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Abstract

This paper offers a simple but powerful model of wishful thinking, cognitive dissonance, and
related biases. Choices maximize subjective expected utility, but beliefs depend on the
decision maker's interests as well as on relevant information. Simplifying assumptions yield a
representation in which the payoff in an event affects beliefs as if it were part of the evidence
about its likelihood. A single parameter determines both the direction and weight of this
“evidence', with positive values corresponding to optimism and negative values to pessimism.
Changes to a person's interests amount to new “evidence', and can alter beliefs even in the
absence of new information. The magnitude of the bias increases with the degree of
uncertainty and the strength of the decision maker's interests. High stakes can reduce the bias
indirectly by increasing incentives to acquire information, but are otherwise consistent with
substantial bias. Exploring applications, | show that wishful thinking can lead investors to
become progressively more exposed to risk, and that while improved policing unambiguously
deters crime, increased punishment may have little or no deterrent value.

JEL Classifications: D01, D03, D80, D81, D83, D84
Keywords: wishful thinking, cognitive dissonance, reference-dependent beliefs, reference-
dependent preferences

This paper was produced as part of the Centre’s Wellbeing Programme. The Centre for
Economic Performance is financed by the Economic and Social Research Council.

Acknowledgements
| am grateful to Vincent Crawford, Peter Klibano , Sujoy Mukerji, Wolfgang Pesendorfer,
Matthew Rabin, Peyton Young, and particularly to Erik Eyster for stimulating discussions
and advice. | am also thankful to seminar and conference participants at Bar-llan, Ben-
Gurion, Berkeley, CalTech, Collegio Carlo Alberto, Edinburgh, Essex, Hebrew University,
LSE, Maastricht, MIT, Oxford, Royal Holloway, Tel- Aviv, UBC, UCL, UCSB, Warwick,
Gerzensee, RUD, and SITE.

Guy Mayraz is a Research Officer with the Wellbeing Programme at the Centre for
Economic Performance, London School of Economics. He is also a Postdoctoral Research
Fellow with the Department of Economics and Nuffield College, Oxford.

Published by

Centre for Economic Performance

London School of Economics and Political Science
Houghton Street

London WC2A 2AE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means without the prior permission in writing of
the publisher nor be issued to the public or circulated in any form other than that in which it
is published.

Requests for permission to reproduce any article or part of the Working Paper should be sent
to the editor at the above address.

© G. Mayraz, submitted 2011



1 Introduction

Beliefs depend not only on what people know to be true, but also on what they
want to be true. This paper introduces a model of decision making that allows for
this possibility, and uses a number of simplifying assumptions to obtain a tractable
and generally applicable representation. The model provides a unified account of
wishful thinking, overoptimism, overconfidence, cognitive dissonance, and unrealistic
pessimism, and can be used to study their implications for decision making. The
psychology evidence for these biases spans decades. The economics evidence is much

1

less extensive, but includes a wide variety of situations.” Theoretical applications

extend into additional areas.?

This paper is hardly the first to offer a model of these biases, but it differs markedly
from the previous literature. The common approach is to model biased beliefs as an
optimal delusion: decision makers start the planning horizon with unbiased beliefs,
and choose a distorted prior so as to maximize their total discounted utility, including
utility from anticipation (Akerlof and Dickens, 1982; Brunnermeier and Parker, 2005).3

Optimal delusion models can plausibly explain many cases of optimistic bias. For
example, a moderate bias over health risks can be seen as a trade-off between the desire
to minimize fear and the possibility that biased beliefs would result in behavior that
would make disease more likely. A moderate level of bias is, however, predicated on
relevant choices having correspondingly moderate stakes. In the limit of low stakes the
bias is extreme, and in the limit of high stakes it disappears entirely. By assumption, it
is not possible to model situations in which the bias leads to welfare loss in expectation.

Optimism in such models is related to risk and ambiguity preferences. Since riskier

I Babcock and Loewenstein (1997) find that parties in negotiations are affected by wishful thinking,
resulting in an inefficient failure to reach agreement. Camerer and Lovallo (1999) link excess entry
into competitive markets to overconfidence over relative ability. Malmendier and Tate (2008) argue
that managerial overconfidence is responsible for corporate investment distortions. Cowgill et al.
(2009) find optimistic bias in corporate prediction markets. Mullainathan and Washington (2009)
find that voting for a candidate results in more positive views about the candidate. Park and Santos-
Pinto (2010) provide field evidence for overconfidence in tournaments. Mayraz (2011) finds that a
person’s expectations for the future price of a financial asset depend on whether he or she gains from
high or low prices. Hoffman (2011a,b) finds that truck drivers are optimistically biased about their
productivity (and hence their pay), resulting in an inefficient failure to switch jobs.

2For example, credit markets (De Meza and Southey, 1996), banking (Manove and Padilla, 1999),
corporate finance (Heaton, 2002), search (Dubra, 2004), savings (Brunnermeier and Parker, 2005),
insurance (Sandroni and Squintani, 2007), price discrimination (Eliaz and Spiegler, 2008), incentives
in organizations (Santos-Pinto, 2008), and financial contracting (Landier and Thesmar, 2009). Studies
of overconfidence over the accuracy of signals are excluded from this list.



bets offer more scope for bias, optimism implies a ceteris paribus preference for risk.
If optimism is restricted to beliefs over ambiguous bets, it further implies a ceteris
paribus preference for ambiguity.?

This paper’s approach is very different. Decision makers take their beliefs as given,
and maximize subjective expected utility in their choices. Their beliefs may, however,
depend on what they want to be true prior to making their choice. A number of
simplifying assumptions are imposed, yielding a representation with one non-standard
parameter, which determines both the direction and magnitude of the bias.

Some predictions are broadly similar to those of optimal delusion models. For
example, optimists underestimate their health risks, much as they would in an optimal
delusion model. The degree of bias is, however, independent of the impact on future
choices, and a substantial bias may occur even if its cost is high. Decision makers
are only biased about a choice if its outcome hangs on events that form part of their
existing interests. There is thus no general tendency to favor risky or ambiguous bets.
On the other hand, choices that align (conflict) with an optimist’s existing interests
are perceived to be relatively likely (unlikely) to lead to desirable outcomes. This
feature of the model leads to path dependence: an optimist who is invested in some
asset is biased in favor of increasing her exposure to the asset and against replacing
her existing investment with an opposite bet.?

Changes to the decision maker’s interests affect beliefs, even if the relevant in-
formation is unchanged. This makes it possible to model cognitive dissonance as a
dynamic version of wishful thinking. For example, Knox and Inkster (1968) find that
when bettors commit to place a bet on a horse, their confidence that the horse would
win the race goes up. This finding can be readily explained by the change in interests:
the bettors are initially indifferent as to which horse would win the race, but once they
place the bet they gain an interest in ‘their’ horse winning. Beliefs are thus initially
unbiased, but become biased once the bet is placed. Exogenous changes in interests
are also predicted to affect beliefs. For example, the finding that congressmen become

more positive about women'’s interests after fathering a daughter (Washington, 2008)

3There are a number of papers in which agents manipulate their belief indirectly, by strategically
choosing what information to consume (Carrillo and Mariotti, 2000; Ké&szegi, 2006) or by a biased
memory process (Benabou and Tirole, 2002; Compte and Postlewaite, 2004; Gottlieb, 2010).

4The connection between optimism (or pessimism) and preferences for risk and ambiguity is also
shared by such models as Hey (1984), Bracha and Brown (2010) and Dillenberger et al. (2011), in
which the probabilities used to evaluate an alternative vary with the payoffs in that alternative.

5In a labor context, such path dependence would lead to an inefficiently low rate of quitting,
consistent with the findings in Hoffman (2011a,b).



can be explained by the consequent increase in alignment between a congressman’s
interests and those of women.%

The core of the model is the precise relationship between a decision maker’s beliefs
and her interests. Subjective beliefs are represented by a probability measure over the
set of states, and interests are represented by a payoff-function, or the mapping associ-
ating each state with the utility that the decision maker obtains in that state. Letting
f denote the payoff-function, I let 7y denote the resulting probability measure. In
order to obtain a tractable representation, I make a number of simplifying assump-
tions, which take the form of special circumstances in which different payoff-functions
do not result in different beliefs.

The formal framework and simplifying assumptions are presented in Section 2. A
representation theorem establishes that the assumptions are necessary and sufficient
conditions for the existence of a probability measure p and a real-valued parameter

w, such that for any payoff-function f and any event A,

7 r(A) o</Ae‘”f dp. (1)

Equation 1 takes a simpler form if the state-space is discrete, when it can be written

as follows, where s is any state:
T r(s) o p(s)e" ), (2)

To understand this representation note first that if f is constant then 7y = p. The
probability measure p therefore represents the decision maker’s indifference beliefs,
or the beliefs she would hold if she were a completely disinterested observer who is
indifferent between all states. More generally, f is not constant, and 7 ¢ depends on
both f and on w. If y is positive (negative) m s is higher in states in which payoff
is higher (lower). A positive value of y therefore represents optimistic bias, and a
negative value represents pessimistic bias. The larger w is in absolute terms, the
greater the bias. In analogy with relative risk-aversion, w can be thought of as the
coefficient of relative optimism. Standard decision makers are represented by y = 0.
Such decision makers are realists, and for them 7y = p for all f.

Section 3 completes the model, and provides it with a revealed preferences axiom-

atization. The overall framework is that of reference-dependent preferences, where

6Socialization is an alternative explanation (Washington, 2008).



preferences are over alternatives (acts), and the reference corresponds to the map-
ping from states to consequences that characterizes the decision maker prior to the
new choice. Axioms ensure (i) that holding the reference constant, preferences have a
subjective expected utility representation, (ii) that the utility function is not reference-
dependent (making this a model of reference-dependent beliefs), (iii) that the reference
affects beliefs only via the interests that follows from it, and (iv) that beliefs relate to
interests via Equation 1.

In the representation that follows from the axioms, each decision maker is defined
by a utility function u, a probability measure p, and a coefficient of relative optimism
w.” Let f denote the payoff-function representing the decision maker’s interests before
being presented with the choice set. According to the model, her choice maximizes
the expectation of u given z ¢, where 7 s is given by Equation 1.

One interpretation of the model is that subjective judgment is in some people
biased in an optimistic directions, and in others in a pessimistic direction. Decision
makers have standard tastes, and seek to maximize their (true) expected utility. Fre-
quently, however, they find themselves having to resort to subjective judgment when
assessing the likelihood of events,® and in those cases they end up with biased beliefs.
Biased beliefs then lead to biased choices.

The model with y > 0 provides a unified account of wishful thinking and cognitive
dissonance. These two biases can be seen, respectively, as simply the cross-sectional
and time-series manifestations of optimism. Overoptimism and overconfidence in abil-
ity can be viewed as special cases of wishful-thinking.? The model with ¥ < 0 can be
used to represent unrealistic pessimism (Seligman, 1998).

Section 4 takes a closer look at the equations relating beliefs to interests. An
important insight is that they are formally identical to Bayes Rule, with p standing
for prior beliefs, 7 s for posterior beliefs, and y f(s) for the log likelihood in state s.

It is thus as if optimists (pessimists) are Bayesian belief updaters, who believe that

Ty and u are identified together, and the representation is unique up to a positive affine transfor-
mation. If u is replaced by u’ = au + b, w must be replaced by v’ = y/a.

8Knight (1921) emphasized the importance of subjective judgment in decisions under uncertainty:
“Business decisions, for example, deal with situations which are far too unique, generally speaking,
for any sort of statistical tabulation to have any value for guidance. The conception of an objectively
measurable probability or chance is simply inapplicable.” (III.VIL.47); “Yet it is true, and the fact can
hardly be overemphasized, that a judgment of probability is actually made in such cases.” (II1.VII.40).

90veroptimism is exemplified by the Weinstein (1980) finding that students believe desirable
(undesirable) life events are more (less) likely to happen to them than to other students. The
Svenson (1981) finding that most people believe themselves to be better drivers than most other
people is the best known example of overconfidence.



Nature has chosen the state of the world so as to make life better (worse) for them.

The comparative statics of the model are that the bias is increasing in the degree of
optimism or pessimism, the strength of the decision maker’s interests, and the degree
of subjective uncertainty.! High-stakes decisions result in smaller bias only if the
increased incentive to invest in information reduces the decision maker’s uncertainty.
If good information is not available, a substantial bias may remain in spite of its costly
consequences. !

Section 5 examines belief updating. Changes to the decision maker’s interests
can alter beliefs even in the absence of new information, as in the Knox and Inkster
(1968) study of horse bettors. A more subtle phenomenon appears whenever the
decision maker’s interests involve a non-linear function of events. News about one
event can then alter the subjective probability of the other, even if the two events are
independent. For example, a professor’s belief about the importance of publishing in
a top journal may depend on whether her paper is accepted.

When using the model in a new application it is necessary to introduce modeling
assumptions for p and for w. One option is to reinterpret rational expectations as
applying to the indifference beliefs p. Optimistic bias can be modeled simply by
assuming that y is positive. Consider the beliefs of investors during an asset bubble.
The implication of rational expectations is that investors with no exposure to the
asset hold unbiased beliefs about the prospect of market collapse. The assumption
that v > 0 implies that investors who hold the asset underestimate this probability.

The model makes it possible to adapt existing applications to incorporate the
implications of wishful thinking and cognitive dissonance. Suppose an agent in some
model maximizes expected utility given beliefs p and utility function u. In adapting
the model to allow for wishful thinking, the natural assumption is that p represents
the agent’s indifference beliefs. Equation 1 can be used to compute the distorted
probability measure z ¢, which can then be used in place of p in predicting the agent’s
choices.

Section 6 presents two applications. The first shows that an optimism leads in-
vestors to escalate risky investments. The intuition is that taking up a risky invest-

ment creates an interest in the risk being low, and the investor consequently comes

0Tntuitively, stronger optimism /pessimism and stronger interests correspond to stronger ‘evidence’,
whereas more subjective uncertainty implies a weaker ‘prior’.

1 The magnitude of the bias is measured by its effect on the subjective odds-ratio between events.
Since certainty corresponds to an infinite odds-ratio, no amount of bias can cause a certain event to
be perceived as less than certain (or the other way around.)



to believe the risk is lower than it really is. Given the revised risk assessment, the
investor feels secure in increasing the investment. The second application is to the
economics of crime. There is much evidence that increasing the severity of punish-
ment is a relatively ineffective deterrent as compared with increasing the likelihood
of punishment (Grogger, 1991; Nagin and Pogarsky, 2001; Durlauf and Nagin, 2011).
The model can explain this finding on the assumption that criminals are optimistic.
The intuition is that increasing the punishment gives criminals a stronger interest
in not getting caught, resulting in a bigger bias in their beliefs. Thus, while getting
caught is worse, it is also subjectively less likely. By contrast, increasing the likelihood
that criminals are brought to justice leaves the bias in their beliefs unchanged, and
unambiguously improves deterrence.

The model stands in an interesting relationship to models of reference-dependent
utility, such as Készegi and Rabin (2006). In both types of model preferences depend
on a reference act, but in Készegi and Rabin (2006) the wutility of different outcomes
is dependent on the probability in which these outcomes are obtained, while in this
model the probability of different states is dependent on the wtility in those states. In
Készegi and Rabin (2006) it makes no difference in which particular states a given
consumption outcome is obtained (only the overall probability matters). In this model
it makes no difference which particular outcome is obtained in a given state (only its

utility matters).

2 Belief distortion

The core of the model is the relationship between people’s beliefs and what they want
to be true. In this section I state and prove a representation theorem that characterizes
this relationship. Section 2.1 describes the framework that links beliefs and interests,
the properties that are assumed to characterize this link, and the formal statement
of the theorem. Section 2.2 demonstrates the role of the individual assumptions, by
presenting the partial representation results that can be obtained with only a subset
of the assumptions. The proof is described for the special case in which there are only
finitely many events, making it possible to focus on the key ideas, while avoiding the
technical complications that arise in the more general case. Section 2.3 concludes the

proof of the representation theorem by extending this result to any measurable space.



2.1 Framework

Subjective uncertainty is defined over a measurable-space (S, X), where S is the set
of states, and X is a o-algebra of subsets of S, called events. The decision maker’s
interests are represented by a payoff-function, which is a mapping associating each
state with the utility that is obtained in that state. I let X = [m, M] C R denote
the set of all feasible payoffs, which I assume to be an interval which includes 0.
A payoff-function is formally a X-measurable mapping f : S — X. Let F denote
the set of all such functions, and let A denote the set of all og-additive probability
measures over (S, £). The key ingredient in the model is a distortion mapping @ :
F — A, associating with each payoff-function a probability measure over (S, X). The
distortion mapping 7z is the formal representation of the possibility that a person’s
beliefs are a function of her interests. The goal of this section is to develop a tractable
representation for .

In the following definitions f and f’ stand for any payoff-functions, a for any
constant payoff-function, and E for any event. The first definition states the properties
we want the distortion mapping to satisfy, and the second describes the logit-distortion

formula. The theorem says that the two definitions are equivalent.

Definition 1. 7 : F — A is a well-behaved distortion if the following conditions are
satisfied:

Al (absolute continuity) 7 (E) =0 &= 7ns(E) =0.

A2 (consequentialism) If f = £’ over a non-null'? event E then z ¢/(-|E) = z ¢(-|E).
A3 (shift-invariance) If f'= f +a then 7y =my.

A4 (prize-continuity) If f, = f then 7, (E) — 7 s(E).

These properties should be understood as simplifying assumptions, the purpose of
which is to obtain as simple as possible a representation, while retaining the ability
to represent the phenomena we wish to model. Absolute Continuity limits belief
distortion to events that the decision maker is uncertain about. Consequentialism
requires that if two payoff-functions coincide over some event E then the corresponding

probability measures conditional on E also coincide. Consider two events E; and E;

12That is, both 7 f(E) > 0 and w(E) > 0. Absolute Continuity ensures that these two require-
ments coincide.



that are subsets of E and an event F' that is outside E. According to Consequentialism,
a change in the payoff in F' can affect the overall probability of E| and E,, but it cannot
affect their relative probability. Shift Invariance requires subjective probabilities to
depend only on payoff differences between states. A person’s interests in an event
being true are defined by how much she has to gain or lose (in utility terms) if the event
is true. Increasing all payoffs by a constant leaves interests unchanged, and should
not result in a change to beliefs. Prize Continuity requires that small differences in

payoffs have only a small effect on beliefs.

Definition 2 (Logit distortion). 7 : F — A is a logit distortion if there exists a
probability measure p (the indifference measure), and a real-number w (the coefficient

of relative optimism), such that for any payoff-function f and any event A,

7§ (A) o</Avedp. (3)

Consequentialism only has bite when there are at least three events with positive
probability. This condition is therefore necessary for the equivalence between the two
definitions to hold.

Definition 3 (Minimally complex distortion). = : F — A is minimally complex if
there exists three disjoint events A, B, and C, and a payoff-function f such that
mr(A), m¢(B), and 7 ¢(C) are all positive.

Theorem 1 (Representation theorem). A minimally complex distortion is a logit-

distortion if and only if it is well-behaved.

2.2 Intermediate representation results

In this section I prove the theorem for the special case where there are only finitely
many events. That is, I assume that there exists a finite partition S of the state-space,
such that X is the algebra generated by §. In addition, I prove a sequence of partial
representation results requiring only a subset of the assumptions. In order to state the
necessary and sufficient conditions for these representations I define a new property,

Indifference, which is related to Shift Invariance, but is considerably weaker:

A3’ (Indifference). 7y = m if both f and f’ are constant payoff-functions.



Note that unlike Shift Invariance, Indifference does not require the set of payoffs to

have cardinal (or even ordinal) meaning.

Lemma 1. Suppose that there exists a finite partition S of the state-space, such that

Y s the algebra generated by S, and that & is minimally complex, then:

1. Absolute Continuity is a necessary and sufficient condition for there to exist a
probability distribution p € A and a function h : F x § = Ry, such that for
any payoff-function f and any event A € S,

wr(A) o p(A) hy(A). (4)

2. Assume Absolute Continuity. Consequentialism is a necessary and sufficient
condition for there to exist a probability distribution p € A, and a mapping

w:S x X — Ry, such that for any payoff-function f and any event A € S,
my(A) x p(A) ua(f(A)). (5)

3. Assume Absolute Continuity and Consequentialism. Indifference is a necessary
and sufficient condition for there to exist a probability distribution p € A, and a

mapping v : X = R4, such that for any payoff-function f and any event A € S,
wf(A) o p(A) v(f(A)). (6)

4. Assume Absolute Continuity and Consequentialism. Shift-Invariance and Prize-
Continuity are necessary and sufficient conditions for there to exists a probability
distribution p € A, and a parameter w € R, such that for any payoff-function
f and any event A € S,

7 r(A) o p(A) "M, (7)

Note that while the representation in Equations 4-7 is defined with respect to
events in S, the implication for general events is straightforward.'®> The following
simple example demonstrates that Minimal Complexity is a necessary assumption.
Let S = {A, B}, let ws(A) o< p(A)(1 + (f(A) — f(B))?) and 7 r(B) o p(B). This

13 Any event in X is the finite union of events in S.
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distortion is well-behaved (Definition 1), but it cannot even be given the representation

of Equation 5, let alone that of a logit distortion (Definition 2).

2.3 Completing the proof

This section concludes the proof of Theorem 1 for the general case. The first step is

to generalize Equation 7 to any payoff-function and any constant-payoff events:

Lemma 2. Suppose w : F — A is a minimally complex well-behaved distortion, then
there exist a probability measure p and a parameter y € R, such that for any payoff-
function f and any events A and B such that p(B) > 0 and f is constant on A and

on B,
wr(A)  p(A) ev/™
zf(B)  p(B) ev/®)

(8)

Theorem 1 for simple payoff-functions is an immediate corollary.'* The following claim

is a little more general, allowing for functions that are almost everywhere simple:

Definition 4. A payoff-function f € F is almost everywhere simple if there exists a
payoff-function g € F and an event E such that f obtains only finitely many values
on E and 7, (E) = 1.

Corollary 1. Theorem 1 holds when restricted to payoff-functions that are almost

everywhere simple.

The remaining case involves functions which are not almost everywhere simple. If such
payoff-functions exist, there must also exist an infinite sequence of non-null events
{An}nen. But then, as long as w # 0 and the set of feasible payoffs is unbounded, it
is possible to construct a payoff function f such that lim,_, . % = 00. But this
implies that 7 ¢(A1) = 0, in contradiction to Absolute Continuity. Hence, if y # 0

the set of feasible payoffs must be bounded.

Lemma 3. Suppose © : F — A is a minimally complex well-behaved distortion, and
that there exists a payoff-function f that is not everywhere simple, then there exist an

upper bound M € R, such that for any feasible payoff-value x, e¥* < M.

Lemma 3 ensures that e¥X is bounded from above. If it is also bounded from below,
a limit argument based on simple payoff-functions can be used to extend the claim
further:

1A payoff-function f is simple if f(S) is finite.

11



Lemma 4. Suppose 7 : F — A is a minimally complex well-behaved distortion then
there exists a probability measure p and a parameter w € R, such that for any events A
and B for which p(B) > 0, and any payoff-function f for which there exist a number
m > 0 such that f(s) >m for alls € AUB,

wr(A) [ye" dp
wr(B)  [pevldp

(9)

The final step in the proof of Theorem 1 uses a limit argument whereby a general event
A is approached by events of the form A, = {s € A : /) > 27"}, and Lemma 4 is

applied on each of these events separately.

3 Preferences

Section 2 characterizes the relationship between beliefs and interests. This section
completes the model, by embedding this dependence in a complete model of choice,
and providing it with a revealed-preferences axiomatization. The overall framework is
that of reference-dependent preferences, as is the case in models of reference-dependent
utility. The axioms in this section, however, ensure that this model is one of reference-
dependent beliefs. Further axioms ensure that the particular consequences that are
obtained in different states are irrelevant, and that the only thing that matters is the
utility value associated with any given consequence. In other words, a reference act
affects beliefs only via the associated payoff-function. A final set of axioms restates the
simplifying assumptions of Section 2 in revealed preferences terms. The resulting rep-
resentation comprises three elements that are determined together: a utility-function,
a probability-measure, and a real-valued coefficient of relative-optimism.

Both the reference and the choices are acts, or mappings from states to conse-
quences. For example, in an investment application, the reference may be an in-
vestor’s current portfolio, represented by a mapping from market outcomes to different
amounts of money, and the choice set may be a selection of alternative portfolios. More
generally, consequences can also be objective lotteries over final outcomes, making it
possible to model situations in which a person takes some probabilities as given. A
bet on a coin-toss, for example, involves no subjective uncertainty, and is represented
by an act mapping all subjective states to the same 50-50 lottery over the possible

outcomes of the bet. More interestingly, it is possible to model uncertainty over which

12



of several probabilistic models is correct. For example, a smoker may be uncertain
whether smoking increases her risk of getting cancer. States correspond to whether
this is or isn’t the case, and the smoker’s situation is described by an act mapping
these states into different probabilities of cancer. A non smoker’s situation would be

described by an act mapping both states to the same low probability.

3.1 Framework

Let S denote the set of subjective states, and let £ be a o-algebra of events. I let
Z denote the set of final outcomes. An (Anscombe-Aumann) act is a X-measurable
mapping a : § — A(Z), associating with each subjective state an objective lottery
over final outcomes.'® I denote by A the set of all acts. The key object is a set
of reference-dependent preferences =: A — 24, associating with each act e € A a
preference relation =,. The interpretation of g =, & is that the decision maker prefers
g over h if her reference act is e.

In the following let g, h, e, ¢’ and e, denote general acts, and let a and b denote
constant acts.'” Let s and s’ denote general states, and let E denote a general event.
For an act e and a state s, let e; denote the constant act yielding e(s) in all states.
Let e; ~ ey if for all acts d, e; ~4 €. Finally, an event E is =, null if g ~, h for all

g and h that differ only on E. The assumptions on = are as follows:

B1 (Anscombe-Aumann) For all e € A, =, has an Anscombe-Aumann expected

utility representation.
B2 (objectivity) For all e, ¢’ € A, =,=>, over constant acts.
B3 (indifference) If eg ~ e for all s then p=p 18

B4 (non-triviality) For any act e there exist constant acts a and b such that a =, b.

15 Assuming both are optimistic, the smoker—but not the non-smoker—is therefore likely to un-
derestimate the link between smoking and cancer.

16 Acts mapping states into objective lotteries over final consequences were introduced by Anscombe
and Aumann (1963).

17A constant Anscombe-Aumann act yields the same objective lottery in all states.

18That is, for e and €’ to result in different preferences, it is not enough that e(s)  ¢'(s) for some
state s—it is also necessary that one of these outcomes is strictly preferred to the other (formally,
the decision maker has strict preferences between the constant acts e; and e}. B2 ensures that these
preferences are well-defined.)

13



B5 (best and worst act) For any act e there exist constant acts @ and a such that

for any act g, a =, g =. a.
B6 (absolute continuity) E is =, null &= E is =, null.

B7 (consequentialism) If e = ¢’ over E and g = h outside E then g =, h
g = h.

B8 (shift-invariance) If for some a € [0, 1], e = ag+(l—a)a and ¢’ = ag+(1—a)b,
then =,==,.19

B9 (continuity) If e, — e uniformly® then =, — >..%!

Let h € A be any act mapping states to lotteries over final outcomes, and let u :
Z — R denote a function mapping final outcomes to real numbers. I use the notation
uh : S = R to denote the mapping from states to real numbers that is obtained by
taking the expected value of u in each state. That is, uh(s) = [, u(hy(2)) dz.

The representation we wish to obtain is the following:

Definition 5. The reference-dependent preferences =: A — 24 are logit preferences if
there exist a probability measure p over (S, X) (the indifference measure), a function
u : Z — R (the utility function), and a real number w (the coefficient of relative
optimism), such that for any reference act e € A, =, ranks acts according to the

following Anscombe-Aumann expected utility functional:

Vo) = [ (ug) drun, (10
S
where g € A is any act, F = {ue : e € A}, and 7= : F — A(S) is a logit distortion
(Definition 2). The trio (p, u, y) is then said to represent =.

As in Section 2 (and for the same reason) the proof requires the existence of at

least three disjoint non-null events:

Definition 6. > is minimally complex if there exist an act e and disjoint events A,

B, and C that are not null with respect to =,.

9This condition implies that the utility difference between e and ¢’ is the same in all states.

20For any € > 0 and any state s € S there exists ng € N, such that for all n > ng and for any
outcome z € Z, |e,(s)(z) — e(s)(z)| < € (the difference in the probability the two acts assign to
outcome z in state s is less than ¢)

21For all acts g and h, if g =, h then there exists ng € N, such that for all n > ng, g =, h.
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Theorem 2. Suppose = are reference-dependent preferences and that assumptions
B1-B9 hold, then = are logit preferences. Moreover, if both (p,u, w) and (p',u’, w")
represent =, then p’ = p and there exist a positive real-number a and a real-number
p, such that w' = au+ f and y' = £.

3.2 Proof

B1 is an omnibus axiom, requiring that—conditional on the reference act—preferences
have a subjective expected utility representation. Thus, for any reference act e there
exists a probability measure u, € A(S) and a utility function u, : Z — R, such that
=, ranks acts according to V,(g) = [ g(teg) dpte. This representation allows for both
beliefs and tastes to vary with the reference act e. B2 rules out the latter possibility by
imposing the requirement that the ranking of constant Anscombe-Aumann acts does
not depend on e. Since the ranking of constant Anscombe-Aumann acts identifies the
utility function up at a positive affine transformation, there exists a utility-function
u, such that u, = u for all e. Given that =, ranks acts in accordance with V,(g) =
fs(ug) due, B3 implies that u, = w, whenever ue = ue’. Beliefs may, therefore,
depend on the reference act only via the associated payoff-function. Let F = {ue : e €
A}. Given B3, there exists a mapping 7 : F — A(S), such that u, = 7, for all e.??
B4 is a technical assumption ruling out the trivial case in which the decision maker
is indifferent between all acts. Non-triviality ensures that it is possible to back out
Tye from observing >=,. Hence, =,=>. if and only if z,, = 7,.,. We thus obtain the

following Lemma:

Lemma 5. Suppose B1-B/, then (i) there exists a utility function u : A(Z) = R, and
a mapping © . F — A(S) where F = {ue : e € A}, such that for any e € A, =, ranks

acts in accordance with the following subjective expected utility functional:

Va(g) = /S (ug) due (11)

and (i) for any two acts e and €', =,==¢ if and only if Tye = Ty

B5 is a second technical assumption, ensuring that there exist a best and a worst
lottery (and therefore also a best and a worst outcome). B6-B9 effectively restate as-

sumptions A1-A4 of Definition 1. The proof of the following Lemma is in Appendix A.

227 is formally defined by choosing for any payoff-function f some particular act e(f) to represent

the equivalence class of all the acts having f as their payoff-function, and defining 7 (f) = u.(r)-

15



Lemma 6. Suppose B5-B9 hold in addition to B1-B4 then the mapping = in Lemma 5

1s a well-behaved distortion.

The main claim in Theorem 2, namely the existence of a triplet (p, u, y) representing
= in accordance with Equation 10 and Definition 2, is an immediate corollary of
Lemmas 5 and 6 together with Theorem 1. The proof of the uniqueness part is in

Appendix A.

4 The belief distortion function

This section takes a close look at the belief distortion function that was derived in
Section 2. Let m denote the mapping from payoff-functions to beliefs. According to
Theorem 1, if the simplifying assumptions hold, there exists a probability measure p,

and a real-valued parameter y, such that for any payoff-function f, and any event A,

7 1 (A) o /Ae‘/ff dp. (12)

Consider first the case where f is constant, representing a situation in which the
decision maker is equally well-off in all states, and hence indifferent as to what the
true state is. The e¥/ term drops out, and we obtain that z r = p. The probability
measure p can therefore be identified with a decision maker’s indifference beliefs, or
the beliefs she would hold if she were a disinterested observer. More generally, e¥/
is increasing in the payoff if y is positive, decreasing in the payoff if w is negative,
and independent of it if y = 0. A positive value of y therefore represents optimistic
bias, a negative represents pessimistic bias, and a zero value represents realism. The
magnitude of belief distortion increases when moving away from zero, whether in the
optimistic or pessimistic direction. In analogy with the coefficient of relative risk
aversion, y is the coefficient of relative optimism.

Equation 12 allows for payoffs to vary arbitrarily between different states. If we
restrict attention to events over which the payoff is constant, we can rewrite the
equation as follows:

¢ (A) x p(A) AN (13)

Further insight can be obtained by comparing the probability of two events in relation

to each other. Suppose that f is constant over two events A and B, and that B is
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f(A) = f(B)

i
Ty
v optimist believes A

p(4)
p(B)

log

optimist believes B

Figure 1: Iso-belief lines for an optimist as a function of the undistorted log odds-ratio on
the x-axis and the payoff difference between the two events on the y-axis. Iso-belief lines are
straight and slope down and to the right with a slope of . The Iso-belief lines for pessimists
slope upward and to the right. Those of a realist are vertical.

not-null.?> The log-odds ratio between the two events can be written as follows:

og 77 (4) = log p(#)
s (B) p(B)

+y [f(A) = f(B)]. (14)

The bias in the relative probability of two events depends only on the payoft-difference,
or the degree to which one is more desirable than the other. If a decision maker is
indifferent between two events, their relative probability is unchanged.
More generally, the same subjective probabilities may result from different combi-
nations of interests (represented by the payoff-difference f(A)— f(B)) and information
p(A)

(represented by the indifference log odds-ratio log W)' Since Equation 14 is linear,

the resulting iso-belief lines are also linear (Figure 1).
4.1 Payoffs as information

The equations of the model have a close analogue in Bayes Rule. For Equation 13 the

analogous equation is the following:

p(Ale) o< p(A) L(e|A), (15)

23By Absolute Continuity, the set of non-null events is the same for all reference payoff-functions.
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where e represents new evidence, p represents beliefs prior to observing the new ev-
idence, p(Ale) represents posterior beliefs, and L(e|A) the likelihood of the new evi-

dence. Similarly, the analogue of Equation 14 is

plAle) _ | p(A) | LielA)

og——— =log og ——, (16)
p(Ble) p(B) L(e|B)
where % is the prior odds ratio, ﬁ Eglg is the posterior odds ratio, and igilg; is the

likelihood ratio. A comparison of these equations reveals a perfect correspondence,
with p standing for indifference or prior beliefs,  r for distorted or posterior beliefs,
and y f(A) for the log-likelihood of the evidence in A, with an analogous expression
for B.

It is thus possible to view optimism and pessimism as a Bayesian update on an
expanded state-space. Starting with indifference beliefs (represented by p) as her prior,
the decision maker observes the payoff-function f, and updates her beliefs to arrive
at the posterior 7 . The payoff in an event functions as evidence about its likelihood:
an optimist (pessimist) takes high payoff to be evidence that an event is more (less)
likely. It is as if optimists (pessimists) believe that nature is not an indifferent force,
but is instead well-disposed (ill-disposed) toward them. Given that nature took their
interests into account when choosing the state, the can make inferences about nature’s

choice by observing what their interest are.?*

4.2 Optimism and pessimism

Suppose a decision maker’s beliefs are reference dependent with some distortion map-
ping 7, and that some particular probability measure p represents her beliefs whenever
she is indifferent between all states. Let Pr(x) = p(f < x) denote the indifference
cumulative distribution function (CDF) of payoff, and let I1;(x) = 7 ¢(f < x) de-
note the corresponding CDF for 7. For two distributions F and G let F = G if
F first-order stochastically dominates G, and F =1r G if F stochastically dominates
G in the likelihood ratio.?> If we identify a better payoff distribution with first-order

stochastic dominance, we can give optimism and pessimism the following definition:

Definition 7. A decision maker is an optimist (pessimist) if I1y =1 Py (Py =1 Ily).

24Compare the ‘pessimistic’ interpretation of certain models of ambiguity aversion, where a malev-
olent nature chooses the state of the world after after the decision maker makes a choice.
25That is, if there exists a non-decreasing function  : R — R, such that F(x) o ffoo h(x)dG(x).
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A decision maker who is both an optimist and a pessimist is a realist.

The following proposition establishes the relationship between this definition and the

coefficient of relative optimism :

Proposition 1. Suppose a decision maker’s beliefs are characterized by a logit distor-
tion with a coefficient of relative optimism w, then the decision maker is an optimist
(pessimist) if and only if w > 0 (y < 0). Moreover, y > 0 = Ily =rp Py and
w <0= P =g Iy.

Logit distortions are therefore a tractable subset of optimistic and pessimistic beliefs,
much as the class of constant relative risk-aversion (CRRA) preferences is a tractable
subset of risk seeking and risk averse preferences.

The higher (lower) y is, the more probability shifts toward the states with the
highest (lowest) possible payoff. If there are only finitely many payoff values, the
limit is always well-defined, and takes a particularly simple form: an extreme optimist

(pessimist) is certain she would obtain the best (worst) possible payoff:

Proposition 2 (extreme optimism/pessimism). Let f be a simple payoff-function,
and let A pin and A pay denote respectively the event that the minimal (mazimal) payoff

is obtained, then imy 00 7 f(Apaz) = limy, s oo 7 (Amin) = 1.

One case of particular interest is when payoff is linear in some normally distributed
random variable. When that is the case, optimism and pessimism simply shift the
mean of the distribution, the shift being proportional to the variance and to the

coefficient of relative optimism:

Proposition 3 (normally distributed payoffs). Suppose X : § — R is a random
variable with indifference distribution Px ~ N (u,0?), and that there exist a, b € R,
such that the payoff-function is f = aX + b, then lIx ~ N(u + wac?, 6?).

4.3 Comparative statics

The intuition for the comparative statics can be obtained by writing Equation 14

qualitatively as follows:

beliefs = indifference beliefs + y interests. (17)
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The magnitude of the bias is thus increasing in the strength of the decision maker’s
interests and decreasing in the sharpness of indifference beliefs (increasing in the degree
of uncertainty). This is seen most clearly if payoff is linear in a normally distributed
random variable, i.e. f(s) = aX(s) + b, where X ~ N'(u,¢?%). According to Propo-
sition 3 the distorted probability density function is also normal, the variance is the
same, and the mean is shifted in proportion to wac?. The bias is thus increasing in
the strength of interests a and in the degree of uncertainty o 2.

Another important case is when payoff is binary. Suppose f = v over some event
E and f = 0 elsewhere. Using Equation 13, the bias in expected utility is (7 s (E) —
p(E)v = (M - p(E)) p = =DpEVU=pE)) ), - The hias thus goes up

1=p(E)+p(E)e?? 1+ p(E)(e¥’—1)
with the strength of interests |v|, and goes down as indifference beliefs approach

certainty (p(E) — 0 or p(E) — 1).

There is evidence for both comparative statics. Weinstein (1980) and Sjoberg
(2000) elicit beliefs over events which vary in how desirable or undesirable they are,
and find more biased beliefs over events that are either strongly desirable or strongly
undesirable. Mijovi¢-Prelec and Prelec (2010) similarly find a larger bias in an experi-
mental treatment in which interests are stronger. Mayraz (2011) elicits predictions of
future prices in different price charts, and finds more bias in charts in which subjective
uncertainty is high.

The importance of accurate beliefs for decisions is not part of the comparative
statics. When stakes are, high decision makers may put more effort into collecting in-
formation, and if this information reduces subjective uncertainty, it would also reduce
the bias. However, controlling for information, the magnitude of the bias is indepen-
dent of its costs.?® Wishful thinking may thus be an important factor in high-stakes

decisions, despite the resulting welfare loss.

5 Belief change

The model defines a person’s beliefs in relation to her indifference beliefs, or the beliefs
she would have held if she were completely indifferent about the state of the world
(Equations 12-14). Beliefs can change for one of the following two reasons: (i) the
indifference beliefs change, or (ii) the magnitude of the bias changes. Assuming the

coefficient of relative optimism is fixed, the magnitude of the bias changes if and only

26The findings in Mayraz (2011) and Hoffman (2011b) are consistent with this prediction.
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if the decision maker’s interests change. Indifference beliefs change if there is a change

in relevant information.

5.1 Interests

Changes to the decision maker’s interests can alter beliefs even in the absence of
any new relevant information. The most important reason for a change in interests
is the making of a new commitment. For example, when an investor buys some
financial asset, she gains an interest in the price of the asset going up. According to
the model, this should cause her beliefs about the asset to become more optimistic.
This prediction fits many cognitive dissonance findings, such as the Knox and Inkster
(1968) finding that bettors become more confident that a horse would win the race
after placing a bet on the horse.?” Section 6.1 shows that this kind of belief change
can cause commitments to escalate.

Interests can also change for exogenous reasons. Consider the beliefs of optimistic
parents whose child is to be allocated randomly to one of two schools: A or B. The
parents want their child to be allocated to the best school, but they initially do not
know what school their child would attend. Consequently, when they learn that their
child is to be allocated to school A, they gain an interest in A being the better school.
The prediction of the model is that this change in interests would cause their beliefs
to shift, so that they come to think more highly of school A.%

5.2 Relevant information

The observation of relevant new information results in a Bayesian update to the de-
cision maker’s indifference beliefs. Because the bias can itself be seen as a Bayesian

update (Section 4.1), the relationship between ez-post distorted beliefs and ez-ante

27Suppose the bettor is optimistic (y > 0), and let E denote the event that the horse wins the
race. Assuming no existing interest in the horse winning the race, the ex-ante payoff function is
constant, and beliefs coincide with the indifference probability measure p. Placing the bet causes the
payoff-difference between E and E to increase to some positive amount b. According to Equation 13,
the odds-ratio between the two events increases by a factor of e?? > 1.

281f the parents are pessimistic, their beliefs would shift in the opposite direction.
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distorted beliefs is also Bayesian.?”

However, because distorted beliefs depend on the payoff-function, when two vari-
ables are complements or substitutes in the payoff-function, they become dependent in
the decision maker’s beliefs. Consequently, the Bayesian update following news about
one of the two will alter beliefs about the other, even if they are objectively indepen-
dent. The update in the decision maker’s beliefs after observing new information is
thus formally Bayesian, but may nonetheless appear biased to outside observers.

Consider the following example. An optimistic manager’s promotion may or may
not be dependent on the success of a merger deal, this being determined independently
of the deal’s success. The manager’s payoff is particularly high (low) if the deal is both
successful and important for promotion (unsuccessful and important). Consequently,
the subjective probability that the merger is both important and successful is biased
upward, and the probability that it is important and unsuccessful is biased downward.
The two events are thus subjectively correlated, and news about one will affect beliefs
about the other (Figure 2).

In this example, two complements (importance and success) become positively
correlated in the decision maker’s beliefs. Substitutes would become negatively corre-
lated. For example, if a company pursues two research approaches in parallel, success
in one would decrease the subjective probability that the other approach could have
worked, whereas failure would increase the confidence that the other approach would
succeed. These two effects are reversed if a decision maker is a pessimist.

The following proposition is a formal statement of these observations. Payoff is
assumed to be the function of two random variables X and Y, which an unbiased
decision maker would consider to be independent. An event E is observed, where E is
independent of X, and is indicative of a high value of Y. Normatively, therefore, the

observation of E should change beliefs about Y, but leave beliefs about X unchanged.

29Let e denote the new evidence. Inserting Bayes Rule in Equation 14 we obtain that

T fpost (A) Ppost A)
=1 _
nfpost (B) Og ppOSt(B) + l// [f(A) f(B)]
Ppre(4) o Lleld)
( ® Pore(B) T8 B
Ppre( )
= (log )2 v [F@) - 7(®)]) +1
fpre( ) lo L(elA)
T fore (B) T lB)

)+vlra - s

L(e|A)
)

= log
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f]1 U p| 1 U 7| I U
S|+1 0 S|1/4 1/4 S14/9 2/9
F|-1 0 F|1/4 1/4 F|1/9 2/9

Figure 2: Merger example. Let S, F, I, and U denote respectively the event that the deal
is successful, unsuccessful, important and unimportant. The payoff f is 1 if the deal is
successful and important for promotion, -1 if it is important and unsuccessful, and 0 if it
is not important. The indifference beliefs p are symmetric, and the distorted beliefs 7 ; are
computed on the assumption that v =log2. Learning that the deal is important, increases
the subjective probability that it is a success from 2/3 to 4/5, even though the two events are
objectively independent. Similarly, learning that the deal has failed, decreases the subjective
probability that it would be important from 5/9 to 1/3.

The possibility that X and Y are complements (substitutes) is captured by the notion
of supermodularity (submodularity). When that is the case, the observation of E

would nonetheless result in a change in beliefs about X.

Proposition 4. Suppose the payoff-function f is a function of two real-valued random
variables X and Y, such that p(X =x,Y =y)=p(X =x)p(Y = y) forall x,y € R,
and suppose that E is an event such that p(X = x,Y = y|E) = p(Y = y|E) for all x
and y, and that p(E|Y = y) is an increasing function of y, then

1. Uxg =g Hx if (i) w > 0 and f is supermodular, or (i) w < 0 and f is

submodular.

2. Ux =g Uxg if (i) w > 0 and f is submodular, or (ii) w < 0 and f is

supermodular.
Moreover, the above relations of stochastic dominance in the likelihood ratio are strict
whenever y # 0, f is strictly supermodular/submodular, p(E|Y = y) is strictly in-
creasing in y, and neither X nor Y is almost everywhere constant.

6 Applications

In this section I explore two applications. The first is to investing, and the second to

crime deterrence.
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6.1 Increasing exposure to risk

Since beliefs depend on interests, a decision to bet on some event causes a change in
the subjective probability for the event in question (Section 5.1). It follows that an
optimistic investor who invests in a risky asset would subsequently prefer to increase
her investment. Assuming the original choice is optimal, the opportunity to revise the
investment leads to welfare loss. Moreover, it is possible for the investor to end up
with a lower level of expected utility than if she had kept all her money in the safe
asset. The investor may thus be better off without any access to the risky asset.

Consider an optimistic investor with log utility and initial wealth w who can invest
a fraction a of her wealth in a risky asset that pays 1 in the good state G and —1 in
the bad state B. She makes an initial investment in period 1, and can then revise her
investment in period 2. If the subjective probability of the good state is ¢, she would
choose to invest a fraction a(g) = 2¢g — 1 of her wealth in the risky asset.?"

Let p(G) > 0.5 denote the objective probability of the good state, and suppose that
the investor has rational expectations if she has no stake in the risky asset.?! Since this
is her situation prior to the ¢ = 1 decision, she would invest a fraction a; = 2p(G) — 1
of her wealth in the risky asset. Following this investment, her payoff-function is
f(G) =log(w + aw) = 1log2p(G)w) and f(B) = log(w — aw) = log(2p(B)w). The

new subjective beliefs can be computed using Equation 13:

p(G)e? (@) p(G)e? 1022p(Gw)
1(G) = e @ 1 p(BYerT® — p(G)eV SERP @) - p(B)ew bECr )
_ P(G)2p(G)w)" 1 ooy, Y
p(G)2p(G)w)¥ + p(B)Y2p(B)w)¥ | (M)”"’ ’
p(G)

where the inequality follows from the assumption that w > 0 (the investor is opti-
mistic). Given that 7 7(G) > p(G), the investor would increase the share invested
in the risky asset to ax = 277(G) — 1 > a;. Since expected utility is a strictly
concave function of this amount, the opportunity to revise the investment results in
welfare loss. Moreover, lim, 0 7¢(G) = 1, and hence limy, s a = 1. Further-
more, limy_glog(x) = —oo. Combining these observations, it follows that as long

as p(G) < 1, there is a critical value y*, such that for all w > w* the (objective)

39Expected utility is g log(w + aw) + (1 — g) log(w — aw). Since g > 0.5, the solution is internal.
Solving the first order condition we obtain that a(g) = 2g — 1.
31The rational expectations assumptions is useful for welfare analysis.
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expected utility following the opportunity to revise the investment is below the utility
of investing nothing in the risky asset. A sufficiently optimistic investor would thus

be better off without the opportunity to invest in the risky asset.

6.2 Deterrence

The two principal approaches to crime deterrence are (i) improving law enforcement,
and (ii) increasing sentencing. The first makes punishment more likely, and the second
makes it more severe. There is good evidence that the first approach is considerably
more effective (Grogger, 1991; Nagin and Pogarsky, 2001; Durlauf and Nagin, 2011). In
this section I offer one explanation for why that may be the case. I follow Becker (1968)
in modeling the decision to engage in crime as rational, but assume that criminals are
optimistic, and that they therefore underestimate the probability that they would end
up in jail. An increase in the severity of punishment increases the payoft difference
between getting caught and not getting caught. As I show in the formal model, this
leads to an an increase in the bias. Thus, a more severe punishment has an ambiguous
effect on deterrence: on the one hand jail is subjectively worse (the sentence is more
severe), but on the other hand it is subjectively less likely (because of the increased
optimistic bias). In some cases, an increase in the severity of punishment can even
be counter-productive. By contrast, increasing the likelihood that crime is punished
leaves the bias in beliefs unchanged, and unambiguously improves deterrence.

An optimistic criminal has to choose whether to continue a life of crime or to take
up a job at McDonald’s. There are two states corresponding to whether or not crime
would land the criminal in jail. The payoff from crime is f(B) = —c in the bad state
and f(G) = 0 in the good state. The payoff from a job at McDonald’s is —b in both
states, with 0 < b < ¢. Let p denote the probability measure representing the beliefs
the criminal would have had if she were indifferent as to whether crime would land
her in jail, and assume that p is unbiased.?? Since crime is the status-quo, subjective
beliefs are represented by the distorted probability measure 7 r, where f denotes the

payoff-function of a criminal. Using Equation 13 we obtain that :J’: Egg = % e Ve,

Deterrence is successful if the expected gain from quitting crime is more than the

32The minimal assumption is that improving law enforcement increases p(B).
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Figure 3: The impact on the subjective utility of crime of increasing punishment levels
from relatively lenient (solid blue line) to severe (dotted red line). At any given subjective
probability, greater severity reduces utility (panel 1). However, greater severity also reduces
the subjective probability that the bad state is realized (panel 2). The net effect (panel 3) is
ambiguous, and can actually be positive if the objective probability of the bad state is low.

expected loss. This is the case if 7 ¢(B)(c — b) > 7 r(G)b, or

b _myB) _pB) _ye

c—b " ns(G) o p(G) (19)

Consider the following two potential policy changes. First, the government can im-
prove law enforcement, thereby increasing %. Holding ¢ constant, such a change
would increase the RHS of Equation 19, while leaving the LHS unchanged, and would
therefore improve deterrence for any level of optimism. Second, the government can
increase in the severity of jail ¢, leaving its probability unchanged. If w = 0 the change
would reduce the LHS, and leave the RHS unchanged. Thus, for realist criminals any
increase in the severity of punishment improves deterrence. However, for optimistic
criminals y > 0, and so the increase in ¢ reduces the RHS of Equation 19 at the same
time as it is reducing the LHS. There are thus two forces pulling in opposite direc-
tions: (i) the wtility effect works to increase deterrence (jail is worse), and (ii) the
probability effect works to decrease deterrence (jail is subjectively less likely). Since
lim._o0(c — b)e™¥¢ = 0 for w > 0, making the punishment more severe is counter-
productive beyond a certain point (Figure 3). Note that the key to these results is
the assumption that crime is the status-quo. A decision maker who has never before

engaged in crime would be deterred by a more severe punishment.
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7 Conclusion

By tying beliefs to the decision maker’s existing interests—rather than to the choices
that she faces—the model separates optimism and pessimism from attitudes toward
risk and ambiguity. Since beliefs depend on interests, any change to these interests
leads to a change in beliefs. This allows the model to capture not only static belief
biases, but also the dynamic phenomenon of cognitive dissonance. Since the bias is
not assumed to be welfare enhancing, it is possible to model pessimistic as well as
optimistic bias, and to model optimistic bias in situations where it leads to costly
mistakes. The model is tractable and parsimonious, and can be used both in the
construction of entirely new applications, and in adapting existing applications to in-
corporate the implications of wishful thinking, cognitive dissonance, and other related
biases.

While the model is surely too simple to be empirically correct, it does seem consis-
tent with broad features of the evidence. In particular, the existing evidence suggests
that the magnitude of the bias is indeed not directly dependent on its cost (Mayraz,
2011; Hoffman, 2011b). This has the important implication that the biases captured
by the model are not limited to low stakes decisions, and may well be important in
high-stakes decision environments. When stakes are high, decision makers have strong
incentives to double-check their probability judgments, and in particular to try and
detect any evidence of bias in their beliefs. However, whenever there is significant
uncertainty, there is a large range of plausible views, and biased beliefs would gener-
ally fall within this range. For this reason, even highly motivated and sophisticated
decision makers may be unable to determine whether their own beliefs are biased, and
would not be able to prevent such bias from affecting their decisions.

Both individual decision makers and policy makers may, however, be able to iden-
tify situations in which biased beliefs are liable to be a significant problem. Decision
makers may then try to either reduce the degree of bias, or avoid such situations
altogether. The deterrence application is an example of the former strategy: policy
makers, who realize that criminals may be biased in judging the probability of ending
up in jail, may therefore prefer to impose less severe punishments, and put their re-
sources instead into increasing the probability that criminals are brought to justice.
In the investment application, sophisticated investors may adopt the second strategy,
committing to some particular portfolio, and not allowing themselves the flexibility of

revising it. Such a strategy involves a trade-off analogous to the bias-variance trade-off
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in statistics: flexibility makes it possible to use more information in decision making,
but at the same time it opens up the door for bias.

One important weakness of the model is the need to specify exactly what elements
of uncertainty are subject to belief distortion. For example, the predictions in the de-
terrence application (Section 6.2) depend crucially on the assumption that the severity
of punishment is taken as given, whereas the likelihood of getting caught is subjec-
tive.? A second weakness is that in some situations the decision maker’s interests
are tied to her plans, and these plans may not be readily observable. Consider two
investors who are holding the same portfolio. A short-term speculator stands to gain
if the portfolio does well over the near future, and would therefore be biased about
this possibility. A long-term investor would, instead, be biased about long-term per-
formance. Making a prediction therefore requires the ability to identify the type of
the investor, as well as the stocks that she owns.

This paper assumes throughout that the coefficient of relative optimism is a stable
characteristic of a person. One intriguing possibility, however, is that it increases
following good events, and decreases following bad ones. Consistent with this idea,
there is evidence that people are more positive about the stock market when the
weather is good (Saunders, 1993; Hirshleifer and Shumway, 2003), or after their soccer
team wins an international match (Edmans et al., 2007). Similarly, optimistic bias
in Google’s prediction markets is particularly high in days in which Google’s stock
is appreciating (Cowgill et al., 2009). Such dynamics may be important during the
popping of an asset bubble, when decreasing prices lead to losses, which in turn (if
this hypothesis is true) reduce the optimistic bias among investors. A reduction in

optimistic bias would then lead to further selling and further drops in prices.

A  Proofs

Lemma 1

In all the four parts of Lemma 1 the proof that the requirements are necessary is

trivial. I thus prove only that the requirements are sufficient:

Part 1. Let a denote some arbitrary constant payoff-function. Define p = 7n,, and

let S* = {A € S: p(A) > 0}. Define hr(A) = ”pf((f)) for A € §* and hy(A) =0

331f these assumptions were reversed, an increased likelihood of punishment would lead to increased
bias over the severity of punishment.
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for A ¢ S*. For A € §* the claim follows from the definition of A y. By Absolute
Continuity p(A) =0 = 7w s(A) =0, and hence the claim holds also for A ¢ S*. m

Part 2. Let A € S* and x € X, let f(A, x) be the payoff-function mapping A to x and
all states outside A to a. Let Ey, ..., E, denote the other events in §*. By Minimal
Complexity and Absolute Continuity S* includes at least two events other than A.
f(A, x) and the constant payoff-function a agree on E; and E; for all i and j. Hence,

by Consequentialism with E = E; U E;, ZJ{ ;:;‘;Eg; = 5 gg;% Thus,

W(E; o (E
1 —7ran(A) = Zﬂf(A,x)(Ei) = Z W(A’—)(])P(Ei) = M(A’—)(J)(l — p(A)).

P(E)) p(E))
(20)
Define u4(x) = (1;%”) ( 12?&,),6(;&))- By Equation 20,
T (A, f(A))(A) T r(A, F(A)(A)
PAHAC(A) = (1 = p(A)) gD 2SOV — (i) LELEEZ (o)
— T f(a,f(a))(A) T f(a, f(a))(Ej)

Let f be any payoff-function, and let A and B be any two events in S*. Let f’ be a
payoff-function that coincides with f on A and B, and with a elsewhere, and let C be

any third event in §*. Inserting E; = C in Equation 21 we obtain that

mr(A)  wp(A)  wp(A)/mp(C)  p(C) mra, ran(A)/mra,rayn(C)
np(B)  wp(B)  wp(B)/mp(C)  p(C) e, pay(B)/m s, £8)(C)
_ pA)ua(f(A))
~ p(B)u(f(B))

where the first and third steps follows from Consequentialism, and the final step from
Equation 21. Since Equation 22 holds for all A, B € §* it follows that Equation 5
holds for any event A € §*. For an event A ¢ S*, define u4(x) =1 for all x. Since
mr(A) = p(A) =0 for A ¢ §* Equation 5 holds however u,4 is defined. Combining
these results Equation 5 holds for any payoff-function f and any event A € S. n

(22)

Part 3. Let A* € S8* be some event. Define the mapping v : X —» R4 by v(x) =
tax(x). For x € X let x denote also the constant payoff-function yielding the payoff x

in all states. Inserting f = x and B = A* in Equation 22 we obtain that for all A € §*

n(d) _ p() pal)
and x € X, 205 = p(an) v -

Indifference that 7, = 7, = p. Hence, pa(x) = v(x). Thus, 7s(A) o< p(A)v(f(A))

Since x is a constant payoff-function it follows from
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for all A € §*. Finally, this is also trivially true for A ¢ S*, since 7¢(A) = p(A) =0
for A ¢ S*. O

Part 4. Let A, B € §* be two events, and let x and y be real-numbers such that x, y,
and x + y are in X. Define the payoff-functions f, and g, , as follows: fi(s) = x for
s € A and fi(s) =0for s ¢ A, and g, y = fx + y. By Shift-Invariance, 7g, = 7y,
Tory W) g (4) By Equation 6 it follows that vty) . vx)

ﬂgx,y(B) - nfx(B) l)(y) 1)(0)

Hence, defining o(x) = log(%) we obtain that o is linear, i.e. for all x and y,

and in particular

o(x+y) =0cx)+0o(y). For m € Nlet y = mx. By induction we obtain that
o (mx) = mo (x). Similarly, for n € Nlet y = - to obtain that o (x) = o (ny) = no(y),
and hence o (5) = %2 Let y = —x to obtain that o(—x) = —o(x). Combining
these results, and defining v = o (1), we obtain that for any rational number g € X,
o(q) = yq, and so v(g) = v(0)e¥?. Let now x € X be any feasible payoff-value,
and let {g,},eny be a sequence of rational feasible payoff-values converging to x. By
prize-continuity 7y, — m s, which given Equation 6 implies that v(g,) — v(x). By
the result for rational numbers, v(g,) = v(0)e¥?", and hence v(g,) — v(0)e?*. Thus,
v(x) and v(0)e¥”* are both the limit of the same sequence of real-numbers, and so
v(x) = v(0)e¥*. Finally, since Equation 6 is invariant to multiplying v by a positive

number, we obtain that Equation 7 holds for all x € R. O]

Lemma 2

Proof. Let a € F denote some constant payoff-function, and define p = #,. By
Minimal Complexity and Absolute Continuity there exists a finite partition S of the
state-space consisting of at least three events, such that 7 s(A) > 0 for any f € F and
A € S. Let X(5) C X denote the algebra generated by S, and let F(S) C F denote
the set of X(S)-measurable payoff-functions. By Lemma 1 there exists a probability
measure ps over (S, £(S)) and a parameter ys € R such that Equation 7 holds any
probability measure f € F(S) and any event A € S. In particular a € F(S) (any
constant payoff-function is), and hence for any A € S, p(A) = 7,(A) x ps(A)e?se.
Thus, p(A) = ps for any event A € S, and hence also for any event A € X(S). Define
w = ws. It follows that for any payoff-function f € X(S) and any event A € S,
mr(A) o p(A)eVf(A) 34

Let now A and B denote any events such that p(B) > 0, and let f be any

34Note that p = 7, is a probability measure over all the events in X—not just the events in X (S).
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payoff-function. I need to show that Z’; Eg; = %e‘/’(f (A)=fB)  To simplify nota-
mr(A) )

tion let d7(A, B) = logm — log %. With this notation I need to prove that
0r(A, B) = y(f(A)— f(B)). Let Ey, Ey, ... E, denote the events in §. Without lim-
iting generality suppose ANE7 is not-null. Define a payoft-function g € F by g = f(A)
on ANE; and g = f(B) elsewhere, and a payoff-function h € F(S) by h = f(A)
on Ey and h = f(B) elsewhere. With these definitions, d7(A, B) = df(ANEy, B) =
0,(ANE|, B) =0,(ANE|, BUEy) =6,(ANE, E2) =0,(ANEY, E2) = 0(E1, Er) =
w(f(A)— f(B)), where the last step uses the fact that 4 is in F(S), and the other steps
use Consequentialism and the fact that by Shift-Invariance 7 4y = 7 r(8) = p. O]

Corollary 1

Proof. The proof that a logit distortion is well-behaved is trivial. I thus prove only
that if 7= is well-behaved then it is a logit-distortion. The conditions of Lemma 2 are
met. Let p and y be parameters for which the claim in Lemma 2 holds. Suppose f
is a.e. simple then there exist a finite set of disjoint events {E1, ..., E,} such that f
is constant on each of these events, and for some payoff-function g, 7,(U; E;) = 1. By
Absolute Continuity also 7 r(U; E;) = 1, and so 7 s (ANU; E;) = m ¢ (A). Given that the
events are disjoint it follows that 7 r(A) = >, 7 f(A N E;). Using Lemma 2 we obtain
that 7 r(A) o< X, p(A N E;)e?/ANED By Absolute Continuity p(S \ U;E;) = 0, and
hence fA eV dp = > p(AN E;)eVT(ANED — Combining these observations we obtain
that 7 p(A) x [, e¥/ dp. O

Lemma 3

Proof. The case of w = 0 is trivial. Henceforth I assume w # 0. By Corol-
lary 1 there exist a probability measure p and a parameter y such that Equation 3
holds for any payoff-function f that is almost everywhere simple. If there exists
a payoff-function f that is not almost everywhere simple then there exists an in-
finite sequence {A,},en of disjoint non-null events.?® I need to prove that in this

case there exists a number M € R such that e¥* < M for all x € X. Suppose

35If f has infinitely many atoms these atoms can form the sequence. Otherwise, let E denote
the event outside the set of atoms (if any). E cannot be null, or else f is almost always simple.
Since f has no atoms on E it follows that there exists a value y (the median of f on E) such that
pseE: f(s) <y = @. Thus E includes two non-null events on which f has no atoms: E(y)
and E \ E(y). This process can be repeated recursively, where in the n’th stage E is split into 2"
disjoint non-null events. An infinite sequence of disjoint non-null events can therefore be formed.
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otherwise, then it is possible to choose from X a sequence {x,},en, s.t. for all n,
p(Ay)e? > p(A))e¥*. Define a payoff-function f by f(A,) = x, for n € N,
and f(s) = x; outside U,A,. For n € N define also a simple payoff-function f,
by fu(A;) = x, and f,(s) = x; for s ¢ A,. By construction f and f, agree on

Ay and A,. Thus, for all N € N, 1 > 3, _y77(A)) = 77(AD) D,y gg;"g —

A An AI’L YXxn
TPAD) D ey 288 = 1 (A S,y ZAEE > (A1) S,y | = Nuy(Ar) where
the second equality follows from Consequentialism, and the third from Corollary 1.

Letting N — oo we obtain that 7 (A1) = 0, in contradiction to the assumption that
A1 is not null. ]

Lemma 4

Proof. By Corollary 1 there exist a probability measure p and a parameter y such
that Equation 9 holds for any payoff-function f that is almost everywhere simple. I
show that the claim holds with the same p and w also for a payoff-function f that
is not everywhere simple. If such payoff-functions then by Lemma 3 there exists a

number M, such that e¥* < M for all x € X. Assume first that y # 0. For any n € N
divide the interval [m, M] into 2" non-overlapping intervals of length ¥~ For any
state s let I,(s) denote the interval to which e?/ belongs, and let I,Tf”(s) denote its
lower endpoint. Define a simple payoff-function f, by f,(s) = log #;(S) With this
definition ¥/ — % < V) < WS ) for all s, and so V) A VfG) for all s.

Moreover, since e¥* is a monotonic continuous function also f, — f. Thus,

mr(A)  limzy, (A) b T (A) - [,e¥fndp  lim[,e¥ndp  [,e¥/dp
= = 11 =11 = =
wf(B) limzg (B) 7 f,(B) Jgevindp  lim [pevindp  [pev/dp
(23)

where the first step follows from Prize-Continuity, the second and fourth since p(B) >
0 and 7z, (s) € [m, M] on AU B, the third from Corollary 1, and the fifth from the

monotone convergence theorem. O

Theorem 1

Proof. 1 prove that if 7 is a well-behaved distortion then it is a logit distortion. The
opposite direction is trivial. By Lemma 4 there exist a probability measure p and a

parameter y such that Equation 9 holds for any events A and B for which p(B) > 0
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and any payoff-function f for which there exists a number m > 0 such that e¥f > m
on AU B. To complete the proof I need to show that Equation 9 holds even if no such
number m exists. Let f be any payoff-function and let A and B be any events such
that p(B) > 0. If f is almost everywhere simple the claim follows from Corollary 1.
Otherwise, by Lemma 3 there exists a number M € R such that e¥* < M for all x € X.
Forn e Nlet A, = {s € A : e/ > 27"} and similarly define B,. By construction
lim, 500 A\ A, = 0 and similarly lim,_- B \ B, = @#. Moreover, since p(B) > 0
there exists ng € N such that for all n > ng, p(B,) > 0. The conditions for Lemma 4
therefore hold for A, and B, for all n > ng. Combining these observations we obtain
that

mpA) () Ja, e dp limusoo [y e dp [ ¥ dp

= lim = lim = = 24
mf(B) n—ooms(B,) nox an e/ dp  lim,_e0 an evldp  [pev/dp (24)

where step 3 holds since the integrals are bounded from below and above: (i) e¥* < M
for all x € X, so the integrals are bounded from above by M, and (ii) p(B,,) > 0
and f > 27" on B,,, and hence there exists some m > 0 such that for all n > no,
Js, eVl dp > anO e’/ dp > 27" p(By,) = m. O

Lemma 6

Proof. Starting with A1, let f and f’ be payoff-functions and E an event, and suppose
that 7y(E) = 0. I need to prove that 7z (E) = 0. Let e and ¢’ be acts such that
f =ue and f' =ue'. Since ws(E) = 0 it follows from Equation 11 that for any acts
g and h that differ only in E, V,(g) = V.(h), and so E is e-null. By B6 it follows that
E is also ¢’-null. Let a and b be constant acts such that a =, b, and let g be an act
defined by g = b on E and g = a outside E. By construction a and g differ only on
E, and hence (since E is ¢/-null) Vy(a) = Vp(g). Using Equation 11 it follows that
7 p(E)(u(a) — u(b)) = 0. By assumption a >, b, and hence u(a) — u(b) > 0. Thus,
7 p(E) = 0 as required.

For A2 suppose f = f’ over a non-null event E. I need to prove that for any
event A C E, wy(A|E) =y (A|E). If wy(A) = 0 the claim follows from Al. Suppose
therefore that 7 r(A) > 0. Let e and é be acts such that f = ue and f’ = ué. Define
an act ¢ by ¢ = e on E and ¢ = ¢ outside E. By construction ue’ = ue = f on
E and ue’ = ue = f’ outside E. By assumption f = f’ on E and hence ue’ = f

everywhere. By B5 and B6 there exist constant acts @ and a such that a =, g =, a for
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any g. Define an act g* by g* =@ on AUE® and g* =a on E \ A. For any constant
act b, define an act g, by g = b on E and g, = a outside E. By Equation 11,
g = gy if and only if w(A)u(@) + nr(E \ A)u(a) > mwy(E)u(b), or equivalently,
mr(AlE)u(@) + (1 — nr(A|E))u(a) > u(b). Since the set of constant acts is closed
under arbitrary mixing, there exists a constant act b* such that = ¢(A|E)u(a) + (1 —
7 (A|E))u(a) = u(b*), and equivalently, g* ~, g(b*). Since e = ¢’ on E, and since
g* and g(b*) differ only on E| it follows from B7 that also g* ~, g(b*), and therefore
also 7 p/(A|E)u(a) + (1 — wp/(A|E))u(a) = u(b*). Combining these results we obtain
that 7 r(A|E)(u(a) — u(a)) = np(A|E)(u(a) — u(a)). Finally, since a >, a then
u(@) > u(a), and so 7y (A|E) = wy(A|E) as required.

For A3 suppose f’ = f +x for some real number x. I need to show that 7y = 7.
Let e and €' be acts, such that f = ue and f’ = ue’. By B4 and B5 there exists
constant acts a and b, such that ¢ =, b and a =, g =. b for any act g. Let
Au = u(a) — u(b). Define a function f : § - R by f = fA_u—”_(z)ﬁ. Since by
construction a =, g =, b for any act g it follows that for any s, u(a) > f(s)+x > u(b),
and hence f(s) —u(b) < Au—x and x < Au. Thus, 0 < B(s) < 1 for all s. Define
an act g by g = (1 — f)e + pe’, let a = 1, and let h and A’ be acts defined by
h=(0—-a)g+aband i’ = (1 —a)g + aa. With these definitions,

uh = (1 — a)ug + au(b) = (1 — a)u((1 — Be + pe’) + au(b)
=1 -a) (1= f+B(f+x)+au®d)=(1—a)f+aubd)+ (1 —a)px

AU —x\ (f—u®d)) (x
:(1_a)f+au(b)+( P )(Au—x)(ﬂ)x

=0 -a)f +au®d)+a(f —ubd)) = f,

and uh’ = uh + aAu = f +x = f'. By B8, =,=>,. Hence by Lemma 5 and the
result just obtained we conclude that 7 = 7 .

For A4 suppose that f,, — f uniformly. I need to prove that for any event E and
€ > 0 there exists ng € N such that for n > ng, |77, (E) — 7 s(E)| < €. By B5 there
exist constant acts a and b, such that a =, g =, b for any act g. In particular, for
any state s, there exists f: § — [0, 1] such that f = (1 — f)u(b) + fu(a). Moreover,
for any n, there exists £, : S — [0, 1] such that f, = (1 — B,)u(b) + pyu(a).

Let e = (1 — f)b + fa and for any n let e, = (1 — p,)b + fra. By construction,
f = ue and for any n, f, = ue,. Let 6 > 0 be some number. Since f, — f uniformly

there exists N > 0 such that for any n > N and for any state s, | f,(s) — f(s)] < 0.
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Thus, for any s, |u(e(s)) — u(e,(s))| < 0.

Let Au = u(a) — u(b). By construction, u(e(s)) — u(e,(s)) = (B(s) — Bu(s))Au.
Hence, for any n > N and any state s, |f(s) — B, (s)] < %. In particular, for any final
outcome z € Y, |e(s)(2) — e (s)(2)| < &. Since this is true for any 6 > 0 it follows
that e, — e uniformly. Hence, by B9 >, — >,.

Define an act g* by g*(E) = a and g*(S\ E) = b. By Equation 11 for any constant

act ¢, ¢ =, g* if and only if 7 (E) < ZE;%:'Z% Let c* be a constant act such that

8" ~. c*. Thus, for any constant act c¢ such that u(c) > u(c*), c =, g*, since =, — =,

for any such ¢ then for any n large enough ¢ >, g*. By Equation 11 this implies that

7 (E) < ZE;%:ZEZ% Since this is true for any ¢ > c¢* it follows that for any é > 0 for
n large enough 7, (E) < ms(E) + 6. A symmetric argument can be made for ¢ for
which u(c) < u(c*). Combining these results we obtain that for any ¢ > 0 for n large

enough 77, (E) € [mf(E) — J,nf(E) + 6], and so w7, (E) = 7 ¢(E) as required. n

Theorem 2 (uniqueness part)

Proof. Note first that the utility function is determined up to a positive affine trans-
formation by preferences over constant Anscombe-Aumann acts. Hence, if the triplet
(p/,u’, w') represents = there exists real numbers a > 0 and f such that u’ = au + B.
Next, let e be any act and A any event. By B5 there exist constant acts a and b such
that a >, b. Let g4 be an act defined by g4 =a on A and g4 = b on A°. Let cq be
a constant act defined by csx = my.(A)a + (1 — 7,.(A))b. By Equation 10 g4 ~, ca.
Similarly, let ¢y, = we(A)a + (1 — mw.(A))b then also ga ~, ¢4, and so ca ~, 4.
Since a =, b it follows that u(a) > u(b), and hence by Equation 10 7,/.(A) = 7,.(A).

Since this is true for all A it follows that for any act e, 7. = mye. I now use this

=¥

observation to show first that p’ = p and then that y’ = Z-. First, let e be a constant

act. By Equation 3 7,, = p and 7, = p’. Hence it follows from the above observa-
tion that p’ = p. Finally, by Minimal Complexity and B6 there exists an event A such
that neither A nor A€ is =, null for any act e. Applying the above observation to g4

we obtain that 7,/,, = m,g,. By Equation 3, log Z;;gj(fv)) = log 15)((/?0)) + yw(u(a) —u(d)).

Using the corresponding equation for 7,/ ,, the result that p’ = p, and the fact that
u' = au + B, we obtain that w(u(a) — u(b)) = v’ (a) — u' (b)) = ay'(u(a) — u(b)).
Hence y' = £. O

Proposition 1
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Proof. By Equation 3, IT¢(x) o< ffooh(x) dPr(x) with h(x) =e¥*. If y > 0, e¥* is
non-decreasing, and hence Iy »=rr Pr. If y < 0, h’ = e7¥* is non-decreasing, and
Pp(x) o< [T dPp(x) = [T K (x)e" dPs(x) = [T _h'(x)dIly, and so Py =g IIy.
The first part of the claim follows since stochastic dominance in the likelihood ratio

implies first-order stochastic dominance. O

Proposition 2

Proof. 1prove only that lim, o0 7 f (Amax) = 1, as the proof that limy, _, oo 7 (Amin) =
1 is very similar. Let x; > xp > ---x, denote the payoffs in the range of f. Thus,
Amax = f~1(x1), and by Equation 13,

p(f " xr))er™ )‘ 4y PUT ) @) i,

I max) " = i
S 7 £ (Amax) & (Z p(f~1(x;))evi p(f=H D)) oo

W— 00
i>1

and since x; < x1 for i > 1, the last term is zero. Hence, limy o0 7 f(Amax) = 1, as

required. O]

Proposition 3
Proof. By Equation 3 and the assumption that Py ~ N (u, 02,

* * b 1 _(-’f—,u)z
Hx(x)o</ ve<x>p(X=x)dx=/ ew(axﬂ(—e 207 )dx
—0o0

—00 2ro

b * 1 _(x_ﬂ)z_z‘//a!fzx b X 1 _(x—(/H—y/azrz))z—l// a2s*
=e¥ e 202 dx = eV e 22 dx

2w o 2w o

* 1 _ G=(utyach)?
o</ e 202 dx = N(u + aya?, o).
2o

Proposition 4

Proof. For any x e R, 74(X =x|E) = [zy(X =x,Y = y|E)dy x [ p(X =x,Y =
y|E)e" N dy = p(X = x) [p(Y = y|E)e? ) dy. Hence, for any two values

xg,xr € R,

mf(X =xylE)  p(X =xp) [pY = Y|E)e?S i) qy
(X =x|E)  p(X =x1) [p(Y = y|E)er/ Ly dy’

(25)
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Similarly, 7 (X = x) x p(X =x) [ p(Y = e @) qy’ and so

ny(X =xg) pX=xp) [p¥ = VeV Guy) 4y
7[f(X =Xxr) N p(X = xr) fp(Y = y’)e‘//f(xby/) dy’ ’

(26)

HXlE =Lr Ilx (HX LR HXlE) if and only if whenever xgyg > x; the expression
in Equation 25 is greater than or equal (smaller than or equal) than the expression
in Equation 26. Equivalently, if the following expression is weakly positive (weakly

negative):
fp(Y — ylE)e'//f(sty) dy fp(Y — yl)el//f(xl‘]ay/) dy/
fp(Y = y|E)el//f(xLaY) dy fp(Y = y/)e‘//f(XL,y/) dy/'

(27)

Moreover, the stochastic dominance is strict if this expression is strictly positive (neg-

ative). The expression in Equation 27 has the same sign as
// p(Y = y|E)p(Y = y) (el//(f(xH,ny(xL,y/)) _ eV/(f(xHay/)‘l‘f(xLay))) dy’dy. (28)
yJy

Combining terms in which y < y’ with terms in which y > y’, the expression in

Equation 28 equals the following:

// (p(Y = yIE)p(Y =) — p(Y =Y |E)p(Y =y))
yJy'<y

(29)
(e'//(f(xHa)’)+f(xL,)’/)) _ ew(f(XH,y’)+f(xL,y))) dy’ dy.

In this expression the first term is (strictly) positive if p(E|Y = y) is (strictly) in-

creasing in y, and y is not a.e. constant. Since y > y’ and log is a strictly increasing

function, the second term has (strictly) the same sign as y if f is (strictly) supermod-

ular, and (strictly) the opposite sign if f is (strictly) submodular. The claim follows

by combining these observations. O]
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