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Abstract

Using new data on citations to university patents and scientific publications, we study how geography
affects university knowledge spillovers. Citations to patents decline sharply with distance up to about
150 miles and are strongly constrained by state borders. Distance also constrains citations to scientific
publications, but the impact is less sharp and persists over greater distances. The state border effect
for publications is significant only for lower quality public universities. We show that the state border
effect is heterogeneous, and is strongly influenced by university and state characteristics and policies.
It is larger for public universities and those with strong local development policies. The border effect
is larger in states with strong non-compete laws that facilitate intrastate labor mobility, states with
greater reliance on in-state educated scientists and engineers, and states with lower rates of interstate
scientific labor mobility. We also confirm the impact of non-compete statutes by studying a policy
reform in Michigan.
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1. Introduction

Innovation and knowledge spillovers are the key to economic growth, and universities play a central
role. In the U.S., academic institutions spent $48 billion on R&D, accounting for 56 percent of ba-
sic research and 33 percent of total research in the U.S. (National Science Board, 2008). Academic
research increases productivity growth in the economy and stimulates greater private sector R&D
through spillovers, and through licensing university innovations to private firms for commercializa-

1" Academic research output takes two main forms: scientific publications and, increasingly

tion.
since the 1980 Bayh-Dole Act, patents. Promoting university innovation and its diffusion, especially
through science-based research clusters, is a major policy objective in industrialized countries. This
policy focus is predicated on the assumption that knowledge spillovers are geographically localized
and best exploited by agglomerating high technology activity. Thus it is important to understand
how geography, and the characteristics and policies of universities and states, constrain knowledge
spillovers.?

This paper focuses on how state borders, and distance, influence the diffusion of knowledge from
private and public American universities, and explores why the state may be a relevant geographical
unit when analyzing knowledge flows. Whereas country borders typically demarcate zones with
different cultures, languages, and political institutions, American states are not likely to vary much
on these dimensions. Thus it is not immediately clear why state borders would matter in this
context. Moreover, the difficulty of disentangling state border effects from pure distance effects
makes it difficult to isolate and interpret whatever effects appear to be associated with state borders.
Nonetheless, because state borders are not strongly associated with different linguistic, culture, or
political institutions, they provide a clean framework for investigating how local policy, both at the

state and university levels, influences knowledge spillovers.

We focus on two channels through which state borders can affect university knowledge diffu-

!There is substantial evidence of R&D spillovers (e.g., Jaffe, 1989; Adams, 1990; Jaffe and Trajtenberg, 2002).
Spillovers tend to be geographically localized, as might be expected if direct knowledge transfers are important
(Jaffe, Trajtenberg and Henderson, 1993; Audretsch and Stephan, 1996). There is also a growing empirical literature
on university patenting and technology transfer policies (e.g.,Henderson, Jaffe and Trajtenberg, 1998; Lach and
Schankerman, 2008; Belenzon and Schankerman, 2009), and university research productivity (Adams and Griliches,
1998).

2For a review of economic studies of links between universities, entrepreneurship, and regional development, see
Astebro and Bazzazian (2010). Knowledge diffusion can be ’disembodied’ (e.g. reading patents or publications)
or transmitted through more direct interaction, such as collaborative research and consulting activity. Both forms
of transmission may be constrained by geographic distance, and facilitated by improvements in information and
communication technologies and other channels (Adams, 2002; Agrawal and Goldfarb, 2008). The results in our
paper point to an important role for labor mobility and policies that influence it.



sion: local information, and policies for commercializing university innovation. The first channel
is important when dealing with tacit knowledge, which is difficult to codify and transfer by simply
reading patent documents or academic publications. This means that inventors located closer to
the cited university have a greater potential for learning than those located further away, and this
encourages development of local information networks. In such cases, the border effect should be
stronger in states where inventors are more likely to remain in the state when they move jobs, and
when inventors are more likely to have been educated at a local (in-state) university. State policies
can influence the prevalence of such local information by affecting scientific labor mobility. One
important example is ‘non-compete’ labor laws, which make it more likely that inventors who shift
employers will leave the state. In addition, a variety of university and state policies can affect the
retention of locally educated scientists and engineers.?

The second channel involves policies that promote local commercial development of university
innovations. This is more likely to occur in states with a dense and vibrant community of scientists
and engineers, who can potentially build on and cite university patents and publications. In addition,
the state border is likely to be more important for public universities that are often constrained, and
informally influenced, by state government in their technology licensing decisions. One important
manifestation is that public universities typically attach greater importance to promoting local and
regional development through their technology licensing policies (Belenzon and Schankerman, 2009).

To study these questions, we use two complementary measures of knowledge spillovers. The first
is citations to university-owned patents. Citations have been widely used in the literature to trace
spillovers from corporate R&D (Jaffe and Trajtenberg, 2002). However, citations to university
patents are an imperfect measure of the reliance of corporate research on university knowledge.
Many scientific contributions made by university faculty never find their way into patents.* The
most important complementary measure of knowledge spillovers is the extent to which corporate
patents cite university scientific publications. One might expect the geographic pattern of diffusion
for ‘open science’ knowledge in publications to differ from the ‘proprietary’ knowledge embedded
in university patents. In addition, if the information in scientific publications is more ‘general’,

and thus multi-use in character, we would expect it to exhibit less sensitivity to distance and state

3Sumell, Stephan and Adams (2008) document that U.S. states differ widely in the extent to which locally educated
scientists and engineers remain in-state for their first job, and they show that this varies with university and state
characteristics.

1Only about one third of inventions disclosed by faculty to university technology transfer offices end up as patent
applications (Lach and Schankerman, 2008). In addition, there are purely scientific discoveries by faculty that are not
embodied in inventions with commercial applications, but which may contribute to subsequent corporate innovation.



borders, especially if the border effect is significantly influenced by technology commercialization
policies.

There is a substantial literature on the localization of knowledge spillovers using patent cita-
tions.> The basic idea is that a citation indicates that the later invention in some way builds on the
earlier one, and that some knowledge transfer has occurred. The seminal paper in this area is Jaffe,
Trajtenberg, and Henderson (1993). They compare the average distance of patents that cite another
patent and a random control group of patents that do not cite (the control patent is drawn from
the same technology field and patent cohort as the cited patent). They show that firms located in
the same city as the inventor are much more likely than others to benefit from knowledge spillovers
from that innovation. This approach has been used and refined by later studies.’ Geography is
typically summarized as a set of broad areas — identifying only whether inventors are in same city,
state, or country. These studies do not use a measure of geographic distance, so they are not able
to explore in more detail how distance affects citation rates — e.g., whether the effects of distance
on spillovers dissipate after some point. We address this gap by using the actual distance between
the locations of patent assignees (measured by Google Maps).

We adopt a similar econometric approach to study how geography shapes university knowledge
spillovers, and how this impact varies with state and university characteristics and policies. We dis-
tinguish between two dimensions of localization: the relationship between spillovers and geographic
distance, and the impact of state borders, controlling for distance. Using new data on citations
to university patents and scientific publications, and measures of distance based on Google Maps,
we show that spillovers are highly localized. Citations to both university patents and publications

decline sharply with distance up to about 150 miles, but are essentially constant beyond that. This

>0Of course, not all university knowledge diffusion represents spillovers in the economic sense. The benefits are
partially internalized when university inventors collaborate with private firms in the commercialization of their in-
ventions (e.g. through consulting or participation in start-up companies). This is the argument that Zucker, Darby,
and Brewer (1998), and Zucker, Darby, and Armstrong (1998) make with respect to the development of the U.S.
biotechnology sector. However, it is unlikely that the social returns to knowledge diffused through university patents
and scientific publications are fully internalized by the inventors. See also Audretsch and Stephan (1996). Another
form of local internalization is highlighted by Mowery and Ziedonis (2001), who show that market-mediated spillovers
in the form of licensing of university inventions tend to be strongly localized in nature.

Leading examples of papers that document the state-(or other sub-national or national) border effect include
Thompson (2006), Alcacer and Gittleman (2006), and Peri (2005). The first two papers uses the control group
approach but exploit the distinction between citations by the patentee and those added by the patent examiner
to help identify localized spillover effects. Peri (2005) uses the citation function approach developed by Jaffe and
Trajtenberg (1998), which requires explicit functional form assumption on the probability to cite. The border effects’
found by these studies are difficult to interpret, however. Thompson does not include a distance measure, which
confounds the effects of distance and borders. Peri includes only a linear distance measure, and thus potentially
confounds the border effect with nonlinear distance effects. In a more recent (unpublished) paper, Singh, Marx, and
Fleming (2010) document a persistent state border effect while controlling for refined distance measures.



level of ‘threshold distance’ — corresponding as it does to an extended commuting distance — strongly
suggests that direct personal interaction plays an important role in knowledge flows.

Controlling for distance, we find strong evidence of a state border effect for citations to university
patents. Inventors located in the same state as the cited university are substantially more likely
to cite one of the university’s patents than an inventor located outside the state. In contrast, we
find that state borders have essentially no impact on citations by patents to university scientific
publications, except for lower quality public universities.

However, the impact of state borders on patent citations varies widely across states, and we show
that this variation is consistent with the predictions of the local information and commercialization
hypotheses. First, the border effect is larger in states that do not have, or do not strongly enforce,
‘non-compete’ labor laws. These statutes restrict employees from moving jobs to a competing
firm within the same state for some period of time. By so doing, they should reduce within-state
knowledge spillovers and thus weaken the state border effect on citation behavior.” We confirm
the impact of non-compete statutes by studying a policy reform in Michigan that introduced such
restrictions. This reform was studied by Marx et. al. (2007, 2010), who show that non-compete
laws increase out-migration for job movers. Our finding reinforces those studies by showing that
non-compete statutes affect not only labor mobility directly, but also the knowledge diffusion that
labor mobility generates.®

Second, we show that the border effect is stronger in states which have a higher fraction of
inventors educated at in-state universities, a greater density of scientists and engineers, and lower
rates of interstate labor mobility for scientists and engineers.

Third, the state border effect is much stronger for citations to patents from public (as compared
to private) universities, even after controlling for the academic quality of the university. A substan-
tial part, but not all, of this ownership effect is associated with the local development focus of the
university technology transfer activity. This finding has a potentially important policy implication.
Belenzon and Schankerman (2009) show that there is a cost to pursuing local development in this
way — universities with strong local focus earn substantially less licensing income from their inven-

tions. But there may be offsetting benefits, most importantly in the form of greater localization of

"The impact of non-compete statutes on growth is theoretically ambiguous. They intensify local knowledge
spillovers by allowing intra-state job hopping, but reduce the incentives of employers and employees to invest in
job-specific human capital. For discussion see Fallick, Fleishman, and Rebitzer (2006).

8This finding is consistent with earlier work by Almeida and Kogut (1999), who document the link between patent
citations and labor mobility.



knowledge spillovers. This issue is key to understanding whether it makes economic sense for uni-
versities (or state governments) to promote local development through local licensing. Our finding
that strong local development objectives are associated with greater localization of knowledge flows
shows that there is a genuine tradeoff which policymakers need to bear in mind.

Finally, we examine how localization of knowledge spillovers varies across technology areas,
reflecting differences in the importance of tacit knowledge and the associated channels of information
transmission. In fields where information is less codified and thus harder to transmit, direct social
relationships — e.g.. collaboration, seminars and so on— are likely to play a larger role, making
knowledge spillovers more sensitive to geographic distance. We find that localization occurs mostly
in biotechnology, pharmaceuticals, and chemicals, and much less so in electronics, information
technology, and telecommunications. These differences imply that some of the variation we observe
in the strength of the border effect across states may be attributable to differences in their technology
specialization.

The paper is organized as follows. Section 2 presents the data. In Section 3 we describe the
econometric specification. The results are reported and discussed in Section 4. Section 5 summarizes

the key findings and some directions for further research.
2. Data

For this paper we constructed several new, large-scale data sets that allow us to look at localization
of knowledge flows in novel and more detailed ways. These are described briefly below. Details are

provided in the Data Appendix.

2.1. Patent Citations to University Patents

The sample covers 184 research-oriented (Carnegie I) universities in the United States, which account
for the vast bulk of academic R&D in the United States. We follow the conventional approach of
using patent citations to trace knowledge spillovers. In order to identify the population of university
patents, we matched the names of the assignees of U.S. patents to universities, using a wide range
of possible appellations for the university (e.g. the names of the technology licensing office, the
university, and relevant abbreviations). This allows us to identify all patents applied for by each
university in the sample, and then to identify the set of all U.S. patents that subsequently cite
these university patents. The standard data source for U.S. patents is the 2002 version of the

NBER patents and citations data archive. We updated the patent data to 2007 by extracting all



information, including inventor address and citations, for all patents granted between 2002 and 2007
directly from the USPTO website.

We construct a control group to compare to this set of citing patents. Self-citations and citations
by foreign patents are excluded from this analysis. For each citation to a university patent, we
randomly draw another (non-citing) patent in the same three-digit U.S. patent class and patent
grant year. Thompson and Fox-Keene (2005) argue that findings of localized knowledge spillovers
using patent citations may be sensitive to the technology classification — specifically, that more
detailed disaggregation is essential — so as a further step we also collected the more detailed, six-
digit assignment using the International Patent Classification for each patent which we will use as
an additional control variable.” The final data set includes 26,914 university patents granted during
the period 1975-2006. These patents receive 191,043 citations from patents that have at least one
American-based inventor. With a matched (non-citing, control) patent for each of these, the final

data set has 382,086 observations.

2.2. Geographical distance of spillovers

To examine the relationship between distance and knowledge spillovers, we constructed a novel data
set on the distance between the cited university and all of the firms (or individuals) that cite its
patents over the period 1976-2007. The distance is measured on the basis of the address of the
inventor on the citing patent and the address of the university whose patent is cited (i.e. where the
patent assignee is the university). To do this, we developed new data extraction software that uses
Google Map as the source of information for the geographical (driving) distance in miles between
each university and the citing inventor’s location. In cases where there are multiple (domestic)
inventors on the citing patent, we take the average geographic distance between the addresses of
the various inventors and the university whose patent is cited. The econometric results are robust to

using the alternative approach of taking the minimum distance when there were multiple inventors.

2.3. Patent Citations to University Scientific Publications

We constructed a new data base on citations by patents to scientific publications by university
faculty. For each patent granted in the period 1975-2007, we extract the citations it makes to

non-patent literature directly from the patent document as it appears in the U.S. Patent Office.

9For this purpose we adopt the IPC because concerns have been raised about the accuracy of the more detailed
U.S. patent sub-classes.



We then identify the author(s) and her affiliation from the citation text and determine the name of
the cited university. In cases where the citation has incomplete information about the authors or
affiliations, we use the Web of Science data base to track the name of the publication and determine
the university to which it belongs. The output of this procedure is a comprehensive data set that
maps the link between corporate innovation and university scientific discoveries.

We then use Google Map to calculate the distance between the location of the citing inventors
and the cited university, similar to the patent citations data. Finally, we construct a control group of
patents — for each patent citing an academic publication from one of the universities in our sample,
we randomly draw another patent with the same technology (patent) sub-class and cohort that does
not cite the university publication. In total, 365,205 patents in the complete sample make at least
one citation to academic publications. Of these citations, 34,714 involve (matched) publications
from our sample of universities. With a matched (non-citing, control) patent for each of these, the

final data set for publication citations has 69,428 observations.

2.4. University characteristics and local development objectives

For each university in the sample, we have information about whether the university is public
or private, and about the extent to which its technology licensing activity is aimed at promoting
local development. The latter information is based on a survey of university technology licensing
offices (TLO’s) developed by Lach and Schankerman (2008).!° Among other things, this survey
asks about the importance the TLO attaches to promoting ‘local and regional development’ (i.e., a
preference for licensing to local firms), using a four point Likert scale — very important, moderately
important, relatively unimportant, or unimportant. We define a dummy variable that is set equal
to one if the university TLO a answers ‘relatively important’ or ‘very important’; the reference
category corresponds to the other two categories. This survey covers only 75 universities, but these
universities account for about 68 percent of the total number of patent citations in the overall
sample. Of these 75 universities, 57 rank local development objectives as either relatively or very
important. Not surprisingly, public universities typically rank local development highly, though
there are both public institutions that do not and private ones that do (Belenzon and Schankerman,

2009). Therefore, in examining the impact of this policy variable, it will be important to control

0The survey of TLO directors was developed in late 2001. It was sent to about 200 U.S. and Canadian research
universities that belong to the Association of University Technology Managers, with 102 responses. After matching
to other data for the empirical analysis, the final sample consists of 84 universities. In this analysis we exclude the
nine Canadian universities because we only use patent citations by U.S.-based inventors. For more details, see Lach
and Schankerman (2008) and Belenzon and Schankerman (2009).



for university ownership status in the regressions.

Finally, we construct measures of university quality based on NSF rankings of 23 different
academic departments in the hard sciences (National Research Council (1993); for details, see Lach
and Schankerman, 2008). In addition to these data sets, we use a set of state-level control variables

in some of the regressions. The variables will be introduced later when we use them.
3. Econometric specification

We follow the empirical methodology of Jaffe, Trajtenberg and Henderson (1993), comparing the
characteristics of corporate patents that cite university patents and a control group that does
not. The control group is constructed as follows: for each citation received by a university patent
(excluding self-citations), we randomly select another patent that does not cite but which is in the
same cohort (patent grant year) and four-digit patent class. Essentially the methodology involves
comparing the geographic distance, and other patent characteristics, between the citing patents and
the control group.

We use linear probability models that relate a dummy variable for whether the patent or pub-
lications is cited to a set of control variables.!! Since the control group is matched on the patent
application date and technology field, the methodology automatically controls for these factors in

the regressions. The general empirical specification is
Ci(u,s),j(s’) = O/Dij + ﬁ/Xij +YDuws + Ay Dys + OWsDys + My + Eij

where Cj(y,q),j(s) 18 @ dummy variable equal to one if patent j located in state s/ cites a patent
(or publication) 7 from university u located in state s,and zero otherwise. The control variables
(discussed more fully below) include measures of geographic distance between the citing and cited
patent, D;;, a set of other controls X;;, a within-state dummy (border effect), D, equal to one
if the citing patent is in the same state as the cited patent (or publication), interactions between
university and state level variables with the within-state dummy, Z, D,,s and WD,,s, and a set of
university fixed effects, n,. We compute standard errors clustered at the level of the cited patent,
which allows the disturbance ¢;; to be correlated across citing patents for the same cited patent.

The identification assumption in this analysis is that the key observed characteristics of interest

"' The marginal effects implied by Probit models for all of the main specifications are nearly identical to those from
the linear probability model (LPM). We use the LPM because it is computationally much easier to accommodate
large number of fixed effects. In addition to the fixed effects for universities and high-tech cluster pairs used in all
specifications, we later introduce a complete set of technology field-state interaction dummies.



— geographic distance of the citing patent, university and state level characteristics, and university
local development focus — are exogenous factors, unrelated to the disturbance ¢;; in the citation
equation. The main concern is unobserved quality of a patent, which might affect both the proba-
bility that it is cited and the distance of the citing patent. But here one would expect that higher
(unobserved) quality would be positively correlated with the distance of citing patents — i.e., weak
patents tend to be cited more locally. Such correlation would induce a positive bias in our coeffi-
cient on distance, and thus cause us to understate the true localization effects, i.e., to understate
the negative impact of distance on citation behavior.

One important issue to bear in mind is the endogeneity of location. We treat distance between
the citing firm (inventor) and the cited university as exogenous. We find that citation dissipates
with distance, and interpret this result as saying that inventors learn less the further they are from
the cited patent. But it could also be a reflection of an endogenous spatial distribution of inventors,
driven by an attempt to exploit knowledge spillovers. The extreme version of this is what we might
call ‘pure assortative matching’ — inventors learn only from their own types (e.g. those in their
specific technology area), and distance does not affect this learning per se. One way to distinguish
between these interpretations is to use more disaggregated controls for technology fields (as we do
in this paper), but one cannot entirely rule out endogenous location as part of the explanation.
In an important sense, however, this is not so much an identification issue as an interpretational
one. Nonetheless, we will be able to reject the null hypothesis that the state border effect is solely
driven by endogeneity because we show that it varies systematically with both university and state
policies and characteristics. If the state border effect were driven only by ‘assortative matching’, by
technology specialization, or the desire of inventors to locate closer to higher quality universities, it
would be hard to explain why this effect is weaker for private than for public universities (holding
constant both patent and university quality) and for universities that are located in states that
more strongly enforce 'non-compete’ labor laws.

Turning to the key control variables, we measure the distance between the inventor(s) of the
citing patent and the university whose patent with a flexible specification that allows for nonlinear
effects of distance. Specifically, we use a set of nine dummy variables for intervals of distance (in
miles): 25-50, 50-100, 100-150, 150-250, 250-500, 500-1000, 1000-1500, 1500-2500 and greater than
2500; the reference category is 0-25 miles (which might be interpreted as a metropolitan effect). This
specification is more flexible than existing studies (e.g., Peri, 2005) and we choose it for two reasons.

First, it is of interest to know how the impact of distance on knowledge spillovers dissipates because

10



it may give insight into how information diffuses. If knowledge is primarily transferred through
personal contact in research collaborations, participation of university inventors in the development
of licensed technologies (including start-ups) and so on, then we might expect diffusion to be highly
localized and distance not to matter after some point. But if information is spread more though
information technology, or inventor participation in scientific conferences, the effects of distance
should be less local. The second reason to use a flexible specification of distance is to avoid any risk
of confounding the effects of distance and the state border.

To examine the effect of state borders on citation, we define a ‘within-state’ dummy variable
that is set equal to one if the inventor of the citing patent is located in the same state as the
university whose patent is cited (zero otherwise)!? Since we control for distance in flexible way, the
within-state dummy will identify whether there is any pure ‘border effect’ on knowledge spillovers.

Of course, the probability a university patent (or scientific publication) is cited may depend
on a variety of university characteristics, including the quality and visibility of its faculty, entre-
preneurial orientation, and high-tech density and specialization of the university location, as well
as the university policies for promoting technology transfer and academic interaction (conference
attendance, consulting activities and so on). To capture these factors in a flexible way, we introduce
a complete set of university fixed effects for the cited patent.'

Finally, we include a complete set of dummy variables for pairs of the five leading high-tech
clusters in the U.S.: Austin, Boston, Raleigh-Durham, San Diego, and Silicon Valley. We allow for
the ordering of the location of the cited and citing inventor to matter (e.g. the San Diego-Boston
link may differ from Boston-San Diego). This gives a total of twenty dummy variables for the
high-tech city pairs. These controls are introduced to account for the possibility of higher citation

rates between high-technology clusters.!

121f there are multiple inventors, the state dummy is set equal to one if any of the inventors on the citing patent is
located in the same state as the cited university patent.

13This additive specification will not pick up characteristics of universities that affect the geographic profile of
citations (i.e., the way they depend on distance). In the empirical analysis we will allow for the ownership type,
quality and other characteristics of the university and state to interact with geographic distance and/or the state
border effect.

' Almeida and Kogut (1999) show that localization effects are stronger in certain high-technology regions in the
U.S. than others. This is not surprising, given the agglomeration of technologically related activity in those areas.
Our university fixed effects should pick up much of this effect. Our dyadic dummies for high-tech clusters should pick
up links between clusters with similar technological focus.

11



4. Non-parametric Evidence

Table 1 presents descriptive statistics on the locational characteristics of citations to university
patents (Panel A) and scientific publications (Panel B). On average 12 percent of citations originate
from the same state as the inventor, but the share varies widely across patents (from 0 to 100
percent). The average distance between citing and cited patent is 1,218 miles (not reported), but
citations are geographically concentrated — overall, 15 percent of all citations originate within 150
miles, and 29 percent within 500 miles, from the cited university patent.'®> At the same time, 53
percent of citations originate at a distance exceeding 1,000 miles from the cited university. The
locational pattern for citations to publications is very similar. However, nothing can be concluded
about the localization of knowledge diffusion from these facts alone. For that, we need to compare
the geography of citing and a control group of non-citing patents. We do this non-parametrically

in the next table, and econometrically in Section 4.

Table 2 presents non-parametric comparisons of citing and control patents (Panel A) and sci-
entific publications (Panel B). Column (2) in Panel A compares the average difference between the
distance of patents that cite and those that do not (control group), broken down by university
ownership type and patent quality. Several important conclusions emerge. First, in the overall
sample, citing patents are systematically closer to the cited university than the control group — the
difference is -6.9 percent — and we easily reject they hypothesis that there is no difference. This
confirms that distance constrains university knowledge spillovers. Second, the degree of localization
is more than twice as large for public institutions than for private ones — the differences are —9.2
and -4.3 percent, respectively. Third, the degree of localization is much more pronounced for the
lowest quartile of patent quality, both for public and private institutions. For the upper quartile the
degree of localization is much smaller, and for private universities there is no statistically significant

localization.

'5The distribution of citations across different distance intervals is similar for public and private universities (not
shown).
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Column (3) compares citing and control patents in terms of the fraction of citations originating
from within-state inventors, another dimension of localization. The pattern is broadly similar to
those in column (2). First, inventors that cite university patents are significantly more likely to
be located in the same state. We decisively reject the null hypothesis that there is no difference
between citing and non-citing patents. Second, this within-state citation bias is stronger for public
universities than for private ones, and it is more pronounced for the lowest quartile of patents — the
difference with the upper quartile is especially large for public universities.

Overall, the pattern for publications is very similar to patents, so we will not go through it in
detail. The similarity is striking, and perhaps a little surprising, because publications correspond to
an open science regime, where dissemination is encouraged by the norms of the profession and the
academic reward structure. In contrast, patents are proprietary knowledge apart from the informa-
tion disclosure mandated in the patent document. The fact that the two knowledge regimes exhibit
similar characteristics suggests that there are common, geographically-mediated determinants of
information dissemination. We return to this point in Section 5, where we discuss the more detailed
econometric results.

Figure la provides evidence on how the effects of distance on knowledge spillovers dissipate as
we extend the distance. The light colored bars show the difference between the average citation
probability for an inventor in the specified distance interval and those at greater distances (the 95
percent confidence interval is given at the top of each bar). These bars show clearly that university
knowledge spillovers are strongly localized. For example, the first ‘distance bar’ shows that the
probability that an inventor within 25 miles cites a university patent is 34 percentage points greater
than for inventors located beyond 25 miles from the university. Since the mean citation probability
is 50 percent by construction, this effect is huge — equivalent to a 65 percent decline in the mean
citation probability. There is a further steep decline as we move from 25-50 to 50-100 miles — there
is still a small, but statistically significant, distance effect at 50-100 miles, equivalent to a 10 percent
higher citation probability (relative to the mean) than at greater distances. After that, it appears
that distance exerts no further effect.!

Figure 1b shows the impact of state borders on citation, for different intervals of distance between

the citing and cited patents. The dark colored bars depict the difference between the citation

'The last bar suggests that the citation probability appears to rise slightly with distance at distances beyond 500
miles. This is an artifact of the higher citation probabilities between high-technology clusters which are at these
greater distances from each other (e.g. Boston, Silicon Valley, San Diego, Raleigh-Durham and Austin). When we
control for cluster pairs and other factors in the econometrics, this anomaly disappears.
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probability for inventors located within the same state as the university and those outside the state,
for each distance interval. For example, the first bar shows that inventors located within the state
and within 25 miles of the university are 22 percentage points more likely to cite than inventors
located at that distance but outside the state border. In contrast to the distance gradient, Figure
1b shows that the impact of the state border persists over much longer distances (the maximum
within-state distance is 707 miles, in California). This finding is consistent with the hypothesis that
the state border effect is determined (at least in part) by university and/or state policies, whose

effects we would not expect to disappear with distance.!”

5. Estimation results

5.1. State-border effect

Table 3 presents the baseline linear probability regressions relating patent citation to distance and
state borders. In all regressions, we include university fixed effects, dummy variables for pairs of
five high-technology clusters, and a dummy variable for whether the citing and cited patents are in
the same 6-digit IPC patent class. Standard errors are clustered at the level of the cited patent.

Column (1) presents the specification with the dummy variables for different distance inter-
vals, but no within-state dummy. The results show that geography sharply constrains knowledge
spillovers. Moving from 0-25 to 25-50 miles reduces the citation probability by 16.5 percentage
points (which is about a third of the mean citation rate), and moving out to 50-100 miles further
reduces it by another 8.7 (= 25.2 - 16.5) percentage points. There is a further drop of 5.0 per-
centage points up to 150 miles, but thereafter distance has no appreciable effect on citation. These
econometric results confirm what we observe in Figure 1a.

In column (2) we report a specification with the within-state dummy but without distance
effects. The results show that citation is much more likely from inventors located within the same
state — the marginal effect of being within-state (0.196) is very large, nearly 40 percent of the mean
citation rate. However, the estimated state border effect is likely to be overstated because we do

not control for pure distance effects in this regression.

"While there is some variation in the border effect at different distance intervals, this reflects the fact that these
intervals correspond to different subsets of states (it depends on the distance of the university from the border) and,
as we show later, there is substantial heterogeneity in the state border effects across states.
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To address this, in column (3) we introduce both nonlinear distance effects and the within-state
dummy. We refer to this as the baseline specification. Two key findings emerge. First, both distance
and the state border effect are statistically significant, and it is important to include both variables
in the specification. Including flexible distance effects reduces the estimated effect of the state
border by more than 50 percent, from 0.196 to 0.084, but this still represents nearly 20 percent of
the mean citation probability. This result confirms that the state border effect is not simply a proxy
for geographic distance. At the same time, the estimated distance effects are robust to allowing for
a state border effect, and they confirm that the impact of distance dies out after about between
100-150 miles.'®

Second, the coefficient on the technology matching dummy is large and statistically significant,
confirming that citation is much more likely between patents in the same technology area. This is
not surprising, but the interesting fact is that we still find strong geographic localization even after
controlling for this matching dummy at the disaggregated 6-digit IPC level. This finding suggests
that localization is not just a reflection of the spatial distribution of technological activity.'® This
conclusion is robust across all specifications we estimate.

To investigate the impact of technological clustering on our findings more fully, we introduce into
the baseline specification a complete set of fixed effects for technology field- state pairs. We use the
3-digit level of aggregation for this purpose, which gives us a total of 3,995 dummy variables. This
is the most flexible way of allowing for state-specific technological specialization in order to check

whether the distance or state border effects are simply reflections of such specialization. Column (4)

18We conducted two additional robustness checks on these baseline findings. First, we re-estimated the baseline
specification with a more refined distance breakdown of the 0-100 mile bracket using ten mile intervals. The key
findings of localized distance effects and the importance of the state border are robust. The main additional insight
from this exercise is that the distance gradient appears to flatten out at somewhere between 70 and 100 miles, but
given the standard errors we would not make too much of this difference.

Second, we checked whether the results are robust to a different rule for selecting the control group of patents.
Instead of choosing only one random control (non-citing) patent for each citation to a university patent in our sample,
we randomly selected five control patents for each citation and re-estimated the baseline specification. The estimated
distance effects are broadly similar and have the same pattern, dissipating after 150 miles. The estimate (standard
error) of the state border effect is 0.052 (0.004), which is about 30 percent of the mean citation rate for this sampling
frame (with one citing patent and five control patents).

197f localization were driven by agglomeration based on technological specialization, we would expect to find much
weaker localization when we control in a more refined way for matching on technology class. This concern was
originally raised by Thompson and Fox-Keene (2005) in the context of the classic paper by Jaffe, Trajtenberg and
Henderson (1993). As an additional robustness check, we re-estimated the baseline specification with a full set of
6-digit IPC fixed effects — not just a matching dummy at this level of aggregation. The estimates of the distance and
state border effects are very similar to those reported in Table 3.
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presents the results. The estimated coefficients for the state border effect and distance dummies are
almost unchanged (compare columns 3 and 4). This important result shows that the localization
of knowledge spillovers is not an artifact of state-specific technological agglomeration. We maintain
these technology-state dummies in all the subsequent regressions.?’

Finally, there is a concern that the results might be driven by a small number of leading uni-
versities which dominate patenting activity. In order to address this issue, we drop the top five
universities in terms of their total number of patents, and re-estimate the baseline specification in
column (4). These top universities, in descending order, are MIT, University of California at Berke-
ley, Stanford, California Institute of Technology, and the University of Wisconsin, and together
they account for nearly a quarter of the citations in our sample. Nonetheless, when we drop these
universities, the parameter estimates (reported in column 5) are very similar to those using the
entire sample. This confirms that our key findings about the pattern of localization are robust, and
are not driven by these top performers.

Finally, we also checked whether the geographic profile of knowledge spillovers changed over
time. To do this, we re-estimated the baseline specification in column (4) for two sub-periods:
1976-1993 and 1994-2006 (1993 is the median year for patent citations). We do this in two ways:
first, using the date of the cited patent, i.e. the ‘vintage’ of the technology; and second, using the
date at which the citation occurs (the second approach is designed to check for changes in diffusion
associated with improvements in information technology and the internet). The point estimates of
the state border effect are similar, and not statistically different, between the two periods (0.080
versus 0.087 using the cited patent to date; 0.061 versus 0.086 using the citing patent to date). The
coeflicients on the distance dummies show somewhat stronger localization for the later period, using
both dating methods, but in both periods the distance gradient is essentially flat after 150 miles.?!

Overall, we do not find evidence that the degree of localization changed substantially over time.

5.2. Public and private universities and the state border effect

In this section we examine the differences in knowledge diffusion from public and private universities.

We begin by estimating the baseline specification separately for each ownership type, allowing for

20We go one step further by allowing these fixed effects for technology field-state pairs to change over time, by
including dummies at the technology-state-year level (using the grant year of the citing patent). The results on the
state border effect, and the distance gradients, remain robust (results not reported for brevity).

21 For example, using the date of the cited patent to split the sample, for the pre-1993 period the coefficients (s.e.)
on the first three distance intervals are -0.152 (.012), -0.187 (.016) and -0.224 (.016). The corresponding numbers
for the later period are -0.158 (.011), -0.245 (.014) and -0.272 (.014). There is even less difference between the two
periods when we use the citing year of the patent.
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all coefficients to differ. Table 4 presents the results. A comparison of columns (1) and (2) shows
that there is significantly stronger localization of knowledge spillovers for public universities. This
takes two forms. First, patent citations drop off more sharply with distance for public universities.
For example, moving from 0-25 to 25-50 miles reduces the citation probability by 19.1 percentage
points for public institutions, and moving out to 50-100 miles further reduces it by another 3.9
percentage points (= 23.0-19.1). For private universities, the corresponding incremental declines
are 13.9 and 9.4 percentage points, respectively. Yet for both types of universities, we observe that
distance has no appreciable effect on citation beyond 150 miles. The second important difference
is that the state border more strongly constrains knowledge diffusion for public universities — the

estimates are 0.065 for public and 0.102 for private institutions.

In column (3) we pool the two types of universities but continue to allow the distance gradient
and state border effect to differ. This specification yields similar results — i.e., constraining the
other coefficients to be the same for public and private universities does not change our main
conclusion that spillovers are more distance sensitive, and more constrained by state borders, for
public universities. In this constrained version, the gap between the state border effect for public
and private universities is even larger (0.125 and 0.045, respectively).

One concern is that the localization of knowledge diffusion for patents representing important
advances may be very different than for marginal improvements. In particular, we would expect
important ideas to diffuse more widely. Moreover, in our sample private universities tend to have
somewhat higher quality patents, as measured by the total number of subsequent citations received
(mean numbers of patent citations for public and private universities are 37 and 48, respectively).
Thus part of the difference in the state border effects we find might also reflect these differences in
patent quality.

To check this hypothesis, we re-estimate the specification in column (3) separately for patents in
the bottom and upper quartiles of the distribution of total citations received, our measure of patent
quality.?? The results are presented in columns (4) and (5). Three conclusions are worth noting.

First, the estimated coeflicients on the distance dummies show a sharper distance gradient for the

22There is a large empirical literature showing that such citation measures are correlated with measures of economic
value (Jaffe and Trajtenberg, 2002). We observe patents granted up to 2006 and citations through the year 2007, so
there is an issue of truncation for the more recent patents. However, since we study the relationship between citation
and distance, and not the number of citations per se, truncation would only cause a problem to the extent that the
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lower quartile. Moving from 0-25 to 25-50 miles reduces the citation probability by nearly twice
as much for lowest quartile than for upper quartile (-0.207 versus -0.114). This finding confirms
that knowledge diffuses more widely for important patents. But it also interesting that for both
categories of patents, the effect of distance dies out relatively quickly.

Second, the state border effect is larger for public universities, both for low and high value
patents. For the lower quartile, the estimate of the border effect for public universities is 0.113 and
0.017 for private ones. For the upper quartile, the estimates are 0.158 and 0.102, respectively.

Third, while distance constrains knowledge diffusion more strongly for low value patents, the
state border is more important for high value patents, both for public and private universities.
If the state border effect is, at least partly, due to a local preference in university technology
commercialization policies, as we show in the next section, this evidence suggests that universities
target high valued innovations for local development.

As a further check, we investigate whether the quality of the university (as opposed to the
specific patent) partly explains the localization of knowledge spillovers, and the difference between
public and private institutions. If there is imperfect information about the quality of the individual
patent, the quality of the institution with which the patent is affiliated might be an informative
signal and thus affect diffusion. To do this, we construct quality measures of each university using
data from the National Research Council (1993) on the academic quality of individual departments
in the hard sciences and aggregating them to the university level.23 Column (6) reports the pooled
regression using dummy variables for quality quartiles interacted with the within-state citation
dummy. Allowing for university quality does not affect the distance gradient (compare columns 3
and 6). The new finding here is that the state border effect is unaffected by institutional quality
except for the highest quartile, where it is weaker, but the difference between public and private
universities remains robust.

The evidence in this section shows clearly that state borders are more important for public

universities.?* Does this reflect something intrinsic to ownership, or is it associated with university

timing of citations is correlated with distance (e.g. earlier citations to a patent are from less distant inventors). Since
that is possible, we checked robustness by re-estimating the baseline specification in column (4) in Table 3 using only
patents granted before 2000. The results are very similar to those in the table. For example, the coefficient on the
within-state dummy is 0.080, which is similar to the one obtained with the full sample, which is 0.089.

Z3We use three alternative measures from the National Research Council data: ranking of faculty quality, publica-
tions per faculty, and citations per faculty. In each case, we assign each university to a quality quartile and interact
quartile dummies with the within-state dummy. The results in the text are based on faculty rankings, but we get
qualitatively similar results with the publications and citation measures.

2In addition to the public-private distinction, we also examined whether the state border effect was different for
land grant universities. These are (mostly public) universities established by the federal government in the 19th
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policy that is correlated with ownership? We examine this question, and how other state policies

and characteristics affect the state border effect, in the next section.

5.3. University and state policies and the state border effect

In this section we examine how the strength of the border effect varies across states, and how
policy influences it. In particular, we are interested in the role played by university policies toward
technology transfer, and state policies that affect the mobility of scientists and engineers and thus
circulation of local information. We now turn to a discussion of our specific hypotheses and how
we test them empirically.

Local Commercialization of Innovation: The main idea is that the state border effect is likely to
be stronger when universities have a policy to promote local and regional development through their
technology transfer activity. These policies take the form of a preference for licensing university
inventions to local firms, or establishing local start-up companies. In addition, there are sometimes
formal constraints (or informal pressure) on universities — particularly public institutions — that
influence licensing behavior (Belenzon and Schankerman, 2009). Such local licensing creates an
information base on which the licensee and other local inventors are likely to build on, and thus a
greater probability of within-state citation (stronger state border effect).

In addition, the state border effect should be larger when the potential for exploiting the knowl-
edge spillovers within the state is greater, and this is more likely in states with a higher density of
scientists and engineers (S&E). However, controlling for the average S&E density in the state, we
expect the border effect to be smaller in states where the high-tech activity is concentrated at the
location of the cited university, since this implies there are fewer potential citing inventors near the
state border.

To test these hypotheses, we interact the within-state dummy with three measures. The first
is a dummy variable indicating whether the university reports having a strong local/regional de-
velopment objective in its technology transfer policy. The second is the density of scientists and
engineers per square mile (in 1995).25 The third is a measure of the high-tech density in the city
where the university is located (TechPole), which is constructed by the Milken Institute (Devol,
1999).

century to promote research and technology diffusion. The coefficient on the interaction between land grant status
and the within-state dummy was not statistically significant.

*The data on the total number of scientists and engineers in each state are taken from the National Science
Foundation, http://www.nsf.gov/statistics/pubseri.cfm?/seri id=18.
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In the patent citation equation, we expect positive coefficients on the interaction of the within-
state dummy with strong local development objectives and S&E density, and a negative coefficient
on the interaction with TechPole.

Local information: The state border effect is simply the within-state citation bias controlling for
distance. We expect this to be larger the more information that inventors have about the patents
generated by the universities in the state. If information flows are in fact localized, the border effect
should be stronger in states where 1) inventors are more likely to remain in the state when they
move jobs, which we call ‘labor mobility’, and 2) inventors working in a state are more likely to have
been educated at the graduate level in that state, which we call “ocal education’?6 We consider
each in turn.

Local Education: To test the local education hypothesis, we need a measure of the fraction
of S&E working in a state who were educated in that state. Unfortunately there is no large-scale
information we are aware of that links the location of high-tech employees and their graduate
education. The only available source is a single cross-sectional survey on new Ph.D graduates in the
hard sciences conducted by the National Science Foundation (Sumell, Stephan and Adams, 2008).
We use the percentage of new Ph.D. hires in a state who received their degree from universities in
their state of employment — which we call In-State Educated S&E.?” The samples in this survey
are relatively small, and the variable is certainly measured with substantial error. Attenuation bias
will cause us to underestimate the true impact of local education on the border effect.

Labor Mobility: To examine the role of labor mobility, we use two complementary ap-
proaches. First, we use data from the March Current Population Survey (CPS) from the U.S.
Bureau of the Census to construct a state-level measure of scientific labor mobility. The March
CPS asks whether people have moved in the last year, the state they currently live in, and the
state they lived it last year, as well as their occupation. We use the CPS data for the available
years within our sample period to identify the level of both inward and outward migration for each
state for the set of occupational categories that correspond to scientists and engineers (in our best
judgment). We normalize this migration by the existing stock of scientists and engineers in each

state, taken from the National Science Foundation. We construct a measure of gross migration

26Of course, scientists who migrate out of state may maintain enduring professional links with local colleagues, and
thus ongoing familiarity with and citation of, their research. Agrawal, Cockburn and McHale (2006) present evidence
using patent citations that support this argument.

*"The information is taken from Table 8.2 in Sumell, Stephan and Adams (2008). The fraction of new hires educated
in-state varies widely, from a low of 8.3 in the District of Columbia, and 19.5 percent in New Jersey, to a high of 57.4
percent in Utah and Iowa.
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rates (inward + outward) for this purpose — which we call S&E Mobility — and interact it with the
within-state dummy to test whether states with higher scientific labor turnover have weaker border
effects.?®

The second approach we use is to build on the recent literature on the economic impact of
non-compete labor laws. These statutes restrict employees from taking jobs, for some period,
with competing (same industry) companies within some geographic boundaries, typically the state.
Exploiting the fact that the scope, and enforcement, of non-compete statutes vary across states,
recent studies have shown that non-complete laws increase the likelihood that employees who change
jobs leave the state, creating less intrastate job mobility (Marx et. al. 2007; 2010). Our hypothesis
is that, by inducing inventors with local information to leave the state, such laws should reduce the
strength of the state border effect. To test this, we use the ‘non-competition enforceability index’
for each state constructed by Garmais (2009) and interact it with the within-state dummy.?

Table 5 presents the results.?’ In these regressions we include as an additional control the
interaction of the within-state dummy with the level of economic activity (log of gross state product
per capita). We begin by estimating a completely flexible specification that allows each state to
have its own border effect, i.e., a different within-state dummy coefficient for each state (results
not reported for brevity). Even with this general specification of the state border effect, our earlier
findings on the impact of distance are robust. The citation probability declines sharply, and the effect

I However, the estimates indicate substantial variation

of distance is exhausted after 150 miles.?
across states in the magnitude of border effects. The average state border effect is large — at 0.194,
it is equivalent is 40 percent of the sample mean citation probability — but the point estimates range
from a low of 0.040 in New York to a high of 0.513 in Maine. We strongly reject the null hypothesis

that the border effects are the same across states (p-value <.001). The map of the U.S. in Figure

28 The mobility data are taken from http://www.bls.census.gov/cps/ads/adsmain.htm. Gross migration is the ap-
propriate measure for this purpose because both inward and outward migration should reduce the presence of local
information in the state. Scientists who leave the state with local knowledge and subsequently cite the university’s
patents or publications will represent out-of-state citations, and thus reduce the border effect. Scientists migrating to
the state but educated elsewhere will have less local knowledge which again reduces the border effect.

29 This index is based on a count of twelve different dimensions of the scope and enforcement of these statutes (thus
can range from zero to twelve). In the sample it from a low of zero (no enforcement) in California to a high of nine
in Florida. We also tried the simple binary classification used by Marx et. al. (2007, 2010). We obtain a very similar
point estimate with this measure, but it is not statistically significant.

30 As before, standard errors are clustered at the patent level. In these regressions the interactions between uni-
versity /state characteristics and the within-state citation dummy vary at the micro (citation) level. This makes it
different from the case studied by Moulton (1990), where a micro regression includes an aggregate regressor with no
variation over a subset of micro observations, and thus requires adjustment to standard errors.

31 The estimates (s.e.) on the first 25-50, 50-100 and 100-150 mile distance intervals are -0.143 (.009), -0.208 (.011)
and -0.238 (.011).
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2 summarizes the cross-state variation by identifying the relevant quartile of the distribution into
which each state falls. There is no obvious regional, size or other simple characterization of states
in this figure. We turn next to an econometric analysis of the cross-state variation in the border

effect.

Column (1) presents the results with interactions of the within-state dummy and all of the
factors discussed above, except the university local development dummy. We turn first to the local
commercialization hypotheses. The coefficient on the S&E density interaction is positive (though
marginally significant, p-value =.07), indicating that states with greater ability to exploit local
knowledge spillovers have larger border effects. Controlling for this density, we find that the state
border effect is smaller when high-tech activity is more concentrated at the university location. A
one standard deviation increase in TechPole (corresponding roughly to a move from Phoenix to
Boston) reduces the estimated border effect by 0.026, which is about 12 percent of the average state
border effect.

We turn next to the role of local information. First, we find that non-compete laws reduce
within-state knowledge spillovers, and the effect is large. The estimated coefficient of -0.018 implies
that moving from a regime of complete non-enforcement (California, index=0) to the maximum
enforcement state in our sample (Florida, index=9) reduces the border effect by 0.162, which is 84
percent of the average border effect. Second, the results confirm that the border effect is stronger
in states that have a higher fraction of locally educated scientists and engineers. Third, states
with greater levels of labor mobility exhibit smaller within-state knowledge spillovers. These results
show that policies that promote retention of local university graduates and reduce scientific labor
turnover will increase the localization of knowledge spillovers. In addition, as we found earlier, the
state border effect is smaller for private universities.

In column (2) we add the interaction between the dummy variable for strong local development
objectives and the within-state dummy. This university policy variable is only available for a subset
of the universities (but they account for the majority of the sample patents), so the sample size
drops by about a third. The coefficient on the university policy interaction variable is positive and
significant, confirming that universities that use technology transfer to promote local development

create stronger within-state knowledge spillovers. Nevertheless, even after we control for university
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local development policy objectives, we still find that public universities are more effective at creating
within-state knowledge spillovers than private ones. It remains an important task for future research
to identify the reasons behind this difference.

The coefficients on the other interaction variables are generally robust when university policy
is introduced. The point estimates of the impact of labor mobility and non-compete laws rise
somewhat. The coefficient on S&E density is about twice as large as before, and in this case
statistically significant. Finally, controlling for these other factors, we find that states with greater

higher levels of per capita income have smaller state border effects.

5.3.1. The Michigan ‘Natural’ (Policy) Experiment

In the previous section we exploited the cross-state variation in characteristics and policy to identify
the effects of interest. Of course, there is always the concern that unobserved state characteristics
may be correlated with these variables, especially the enforcement of non-compete statutes. For-
tunately, we are able to examine the impact of non-compete statutes on the state border effect in
another way, by exploiting a policy reform in Michigan. Prior to 1985 Michigan outlawed non-
compete agreements, but in 1985 it passed legislation that enforced them. In a series of recent
papers, Marx et. al. (2007, 2010) exploit this reform as a ‘natural experiment’ and show that the
introduction of non-compete legislation induced out-migration from Michigan, and that this was
particularly strong for top-performing inventors. Building on their work, we use the Michigan re-
form to examine the effect of this statute on intrastate knowledge diffusion —i.e. on the importance
of the state border effect on patent citation.

To do this, we re-estimate the baseline specification with a full set of within-state dummies,
allowing for a discontinuity in the border effect in Michigan after the reform. We would not expect
an immediate impact of the reform, since labor mobility and new citing patents occur with some
lag. To capture this, we estimate four distinct Michigan border effects: the pre-reform period (up
to and including 1985), 1986-89, 1990-95 and post-1995. The prediction is that the state border
effect should decline after the reform.

The results are presented in column (3) in Table 5, and they strongly confirm this prediction.
We observe a sharp, and statistically significant, drop in the coefficient after 1989, and essentially

no change thereafter.3? Moreover, the magnitude of this shift in the state border effect is consistent

32This conclusion holds up for different variants where we modify the timing of the dummies. We also estimated a
specification that allows for different effects in each year during the period 1985-1990 and found similar (but noisier)
changes.
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with the change implied by the parameter estimates obtained from columns (1) and (2), where we
identify the effect from the cross-state variation. Using the estimate of the enforcement index in
column (1), and assuming that Michigan moved from zero enforcement to the maximum level in
the sample, we get an implied decline in the state border effect of 0.162. This is very close to the
estimate using the Michigan policy experiment, which yields a decline of 0.144 (= 0.222 - 0.078).

As a further check, we conduct a set of ‘placebo’ tests by examining whether there is a similar
effect in other states that did not introduce any reform. Finding an effect in those states would
suggest that the change is being driven by some unobserved common factor other than the reform.
We use three variants, based on different definitions of the placebo group of states. In column (4) we
choose two neighboring states, Illinois and Indiana, in order to control for similar industrial structure
(in particular, reliance on the automobile sector) and demand shocks. In column (5) we use the ten
states whose individual, estimated state border effects were closest to the one for Michigan. Finally,
column (6) treats the placebo group as all states other than Michigan. In each case, the states in
the placebo group have their individual state border effects plus a common incremental effect for
the different subperiods. In all three experiments, we find the large decline in the estimated border
effect for Michigan, but no statistically significant drop for the placebo group of states. This gives
us confidence that the Michigan reform did in fact have the impact we attribute to it.

In Table 6 we summarize the relative importance of the main factors that affect the state border
effect, using the parameter estimates from column 2 in Table 5. We focus on the following three
sets of determinants: 1. university policy (public/private status, and local development objectives),
2. state policy (non-compete laws), and 3. scientific labor factors (In-state educated S&E, S&E
mobility and S&E density). We cannot meaningfully decompose the border effect into different
components because the various factors above are not orthogonal, so any decomposition would be
arbitrary. Instead, we compute the impact of a standard deviation change for continuous measures,
and discrete impacts for the dummy variable measures. In addition, we show the impact of moving

from the minimum to maximum values in the sample of each variable.

The results show that all of the above factors have large, and roughly similar, impacts on the state
border effect. Turning first to policy variables, moving from public to private ownership is associated

with a 29.2 percent decline in the state border effect, while a shift from no (or weak) to strong local
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development objectives raises it by 36 percent. A standard deviation increase in the strength of
state non-compete laws reduces the border effect by 47.7 percent. Local information variables also
have large impacts. A standard deviation increase in the fraction of locally educated scientists and
engineers raises the border effect by 42.2 percent, while for S&E density the corresponding impact
is 22.8 percent. A standard deviation rise in scientific labor mobility reduces the border effect by

36 percent.
5.4. Variation in localization across technology fields

The previous analysis was based on pooling data for different technology areas. In this section we
disaggregate the data to examine whether our findings of localized knowledge spillovers is common
to all fields, or driven by only a few technology areas. Table 7 presents parameter estimates of
the baseline specification for nine broad technology areas we constructed, based on the IPC patent
class of the cited patent. These areas are: Biotechnology, Chemicals, Pharmaceuticals, Medical

Instruments, Engineering, Electronics, Information Technology, and Telecommunications.??

We find substantial variation across fields in the degree to which knowledge diffusion is localized,
both in terms of the distance gradient and the state border effect. While distance strongly mediates
spillovers in all technology areas, the effects are less sharp in Biotechnology, Information Technology
and Telecommunications. The estimated coefficients on the distance dummies, up to 150 miles, are
only about half as large for patents in these relatively younger fields, as compared to the more
traditional areas. For example, the citation probability declines by an average of 13 percentage
points (26 percent of the mean citation rate) after 100 miles for the newer fields, but by an average
of 29 percentage points for the others. However, the distance effects largely die out beyond 150
miles in all of the technology areas.

The second important finding is that the state border effect is not present in all fields. The border
effect is statistically, and economically, significant only in engineering and the biomedical-related
fields — Biotechnology, Chemicals, Pharmaceuticals and Medical Instruments. Since we control in
these regressions for additive technology field-state fixed effects, this finding suggests that there

may be some interaction between state or university policies and technological specialization —

33The international patent classes that are included in each technology field are given in the appendix.
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e.g., university local development policies that target particular fields. We leave this for future
investigation. In any event, the technology field variation we observe implies that some of the
variation we observe across states in the strength of the border effect may be attributable to

differences in technology specialization.

5.5. Citations to university publications

Thus far we have traced knowledge spillovers by using citations to university patents. In this section
we present a similar analysis using citations to university scientific publications. The main question
of interest is whether the geography of knowledge spillovers differs in an ‘open science’ (publication)
regime as compared to a proprietary one (patents), as emphasized by Dasgupta and David (1994).
It is worth bearing in mind, however, that our analysis can only partially inform on this distinction
because we focus exclusively on citations to scientific publications by patents, not by other academic
publications.

Table 8 reports the results. In all regressions, we include university fixed effects, dummy variables
for pairs of five high-technology clusters, and technology field-state interaction dummies. Column (1)
reports the specification with the dummy variables for different distance intervals, but no within-
state dummy. As with patents, the results show that geography sharply constrains citations to
publications. Moving from 0-25 to 25-50 miles reduces the citation probability by 20.1 percentage
points (40 percent of the mean citation rate), and moving out to 50-100 miles further reduces it
by another 5.7 percentage points. However, citations continue to decline with distance up to about
1000 miles. This finding also holds in later specifications with the state border effect and university
quality controls.

Column (2) reports a specification with the within-state dummy but no distance effects. While it
appears that citation is much more likely from inventors located within the same state, the estimated
state border effect falls dramatically (from 0.193 to 0.036) when we introduce both distance effects
and the within-state dummy (column 3). This specification shows that both distance and the
state border effect are statistically significant, and it is important to include both variables in the
specification. However, after including distance dummies, the estimated state border effect is quite
small, only 7.2 percent of the mean citation rate. This is only a third as large as we found for

citations to patents.
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Moreover, the state border effect for publications depends strongly on whether the university is
public or private, and on the quality of the institution. We report estimates for the model separately
for public and private universities in columns (4) and (5). We find no statistically significant
border effect for private universities. There is a small border effect for private institutions, which is
equivalent to 8.6 percent of the mean citation rate. However, this average effect masks big differences
across universities of different qualities. In columns (5) and (6) we report estimates where we allow
for universities in different quality quartiles to have different state border effects (the reference
group is the lowest quartile). Column (5) confirms that there is essentially no border effect for any
of the quality groups for private universities. For public universities, there is no border effect for
the top quartile, but the state border strongly constrains diffusion of information in publications
for the lower quartiles, especially below the median quality level. We leave it for future research to

identify the underlying mechanisms that cause this outcome.?*

6. Concluding Remarks

This study examines how geography, and university and state policies, affect knowledge spillovers
from university innovation. We use patent citations both to university patents and scientific publi-
cations to trace these knowledge flows. Our main empirical findings are as follows. First, university
knowledge spillovers are strongly localized. They are very sensitive to distance up to about 150
miles for patents, and constant thereafter. Distance also constrains the diffusion of knowledge in
publications, but the effects are less sharp. Controlling for distance, we find strong evidence of a
state border effect. Inventors located in the same state as the cited university are substantially more
likely to cite one of the university patents than an inventor located outside the state. In contrast, we
find essentially no state border effect for patent citations to scientific publications except for lower
quality public universities. Differences between the open science regime of scientific publications
and the proprietary regime of patents seems to be important in shaping the geography of knowledge
spillovers.

The state border effect is influenced by the characteristics and policies of the university and state.

34We checked whether the geographic profile of knowledge spillovers from scientific publications changed over time.
To do this, we re-estimated the specification in column (3) for two sub-periods, 1976-1993 and 1994-2006, using either
the date of the cited publication or the date at which the citation occurs. The point estimates of the state border
effect decline somewhat, though are not statistically different, between the two periods: 0.047 (.017) versus 0.015
(.019) using the cited publication to date, 0.065 (.027) versus 0.026 (.014) using the citing patent to date. As with
patents, the coefficients on the distance dummies show somewhat stronger localization for publications for the later
period, using both dating methods, and in both periods the effects of distance persist up to about 1000 miles.

27



It is significantly larger for public universities, and in particular those (both public and private)
universities that pursue local and regional development in their technology licensing policies. The
magnitude of the state border effect varies widely across states, and these variations are related to
the density of scientists and engineers who can exploit the potential for knowledge spillovers, and
state policy toward non-compete laws that affect intrastate and interstate labor mobility. Finally,
we show that there are differences across technology areas in how distance and state borders affect
knowledge diffusion.

The key challenge for future research is to identify the channels through which distance and
state borders mediate knowledge spillovers — more specifically, why public and private universities
differ and how open science and patent regimes affect diffusion. And, perhaps most important,
what is the impact of intra- and interstate knowledge spillovers on economic growth at the state
level? A promising way forward is to collect systematic information on university and state policies

promoting spillovers, and firm strategies for exploiting them.
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A. Data Appendix

A.1. Matching patents to universities

Our patent sample includes 3,309,736 patents that were granted between 1975 and 2007. Patents
data are taken from the NBER patent file for the period 1975-2002 (2,630,106 patents). We directly
extract from the USPTO website all granted patents for the period 2003-2007 (679,630 patents).
We exclude patents that do not include at least one domestic assignee, losing 1,508,612 patents.?®
University patents can be assigned directly to the University, or to affiliate institutions. We manually
explore the websites of all universities in our sample to identify the different legal entities to which
the university patents can be assigned. For example, M. D. Anderson Cancer Center is an affiliate
of the University of Texas. The matching procedure consists of the following steps:

1. Standardizing names of patent university assignees. This involves erasing phrases which comes
before the name of the university, e.g. “The Boards of Regents of”, “Trustees of”, “A Governing
Body of the”, or after the name, e.g. “Research Foundation”. As an example, the name "The Board
of Trustees of The Stanford University - Office Of Technology" becomes "Stanford University".

2. Name matching: match the standard names of the patent applicants with our university
sample, including the affiliated assignees we have identified for each university.

In total, we match 46,536 patents to 234 universities. The average number of patents per
university is 211 but this varies widely, from a low of one for Oklahoma State University (Tulsa)
to a high of 2,704 for MIT. The patents sample receives 408,155 citations. Of these citations, 19
percent do not include at least one American inventor and are thus excluded from the analysis.

A.1.1. Multiple assignments

Co-assignees In some cases, a patent has more than one assignee (72,714 patents in the
complete sample patents). In case of co-assignment, we make the following assumptions. If the
patent is assigned to two universities, then the patent is counted twice in our sample, once for each
university. If the patent is assigned to a university and a company, then it is included in our sample
as a university patent. Importantly, when selecting the random control sample, we ensure that the
citing patent does not below to the same university or companies that are listed as co-assignees
on the patent. Multiple assignments have important implications for the way we measure distance
between the citing inventor and cited university. In the case of multiple assignments, we assume a
citation from each assignee to the same university patent. We check the sensitivity of our results
to different ways of dealing with co-assignments. We compute distance as the average, median, and
maximum distance between the location of the citing inventors and cited universities. In all cases,
the results are not sensitive to the way we deal with co-assignments.

3 The addresses of USPTO assignees may be ambiguous is certain cases; the address format limits either the US
state name or the non-US country at 2 letters, e.g. “Los Angeles, CA” and “Toronto, CA”. The ambiguity appears
also for DE (Delaware/Germany), IL (Illinois/Israel), AR (Arkansas/Argentina) and IN (Indianapolis/India). We
ensure we keep only US assignees by identifying the cities, and company prefix (e.g. GMBH firms are German and
not from Delaware).
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A.1.2. Multiple campuses and central assignments

Patents may be assigned to a university system, rather than to a specific campus (e.g. University
of California). In order to compute the correct distance between the inventor and the university, we
have to match the patent to the relevant campus. The matching procedure consists of the following
steps: 1. We generate a list of the different campuses of the samples universities (e.g., University of
Califronia-Berkeley, University of California-San Francisco etc.) where that information is available
from the university websites 2. In cases where the relevant city is stated in the assignee address
field rather than the city of the system’s main campus, the patent is reassigned to the campus in
that city. 3. The remaining ‘system’ patents are matched by the addresses of their inventors: the
distance between each of the inventors which live in the local state to each of the university’s campus
is computed, and the closest university is affiliated to each inventor. In total, 12,116 patents were
adjusted using this procedure (details available on request).

A.2. Matching scientific publications to universities

Patent documents usually include citations to non-patent literature, such as scientific papers. In
total, 365,205 patents cite non-patent literature (the average number of non-patent references is
4.7). We develop specialized extraction software that scans patent documents and systematically
extracts the citations to non-patent literature section. We then match the articles to our university
sample. The matching procedure is quite complex because the name of the university where the
publication’s authors are employed is almost never listed. To assign universities to publications,
we use the Web of Science database by Thomson, which is the largest source of information on
scientific publications in “hard-science” journals (covers more than 20 million records). These data
include the publication title, authors, and university name (affiliation). We develop additional
specialized software that extracts this information from the Web of Science articles where at least
one of university in our sample appears in the affiliation field.

Having constructed this list of publications, we match the non-patent citations from the patents
documents to the list of university publications. Identifying the title, author, journal name, and
publication year out of the citation line is extremely difficult, as there are many different formats.
We follow a similar procedure as we did for patent matching. However, here we apply more manual
checks and rely less on generalized, automated rules. The following examples illustrate the varying
formats of these citations:

1. Greenwalt et al., “Evaluation of fructose diphosphate in RBC preservation”, Transfusion 42:
384-5 (2002).

2. Quality of Service Protocols Use a Variety of Complementary Mechanisms to Enable Deter-
ministic End-to-End Data Delivery, QoS Protocols & Architectures, QoS Forum White Paper,
Stardust.com, Inc., pp. 1-25, Jul. 8, 1999.

3. Swan, “Properties of Direct AVO Hydrocarbon Indicators”, Offset-Dependent Reflectivity—
Theory and Practice of AVO Analysis (Castagna, J.P. & Backus, M.M., eds., Soc. Expl.
Geophys., 1993), pp. 78-92.

4. T.J. Kostas, M.S. Borella, I. Sidhu, G.M. Schuster, J. Mahler, J. Grabiec, ” Real-time voice
overpacket-switched networks,” IEEE Network, vol. 12, No. 1, pp.1987, Jan./Feb. 1998.
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5. A fast blind source separation for digital wireless applications Toriak, M.; Hansen, L.K.; Xu,
G.; Acoustics, Speech, and Signal Processing, 1998.

Our matching algorithm tries to capture all the different variants in which citations may appear,
by effectively running the matching procedure for a wide variety of possible formats. For example, we
first assume citations appear, as in the first example above. We run the whole matching procedure
according to this format, where the authors’ names appear first, then the name of the article,
followed by the journal where it was published (and year of publication in brackets). We then keep
all unmatched citations, and repeat the matching by assuming all formats are as in the second
example. For the unmatched citations, we proceed to the format in the third example, and so forth.
The intensive manual checking is used to identify all possible formats in which citations can appear.
We manually go over close to 75 percent of all citations to ensure we cover all possible citation
structures.

The way authors’ names are listed within different formats varies widely. The first example
shows that names can be listed by indicating the last name of the first author followed by “et al.”
The fourth example, however, shows a case where all authors are listed by indicating their last names
and their first initial. While the Web of Science database has less variation in the citation formats
(which makes matching easier), citations in the patent document do not follow specific rules. Thus,
when matching by authors’ names we allow for a wide range of formats according to what we find
in our vast manual inspection. For quality assurance, we manually checked the matched sample by
comparing the full reference in the Web of Knowledge to the citation in the patent document. For
a small percentage of the matched sample, we also checked that the publication record appears in
the curriculum vitas of the authors, which were downloaded directly from their personal websites.

In total, we match 26,533 publications to our university sample.?® To compute the distance
between the citing inventor and cited university, we follow the same procedure as for patent citations.
However, there is an important difference between matching citations to university patents and
scientific publications. While the assignment of university patents tends to be complex, especially
for public university that in some cases centrally assign patents, scientific publications do not have
the same problem, as authors’ affiliation is indicated at the university and campus level.

A.3. Measuring geographic distance for citations

We develop specialized software that extracts driving distance information between city pairs di-
rectly from Google Maps (http://maps.google.com). We generate a list of all American cities and
states (excluding Hawaii) that appear on all USPTO patent documents before selecting the sample
of control patents. This list includes 33,127 citing inventor’s cities. We add to this list the location
of our sample of cited universities — 205 cities. Our distance software computes the distance for all
city pairs.

A.4. Definition of Patent Technology Fields (IPC codes)

Biotechnology: A01H, C02F3/34, C07G11, C07G13, C07G15, C07 K4, CO7TK14, C07K16, COTK17,
C07K19/00, C12M, C12N, C12P, C12Q, C12S, GO1N27/327, GO1N33/53, GO1N33/54, GO1N33/55,

36 Matches are dropped if one of inventors’ names and one of the authors’ names share the same family name, which
might indicate that the inventor of the patents cites his own publication. This procedure is deliberately conservative
in avoiding possible self-cites (which could give a false appearance of localized spillovers).
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GO1N33/57, GO1N33/68, GO1N33/74, GOIN33/76, GOIN33/78, GO1N33/88, GOIN 33/92

Chemicals: C0, C1, B01, DO1F, A62D (excluding Biotechnology)

Pharmaceuticals: A61K, A61P

Medical Equipment: A61B, A61C, A61D, A61F, A61G, A61H, A61J, A61L, A61M, A61N,
A01K, AOIN

Engineering: A01B, A01C, B021 D21, B06B, B09, B21, B22, B23, B25, B29, B60, B62, B65,
B81, B82, D01D, D02, D03, D04,D05, DO6M, D21, E21, F04, F25, GO5G, GO7

Electronics: HO1L, HO3, G11C, G06C, GO6D, GO6E, GO6F11, GO6F15, GO6F17, GO6G HO1(excluding
HO1L), H02, HO4, (excluding HO4N, HO4L, HO4M), HO5, B0O3C

Information Technology: G05B, GO5D, GO6F (excluding GO6F17,GO6F15,G06F11), G06J, GO6K,
GO6N, GO6T, G11B

Telecommunications: HO4L, HO4M, HO4N

A.5. Other data sources

References

[1] TechPole index: http://milkeninstitute.org/pdf/hightech metros.pdf

[2] Stock of scientists and engineers (SEIE): http://www.nsf.gov /statistics/pubseri.cfm?seri id=18

3] Inward/outward — migration  of SE&E:  Constructed  from  data  available  at
http://www.bls.census.gov/cps/ads/adsmain.htm

[4] Measures of wuniversity quality: Constructed from data appendices  Research-
Doctorate  Programs in the United States: Continuity and Change, available at
http://www.nap.edu/html/researchdoc/intexp.html

[5] State size (land area): http://www.quickfacts.census.gov/qfd /states/04000.html
[6] State population (in year 2000): http://www.census.gov/compendia/statab/2007 /population.html

[7] Gross state product (in year 2000): http:www.census.gov/compendia/statab/2007/ in-
come __expenditures wealth/gross domestic_product and gross state product.html
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Figure 1a. Distance and Patent Citation Probability
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Figure 1b. State Borders and Patent Citation Probability
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Notes: Figures 1a and 1b present the effect of distance and state-border on citations probability. For distance,
each bracket compares the difference between the share of citations by inventors located in that bracket and
citation by all other inventors located further away from the cited university. For state-border, each bracket
compares the difference between the share of citations by in-state inventors and inventors located outside the
state of the cited univesity, in the specified distance bracket.
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Figure 2. Effects of State Borders on Patent Citations
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Table 1. Descriptive Statistics on Geography of Citations to University Patents and

Publications
Panel A. Patents Panel B. Scientific Publications
% of # cited # citing % of # cited # citing
citations patents patents citations articles patents
Dummy for within-state citation 16.3 11,732 27,942 17.3 4,207 5,266
Distance < 25 8.9 8,235 16,677 9.0 2,519 3,113
25 < Distance < 50 2.8 2,600 5,185 2.8 717 957
50 < Distance < 100 1.8 1,712 3,326 2.1 527 694
100 < Distance < 150 1.4 1,547 2,689 1.6 446 527
150 < Distance < 250 3.7 3,447 6,801 3.8 1,029 1,202
250 < Distance < 500 10.7 8,011 18,583 10.8 2,730 3,252
500 < Distance <1000 17.5 11,149 28,996 15.8 4,032 4,504
Distance = 1000 53.2 19,732 73,948 54.1 11,518 12,333

Notes: Distance refers to the driving mileage between the locations of the citing inventor and the cited university.
The values include only actual citations (not control group patents).The within-state dummy is one if the citing
inventor resides in the same state as the cited university.



Table 2. Distance and State Borders, by University Type and Patent/Publication

Quality
Panel A: Patents Panel B: Scientific Publications
1) ) ®3) (4) ®) (6)

% Difference % Difference % Difference % Difference
Universities: # Obs. distance Within-State # Obs. distance Within-State
All 382,086 -6.9** 53.1** 69,428 -8.2** 44.2**
Private 176,174 -4.3** 49.0** 31,254 -6.2** 40.8**
Public 205,912 -9.2%* 56.9** 38,174 -10.0** 47.1*%
Cites received: lowest
quartile
All 98,319 -13.1** 62.5** 17,192 -6.6** 39.5%*
Private 39,014 -10.8** 55.1** 9,390 -5.4%* 35.0**
Public 59,305 -14.7** 67.6** 7,802 -8.0** 44 .4**
Cites received: upper
quartile
All 95,357 -1.0* 45.0** 17,192 -6.6** 39.5%*
Private 50,459 1.0 46.4** 9,390 -5.4** 35.0%*
Public 44,898 -3.4** 43.1** 7,802 -8.0** 44.6**

Notes: Panel A reports mean comparison tests between cited and control patents for distance from, and fraction in
the same state as, the cited university. Panel B reports the corresponding figures for scientific publications. * and **

denote statistical significance at the 5 and 1 percent levels, respectively.



Table 3. Baseline Specifications for Citations to Patents

Dependent variable: Citation Dummy

@) 2 €) (4) ©)
Exc. Top
Patenting
University cited patents: All All All All Universities
Intra-State Citation 0.196** 0.084** 0.089** 0.095**
(0.004) (0.007) (0.007) (0.009)
Match on 6-digit IPC 0.296** 0.300** 0.295** 0.319** 0.321**
(0.003) (0.003) (0.003) (0.003) (0.004)
25 < Distance < 50 -0.165** -0.155** -0.155** -0.182**
(0.008) (0.008) (0.008) (0.012)
50 < Distance <100 -0.252** -0.217* -0.218** -0.246**
(0.010) (0.010) (0.011) (0.012)
100 < Distance <150 -0.302** -0.249** -0.250** -0.271*
(0.010) (0.012) (0.011) (0.013)
150 < Distance <250 -0.306** -0.239** -0.239** -0.263**
(0.007) (0.009) (0.009) (0.012)
250 < Distance <500 -0.302** -0.238** -0.239** -0.258**
(0.005) (0.008) (0.008) (0.010)
500 < Distance <1000 -0.321* -0.241* -0.241* -0.264**
(0.005) (0.008) (0.008) (0.010)
1000 < Distance <1500 -0.318** -0.236** -0.235** -0.256**
(0.005) (0.008) (0.009) (0.012)
1500 < Distance < 2500 -0.312** -0.229** -0.227** -0.244**
(0.005) (0.009) (0.009) (0.012)
Distance = 2500 -0.280** -0.197* -0.194** -0.214**
(0.005) (0.009) (0.009) (0.012)
Technology x State Fixed
Effects No No No Yes Yes
R? 0.079 0.073 0.080 0.085 0.086
Observations 382,086 382,086 382,086 382,086 282,466

Notes: This table reports parameter estimates for a linear probability model for citation to
university patents. Intra-State Citation is a dummy variable equal to one when the citing (or
control patent) inventor resides in the same state as the cited university. Match on 6-digit IPC is a
dummy variable equal to one when the citing (or control) and cited patents share the same six-
digit IPC code. All columns include complete sets of university and high-tech cluster pair
dummies. Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical
significance at the 5 and 1 percent levels, respectively.



Table 4. Public and Private Ownership and the State Border Effect

Dependent variable: Citation Dummy

1) (2) 3 4) ®) (6)
Cites Cites
received received
University cited patents: Private Public All <25™ >75" All
Intra-State Citation 0.065** 0.102** 0.125** 0.113* 0.158** 0.171*
(0.010) (0.011) (0.009) (0.012) (0.023) (0.016)
-0.080** -0.096** -0.056** -0.069**
Intra-State Citation x Private (0.008) (0.012) (0.023) (0.009)
-0.027
Intra-State Citation x QualityQ2 (0.018)
-0.031
Intra-State Citation x QualityQ3 (0.016)
-0.061**
Intra-State Citation x QualityQ4 (0.016)
Match on 6-digit IPC 0.305** 0.335** 0.318* 0.336** 0.312** 0.318**
(0.004) (0.005) (0.003) (0.004) (0.009) (0.003)
25 < Distance < 50 -0.139** -0.191** -0.176** -0.207** -0.114** -0.171**
(0.011) (0.013) (0.013) (0.018) (0.031) (0.013)
50 < Distance < 100 -0.233** -0.230** -0.211** -0.261** -0.160** -0.209**
(0.015) (0.015) (0.014) (0.020) (0.040) (0.014)
100 < Distance < 150 -0.236** -0.288** -0.264** -0.269** -0.316** -0.261**
(0.015) (0.016) (0.015) (0.022) (0.040) (0.015)
150 < Distance < 250 -0.237** -0.257** -0.228** -0.271** -0.175** -0.226**
(0.012) (0.014) (0.012) (0.018) (0.040) (0.012)
250 < Distance < 500 -0.220** -0.281** -0.252** -0.284** -0.207** -0.247**
(0.011) (0.012) (0.009) (0.013) (0.026) (0.009)
500 < Distance < 1000 -0.241** -0.268** -0.234** -0.297** -0.163* -0.231**
(0.012) (0.012) (0.010) (0.014) (0.026) (0.010)
1000 < Distance < 1500 -0.223** -0.267** -0.233** -0.296** -0.125** -0.230**
(0.012) (0.013) (0.010) (0.014) (0.027) (0.010)
1500 < Distance < 2500 -0.219** -0.258** -0.223** -0.289** -0.131** -0.221**
(0.012) (0.013) (0.010) (0.014) (0.027) (0.010)
Distance = 2500 -0.174** -0.246** -0.205** -0.269** -0.107** -0.204**
(0.012) (0.014) (0.009) (0.013) (0.024) (0.009)
Distance Dummies x Private No No Yes Yes Yes Yes
R? 0.079 0.092 0.085 0.105 0.076 0.085
Observations 176,174 205,912 382,086 98,319 95,357 382,086

Notes: This table reports parameter estimates for a linear probability model of citations to university patents, focusing
on differences between private and public institutions, university quality, and patent quality (as measured by total
number of citations received). University quality is constructed on the basis of quality scores of academic quality for
individual departments in the hard sciences (aggregated using faculty size weights) produced by the National
Research Council of the U.S. Academy of Sciences. See Lach and Schankerman (2008) for details. Univeristies are
grouped into quality quartiles in the table, with the lowest quartile as the reference group. All columns include
complete sets of university, high-tech cluster pair, and state-technology interaction dummies. Standard errors (in

brackets) are clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent levels,

respectively.



Table 5. Determinants of the State Border Effect

Dependent variable: Citation Dummy

(1) (2) (3 (4) (5) (6)
State effects Michigan "experiment"
Non- Controls: Controls: All
missing Controls: similar border non-Michigan
All LocDev No controls bordering states effect states
Intra-State Citation 1.123* 0.999**
(0.168) (0.254)
-0.027** -0.026*
Intra-State Citation x Private (0.010) (0.012)
Intra-State Citation x Strong Local 0.032**
Development Objectives (0.013)
Intra-State Citation x Techpole -0.031** -0.043**
(x10™ (0.008) (0.009)

Intra-State Citation x Index of Non- -0.018** -0.024**

Compete Laws (0.003) (0.004)
Intra-State Citation x In-state 0.014** 0.032**
educated S&E (x10™) (0.005) (0.007)

Intra-State Citation x S&E Mobility  -0.018** -0.023**

(x10™ (0.004) (0.005)
0.009 0.023**

S&E Density (0.005) (0.007)
-0.252** -0.176*

In(GSP Per Capita) (0.058) (0.085)

Dummy for Michigan x :

Dummy for Pre-1986 0.159 0.159 0.141 0.141
(0.085) (0.085) (0.088) (0.083)
Dummy for 1986-1989 0.222** 0.222** 0.156* 0.209**
(0.072) (0.072) (0.073) (0.072)
Dummy for 1990-1995 0.078* 0.078* 0.019 0.064**
(0.034) (0.034) (0.035) (0.034)
Dummy for Post-1995 0.082** 0.081** -0.008 0.067**
(0.020) (0.020) (0.019) (0.019)

Dummy for Control States x :

Dummy for Pre-1985 0.070 0.017 0.045*
(0.059) (0.024) (0.020)
Dummy for 1986-1989 0.078 0.065** 0.069**
(0.078) (0.016) (0.014)
Dummy for 1990-1995 0.133** 0.059** 0.075**
(0.037) (0.012) (0.009)
Dummy for Post-1995 0.164** 0.089** 0.096**
(0.021) (0.009) (0.007)
R 0.085 0.084 0.085 0.085 0.085 0.084
Observations 381,994 259,810 382,086 382,086 382,086 382,086

Notes: This table reports parameter estimates for a linear probability model focusing on the determinants of the state border
effect for citations to university patents. Local Objectives measures the weight the university technology licensing office
attaches to local/regional development in its licensing policies. TechPole is a measure of high-tech density constructed by the
Milken Institute (Devol and Wong, 1999). All columns include a set of dummies for distance, a dummy for matching on the
same IPC, and complete sets of university, high-tech cluster pairs, and state-technology interaction dummies. The control
states in column 4 are IN and IL. The control states in column 5 are NY, PA, MA, CA, NJ, MI, WA, MD, MS, and CT.
Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent
levels, respectively.



Table 6. Impact of University and State Policies/Characteristics on Within-State Spillovers

% change in state border effect

@) ) ®) (4) ©) (6)
Strong Local ~ State Non- In-state
Private Development ~ Compete Educated
Ownership ~ Objectives Laws S&E S&E Mobility S&E Density
Standard deviation increase -29.2 36.0 -47.7 42.4 -36.0 22.8
Minimum to maximum value -29.2 36.0 -188.8 176.5 -170.6 93.6

Notes: This table shows the impact of different university and state policies/characteristics on the state border effect for
citations to university patents. Estimates are based on column 2 in Table 5. Percentage changes are computed with respect
to the pooled state-border effect from column 4 in Table 3.



Table 7. The Effects of Distance and State Border on Patent Citations, by Technology Field

Dependent variable: Citation Dummy

1) ) ®) (4) (5) (6) () (8)
Medical Information ~ Telecommuni-
Technology area: Biotechnology Chemicals Pharma Equipment Engineering Electronics Technology cations
Intra-State Citation 0.161** 0.153** 0.116** 0.099** 0.056** 0.015 0.034 0.032
(0.024) (0.023) (0.022) (0.021) (0.016) (0.020) (0.037) (0.045)
Matched on six-digit IPC 0.346** 0.273** 0.341** 0.310** 0.388** 0.284** 0.228** 0.262**
(0.011) (0.009) (0.009) (0.009) (0.007) (0.008) (0.013) (0.018)
25 < Distance < 50 -0.075** -0.215* -0.161* -0.136** -0.143** -0.171* -0.130** -0.100*
(0.028) (0.024) (0.024) (0.025) (0.019) (0.024) (0.050) (0.049)
50 < Distance < 100 -0.104** -0.248** -0.252** -0.200** -0.227** -0.255** -0.159** -0.120
(0.046) (0.030) (0.031) (0.026) (0.022) (0.031) (0.049) (0.089)
100 < Distance < 150 -0.146** -0.276** -0.280** -0.221** -0.251** -0.330** -0.138* -0.159*
(0.035) (0.031) (0.032) (0.030) (0.025) (0.032) (0.065) (0.072)
150 < Distance < 250 -0.172** -0.269** -0.258** -0.210** -0.272** -0.265** -0.121* 0.008
(0.030) (0.026) (0.028) (0.026) (0.020) (0.028) (0.053) (0.059)
250 < Distance < 500 -0.138** -0.262** -0.253* -0.209** -0.245** -0.290** -0.152* -0.114**
(0.027) (0.023) (0.024) (0.024) (0.017) (0.021) (0.040) (0.047)
500 < Distance < 1000 -0.137** -0.291** -0.265** -0.191* -0.258** -0.300** -0.164* -0.105
(0.029) (0.025) (0.025) (0.024) (0.019) (0.024) (0.045) (0.059)
1000 < Distance < 1500 -0.122** -0.265** -0.208** -0.181** -0.255** -0.322** -0.187* -0.078
(0.032) (0.026) (0.027) (0.025) (0.020) (0.025) (0.045) (0.063)
1500 < Distance < 2500 -0.132** -0.242** -0.206** -0.161** -0.250** -0.318** -0.159** -0.120*
(0.030) (0.026) (0.030) (0.025) (0.020) (0.025) (0.046) (0.062)
Distance = 2500 -0.112** -0.242** -0.171* -0.144** -0.228** -0.274** -0.120** -0.061
(0.035) (0.026) (0.029) (0.026) (0.020) (0.025) (0.044) (0.062)
R? 0.104 0.096 0.101 0.084 0.106 0.072 0.040 0.049
Observations 25,804 45,704 35,245 70,005 62,701 43,019 16,118 8,044

Notes: This table reports parameter estimates for a linear probability model of citation to university patents, focusing on differences across technology fields in the effects of
distance and state borders. For definitions of the technology fields, see the Data Appendix. All columns include complete sets of university, high-tech cluster pairs, and state-
technology interaction dummies. Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent levels, respectively.



Table 8.

Citations to University Scientific Publications

Dependent variable: Citation Dummy

(1) (2 3 4 () (6)
Cites Cites
received received
University cited patents: All Private Public <25™ >75" All
Intra-State Citation 0.036** 0.021 0.043* 0.149* 0.089* 0.266**
(0.014) (0.019) (0.020) (0.037) (0.038) (0.040)
-0.152** -0.137** -0.091**
Intra-State Citation x Private (0.036) (0.035) (0.016)
-0.050**
Intra-State Citation x QualityQ2 (0.043)
-0.141**
Intra-State Citation x QualityQ3 (0.041)
-0.211*
Intra-State Citation x QualityQ4 (0.039)
25 < Distance < 50 -0.205** -0.164** -0.283** -0.299** -0.230** -0.228**
(0.017) (0.024) (0.023) (0.046) (0.056) (0.023)
50 < Distance < 100 -0.242** -0.200** -0.325** -0.327** -0.235* -0.274**
(0.022) (0.030) (0.032) (0.055) (0.112) (0.029)
100 < Distance < 150 -0.291** -0.278** -0.351** -0.315* -0.277** -0.282**
(0.022) (0.031) (0.030) (0.066) (0.067) (0.029)
150 < Distance < 250 -0.278** -0.235** -0.368** -0.310** -0.298** -0.283**
(0.018) (0.024) (0.027) (0.053) (0.061) (0.024)
250 < Distance < 500 -0.302** -0.251** -0.398** -0.322** -0.392** -0.313*
(0.015) (0.021) (0.020) (0.040) (0.039) (0.017)
500 < Distance < 1000 -0.315** -0.276** -0.396** -0.290** -0.316** -0.304**
(0.017) (0.024) (0.023) (0.044) (0.039) (0.018)
1000 < Distance < 1500 -0.310** -0.289** -0.382** -0.287** -0.309** -0.287**
(0.017) (0.025) (0.024) (0.044) (0.041) (0.019)
1500 < Distance < 2500 -0.314** -0.270** -0.397** -0.289** -0.324** -0.305**
(0.017) (0.025) (0.024) (0.043) (0.040) (0.018)
Distance = 2500 -0.271** -0.217** -0.377** -0.256** -0.280** -0.278**
(0.017) (0.023) (0.025) (0.041) (0.037) (0.017)
R? 0.025 0.022 0.032 0.030 0.023 0.027
Observations 69,428 31,290 38,796 17,632 17,192 69,428

Notes: This table reports parameter estimates for a linear probability model relating citations by patents to university
scientific publications to the distance of citing inventors from the cited university, state borders, university quality and
the quality of the publications (as measured by total number of citations received). All columns include complete sets
of university, high-tech cluster pairs, and state-technology interaction dummies. Standard errors (in brackets) are
clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent levels, respectively.
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