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Abstract

We assess the US Clean Air Act standards for fine particulate matter (PM2.5). Using high-
resolution data, we find that the 2005 regulation reduced PM2.5 levels by 0.4µg/m3 over five years,
with larger effects in more polluted areas. Standard difference-in-differences overstates these
effects by a factor of three because time trends differ by baseline pollution, a bias we overcome
with three alternative approaches. We show that the regulation contributed to narrowing Urban-
Rural and Black-White PM2.5 exposure disparities, but less than difference-in-differences suggest.
Pollution damages capitalized into house prices, on the other hand, appear larger than previously
thought when leveraging regulatory variation.
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The 1970 Clean Air Act (CAA) and subsequent amendments are the cornerstone of air qual-
ity regulation in the United States (US). The CAA operates through National Ambient Air Quality
Standards (NAAQS) set by the US Environmental Protection Agency (EPA), with measures typi-
cally targeted at regions found to be in nonattainment of a given NAAQS.1 The latest air pollutant
to be regulated through NAAQS is PM2.5, fine particulate matter of diameter smaller than 2.5 mi-
crometers, with regulation coming into effect in 2005. PM2.5 is one of the air pollutants most clearly
associated with a wide range of adverse health outcomes (Landrigan et al. 2018), productivity losses
(Graff Zivin & Neidell 2012) and other non-health outcomes (Aguilar-Gomez et al. 2022), and the
key driver of the EPA’s Air Quality Index. Given the large costs associated with pollution exposure,
a central question is how effective policies are at lowering pollution levels.

We estimate the effect of the PM2.5 NAAQS nonattainment designations in 2005 on PM2.5 con-
centrations, and assess implications for racial and spatial pollution exposure disparities and house
prices in the US. We use high-resolution data from three leading reanalysis projects (Meng et al.
2019a, Di et al. 2019, van Donkelaar et al. 2021a) that estimate PM2.5 concentrations by combining
ground monitors, satellite data and chemical transport models for the entire contiguous US. We
combine those with US Census data and the EPA-registered PM2.5 values (RV) that the agency con-
structs based on ground level pollution monitor readings and uses to assign nonattainment status.2

We contribute to a recent literature that uses these PM2.5 rules as a setting to study pollution dam-
ages or environmental justice (Bishop et al. 2023, Jha et al. 2019, Sanders et al. 2020, Currie et al.
2023), as well as the broader literature on NAAQS nonattainment effects with three insights.

Our first insight is that standard difference-in-differences (DiD) estimation, despite being popu-
lar, significantly overstates nonattainment effects. This is because EPA-registered PM2.5 values, and
therefore also nonattainment designations, correlate with secular time trends in air quality. Areas
that start out with higher levels of pollution also experienced larger pollution reductions over time
even in the absence of nonattainment status. Formal placebo tests using only attainment areas con-
firm that DiD estimations pick up an effect, casting doubt on the parallel trends assumption required
for DiD. This pattern holds when we exclude attainment counties that border nonattainment areas,
or when we exclude areas that were previously treated as nonattainment with the earlier PM10 stan-

1NAAQS are generally implemented at the state level through State Implementation Plans (SIP). States identify nonat-
tainment areas that fail to meet NAAQS for criteria air pollutants, based on methodology set by the EPA. Nonattainment
status triggers heightened scrutiny both within state level SIPs and under federal regulation. Since 1970 the spectrum
of regulatory instruments has broadened substantially to include national emissions standards for cars and light trucks,
various technology mandates and performance standards, offset requirements, fuel standards, as well as market-based
instruments.

2To facilitate replication and wider use in future studies we rely exclusively on publicly available data at the most
granular level (Census blocks) to estimate the effectiveness of the policy in reducing pollution exposure, and note that
this is equivalent to using restricted-use microdata and assigning pollution to individuals at the block level.
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dard.3 We find such correlated time trends in all three reanalysis-derived pollution data sources as
well as in the EPA’s monitor data, for both absolute and relative changes in PM2.5 concentrations,
and whether or not we control for flexible state-specific time trends.

We propose three alternative strategies that address the systematic relationship between baseline
pollution and pollution changes over time. All three produce similar estimates which are substan-
tially smaller than the standard DiD estimates. The first approach augments DiD by controlling for
trends correlated with baseline PM2.5 directly. We thus call it DiD with baseline (DiDwb). The sec-
ond approach exploits the fact that we observe Census block level pollution which we aggregate to
Census tracts. Nonattainment is usually assigned at the coarser level of counties and commuting
zones. This enables us to employ a matched difference-in-differences (MDiD) strategy comparing
tracts from nonattainment and attainment areas that have similar baseline pollution levels. The third
approach relies on the discontinuous assignment rule for nonattainment areas, exploiting our col-
lected EPA-registered PM2.5 values in a regression discontinuity (RD) design. While placebo tests
fail for standard DiD, the placebo tests pass when using these other strategies. Our preferred specifi-
cation, MDiD, shows a 0.4µg/m3 reduction in PM2.5 between 2001-03 and 2006-08 due to nonattain-
ment status, a third of the standard DiD estimate. This is equivalent to a 3% reduction from 2001-03
averages. Bootstrap simulations show that our alternatives are significantly different from DiD but
statistically indistinguishable from each other.

Our second insight is that this implies a lower contribution of NAAQS nonattainment areas to
narrowing structural pollution exposure disparities. We first confirm the Black-White pollution gap
documented in Jbaily et al. (2022) and Currie et al. (2023), and that these gaps narrowed, in part
due to NAAQS nonattainment areas (Currie et al. 2023). We find, however, that the NAAQS’ contri-
bution is less than half the size when we use our preferred specification (MDiD) compared to stan-
dard DiD. This implies that the Clean Air Act may have contributed less to environmental justice
than previously thought, at least with respect to PM2.5 pollution. We next document Urban-Rural
disparities that are even larger than the racial gap in pollution exposure. Again, we show that the
Urban-Rural gap has narrowed, but that the contribution of the 2005 NAAQS is significantly smaller
than standard DiD may suggest.4

Our third insight is that pollution damages might be even larger than previously thought. We

3We show that the pre-trend disappears when assigning areas that have previously also been treated with the earlier
PM10 standard into the control group as in Currie et al. (2023), which, however, requires an implicit assumption of no
treatment effects for these units. We test this assumption and show, on the contrary, that areas that have previously been
designated into PM10 nonattainment experienced larger marginal PM2.5 reductions from additional PM2.5 nonattainment
designation.

4We also show that patterns are similar in versions where we allow for heterogeneous NAAQS nonattainment effects
by baseline share of Black or urban population across Census tracts.
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quantify the damages from PM2.5 exposure as capitalized in Census tract level house prices from
the Federal Housing Finance Agency (FHFA), using nonattainment designations as instrumental
variable. We find that PM2.5 reductions following nonattainment designation were associated with
a 6% house price increase on average. The implied elasticity with respect to PM2.5 of around -1.4
is around twice that found for PM10 (Bento et al. 2015) and up to four times the elasticity for Total
Suspended Particles (TSP or PM100) (Chay & Greenstone 2005). Importantly, the simple DiD-IV
suggests pollution damages that are substantially smaller than those of our other three alternative
approaches, more in line with previous estimates for PM10, which may, however, contain bias. This
implies that while simple DiD overestimates the effect of nonattainment on PM2.5, it underestimates the
effect of PM2.5 on house prices when nonattainment status is used as an instrument for PM2.5. The
magnitude of our adjustment is important: the house price elasticity changes by a larger increment
(from -0.8 to -1.4) after adjusting for these time trends than it changes after accounting for potential
endogeneity with instruments relative to a simple OLS regression (from -0.5 to -0.8).

Overall, our results show the importance of accounting for parallel trends violations that over-
state air quality improvements from nonattainment designations in standard DiD frameworks. We
find similar differences for all three pollution data sources and when looking at the longer term ef-
fects until 2011-13. We find evidence of effect heterogeneity, with larger improvements in the most
polluted parts of nonattainment areas in line with findings for previous NAAQS (Auffhammer et al.
2009, Bento et al. 2015, Gibson 2019). We also show that areas that have previously been treated
with PM10 nonattainment designation experienced larger marginal effects from PM2.5 nonattain-
ment. Finally, we show some evidence that the bias we identify is likely to extend to other NAAQS
settings, and discuss exceptions in the previous literature that address possible confounding trends
(e.g. Greenstone 2004, Chay & Greenstone 2005).

We contribute to the literature on environmental policy analysis generally and the Clean Air Act
in particular. Existing literature on nonattainment designations under previous NAAQS include
estimated reductions in Ozone (Henderson 1996), sulfur dioxide (SO2) (Greenstone 2004), TSP
(Chay & Greenstone 2005), and PM10 concentrations (Auffhammer et al. 2009).5 We show that
the NAAQS for PM2.5 implemented in 2005 were effective, albeit less so than DiD estimation may
suggest, an insight that likely extends to other NAAQS. We illustrate the role of the regulation in
narrowing pollution exposure disparities, a finding that is relevant for the literature on structural

5Nonattainment designation has also been linked to changes in industrial activity (Henderson 1996, Greenstone 2002),
within-product improvements in emission intensity (Shapiro & Walker 2018), and employment (Kahn & Mansur 2013,
Walker 2013). Deschenes et al. (2017) study a non-NAAQS but related CAA policy focusing on nitric oxide (NOx).
Economists have been assessing the benefits and costs of the CAA from its inception, initially using prospective regu-
latory analyses, but increasingly using retrospective analyses with quasi-experimental methods, as documented in recent
surveys by Aldy et al. (2022) and Currie & Walker (2019).
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pollution gaps and environmental justice (Currie et al. 2023, Jbaily et al. 2022, Banzhaf et al. 2019,
Colmer et al. 2020, Drupp et al. 2021). Finally, we contribute to a growing literature that relies on
nonattainment designations as an instrument to quantify pollution damages (Chay & Greenstone
2005, Grainger 2012, Bento et al. 2015). While we explore the effects on house prices, it appears likely
that our adjustments to the first stage to account for correlated time trends are also relevant for other
second stage outcomes, such as health (Isen et al. 2017, Sanders & Stoecker 2015, Sanders et al. 2020,
Colmer & Voorheis 2021, Bishop et al. 2023).

The rest of the paper begins with a description of the regulatory context and the data we use in
Section I. We set up the empirical strategy in Section II along with descriptive statistics that highlight
the nuances in identification requirements and their plausibility. Section III shows results from es-
timating the effects of the CAA 2005 NAAQS rules on PM2.5 concentrations. Section IV turns to our
two applications, analysing the contribution of nonattainment designations in narrowing structural
pollution exposure disparities, and using nonattainment as as instrument for PM2.5 to estimate the
pollution impact on house prices. Section V discusses the relevancy of our insights for other NAAQS
and Section VI concludes.

I. Data and Regulatory Context

A. The 2005 National Ambient Air Quality Standards for PM2.5

Under the CAA, the EPA primarily regulates air quality through successive NAAQS aimed at spe-
cific pollutants. In April 2005, the 1997 NAAQS for PM2.5, particulate matter smaller than 2.5µm in
diameter, came into effect.6 The EPA introduced regulation for PM2.5 through two new standards: A
threshold of 15 µg/m3 for the three-year average of annual mean ambient PM2.5 concentrations, and
a threshold of 65 µg/m3 for the three-year average of the 98th percentile of daily (24h) PM2.5 concen-
trations. Areas that failed to meet at least one of these thresholds were designated as nonattainment
areas. As Figure 1 shows, whenever an area satisfied the annual requirement, it also satisfied the
daily requirement, so we focus on the binding annual requirement for the rest of the analysis.7 The
EPA has several powers to induce air quality improvements in nonattainment areas, for example

6Several litigation procedures from 1999 delayed the implementation of the new regulations escalating up to the
Supreme Court (EPA v. American Trucking Assoc., 531 US 457, 2001), see EPA (2005a, 2016). Previous NAAQS reg-
ulated coarser particulate matter PM10 and TSP, equivalent to PM100.

7A 2006 revision of the daily requirement from 65 µg/m3 to 35 µg/m3 came into effect in December 2009, and des-
ignated a few additional counties as nonattainment. Our main analysis focuses on changes until December 2008 before
these additional nonattainment designations. A 2012 revision of the annual requirement from 15 µg/m3 to 12 µg/m3

came into effect in April 2015.
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(a) Annual threshold (15 µg/m3) (b) Daily threshold (65 µg/m3)

Figure 1: Nonattainment status and EPA-registered PM2.5 values
Notes: Both panels plot the EPA-registered PM2.5 values of counties and nonattainment status of the NAAQS rules coming into effect in
2005. Panel (a) shows the EPA-registered PM2.5 values for the three-year average of the annual threshold of 15 µg/m3 from 2001-2003.
Panel (b) shows the EPA-registered PM2.5 values for the three-year average of the 98th percentile daily threshold of 65 µg/m3 from
2001-2003. The county markers are jittered for visualization. The plots show that the annual threshold in Panel (a) is binding, in the
sense that there is no county that meets this requirement, but does not meet the daily requirment in Panel (b). On the other hand, many
counties meet the daily threshold in Panel (b) but are still assigned into nonattainment because they don’t meet the annual threshold in
Panel (a). County level RV reflect the RV of the nonattainment area (i.e. are assigned the highest RV within a nonattainment area).

by reviewing or enforcing air quality improvement plans8, or by withholding federal funding and
denying permits for infrastructure projects or polluting plants. Reclassification from nonattainment
to attainment status is usually initiated by requests from states (Sullivan & Krupnick 2018). There
was no reclassification to attainment until 2011, and no reclassification into nonattainment based on
the 1997 standards (only with new standards, see Footnote 7).

The PM2.5 measurements for assigning nonattainment status are based on an incomplete network
of ground monitors that the EPA deployed from 1999 to January 2001 (EPA 2005a). While these
monitors were usually placed in more populous counties, they only covered around 20% of counties,
possibly missing counties that would otherwise be regulated (Sullivan & Krupnick 2018, Fowlie
et al. 2019).9 The EPA took the three year averages of monitor readings from 2001-2003 to calculate
the EPA-registered PM2.5 values for each area to compare against the regulatory threshold. Since
the 1997 NAAQS designations only took effect in April 2005, states were allowed to provide the
EPA with updated 2002-2004 measurements, which led to a few counties being reclassified from

8State implementation plans typically include measures such as permits, technological standards such as emission
capture, fuel efficiency improvements or retrofits, and surveillance and enforcement rules.

9Therefore EPA technical documents often refer to attainment areas as unclassifiable/attainment. Our simple
difference-in-differences estimates using satellite-based pollution measures are virtually identical for the whole sample
of all counties or the smaller sample of counties with RVs (and monitors).
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nonattainment to attainment before 2005. We collect the latest RVs that incorporate these updates.10

Most nonattainment areas coincide with county groupings that make up Metropolitan Statis-
tical Areas (MSA) or commuting zones (CZ), but are refined by the EPA on a case-by-case basis
using nine decision factors to define air regions.11 Therefore, the boundaries of nonattainment areas
usually extend beyond single counties, motivated by the fact that air pollution can spill over into
neighbouring counties. This means that if a county contains a monitor with a RV in excess of one of
the PM2.5 NAAQS thresholds, the entire air region (usually an MSA) is in nonattainment, including
other counties in the area that may have low pollution readings or no monitor at all. In this case, the
entire group of counties within a nonattainment area is assigned the RV of the county with the high-
est RV.12 In total, the EPA assigned 208 counties into nonattainment in 2005, all violating the annual
threshold (and a subset also violating the daily threshold). Figure 2a maps the 208 nonattainment
counties based on the EPA air regions.

We use data from the EPA Green Book and Federal Register to identify the nonattainment coun-
ties (EPA 2005a,b, 2021). We obtain the RVs for the annual and daily standards for all counties that
are used by the EPA to determine attainment status (EPA 2018b,a), and importantly, also including
those counties that had a RV but were not assigned into nonattainment. Counties without monitors
that are not part of any nonattainment area have no RV. Since every nonattainment area has the RV
of the county with the highest RV within its area, we assign those RVs to each nonattainment area
using data and detailed discussions from EPA (2004b, 2005c, 2021), and update them with the sup-
plementary amendments contained in EPA (2005b,c). We next match areas to more recent, granular
measures of particulate matter concentrations.

B. Pollution Data

We use annual estimates of ground level PM2.5 concentrations from three sources. All three are
based on satellite data combined with chemical transport models and calibrated to fit ground level
monitor readings. Our main results use pollution data from Meng et al. (2019b), but we show in the
Appendix that all our results are similar when using two alternative data sets from Di et al. (2021)
or van Donkelaar et al. (2021b).13

10In the technical EPA documentation, these EPA-registered PM2.5 values are referred to as ‘Design Values’.
11The nine factors that define the appropriate boundaries of areas are emissions, air quality, population density, com-

muting patterns, expected growth, meteorology, geography, jurisdictional boundaries, and control of emission sources.
See EPA (2004a) for a detailed explanation.

12The EPA only groups counties together with the highest RV in nonattainment areas, not attainment areas. In some
counties, there are multiple monitors allowing for spatial averaging, and some exceptionally large counties might only be
partially included in an area.

13The data by Meng et al. (2019b) extend the furthest back in time. For the van Donkelaar et al. (2021b) data, we use
the latest recommended version (V5.GL.03).
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All three data sets provide PM2.5 concentrations at a spatial resolution of 0.01°× 0.01°(approximately
1km × 1km cells in the US, depending on latitude). The universal spatial coverage and high reso-
lution of these products allow us to assign pollution levels to all Census blocks in the contiguous
US on an annual basis starting from 2000 based on each of the three data sets, and from 1989 for the
data based on Meng et al. (2019b).14 This allows us to calculate PM2.5 concentrations also for those
counties that do not have RVs. Since these data use predicted values there is uncertainty in some of
the estimates, especially for those areas that are further away from ground-based monitors. We test
robustness to uncertainty in Section III.C by leveraging information on uncertainty in the underlying
predictions and by replicating our analysis using only pollution monitor data from EPA (2022a).

C. Census Data and Mapping PM2.5 Concentrations

We use population counts from the 2000, 2010 and 2020 US Census and area boundaries from the
2010 US Census (Manson et al. 2022). The boundaries allow us to map geocoded PM2.5 data into the
around 11 million Census blocks (sub-divisions of tracts). Since blocks are very small and often do
not contain PM2.5 grid points at the 1km resolution, each block is assigned the PM2.5 concentration
of the grid point closest to the block centroid.15 We use block level population data as weights
to aggregate pollution up to Census tracts (of which there are around 70,000). We also use the
population data to weight tract level regressions by population and to calculate PM2.5 exposure
differences between population groups when we turn to the analysis of exposure disparities.

The resulting data provides detailed measures of average PM2.5 exposure in each tract and each
year. The map in Figure 2a shows tract level PM2.5 concentrations averaged between 2001-2003 across
the contiguous US. We use this detailed data structure to exploit variation not comprehensively cap-
tured by monitoring data, specifically to investigate heterogeneity within counties, visible in Figure
2b, and to measure changes in air quality even in those tracts that are not close to a ground level
pollution monitor.

D. House Price Data

We demonstrate the implications of our estimates for the implied damages from PM2.5 exposure
capitalized in house prices. Our measure of changes in house prices relies on data provided by the
Federal Housing Finance Agency (FHFA 2021), specifically, the annual house price index (HPI) at

14Meng et al. (2019b) add monitor readings of PM10 concentrations to help model PM2.5 concentrations before 1999.
15Note that assigning pollution to Census blocks (and their population counts) is equivalent to using restricted individ-

ual level data and assigning pollution to individuals based on their Census block, as e.g. in Currie et al. (2023) (see also
Appendix A.13A). We complement the Census data with information on commuting zones and tract-level characteristics
from Chetty & Friedman (2019).
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(a) Contiguous United States

(b) Indianapolis – Evansville – Louisville – Cincinnati nonattainment counties

Figure 2: Baseline PM2.5 (2001-2003) and nonattainment counties
Notes: The figures show average baseline PM2.5 (2001-2003) at the tract level using data from Meng et al. (2019b), and nonattainment
counties. Panel (a) shows the entire contiguous US, and Panel (b) zooms into the area around Indianapolis (North), Evansville (South-
West), Louisville (South) and Cincinatti (North-East).
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the tract level (further described in Bogin et al. 2019).

E. Period Choice

The process of nonattainment designation occurred in multiple stages—with initial state level sug-
gestions for nonattainment designation in February 2004, and final EPA designations in April 2005.
There may already have been anticipatory effects of nonattainment designation before 2005 (as
shown in Bishop et al. 2023, who consider 2004 as the start of the post-treatment period). To avoid
any bias from anticipatory effects in 2004, we define our pre-treatment period as the three-year av-
erage between 2001-2003.16 Taking three-year averages helps to lower the risk of mis-attributing
short-term fluctuations in air quality or measurement error to the CAA rules. To allow for time-
varying effects, we report results for two post-treatment periods, respectively five years (2006-08
average) and ten years (2011-13 average) after the pre-treatment period. Appendix Table A.1 pro-
vides summary statistics for the final analysis sample.17

II. Empirical Strategy: The Effect of CAA Nonattainment Designation

Our goal is to estimate the treatment effect of nonattainment designation in 2005 on PM2.5 concen-
trations. To conceptualize our approach, consider the following expression for the level of PM2.5 in
census tract i during period t:

PMi,t = βNAi,t + δi + λt + ξi,t (1)

where NAi,t denotes nonattainment status of tract i in period t and β is our treatment effect
of interest. Tract level fixed effects δi capture factors that affect PM2.5 and possibly nonattainment
status, but do not vary meaningfully over the relevant time horizon—historical pollution, population
density, road infrastructure, topology and the like. Period fixed effects λt capture aggregate trends
that affect all tracts, such as changes in technologies or federal regulation and policies. Finally, the
error term ξi,t captures tract-period specific fluctuations. For now, we assume that the treatment
effect is constant across tracts, an assumption we will relax later.18

16Note that we provide some descriptive statistics using Meng et al. (2019b) data going back to 1989, but since data
before 1999 is less accurate due to the lack of PM2.5 ground monitors, we exclude these earlier periods for our empirical
analysis.

17While our data extends forward to 2016 (in the case of Meng et al. 2019b, Di et al. 2021) and 2020 (in the case of van
Donkelaar et al. 2021b) respectively, we avoid measuring effects too long after nonattainment designation in 2005 to avoid
using areas that change treatment status. Some nonattainment areas came into attainment, particularly in 2013 and 2014.
Furthermore, updates to the threshold rules came into effect in December 2009 and April 2015 placing additional areas
into nonattainment.

18Following the literature on NAAQS nonattainment designations, we make the stable unit treatment value assumption
(SUTVA) that rules out spillover effects from nonattainment into attainment counties (see Hollingsworth et al. (2022) or
Walker (2013) for more discussion). We address this issue in a robustness check by excluding counties in attainment that
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A. Likely Bias of Simple Difference-in-Differences (DiD)

Our baseline empirical strategy is a standard DiD approach which compares changes in PM2.5 from
the pre-treatment to the post-treatment period between treated and untreated units. We can express
this taking first differences of Equation (1).19 Simplifying and rearranging terms yields our baseline
regression equation using the change in PM2.5 for tract i between the pre-treatment and the post-
treatment periods as outcome:

∆PMi = α+ β∆NAi + ∆ξi (2)

where ∆NAi is an indicator variable that takes value one for all tracts that become subject to reg-
ulatory treatment from 2005 onward.20 The identifying assumption is that parallel trends between
treated and untreated tracts hold: absent regulation, nonattainment and attainment areas would
have experienced the same average change in PM2.5. In other words, β yields a consistent estimate
of the average treatment effect if cov(∆NAi,∆ξi) = 0.

While the parallel trends assumption cannot be directly tested, it is common practice to look at
pre-treatment trends to assess whether the assumption is plausible. Panel (a) of Figure 3 plots aver-
age PM2.5 concentrations over time for four groups binned according to their EPA-registered PM2.5

values, including two nonattainment groups (15 < RV ≤ 20 and RV > 20) and two groups in
attainment (10 < RV ≤ 15 and RV < 10). Nonattainment and attainment areas appear to fol-
low somewhat different trends both before and after 2005.21 Panel (b) shows these higher pollution
improvements in nonattainment areas before 2005 more explicitly in an event study version of Equa-
tion (1), plotting the annual difference in PM2.5 levels between nonattainment and attainment areas
relative to the difference in 2005. This suggests that the parallel trends assumption is violated, as
it shows significant differences in pre-trends that are similar to those after treatment. Appendix
Figures A.21 and A.22 confirm statistically significant pre-trend differences in the two alternative
pollution data sources based on Di et al. (2021) and van Donkelaar et al. (2021b).

We conduct several robustness tests for these statistically significant pre-trends. Appendix Fig-
ure A.1 shows the pre-trends exist when (i) using 2000 Census borders and population instead of
the 2010 versions and repeating the analysis at the Census block level directly without aggregating

share a border with a nonattainment county in Appendix Table A.6.
19That is ∆PMi = PMi,post − PMi,pre = β(NAi,post − NAi,pre) + (δi − δi) + (λpost − λpre) + (ξi,post − ξi,pre). All our

specifications in changes could equivalently be modeled as panel regressions of levels with two-way fixed effects (TWFE)
and various interaction terms. We show that such an approach in a tract-year panel from 2000-2015 produces very similar
estimates in Appendix Table A.10, which shows a panel equivalent to Table 1.

20We weight all regressions by tract population. Because attainment is assigned to counties spanning multiple tracts,
we cluster standard errors at the county level, allowing for arbitrary correlation in the errors within counties.

21Note that areas with the highest EPA-registered PM2.5 values (RV > 20) experience an increase in PM2.5 concentrations
before policy implementation in 2005. One possibility are anticipatory effects in nonattainment areas (Clay et al. 2021).
Regardless of the underlying reason, our alternative strategies limit the risk of such confounding trends.
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(a) Evolution of PM2.5 by EPA RV grouping

(b) Event study (annual nonattainment-attainment differences in PM2.5)

Figure 3: Trends in PM2.5 and event study analysis
Notes: Panel (a) shows the change in PM2.5 averages at the tract level (population-weighted) over time. Each line represents a different
bin of EPA-registered PM2.5 values assigned to each attainment/nonattainment area, each of which usually comprises multiple counties
and tracts. Panel (b) shows coefficient estimates from a regression that includes a treatment dummy interacted with years, controlling for
year fixed effects. The dotted blue line shows point estimates and the dashed red lines show 95% confidence intervals based on standard
errors that are cluster-robust at the level of counties. Both Panels are based on data from Meng et al. (2019b).

11



to tracts, (ii) using interpolated population weights from the 2000, 2010, and 2020 Census, allow-
ing for population changes at the Census block level, (iii) assigning entire commuting zones into
nonattainment beyond the EPA-defined air regions for commuting zones that contain at least one
nonattainment area, and when (iv) dropping all attainment counties that border a nonattainment
area to address potential spillover effects. We compare our event study to the event study in Cur-
rie et al. (2023) along with other differences in detail in Appendix A.13.22 Their event study does
not exhibit pre-trends as they assign the subset of nonattainment areas that have previously been
treated with 1990 PM10 nonattainment into the control group. Intuitively, this subset tends to have
higher pollution levels and pre-trends therefore evening out pre-trend differences between treated
and controls, but assigning these areas into the control group implicitly assumes no PM2.5 treat-
ment effect for these areas.23 We formally test treatment effect heterogeneity by previous 1990 PM10

nonattainment status in Section II.F and III.E, and show evidence that these areas actually tend to
exhibit larger PM2.5 treatment effects.

The issue becomes even clearer when looking at Figure 4, which plots EPA-registered PM2.5 val-
ues on the horizontal and tract level negative ∆PM from 2001-03 to 2006-08, i.e. pollution improve-
ments, on the vertical axis. Nonattainment areas are those with a RV higher than the threshold
value 15.24 Crucially, we see a positive association between RV and −∆PM on both sides of that
cutoff, indicated by the solid linear regression lines. This suggests that nonattainment areas would
likely have experienced a larger reduction in PM2.5 concentrations also in the absence of nonattain-
ment designation, much like attainment tracts with higher RV have experienced larger reductions
than other attainment tracts with lower RV. Since nonattainment designation is a function of RV
(cov(∆NAi, RVi) > 0) and Figure 4 suggests that RV and ∆ξi are correlated (cov(−∆ξi, RVi) > 0),
it appears highly likely that the identifying assumption for DiD is not satisfied (cov(∆NAi,∆ξi) 6=

0).25 Both ∆PM and nonattainment status are correlated with pre-treatment pollution levels, con-
founding the standard DiD estimate.

Appendix Figures A.23 and A.24 show almost identical patterns using the two alternative pollu-
tion data sources from Di et al. (2021) and van Donkelaar et al. (2021b). In Appendix Figure A.4, we
use EPA monitor level data instead and show that the pattern is similar at the monitor level.26 Ap-
pendix Figure A.2 shows a similar pattern when taking a 10 year difference from 2001-03 to 2011-13.

22We thank the authors of Currie et al. (2023), particularly Reed Walker, for a helpful discussion of this comparison.
23When dropping this subset of areas instead, the significant pre-trend reappears as shown in Figure A.19 – see also

Appendix Table A.7.
24The Census tracts at the right end of the Figure belong to Los Angeles area, the nonattainment area with the highest

RV.
25The simple DiD approach in (2) measures the average difference between tracts left and right of the RV = 15 cutoff.

That is the difference between the horizontal dashed lines.
26We calculate three year averages for each monitor averaging over various series that are, e.g., certified or not certified.
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Figure 4: Improvement in tract PM2.5 averages and EPA-registered PM2.5 values
Notes: The figure shows the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008. The size
of the markers reflect tract level populations. The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each
attainment/nonattainment area, each of which usually comprises multiple counties and tracts. The dashed line plots the average PM2.5
improvement for tracts in nonattainment and attainment areas separately, weighted by tract population, equivalent to the standard DiD
estimate. The solid lines plot the linear projection of tract level PM2.5 improvements on the RV of the nonattainment and attainment areas
separately, weighted by tract population. Based on data from Meng et al. (2019b).

One reason for the different trends might be that areas that are in nonattainment of PM2.5 stan-
dards in 2005 are also more likely to have been in nonattainment of previous standards, such as those
for PM10, which would explain why they are cleaning up their air already before 2005. We show in
the Appendix that different trends persist, however, even when dropping all counties that were pre-
viously in nonattainment of the PM10 standard (Figure A.19 and Table A.7). Another reason for the
different absolute trends could be similar relative improvements, for example due to technological
change, that translate into bigger absolute improvements in more polluted areas.27 Appendix Fig-
ure A.3 shows this is not enough to explain differences in absolute terms, as more polluted areas
also experienced greater relative improvements in air quality over time, independent of attainment
status.28 Other reasons for the different trends could be linked to state level policies (and therefore

27Consider the example of road traffic. If all regions maintain the same volume of traffic, but newer cars generate 10%
less emissions per mile driven, we would expect 10% less traffic related pollution in all areas, which would be a larger
absolute improvement in high-traffic areas.

28Colmer et al. (2020) analyse a much longer time period from 1981 to 2016 and find that absolute improvements in PM2.5
pollution are much larger for the most polluted Census tracts, while they find less difference in relative improvements.
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different trends by state), or reasons related to population density (with urban, suburban, and ru-
ral areas experiencing different trends). In Appendix Tables A.8 and A.9, we provide robustness
checks including state level trends or trends by population density, which help explain some of the
difference in trends, but not all.

While we can remain agnostic about the particular combination of reasons for these correlated
time trends, we need to address the bias they introduce in a standard DiD setting, for which we
employ three different strategies. The first is to include baseline pollution controls (DiDwb). This
maintains the sample, but introduces a control variable. The other two approaches restrict the sam-
ple to observations for which parallel trends are more likely to hold. The second approach is a
matching DiD hybrid (MDiD) and the third is a regression discontinuity design (RD).

B. Difference-in-Differences Estimation With Baseline Controls (DiDwb)

Our first strategy is to explicitly control for the confounding factor suggested by the relationship in
Figure 4 using an augmented version of Equation (2). In particular, we assume that the error can be
decomposed into:

∆ξi = γPMi,pre + ∆εi

so that we can linearly control for baseline pollution (PMi,pre), assuming a residual error ∆εi:

∆PMi = α+ βNAi + γPMi,pre + ∆εi (3)

We refer to this DiD approach with baseline controls as DiDwb. Note that including PMi,pre as
control in our specification in differences is equivalent to controlling for PMi,pre separately by period
(λt) in the levels specification in Equation (1), where PMi,pre is absorbed by tract fixed effects.29 This
approach absorbs any improvements in air quality over time that are proportional to baseline PM2.5

levels (e.g. γ = −0.1 would indicate a 10% reduction for all tracts).
The identifying assumption becomes an augmented version of the parallel trends assumption.

Nonattainment and attainment areas would have experienced the same average change in PM2.5

over time absent regulation, conditional on a linear association between between baseline PM2.5 and
∆PM. Put differently, we require that cov(∆NAi,∆εi|PMi,pre) = 0. Figure A.7 shows insignificant
pre-trend differences with this augmentation. Notably, this assumes that residual pollution shocks
persist across periods. That is, we assume that εit follows an AR1 process such as εit = εit−1 + µit

where µit is uncorrelated with PMit−1.30 This is satisfied if a shock in the pre-treatment period—

Our reported patterns are consistent with their observed reversion to the mean.
29That is PM2.5i,t = βNAit +γλtPMi,pre + δi +λt + εi,t in levels is ∆PMi = α+βNAi +γPMi,pre + ∆εi in differences.
30In our case the process is a random walk, but using earlier periods than the pre-treatment period could correspond
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from, say, new industrial units or infrastructure projects—persists through the post-treatment pe-
riod (when a new shock can arrive). On the other hand, if a shock in the pre-treatment period is
only transitory—from, say, unusual weather conditions in a given year—∆εi would be correlated
with PMi,pre, introducing bias into equation (3). To mitigate such bias from transitory shocks, we
use three-year averages of PM2.5 in both the pre- and post-treatment periods such that transitory
shocks like weather are unlikely to be captured. We also demonstrate in Appendix Table A.3 that
results remain unchanged when using higher-order interactions with baseline PM2.5 allowing for
more flexible nonlinearities.

C. Matched Difference-in-Differences (MDiD)

Our second approach exploits the fact that our analysis is at the tract level while nonattainment
is assigned at the level of the county and/or commuting zone. This means that, even though the
RV distributions of nonattainment and attainment areas are disjoint (separated at RV=15), there is
overlap for tract level PM2.5, allowing us to match nonattainment tracts to attainment tracts with
similar baseline PM2.5. The map in Figure 2b illustrates this for the region around Indianapolis,
showing that there are tracts with low and high baseline PM2.5 in both nonattainment and attainment
areas. Figure 5 shows the overlap in the distributions of baseline PM2.5 (2001-2003), plotting−∆PM
against PMi,pre.31 The density plots in Figure 5 show that there are tracts in attainment areas with
average PM2.5 values above the EPA threshold of 15, likely because the EPA air pollution ground
monitor network has incomplete coverage (Sullivan & Krupnick 2018). There are also many tracts
in nonattainment areas with baseline PM2.5 values below the cutoff.

We use a one to one matching based on propensity scores with replacement to calculate weights
Wi for control tracts.32 In our main version, we estimate tract propensity scores for treatment based
on pre-treatment pollution PMi,pre alone, which we call M1DiD. In a second version, which we
call M2DiD, we additionally match on pre-treatment tract population and population density (both
based on the 2000 Census). For both M1DiD and M2DiD, we impose a common support condition

to different AR processes.
31Appendix Figures A.25 and A.26 show the same pattern for our two alternative sources of pollution data.
32Matching has been used in the literature to evaluate other CAA rules. Usually this is done at the county level instead

of the tract level as we do here. In an early example, Greenstone (2004) estimates the effect of the NAAQS for SO2 between
1975-1992. He uses propensity scores to match counties based on lagged pollution levels, income, population and attain-
ment status for other pollutants. This is similar in spirit to Chay & Greenstone (2005) who compare TSP nonattainment
counties of the 24 hour standard to a control group that is in attainment of the 24 hour standard, limited to cases where
both groups have similar annual TSP concentrations (and nonattainment is triggered by a daily threshold). We mirror
their approach more closely in Column 7 of Table A.2 where we only look at a subset of areas that are all in attainment
of the 24 hour RV threshold in 2005, but some are in nonattainment of the annual threshold (see Figure 1). The results
indicate that such an approach reduces some of the observed bias in DiD, but not all. Another early application is by List
et al. (2003) who estimate the effect of Ozone nonattainment status on manufacturing plant births between 1980-1990.
Sanders et al. (2020) match on baseline population and mortality to control for trends in mortality.
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Figure 5: Improvement in tract PM2.5 averages and baseline PM2.5 levels
Notes: The markers in the figure show the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008.
The PM2.5 improvements are plotted against the baseline PM2.5 levels of each tract, using two different colors for tracts in nonattainment
and attainment areas. The kernel density (right axis) shows the overlap between the baseline PM2.5 distributions of nonattainment and
attainment tracts, weighted by tract population. The figure is based on data from Meng et al. (2019b).

by dropping all nonattainment tracts with a propensity score that is higher than the maximum in
the control group. For M1DiD this corresponds to dropping the rightmost tracts in Figure 5.33 Tracts
that act as matched control for multiple treated tracts get an accordingly higher weight. Unlike the
raw sample, the resulting matched sample is balanced between nonattainment and attainment tracts
as shown in Appendix Table A.4. We use these matching weights to weight our DiD regression34,
equivalent to:

∆PMi

√
Wi = α

√
Wi + β∆NAi

√
Wi + ∆ξi

√
Wi (4)

Our identifying assumption now becomes that nonattainment and their propensity-matched at-
tainment areas would have experienced the same average change in PM2.5 over time absent the reg-
ulation, i.e. cov(∆NAi

√
Wi,∆ξi

√
Wi) = 0. Intuitively, this assumption addresses the issue visible

33This effectively limits treated units to those with a baseline PM2.5 level of up 18.3. Note that this still includes a subset
of tracts in counties with the highest RVs (Los Angeles area) on the right in Figure 4.

34Since we weight all regressions by tract population, we take the product of matching weights and population weights
for our MDiD approaches.
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in Figures 4 and 5 as it places lower weight on control tracts further to the left that have low base-
line pollution and are thus less likely to be matched. The correlation coefficient between ∆NAi and
PMi,pre is 0.64, but only -0.08 between ∆NAi

√
Wi and PMi,pre

√
Wi. We show that the event study

graph in Appendix Figure A.8 no longer shows significant differences in pre-trends when using the
matched sample.

One concern with this approach may be that bias from SUTVA violations due to spillovers could
be exacerbated relative to standard DiD, if matched control units tend to be geographically closer to
treated units absorbing more spillovers. To address this issue, we exclude all counties in attainment
that share a border with a nonattainment county and show that the pattern of our baseline results
are robust in Appendix Figure A.6 and Appendix Table A.6.

D. Regression Discontinuity Design (RD)

Our third approach exploits the discontinuous assignment rule used for nonattainment designations
based on the EPA-registered PM2.5 threshold (RV = 15). We implement a regression discontinuity
(RD) design where we compare nonattainment tracts with a value just above the threshold to attain-
ment tracts just below the threshold.35 We determine the window of EPA-registered PM2.5 values
around 15 by using the optimal bandwidth selection procedure for local polynomial regression dis-
continuity estimation following Calonico et al. (2014) and Calonico et al. (2020).36

We estimate two versions of the model based on the restricted sample. One version simply es-
timates the DiD design around the regression discontinuity, which we call RD0 (since it allows for
a polynomial of degree 0). The other version allows for a linear relationship between our outcome
∆PMi and RV, even in the small window around the threshold, which we call RD1 (since it allows
for a polynomial of degree 1). To implement RD1, the RV (recentered around 15) enter as a control
variable37:

∆PMi = α+ β∆NAi + λRVi + ∆ξi (5)

The identifying assumption of the regression discontinuity approach is that the potential out-
comes in ∆PMi are continuous around the threshold. This assumption includes the usual require-
ment that there are no discontinuous jumps in factors associated with ∆PM at RV = 15, and that
there is no manipulation around the threshold that may correlate with ∆PM. In Appendix Figure

35In an early example, Chay & Greenstone (2005) exploit the discontinuous nature of the 1971 NAAQS for TSP. Specifi-
cally, they restrict their DiD sample to a narrow window around the TSP cutoff value, akin to our RD0 approach. See also
Sanders & Stoecker (2015).

36This is akin to using binary weights in equation (4), set to 1 for treated and untreated observations close to the cutoff.
37For the empirical implementation, we also interact the values with nonattainment status to allow for different slopes

on either side of the cutoff.
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A.11 we illustrate that there does not appear to be a discontinuous jump in tract population and
population densities around the treatment cutoff. In Appendix Figure A.12 we show density plots
for RV, which do not show evidence of manipulation around the treatment cutoff within the opti-
mally chosen bandwidths, and pass the formal sorting around the threshold test (Cattaneo et al.
2015, McCrary 2008). Figure A.9 shows insignificant pre-trends with our RD design.

We argue that the DiDwb, MDiD and RD approaches address the bias in the simple DiD that
stems from correlation of both outcome and treatment with baseline pollution as shown in Figure 4
that violates the parallel trends assumption underlying DiD. However, they differ with respect to the
estimand: While the DiD, DiDwb and MDiD approaches, correctly identified, estimate the average
treatment effect on the treated (ATT), the RD approach estimates the local average treatment effect
(LATE) of nonattainment designation around the RV = 15 annual threshold.

E. Heterogeneous Treatment Effects by Baseline Pollution Levels

We have so far assumed that the treatment effect β is homogeneous across all tracts. Heterogeneous
treatment effects βi are potentially important because even if we fail to detect average treatment
effects, the policy may be effective in a subset of tracts in nonattainment areas, possibly the most
polluted ones. Auffhammer et al. (2009), for example, find no statistically significant effect of nonat-
tainment designation under the 1990 CAA amendments for PM10 at the county level, but find sig-
nificant reductions in PM10 for individual monitors that are in nonattainment. Similarly, Bento et al.
(2015) and Gibson (2019) find larger improvements of air quality near binding pollution monitors
that are responsible for assignment into nonattainment of an area compared to less binding monitors
in the same areas.

To account for potential heterogeneity in treatment effects, we repeat the standard DiD and all
three of our approaches with an added interaction term between nonattainment status and baseline
levels of PM2.5 in 2001-2003. The standard DiD Equation (2) becomes:

∆PMi = α+ β1∆NAi + β2∆NAiPMi,pre + ∆ξi (6)

Treatment βi therefore varies along the dimension of pre-treatment pollution, or βi = β1 +

β2PMi,pre.38

38Note that PMi,pre is absorbed in the fixed effect in the equation in levels from which the above equation has been
derived. That is: PM2.5i,t = β1NAit + β2NAitPMi,pre + δi + λt + ξi,t, where the uninteracted effect PMi,pre is co-linear
with fixed effect δi.
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F. Heterogeneous Treatment Effects by Previous PM10 Nonattainment Status

Of the 208 nonattainment counties, 71 counties were in nonattainment of the 1990 NAAQS for PM10

in the years leading up to 2005. Since PM2.5 and PM10 are highly correlated, and indeed often emitted
by the same sources, on-going regulation of PM10 emissions may well alter the impact of additional
PM2.5 regulation. Appendix Figure A.14 repeats our Figure 4 but shows four groups based on both
PM2.5 nonattainment and PM10 nonattainment. We address previous nonattainment in two ways.
Our first approach is to show robustness of our results to dropping all areas in PM10 nonattain-
ment (Table A.7). Our second approach is to explicitly allow heterogeneous treatment effects of
PM2.5 nonattainment based on previous PM10 nonattainment. Specifically, we estimate a naive DiD
regression (as well as our other models) that allows for such heterogeneous effects:

∆PMi = α+ β1∆NA2005i(1−NA1990i) + β2∆NA2005iNA1990i + β3NA1990i + ∆ξi (7)

The coefficients β1 and β2 capture the PM2.5 nonattainment effects for areas without (β1) and
with previous (β2) PM10 nonattainment status respectively. Note that we control for differential
trends based on PM10 nonattainment status separately (captured by β3), so β1 and β2 represent the
marginal effect of PM2.5 nonattainment for the two groups respectively. In principle, β2 could be
smaller than β1, e.g. because switching from no treatment into treatment has the most impact, but
β2 could also be larger than β1, e.g. if being in nonattainment with both NAAQS has compounding
impact. This specification allows us to test the difference between β1 and β2. This also tests the
validity of a nonattainment ‘switcher’ approach which assigns PM2.5 nonattainment areas that are
also PM10 nonattainment areas into the control group (e.g. Currie et al. 2023), as it implicitly assumes
that β2 = 0.

III. Results: The Effect of CAA Nonattainment on PM2.5

We now compare estimated effects of 2005 nonattainment designations on subsequent changes in
PM2.5 concentrations using the four approaches outlined above. Our baseline period is the three-
year average over 2001-03. Our post-treatment periods are five (2006-08) and ten (2011-13) years
later.

A. Large Effects Suggested by Difference-in-Differences (DiD)

Standard DiD estimation suggests large and statistically significant reductions of PM2.5 concentra-
tions in nonattainment areas. This is shown in Column 1 of Table 1. The coefficient estimate (β̂) in
Panel (a) shows that nonattainment tracts experienced a 1.5 µg/m3 larger reduction in PM2.5 than at-
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Table 1: Nonattainment status and changes in PM2.5

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Effect from 2001-03 to 2006-08
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.47 -0.49 -0.41 -0.40 -1.48 -0.36 -0.023
(0.34) (0.098) (0.16) (0.20) (0.35) (0.28) (0.40)

Observations 72043 72043 28291 28909 47962 7026 10459

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.32 -0.12 -0.060 0.018 -0.49 -0.11 -0.26
(0.12) (0.11) (0.12) (0.12) (0.14) (0.21) (0.30)

Observations 49357 49357 20388 20127 25276 2143 5411

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 4.82 3.85 1.83 3.39 4.81 3.79 3.73
(0.81) (0.83) (0.30) (0.66) (0.82) (0.76) (0.62)

NA(x)Baseline -0.42 -0.33 -0.16 -0.26 -0.42 -0.29 -0.26
(0.060) (0.062) (0.020) (0.048) (0.060) (0.047) (0.032)

Observations 72043 72043 28291 28909 47962 7026 10459
Implied ATE -1.47 -1.06 -0.55 -0.57 -1.48 -0.57 -0.21
10th pct -0.32 -0.16 -0.11 0.16 -0.32 0.23 0.52
90th pct -3.56 -2.70 -1.34 -1.89 -3.57 -2.02 -1.51

Part B: Effect from 2001-03 to 2011-13
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment -2.35 -0.56 -0.44 -0.55 -2.44 -1.26 -1.11
(0.27) (0.096) (0.096) (0.11) (0.28) (0.35) (0.37)

Observations 72043 72043 28291 28909 47962 6137 25856

Panel (e): Placebo Treatment Effect: from 2001-03 to 2011-13

Nonattainment -0.95 0.015 0.19 0.15 -1.57 0.23 0.43
(0.13) (0.12) (0.14) (0.14) (0.15) (0.20) (0.31)

Observations 49357 49357 20388 20127 25276 1046 4626

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment 3.91 -0.24 4.78 4.57 3.83 4.45 3.38
(0.41) (0.42) (0.44) (0.50) (0.41) (0.79) (0.78)

NA(x)Baseline -0.42 -0.024 -0.37 -0.36 -0.42 -0.40 -0.31
(0.029) (0.032) (0.033) (0.036) (0.029) (0.053) (0.053)

Observations 72043 72043 28291 28909 47962 6137 25856
Implied ATE -2.35 -0.61 -0.78 -0.79 -2.44 -1.54 -1.21
10th pct -1.20 -0.54 0.24 0.19 -1.29 -0.44 -0.37
90th pct -4.43 -0.73 -2.63 -2.58 -4.52 -3.54 -2.74

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the
pre- and post-treatment periods. Each panel(x)column combination is from a separate regression as described in the text. (1) uses simple
DiD, (2) adds controls for baseline PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on
baseline PM2.5, tract population and population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for
which an EPA-registered PM2.5 value exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression
discontinuity framework. Standard errors in parentheses are clustered at the county level. All results based on Meng et al. (2019b).
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tainment tracts between 2001-2003 and 2006-2008 (equal to the gap between the red and blue dashed
lines in Figure 4). Column 5 restricts the sample to only those counties for which RVs are available.
Results are virtually the same for this smaller sample, indicating no sample selection issues. All re-
sults in Table 1 are also virtually identical if we use interpolated population weights from the 2000,
2010, and 2020 Census instead of the 2010 Census population weights.39

Given the issues regarding the parallel trends assumption underlying these estimates discussed
above, we conduct ‘placebo tests’ shown in Panel (b). Here, we limit our sample to only tracts in
attainment areas, i.e. those areas with RV ≤ 15, and assign a placebo treatment to all those areas
with a RV above the median for that group (RV ≥ 11.5). We then re-estimate the DiD model.
As shown in Panel (b) Columns 1 and 5, standard DiD suggests that the placebo treatment was
associated with significant improvements in air quality (-0.3 and -0.5 µg/m3), providing further
evidence that the DiD approach may be biased.40

B. Smaller but still Positive Effects with DiDwb, MDiD and RD

Results from our three alternative approaches are shown in the remaining columns of Table 1. Col-
umn 2 shows the estimates for DiDwb, which adds a control for baseline PM2.5 to the DiD regression.
The coefficient estimate for β̂ falls to -0.49 in Column 2, which implies that the correlation between
time trend and baseline levels accounts for much of the DiD estimate.41

Column 3 shows estimates from our matched difference-in-differences approach, using baseline
PM2.5 as the sole matching variable (M1DiD). Column 4 matches on baseline PM2.5, population and
population density (M2DiD). Both estimates are substantially smaller then the DiD estimates, with
a reduction of about 0.4 µg/m3 following nonattainment designation. This effect corresponds to a
3% decrease from average concentrations in the pre-treatment period.

Columns 6 and 7 show results for our regression discontinuity approaches RD0 and RD1.42 The
point estimate for RD0 is similar to our other strategies, and close to zero for RD1, but both estimates
are imprecise. Due to the smaller number of observations around the cutoff, we lack statistical power
resulting in larger standard errors. However, effect estimates in both RD0 and RD1 are highly statis-

39Results available from authors upon request.
40As in Panel (a), Column (1) includes unclassifiable areas (without RV) in attainment as per EPA rules, while Col-

umn (5) drops all areas without RV. Similar results can be seen in Appendix Table A.2, where we re-estimate the same
DiD model on subsets of areas that are successively closer to the treatment cutoff (RV = 15). Treatment effect estimates
fall as we narrow the window, indicating that there may be a time trend that is unrelated to treatment status but corre-
lated with EPA-registered PM2.5 values. If we only drop the nonattainment area with the highest RV (Los Angeles area),
corresponding to the observations in the right of Figure 4, we obtain a DiD estimate of -0.9 instead of the reported -1.5.

41Note that our DiDwb estimate is based on the exact same sample with the same weights as in DiD, while our other
alternative estimates make sample or weighting restrictions instead of adding controls.

42Graphical representations of these RD approaches are provided in Appendix Figure A.10. We provide results for
additional bandwidths in Appendix Table A.2.
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(a) Bootstrapped estimates (b) Difference of coefficients across bootstraps

Figure 6: Distribution of estimates from bootstraps
Notes: Both panels show distributions of cluster-bootstrapped estimates of our different models corresponding to Panel (a) in Table 1
using a triangle kernel smoother. We draw counties to allow for clustering with replacement based on two strata (attainment and nonat-
tainment), estimate the different models, and repeat the process 10,000 times. Panel (a) shows the distribution of estimates across the
bootstraps for each model. Panel (b) shows the distribution of the difference between DiD and our alternative models across bootstraps.
The area above zero represents the p-value of a test of equality of coefficients across models. Table A.5 shows these p-values for two-sided
tests (i.e. doubling the area in the tail to the right of zero). Based on data from Meng et al. (2019b).

tically significant when accounting for heterogeneity in Panel (c), or when considering longer term
impacts in Panel (d), in line with the dynamic effects shown in Appendix Figure A.9.

Overall, our preferred specification is M1DiD. It is almost identical to M2DiD, which implies
that adding additional matching variables provides little additional benefits to remove bias. M1DiD
includes a broader set of tracts and counties than either RD approaches resulting in higher statistical
power, but excludes outliers too far from the cutoff that are included in DiDwb, thus presenting a
reasonable compromise.

Two points stand out when comparing the four approaches. First, the effect sizes for our three
alternative approaches shown in Panel (a) are less than a third the size (around -0.4 to -0.5) of
the standard DiD estimates (-1.5) across the board. To statistically test for equality of coefficients
across these models in Panel (a) of Table 1 we use a cluster-bootstrap by drawing counties with
replacement by attainment and nonattainment strata. Figure 6a shows the resulting distribution
of estimates across 10,000 draws, showing clearly that the DiD estimates are centered at a much
lower mean with little overlap with our alternative approaches that are centered closer to zero and
overlapping with each other. Figure 6b shows the distribution of the differences between the DiD
estimate and those of each of our models. The corresponding p-values for all pairwise two-sided
tests for equality of coefficients are shown in Appendix Table A.5. All estimates from our alternative
models are significantly different from the DiD estimates at the 1% level except the RD1 model due
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to noisier estimates (see Figure 6a). Conversely, Table A.5 shows that we cannot reject equality
of coefficients in all pairwise tests between our alternative models, suggesting that they recover a
similar effect.

Second, note that the placebo tests in Panel (b) of Table 1 yield smaller and insignificant coeffi-
cients for our three alternative approaches. The pattern is similar when we use the other two sources
of pollution data, as we show in Appendix Tables A.23 and A.24.

C. Robustness

We next discuss robustness to several concerns for our analysis: (i) spillovers, (ii) preceding PM10

nonattainment designation, (iii) additional controls for trends, (iv) concurrent air pollution policies,
(v) uncertainty of pollution data, and (vi) alternative models for estimation.

First, we exclude all 300 counties in attainment that share a border with a county in nonattain-
ment, to reduce potential bias from spatial spillovers of air quality changes. Appendix Table A.6
shows that corresponding estimates are, if anything, slightly higher suggesting that there may be
some small spatial spillovers as pollutants can travel across space. However, and importantly, the
pattern of much lower estimates compared to DiD is similar to our main results. Second, the pat-
tern also holds when we focus on counties that switch into nonattainment by excluding all areas
that were in nonattainment of the NAAQS for PM10 in the years leading up to 2005 (71 of 208 PM2.5

nonattainment counties in 2001-04, see also Figure A.14), as we show in Appendix Table A.7. This
implies that the bias of standard DiD cannot be explained by correlations with previous CAA rules.
We further explore interaction with PM10 nonattainment by explicitly allowing for heterogeneous
treatment effects further below.

Third, the findings remain unchanged when we add further controls, which allow for state by
period specific time trends in PM2.5 and period by quartile-of-tract-population-density specific time
trends, as shown in Appendix Tables A.8 and A.9 respectively.

Fourth, apart from the nonattainment designations under the NAAQS for PM2.5, two separate air
quality policies came into effect during our study period: the NOx Budget Trading Program (NBP)
and it’s successor, the Clean Air Interstate Rule (CAIR). They target NOx, SO2, and Ozone emissions.
NOx and SO2 are precursors to PM2.5, so that overlap with these policies could partially drive our
results. To test this, we collect data on regulated facilities under these programs, with details dis-
cussed in Appendix A.8. Controlling for NBP and CAIR status does not affect our estimates either
for the DiD case or our alternative DiDwb. On the contrary, the estimated effect of those policies
depends dramatically on inclusion of PM2.5 nonattainment controls.

Fifth, our air pollution data comes from reanalysis models where some predictions may be more
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uncertain, e.g. due to larger distances to ground-based air pollution monitors. If the measurement
error is non-classical, such that higher PM2.5 regions or changes are systematically over- or underes-
timated, ignoring such uncertainty may introduce bias. We address this concern in three ways. First
we use the data from van Donkelaar et al. (2021b) that also quantifies the uncertainty for each data
point from the underlying reanalysis model and raw data. We drop the 30% of data points with the
highest uncertainty and re-estimate our models. Second, we only keep counties if they or any of their
neighboring county contain a ground-based monitor. Third, in our most restrictive version with the
least observations, we only use monitor data directly from EPA (2022a). We repeat the estimation of
the first part of Table 1 and show that our estimates of both naive DiD as well as of our alternative
models are robust in Appendix Tables A.12 and A.13.

Sixth, we provide results from Synthetic Difference-in-Differences (SDiD) estimation recently
proposed by Arkhangelsky et al. (2021). SDiD weights control units (and pre-treatment years) to
minimize the mean difference in time trends between treated and control groups. Appendix A.10
shows that SDiD produces very similar estimates (-0.41 µg/m3) as our three alternatives.

D. Heterogeneous Treatment Effects Vary with Baseline Pollution Levels

Our results so far have focused on the average treatment effect of nonattainment designation. We
now investigate the possibility of treatment heterogeneity. To do so, we repeat all of the above esti-
mations but add an interaction term between nonattainment status and baseline levels of PM2.5 in
2001-2003, following equation (6). The results are shown in Panel (c) of Table 1 and indicate that
there is indeed significant treatment heterogeneity. The negative interaction coefficient implies that
more polluted tracts experience larger improvements following nonattainment designation. In our
M1DiD specification, the improvement in PM2.5 concentrations is estimated to be 0.1 µg/m3 at the
10th percentile of baseline pollution levels, while it is 1.3 µg/m3 at the 90th percentile.43 The hetero-
geneous treatment effects are in line with previous findings by Auffhammer et al. (2009) and others
discussed above. One possible explanation may be regulatory attention on those areas triggering
nonattainment status and where population health is most at risk.

The implied (local) average treatment effects calculated from the two reported coefficients are
also shown in the table and, again, are significantly smaller than those produced by standard DiD.
Compared to Panel (a), the coefficients in Panel (c) on nonattainment and the interaction are also

43For estimating the interaction effects, we only use the units within the sample for each column, e.g. within the RD-
chosen window. Note that we use the same overall 10th and 90th percentiles of baseline pollution for calculating the
corresponding effects at these percentiles across columns for consistency, extrapolating for those models that use a smaller
window. While the 90th percentile within the RD0 window is lower than the overall (15.7 vs 20), there is substantial
variation in tract level pollution even within the county-based window.
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Figure 7: Heterogeneous PM2.5 nonattainment treatment effect by previous PM10 nonattainment
status
Notes: The figure shows the effect of the 2005 nonattainment designation on PM2.5 from 2001-03 to 2006-08 for four models. The two
estimates for each of the four models show effects of PM2.5 nonattainment for those areas that have no previous PM10 nonattainment
on the left, and for those areas that have previous PM10 nonattainment on the right. The estimates come from a single regression with
appropriate identifiers for the groups and a control for trends based on previous PM10 nonattainment designation alone, so the estimates
can be interpreted as the marginal effects of PM2.5 nonattainment designation for the two groups. The two estimates are significantly
different from each other at the 1% level for each model. Based on data from Meng et al. (2019b).

highly statistically significant for all our strategies, a property we will rely on when employing instru-
mental variable regressions below. This effect heterogeneity replicates with the other two sources of
pollution data, as we show in Appendix Tables A.23 and A.24.

E. Larger Treatment Effects with Previous PM10 Nonattainment Status

We next allow for heterogeneous treatment effects by previous PM10 nonattainment status as in
Equation (7). Figure 7 shows the effect of 2005 PM2.5 nonattainment by previous 1990 PM10 nonat-
tainment status. Note that we additionally control for flexible trends by previous PM10 nonattain-
ment status, so the effect shown is the marginal effect of PM2.5 nonattainment status. For both, the
naive DiD model, as well as our alternative models, the PM2.5 nonattainment effect is significantly
larger for those areas that have previously been in PM10 nonattainment, with differences significant
at the 1% level (Appendix Table A.14 shows results including the RD models omitted here because
they do not always include areas with both treatment groups).44

Importantly, these results show that not only areas that switched from previous PM10 attainment

44The average treatment effect across both groups in Table 1 is between the two heterogeneous effects shown in Figure 7.
Importantly, the effect heterogeneity here does not merely capture heterogeneity from baseline air quality discussed in the
previous section. The pattern between the two groups is the same if we additionally allow for heterogeneous treatment
effects by baseline air quality as in Equation (6), which additionally shows that within the two groups, the initially more
polluted tracts see larger air quality improvements.
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to PM2.5 nonattainment see an effect of PM2.5 nonattainment. On the contrary, areas in previous PM10

nonattainment see an even larger effect of PM2.5 nonattainment. This explains why assigning this
latter group into the control group as in Currie et al. (2023) flattens pre-trends and lowers estimated
effects of PM2.5 nonattainment, as areas with the largest treatment effect are added to the control
group. Nevertheless, as we show in Appendix A.13B, even when assigning these areas into the
control group, adjusting for confounding trends is essential, as DiD still significantly overestimates
nonattainment effects compared to DiDwb (Table A.18).45

F. Effects Over the Longer Time Horizon to 2011-13

In Part B of Table 1, we repeat the analysis of Part A but use the years 2011-13 as end point instead
of 2006-08. The idea is to test for impacts of nonattainment designation that may take some time
to take effect, or that are cumulative. Indeed, all estimates become larger, implying slightly bigger
effects of the policy over the ten year period than the five year period. The large difference between
DiD (-2.3 µg/m3) and our alternative approaches (-0.4 to -1.3 µg/m3) also persists over this longer
horizon.46

IV. Implications for Equity and Pollution Damages

We have shown that different estimation strategies yield substantially different estimates for the
effect of nonattainment designation on PM2.5 concentrations. Difference-in-differences (DiD) esti-
mates suggest the largest improvements, likely due to bias. Our three alternative methods—controlling
for baseline pollution (DiDwb), matched difference-in-differences (MDiD), and regression discon-
tinuity (RD)—show substantially smaller, though nonzero effects. In this section, we show how the
differences in effect sizes matter for two important applications: one focused on structural pollu-
tion exposure disparities and environmental justice, and the other focused on estimating pollution
damages as capitalized in house prices.

A. The Role of the CAA in Shrinking Racial and Urban-Rural Pollution Gaps

We first focus on disparities in PM2.5 exposure in the US and the contribution of the 2005 CAA
NAAQS in reducing these disparities. We begin with the mean pollution exposure gap between
Black and White Americans, which has been well documented (Jbaily et al. 2022, Currie et al. 2023).47

45These patterns also persist when we instead drop these areas as in Appendix Table A.7.
46The DiD estimate is equal to the gap between the red and blue dashed lines in Appendix Figure A.2. The pattern is

similar when using the other two pollution data sources, see Appendix Tables A.23 and A.24.
47We use our tract level PM2.5 concentrations (which are already population weighted by Census block populations)

and aggregate them up to the national level using tract level Black and White non-Hispanic population counts as weights.
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Currie et al. (2023) show that this Black-White PM2.5 gap fell by 0.6 µg/m3 between 2005 and 2015,
and that a substantial portion (61.2%) of that narrowing can be attributed to the effects of the 2005
nonattainment designations.

In Panel (a) of Table 2 we conduct a similar counterfactual accounting exercise. Our data shows
that the Black-White PM2.5 gap fell by 0.69 µg/m3 over the ten years from 2001-03 to 2011-13. To
measure the potential contribution of the CAA NAAQS, we use coefficient estimates from Table 1.
Our DiD estimates suggest that nonattainment designations alone contributed 49% to that narrow-
ing, or 64% when we allow for heterogeneous treatment effects following Panel (c) of Table 1. When
we allow for heterogeneous effects by racial composition of Census tracts — by including additional
interaction terms with the share of the tract population that was Black in 2000 as well as the inter-
action between this share and baseline pollution levels—the contribution slightly increases to 68%.
Importantly, our alternative estimation strategies all show a role for the CAA NAAQS in narrowing
the Black-White pollution gap, but the estimated contribution is considerably smaller, often around
half the size (between 9-26% for homogeneous treatment effects, 14-47% with heterogeneous effects,
and 18-49% with additional race interaction terms). A similar pattern is observed for the shorter five
year period ending in 2006-08.48

While we look at slightly different time periods and report main results using data from Meng
et al. (2019b) instead of Di et al. (2021), our estimated CAA contribution based on standard DiD
with heterogeneous effects (68%) until 2011-2013 is broadly in line with the findings in Currie et al.
(2023) of a contribution of 61.2% from 2005-2015. As shown in Appendix A.13A, when we follow the
approach of Currie et al. (2023) based on RIF/Quantile Regressions and their treatment assignment,
we recover an almost identical 61.1% contribution.49 However, as we show in Appendix A.13B, con-
trolling for confounding trends (i.e. DiDwb) in their approach also reduces the CAA contribution to
18.6% percent (Table A.19). The same pattern holds when we use their RIF/Quantile Regression ap-
proach but our treatment assignment, which shows a contribution of 22.5% based on DiDwb much
in line with our estimated 24% using the same data based on Di et al. (2021) in Table A.25.

We next explore spatial pollution gaps between urban and rural residents.50 In Panel (b) of
Table 2, we document a similar role of CAA rules in narrowing the Urban-Rural gap in PM2.5. Urban
centers, especially those with high population densities and large traffic volumes, are arguably those

In Appendix A.12 we show that our PM2.5 exposure levels are virtually identical to those in Jbaily et al. (2022), and show
the same in Appendix A.13A for Currie et al. (2023).

48A contribution of more than 100% as is the case in all DiD estimates implies that the counterfactual gap would have
increased.

49In Appendix A.13B we also show that other minor data differences to Currie et al. (2023) are negligible.
50We do so by calculating weighted average exposure levels using the number of urban and rural residents in each tract

as weights. These classifications are based on the 2000 Census definition which classifies blocks as urbanized areas (UAs)
and urban clusters (UCs) based on population density.
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Table 2: Pollution Disparities - Counterfactual Gap Analysis

Panel (a): Black-White Pollution Gap
PM2.5 exposure Black-White Gap Contribution of CAA (in %) [homogeneous effect]

Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.3 11.62 1.69
2006-2008 12.15 10.57 1.58 -0.11 193 64 53 52 47 3
2011-2013 9.64 8.63 1.00 -0.69 49 12 9 12 26 23

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [heterogeneous effect]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.3 11.62 1.69
2006-2008 12.15 10.57 1.58 -0.11 287 213 108 135 140 86
2011-2013 9.64 8.63 1.00 -0.69 64 14 30 29 47 36

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [+race interactions]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.3 11.62 1.69
2006-2008 12.15 10.57 1.58 -0.11 130 57 86 95 -23 -52
2011-2013 9.64 8.63 1.00 -0.69 68 18 45 41 49 47

Panel (b): Urban-Rural Pollution Gap
PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [homogeneous effect]

Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.59 10.21 2.38
2006-2008 11.26 9.62 1.64 -0.74 52 17 14 14 13 1
2011-2013 9.28 7.78 1.49 -0.89 70 17 13 16 37 33

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [heterogeneous effect]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.59 10.21 2.38
2006-2008 11.26 9.62 1.64 -0.74 73 54 28 34 35 20
2011-2013 9.28 7.78 1.49 -0.89 87 19 39 38 63 49

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [+urban interactions]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.59 10.21 2.38
2006-2008 11.26 9.62 1.64 -0.74 71 52 32 37 35 21
2011-2013 9.28 7.78 1.49 -0.89 88 20 39 40 63 52

Notes: Left columns show average PM2.5 exposure of Black, White, Urban and Rural populations, and difference between groups, as de-
rived from Census block level pollution concentrations and population counts. Right columns show the contribution of CAA nonattain-
ment designations in 2005 based on counterfactual calculations that factor out nonattainment treatment effects as estimated in Columns
1-4, 6, and 7 of Table 1. Population data is from the 2000, 2010 and 2020 waves of the US Census, linearly interpolated for years in between.
Pollution data is from Meng et al. (2019b).
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areas with the highest particulate matter concentrations and tend to have different socio-economic
characteristics than rural counterparts. We observe a large Urban-Rural PM2.5 gap, even larger than
the Black-White gap by around 40%. The Urban-Rural gap also narrowed substantially from 2001-
2003 to 2011-2013. Again, 2005 nonattainment designations account for some of this narrowing,
with DiD estimates suggesting the largest contribution (70-88%) while the other approaches yield
significantly smaller estimates (13-63%).

Overall, our results show that the NAAQS for PM2.5 enacted in 2005 significantly contributed
towards reducing pollution exposure disparities. Our results also highlight the sensitivity of such
analyses to the underlying method of identifying treatment effects, demonstrating that the contri-
bution may have been substantially smaller than suggested by standard DiD estimates. While Table
2 includes changes in population distributions (interpolating linearly between 2000, 2010 and 2020
Census waves), we show in Appendix Table A.20 that the results hold when population is fixed at
2010 levels switching off any population sorting channels. Appendix Tables A.25 and A.26 show
that the patterns are similar when using the two alternative pollution data sources.

B. Instrumenting Pollution with CAA Nonattainment to Estimate Effects on House Prices

So far, we have focused on air pollution as outcome variable, and the role of the CAA rules in re-
ducing PM2.5 concentrations. We now turn to the damages of PM2.5 exposure as capitalized in res-
idential real estate values, using nonattainment designations as instrument for pollution. To do so,
we estimate the following simple model to describe the change in the log of house prices in tract i:

∆Yi = α+ θ∆PMi + ∆µi (8)

which is equivalent to estimating the relationship in levels with tract and period fixed effects.
We estimate this equation via OLS or IV, using nonattainment as instrument for ∆PMi using either
DiD or our three alternative approaches.

Following the literature that uses nonattainment instruments for pollution, this assumes that
nonattainment designations have no direct impact on our outcome, house prices, apart from their
impact through pollution reductions. This would be violated if there are, for example, substantial
employment effects from regulation (Walker 2013) that also impact house prices, or if nonattainment
and attainment areas experience different house price trends for other reasons.51 In Appendix A.16,
we show a version of the below analysis with additional commuting zone fixed effects in Equa-
tion (8) that should capture most of the labor market effects. This changes the interpretation of

51While the exclusion restriction cannot be tested conclusively, we see no significant differences in pre-trends in the
house price event study equivalent to Table 3 shown in Appendix Figure A.20.
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coefficients and estimates become smaller, but the relative pattern between different IV estimates
discussed below are robust.52

Two mechanisms could explain why we expect the results to differ between standard DiD and
our three alternative estimation strategies. First, variation in the estimates of nonattainment effects
in the ‘first stage’ (Table 1) will mechanically alter the estimated effect of pollution on house prices.
Second, there may be differences in house price trends that co-vary with baseline pollution. For
example, we could imagine that polluted urban centers experienced a different evolution of house
prices over time.53 Such biases in the reduced-form relationship between nonattainment designa-
tions and house price growth could work in both directions. Our three estimation strategies also
address this second bias. DiDwb directly controls for such trends in house prices, while MDiD and
RD both compare treated with control units that have similar baseline pollution levels and thus
similar associated trends. As we show in Appendix Table A.22, there are only small differences in
the reduced-form relationships across empirical strategies, suggesting that the bias mainly operates
through the first mechanism linked to the first stage. To increase instrument power, we include the
set of instruments that exploit the two types of treatment effect heterogeneity: the heterogeneity in
Panels (c) and (f) of Table 1 as well as the heterogeneity based on previous PM10 nonattainment
treatment status as in Figure 7.

Column 1 in Table 3 shows results when running OLS without instruments, and implies that
a one unit increase in PM2.5 is associated with a reduction in house prices by 4% (exp(−0.04) −

1). Instrumenting PM2.5 with nonattainment status corresponding to the simple DiD approach in
Column 2 shows an effect that is larger implying a semi-elasticity of around 6%. This is expected
as pollution may exhibit classical measurement error and is correlated with desirable factors such
as economic activity, introducing attenuation and upward bias. The remainder of Table 3 shows
corresponding estimates from our three approaches that address the time trend that is correlated
with baseline PM2.5. Column 3 shows estimates that include baseline PM2.5 as a control (DiDwb-
IV), Columns 4 and 5 are based on matched DiD (MDiD-IV), and in Columns 6 and 7 we use the
regression discontinuity strategy (RD-IV).

The IV estimates based on our three alternative approaches yield larger pollution damages,
around 50% to 150% larger than those based on the standard DiD-IV. Our preferred approach for

52A specification with commuting zone fixed effects uses only variation in PM2.5 induced by the interaction of nonat-
tainment designations and baseline PM2.5, while binary nonattainment designations are absorbed. If nonattainment des-
ignations affect house prices through employment or similar effects at the commuting zone level, those will no longer be
a source of bias. But doing so also changes the interpretation of our estimates. We no longer capture house price changes
due to different pollution trajectories between commuting zones, but only differential trajectories of tracts within a given
commuting zone.

53See also Sanders & Stoecker (2015), Sanders et al. (2020) who address differential trends in their health outcome
variables when estimating the impact of pollution.
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Table 3: Pollution Damages - Instrumental Variable Comparison

OLS DiD-IV DiDwb-IV M1DiD-IV M2DiD-IV RD0-IV RD1-IV
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Effect of PM2.5 increases on house price index growth 2001-03 to 2006-08
∆PM2.5 -0.040 -0.064 -0.15 -0.12 -0.10 -0.16 -0.17

(0.017) (0.0080) (0.011) (0.029) (0.011) (0.11) (0.048)
Observations 54529 54529 54529 21152 21693 5087 7937
K-P F statistic 72.8 22.8 25.0 26.3 47.5 55.1
Elasticity -0.48 -0.77 -1.81 -1.44 -1.26 -1.98 -2.00

Panel (b): Effect of PM2.5 increases on house price index growth 2001-03 to 2011-13
∆PM2.5 -0.012 -0.016 -0.035 -0.033 -0.045 -0.032 -0.022

(0.0092) (0.012) (0.041) (0.019) (0.017) (0.040) (0.031)
Observations 54378 54378 54378 21062 21608 4496 19035
K-P F statistic 305.0 25.1 135.8 114.9 146.7 145.9
Elasticity -0.14 -0.19 -0.42 -0.39 -0.54 -0.39 -0.26

Notes: The dependent variable is the change in the logarithm of the house price index. ∆PM2.5 is the change in PM2.5 since 2001-03 in
µg/m3, instrumented by CAA nonattainment status for PM2.5, allowing for heterogeneous effects in the instrument by previous PM10
nonattainment status and by baseline PM2.5 levels in 2001-03. First-stage specifications in Columns 2-7 correspond to Columns 1-4, 6,
and 7 in Table 1. Standard errors in parentheses are clustered at the county level. Pollution data is from Meng et al. (2019b).

this setting is M1DiD-IV, shown in Column 4, which implies that a one unit increase in PM2.5 lowers
house prices by 11%. This effect is almost twice that in the standard DiD-IV. Our house price effects
are also larger than those found for previous NAAQS targeting coarser categories of particles. While
this could in part be due to the finest particles mattering more or that house prices have become more
sensitive to pollution over time, our results show that it could also be due to the downward bias in
the standard DiD-IV estimate, which is more in line with previous results.54 This implies that while
simple DiD may overestimate the effect of nonattainment on PM2.5, it may underestimate the effect of
PM2.5 on house prices when nonattainment status is used as an instrument for PM2.5. A similar pat-
tern holds when we extend the post-treatment period to 2011-13. Again, the DiDwb-IV, MDiD-IV
and RD-IV yield larger estimates of pollution damages as capitalized by house prices. The pattern
is similar when we use the other two sources of pollution data, as we show in Appendix Tables A.27
and A.28.

Finally, when we estimate the effect of nonattainment designation on house prices directly (re-
duced form), the results show that house prices in nonattainment areas gained an additional 6% on
average due to being designated into nonattainment.55

54The implied elasticity of -1.4 is larger than the elasticity of -0.6 in Bento et al. (2015) who study the effects of PM10 on
house prices, or the elasticity of around -0.2 to -0.35 reported for TSP (PM100) in Chay & Greenstone (2005). Note that the
elasticity for the endline 2011-13 is around -0.4, and thus more in line with previous estimates, but also 100% larger than
the elasticity based on simple DiD-IV. Graff Zivin & Singer (2023) explore differential capitalization rates by racial groups
using micro data, but find similar overall effects on house prices based on our proposed approaches.

55This policy effect is based on the average ‘reduced form’ effect estimated in Appendix Table A.22. Alternatively, we
can calculate an approximation by multiplying the -0.55 µg/m3 reduction in PM2.5 from Table 1 with the house price effect
of -11% per µg/m3 from Table 3, which yields an increase of around 7% (exp(−0.55 ∗ −.12) − 1).
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V. External Validity

Our focus so far has been on the PM2.5 rules and we demonstrated the importance of accounting for
trends in pollution that correlate with baseline pollution and assignment into treatment. We next
examine how likely it is that this insight extends to NAAQS beyond the 2005 PM2.5 rules.

The forerunner of the 2005 PM2.5 regulation was the 1990 PM10 regulation, widely studied in
the literature (e.g. Bento et al. 2015, Auffhammer et al. 2009). To gauge the issue of confounding
trends for this older regulation, we use the historic PM2.5 data from Meng et al. (2019b) going back
to the 1980s together with the 1990 PM10 nonattainment areas.56 First, Appendix Figure A.5 shows
that there is indeed a similar pattern where PM2.5 improvement is clearly associated with 1987-89
baseline PM2.5 concentrations even in the absence of 1990 PM10 nonattainment. Second, we estimate
the impact of PM10 nonattainment comparing 1987-89 and 1991-93 analogous to our main analysis
for the PM2.5 rules. Table 4 shows that naive DiD has a similar upward bias (Column 1), while
DiDwb, M1DiD and M2DiD have a lower estimated nonattainment impact of around half the size.57

This suggests that our insights are likely just as relevant for the earlier 1990 PM10 standards.
Apart from the closely related 1990 PM10 rules, the problem of correlated trends may apply more

broadly to NAAQS and related policies. Indeed, Greenstone (2004) mentions possible ‘mean rever-
sion’ going back to the SO2 rules in the 1970s and Clay et al. (2021) show that to-be-treated units
were on different trends for the original CAA in 1970. In our robustness Section III.C, we briefly
discuss the NBP and CAIR to rule them out as possible confounding concurrent air quality policies.
We can, however, also use the data on NBP and CAIR treatment to evaluate whether controlling for
trends based on baseline pollution alters the estimated effect of NBP and CAIR designation per se.
Appendix Table A.11 Panel (c) and (d) show that, in contrast to simple DiD, a DiDwb approach pro-
duces a much smaller effect of NBP or CAIR treatment on subsequent PM2.5 levels. Controlling for
baseline trends in Ozone has little effect on estimated effects on Ozone levels, however, suggesting
that confounding trends for PM2.5 may be particularly problematic (Panel e).58 Finally, we use the
comprehensive EPA data on all NAAQS nonattainment areas (EPA 2022b) to focus on those areas
which have consistently been in attainment, i.e. were never subject to any NAAQS nonattainment
regulation in history and also not subject to the NBP or CAIR. Even in this subset of ‘never treated’
areas, we document that there are differential trends in air quality improvements by baseline pol-
lution. Using our PM2.5 data from 1981 (Meng et al. 2019b), Figure 8 Panels (a), (b) and (c) show

56Note that we use PM2.5 concentrations instead of PM10 because of much better spatial coverage due to Meng et al.
(2019b). PM2.5 is highly correlated with PM10 as it is a subset of PM10.

57We use the years 1987-89 as baseline here. We do not use an RD framework here due to lack of access to EPA-registered
PM10 values for the 1990 regulation.

58Panels (d) and (e) also replicate the results from Deschenes et al. (2017), see Appendix A.8.
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Table 4: The effect of 1990 PM10 nonattainment designation on PM2.5 concentrations

DiD DiDwb M1DiD M2DiD
Homogeneous Treatment Effect: from 1987-89 to 1991-93

Nonattainment -0.75 -0.37 -0.27 -0.46
(0.29) (0.056) (0.26) (0.31)

Observations 72043 72043 20174 22094

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status with the 1990 PM10 NAAQS (instead of
the 2005 PM2.5 NAAQS) on the change in PM2.5 levels between the pre- and post-treatment periods of 1987-89 and 1991-93 respectively.
Each column is from a separate regression, where (1) uses simple DiD, (2) adds controls for baseline PM2.5 (1987-89), (3) runs DiD
using a sample matched (1-to-1) on baseline PM2.5, (4) matches on baseline PM2.5, tract population and population density (both 2000).
Standard errors in parentheses are clustered at the county level. Pollution data is from Meng et al. (2019b).

that baseline PM2.5 on the horizontal axes predicts 10-year improvements (−∆PM2.5) on the vertical
axes, akin to Figure 5. Panel (d) plots coefficients from a regression of annual PM2.5 levels on 1981-83
baseline PM2.5, and shows a general trend correlated with baseline pollution in the ‘never treated’
group. This suggests that the issue of differential trends that we identity is relevant beyond our fo-
cus on the 2005 rules, as the ‘never treated’ group is likely to be a control group in most analyses of
CAA policies.59

The issue of correlated trends is often not accounted for in the literature. There are few excep-
tions that address possible confounding trends which, however, have no explicit discussion of bias
(Greenstone 2004, Chay & Greenstone 2005, Auffhammer et al. 2009, Bishop et al. 2023). Greenstone
(2004) controls for and matches on baseline levels for analyzing the 1970s SO2 regulation. Chay
& Greenstone (2005) use a variant of regression discontinuity with manual window selection to
study TSP rules in the 1970s-80s (see also Sanders & Stoecker (2015). Auffhammer et al. (2009)
include monitor-specific time trends in their analysis of the 1990 rules for PM10, and Bishop et al.
(2023) control for baseline PM2.5 when exploiting nonattainment designations to estimate PM2.5 ef-
fects on dementia prevalence in a cross-sectional analysis. However, it remains common to estimate
nonattainment effects without adjusting for confounding trends by baseline pollution, including in
the growing literature focusing on PM2.5 nonattainment or the previous PM10 or TSP nonattain-
ment designations (e.g. Grainger 2012, Isen et al. 2017, Sanders et al. 2020, Colmer & Voorheis 2021,
Colmer et al. 2022, Hollingsworth et al. 2022, Currie et al. 2023).

For practitioners, our findings show that it is important to take into account trends based on
baseline pollution. This implies adding controls (or matching on) baseline pollution levels when
using differenced outcomes, or allowing for interactions between baseline levels and year dum-
mies in a panel fixed effect settings. While it may depend on context, our findings also imply that

59Colmer et al. (2020) show a convergence of pollution concentrations, but for the entire US, not just the ‘never treated’
group.
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(a) 1981-83 Baseline vs. 1985-1995 Change (b) 1991-93 Baseline vs. 1995-2005 Change

(c) 2001-03 Baseline vs. 2005-2015 Change (d) Interaction of 1981-83 baseline with years

Figure 8: Long-running correlation between baseline pollution and pollution changes
Notes: Panels (a), (b) and (c) plot tract level mean PM2.5 concentrations in 1981-83, 1991-93 and 2001-03 respectively on the horizontal
axes, and 1985-1995, 1995-2005 and 2005-2015 improvements in PM2.5 concentrations on the vertical axes. Panel (d) shows interaction
coefficients estimated in a tract-year panel regression with PM2.5 concentrations as dependent variable. The plotted estimates are for tract
level baseline PM2.5 (1981-83 average) interacted with year dummies with 95% confidence bands based on standard errors clustered at
the county level. The figure is based on data from Meng et al. (2019b).

nonattainment areas that have previously been in nonattainment should either be kept in the treated
group (possibly with a heterogeneous treatment effect) or dropped, but not assigned into the control
group.

VI. Conclusion

Did the National Ambient Air Quality Standards for fine particulate matter pollution introduced in
2005 trigger air quality improvements? Our results show that areas in nonattainment of the stan-
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dards indeed experienced faster reductions in PM2.5 levels following regulation. This is in line with
the empirical literature evaluating earlier iterations of CAA rules (Currie & Walker 2019, Aldy et al.
2022).

We find, however, that difference-in-differences (DiD) estimation tends to overstate the achieved
pollution reductions. This bias is driven by a correlation between baseline levels and changes of pol-
lution, even in the absence of nonattainment designations. We propose three alternative approaches
that address this source of bias: DiD with added controls for baseline pollution trends (DiDwb),
matched DiD (MDiD), and regression discontinuity designs (RD). All three produce similar esti-
mates which are less than half the size of those produced by standard DiD. The strategies are easy to
implement and our results imply that it may be worth including them in assessments of CAA nonat-
tainment rules, or when using CAA nonattainment designations as instrument for air pollution.

We further show that the choice of estimation strategy can have important implications for the
role of the CAA with regards to pollution exposure disparities and environmental justice. We find
the 2005 CAA rules likely contributed to the narrowing of the Urban-Rural and Black-White gaps
in PM2.5 exposure, but less so than DiD estimates would suggest. Similarly, the choice of empirical
strategy matters when estimating pollution damages with nonattainment instruments. As we show
for the case of house prices, while standard DiD overstates the impact of the regulation on pollution,
it understates the impact of pollution when nonattainment is used as instrument. Similar differences
likely hold in other settings where nonattainment designations are used as instruments, including
estimates of health or productivity losses.

Our findings provide a cautionary tale when it comes to estimating the effects of nonattainment
designations which are a central element of Clean Air Act rules. We find that nonattainment designa-
tions in 2005 cannot be considered random and that nonattainment areas likely followed a different
time trend than attainment areas. Similar time trends are apparent going back to at least the 1980s,
suggesting possible confounding bias for analyses of previous NAAQS.
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