were using some modern method in the North, 7-8% in the Centre and
25 South-West and about 16% in Bamako. Health system factors, including underinvestment, insufficient
26 facilities, supplies and personnel, transportation barriers, especially in rural areas (Gage, 2007; Johnston

1 et al., 1998; Whidden et al., 2021), but also factors related to household structure, socio-cultural norms
2 and traditional gender roles, including practices of polygyny, early marriage and the frequent separation
3 of spouses due to migration (Adams et al., 2002; Castle, 2003; Castle et al., 1999), have been cited as
4 contributors to these low MCU rates.

5 **The 2012 Tuareg insurrection and the conflict**

6 After 20 years of free elections and relatively peaceful transitions of power, Mali's reputation of
7 "democratic success" and "model of good governance" in the Sahel (Solomon, 2013; Wing, 2013) fell
8 apart in 2012, when Tuareg¹ rebels of the National Movement for the Liberation of Azawad (MNLA)
9 with the support of Salafi-jihadist organisations led an armed insurgency for independence that plunged
10 the country into war (Chauzal & Damme, 2015).

11 In January, the Islamist groups and the MLNA – which was mostly composed of Malian Tuareg
12 mercenaries who had fought for Muammar Gaddafi during the 2011 Libyan Civil War and had returned
13 heavily armed after his death (Chena & Tisseron, 2013) – attacked and evicted governmental security
14 forces in Northern Mali. Soon after, in March 2012, dissatisfaction with the central government's
15 response to the insurgency triggered an army mutiny and a *coup d'état* against the democratically elected
16 President Touré (Whitehouse, 2012). The putsch accelerated the rebels' insurrection and the urbanisation
17 of the conflict (OECD & Sahel and West Africa Club, 2020; Radil et al., 2022). In just a month, the
18 separatists seized the key commercial and religious centres of Tombouctou, Kidal, and Gao, and declared
19 the independence of Northern Mali (also known as "Azawad") (Figure 1). Meanwhile, a power struggle
20 emerged between rebels. Jihadist groups ousted the MNLA from the North and began to expand
21 southwards. To stop their progress, in January 2013, French and African Union forces launched a military
22 intervention which dispersed the jihadists and allowed the central government to regain some control
23 over the contested territories (Hanne, 2015).

¹ The Tuaregs are a semi-nomadic population of Berber heritage, typically of Sunni Sufi orientation. They represent about 10% of Mali's total population and mostly live in its Northern territories.

1 Despite the subsequent deployment of a UN-led peacekeeping mission (MINUSMA) and two peace
2 agreements between Mali's government and some insurgent groups in 2014-2015, Northern Mali
3 continues to be insecure and contested. While urban violence has not ceased, and cities remain key targets
4 for violent attacks,² in recent years jihadist groups and violent events have extended to rural areas of
5 Central Mali (Radil et al., 2022; Thurston, 2020b).

6 Tuareg separatism, driven by historical economic grievances and perceived political marginalisation,³ had
7 already affected Mali multiple times since its independence.⁴ However, the 2012 insurrection had some
8 distinctive features compared to prior rebellions. First, its timing was abrupt: the sudden fall of Gaddafi's
9 regime in Libya prompted an influx of highly trained and heavily armed Tuareg fighters to the North that
10 the government was unable to disarm and re-integrate (Ananyev & Poyker, 2023; Boeke & de Valk, 2021).
11 Second, with the emergence of Islamist armed groups operating along with/parallel to Tuareg rebels,
12 Mali's conflict represents a hybrid form of armed violence – mixing separatism, criminal activity and
13 Islamic terrorism (Briscoe, 2014) – which appears to proliferate in Sahelian Africa. Because of this
14 hybridity, the 2012 insurrection has been described as the greatest threat to the stability of Mali as a state
15 and the most violent episode of conflict since independence (Chauzal & Damme, 2015; Kimenyi et al.,
16 2014). According to the Uppsala Conflict Data Program Georeferenced Event Data (UPCD-GED), an
17 annual average of 8 conflict events was reported across 2000-2010⁵ compared to one of 190 across the
18 following decade, with spikes in fatalities in 2013, 2018 and 2020 (Figure 2).

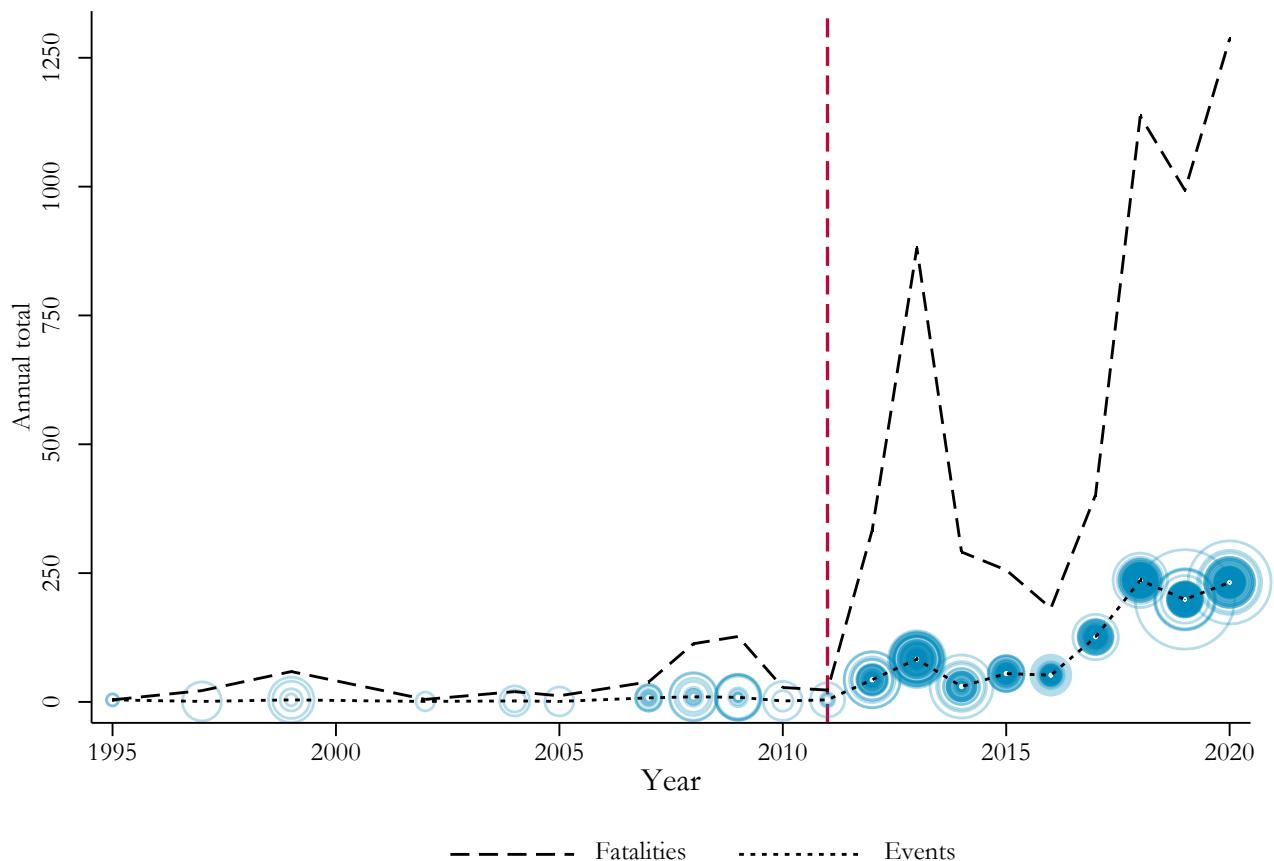
² For example, in 2015 an hotel attack caused 22 casualties in Bamako. In 2017, a suicide bomb in Gao killed 77 people and injured more than 100.

³ This section seeks to summarise as neutrally as possible the chronological and spatial development of the recent conflict using available sources and official documents. It does not suggest any specific stance on the dispute. In this context, it is thus important to highlight that while there is some data to support the perception of marginalisation of the Malian Tuaregs, there is also evidence that indicates that before the conflict the North performed better than the rest of Mali (excluding the capital Bamako) on some socio-demographic indicators. For example, the World Bank (2015) indicated that Kidal and Gao had lower levels of chronic malnutrition relative to other regions, and that Kidal had the highest levels of literacy among household heads and the lowest mortality rate. In addition, economic data showed that about 70% of all poor resided in three livelihood zones in southern Mali and that, after Bamako, per capita consumption was highest in the North (Wee et al., 2014).

⁴ These include the uprisings of 1963, 1991 and 2007, which were all followed by peace agreements. See Galy (2013) for a detailed description of Mali's conflict history.

⁵ The Armed Conflict Location & Event Data Project (ACLED) reports an average of 10 for the same period.

1 **Figure 1 Map of Mali and contested territories**



3 Source: DIVA-GIS for shapefile, HDX-UNOCHA for population density. Notes: The white area corresponds to Central-
 4 Southern Mali. The pink areas correspond to the “Azawad” territories, i.e., the contested territories of Northern Mali. Dots
 5 show population density per km² (2018).

6 The conflict had dramatic impacts on the Malian people: under-5 mortality increased markedly in the
 7 North (Masset, 2022). Between 375-500,000 people fled their homes,⁶ and many of those who returned
 8 in later years found their assets and livestock decimated (Hoogeveen et al., 2019). Daily mobility was
 9 significantly reduced, particularly for women (International Crisis Group, 2019). Gender-based violence
 10 increased (Ekhator-Mobayode et al., 2021). Public infrastructures, including schools, water and electricity
 11 services were physically damaged or destroyed (World Bank, 2016), and agricultural productivity was
 12 compromised (Kimenyi et al., 2014).

⁶ According to IOM (2016) and UNHCR data (2016, 2019), there were around 220,000 internally displaced persons (IDPs) in 2013. After the 2014-2015 agreements, the figure dropped to 37,000 (2016) due to large waves of returnees and rose again to 55,000 after violence re-escalated in 2018. As of June 2019, about 139,000 Malian refugees were estimated to be in Burkina Faso, Mauritania and Niger.

1 **Figure 2. Conflict events and violence-related fatalities, Mali 1995-2020**

2 Source: UCDP-GED (2023). Notes: Blue dots represent conflict events in each year with size weighted by recorded conflict
 3 fatalities. Numbers of conflict-related fatalities according to the source “best-estimate” value.

4 The insurrection undermined an already precarious healthcare infrastructure, leading to significant
 5 disruptions in basic medical service provision in the affected areas, including the delivery and availability
 6 of SRH services (World Bank, 2016). In conflict-affected areas, the withdrawal of government forces,
 7 frequent targeted attacks on medical centres (SHCC 2018, 2021)⁷, together with the initial suspension of
 8 nearly all public development assistance from international donors due to concerns of misappropriation
 9 ushered a decline in functional health facilities (Paul et al., 2014). It has been estimated that about 77%
 10 of healthcare workers abandoned Northern Mali during the conflict (Ataullahjan et al., 2020) and over a
 11 quarter of medical structures providing SRH services in the North have been classified as non-functional
 12 (Tunçalp et al., 2015). SRH facilities that were not damaged had to navigate considerable operational

⁷ For example, in June 2017, Médecins Sans Frontières (MSF) halted its activities in Kidal after a series of violent robberies took place in its compounds in less than a month. In the same year, (2017) reported 59 attacks on hospitals and schools and 109 violent incidents hindering humanitarian aid.

1 challenges due to a lack of equipment and qualified staff (Debarre, 2019). Although the UNOCHA
2 activated its cluster system in April 2012 to respond to the crisis, humanitarian efforts continued to suffer
3 from insufficient coordination, reportedly creating gaps in SRH delivery and coverage (Ataullahjan et al.,
4 2020; Debarre, 2018). Moreover, the increasingly jihadist connotation of the conflict affected
5 reproductive autonomy as rebels reportedly burned condoms and contraceptives, shut down pharmacies
6 providing such services (Bastagli & Toulmin, 2014), and monitored women during health visits to ensure
7 they would not obtain contraceptives (Degni et al., 2015).

8 **Empirical strategy**

9 **Data**

10 This study combines two sources of data to examine the relationship between conflict and MCU in Mali.
11 The first are the Mali Demographic and Health Surveys (M-DHS) conducted in 2006 and 2018. These
12 are cross-sectional nationally representative household surveys collecting rich demographic and
13 population health information, including fertility preferences, contraceptive use, knowledge, and attitudes
14 from women (aged 15-49) and men (aged 15-59) for the periods before and after the onset of the
15 insurrection.⁸ The two surveys ask identical questions, allowing comparisons across time and space.
16 Importantly, both M-DHS include geocoded information on sampled clusters' locations, which enables
17 spatial join with my second data source, i.e., georeferenced conflict event datasets.

18 Specifically, I rely on the UCPD-GED (Croicu & Sundberg, 2015) and the Armed Conflict Location &
19 Event Data Project (ACLED) (Raleigh et al., 2010). These datasets are similar, in that both provide spatial
20 and chronological coordinates of conflict events based on global news reporting as well as secondary
21 sources like local media, NGOs and IGOs reports and have been widely used in research on the
22 demographic and health consequences of armed violence (e.g., Svalfors, 2021; Thiede et al., 2020; Torrisi,
23 2022a). UCDP-GED includes one record for each conflict event causing at least one death. For each

⁸ M-DHS were also conducted in 1995-1996, 2001 and 2012. I later use data from the first two for descriptive purposes. I do not use the 2012 round because it did not sample the regions of Toumbouctou, Gao and Kidal for security concerns. Two Multiple Indicators Cluster Surveys (MICS) were also conducted before and after the insurrection (2010, 2015). I do not use these alternative data sources in the models because MICS lack the GPS cluster coordinates needed to precisely identify if respondents were affected by violence and because they did not ask comparable questions on MCU to men.

1 event, the dataset provides a low, best and high casualty estimate. ACLED relies on a less restrictive
2 definition of conflict incidents, which requires no fatality threshold. Thus, ACLED also counts non-fatal
3 events (e.g., events causing injuries, sexual violence) and non-strictly violent conflict episodes (e.g., troop
4 movements, riots). ACLED is therefore allegedly more inclusive, but also less precise and definitionally
5 clear.⁹ A recent review of the two datasets concluded that UCDP-GED provides superior data in terms
6 of event and fatality counts, transparency and geocoding precision (Eck, 2012). Hence, the discussion
7 below focuses on estimates from models using UCDP-GED data. I report estimates relying on ACLED-
8 based measures as a check and to assess any change resulting from the inclusion of non-strictly lethal
9 conflict events.¹⁰

10 Variables

11 *Outcome variables*

12 Information on MCU comes from the M-DHS, which include a module on contraception in both the
13 women's and men's questionnaires. I start by measuring *modern contraceptive use* with a binary variable coded
14 as 1 if the respondent reports being currently using any modern method (pills, IUD, injections,
15 diaphragm, male or female condoms, implants, foam or jelly) and zero otherwise.¹¹ The rationale for
16 using binary variables relates to the low reported prevalence of traditional methods (withdrawal, periodic
17 abstinence, standard days method or other traditional/folk methods were reported by $n=218$ women and
18 $n=120$ men) and to ease the interpretability of the results.¹² Next, I examine the *type of modern method* used
19 by respondents' gender. I create binary indicators for whether the woman uses (i) injections, (ii) pills, or
20 (iii) implants and the man uses (iv) male condoms. These were the most common gender-specific

⁹ ACLED has been used more often in studies on African countries because it has longer time series than UCDP-GED.

¹⁰ Since interest lies in armed violence specifically rather than in generalised forms of unrest, I follow Thiede et al. (2020) and exclude events that ACLED codes as protests and riots. I also exclude abductions and sexual violence committed by unidentified actors, which may be unrelated to the insurrection and thus not comparable with UCDP-GED data.

¹¹ Specifically, respondents are first asked “*Are you or your partner currently doing anything or using any method to delay or avoid getting pregnant?*”. Those responding affirmatively are asked to report which method they are using (modern or traditional methods as defined in the text). Note that respondents are only allowed to select one method among response options. This represents another reason justifying my investigation of women's reports of condom use at last sex as it is possible that some women may be using both hormonal and barrier methods concurrently. I exclude women who reported using lactational amenorrhea because the item was not measured consistently across surveys. Results remain identical when these respondents are coded as non-users of modern methods.

¹² Nevertheless, I provide evidence that results are unchanged once outcomes on contraceptive use are coded with a three-level categorical variable (no method, traditional method, modern method) in multinomial logistic models.

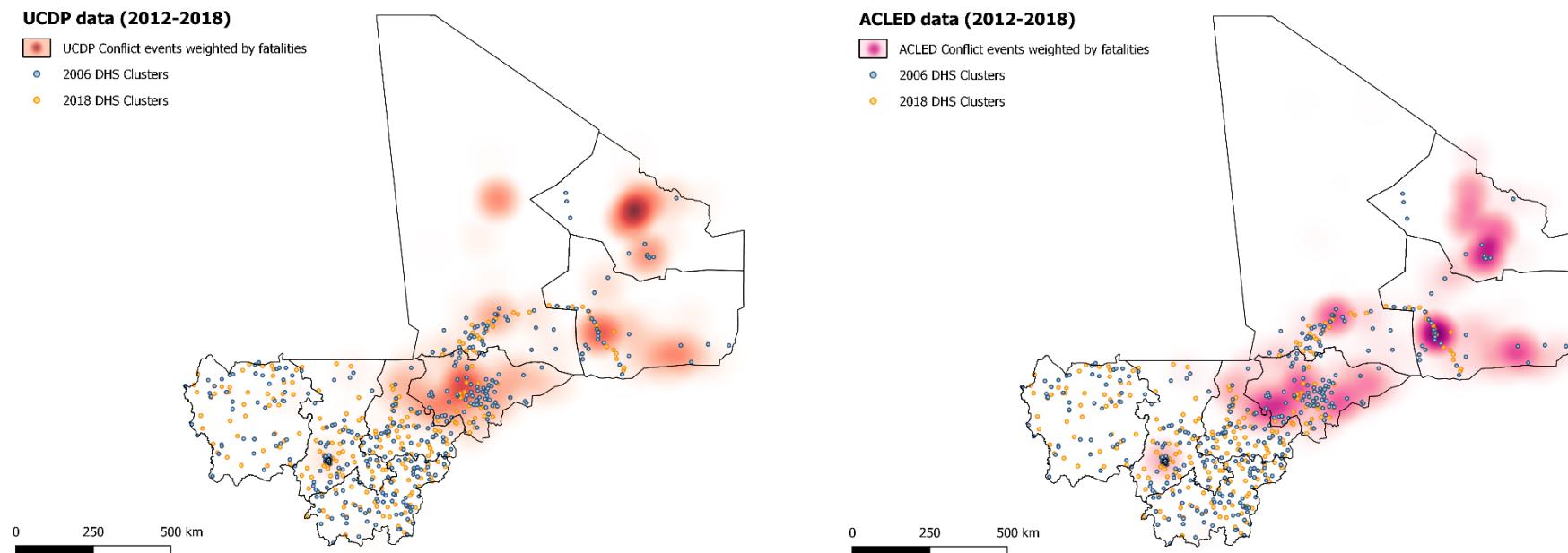
1 methods before and after the insurrection (Table A1). Moreover, I study whether respondents (v) used
2 male condoms in their most recent sexual encounter. I do this for two reasons: first, questions about
3 condom use during the most recent intercourse are likely more reliable than ones asking about current
4 condom use in general. Second, prior qualitative research in Mali showed that this is a highly preferred
5 method, especially among young (unpartnered) women. Male condoms are perceived to have fewer side
6 effects on women's health, current and future social status (Castle, 2003). Analysing male condom use is
7 important also because of its dual protection against unwanted pregnancy and STIs.

8 Conflict exposure may not only affect current MCU but also one's *intention to use contraception*. I thus
9 construct an indicator measuring whether non-using women intend to use a modern method in the
10 future.¹³ Finally, I assess the relationship between exposure to violence and *current pregnancy* with a
11 dichotomous variable for whether the woman/man's partner was pregnant when interviewed. For
12 pregnant respondents, I create an indicator for whether the *current pregnancy is unwanted*. Since current
13 pregnancy indicators may be related to seasonal variation and the slightly different timing of M-DHS data
14 collection, I run sensitivity tests limiting the sample to respondents interviewed in the two survey rounds'
15 matching months (August-November).¹⁴

16 *Conflict measurement*

17 I rely either on UCDP-GED or ACLED data to determine if a respondent experienced violence and
18 construct the conflict indicators in steps. I begin by mapping conflict events recorded between January
19 2012 and November 2018 (i.e., end of the 2018 M-DHS data collection) using the point coordinates
20 provided in respective datasets. Next, I determine a "catchment" area for each event by creating circles
21 ("buffer") of different radii –10, 15 and 20 km – centred at the latitude/longitude of the conflict events.
22 I examine different buffer radii because the M-DHS randomly displace cluster coordinates by up to 5 km
23 (0-2 km in urban areas, 0-5 km in rural areas) to safeguard respondents' privacy (Burgert et al., 2013).¹⁵

¹³ This question was not asked in men's questionnaires and to women who reported using a method at survey time.


¹⁴ The 2006 M-DHS was conducted between April-December, while the 2018 wave between August-November.

¹⁵ A further 1% of the rural clusters may be displaced a minimum of 0 and a maximum of 10 kilometers, but nevertheless the displacement is typically restricted to the country's second administrative level.

1 Testing different catchment areas may be also informative of the mechanisms if, for example, the
2 relationship between conflict and contraception is linked to a lack of nearby health facilities (Østby et al.,
3 2018). Moreover, the choice of 10-20 km buffer radii and not larger catchment areas is guided by recent
4 research which found that the daily life experiences of both women and men were highly dependent on
5 jihadist/insurgent activities in their “localised realities” (Chauzal & Gorman, 2019). As a final step, I
6 project geocoded M-DHS cluster locations and geographically join them with conflict buffers (Figure 3).
7 This strategy allows to identify respondents who, when interviewed, were in clusters intersecting,
8 touching or contained in the “catchment” radius area of any conflict event (Østby et al., 2018). These
9 respondents are considered “conflict-affected”. About 26-34% of women and 25-33% of men in 2018
10 lived within 10 km of a UCDP-GED or ACLED-recorded conflict event (Table A1).

11 I build alternative indicators, including (i) a continuous variable for the number of conflict events that
12 occurred within 10, 15 or 20 km from the respondent’s cluster since conflict onset, and (ii) a discrete
13 variable categorising the cumulative number of violent events within these buffer radii into “None”,
14 “Low”, “Medium” and “High” based on the percentile distribution reported by each conflict data source.
15 These additional measures serve as tests to the binary indicators, and to examine heterogeneity by conflict
16 intensity.

Figure 3. Map of the Malian conflict (2012-2018) and M-DHS clusters, by conflict data source

Source: ACLED (2023) and UCDP-GED (2023). Notes: Colour intensity of the circles is weighted by the number of reported fatalities caused by each conflict event. UCDP-GED casualties according to the source “best-estimate” value.

1 *Impact pathways*

2 I generate several indicators to examine the potential pathways driving the relationship between conflict
3 and MCU. First, I investigate whether violence is related to people's *readiness* to use contraception via
4 changes in the *desire and demand for children* with (i) a continuous variable capturing respondents' ideal
5 number of children¹⁶ and with binary indicators for whether the respondent (ii) desires no more children,
6 (iii) is undecided, and (iv) wants more children within a year or less. Only respondents reporting a desire
7 for more children are asked the question used to build this latter indicator. Since lower demand for
8 contraception may be driven by changes in *sexual activity* (e.g., due to couple separation, changes in
9 marriage structure/timing), I build a dichotomous indicator measuring sexual activity in the last month.

10 Next, I examine factors related to partnership dynamics, female empowerment in the couple and attitudes
11 towards contraception that may influence one's *ability to use* contraceptives. For women, I create indicators
12 measuring whether respondents (i) take personal health-related decisions alone/jointly with other persons
13 or if these are made exclusively by someone else, (ii) can ask their partner to use condoms and (iii) can
14 refuse sex. Only partnered women are asked the latter two. For men, I examine whether the respondent
15 believes that (i) contraception is a woman's business, and (ii) women using contraception become
16 promiscuous. Finally, to gauge if the conflict influenced women's *ability to access* contraception, I build a
17 variable measuring whether the woman knows where to obtain a modern method. While this is arguably
18 an imperfect measure (women may know where they can access, but might not be able to reach the
19 source), it offers some indication about supply-side factors otherwise difficult to capture.¹⁷

20 **Estimation strategy**

21 I examine whether and how the insurrection influenced family planning in Mali adopting a difference-in-
22 difference (DID) logic that exploits spatial and temporal variation in conflict intensity. Specifically, I
23 estimate the following linear probability model:

¹⁶ Following Thiede et al. (2020), the variable on ideal number of children excludes non-numeric responses.

¹⁷ Since no similar variable was collected in 2018 for men, this pathway is only examined in the women's sample.

$$\begin{aligned}
1 \quad SRH_{iat} = & \beta_0 + \beta_1 \text{ConflictPeriod}_t + \beta_2 \text{AffectedArea}_a \\
2 \quad & + \beta_3 \text{ConflictPeriod}_t \times \text{AffectedArea}_a + \dots + \beta_k X_{iat} \quad (1)
\end{aligned}$$

3 where SRH_{iat} indicates any of the reproductive health outcomes discussed above (e.g., any modern
4 method, pill/injectable/condom...) for individual i , interviewed in area a in time period t .
5 ConflictPeriod_t is a binary variable coded 0 for the base period (i.e., survey year 2006) and 1 for the
6 post-insurrection period (i.e., survey year 2018). In the main specification, AffectedArea_a indicates
7 whether the respondent was in a cluster located within 10 km radius of any conflict event occurred since
8 the start of the insurrection in 2012. Nearly 60% of events recorded by UCDP-GED happened between
9 2017-2018. Thus, a good amount of violence captured by the indicator happened in good temporal
10 proximity to data collection on MCU. In alternative estimations, as explained above, I examine larger
11 buffer radii, continuous and discrete indicators for the number of events within a given radius from the
12 respondent's location.

13 The coefficient β_3 of the interaction term identifies the relationship between conflict exposure and a
14 given SRH outcome in the post-insurrection period. Because this relationship could be influenced by
15 respondents' characteristics that correlate with conflict, I add a set of individual variables (X_{iat}) for
16 respondents' age, urban residence, religion, literacy, employment status, ethnicity, children ever born, and
17 union type (single, monogamous union, polygamous union, widowed/divorced/separated). This vector
18 further includes region dummies that capture differences in socio-economic conditions between regional
19 units.¹⁸ In additional analyses considering only partnered respondents, I add a covariate measuring
20 partner's literacy level. Estimates are weighted using weights provided by the M-DHS and robust standard
21 errors are clustered at the primary sampling unit level (Bertrand et al., 2004).

22 I exclude infecund and sterilised respondents, as well as menopausal and amenorrhoeic women because
23 it is not possible to know when they became infecund/sterilised/menopausal/amenorrhoeic in relation to

¹⁸ Except for employment status, which I use later to examine migration bias, I exclude covariates that may be deemed post-treatment, e.g., wealth in 2018 since the conflict may have influenced them (Behrman & Weitzman, 2016).

1 the conflict (Svallfors & Billingsley, 2019).¹⁹ I exclude currently pregnant women, except when the
2 dependent variable captures condom use at last intercourse since pregnant women may use condoms to
3 avoid STIs.²⁰ While questions on contraception were only asked to men who ever had sex, the main
4 analytical sample for women also includes respondents who never had sex because the conflict could
5 have influenced female-controlled contraception among women who would use modern methods for
6 reasons other than birth control (e.g., to regularise the menstrual cycle) (Jones, 2011). In alternative
7 models, I limit the sample to women who ever had sex. The final (weighted) samples consist of $N=17,570$
8 women and $N=4,185$ men aged 15-49/59 who may use modern contraception (Table A1 for descriptive
9 statistics).

10 Results

11 Descriptive trends

12 Figure 4 and respective tabular information in Table 1 show trends in MCU and for women (Panel A)
13 and men (Panel B) over time, in conflict-affected and less-affected areas. Between 2001-2018, women's
14 use of any modern method, albeit low, increased in both areas in a fairly parallel way. However, the overall
15 gain is larger in the less-affected areas, and particularly driven by increases in the South-West and stalls
16 in the North and the capital (Figure A1, Panel A). Specifically, in less-affected areas, women's MCU rose
17 from about 5.5% in the pre-insurrection period to 15.5% in 2018, with most of the increase attributable
18 to injectables and implants (Table 1). Conversely, the lower increase in MCU in conflict-affected areas
19 (from 12% to 17%) primarily appears to result from a drop in pill use and less rapid adoption of
20 injectables, likely in violent areas near the capital Bamako. Table 1 also suggests statistically significant
21 increases between the pre- and post-insurrection periods in women's intention to use modern
22 contraception and unwanted pregnancies in conflict-affected areas.

¹⁹ The M-DHS asks about years since sterilisation, but responses are categorised in 2-year intervals (e.g., <2, 2-3, 4-5 years), which do not allow to precisely identify when the procedure took place. Similarly, while conflict may lead to infecundity, e.g., via the spread of STIs, the temporal sequencing of event is hard to determine with the M-DHS.

²⁰ These respondents ($n=2,564$) are included, for obvious reasons, in analyses of current (unwanted) pregnancy.

1 A different trend emerges for men's MCU: while the use of any contraceptive method (including female-
2 controlled methods) increased from 5% in the pre-conflict period to about 11% in 2018 in less-affected
3 areas, it fell in conflict-affected areas. Here, the drop was considerable for condoms. While most of this
4 decline seemingly occurred in violent areas around the capital region, reductions in condom use also took
5 place in the North (Figure A1). Conversely, the higher levels in men's MCU in the peaceful South-West
6 seem to be attributable to concurrent stable use of condoms and greater use of female methods.

7 Overall, these raw measures seemingly suggest that – against the background of an overall temporal
8 increase in women's MCU and a decline in men's condom use – the insurgency slowed down progress
9 in family planning. Importantly, graphs in Figure 4 suggest that trends in MCU between conflict-affected
10 and less-affected areas were moving largely in the same direction in the pre-conflict period, offering
11 support to the parallel trend assumption.

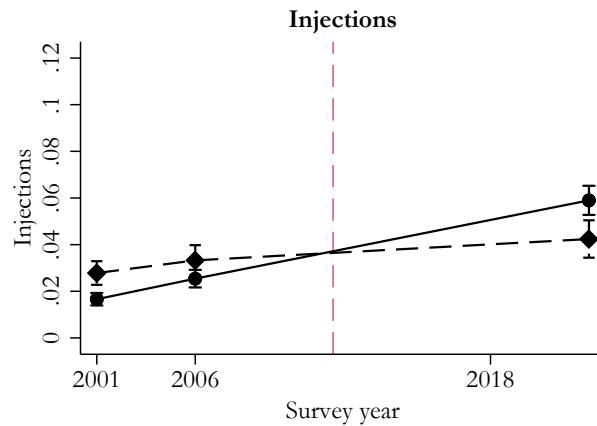
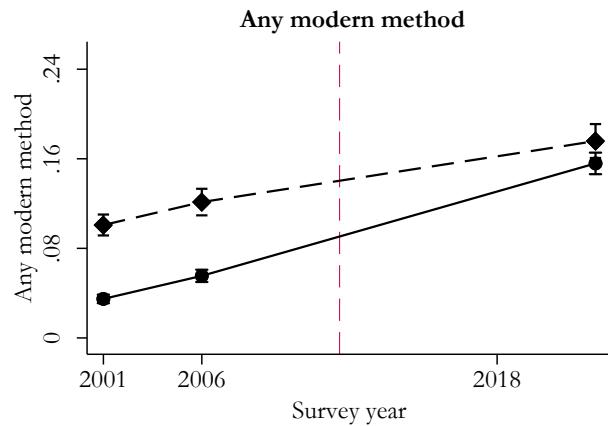
12 **Estimation results**

13 *Contraceptive use and intention to use*

14 The raw figures presented above suggest that the adoption of modern contraception was more limited
15 for women and halted for men in conflict-affected areas post-insurrection. Table 2 next presents the
16 results of models estimated with a DID logic and measures of conflict based on UCDP-GED data, for
17 women (Panel A) and men (Panel B). Column 1 shows baseline estimates (i.e., a model with no covariates,
18 except region dummies) for any modern method of contraception. Columns 2-6 report adjusted estimates
19 for any method and gender-specific ones. Columns 7-8 examine the relationship with condom use at last
20 sexual intercourse for sexually active respondents and for intention to use modern methods,
21 respectively.²¹

²¹ To address the issue of multiple hypothesis testing, in the main tables I also report *p*-values correcting for family-wise error rate (FWR) following Romano and Wolf (2005, 2016) and Clarke et al. (2020). This correction method allows to place each outcome in a family of related outcomes (i.e., gender-specific SRH outcomes; gender-specific mechanisms). It then calculates a t-statistic of the hypothesis that the conflict influenced the outcomes. This is computed for each outcome and then the obtained t-statistics are ranked from the largest to the smallest within each family. The largest observed t-statistic is compared with the maximal bootstrap distribution (here set at 1,000 replications). The reported FWER *p*-value indicates the probability of observing the original t-statistic larger than the bootstrap distribution of t-statistics. This method has been used in similar research and it is considered an improvement to the Bonferroni adjustment as it accounts for interdependence across outcomes (De Juan & Koos, 2021; Justino et al., 2022).

1 Estimates indicate that exposure to insurrectionist violence is overall associated with reduced current use
2 of modern contraceptin for both women and men. The probability of currently using any modern method
3 post-insurrection is 4 and 7.6 percentage points lower for conflict-affected women and men respectively
4 (Table 2, Col.2). Method-specific models show reductions in shorter-acting methods associated with the
5 insurrection: for women, negative relationships are observed for both pills and injections, which were the
6 most common female methods before the conflict; for men, conflict exposure is linked to a decline in
7 condom use, especially at the last intercourse. No relationship is observed with implants, whose use
8 prevalence was near zero in peacetime. Notably, the insurrection is associated with almost a 7-percentage
9 points increase in intending to use modern methods for non-using women in conflict areas (Col.8).



10 Since a decline in MCU may reflect an increase in traditional methods (Alam & Pörtner, 2018), I test the
11 findings with multinomial logistic regressions. Figure A2 shows predicted probabilities for all outcomes
12 (i.e., using no method, traditional or modern methods): conflict exposure remains associated with lower
13 MCU among women compared to no method (relative risk ratio (RRR)=0.466, p -value<0.001) and with
14 declines in condom use among men (RRR=0.711, p -value=0.051) versus no method. I find no statistical
15 difference in men's and women's propensity to use traditional methods versus no method.

16 *Pregnancy outcomes*

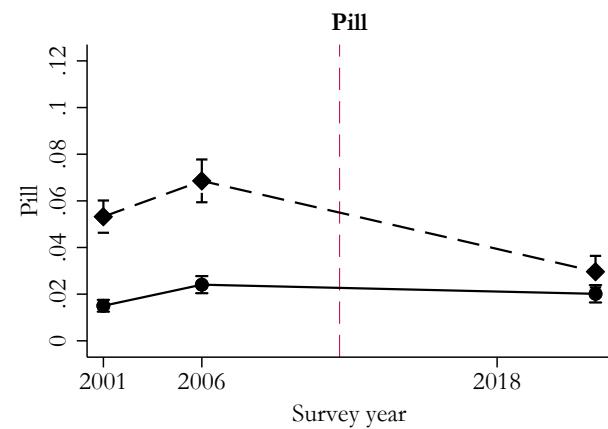
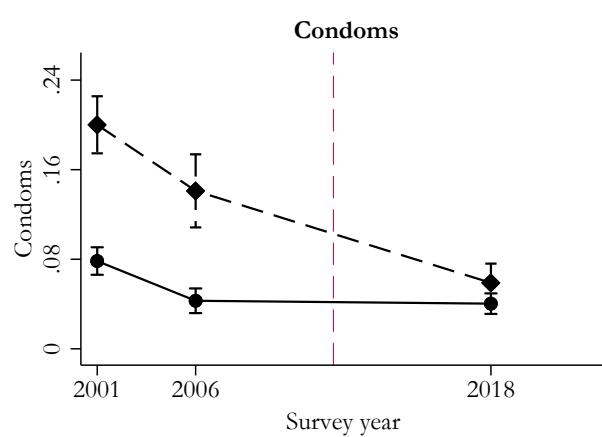
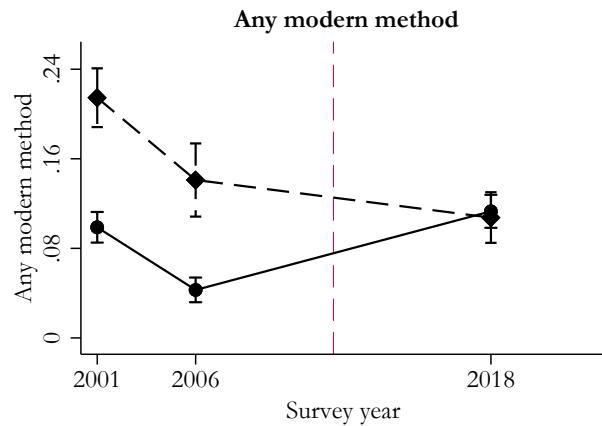



17 Between 2006-2018, the shares of current pregnancies and current unwanted pregnancies were overall
18 declining (Table A1). However, results in Table 2 (Cols.9-10) indicate a positive association between
19 conflict exposure and women's probability of being currently pregnant, and that the current pregnancy
20 is unwanted. Likewise, for men, the insurrection is related to a greater probability of having a partner
21 who is currently pregnant. Altogether, these results suggest that the insurrection halted an already limited
22 use of modern contraception, with some repercussions on fertility dynamics.

Figure 4. Trends in contraceptive use for women (Panel A) and men (Panel B)

Panel A: Women

Panel B: Men

—●— Less affected —◆— Conflict affected

Source: 2001, 2006, 2018 M-DHS. The dashed line represents conflict-affected areas, using UCDP-GED 10 km buffer. The solid line represents less affected areas.

Table 1. Modern contraceptive use in Mali before (2006) and after the insurrection (2018)

Panel A: WOMEN

	Conflict-affected areas			Less-affected areas				
	2006	2018	Diff.	2006	2018	Diff.		
<i>Variables</i>								
Currently using modern contraception	12.14	17.59	5.45	***	5.55	15.59	10.04	***
Currently using pills	6.86	2.97	-3.89	**	2.41	2.02	-0.39	
Currently using injections	3.33	4.24	0.91		2.54	5.90	3.36	***
Currently using implants	0.35	9.75	9.41	***	0.06	7.66	7.59	***
Condom use at last sex^a	3.47	4.42	0.94		1.53	0.91	-0.62	*
Intends to use contraception in the future (non-users)^b	33.12	48.64	15.52	***	37.75	40.91	3.16	
(Partner) currently pregnant^c	10.84	11.05	0.21		14.68	11.87	-2.81	***
Current pregnancy not wanted^d	12.17	24.41	12.24	**	20.43	19.28	-1.15	
Observations	2,824	2,018			6,855	5,873		

Panel B: MEN

	Conflict-affected areas			Less-affected areas				
	2006	2018	Diff.	2006	2018	Diff.		
<i>Variables</i>								
Currently using modern contraception	15.10	10.75	-4.35		5.18	11.31	6.13	***
Currently using condom	14.15	5.89	-8.21	**	4.29	4.03	-0.26	
Condom use at last sex^a	16.73	3.64	-13.09	***	4.82	1.93	-2.89	**
Partner is currently pregnant	10.72	10.84	0.12		20.45	14.06	-6.39	**
Observations	348	611			1,340	1,886		

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict indicator.

Notes: Observations are weighted using survey weights. ^a Asked only to sexually active respondents (2006: N=9,286 women and N=1,688 men; 2018: N=7,318 women and N=2,497 men). ^b Asked only to women who reported no current use of modern contraception (2006: N=8,878; 2018: N=6,384). ^c Here the sample further includes currently pregnant women (2006: N=1,523; 2018: N=1,041). ^d Asked only to currently pregnant women (2006: N=1,523; 2018: N=1,041). Significant at [†]p<0.1; p<0.05; **p<0.01; ***p<0.001.

Table 2. Influence of conflict exposure on current modern contraceptive use, intention to use in the future and current pregnancy**Panel A: WOMEN**

	Any modern method	Any modern method	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Conflict Period × Affected Area	-0.031 [†] (0.018)	-0.039* (0.018)	-0.028** (0.010)	-0.021* (0.009)	0.012 (0.010)		0.007 (0.008)	0.068** (0.032)	0.038** (0.014)	0.115* (0.045)
Affected Area	0.060*** (0.014)	0.051*** (0.015)	0.022** (0.007)	0.019* (0.008)	0.005 (0.008)		0.008 (0.006)	-0.012 (0.027)	-0.010 (0.012)	-0.069 [†] (0.039)
Conflict Period	0.116*** (0.010)	0.113*** (0.009)	0.040*** (0.005)	-0.005 (0.004)	0.074*** (0.006)		-0.014*** (0.002)	0.029 (0.019)	-0.027*** (0.008)	0.007 (0.025)
FWER <i>p</i> -value	0.103	0.049	0.003	0.031	0.244	-	0.415	0.038	0.003	0.021
Observations	17,570	17,570	17,570	17,570	17,570	-	16,604	15,262	17,945	2,564

Panel B: MEN

Conflict Period × Affected Area	-0.101** (0.034)	-0.076* (0.033)			-0.053 [†] (0.030)	-0.070* (0.031)		0.070* (0.029)	
Affected Area	0.073* (0.030)	0.023 (0.028)			0.027 (0.027)	0.055* (0.027)		-0.059* (0.025)	
Conflict Period	0.068*** (0.012)	0.068*** (0.012)			0.001 (0.009)	-0.025** (0.008)		-0.063*** (0.019)	
FWER <i>p</i> -value	0.009	0.024			0.079	0.035		0.028	
Observations	4,185	4,185	-	-	-	4,185	4,118	-	4,061

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict exposure indicator. Note: Models in Column (1) only control for regional dummies. All other models control for respondent's age, literacy, employment status, ethnicity, religion, region dummies, urban residence, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. FWER *p*-value is adjusted for multiple testing using the Romano and Wolf (2005, 2016) correction with 1,000 bootstrap replications across all gender-specific outcomes. Unadjusted *p*-values significant at [†]*p*<0.10; **p*<0.05; ***p*<0.01; ****p*<0.001.

1 *Potential mechanisms*

2 A first reason for the observed negative relationship between the insurrection and MCU may be related
3 to shifts in family preferences, including changes in the demand for children. Table 3 (Cols.1-4) shows
4 the results of models assessing this hypothesis. While there is no evidence for women's fertility
5 preferences, the insurrection is associated with lower demand for children among men. Conflict-affected
6 men post-insurrection desire fewer children, do not want a(nother) child(ren) and are less uncertain about
7 the next birth. Moreover, the insurrection is associated, though moderately, with a higher probability that
8 male respondents are sexually active (Col.5). This perhaps suggests some "supply-side" unmet need
9 (Senderowicz & Maloney, 2022) for male contraception given the misalignment with declining fertility
10 preferences and condom use.^{22,23}

11 Since changing fertility preferences do not explain much of the results observed for women, I next
12 examine issues of access. Specifically, I investigate whether the insurrection had any influence on
13 women's knowledge about where to obtain modern contraception. For the sub-sample of non-users
14 reporting not wanting a child (ever, within a year or more), it is also possible to exploit data on reasons
15 for contraceptive non-use and evaluate if the conflict influenced access barriers. I thus draw on
16 Senderowicz & Maloney (2022)'s "strictest" definition of access, which considers geographic, financial
17 and administrative barriers preventing contraceptive use (i.e., not using modern contraception because
18 of (i) physical distance, (ii) cost, (iii) lack of knowledge on providers or method and (iv) lack of method

²² Another related way conflict may affect family preferences is through changes in marriage structure or timing. For example, the insurrection may have increased the prevalence of polygamous unions, in turn leading to lower contraceptive use. As Figure A3 shows, the share of women in polygamous unions did not change between 2006-2018 in conflict-affected and less-affected areas, and this result is reflected in regression analyses (not shown). Among men, the share declined at a similar pace between 2006-2018 in conflict-affected and less-affected areas. Regression models show that while the decline was larger in conflict-affected areas, it was not significantly different than from less-affected areas (p -value=0.387). In any case, a decline in polygamy would not be consistent with the hypothesis of changes in marriage structure explaining the decrease in MCU. In terms of marriage timing, the insurrection may have reduced MCU via marriage postponement (Shemyakina, 2013; Torrisi, 2022b). Results from Cox hazard models for the probability of entering into marriage (from age 8 until event or censoring) associated with exposure to the conflict suggest that the insurrection did not significantly delay entry into union for women (not shown).

²³ Unfortunately, similar questions were not collected in the male questionnaires in 2018.

1 availability).²⁴ The conflict is associated with a decline in knowledge about where to obtain modern
2 contraception (Col.6). Among non-users, violence is also linked to a greater reporting “supply-side”
3 barriers as reasons for non-use (Col.7). Although this latter result may be due to smaller cell numbers in
4 conflict areas, altogether findings suggest that temporal gains in contraceptive knowledge,
5 access/availability for women (Table A1) were likely not shared equally, with those affected by violence
6 facing higher “supply-side” barriers.

7 **Robustness checks, identification issues and alternative specifications**

8 *Conflict indicators: alternative data, buffers, measurements*

9 To test the robustness of the conflict measures, I first assess if using ACLED data to construct conflict-
10 events “catchment areas” affects the results. Table A2 shows that when the catchment area radius of each
11 ACLED event is 10 km estimates agree with models using the more conservative UCDP-GED data, but
12 coefficient sizes are generally smaller.

13 Second, in Table A3, I test the sensitivity of the results to larger conflict-event buffer zones, increasing
14 the catchment area of UCDP-GED conflict events to 15 and 20 km. By doing so, I progressively include
15 observations located farther away from conflict events. Estimates are again very similar to the main
16 results, though the magnitude of most coefficients decreases with the radius. This agrees with prior
17 evidence suggesting that local exposure to violence matters for individual outcomes (Chauzal & Gorman,
18 2019; Kotsadam & Østby, 2019).

19 Third, I build buffers based on cluster locations (not conflict events). I begin by replacing the binary
20 indicator used so far with a variable counting the number of conflict events within a given distance (10,

²⁴ Alternative reasons for non-using (coded as “0”) are (i) non-married, (ii) not having sex (regularly), (iii) respondent/husband/others opposed, (iv) breastfeeding, (v) fatalistic, (vi) interferes with body normal processes, (vii) inconvenient to use, (viii) fear of side effects/health concerns, (ix) religious prohibition. In their “narrow” definition of unmet needs, Senderowicz & Maloney (2022) define these as “demand-side” reasons. Women who did not provide a reason/were unsure are excluded. I obtained identical results when non-use due to religious beliefs, which may have been influenced by the conflict, was coded “1”.

1 15, 20 km) from the respondent's cluster.²⁵ Next, I categorise the variable into "No event", "Low",
2 "Medium" and "High" to evaluate the role of intensity of exposure. Results from these checks are
3 consistent with the main estimations (Tabs.[A4-A5](#)). Notably, while for women the size of the coefficients
4 increases with intensity, low/mid-intensity violence seems already sufficient to disrupt men's use of
5 contraception.

6 As to pathways, high-intensity conflict is associated with reductions in women's desired fertility, but also
7 with lower knowledge about sources of modern contraception and greater supply-side barriers (Table
8 [A6](#), Panel A). Importantly, violence intensity is associated with (i) a reduction in women's ability to
9 negotiate condom use and refuse sex, (ii) an increase in men's belief that contraception is exclusively a
10 woman's business and (iii) that women using contraception are promiscuous (Cols.9, 11-12).

11 Altogether, these results suggest that the insurrection – particularly where violence was intense –
12 undermined women's reproductive autonomy. On the one hand, it had a negative direct influence on
13 their bargaining power in their sexual partnerships. On the other hand, it indirectly fostered inequitable
14 and reactionary attitudes towards contraceptive use among men. This may also in part explain why, amid
15 general declines in condom use among men, trends remained stable only in the peaceful South-West,
16 with an increasing share allowing or switching to female-controlled methods (Figure [A1](#)).

17 *Identification issues and estimation bias*

18 The ideal scenario for standard DID models would be to have longitudinal data following the same,
19 randomly selected respondents. This would ensure sample stability and allow for individual effects.
20 However, only cross-sectional data are available for this study and conflict-affected and less-affected
21 respondents are not chosen at random. The two groups may be very different from one another. Table
22 [A7](#) (Appendix) suggests that respondents in conflict-affected areas are, expectedly, more urbanised, more

²⁵ For space reasons, I only show estimates of models using a 10 km buffer from the respondents' location and UCDP-GED data, but results are qualitatively similar with longer radii (15-20 km) and ACLED data. The results are also robust to different categorisation of the conflict event indicator (e.g., a lower threshold for "High" exposure that increases the cell size of the category). The conclusions for all alternative conflict indicators remain unchanged when correcting applying the Romano-Wolf multiple hypothesis correction. Among mechanisms, at high levels of violence, only the variable "woman become promiscuous if using contraception" does not pass the Romano-Wolf correction test ($p\text{-value}=0.178$).

1 likely to be literate, Muslim and have fewer children (urban and peri-urban areas were, at least for some
2 time key targets (Radil et al., 2022)). As a minimum strategy to control for such structural differences, I
3 introduced a set of controls X_i in the models as explained in the Methods section. As supplemental
4 sensitivity checks, I augmented Eq. (1) with an interaction term between X_i and the time indicator to
5 control for group-specific trends in observables (Angrist & Pischke, 2014). I also re-run models excluding
6 observations in the capital Bamako (due to the capital's different socio-demographic profile); without the
7 urban control variable and without region dummies since these may capture unmeasured conflict events
8 (e.g., if events in Toumbouctou went unreported at a higher rate than events elsewhere), thereby
9 underestimating the relationship of interest. Results are similar to the main models in terms of direction,
10 although the strength and magnitude of the relationships are reduced once I remove observations from
11 Bamako and when time trends are accounted for (not shown).²⁶

12 Nevertheless, a key concern about the comparability of the two groups remains because of selection due
13 to mortality and population displacement. Conflict-related mortality is typically concentrated among
14 young men and the poorest segments of the population (Plümper & Neumayer, 2006). Estimates may be
15 biased downward if, for example, the poorest, who often face the greatest difficulties in accessing SRH,
16 are underrepresented in the sample because of greater mortality. The opposite could be expected if young
17 men, who may be more likely to use condoms, are selected out of the sample because of death. Conflict-
18 related population movements could affect the population composition in the affected areas and
19 introduce upward bias if, for instance, wealthier groups had enough resources to leave the conflict-
20 affected areas.

21 Evidence suggests that large population movements occurred at the start of the conflict (World Bank,
22 2016). At the same time, one recent study using panel data collected between 2012-2017 among Malians
23 in Mopti found low rates of attrition, both at the individual- and household-level, concluding that “no

²⁶ To further explore whether the insurrection influenced differently MCU in urban and rural communities, I run models where the DID term is interacted with the residence type indicator. For women, the slowdown appears to be in conflict-affected urban areas, whereas for men MCU decreased both in urban and in rural conflict-affected areas, and slightly more in the latter (not shown).

1 substantial migration away from the area took place after the conflict" (Masset et al., 2019, p. 16). This
2 study also showed young age, being female and being more educated to be the only characteristics
3 correlated with migration from the area. Another study using mobile phone-based panel interviews to
4 trace migratory decisions during the crisis found that farming households – the largest segment of Mali's
5 population – were unlikely to leave their homes and that it was mostly individuals working in commerce
6 who emigrated from conflict zones (Hoogeveen et al., 2019). According to the same study, many of these
7 IDPs returned to their homes by August 2014 and, among those who had not yet returned, 81% intended
8 to do so.

9 I build on this evidence to explore and address potential bias due to selective migration. As a first crude
10 assessment, I follow Masset (2022) and limit the sample to observations living in their place of residence
11 for the entire duration of the insurrection (women: $N=16,261$, men: $N=3,905$), i.e., respondents living in
12 the same location for at least seven years.²⁷ Next, I exclude observations from the 2006 M-DHS located
13 in areas in eastern Gao and Kidal that had no nearby comparable sampled cluster in 2018 (Figure 3).
14 Lastly, I follow Ekhator-Mobayode et al. (2022) and employ a kernel-based propensity score matching
15 (PSM) method to ensure that the profiles and composition of respondents in the conflict-affected and
16 less-affected areas are similar based on observable characteristics. Building on the studies cited above on
17 factors associated with the decision to flee during the insurrection, I match each respondent in (i) less-
18 affected areas *before* conflict onset, (ii) less-affected areas *after* conflict onset and (iii) conflict-affected areas
19 *before* conflict onset ("control") to respondents in conflict-affected areas *after* the insurgency ("treated")
20 according to information on age, education, employment status and religion. In this way, I create a
21 balanced control group that does not systematically differ from respondents in the conflict-affected areas
22 based on observables (Figure A4). Then, I apply the matching weights to re-estimate β_3 in Eq. (1) on the

²⁷ Specifically, I use the M-DHS question on respondents' number of years lived in their current place of residence. While this strategy is often employed in similar research (e.g., Behrman & Weitzman, 2016, Svallfors, 2022, Svallfors & Billingsley, 2019), ideally we would want to know if the household, not the individual respondent, has been living in the same residence for 7 years. Sample restrictions on the basis of individual migration may lead to the exclusion of respondents, women in particular, who recently married and who in turn may have distinct MCU behaviours. Unfortunately, the M-DHS collect information on years lived in the current place of residence in individual questionnaires, not in the household roster. Therefore, it is not possible to restrict the sample on the basis of household-level migration information. A total of $n=860$ women who married in 2012 or later had been living in their current place of residence for less than 7 years.

1 common support sample, namely on a sample of respondents residing in the conflict-affected areas for
2 whom counterfactuals are found in each of the three “control” groups. I run PSM models for both the
3 full and the non-migrant matched samples.

4 Results from these checks are similar in direction and magnitude to the main models (Tables A8-A10).
5 Although none explicitly solves the selection issue brought in by migration and biases could remain (Daw
6 & Hatfield, 2018), altogether these checks increase confidence in the direction and size of the impact of
7 the insurrection.

8 *Placebo checks*

9 A key assumption of standard DID models is that there are no time-varying unobservable factors
10 influencing trends in MCU in the conflict-affected and less-affected groups differently, i.e., that without
11 the insurrection, trends in MCU between affected and less-affected areas would be the same. While this
12 assumption cannot be directly tested, Figure A5 – which shows the spatial distribution of conflict events
13 against regional MCU levels in 2006 – gives a crude indication that heightened violence did not specifically
14 occur where initial levels of MCU were higher (i.e. where there was greater risk of deterioration, e.g.,
15 because of the destruction of health facilities) or lower (where there was larger margin for adopting
16 methods, e.g., through humanitarian assistance). Moreover, Table 1 and Figure 4 provided suggestive
17 evidence of similar trends in MCU before the insurrection in conflict-affected and less-affected areas. To
18 further evaluate the assumption of parallel trends, I replicate the main analyses using data from the pre-
19 insurrection period (i.e., the 2001 and 2006 M-DHS rounds). Here, the *ConflictPeriod_t* variable takes
20 the value 1 for respondents observed in the 2006 survey and 0 for those interviewed in 2001.

21 Table A11 reports the results of the placebo test: for men-specific outcomes, none of the coefficients of
22 interest is statistically significant. For women, only the coefficient for pills is statistically significant at the
23 10% level, indicating that for this outcome the relationship in the main analyses may be spurious.

1 *Alternative samples and couple-level analyses*

2 I test the sensitivity of the results to alternative samples. Results are largely analogous to the main
3 specifications (Table A12) when I re-run the analyses on samples that only included women who (i) ever
4 had sex, (ii) ever had a partner and (iii) were interviewed between August-November in both surveys.²⁸

5 Finally, although the main goal of this study was to examine changes in MCU among Malians of
6 reproductive age, regardless of their partnership status and sexual orientation, it is of interest to evaluate
7 whether the insurrection influenced MCU at the couple-level. I use data from the M-DHS couple recodes
8 (N=3,813 dyads) and multinomial logistic models to examine changes in the probability that (i) both
9 partners are not using any modern method, (ii) only the woman reports using modern methods, (iii) only
10 the man reports using condoms and (iv) both partners report using modern methods.²⁹ The insurrection
11 is, again, associated with a decline in women's sole use versus none of the partners using a modern
12 method (RRR=0.512, *p*-value=0.042). There is no statistical difference in how conflict relates to the
13 probability of men only using condoms and both partners using modern methods (Figure A6). As to
14 mechanisms, linear models estimated on the couple sample show again that the conflict increased the
15 probability that women reported being unable to ask partners to use condoms ($\beta_3=0.155$, *p*-value=0.004)
16 and moderately decreased ability to refuse sex ($\beta_3=-0.018$, *p*-value=0.073).

²⁸ In addition, given the often negative association between IPV and contraceptive use (Maxwell et al., 2015) and Ekhator-Mobayode et al. (2021)'s finding that the Malian conflict increased women's experiences of physical abuse from partners, I re-run models on the sub-sample of women who were selected for the M-DHS domestic violence modules and reported having experienced at least one form of physical or sexual abuse from their partner in the year preceding each survey. In this sub-sample as well as in the ever-partnered sub-sample, I add partner's literacy level as a control variable. Estimations on the sample to women experiencing IPV suggest relationships similar to the main models, especially for injections and unwanted pregnancy (not shown). This finding may provide additional support to the thesis that the conflict impaired women's reproductive autonomy via disempowerment in the couple, though care must be taken in interpreting the result due to sizable sample reduction (over 70% of cases in the women sample are dropped).

²⁹ There is abundant literature on potential discrepancy in contraceptive method reporting between spouses in West Africa, which may be related to women's covert use (e.g., Becker & Costenbader (2001), Pearson & Becker (2014), Choiriyah & Becker (2018)). In this sub-sample of interest, the level of concordance about the specific method used, if any, was relatively high overall (over 82% of couples reported the same information), but only 11% in the group of couples in which at least one partner reported using a modern method ($n=566$). Overall, in 10% of couples, the woman reported using some modern method, while the man did not. Couples in which the man reported the use of a female controlled method (2%, of which <1% were polygamous), while the female partner did not are coded as a not using. Unfortunately, specific questions on covert use (e.g., "Does your husband/partner know that you are using a method of family planning?") that are included in other DHS were not collected in the M-DHS, thus preventing further analyses in this direction.

1 **Table 3. Potential mechanisms****Panel A: WOMEN**

to	Fertility preferences/demand				Knowledge and “supply-side” issues			Partnership dynamics and attitudes towards contraception				
	Ideal number of children	Desires no more children	Undecided	Wants a(nother) child(ren) within one year	Sexually active	Knows where to get method	Supply- related reasons for non-use	Others decide about woman's health	Can ask partner to use condom	Can refuse sex with partner	Contraception is a woman's business	Woman using contraception is promiscuous
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Conflict Period × Affected Area	-0.229 (0.140)	0.005 (0.015)	0.017 (0.011)	0.087** (0.027)	-0.004 (0.025)	-0.037* (0.018)	0.005** (0.017)	0.011 (0.025)	0.043 (0.039)	-0.052 (0.038)		
Affected Area	-0.065 (0.122)	0.004 (0.011)	-0.015† (0.009)	-0.034 (0.022)	0.005 (0.023)	0.050*** (0.015)	-0.004*** (0.019)	0.027 (0.021)	-0.039 (0.031)	-0.013 (0.036)		
Conflict Period	-0.153† (0.078)	0.004 (0.009)	0.015** (0.005)	0.007 (0.016)	0.027* (0.012)	0.114*** (0.009)	-0.144*** (0.012)	-0.030* (0.014)	-0.024 (0.019)	0.037* (0.017)		
FWER <i>p</i> -value	0.145	0.712	0.135	0.057	0.198	0.011	0.012	0.671	0.257	0.089	-	-
Observations	17,570	17,570	17,570	13,871	15,381	17,552	9,609	15,861	13,329	13,329	-	-

Panel B: MEN

Conflict Period × Affected Area	-1.722*** (0.494)	0.099** (0.037)	-0.050* (0.022)	-0.004 (0.061)	0.076* (0.038)						0.061 (0.051)	0.023 (0.049)
Affected Area	1.473** (0.447)	0.003 (0.035)	0.032 (0.022)	0.031 (0.057)	0.044 (0.035)						-0.079 (0.050)	-0.015 (0.045)
Conflict Period	1.065*** (0.252)	0.051** (0.018)	0.029*** (0.008)	0.128*** (0.028)	-0.015 (0.017)						-0.037 (0.028)	0.038 (0.028)
FWER <i>p</i> -value	0.002	0.015	0.047	0.956	0.063	-	-	-	-	-	0.254	0.608
Observations	4,185	4,185	4,185	3,391	4,185	-	-	-	-	-	3,874	3,792

2

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict exposure indicator. Note: All models control for respondent's age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. FWER *p*-value is adjusted for multiple testing using the Romano and Wolf (2005, 2016) correction with 1,000 bootstrap replications across all gender-specific outcomes. Unadjusted *p*-values significant at †*p*<0.10; **p*<0.05; ***p*<0.01; ****p*<0.001.

1 **Limitations**

2 While findings are robust to checks, across model specifications and data sources, there are some
3 limitations to acknowledge. First, all estimates are based on samples of survivors living in Mali at survey
4 times. What is here observed is the relationship between the insurrection and current contraceptive use
5 for those who did not die or emigrate from the country. Relatedly, insofar as I endeavoured to deal with
6 issues of population composition due to migration, in the absence of full migration histories, these efforts
7 attenuate but cannot eradicate bias. Caution in interpreting the results as strictly causal is thus warranted.
8 Due to lack of more time-defined (e.g., monthly) contraceptive data for both the pre- and the post-
9 insurrection period, I could only rely on current status data. Nevertheless, most conflict events happened
10 between 2017-18. Moreover, finding lower MCU in areas that – potentially – experienced violence some
11 time before the survey speaks of the potential long-term consequences of conflict on reproductive
12 behaviour and autonomy.

13 Due to the cross-sectional nature of the data, I could not explicitly disentangle if the observed decline in
14 MCU is the result of lower uptake or greater discontinuation, although descriptive evidence from the
15 2018 M-DHS women's reproductive calendar suggests that post-2012 contraceptive abandonment was
16 significantly higher in the North (Figure A7). Because of the smaller amount of information collected
17 from men, it was not possible to study in detail factors leading to low current use and intention to use
18 contraception. Another limitation related to the M-DHS is the potential for reporting bias, especially for
19 sensitive questions such as unwanted pregnancy (Pearson & Becker, 2014). More broadly, although the
20 M-DHS allow investigation of various pathways, several others remain unexplored, including poverty
21 and the actual supply/availability of SRH services. Information on reasons for non-use among women
22 suggests that “supply-side” barriers increased for conflict-affected women, but inevitable sample
23 restrictions may be partially behind the result and due to lack of data, I could not check if women's
24 reasons for non-use matched men's. Exploring gender-specific reasons for non-use and supply-side issues
25 represents an avenue for future research (Casey & Tshipamba, 2017).

1 Lastly, linking conflict events to survey respondents by a spatial buffer is one of the most advanced
2 techniques to measure conflict exposure at the micro-level when direct information from interviewees is
3 not available (Brück et al., 2016), but this strategy is not bereft of limitations. Conflict events only
4 represent ‘extreme’ proxies for the real impacts of war on populations, even when they do not result in
5 casualties. There is always a degree of arbitrariness (e.g., in the choice of “catchment” radii, definitional
6 issues of what constitutes a violent event), risk of small samples in high-intensity areas and potential
7 underreporting, especially in countries with remote areas like Mali. The displacement of the survey cluster
8 locations may affect the accuracy of conflict measures based on georeferencing (Skiles et al., 2013).
9 Nevertheless, the spatial measurements used here are more fine-grained and precise in terms of
10 geographical units than the large regional variation employed in prior research (Behrman & Weitzman,
11 2016; Svallfors & Billingsley, 2019). Results were robust to the use of different buffers, alternative conflict
12 indicators/categorisations and data sources, together increasing confidence in the findings.

13 **Discussion and conclusion**

14 *Does armed violence influence the use of modern contraception?* This study showed that in Mali a violent insurrection
15 was negatively associated with MCU, especially the use of shorter-acting methods. For women, the
16 conflict was also linked to a greater risk of unwanted pregnancy and intention to use modern methods.
17 In light of the aggregate, gender-specific trends in MCU among Malians – i.e., small, but steady increases
18 among women, stable to declining rates among men – these results suggest that conflict violence slowed
19 down women’s MCU that could have been otherwise observed, and among men, it mildly accelerated a
20 decline in the use of condoms at last sex, i.e., a barrier method offering simultaneous protection against
21 unintended pregnancy and STIs.

22 The result of a negative relationship echoes the findings of most public health research concerned with
23 the consequences of natural hazards on SRH outcomes (Behrman & Weitzman, 2016; Hapsari et al.,
24 2009). Importantly, the estimates agree with Svallfors and Billingsley (2019)’s finding of contraceptive
25 reduction during the Colombian civil conflict, thereby extending evidence on the detrimental, yet scarcely
26 studied consequences of man-made disasters on reproductive health. More broadly, the results add to

1 knowledge about the population health effects of war (Levy & Sidel, 2016; Murray et al., 2002) and
2 contribute to theory-building and expectations about the demographic development of the Sahel-Sahara
3 (Spoorenberg, 2019).

4 *What processes can then explain the negative link between conflict and MCU?* The empirical investigation of some
5 of the many potential pathways suggested that armed violence in Mali had a negligible influence on
6 fertility demand, at least for women. However, it negatively influenced women's knowledge about sources
7 of modern methods and increased the reporting of "supply-side" barriers as reasons for non-use. This is
8 in line with Tunçalp et al. (2015) who, using Health Systems Availability Mapping System data, found
9 that the availability of SRH services in post-2012 Mali was lowest in conflict-affected areas in the North
10 and Central regions with a high concentration of displaced persons, and with Treleaven et al. (2022)
11 showing that, in rural central Mali, conflict events within health centres' catchment areas reduced visits
12 to those facilities, at least for maternal health and delivery. It is possible that the combination of lack of
13 knowledge about contraceptive methods, about sources of supply and about sources of supply because
14 they have become unavailable post-insurrection hindered women's *ability to access* the methods that were
15 more common before the conflict. Similarly, the fact that the insurrection was positively associated with
16 men's probability of being sexually active and, simultaneously, with a downward shift in their fertility
17 preferences may also signal reduced (condom) access/availability and thus of "supply-side" unmet need
18 (Senderowicz & Maloney, 2022). Due to lack of data, I could not explicitly test this hypothesis and only
19 speculations can be offered at this point. Irrespective of whether this possibility is correct, this limitation
20 flags up the need for wider data collection efforts, incorporation of and research attention to men's SRH
21 behaviours, rights and needs – together and independently from those of their female counterparts. Since
22 women and men have diverse and unique SRH needs, gender-specific approaches are required for the
23 development of meaningful SRH interventions and the prevention of other emergencies in humanitarian
24 settings (Hankins et al., 2002; Hawkes & Hart, 2000).

25 The relevance of examining the responses of women and men separately and jointly is further highlighted
26 by the observation that – where violence was most intense – the insurrection appears to have influenced

1 women's reproductive autonomy in two ways: (i) directly, by lowering their ability to negotiate condom
2 use and refuse sex in their partnerships and (ii) indirectly, by fostering men's "ideational" disengagement
3 from SRH and endorsement of stigmatising views of women who use contraception. Since normative
4 attitudes are good predictors of actual behaviour (Ajzen et al., 2018), it is possible that the type of violence
5 that erupted in Mali, with its fundamentalist connotation, may have unleashed or strengthened
6 conservative attitudes towards contraception particularly in the affected areas, making men less likely to
7 feel responsible for family planning and adopting safe sex practices, but also discouraging women from
8 using contraception due to greater fear of social/familial backlash, sanctions and violence. This latter
9 mechanism is likely given that, in Mali, women's reputation and social status are still linked to their ability
10 to conceive and social disapproval constituted a barrier to MCU already before the insurrection (Barden-
11 O'Fallon et al., 2020; Castle, 2003). Present data do not allow connecting events in a strictly sequential
12 manner. However, lower reproductive self-efficacy, ability to use/access contraception and greater
13 traditionalism, altogether, are consistent with post-insurrection increases in unwanted pregnancy,
14 especially considering Mali's restrictive abortion legislation (allowed only to save the pregnant person's
15 life).

16 SRH, including issues of contraception, tends to receive low priority in crisis-affected populations, both
17 in terms of humanitarian intervention and research attention (Kobeissi et al., 2021). This study showed
18 that violence can hinder the use of contraception, for both women and men. Thus, neglecting the role of
19 conflict in Mali and the broader Sahel-Saharan region, where the expansion of family planning bears
20 much potential for fertility reduction and the fight against STIs (Bongaarts, 2017; Casterline, 2017), can
21 limit our understanding of local demographic and population health dynamics. Above and beyond theory,
22 this study highlights the need for developing gender-sensitive interventions that can facilitate immediate
23 SRH service provision for all persons affected by conflict – from young boys to adult women – and in
24 turn safeguard the right to personal reproductive autonomy (Senderowicz, 2020). Further, it shows the
25 importance of devoting resources to programs that can respond to the gender-specific changes in
26 normative beliefs and behaviours around contraception that conflict violence can unleash.

References

Abiona, O. (2017). The Impact of Unanticipated Economic Shocks on the Demand for Contraceptives: Evidence from Uganda. *Health Economics*, 26(12), 1696–1709. <https://doi.org/10.1002/hec.3487>

Adams, A. M., Madhavan, S., & Simon, D. (2002). Women's social networks and child survival in Mali. *Social Science & Medicine*, 54(2), 165–178. [https://doi.org/10.1016/S0277-9536\(01\)00017-X](https://doi.org/10.1016/S0277-9536(01)00017-X)

Ajzen, I., Fishbein, M., Albarracín, D., & Lohmann, S. (2018). The Influence of Attitudes on Behavior. In *The Handbook of Attitudes, Volume 1: Basic Principles* (2nd ed.). Routledge.

Alam, S. A., & Pörtner, C. C. (2018). Income shocks, contraceptive use, and timing of fertility. *Journal of Development Economics*, 131, 96–103. <https://doi.org/10.1016/j.jdeveco.2017.10.007>

Ananyev, M., & Poyker, M. (2023). Identity and conflict: Evidence from Tuareg rebellion in Mali. *World Development*, 161, 106108. <https://doi.org/10.1016/j.worlddev.2022.106108>

Angrist, J. D., & Pischke, J.-S. (2014). *Mastering 'Metrics: The Path from Cause to Effect*. Princeton University Press.

Assaf, S., Davis, L. M., Diallo, A., & Kone, A. (2020). *Trends in and factors associated with maternal and child health indicators in Mali* (DHS Further Analysis Reports No. 131). Article DHS Further Analysis Reports No. 131. <https://dhsprogram.com/publications/publication-fa131-further-analysis.cfm>

Ataullahjan, A., Gaffey, M. F., Tounkara, M., Diarra, S., Doumbia, S., Bhutta, Z. A., & Bassani, D. G. (2020). C'est vraiment compliqué: A case study on the delivery of maternal and child health and nutrition interventions in the conflict-affected regions of Mali. *Conflict and Health*, 14(1), 36. <https://doi.org/10.1186/s13031-020-0253-6>

Austin, J., Guy, S., Lee-Jones, L., McGinn, T., & Schlecht, J. (2008). Reproductive Health: A Right for Refugees and Internally Displaced Persons. *Reproductive Health Matters*, 16(31), 10–21. [https://doi.org/10.1016/S0968-8080\(08\)31351-2](https://doi.org/10.1016/S0968-8080(08)31351-2)

Barden-O'Fallon, J., Traore, A., & Tounkara, M. (2020). Attitudes and Opinions of Young People in Mali on Family Planning, Barriers to Contraceptive Use, and Suggestions for Programming. *African Journal of Reproductive Health*, 24(2), 106–114. <https://doi.org/10.29063/ajrh2020/v24i2.10>

Baschieri, A., Cleland, J., Floyd, S., Dube, A., Msona, A., Molesworth, A., Glynn, J. R., & French, N. (2013). Reproductive preferences and contraceptive use: A comparison of monogamous and polygamous couples in northern Malawi. *Journal of Biosocial Science*, 45(2), 145–166. <https://doi.org/10.1017/S0021932012000569>

Bastagli, F., & Toulmin, C. (2014). *Mali: Economic factors behind the crisis* (European Parliament's Committee on Development EP/EXPO/B/DEVE/2013/13). European Parliament. <https://odi.org/en/publications/mali-economic-factors-behind-the-crisis/>

Becker, S., & Costenbader, E. (2001). Husbands' and Wives' Reports of Contraceptive Use. *Studies in Family Planning*, 32(2), 111–129. <https://doi.org/10.1111/j.1728-4465.2001.00111.x>

Behrman, J. A., & Weitzman, A. (2016). Effects of the 2010 Haiti Earthquake on Women's Reproductive Health. *Studies in Family Planning*, 47(1), 3–17. <https://doi.org/10.1111/j.1728-4465.2016.00045.x>

Bendavid, E., Boerma, T., Akseer, N., Langer, A., Malembaka, E. B., Okiro, E. A., Wise, P. H., Heft-Neal, S., Black, R. E., & Bhutta, Z. A. (2021). The effects of armed conflict on the health of women and children. *Lancet (London, England)*, 397(10273), 522–532. [https://doi.org/10.1016/S0140-6736\(21\)00131-8](https://doi.org/10.1016/S0140-6736(21)00131-8)

Berrebi, C., & Ostwald, J. (2015). Terrorism and fertility: Evidence for a causal influence of terrorism on fertility. *Oxford Economic Papers*, 67(1), 63–82. <https://doi.org/10.1093/oep/gpu042>

Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How Much Should We Trust Differences-In-Differences Estimates?*. *The Quarterly Journal of Economics*, 119(1), 249–275. <https://doi.org/10.1162/003355304772839588>

Blanc, A. K. (2001). The Effect of Power in Sexual Relationships on Sexual and Reproductive Health: An Examination of

the Evidence. *Studies in Family Planning*, 32(3), 189–213. <https://doi.org/10.1111/j.1728-4465.2001.00189.x>

Boeke, S., & de Valk, G. (2021). The Unforeseen 2012 Crisis in Mali: The Diverging Outcomes of Risk and Threat Analyses. *Studies in Conflict & Terrorism*, 44(10), 835–854. <https://doi.org/10.1080/1057610X.2019.1592356>

Bongaarts, J. (2017). Africa's Unique Fertility Transition. *Population and Development Review*, 43(S1), 39–58. <https://doi.org/10.1111/j.1728-4457.2016.00164.x>

Bongaarts, J., & Westoff, C. F. (2000). The Potential Role of Contraception in Reducing Abortion. *Studies in Family Planning*, 31(3), 193–202. <https://doi.org/10.1111/j.1728-4465.2000.00193.x>

Briscoe, I. (2014). *Crime after Jihad: Armed groups, the state and illicit business in post-conflict Mali*. Clingendael Institute.

Brück, T., Justino, P., Verwimp, P., Avdeenko, A., & Tedesco, A. (2016). Measuring Violent Conflict in Micro-level Surveys: Current Practices and Methodological Challenges. *The World Bank Research Observer*, 31(1), 29–58. <https://doi.org/10.1093/wbro/lkv011>

Brunborg, H., & Urdal, H. (2005). The Demography of Conflict and Violence: An Introduction. *Journal of Peace Research*, 42(4), 371–374. <https://doi.org/10.1177/0022343305054084>

Burgert, C. R., Colston, J., Roy, T., & Zachary, B. (2013). *Geographic displacement procedure and georeferenced data release policy for the Demographic and Health Surveys* (DHS Spatial Analysis Reports No. 7). Article DHS Spatial Analysis Reports No. 7. <https://dhsprogram.com/publications/publication-SAR7-Spatial-Analysis-Reports.cfm>

Canning, D., & Schultz, T. P. (2012). The economic consequences of reproductive health and family planning. *The Lancet*, 380(9837), 165–171. [https://doi.org/10.1016/S0140-6736\(12\)60827-7](https://doi.org/10.1016/S0140-6736(12)60827-7)

Casey, S. E., Gallagher, M. C., Kakesa, J., Kalyanpur, A., Muselemu, J.-B., Rafanoharana, R. V., & Spilotros, N. (2020). Contraceptive use among adolescent and young women in North and South Kivu, Democratic Republic of the Congo: A cross-sectional population-based survey. *PLoS Medicine*, 17(3), e1003086. <https://doi.org/10.1371/journal.pmed.1003086>

Casey, S. E., McNab, S. E., Tanton, C., Odong, J., Testa, A. C., & Lee-Jones, L. (2013). Availability of long-acting and permanent family-planning methods leads to increase in use in conflict-affected northern Uganda: Evidence from cross-sectional baseline and endline cluster surveys. *Global Public Health*, 8(3), 284–297. <https://doi.org/10.1080/17441692.2012.758302>

Casey, S. E., & Tshipamba, M. (2017). Contraceptive availability leads to increase in use in conflict-affected Democratic Republic of the Congo: Evidence from cross-sectional cluster surveys, facility assessments and service statistics. *Conflict and Health*, 11(1), 2. <https://doi.org/10.1186/s13031-017-0104-2>

Casterline, J. B. (2017). Prospects for Fertility Decline in Africa. *Population and Development Review*, 43(S1), 3–18. <https://doi.org/10.1111/padr.12055>

Castle, S. (2003). Factors influencing young Malians' reluctance to use hormonal contraceptives. *Studies in Family Planning*, 34(3), 186–199. <https://doi.org/10.1111/j.1728-4465.2003.00186.x>

Castle, S., Konaté, M. K., Ulin, P. R., & Martin, S. (1999). A Qualitative Study of Clandestine Contraceptive Use in Urban Mali. *Studies in Family Planning*, 30(3), 231–248. <https://doi.org/10.1111/j.1728-4465.1999.00231.x>

Cellule de Planification et de Statistique, Ministère de la Santé (CPS/MS), Institut National de la Statistique (INSTAT), & ORC Macro. (2007). *Enquête Démographique et de Santé au Mali 2006*.

Chauzal, G., & Damme, T. van. (2015). *The Roots of Mali's Conflict: Moving Beyond the 2012 Crisis : CRU Report*. Netherlands Institute of International Relations Clingendael.

Chauzal, G., & Gorman, Z. (2019). *Hand in Hand: A Study of Insecurity and Gender in Mali*. SIPRI. <https://www.sipri.org/publications/2019/sipri-insights-peace-and-security/hand-hand-study-insecurity-and-gender-mali>

Checchi, F., Waldman, R. J., Roberts, L. F., Ager, A., Asgary, R., Benner, M. T., Blanchet, K., Burnham, G., d'Harcourt, E.,

Leaning, J., Massaquoi, M. B. F., Mills, E. J., Moresky, R. T., Patel, P., Roberts, B., Toole, M. J., Woodruff, B., & Zwi, A. B. (2016). World Health Organization and emergency health: If not now, when? *BMJ*, 352, i469. <https://doi.org/10.1136/bmj.i469>

Chena, S., & Tisseron, A. (2013). The Destabilization of Post-Gaddafi Mali. *Afrique contemporaine*, 245(1), 71–84.

Chi, P. C., Bulage, P., Urdal, H., & Sundby, J. (2015). Perceptions of the effects of armed conflict on maternal and reproductive health services and outcomes in Burundi and Northern Uganda: A qualitative study. *BMC International Health and Human Rights*, 15(1), 7. <https://doi.org/10.1186/s12914-015-0045-z>

Choiriyah, I., & Becker, S. (2018). Measuring Women's Covert Use of Modern Contraception in Cross-Sectional Surveys. *Studies in Family Planning*, 49(2), 143–157.

Chukwuma, A., & Ekhator-Mobayode, U. E. (2019). Armed conflict and maternal health care utilization: Evidence from the Boko Haram Insurgency in Nigeria. *Social Science & Medicine*, 226, 104–112. <https://doi.org/10.1016/j.socscimed.2019.02.055>

Claeys, V. (2010). Beyond despair — sexual and reproductive health care in Haiti after the earthquake. *The European Journal of Contraception and Reproductive Health Care*, 15, 301–304. <https://doi.org/10.3109/13625187.2010.515082>

Clarke, D., Romano, J. P., & Wolf, M. (2020). The Romano–Wolf multiple-hypothesis correction in Stata. *The Stata Journal*, 20(4), 812–843. <https://doi.org/10.1177/1536867X20976314>

Cleland, J., Bernstein, S., Ezeh, A., Faundes, A., Glasier, A., & Innis, J. (2006). Family planning: The unfinished agenda. *The Lancet*, 368(9549), 1810–1827. [https://doi.org/10.1016/S0140-6736\(06\)69480-4](https://doi.org/10.1016/S0140-6736(06)69480-4)

Cohan, C. L., & Cole, S. W. (2002). Life course transitions and natural disaster: Marriage, birth, and divorce following Hurricane Hugo. *Journal of Family Psychology*, 16, 14–25. <https://doi.org/10.1037/0893-3200.16.1.14>

Croicu, M., & Sundberg, R. (2015). *UCDP Georeferenced Event Dataset Codebook Version 4.0*. Department of Peace and Conflict Research, Uppsala University. chrome-extension://efaidnbmnnibpcajpcglclefindmkaj/https://ucdp.uu.se/downloads/ged/ucdp-ged-40-codebook.pdf

Curry, D. W., Rattan, J., Huang, S., & Noznesky, E. (2015). Delivering high-quality family planning services in crisis-affected settings II: Results. *Global Health, Science and Practice*, 3(1), 25–33. <https://doi.org/10.9745/GHSP-D-14-00112>

Daw, J. R., & Hatfield, L. A. (2018). Matching and Regression to the Mean in Difference-in-Differences Analysis. *Health Services Research*, 53(6), 4138–4156. <https://doi.org/10.1111/1475-6773.12993>

De Juan, A., & Koos, C. (2021). Survey participation effects in conflict research. *Journal of Peace Research*, 58(4), 623–639. <https://doi.org/10.1177/0022343320971034>

Debarre, A. (2018). *Hard to Reach: Providing Healthcare in Armed Conflict* [Report on conflict and health care]. International Peace Institute. <https://reliefweb.int/report/world/hard-reach-providing-healthcare-armed-conflict>

Debarre, A. (2019). *Providing Healthcare in Armed Conflict: The Case of Mali* [Report on conflict and health care]. International Peace Institute. <https://reliefweb.int/report/world/hard-reach-providing-healthcare-armed-conflict>

Degni, F., Amara, I. D., & Klemetti, R. (2015). Women's Experiences in Accessing Maternal and Child Health Services During the Period of the Armed Conflict in the North of Mali. *The Open Public Health Journal*, 8(1). <https://doi.org/10.2174/1874944501508010017>

DiGiuseppe, M., & Haer, R. (2023). The wedding bells of war: The influence of armed conflict on child marriages in West Africa. *Journal of Peace Research*, 60(3), 474–488. <https://doi.org/10.1177/00223433221080056>

Dupas, P., & Robinson, J. (2012). The (hidden) costs of political instability: Evidence from Kenya's 2007 election crisis. *Journal of Development Economics*, 99(2), 314–329. <https://doi.org/10.1016/j.jdeveco.2012.03.003>

Eck, K. (2012). In data we trust? A comparison of UCDP GED and ACLED conflict events datasets. *Cooperation and Conflict*, 47(1), 124–141.

Ekhator-Mobayode, U., & Abebe Asfaw, A. (2019). The child health effects of terrorism: Evidence from the Boko Haram

Insurgency in Nigeria. *Applied Economics*, 51(6), 624–638. <https://doi.org/10.1080/00036846.2018.1502871>

Ekhator-Mobayode, U., Hamner, L. C., Rubiano-Matulevich, E., & Jimena Arango, D. (2022). The effect of armed conflict on intimate partner violence: Evidence from the Boko Haram insurgency in Nigeria. *World Development*, 153, 105780. <https://doi.org/10.1016/j.worlddev.2021.105780>

Ekhator-Mobayode, U., Kelly, J., Rubin, A., & Arango, D. J. (2021). *Intimate Intimate Partner Violence and Household Decision Making Autonomy: Effects of the Malian Conflict on Women*. <https://doi.org/10.1596/1813-9450-9821>

Etang-Ndip, A., Hoogeveen, J. G. M. (Hans), & Lendorfer, J. (2015). *Socioeconomic Impact of the Crisis in North Mali on Displaced People* (SSRN Scholarly Paper 2601624). <https://papers.ssrn.com/abstract=2601624>

Fenske, J. (2015). African polygamy: Past and present. *Journal of Development Economics*, 117, 58–73. <https://doi.org/10.1016/j.jdeveco.2015.06.005>

Gage, A. J. (2007). Barriers to the utilization of maternal health care in rural Mali. *Social Science & Medicine*, 65(8), 1666–1682. <https://doi.org/10.1016/j.socscimed.2007.06.001>

Galy, M. (2013). *La guerre au Mali: Comprendre la crise au Sahel et au Sahara: enjeux et zones d'ombre*. Cahiers Libres. La Découverte [in French]. <https://doi.org/10.3917/dec.galym.2013.01.0005>

Hankins, C. A., Friedman, S. R., Zafar, T., & Strathdee, S. A. (2002). Transmission and prevention of HIV and sexually transmitted infections in war settings: Implications for current and future armed conflicts. *AIDS*, 16(17), 2245–2252. <https://doi.org/10.1097/00002030-200211220-00003>

Hanne, O. (2015). *Mali, une paix à gagner—Analyses et témoignages sur l'opération Serval*. Lavauzelle [in French].

Hapsari, E. D., Widayati, E. D., Nisman, W. A., Lusmilasari, L., Siswihanto, R., & Matsuo, H. (2009). Change in contraceptive methods following the Yogyakarta earthquake and its association with the prevalence of unplanned pregnancy. *Contraception*, 79(4), 316–322. <https://doi.org/10.1016/j.contraception.2008.10.015>

Hawkes, S., & Hart, G. (2000). Men's sexual health matters: Promoting reproductive health in an international context. *Tropical Medicine & International Health*, 5(7), A37–A44. <https://doi.org/10.1046/j.1365-3156.2000.00594.x>

Hill, K., National Research Council (US) Committee on Population, & Program on Forced Migration and Health at the Mailman School of Public Health, Columbia University. (2004). *War, Humanitarian Crises, Population Displacement, and Fertility: A Review of Evidence*. National Academies Press (US). <http://www.ncbi.nlm.nih.gov/books/NBK215696/>

Hoogeveen, J. G., Rossi, M., & Sansone, D. (2019). Leaving, Staying or Coming Back? Migration Decisions During the Northern Mali Conflict. *The Journal of Development Studies*, 55(10), 2089–2105. <https://doi.org/10.1080/00220388.2018.1510119>

International Crisis Group. (2019). *Speaking with the “Bad Guys”: Toward Dialogue with Central Mali’s Jihadists* (276; Africa Series). ICG. <https://www.crisisgroup.org/africa/sahel/mali/276-speaking-bad-guys-toward-dialogue-central-malis-jihadists>

IOM. (2016, February 2). *Internally Displaced Population Falls in Mali*. International Organization for Migration. <https://www.iom.int/news/internally-displaced-population-falls-mali>

Johnston, T., Faure, S., & Raney, L. (1998). *The World Bank and the Health Sector in Mali*. (Text/HTML 18112). World Bank Group. <https://documents.worldbank.org/en/publication/documents-reports/documentdetail/485771468776970096/Mali-Health-Sector-Development-Program>

Jones, R. K. (2011). *Beyond Birth Control: The Overlooked Benefits Of Oral Contraceptive Pills*. <https://www.guttmacher.org/report/beyond-birth-control-overlooked-benefits-oral-contraceptive-pills>

Justino, P., Leone, M., Rolla, P., Abimpaye, M., Dusabe, C., Uwamahoro, M. D., & Germond, R. (2022). Improving Parenting Practices for Early Child Development: Experimental Evidence from Rwanda. *Journal of the European Economic Association*, jvac070. <https://doi.org/10.1093/jeea/jvac070>

Kidman, R., Palermo, T., & Bertrand, J. (2015). Intimate partner violence, modern contraceptive use and conflict in the

Democratic Republic of the Congo. *Social Science & Medicine*, 133, 2–10.
<https://doi.org/10.1016/j.socscimed.2015.03.034>

Kimenyi, M., Adibe, J., Djiré, M., Jirgi, A. J., & Kergna, A. (2014). *The Impact of Conflict and Political Instability on Agricultural Investments in Mali and Nigeria* (Working Paper 17). Africa Growth Initiative, Brookings Institution.
<https://www.africaportal.org/publications/the-impact-of-conflict-and-political-instability-on-agricultural-investments-in-mali-and-nigeria/>

Kiss, L., Quinlan-Davidson, M., Pasquero, L., Tejero, P. O., Hogg, C., Theis, J., Park, A., Zimmerman, C., & Hossain, M. (2020). Male and LGBT survivors of sexual violence in conflict situations: A realist review of health interventions in low-and middle-income countries. *Conflict and Health*, 14, 11. <https://doi.org/10.1186/s13031-020-0254-5>

Kobeissi, L., Nair, M., Evers, E. S., Han, M. D., Aboubaker, S., Say, L., Rollins, N., Darmstadt, G. L., Blanchet, K., Garcia, D. M., Hagon, O., Ashorn, P., & Members of the WHO research prioritization group for SRMNCAH promotion in humanitarian settings. (2021). Setting research priorities for sexual, reproductive, maternal, newborn, child and adolescent health in humanitarian settings. *Conflict and Health*, 15(1), 16. <https://doi.org/10.1186/s13031-021-00353-w>

Kotsadam, A., & Østby, G. (2019). Armed conflict and maternal mortality: A micro-level analysis of sub-Saharan Africa, 1989–2013. *Social Science & Medicine*, 239, 112526. <https://doi.org/10.1016/j.socscimed.2019.112526>

Kraehnert, K., Brück, T., Di Maio, M., & Nisticò, R. (2019). The Effects of Conflict on Fertility: Evidence From the Genocide in Rwanda. *Demography*, 56(3), 935–968. <https://doi.org/10.1007/s13524-019-00780-8>

Krause, S., Williams, H., Onyango, M. A., Sami, S., Doedens, W., Giga, N., Stone, E., & Tomczyk, B. (2015). Reproductive health services for Syrian refugees in Zaatri Camp and Irbid City, Hashemite Kingdom of Jordan: An evaluation of the Minimum Initial Services Package. *Conflict and Health*, 9(Suppl 1 Taking Stock of Reproductive Health in Humanitarian), S4. <https://doi.org/10.1186/1752-1505-9-S1-S4>

Le Voir, R. (2022). Measuring contraceptive use in a displacement-affected population using the Multiple Indicator Cluster Survey: The case of Iraq. *Journal of Migration and Health*, 6, 100114. <https://doi.org/10.1016/j.jmh.2022.100114>

Lendorfer, J., Etang-Ndip, A., & Hoogeveen, J. (2016). Socio-Economic Impact of the Crisis in Northern Mali on Displaced People. *Journal of Refugee Studies*, 29(3), 315–340. <https://doi.org/10.1093/jrs/few011>

Levy, B. S., & Sidel, V. W. (2016). Documenting the Effects of Armed Conflict on Population Health. *Annual Review of Public Health*, 37(1), 205–218. <https://doi.org/10.1146/annurev-publhealth-032315-021913>

Mariko, S., Ayad, M., Hong, R., Kéita, O., & Diop, M. (2009). *Pratique contraceptive et importance des besoins non satisfaits en matière de planification familiale au Mali de 1995 à 2006. Analyses approfondies des EDSM 1995-1996, 2001 et 2006. CPS/DNSI et ICF Macro*. (Rapports d'analyses Approfondies Des EDS 69). CPS/DNSI et ICF Macro.

Masset, E. (2022). Conflict and Child Mortality in Mali: A Synthetic Control Analysis. *Population and Development Review*, 48(4), 1097–1123. <https://doi.org/10.1111/padr.12523>

Masset, E., Gelli, A., Tranchant, J.-P., & Diallo, A. S. (2019). Impact of conflict on agriculture in Mali: *IFPRI Discussion Papers*, Article 1843. <https://ideas.repec.org/p/fpr/ifprid/1843.html>

Mavisakalyan, A., & Minasyan, A. (2021). The Role of Conflict in Sex Discrimination: The Case of Missing Girls. *Economic Development and Cultural Change*. <https://doi.org/10.1086/716101>

Maxwell, L., Devries, K., Zions, D., Alhusen, J. L., & Campbell, J. (2015). Estimating the Effect of Intimate Partner Violence on Women's Use of Contraception: A Systematic Review and Meta-Analysis. *PLOS ONE*, 10(2), e0118234. <https://doi.org/10.1371/journal.pone.0118234>

McGinn, T. (2000). Reproductive Health of War-Affected Populations: What Do We Know? *International Family Planning Perspectives*, 26(4), 174–180. <https://doi.org/10.2307/2648255>

McGinn, T., Austin, J., Anfinson, K., Amsalu, R., Casey, S. E., Fadulalmula, S. I., Langston, A., Lee-Jones, L., Meyers, J.,

Mubiru, F. K., Schlecht, J., Sharer, M., & Yetter, M. (2011). Family planning in conflict: Results of cross-sectional baseline surveys in three African countries. *Conflict and Health*, 5(1), 11. <https://doi.org/10.1186/1752-1505-5-11>

McKelvey, C., Thomas, D., & Frankenberg, E. (2012). Fertility Regulation in an Economic Crisis. *Economic Development and Cultural Change*, 61(1), 7–38. <https://doi.org/10.1086/666950>

Millogo, R., Maté Labité, J., & Maté Labité, C. (2022). *Polygamy in West Africa: Impacts on Fertility, Fertility Intentions, and Family Planning*. Population Reference Bureau. <https://www.prb.org/resources/polygamy-in-west-africa-impacts-on-fertility-fertility-intentions-and-family-planning/>

Mock, N. B., Duale, S., Brown, L. F., Mathys, E., O'maonaigh, H. C., Abul-Husn, N. K., & Elliott, S. (2004). Conflict and HIV: A framework for risk assessment to prevent HIV in conflict-affected settings in Africa. *Emerging Themes in Epidemiology*, 1(1), 6. <https://doi.org/10.1186/1742-7622-1-6>

Murray, C. J. L., King, G., Lopez, A. D., Tomijima, N., & Krug, E. G. (2002). Armed conflict as a public health problem. *British Medical Journal*, 324(7333), 346–349. <https://doi.org/10.1136/bmj.324.7333.346>

Nobles, J., Frankenberg, E., & Thomas, D. (2015). The effects of mortality on fertility: Population dynamics after a natural disaster. *Demography*, 52(1), 15–38. <https://doi.org/10.1007/s13524-014-0362-1>

OECD & Sahel and West Africa Club. (2020). *Mapping political violence in North and West Africa* (pp. 61–76). OECD. <https://doi.org/10.1787/0b97bd15-en>

O'Hare, B. A. M., & Southall, D. P. (2007). First do no harm: The impact of recent armed conflict on maternal and child health in Sub-Saharan Africa. *Journal of the Royal Society of Medicine*, 100(12), 564–570.

Orcutt, M., Rayes, D., Tarakji, A., Katoub, M., Spiegel, P., Rubenstein, L., Jabbour, S., Alkhailil, M., Alabbas, M., & Abbara, A. (2019). International failure in northwest Syria: Humanitarian health catastrophe demands action. *Lancet (London, England)*, 394(10193), 100–103. [https://doi.org/10.1016/S0140-6736\(19\)31564-8](https://doi.org/10.1016/S0140-6736(19)31564-8)

O'Regan, A., & Thompson, G. (2017). Indicators of young women's modern contraceptive use in Burkina Faso and Mali from Demographic and Health Survey data. *Contraception and Reproductive Medicine*, 2(1), 26. <https://doi.org/10.1186/s40834-017-0053-6>

Osotimehin, B. (2015). Family planning as a critical component of sustainable global development. *Global Health Action*, 8, 10.3402/gha.v8.29978. <https://doi.org/10.3402/gha.v8.29978>

Østby, G., Urdal, H., Tollesen, A. F., Kotsadam, A., Belbo, R., & Ormhaug, C. (2018). Organized Violence and Institutional Child Delivery: Micro-Level Evidence From Sub-Saharan Africa, 1989–2014. *Demography*, 55(4), 1295–1316. <https://doi.org/10.1007/s13524-018-0685-4>

Pallin, S., Meekers, D., Longfield, Kim, & Lupo, O. (2013). *Mali: A Total Market Approach*. PSI/UNFPA Joint Studies on the Total Market for Male Condoms in Six African Countries. UNFPA and Population Services International (PSI). <https://www.unfpa.org/publications/unfpa-psi-total-market-approach-case-studies>

Paul, E., Samaké, S., Berthé, I., Huijts, I., Balique, H., & Dujardin, B. (2014). Aid for health in times of political unrest in Mali: Does donors' way of intervening allow protecting people's health? *Health Policy and Planning*, 29(8), 1071–1074. <https://doi.org/10.1093/heapol/czt082>

Pearson, E., & Becker, S. (2014). Couples' Unmet Need for Family Planning in Three West African Countries. *Studies in Family Planning*, 45(3), 339–359. <https://doi.org/10.1111/j.1728-4465.2014.00395.x>

Plümper, T., & Neumayer, E. (2006). The Unequal Burden of War: The Effect of Armed Conflict on the Gender Gap in Life Expectancy. *International Organization*, 60(3), 723–754.

Prata, N., Fraser, A., Huchko, M., Gipson, J., Withers, M., Lewis, S., Ciaraldi, E., & Upadhyay, U. (2017). Women's empowerment and family planning: A review of the literature. *Journal of Biosocial Science*, 49, 1–31. <https://doi.org/10.1017/S0021932016000663>

Prata, N., Vahidnia, F., & Fraser, A. (2005). Gender and Relationship Differences in Condom Use among 15-24-Year-Olds

in Angola. *International Family Planning Perspectives*, 31(4), 192–199.

Radil, S., Walther, O., Dorward, N., & Pflaum, M. (2022). *Urban-Rural Geographies of Political Violence in North and West Africa* (SSRN Scholarly Paper 4171240). <https://doi.org/10.2139/ssrn.4171240>

Raleigh, C., Linke, A., Hegre, H., & Karlsen, J. (2010). Introducing ACLED: An Armed Conflict Location and Event Dataset: Special Data Feature. *Journal of Peace Research*, 47(5), 651–660. <https://doi.org/10.1177/0022343310378914>

Ramos Jaraba, S. M., Quiceno Toro, N., Ochoa Sierra, M., Ruiz Sánchez, L., García Jiménez, M. A., Salazar-Barrientos, M. Y., Bedoya Bedoya, E., Vélez Álvarez, G. A., Langer, A., Gausman, J., & Garcés-Palacio, I. C. (2020). Health in conflict and post-conflict settings: Reproductive, maternal and child health in Colombia. *Conflict and Health*, 14(1), 33. <https://doi.org/10.1186/s13031-020-00273-1>

Raschky, P. A., & Wang, L. C. (2012). Reproductive Behaviour at the End of the World: The Effect of the Cuban Missile Crisis on U.S. Fertility. *Monash Economics Working Papers*, Article 54–12. <https://ideas.repec.org/p/mos/moswps/2012-54.html>

Romano, J. P., & Wolf, M. (2005). Stepwise Multiple Testing as Formalized Data Snooping. *Econometrica*, 73(4), 1237–1282. <https://doi.org/10.1111/j.1468-0262.2005.00615.x>

Romano, J. P., & Wolf, M. (2016). Efficient computation of adjusted p-values for resampling-based stepdown multiple testing. *Statistics & Probability Letters*, 113, 38–40. <https://doi.org/10.1016/j.spl.2016.02.012>

Rotondi, V., & Rocca, M. (2021). Bombs and Babies: Exposure to Terrorism and Fertility Choices in Nigeria. *Journal of African Economies*, ejab030. <https://doi.org/10.1093/jae/ejab030>

Sachs, J., Kroll, C., Lafortune, G., Woelm, F., & Fuller, G. (2022). *Sustainable Development Report 2021. The Decade of Action for the Sustainable Development Goals*. Cambridge University Press. <https://ca.bookshop.org/books/sustainable-development-report-2021-9781009102896/9781009102896>

Safeguarding Health in Conflict Coalition (SHCC). (2018). *Violence on the front line: Attacks on Health Care in 2017*. Safeguarding Health in Conflict Coalition. <https://reliefweb.int/report/world/violence-front-line-attacks-health-care-2017>

Safeguarding Health in Conflict Coalition (SHCC). (2021). *Violence Against or Obstruction of Health Care in Mali in 2020—Mali*. Safeguarding Health in Conflict Coalition. <https://reliefweb.int/report/mali/violence-against-or-obstruction-health-care-mali-2020>

Schulz, P. (2021). Conflict-Related Sexual Violence against Men: A Global Perspective. In *Male Survivors of Wartime Sexual Violence* (1st ed., pp. 26–47). University of California Press. <https://www.jstor.org/stable/j.ctv1f884s7.8>

Senderowicz, L. (2020). Contraceptive Autonomy: Conceptions and Measurement of a Novel Family Planning Indicator. *Studies in Family Planning*, 51(2), 161–176. <https://doi.org/10.1111/sifp.12114>

Senderowicz, L., & Maloney, N. (2022). Supply-Side Versus Demand-Side Unmet Need: Implications for Family Planning Programs. *Population and Development Review*, 48(3), 689–722. <https://doi.org/10.1111/padr.12478>

Senderowicz, L., Sawadogo, N., & Langer, A. (2018). Barriers to contraceptive autonomy in Burkina Faso. *Contraception*, 98(4), 353. <https://doi.org/10.1016/j.contraception.2018.07.074>

Shekar, M., Yazbeck, A., Hasan, R., & Bakilana, A. (2016). *Population and Development in the Sahel: Policy Choices to Catalyze a Demographic Dividend* [Working Paper]. World Bank. <https://doi.org/10.1596/25293>

Shemyakina, O. (2013). Patterns in Female Age at First Marriage and Tajik Armed Conflict. *European Journal of Population / Revue Européenne de Démographie*, 29(3), 303–343. <https://doi.org/10.1007/s10680-013-9289-2>

Sidibe, A. M., Kadetz, P. I., & Hesketh, T. (2020). Factors Impacting Family Planning Use in Mali and Senegal. *International Journal of Environmental Research and Public Health*, 17(12), 4399. <https://doi.org/10.3390/ijerph17124399>

Skiles, M. P., Burgert, C. R., Curtis, S. L., & Spencer, J. (2013). Geographically linking population and facility surveys: Methodological considerations. *Population Health Metrics*, 11(1), 14. <https://doi.org/10.1186/1478-7954-11-14>

Solomon, H. (2013). Mali: West Africa's Afghanistan. *The RUSI Journal*, 158(1), 12–19.
<https://doi.org/10.1080/03071847.2013.774635>

Speizer, I. S. (2006). Using strength of fertility motivations to identify family planning program strategies. *International Family Planning Perspectives*, 32(4), 185–191. <https://doi.org/10.1363/3218506>

Spoorenberg, T. (2019). Forty years of fertility changes in the Sahel. *Demographic Research*, 41, 1289–1314.
<https://doi.org/10.4054/DemRes.2019.41.46>

Starrings, A. M., Ezech, A. C., Barker, G., Basu, A., Bertrand, J. T., Blum, R., Coll-Seck, A. M., Grover, A., Laski, L., Roa, M., Sathar, Z. A., Say, L., Serour, G. I., Singh, S., Stenberg, K., Temmerman, M., Biddlecom, A., Popinchalk, A., Summers, C., & Ashford, L. S. (2018). Accelerate progress—sexual and reproductive health and rights for all: Report of the Guttmacher–Lancet Commission. *The Lancet*, 391(10140), 2642–2692.
[https://doi.org/10.1016/S0140-6736\(18\)30293-9](https://doi.org/10.1016/S0140-6736(18)30293-9)

Stevenson, A. J., Genadek, K. R., Yeatman, S., Mollborn, S., & Menken, J. A. (2021). The impact of contraceptive access on high school graduation. *Science Advances*, 7(19), eabf6732. <https://doi.org/10.1126/sciadv.abf6732>

Svallfors, S. (2021). *Bodies and Battlefields: Sexual and Reproductive Health and Rights in the Colombian Armed Conflict* [PhD thesis]. Department of Sociology, Stockholm University.

Svallfors, S. (2022). Contraceptive choice as risk reduction? The relevance of local violence for women's uptake of sterilization in Colombia. *Population Studies*, 76(3), 407–426. <https://doi.org/10.1080/00324728.2021.1953118>

Svallfors, S. (2023). Hidden Casualties: The Links between Armed Conflict and Intimate Partner Violence in Colombia. *Politics & Gender*, 19, 133–165. <https://doi.org/10.1017/S1743923X2100043X>

Svallfors, S., & Billingsley, S. (2019). Conflict and Contraception in Colombia. *Studies in Family Planning*, 50(2), 87–112.
<https://doi.org/10.1111/sifp.12087>

Thiede, B. C., Hancock, M., Kodouda, A., & Piazza, J. (2020). Exposure to Armed Conflict and Fertility in Sub-Saharan Africa. *Demography*, 57(6), 2113–2141. <https://doi.org/10.1007/s13524-020-00923-2>

Thurston, A. (2020a). Central Mali: The Possibilities and Limits of Incorporation. In *Jihadists of North Africa and the Sahel: Local Politics and Rebel Groups* (pp. 147–191). Cambridge University Press.
<https://doi.org/10.1017/9781108771160.005>

Thurston, A. (2020b). *Jihadists of North Africa and the Sahel: Local Politics and Rebel Groups*. Cambridge University Press.
<https://doi.org/10.1017/9781108771160>

Torrisi, O. (2022a). *Armed conflict and family outcomes: The consequences of exposure to war on fertility, teen marriage and intimate partner violence* [PhD thesis]. Department of Social Policy, The London School of Economics and Political Sciences.

Torrisi, O. (2022b). Wedding Amidst War? Armed Conflict and Female Teen Marriage in Azerbaijan. *European Journal of Population*. <https://doi.org/10.1007/s10680-022-09645-0>

Torrisi, O. (2023). Young-age exposure to armed conflict and women's experiences of intimate partner violence. *Journal of Marriage and Family*, 85(1), 7–32. <https://doi.org/10.1111/jomf.12876>

Treleaven, E., Whidden, C., Cole, F., Kayentao, K., Traoré, M. B., Diakité, D., Sidibé, S., Lin, T. K., Boettiger, D., Cissouma, S., Sanogo, V., Padian, N., Johnson, A., & Liu, J. (2022, May). *Evaluating a health intervention in the context of armed conflict: Experiences in rural Mali*. Population Health in Armed Conflict Network Seminar Series.

Tsui, A. O., Brown, W., & Li, Q. (2017). Contraceptive Practice in Sub-Saharan Africa. *Population and Development Review*, 43(Suppl Suppl 1), 166–191. <https://doi.org/10.1111/padr.12051>

Tunçalp, Ö., Fall, I. S., Phillips, S. J., Williams, I., Sacko, M., Touré, O. B., Thomas, L. J., & Say, L. (2015). Conflict, displacement and sexual and reproductive health services in Mali: Analysis of 2013 health resources availability mapping system (HeRAMS) survey. *Conflict and Health*, 9(1), 28. <https://doi.org/10.1186/s13031-015-0051-8>

UNDESA. (2012). *Fertility Levels and Trends as Assessed in the 2012 Revision of World Population Prospects* (United Nations

publication). United Nations, Department of Economic and Social Affairs, Population Division.
https://www.un.org/en/development/desa/population/publications/pdf/fertility/Fertility-levels-and-trends_WPP2012.pdf

UNESCO & Ministères de l'éducation. (2014). *Evaluation de l'impact de la crise sur le secteur de l'éducation, mission conjointe UNESCO & Ministères de l'éducation à Tombouctou, Gao et Kidal du 18 au 23 octobre 2013; rapport*—UNESCO Digital Library. UN Educational, Scientific and Cultural Organization (UNESCO).
<https://unesdoc.unesco.org/ark:/48223/pf0000227094>

UNHCR. (2016). *Mali Situation, September – November 2015* [REGIONAL SITUATION UPDATE]. UN Refugee Agency.
<https://data.unhcr.org/en/country/mli>

UNHCR. (2019). *Mali Situation, April – June 2019* [REGIONAL SITUATION UPDATE]. UN Refugee Agency.
<https://data.unhcr.org/en/country/mli>

UNICEF. (2017). *UNICEF Mali Humanitarian Situation Report, October–December 2017* [Situation Report].
<https://reliefweb.int/report/mali/unicef-mali-humanitarian-situation-report-october-december-2017>

USAID. (2021). *Sources of Family Planning Mali*. <https://shopsplusproject.org/resource-center/sources-family-planning-mali>

Verwimp, P., Osti, D., & Østby, G. (2020). Forced Displacement, Migration, and Fertility in Burundi. *Population and Development Review*, 46(2), 287–319. <https://doi.org/10.1111/padr.12316>

Verwimp, P., & Van Bavel, J. (2005). Child survival and fertility of refugees in Rwanda after the genocide. *European Journal of Population / Revue Européenne de Démographie*, 21(2). <https://lirias.kuleuven.be/1824417>

Wee, A., Lendorfer, J., Bleck, J., & Yaiche, C. (2014, June). *State Legitimacy, Stability and Social Cohesion in Low Population Density Areas: The Case of Northern Mali*. Annual Bank Conference on Africa, Berkeley, CA.

Whidden, C., Keita, Y., Treleaven, E., Beckerman, J., Johnson, A., Cissé, A., Liu, J., & Kayentao, K. (2021). Women's empowerment, intrahousehold influences, and health system design on modern contraceptive use in rural Mali: A multilevel analysis of cross-sectional survey data. *Reproductive Health*, 18(1), 55. <https://doi.org/10.1186/s12978-020-01061-z>

Whitehouse, B. (2012). The Force of Action: Legitimizing the Coup in Bamako, Mali. *Africa Spectrum*, 47(2/3), 93–110.

Williams, N. E., Ghimire, D. J., Axinn, W. G., Jennings, E. A., & Pradhan, M. S. (2012). A micro-level event-centered approach to investigating armed conflict and population responses. *Demography*, 49(4), 1521–1546.
<https://doi.org/10.1007/s13524-012-0134-8>

Wing, S. D. (2013). Briefing: Mali: Politics of a Crisis. *African Affairs*, 112(448), 476–485.

World Bank. (2015). *Geography of Poverty in Mali*. World Bank. <https://openknowledge.worldbank.org/handle/10986/26077>

World Bank. (2016). *Assessing recovery and development priorities in Mali's conflict-affected regions* [Technical report.]. World Bank.
<https://documents.worldbank.org/en/publication/documents-reports/documentdetail/127011516998903309/Assessing-recovery-and-development-priorities-in-Malis-conflict-affected-regions>

Appendix

Table A1. Samples descriptive statistics

	Women				Men			
	2006	2018	Total	<i>p</i> -value	2006	2018	Total	<i>p</i> -value
<i>Outcome variables</i>								
Currently using modern contraception	6.76%	18.04%	11.83%	<0.001	6.32%	11.17%	9.21%	<0.001
Currently using Pills	3.22%	2.29%	2.80%	<0.001	-	-	-	-
Currently using injections	2.64%	6.24%	4.26%	<0.001	-	-	-	-
Currently using implants	0.15%	8.19%	3.76%	<0.001				
Currently using condom	-	-	-	-	6.31%	4.49%	5.23%	0.057
Condom use at last sex^a	1.92%	1.66%	1.80%	0.363	7.28%	2.35%	4.34%	<0.001
Intends to use contraception in the future (non-users)^b	36.45%	42.83%	39.12%	0.001	-	-	-	-
(Partner) currently pregnant^c	13.59%	11.66%	12.74%	<0.001	18.40%	13.28%	15.25%	<0.001
Current pregnancy not wanted^d	21.33%	17.57%	19.79%	0.074	-	-	-	-
<i>Conflict variables</i>								
Residing within 10km from UCDP conflict event	29.18%	25.57%	27.56%	0.363	20.64%	24.47%	22.93%	0.203
Number of UCDP events within 10km from cluster	2.17 (4.31)	1.91 (3.88)	2.05 (4.89)	0.356	1.61 (3.96)	1.72 (3.66)	1.68 (3.78)	0.676
Number of UCDP events within 10km from cluster				0.332				0.494
No event	70.82%	74.42%	72.43%		79.36%	75.53%	77.07%	
Low (1-4 events)	10.98%	6.67%	9.05%		6.08%	7.92%	7.17%	
Medium (5-9 events)	16.03%	17.38%	16.63%		12.07%	14.80%	13.70%	
High (10+)	2.17%	1.53%	1.88%		2.49%	1.76%	2.06%	
Residing within 10km from ACLED conflict event	37.86%	34.41%	36.31%	0.733	30.15%	33.07%	31.89%	0.440
Number ACLED events within 10km from cluster	10.80 (23.61)	9.05 (19.63)	10.01 (21.96)	0.209	7.67 (21.01)	7.85 (18.58)	7.78 (19.58)	0.874
Number ACLED events within 10km from cluster				0.620				0.787
No event	62.14%	65.60%	63.69%		69.85%	66.93%	68.11%	
Low (1-19 events)	19.89%	16.74%	18.48%		15.87%	18.30%	17.32%	
Medium (20-44 events)	16.09%	16.38%	16.22%		12.93%	13.59%	13.32%	
High (44+)	1.88%	1.28%	1.61%		1.36%	1.19%	1.26%	
<i>Pathways</i>								
Ideal number of children	6.2 (2.64)	5.91 (2.40)	6.11 (2.54)	<0.001	8.64 (4.98)	9.07 (5.47)	8.90 (5.29)	0.093
Does not want more children	17.94%	18.96%	18.40%	0.309	10.39%	17.45%	14.60%	<0.001
Undecided if wants a(nother) child	1.88%	3.57%	2.64%	0.001	3.68%	4.71%	4.29%	0.207
Wants child within a year^e	38.55%	37.09%	37.90%	0.438	45.33%	57.53%	52.32%	<0.001

Sexually active in the past four weeks				0.322				<0.001
Never had sex	12.93%	11.88%	12.46%					
Active	62.68%	64.39%	63.45%		82.12%	87.53%	85.35%	
Not active	24.39%	23.73%	24.09%		17.88%	12.47%	14.65%	
Someone else usually decides on woman's health care	82.26%	80.54%	81.59%	0.218	-	-	-	
Woman can ask partner to use condom^f	26.52%	29.44%	27.82%	0.090	-	-	-	
Woman can refuse sex^f	29.56%	26.61%	28.26%	0.098	-	-	-	
Knows where to get method	6.71%	18.10%	11.83%	<0.001				
Contraception is woman's business	-	-	-		21.48%	20.72%	21.02%	0.747
Woman using contraception is promiscuous	-	-	-		24.07%	26.21%	25.36%	0.366
<i>Socio-demographic controls</i>								
Age at survey time				0.001				0.001
15-19	23.61%	21.51%	22.67%		3.23%	0.38%	1.53%	
20-24	18.89%	18.45%	18.69%		8.44%	4.66%	6.18%	
25-29	18.26%	19.21%	18.69%		14.07%	12.30%	13.01%	
30-34	13.00%	14.94%	13.87%		13.67%	19.55%	17.18%	
35-39	11.61%	12.95%	12.22%		15.45%	19.72%	17.99%	
40-44	8.59%	8.15%	8.39%		14.03%	14.66%	14.41%	
45-49	6.04%	4.77%	5.47%		12.77%	11.31%	11.90%	
50-54	-	-	-		11.12%	10.14%	10.54%	
55-59	-	-	-		7.17% ²	7.28%	7.25%	
Place of residence								
Urban	36.40%	28.05%	32.65%	0.008	26.98%	22.72%	24.44%	0.086
Rural	63.60%	71.95%	67.35%		73.02%	77.28%	75.56%	
Region				0.083				0.059
Kayes	12.90%	13.31%	13.08%		15.74%	12.36%	13.73%	
Koulakoro	17.95%	19.56%	18.67%		18.34%	19.37%	18.96%	
Sikasso	16.24%	17.92%	16.99%		18.07%	16.38%	17.06%	
Segou	15.53%	15.57%	15.55%		18.52%	18.07%	18.25%	
Mopti	13.48%	8.93%	11.44%		10.55%	12.13%	11.49%	
Toumbouctou	4.43%	3.37%	3.95%		3.94%	4.20%	4.09%	
Gao	3.52%	2.25%	2.95%		3.00%	2.26%	2.56%	
Kidal	0.46%	0.11%	0.30%		0.57%	0.10%	0.29%	
Bamako	15.50%	18.99%	17.07%		11.27%	15.13%	13.57%	
Religion				0.001				0.004
Islam	91.94%	93.47%	92.63%		93.67%	95.12%	94.54%	
Catholic	3.18%	1.82%	2.57%		3.25%	1.40%	2.15%	

Protestant	1.24%	1.33%	1.28%		2.55%	0.98%	1.62%	
Evangelist	3.63%	0.01%	2.01%		0.52%	0.24%	0.35%	
Other or atheist	0.01%	3.36%	1.52%		0.00%	2.26%	1.35%	
Literacy								
Can (partially) read	19.73%	30.12%	24.40%	<0.001	70.45%	59.53%	63.93%	<0.001
Cannot read	80.27%	69.88%	75.60%		23.47%	4.38%	12.08%	
Currently employed				0.001				<0.001
No	39.00%	45.86%	42.08%		23.47%	4.38%	12.08%	
Yes	61.00%	54.14%	57.92%		76.53%	95.62%	87.92%	
Ethnicity				0.032				0.748
Bambara	30.01%	33.81%	31.71%		31.62%	33.07%	32.48%	
Malinke	8.48%	9.46%	8.92%		9.19%	8.66%	8.87%	
Peuhl	14.64%	13.20%	14.00%		15.08%	13.62%	14.21%	
Sarakole/soninke/marka	12.59%	9.26%	11.09%		10.42%	8.48%	9.27%	
Sonrai	8.54%	5.74%	7.28%		4.90%	5.20%	5.08%	
Dogon	5.16%	8.07%	6.47%		6.48%	9.26%	8.14%	
Touareg/Bolla	4.02%	1.77%	3.01%		2.46%	1.71%	2.01%	
Senoufou/Minianka	9.28%	10.14%	9.66%		10.68%	9.57%	10.02%	
Bobo	2.02%	2.25%	2.12%		2.48%	2.60%	2.55%	
Other	5.27%	6.30%	5.73%		6.69%	7.83%	7.37%	
Number of children				0.356				<0.001
0	22.88%	21.81%	22.40%		14.37%	6.81%	9.86%	
1	13.01%	13.36%	13.17%		9.46%	11.86%	10.89%	
2	11.64%	12.54%	12.05%		9.73%	12.46%	11.36%	
3+	52.47%	52.29%	52.39%		66.43%	68.87%	67.89%	
Union type				<0.001				<0.001
Never partnered	14.30%	18.95%	16.39%		-	-	-	
Non-polygamous union	49.49%	49.59%	49.54%		72.23%	79.66%	76.66%	
Polygamous union	32.59%	28.85%	30.91%		27.77%	20.34%	23.34%	
Widowed, separated, divorced	3.62%	2.61%	3.17%		-	-	-	
Observations	9,679	7,891	17,570		1,688	2,497	4,185	

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict indicator. Notes: Observations are weighted using survey weights. Significant at [†]p<0.10; ^{*}p<0.05; ^{**}p<0.01; ^{***}p<0.0011. ^a Asked only to sexually active respondents (2006: N=9,286 women and N=1,688 men; 2018: N=7,318 women and N=2,497 men). ^b Asked only to women who reported no current use of modern contraception (2006: N=8,878; 2018: N=6,385). ^c Here the sample further includes women who reported being currently pregnant (2006: N=1,523; 2018: N=1,041). ^d Asked only to women who reported being currently pregnant (N=1,523 in 2006; N=1,041 in 2018). ^e Asked only to respondents who reported wanting a child (N=7,757 women and N=1,447 men in 2006; N=6,114 women and N=1,944 men in 2018). ^f Asked only to currently partnered women (N=7,396 in 2006; N=5,933 in 2018).

Table A2. Conflict indicator built using ACLED data

Panel A: WOMEN

	Any modern method	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Conflict Period × Affected Area	-0.026 (0.016)	-0.011† (0.008)	-0.029** (0.009)	0.015 (0.010)		0.009 (0.007)	0.079** (0.031)	0.036** (0.011)	0.099* (0.043)
Affected Area	0.041*** (0.012)	0.013* (0.007)	0.017* (0.007)	0.008 (0.006)		-0.003 (0.005)	-0.028 (0.024)	-0.012 (0.010)	0.014 (0.034)
Conflict Period	0.102*** (0.010)	-0.007† (0.004)	0.042*** (0.006)	0.072*** (0.006)		-0.015*** (0.003)	0.019 (0.021)	-0.027*** (0.007)	-0.003 (0.027)
FWER <i>p</i> -value	0.119	0.003	0.071	0.106		0.219	0.014	0.004	0.024
Observations	17,570	17,570	17,570	17,570	-	16,604	15,262	20,134	2,564

Panel B: MEN

Conflict Period × Affected Area	-0.063* (0.027)			-0.043† (0.024)	-0.053* (0.025)		0.046† (0.048)	
Affected Area	0.024 (0.021)			0.023 (0.020)	0.046* (0.020)		-0.050* (0.024)	
Conflict Period	0.070*** (0.013)			0.003 (0.010)	-0.024** (0.009)		-0.063** (0.020)	
FWER <i>p</i> -value	0.030			0.083	0.041		0.120	
Observations	4,185	-	-	-	4,185	4,118	-	4,061

Sources: 2006 and 2018 M-DHS. ACLED for conflict event data. Note: All models control for respondent's age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. FWER *p*-value is adjusted for multiple testing using the Romano and Wolf (2005, 2016) correction with 1,000 bootstrap replications across all gender-specific outcomes. Unadjusted *p*-values significant at †*p*<0.10; **p*<0.05; ***p*<0.01; ****p*<0.001.

Table A3. Different buffer radii**Cluster located within 15km from a conflict event****Panel A: WOMEN**

	Any modern method	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Conflict Period \times Affected Area	-0.034*	-0.026**	-0.020*	0.015		0.005	0.063*	0.039***	0.109*
	(0.017)	(0.009)	(0.008)	(0.010)		(0.007)	(0.031)	(0.012)	(0.043)
Affected Area	0.054***	0.024***	0.014†	0.014*		0.000	0.009	-0.009	-0.040
	(0.013)	(0.007)	(0.007)	(0.006)		(0.005)	(0.028)	(0.011)	(0.034)
Conflict Period	0.113***	0.040***	-0.004	0.072***		-0.014***	0.025	-0.027***	0.001
	(0.019)	(0.006)	(0.004)	(0.006)		(0.002)	(0.020)	(0.007)	(0.027)
FWER <i>p</i> -value	0.049	0.006	0.015	0.130		0.517	0.050	0.002	0.026
Observations	17,570	17,570	17,570	17,570	-	16,604	15,262	20,134	2,564

Panel B: MEN

Conflict Period \times Affected Area	-0.068*			-0.047†	-0.059*		0.045		
	(0.030)			(0.026)	(0.027)		(0.029)		
Affected Area	0.027			0.019	0.035		-0.052†		
	(0.024)			(0.021)	(0.022)		(0.029)		
Conflict Period	0.071***			0.003	-0.024**		-0.060**		
	(0.013)			(0.010)	(0.009)		(0.019)		
FWER <i>p</i> -value	0.035			0.091	0.035		0.144		
Observations	4,185	-	-	-	4,185	4,118	-	4,061	-

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data. Note: All models control for respondent's age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. FWER *p*-value is adjusted for multiple testing using the Romano and Wolf (2005, 2016) correction with 1,000 bootstrap replications across all gender-specific outcomes. Unadjusted *p*-values significant at †*p*<0.10; **p*<0.05; ***p*<0.01; ****p*<0.001.

Cluster located within 20km from a conflict event

Panel A: WOMEN

	Any modern method	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Conflict Period × Affected Area	-0.033** (0.016)	-0.027** (0.009)	-0.019* (0.007)	0.004 (0.009)		0.006 (0.006)	0.045† (0.031)	0.038*** (0.011)	0.092* (0.042)
Affected Area	0.042*** (0.011)	0.013* (0.006)	0.011 (0.006)	0.015* (0.006)		0.000 (0.005)	-0.013 (0.027)	-0.026* (0.011)	-0.014 (0.033)
Conflict Period	0.119*** (0.010)	0.040*** (0.006)	-0.003 (0.004)	0.075*** (0.006)		-0.015*** (0.003)	0.029 (0.022)	-0.029*** (0.007)	0.000 (0.029)
FWER <i>p</i> -value	0.012	0.001	0.015	0.677		0.340	0.085	0.003	0.043
Observations	17,570	17,570	17,570	17,570	-	16,604	15,262	20,134	2,564

Panel B: MEN

Conflict Period × Affected Area	-0.073** (0.026)			-0.043† (0.022)	-0.047* (0.022)	0.040 (0.028)			
Affected Area	0.037† (0.021)			0.022 (0.018)	0.035 (0.022)	-0.029 (0.028)			
Conflict Period	0.077*** (0.014)			0.005 (0.011)	-0.024* (0.009)	-0.062** (0.019)			
FWER <i>p</i> -value	0.011			0.067	0.039	0.176			
Observations	4,185	-	-	-	4,185	4,118	-	4,061	-

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data. Note: All models control for respondents' age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. FWER *p*-value is adjusted for multiple testing using the Romano and Wolf (2005, 2016) correction with 1,000 bootstrap replications across all gender-specific outcomes. Unadjusted *p*-values significant at †*p*<0.10; **p*<0.05; ***p*<0.01; ****p*<0.001.

Table A4. Continuous conflict event indicators

Panel A: WOMEN

	Any modern method	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Conflict Period × Number of conflict events within 10km	-0.005** (0.002)	-0.003*** (0.001)	-0.002** (0.001)	0.001 (0.001)		0.001 (0.001)	0.004 (0.003)	0.003* (0.001)	0.007 (0.005)
Number of conflict events within 10km		0.004** (0.001)	0.002*** (0.001)	0.001 (0.001)	0.000 (0.001)	0.002* (0.001)	0.004 (0.003)	-0.000 (0.001)	-0.003 (0.003)
Conflict Period		0.113*** (0.009)	0.039*** (0.005)	-0.006 (0.004)	0.076*** (0.006)	-0.014*** (0.002)	0.040* (0.018)	-0.019** (0.007)	0.023 (0.024)
Observations	17,570	17,570	17,570	17,570	-	16,604	15,262	20,134	2,564

Panel B: MEN

Conflict Period × Conflict events	-0.005 (0.003)		-0.003 (0.003)	-0.006† (0.003)	0.005† (0.003)			
Conflict events	-0.002 (0.003)		-0.002 (0.002)	0.002 (0.003)	-0.003 (0.003)			
Conflict Period	0.058*** (0.011)		-0.005 (0.009)	-0.030*** (0.008)	-0.057** (0.018)			
Observations	4,185	-	-	4,185	4,118	-	4,061	-

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data. Note: Continuous conflict exposure variable indicating the number of conflict events occurred within 10km from a respondent's cluster location. All other models control for respondents' age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. Significant at †p<0.10; *p<0.05; **p<0.01; ***p<0.001

Table A5. Discrete conflict event indicators: main models

Panel A: WOMEN

	Any modern method	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Conflict Period ×									
Low (1-4 events)	0.041 (0.032)	0.002 (0.021)	0.015 (0.015)	0.017 (0.016)		0.031** (0.008)	0.063† (0.041)	0.040† (0.023)	0.124* (0.062)
Medium (5-9)	-0.063** (0.021)	-0.038*** (0.010)	-0.038*** (0.011)	0.02 (0.013)		-0.004 (0.013)	0.078† (0.041)	0.043** (0.013)	0.140* (0.062)
High (10+)	-0.128** (0.039)	-0.049* (0.018)	-0.025* (0.023)	-0.056*** (0.010)		0.009 (0.026)	-0.097 (0.061)	-0.030 (0.041)	0.052 (0.076)
Observations	17,570	17,570	17,570	17,570	-	16,604	15,262	20,134	2,564

Panel B: MEN

	Conflict Period ×					
	Low (1-4 events)	-0.113** (0.035)		-0.053 (0.034)	-0.029 (0.033)	0.054 (0.039)
	Medium (5-9)	-0.070† (0.039)		-0.074 (0.046)	-0.114* (0.048)	0.100** (0.035)
	High (10+)	-0.027† (0.038)		-0.054† (0.030)	0.030 (0.033)	0.104† (0.057)
Observations	4,185	-	-	-	4,185	4,118
					-	-
					4,061	-

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data. Note: Discrete conflict exposure variable indicating the number of conflict events occurred within 10 km from a respondent's cluster location ranked as "No event", "Low", "Medium" and "High". All other models control for respondents' age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. Significant at †p<0.10; *p<0.05; **p<0.01; ***p<0.001.

Table A6. Discrete conflict event indicators: pathways

Panel A: WOMEN

Ideal number of children	Fertility preferences/demand				Knowledge and “supply-side” issues		Partnership dynamics and attitudes towards contraception					Woman using contraception is promiscuous
	Desires no more children	Undecided	Wants a(nother) child(ren) within one year	Sexually active	Knows where to get method	Supply-related reasons for non-use	Others take decision about woman's health	Can ask partner to use condom	Can refuse sex with partner	Contraception is woman's business		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
Conflict Period ×												
Low (1-4 events)	-0.731** (0.287)	0.054* (0.023)	0.050* (0.020)	-0.026 (0.044)	-0.084† (0.047)	0.041 (0.032)	-0.046 (0.031)	0.001 (0.044)	-0.057 (0.057)	-0.158* (0.082)		
Medium (5-9)	0.099 (0.148)	-0.022 (0.018)	0.001 (0.013)	0.126* (0.031)	0.046 (0.027)	-0.060** (0.020)	0.091*** (0.016)	0.018 (0.030)	-0.100* (0.049)	0.016 (0.037)		
High (10+)	-0.825*** (0.224)	0.064† (0.035)	0.022† (0.011)	-0.186† (0.095)	-0.083 (0.052)	-0.127*** (0.040)	0.094*** (0.028)	-0.006 (0.057)	-0.033† (0.053)	-0.165* (0.092)		
Observations	17,570	17,570	17,570	13,871	15,381	17,552	9,609	15,861	13,329	13,329	-	-

Panel B: MEN

Conflict Period ×												
Low (1-4 events)	-1.327† (0.680)	0.168* (0.075)	-0.037 (0.039)	-0.008 (0.089)	-0.020 (0.046)					0.078 (0.076)	0.098 (0.075)	
Medium (5-9)	-1.506* (0.624)	0.085† (0.044)	-0.089** (0.030)	0.044 (0.076)	0.149** (0.049)					0.006 (0.062)	-0.052 (0.058)	
High (10+)	-4.473*** (1.177)	-0.002 (0.041)	0.107† (0.063)	-0.295 (0.186)	-0.071 (0.107)					0.342*** (0.093)	0.237* (0.105)	
Observations	4,185	4,185	4,185	3,391	4,185	-	-	-	-	3,874	3,792	

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data. Note: Discrete conflict exposure variable indicating the number of conflict events occurred within 10km from a respondent's cluster location ranked as “No event”, “Low”, “Medium” and “High”. All other models control for respondents' age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. Significant at †p<0.10; *p<0.05; **p<0.01; ***p<0.001.

Table A7. Distribution of key observable characteristics by conflict-affectedness

	Women				Men			
	Conflict-affected areas		Less-affected areas		Conflict-affected areas		Less-affected areas	
	2006	2018	2006	2018	2006	2018	2006	2018
Age	26.66 (9.09)	27.64 (9.24)	28.03 (8.87)	28.08 (8.50)	29.59 (11.06)	24.82 (10.87)	27.20 (12.32)	26.47 (11.90)
Place of residence								
Urban	0.81 (0.39)	0.67 (0.51)	0.17 (0.37)	0.14 (0.33)	0.72 (0.45)	0.60 (0.48)	0.15 (0.36)	0.11 (0.31)
Religion								
Islam	97.07	98.00	89.95	92.02	96.54	97.95	92.93	94.20
Catholic	2.15	1.03	3.51	1.94	3.33	0.86	3.23	1.57
Protestant	0.20	0.66	1.63	1.52	0	0.52	3.22	1.13
Evangelist	0.58	0	4.89	0.02	0.12	0.21	0.62	0.25
Other or atheist	0	0.31	0.01	4.50	0	0.45	0	2.84
Literacy								
Can (partially) read	0.32 (0.48)	0.47 (0.55)	0.13 (0.33)	0.23 (0.41)	0.49 (0.51)	0.55 (0.49)	0.24 (0.43)	0.35 (0.47)
Currently employed								
Yes	0.45 (0.51)	0.49 (0.55)	0.67 (0.46)	0.55 (0.48)	0.82 (0.38)	0.93 (0.24)	0.74 (0.44)	0.96 (0.19)
Ethnicity								
Bambara	23.16	32.54	33.36	33.96	23.49	32.69	33.73	33.19
Malinke	7.42	7.61	8.90	9.88	7.66	6.97	9.59	9.21
Peulh	15.93	13.21	13.80	13.45	15.55	15.47	14.95	13.02
Sarakole/Soninke/ Marka	10.02	9.95	13.66	9.07	8.17	8.47	11.00	8.49
Sonrai	19.02	10.25	4.31	4.32	7.92	8.40	4.12	4.17
Dogon	5.52	9.88	4.81	7.61	8.70	10.32	5.92	8.91
Touareg/Bolla	6.46	1.77	3.01	1.73	4.47	2.62	1.94	1.42
Senoufou/Minianka	3.94	4.48	11.33	11.92	6.05	4.40	11.88	11.24
Bobo	1.31	1.62	2.42	2.35	2.44	1.84	2.48	2.85
Other	7.22	8.69	4.39	5.70	15.55	8.83	4.39	7.51
Number of children	2.59 (2.76)	2.53 (2.70)	3.68 (3.05)	3.43 (2.83)	8.21 (4.95)	7.57 (5.04)	8.76 (5.00)	9.56 (5.50)
Union type								
Non-polygamous	54.50	52.05	47.43	48.74	81.98	88.82	69.7	76.69
Polygamous union	18.88	17.35	38.23	32.80	18.02	11.18	30.30	23.31
Never partnered	20.84	26.07	11.61	16.20				
Widowed, separated, divorced	5.78	4.53	2.73	1.95				

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict indicator.

Table A8. Non-migrant samples**Panel A: WOMEN**

	Any modern method	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Conflict Period × Affected Area	-0.038*	-0.030**	-0.022*	0.014		0.010	0.088**	0.037**	0.120**
	(0.019)	(0.010)	(0.010)	(0.011)		(0.009)	(0.033)	(0.013)	(0.046)
Affected Area	0.045**	0.019**	0.021*	0.002		0.005	-0.015	-0.015	-0.078†
	(0.015)	(0.007)	(0.008)	(0.009)		(0.006)	(0.028)	(0.011)	(0.041)
Conflict Period	0.113***	0.040***	-0.006	0.073***		-0.013***	0.011	-0.025***	-0.005
	(0.010)	(0.006)	(0.004)	(0.006)		(0.002)	(0.019)	(0.007)	(0.026)
FWER <i>p</i> -value	0.054	0.004	0.044	0.208		0.299	0.017	0.006	0.018
Observations	16,261	16,261	16,261	16,261	-	15,305	14,216	18,595	2,317

Panel B: MEN

Conflict Period × Affected Area	-0.078*		-0.052†	-0.074*	0.077*			
	(0.033)		(0.030)	(0.031)	(0.030)			
Affected Area	0.027		0.029	0.055*	-0.054*			
	(0.028)		(0.026)	(0.026)	(0.026)			
Conflict Period	0.071***		0.000	-0.023**	-0.070***			
	(0.013)		(0.009)	(0.008)	(0.019)			
FWER <i>p</i> -value	0.033		0.107	0.029	0.015			
Observations	3,905	-	-	3,905	3,844	-	3,781	-

Sources: 2006 and 2018 M-DHS. The samples only include respondents who have lived for at least 7 years in their current residence location. UCDP-GED for conflict event data used to build the binary conflict exposure indicator. Note: models control for respondents' age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. FWER *p*-value is adjusted for multiple testing using the Romano and Wolf (2005, 2016) correction with 1,000 bootstrap replications across all gender-specific outcomes. Unadjusted *p*-values significant at †*p*<0.10; **p*<0.05; ***p*<0.01; ****p*<0.001.

Table A9. Excluding Kidal and Gao clusters

Panel A: WOMEN

	Any modern method	Any modern method (non-migrant sample)	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Conflict Period × Affected Area	-0.041*	-0.040*	-0.028**	-0.025**	0.015		0.006	0.082*	0.037**	0.113*
	(0.019)	(0.020)	(0.010)	(0.010)	(0.011)		(0.008)	(0.033)	(0.012)	(0.046)
Affected Area	0.054***	0.049**	0.022**	0.024*	0.004		0.008	-0.003	-0.012	-0.069†
	(0.016)	(0.016)	(0.008)	(0.009)	(0.009)		(0.006)	(0.028)	(0.011)	(0.040)
Conflict Period	0.115***	0.116***	0.040***	-0.005	0.076***		-0.014***	0.031	-0.024***	0.008
	(0.009)	(0.010)	(0.005)	(0.004)	(0.006)		(0.002)	(0.019)	(0.007)	(0.025)
Observations	16,999	15,709	16,999	16,999	16,999	-	16,473	14,718	19,985	2,530

Panel B: MEN

Conflict Period × Affected Area	-0.075*	-0.078*			-0.050†	-0.066*		0.069*		
	(0.033)	(0.033)			(0.030)	(0.031)		(0.029)		
Affected Area	0.019	0.024			0.023	0.051†		-0.057*		
	(0.028)	(0.028)			(0.026)	(0.027)		(0.026)		
Conflict Period	0.068***	0.071***			0.001	-0.026**		-0.063***		
	(0.012)	(0.013)			(0.009)	(0.008)		(0.019)		
Observations	4,162	3,882	-	-	-	4,162	4,095	-	4,039	-

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict exposure indicator. The sample excludes observations from the 2006 M-DHS located in eastern Gao and Kidal. Note: models control for respondent's age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. Robust standard errors in parentheses are clustered at the primary sampling unit level. Significant at †p<0.10; *p<0.05; **p<0.01; ***p<0.001.

Table A10. Models on the matched sample of the common support

Panel A: WOMEN

	Any modern method	Any modern method (non-migrant sample)	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Conflict Period × Affected Area	-0.029†	-0.028†	-0.023**	-0.025**	0.018†		0.014†	0.054†	0.014	0.100*
	(0.017)	(0.016)	(0.007)	(0.009)	(0.009)		(0.008)	(0.029)	(0.011)	(0.040)
Affected Area	0.025†	0.024†	0.011†	0.014†	-0.000		0.002	-0.007	-0.001	-0.050
	(0.014)	(0.014)	(0.006)	(0.008)	(0.005)		(0.006)	(0.024)	(0.010)	(0.034)
Conflict Period	0.082***	0.084***	0.029***	-0.009†	0.058***		-0.020***	0.027	-0.007	-0.006
	(0.010)	(0.010)	(0.005)	(0.005)	(0.005)		(0.004)	(0.018)	(0.007)	(0.023)
Observations	17,414	16,194	17,414	17,414	17,414	-	16,108	15,035	18,595	2,374

Panel B: MEN

Conflict Period × Affected Area	-0.075*	-0.076*			-0.048†	-0.051†		0.038		
	(0.029)	(0.030)			(0.027)	(0.027)		(0.025)		
Affected Area	0.021	0.026			0.020	0.028		-0.036		
	(0.025)	(0.025)			(0.023)	(0.024)		(0.023)		
Conflict Period	0.056***	0.059***			-0.016	-0.053***		-0.067***		
	(0.016)	(0.017)			(0.014)	(0.013)		(0.017)		
Observations	4,177	3,934	-	-	-	4,177	4,108	-	4,054	-

Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict exposure indicator. Variables used to estimate the kernel propensity scores (age, literacy, religion and employment status) are dropped. Other controls include ethnicity, urban residence, region dummies, number of children ever born and union type. The kernel density function is Epanechnikov with a bandwidth of 0.06. Probit estimation is used for the propensity score in the first stage. Robust standard errors in parentheses are clustered at the primary sampling unit level. Significant at †p<0.10; *p<0.05; **p<0.01; ***p<0.001.

Table A11. Placebo analyses**Panel A: WOMEN**

	Any modern method	Injections	Pills	Implants	Condom	Condom at last sex	Intention to use a modern method	(Partner) currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Year 2006 × Affected Area	-0.025 (0.014)	-0.003 (0.007)	-0.019† (0.011)	0.002 (0.001)		-0.003 (0.007)	-0.042 (0.030)	-0.005 (0.011)	-0.079 (0.050)
Affected Area	0.027* (0.013)	0.003 (0.005)	0.023* (0.011)	-0.002 (0.001)		0.002 (0.005)	0.043 (0.026)	-0.002 (0.011)	0.031 (0.041)
Year 2006	-0.002 (0.005)	-0.000 (0.004)	-0.000 (0.003)	-0.000 (0.001)		0.007** (0.002)	-0.044* (0.018)	0.003 (0.008)	0.095*** (0.024)
Observations	17,530	17,530	17,530	17,530	-	16,937	15,976	20,204	2,644

Panel B: MEN

Year 2006 × Affected Area	-0.018 (0.034)		-0.026 (0.033)	0.009 (0.032)	-0.040 (0.028)			
Affected Area	0.029 (0.024)		0.032 (0.025)	0.007 (0.019)	-0.008 (0.021)			
Year 2006	-0.045*** (0.012)		-0.021† (0.012)	0.013 (0.011)	0.018 (0.018)			
Observations	2,686	-	-	2,686	2,151	-	2,082	-

Sources: 2001 and 2006 M-DHS. UCDP-GED for conflict event data used to build the binary conflict exposure indicator. Note: Models control for respondents' age, literacy, employment status, ethnicity, religion, region dummies, urban residence, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. Significant at †p<0.10; *p<0.05; **p<0.01; ***p<0.001.

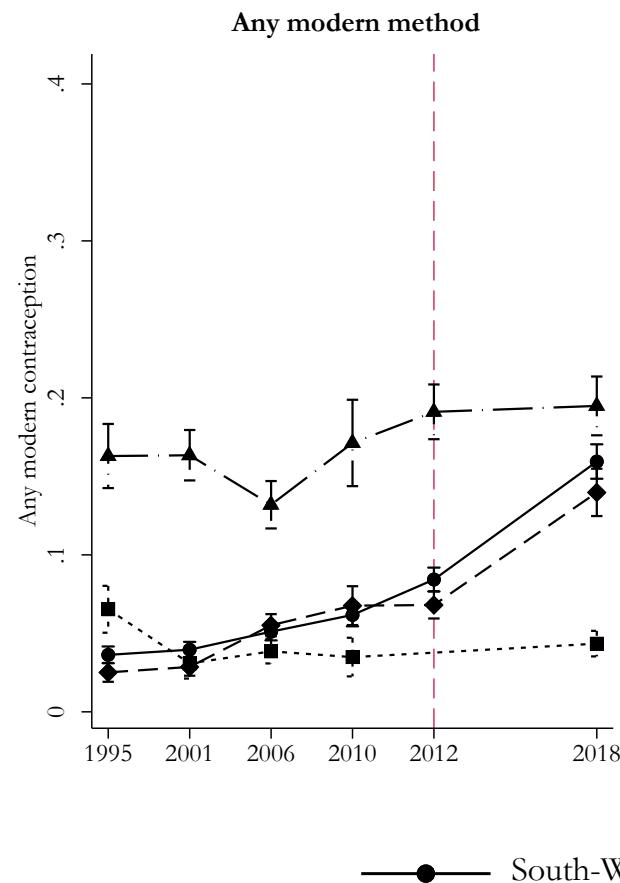
Table A12. Alternative samples

Panel A: Women who ever had sex

	Any modern method	Injections	Pills	Implants	Condom at last sex	Intention to use a modern method	Currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Conflict Period × Affected Area	-0.040* (0.021)	-0.031** (0.011)	-0.027** (0.011)	0.020 (0.014)		0.051 (0.034)		
Affected Area	0.060*** (0.016)	0.025** (0.006)	0.025** (0.010)	0.003 (0.009)		-0.010 (0.027)		
Conflict Period	0.118*** (0.009)	0.043*** (0.006)	-0.006 (0.004)	0.078*** (0.006)		0.031 (0.020)		
Observations	15,381	15,381	15,381	15,381		13,075		

Panel B: Ever-partnered women

	Any modern method	Injections	Pills	Implants	Condom at last sex	Intention to use a modern method	Currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Conflict Period × Affected Area	-0.028† (0.022)	-0.027* (0.012)	-0.022* (0.011)	0.018 (0.012)	-0.007 (0.006)	0.044 (0.036)	0.038* (0.015)	0.126** (0.045)
Affected Area	0.048** (0.017)	0.021 (0.008)	0.020* (0.010)	0.008 (0.009)	0.008 (0.005)	-0.013 (0.029)	-0.007 (0.013)	-0.066† (0.039)
Conflict Period	0.115*** (0.010)	0.042*** (0.006)	-0.007* (0.004)	0.075*** (0.006)	-0.010*** (0.002)	0.031 (0.020)	-0.027*** (0.008)	0.008 (0.026)
Observations	14,690	14,690	14,690	14,690	15,389	12,612	16,436	2,423


Panel C: Women interviewed August-November

	Any modern method	Injections	Pills	Implants	Condom at last sex	Intention to use a modern method	Currently pregnant	Current pregnancy unwanted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Conflict Period × Affected Area	-0.053** (0.020)	-0.028** (0.011)	-0.032** (0.011)	0.012 (0.011)	0.010 (0.009)	0.081* (0.042)	0.038* (0.015)	0.044 (0.059)
Affected Area	0.080*** (0.019)	0.028** (0.010)	0.037*** (0.010)	0.005 (0.009)	0.010 (0.008)	-0.010 (0.038)	-0.017 (0.015)	-0.020 (0.057)
Conflict Period	0.117*** (0.010)	0.035*** (0.005)	-0.001 (0.004)	0.076*** (0.006)	-0.008** (0.002)	0.020 (0.022)	-0.027** (0.009)	0.000 (0.029)
Observations	12,423	12,423	12,423	12,423	11,664	10,530	14,170	1,736

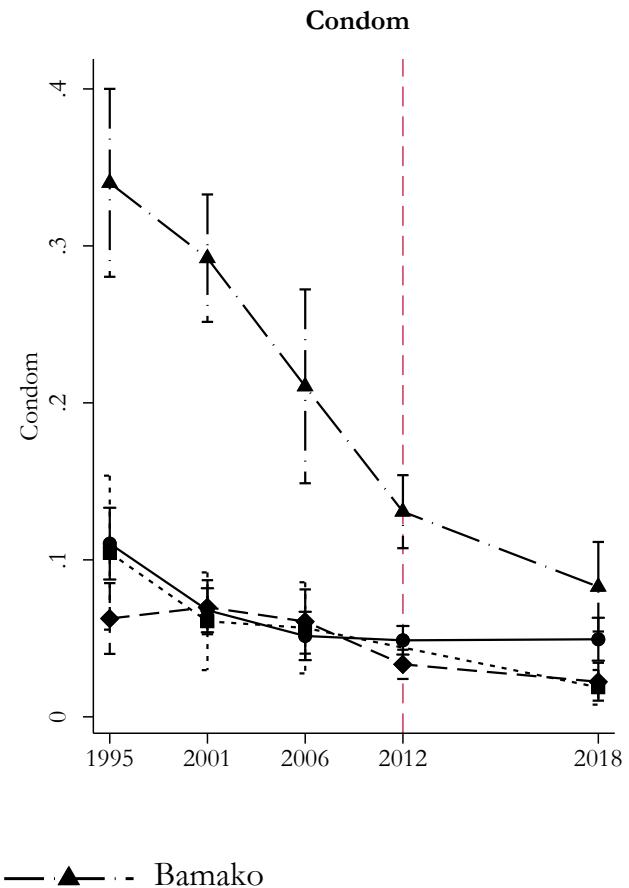
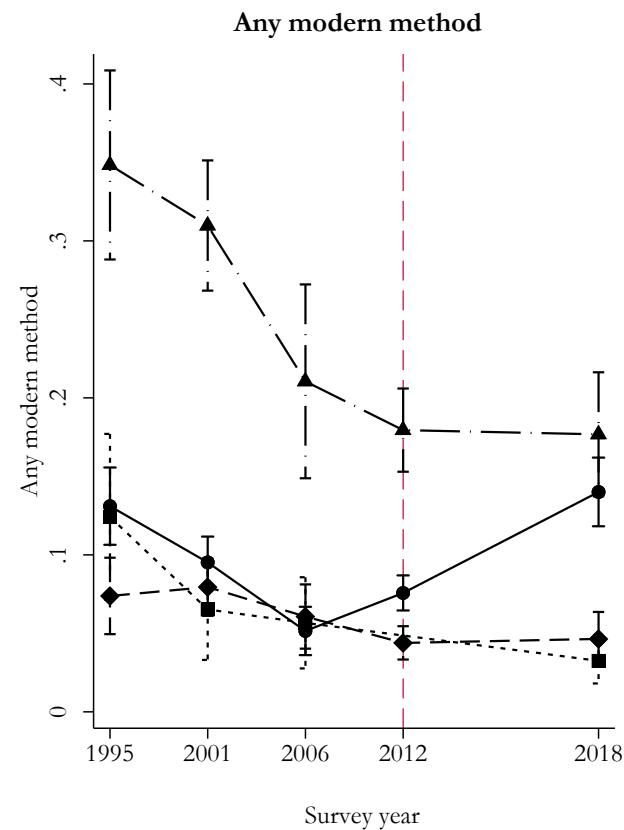
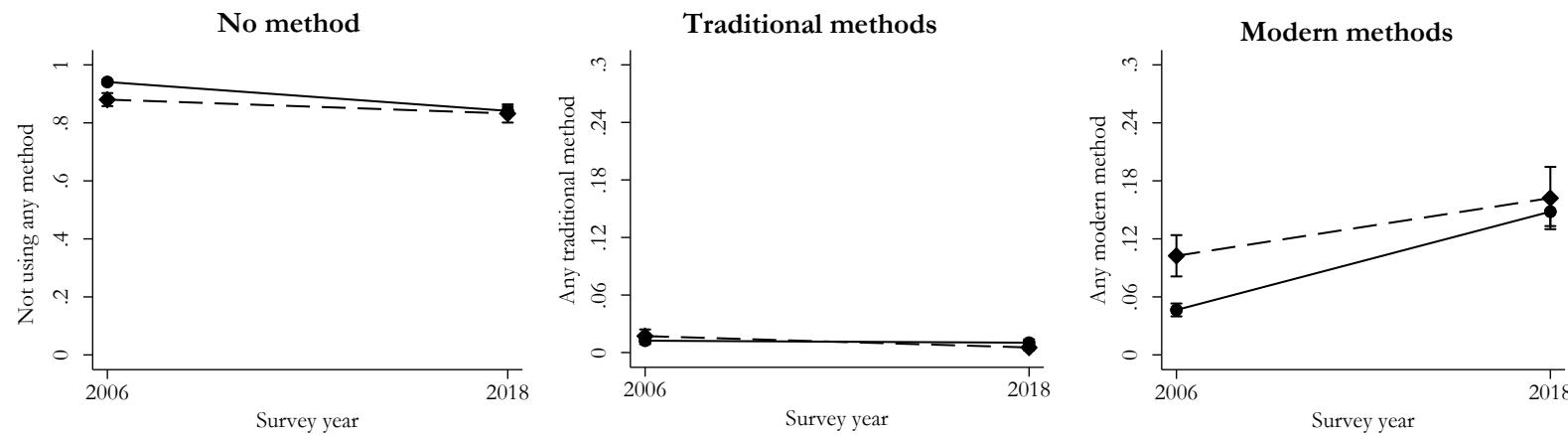


Sources: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict exposure indicator. Note: In Panels A and C, models control for respondents' age, literacy, employment status, ethnicity, religion, urban residence, region dummies, number of children ever born and union type. In Panel B, models also control for partner's education. In Panel A, estimates for pregnancy-related outcomes and condom use at last sex are not shown because they are the same as in the main model (given that these were only run on the sample of women who ever had sex already). Estimates are weighted using survey weights. Robust standard errors in parentheses are clustered at the primary sampling unit level. Significant at †p<0.10; *p<0.05; **p<0.01; ***p<0.001.

Figure A1. Trends in modern contraceptive use by macro regions, 1995-2018

Panel A: Women


Panel B: Men

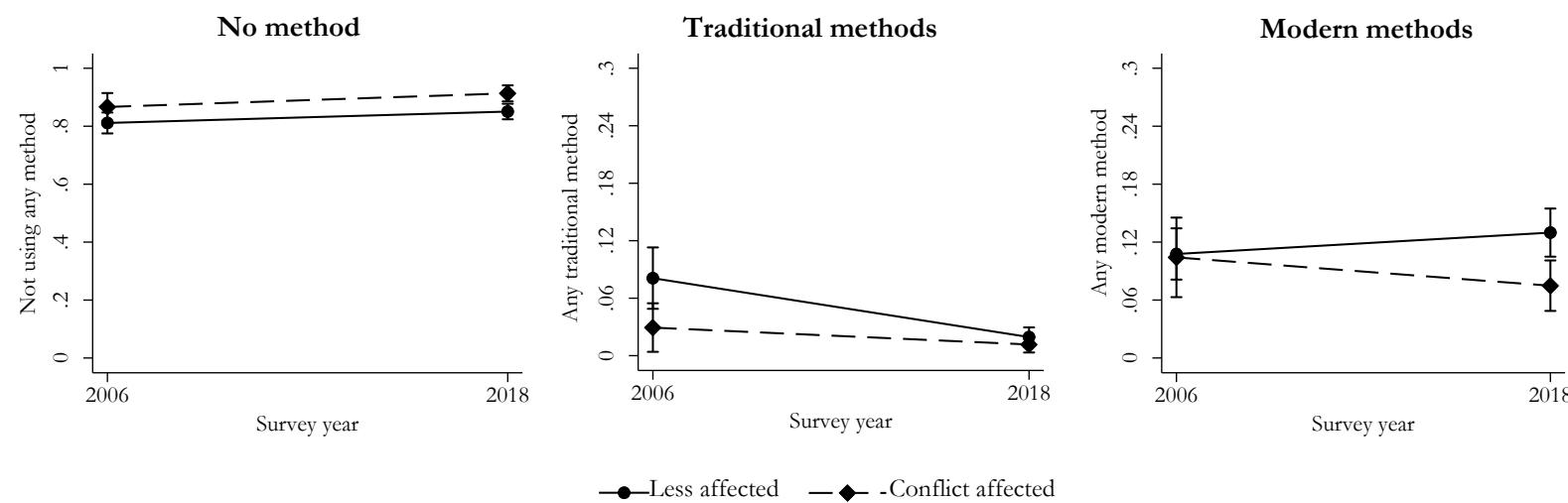
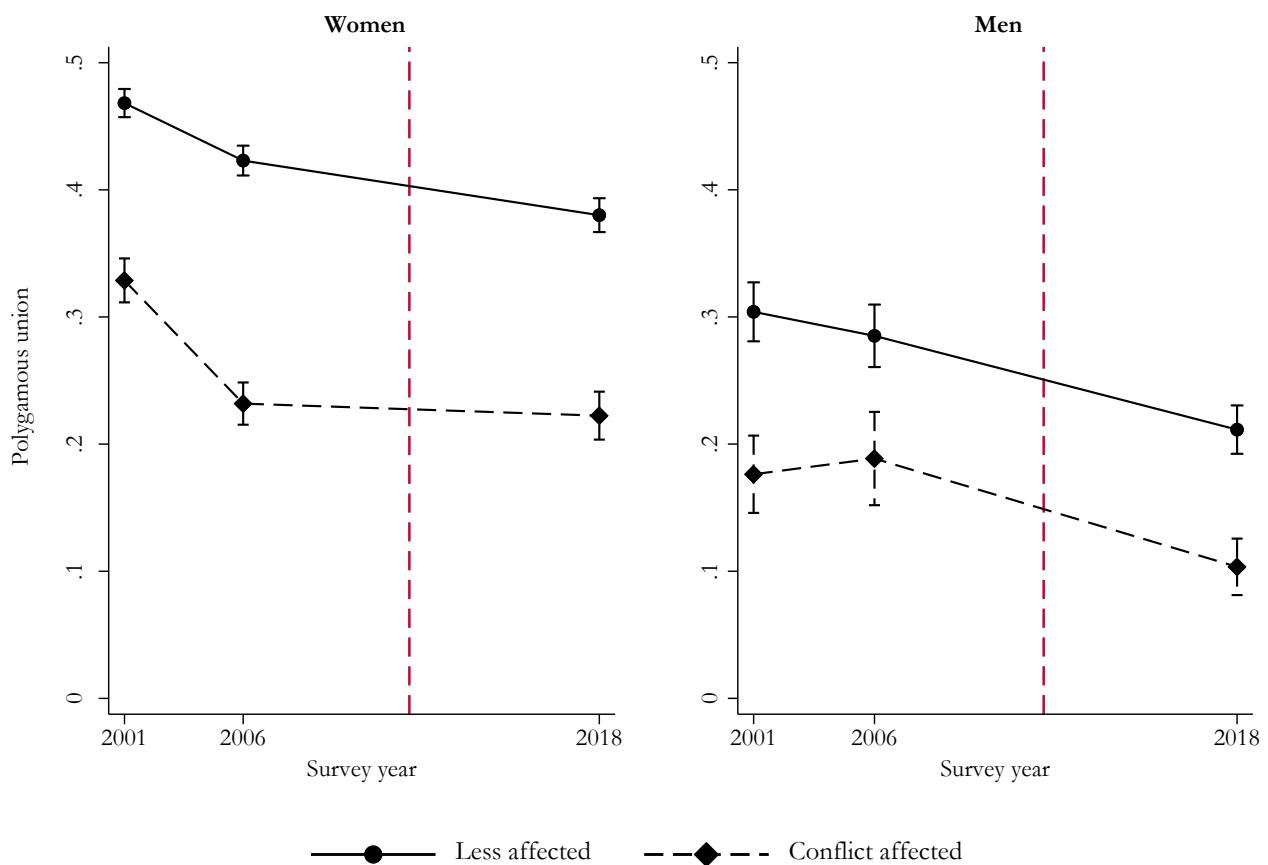

Source: 1995-96, 2001, 2006, 2012, 2018 M-DHS. 2010 MICS for women sample. Notes: Trends in women's (Panel A) and men's (Panel B) current use of modern contraception by macro-regions. South-West includes Kayes, Koulikoro and Sikasso. Centre includes the regions of Mopti and Segou. North includes the regions of Gao, Kidal, and Toumbouctou. Note that Kidal was not surveyed in the 1995-96 M-DHS and the whole Northern territories (Gao, Kidal, Toumbouctou) were not surveyed in the 2012 M-DHS.

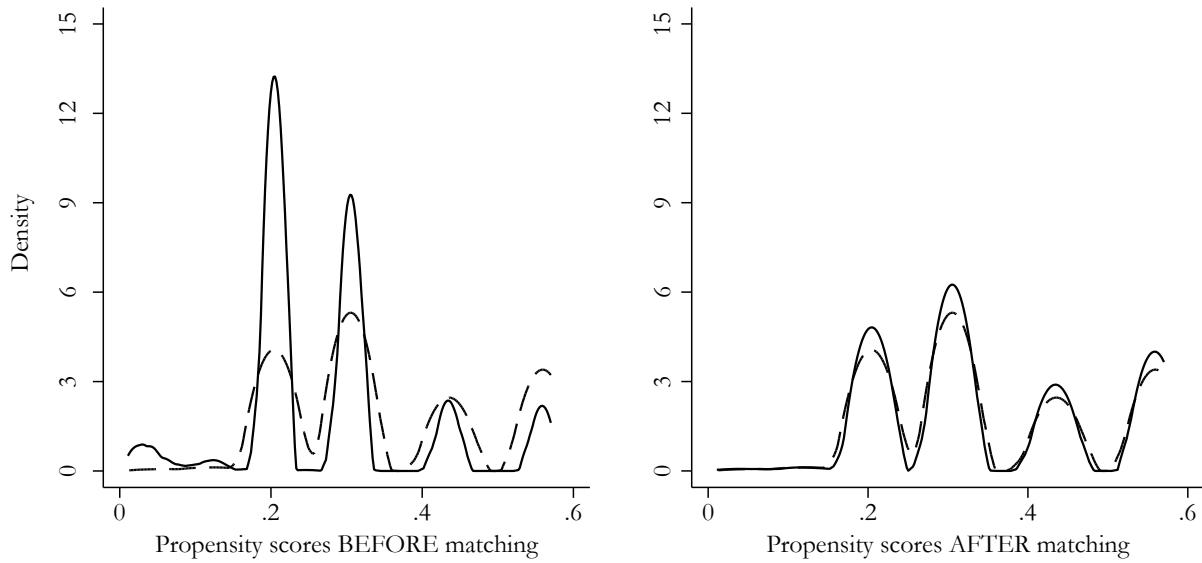
Figure A2. Multinomial logistic models

Panel A: Women



Panel B: Men

Source: 2006 and 2018 M-DHS. UCDP-GED for conflict event data used to build the binary conflict exposure indicator (10 km buffer). Notes: Predicted probabilities from multinomial logistic models. Models control for respondent's age, literacy, employment status, ethnicity, religion, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors clustered at the primary sampling unit level.


Figure A3. Trends in polygamous unions (partnered respondents)

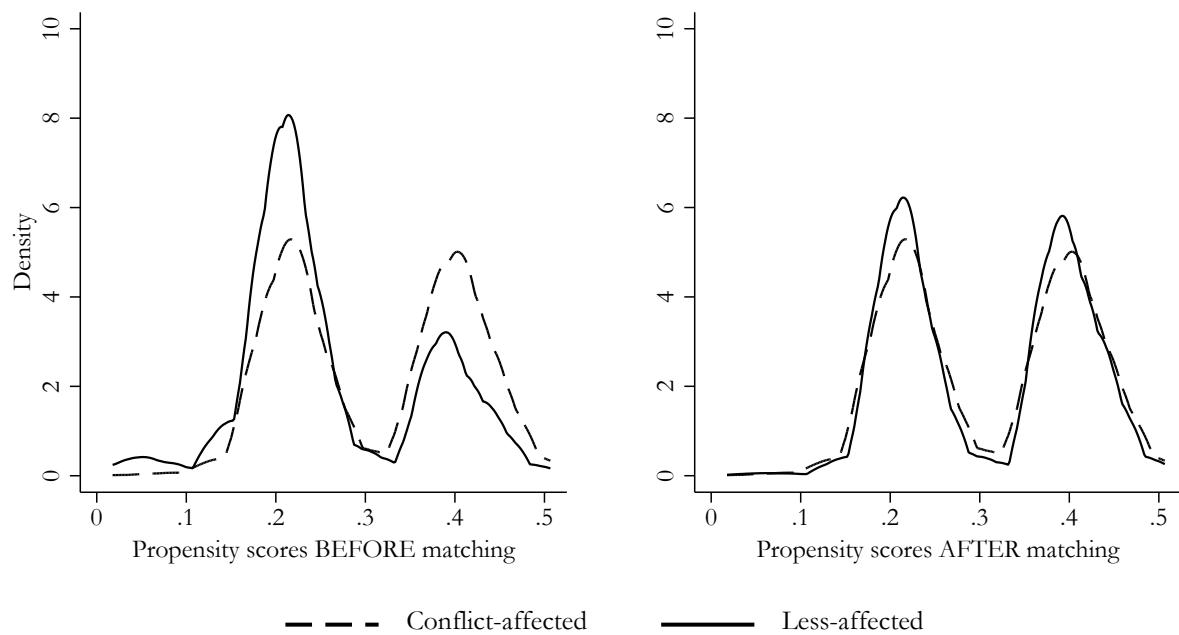
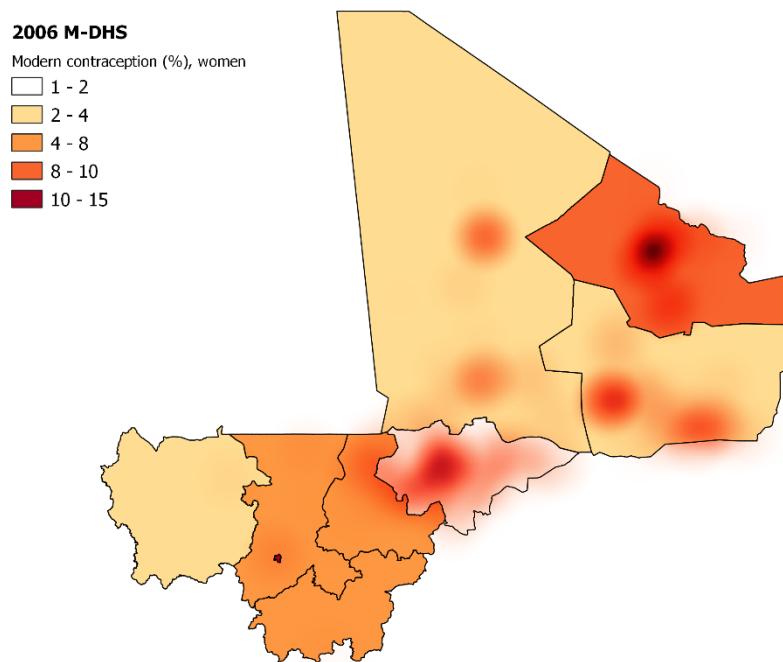

Source: 2001, 2006, 2018 M-DHS (partnered respondents). The dashed line represents conflict-affected areas, using UCDP-GED 10 km buffer. The solid line represents less affected areas.

Figure A4. Kernel density graph before and after matching

Panel A: Women


Panel B: Men

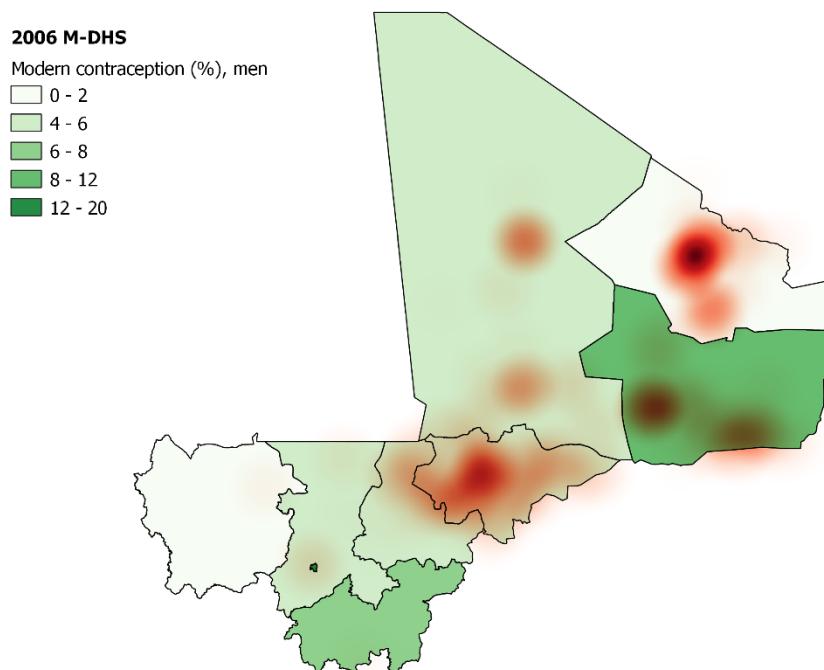
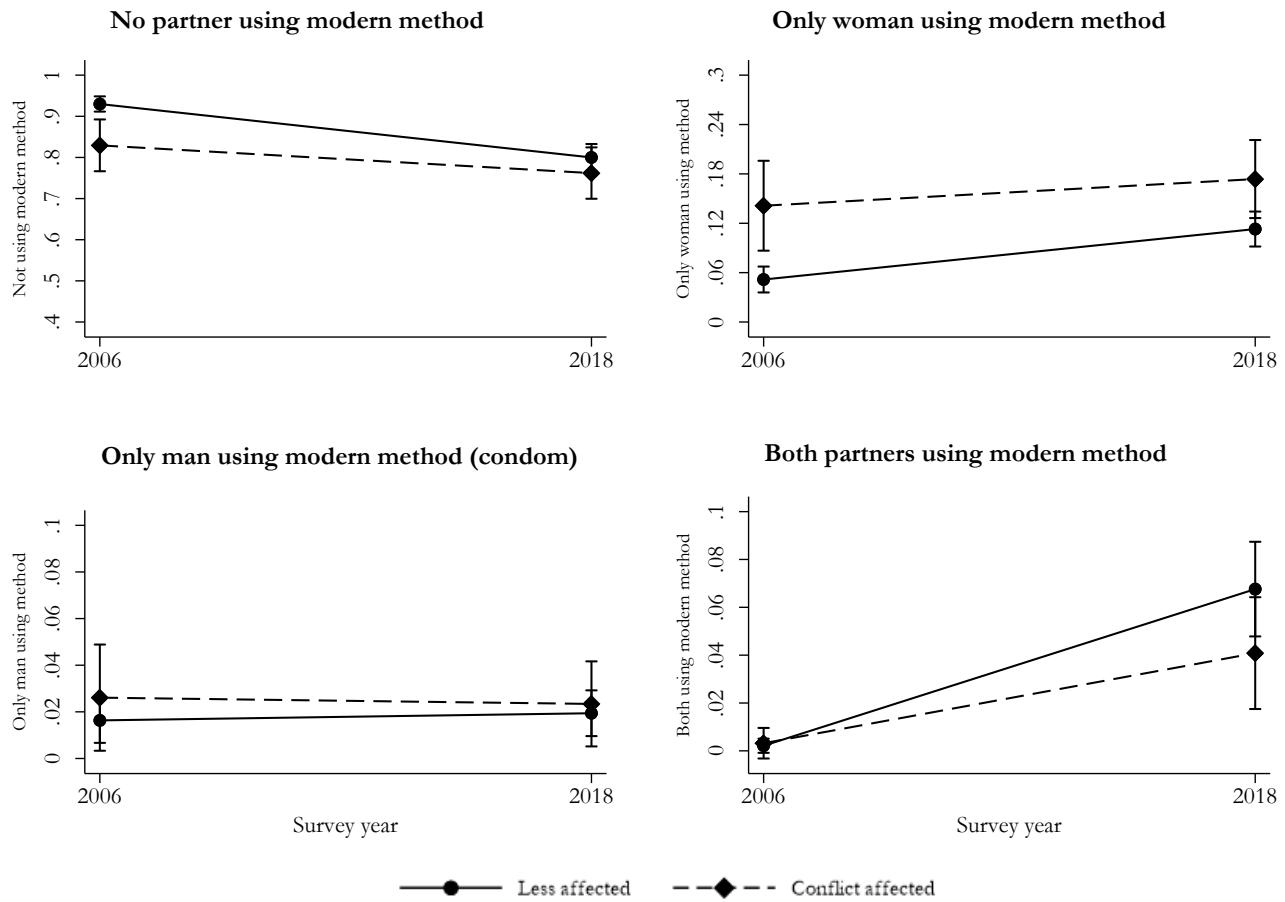

Source: 2006 and 2018 M-DHS. Notes: Kernel density functions of the propensity scores before and after matching. Respondents are matched on age, education, religion and employment status. Over 98 percent of the female sample and correspondingly 99 percent of the male sample in the period prior to the insurgency is in the common support.

Figure A5. Geography of conflict violence and pre-conflict contraceptive use among women (Panel A) and men (Panel B)

Panel A: Women



Panel B: Men

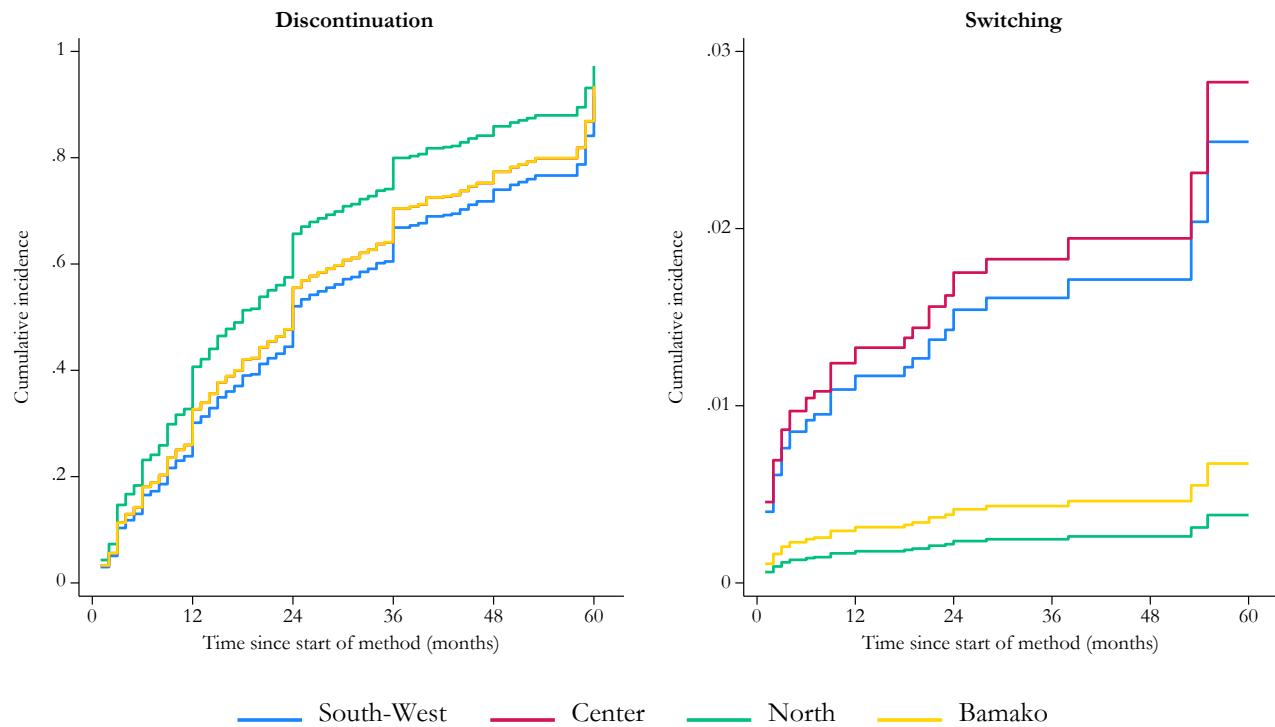

Source: Author's calculation using the 2006 M-DHS; UCDP-GED (2023) for conflict data. Notes: Colour intensity of the circles is weighted by the number of reported fatalities caused by each conflict event. UCDP-GED casualties according to the source "best-estimate" value.

Figure A6. Multinomial logistic models – couple recode (n= 3,813 dyads)

Source: 2006 and 2018 M-DHS couple recode files. UCDP-GED for conflict event data used to build the binary conflict exposure indicator (10 km buffer). Notes: Predicted probabilities from multinomial logistic models (no partner reports using, only woman reports using, only man reports using condoms, both partners report using a modern method). Models control for woman and man's age, literacy, ethnicity, religion, region dummies, number of children ever born and union type. Estimates are weighted using survey weights. Robust standard errors clustered at the primary sampling unit level.

Figure A7. Cumulative incidence of contraceptive discontinuation and switching in the five years prior to the 2018 M-DHS

Source: 2018 M-DHS reproductive calendar data recording monthly contraceptive/pregnancy status and reasons for discontinuing contraceptive methods for the five calendar years before the survey (i.e., the period starting April 2013). The same data is not available for the pre-conflict period between 2006-2012. Notes: Cumulative incidence calculated using a “competing risk” framework and two types of discontinuation (Steele and Curtis, 2003): (i) contraceptive abandonment, when women report stopping the use of a method for a month or more without resuming any and (ii) switching, when women report adopting a different method from the previous one within a month of interruption. Only few episodes of switching (<3% of all 2,621 episodes) were recorded in the calendar, so the right-side panel should be interpreted with care. Estimates are similar with simpler Cox survival regression models.