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Abstract 
Using new data on citations to university patents and scientific publications, we study how geography 
affects university knowledge spillovers. Citations to patents decline sharply with distance up to about 
150 miles and are strongly constrained by state borders. Distance also constrains citations to scientific 
publications, but the impact is less sharp and persists over greater distances. The state border effect 
for publications is significant only for lower quality public universities. We show that the state border 
effect is heterogeneous, and is strongly influenced by university and state characteristics and policies. 
It is larger for public universities and those with strong local development policies. The border effect 
is larger in states with strong non-compete laws that facilitate intrastate labor mobility, states with 
greater reliance on in-state educated scientists and engineers, and states with lower rates of interstate 
scientific labor mobility. We also confirm the impact of non-compete statutes by studying a policy 
reform in Michigan. 
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1. Introduction

Innovation and knowledge spillovers are the key to economic growth, and universities play a central

role. In the U.S., academic institutions spent $48 billion on R&D, accounting for 56 percent of ba-

sic research and 33 percent of total research in the U.S. (National Science Board, 2008). Academic

research increases productivity growth in the economy and stimulates greater private sector R&D

through spillovers, and through licensing university innovations to private �rms for commercializa-

tion.1 Academic research output takes two main forms: scienti�c publications and, increasingly

since the 1980 Bayh-Dole Act, patents. Promoting university innovation and its di¤usion, especially

through science-based research clusters, is a major policy objective in industrialized countries. This

policy focus is predicated on the assumption that knowledge spillovers are geographically localized

and best exploited by agglomerating high technology activity. Thus it is important to understand

how geography, and the characteristics and policies of universities and states, constrain knowledge

spillovers.2

This paper focuses on how state borders, and distance, in�uence the di¤usion of knowledge from

private and public American universities, and explores why the state may be a relevant geographical

unit when analyzing knowledge �ows. Whereas country borders typically demarcate zones with

di¤erent cultures, languages, and political institutions, American states are not likely to vary much

on these dimensions. Thus it is not immediately clear why state borders would matter in this

context. Moreover, the di¢ culty of disentangling state border e¤ects from pure distance e¤ects

makes it di¢ cult to isolate and interpret whatever e¤ects appear to be associated with state borders.

Nonetheless, because state borders are not strongly associated with di¤erent linguistic, culture, or

political institutions, they provide a clean framework for investigating how local policy, both at the

state and university levels, in�uences knowledge spillovers.

We focus on two channels through which state borders can a¤ect university knowledge di¤u-

1There is substantial evidence of R&D spillovers (e.g., Ja¤e, 1989; Adams, 1990; Ja¤e and Trajtenberg, 2002).
Spillovers tend to be geographically localized, as might be expected if direct knowledge transfers are important
(Ja¤e, Trajtenberg and Henderson, 1993; Audretsch and Stephan, 1996). There is also a growing empirical literature
on university patenting and technology transfer policies (e.g.,Henderson, Ja¤e and Trajtenberg, 1998; Lach and
Schankerman, 2008; Belenzon and Schankerman, 2009), and university research productivity (Adams and Griliches,
1998).

2For a review of economic studies of links between universities, entrepreneurship, and regional development, see
Astebro and Bazzazian (2010). Knowledge di¤usion can be �disembodied� (e.g. reading patents or publications)
or transmitted through more direct interaction, such as collaborative research and consulting activity. Both forms
of transmission may be constrained by geographic distance, and facilitated by improvements in information and
communication technologies and other channels (Adams, 2002; Agrawal and Goldfarb, 2008). The results in our
paper point to an important role for labor mobility and policies that in�uence it.

2



sion: local information, and policies for commercializing university innovation. The �rst channel

is important when dealing with tacit knowledge, which is di¢ cult to codify and transfer by simply

reading patent documents or academic publications. This means that inventors located closer to

the cited university have a greater potential for learning than those located further away, and this

encourages development of local information networks. In such cases, the border e¤ect should be

stronger in states where inventors are more likely to remain in the state when they move jobs, and

when inventors are more likely to have been educated at a local (in-state) university. State policies

can in�uence the prevalence of such local information by a¤ecting scienti�c labor mobility. One

important example is �non-compete�labor laws, which make it more likely that inventors who shift

employers will leave the state. In addition, a variety of university and state policies can a¤ect the

retention of locally educated scientists and engineers.3

The second channel involves policies that promote local commercial development of university

innovations. This is more likely to occur in states with a dense and vibrant community of scientists

and engineers, who can potentially build on and cite university patents and publications. In addition,

the state border is likely to be more important for public universities that are often constrained, and

informally in�uenced, by state government in their technology licensing decisions. One important

manifestation is that public universities typically attach greater importance to promoting local and

regional development through their technology licensing policies (Belenzon and Schankerman, 2009).

To study these questions, we use two complementary measures of knowledge spillovers. The �rst

is citations to university-owned patents. Citations have been widely used in the literature to trace

spillovers from corporate R&D (Ja¤e and Trajtenberg, 2002). However, citations to university

patents are an imperfect measure of the reliance of corporate research on university knowledge.

Many scienti�c contributions made by university faculty never �nd their way into patents.4 The

most important complementary measure of knowledge spillovers is the extent to which corporate

patents cite university scienti�c publications. One might expect the geographic pattern of di¤usion

for �open science�knowledge in publications to di¤er from the �proprietary�knowledge embedded

in university patents. In addition, if the information in scienti�c publications is more �general�,

and thus multi-use in character, we would expect it to exhibit less sensitivity to distance and state

3Sumell, Stephan and Adams (2008) document that U.S. states di¤er widely in the extent to which locally educated
scientists and engineers remain in-state for their �rst job, and they show that this varies with university and state
characteristics.

4Only about one third of inventions disclosed by faculty to university technology transfer o¢ ces end up as patent
applications (Lach and Schankerman, 2008). In addition, there are purely scienti�c discoveries by faculty that are not
embodied in inventions with commercial applications, but which may contribute to subsequent corporate innovation.
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borders, especially if the border e¤ect is signi�cantly in�uenced by technology commercialization

policies.

There is a substantial literature on the localization of knowledge spillovers using patent cita-

tions.5 The basic idea is that a citation indicates that the later invention in some way builds on the

earlier one, and that some knowledge transfer has occurred. The seminal paper in this area is Ja¤e,

Trajtenberg, and Henderson (1993). They compare the average distance of patents that cite another

patent and a random control group of patents that do not cite (the control patent is drawn from

the same technology �eld and patent cohort as the cited patent). They show that �rms located in

the same city as the inventor are much more likely than others to bene�t from knowledge spillovers

from that innovation. This approach has been used and re�ned by later studies.6 Geography is

typically summarized as a set of broad areas �identifying only whether inventors are in same city,

state, or country. These studies do not use a measure of geographic distance, so they are not able

to explore in more detail how distance a¤ects citation rates �e.g., whether the e¤ects of distance

on spillovers dissipate after some point. We address this gap by using the actual distance between

the locations of patent assignees (measured by Google Maps).

We adopt a similar econometric approach to study how geography shapes university knowledge

spillovers, and how this impact varies with state and university characteristics and policies. We dis-

tinguish between two dimensions of localization: the relationship between spillovers and geographic

distance, and the impact of state borders, controlling for distance. Using new data on citations

to university patents and scienti�c publications, and measures of distance based on Google Maps,

we show that spillovers are highly localized. Citations to both university patents and publications

decline sharply with distance up to about 150 miles, but are essentially constant beyond that. This

5Of course, not all university knowledge di¤usion represents spillovers in the economic sense. The bene�ts are
partially internalized when university inventors collaborate with private �rms in the commercialization of their in-
ventions (e.g. through consulting or participation in start-up companies). This is the argument that Zucker, Darby,
and Brewer (1998), and Zucker, Darby, and Armstrong (1998) make with respect to the development of the U.S.
biotechnology sector. However, it is unlikely that the social returns to knowledge di¤used through university patents
and scienti�c publications are fully internalized by the inventors. See also Audretsch and Stephan (1996). Another
form of local internalization is highlighted by Mowery and Ziedonis (2001), who show that market-mediated spillovers
in the form of licensing of university inventions tend to be strongly localized in nature.

6Leading examples of papers that document the state-(or other sub-national or national) border e¤ect include
Thompson (2006), Alcacer and Gittleman (2006), and Peri (2005). The �rst two papers uses the control group
approach but exploit the distinction between citations by the patentee and those added by the patent examiner
to help identify localized spillover e¤ects. Peri (2005) uses the citation function approach developed by Ja¤e and
Trajtenberg (1998), which requires explicit functional form assumption on the probability to cite. The border e¤ects�
found by these studies are di¢ cult to interpret, however. Thompson does not include a distance measure, which
confounds the e¤ects of distance and borders. Peri includes only a linear distance measure, and thus potentially
confounds the border e¤ect with nonlinear distance e¤ects. In a more recent (unpublished) paper, Singh, Marx, and
Fleming (2010) document a persistent state border e¤ect while controlling for re�ned distance measures.
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level of �threshold distance��corresponding as it does to an extended commuting distance �strongly

suggests that direct personal interaction plays an important role in knowledge �ows.

Controlling for distance, we �nd strong evidence of a state border e¤ect for citations to university

patents. Inventors located in the same state as the cited university are substantially more likely

to cite one of the university�s patents than an inventor located outside the state. In contrast, we

�nd that state borders have essentially no impact on citations by patents to university scienti�c

publications, except for lower quality public universities.

However, the impact of state borders on patent citations varies widely across states, and we show

that this variation is consistent with the predictions of the local information and commercialization

hypotheses. First, the border e¤ect is larger in states that do not have, or do not strongly enforce,

�non-compete� labor laws. These statutes restrict employees from moving jobs to a competing

�rm within the same state for some period of time. By so doing, they should reduce within-state

knowledge spillovers and thus weaken the state border e¤ect on citation behavior.7 We con�rm

the impact of non-compete statutes by studying a policy reform in Michigan that introduced such

restrictions. This reform was studied by Marx et. al. (2007, 2010), who show that non-compete

laws increase out-migration for job movers. Our �nding reinforces those studies by showing that

non-compete statutes a¤ect not only labor mobility directly, but also the knowledge di¤usion that

labor mobility generates.8

Second, we show that the border e¤ect is stronger in states which have a higher fraction of

inventors educated at in-state universities, a greater density of scientists and engineers, and lower

rates of interstate labor mobility for scientists and engineers.

Third, the state border e¤ect is much stronger for citations to patents from public (as compared

to private) universities, even after controlling for the academic quality of the university. A substan-

tial part, but not all, of this ownership e¤ect is associated with the local development focus of the

university technology transfer activity. This �nding has a potentially important policy implication.

Belenzon and Schankerman (2009) show that there is a cost to pursuing local development in this

way �universities with strong local focus earn substantially less licensing income from their inven-

tions. But there may be o¤setting bene�ts, most importantly in the form of greater localization of

7The impact of non-compete statutes on growth is theoretically ambiguous. They intensify local knowledge
spillovers by allowing intra-state job hopping, but reduce the incentives of employers and employees to invest in
job-speci�c human capital. For discussion see Fallick, Fleishman, and Rebitzer (2006).

8This �nding is consistent with earlier work by Almeida and Kogut (1999), who document the link between patent
citations and labor mobility.
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knowledge spillovers. This issue is key to understanding whether it makes economic sense for uni-

versities (or state governments) to promote local development through local licensing. Our �nding

that strong local development objectives are associated with greater localization of knowledge �ows

shows that there is a genuine tradeo¤ which policymakers need to bear in mind.

Finally, we examine how localization of knowledge spillovers varies across technology areas,

re�ecting di¤erences in the importance of tacit knowledge and the associated channels of information

transmission. In �elds where information is less codi�ed and thus harder to transmit, direct social

relationships � e.g.. collaboration, seminars and so on� are likely to play a larger role, making

knowledge spillovers more sensitive to geographic distance. We �nd that localization occurs mostly

in biotechnology, pharmaceuticals, and chemicals, and much less so in electronics, information

technology, and telecommunications. These di¤erences imply that some of the variation we observe

in the strength of the border e¤ect across states may be attributable to di¤erences in their technology

specialization.

The paper is organized as follows. Section 2 presents the data. In Section 3 we describe the

econometric speci�cation. The results are reported and discussed in Section 4. Section 5 summarizes

the key �ndings and some directions for further research.

2. Data

For this paper we constructed several new, large-scale data sets that allow us to look at localization

of knowledge �ows in novel and more detailed ways. These are described brie�y below. Details are

provided in the Data Appendix.

2.1. Patent Citations to University Patents

The sample covers 184 research-oriented (Carnegie I) universities in the United States, which account

for the vast bulk of academic R&D in the United States. We follow the conventional approach of

using patent citations to trace knowledge spillovers. In order to identify the population of university

patents, we matched the names of the assignees of U.S. patents to universities, using a wide range

of possible appellations for the university (e.g. the names of the technology licensing o¢ ce, the

university, and relevant abbreviations). This allows us to identify all patents applied for by each

university in the sample, and then to identify the set of all U.S. patents that subsequently cite

these university patents. The standard data source for U.S. patents is the 2002 version of the

NBER patents and citations data archive. We updated the patent data to 2007 by extracting all
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information, including inventor address and citations, for all patents granted between 2002 and 2007

directly from the USPTO website.

We construct a control group to compare to this set of citing patents. Self-citations and citations

by foreign patents are excluded from this analysis. For each citation to a university patent, we

randomly draw another (non-citing) patent in the same three-digit U.S. patent class and patent

grant year. Thompson and Fox-Keene (2005) argue that �ndings of localized knowledge spillovers

using patent citations may be sensitive to the technology classi�cation � speci�cally, that more

detailed disaggregation is essential �so as a further step we also collected the more detailed, six-

digit assignment using the International Patent Classi�cation for each patent which we will use as

an additional control variable.9 The �nal data set includes 26,914 university patents granted during

the period 1975-2006. These patents receive 191,043 citations from patents that have at least one

American-based inventor. With a matched (non-citing, control) patent for each of these, the �nal

data set has 382,086 observations.

2.2. Geographical distance of spillovers

To examine the relationship between distance and knowledge spillovers, we constructed a novel data

set on the distance between the cited university and all of the �rms (or individuals) that cite its

patents over the period 1976-2007. The distance is measured on the basis of the address of the

inventor on the citing patent and the address of the university whose patent is cited (i.e. where the

patent assignee is the university). To do this, we developed new data extraction software that uses

Google Map as the source of information for the geographical (driving) distance in miles between

each university and the citing inventor�s location. In cases where there are multiple (domestic)

inventors on the citing patent, we take the average geographic distance between the addresses of

the various inventors and the university whose patent is cited. The econometric results are robust to

using the alternative approach of taking the minimum distance when there were multiple inventors.

2.3. Patent Citations to University Scienti�c Publications

We constructed a new data base on citations by patents to scienti�c publications by university

faculty. For each patent granted in the period 1975-2007, we extract the citations it makes to

non-patent literature directly from the patent document as it appears in the U.S. Patent O¢ ce.

9For this purpose we adopt the IPC because concerns have been raised about the accuracy of the more detailed
U.S. patent sub-classes.
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We then identify the author(s) and her a¢ liation from the citation text and determine the name of

the cited university. In cases where the citation has incomplete information about the authors or

a¢ liations, we use the Web of Science data base to track the name of the publication and determine

the university to which it belongs. The output of this procedure is a comprehensive data set that

maps the link between corporate innovation and university scienti�c discoveries.

We then use Google Map to calculate the distance between the location of the citing inventors

and the cited university, similar to the patent citations data. Finally, we construct a control group of

patents �for each patent citing an academic publication from one of the universities in our sample,

we randomly draw another patent with the same technology (patent) sub-class and cohort that does

not cite the university publication. In total, 365,205 patents in the complete sample make at least

one citation to academic publications. Of these citations, 34,714 involve (matched) publications

from our sample of universities. With a matched (non-citing, control) patent for each of these, the

�nal data set for publication citations has 69,428 observations.

2.4. University characteristics and local development objectives

For each university in the sample, we have information about whether the university is public

or private, and about the extent to which its technology licensing activity is aimed at promoting

local development. The latter information is based on a survey of university technology licensing

o¢ ces (TLO�s) developed by Lach and Schankerman (2008).10 Among other things, this survey

asks about the importance the TLO attaches to promoting �local and regional development�(i.e., a

preference for licensing to local �rms), using a four point Likert scale �very important, moderately

important, relatively unimportant, or unimportant. We de�ne a dummy variable that is set equal

to one if the university TLO a answers �relatively important� or �very important�; the reference

category corresponds to the other two categories. This survey covers only 75 universities, but these

universities account for about 68 percent of the total number of patent citations in the overall

sample. Of these 75 universities, 57 rank local development objectives as either relatively or very

important. Not surprisingly, public universities typically rank local development highly, though

there are both public institutions that do not and private ones that do (Belenzon and Schankerman,

2009). Therefore, in examining the impact of this policy variable, it will be important to control

10The survey of TLO directors was developed in late 2001. It was sent to about 200 U.S. and Canadian research
universities that belong to the Association of University Technology Managers, with 102 responses. After matching
to other data for the empirical analysis, the �nal sample consists of 84 universities. In this analysis we exclude the
nine Canadian universities because we only use patent citations by U.S.-based inventors. For more details, see Lach
and Schankerman (2008) and Belenzon and Schankerman (2009).
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for university ownership status in the regressions.

Finally, we construct measures of university quality based on NSF rankings of 23 di¤erent

academic departments in the hard sciences (National Research Council (1993); for details, see Lach

and Schankerman, 2008). In addition to these data sets, we use a set of state-level control variables

in some of the regressions. The variables will be introduced later when we use them.

3. Econometric speci�cation

We follow the empirical methodology of Ja¤e, Trajtenberg and Henderson (1993), comparing the

characteristics of corporate patents that cite university patents and a control group that does

not. The control group is constructed as follows: for each citation received by a university patent

(excluding self-citations), we randomly select another patent that does not cite but which is in the

same cohort (patent grant year) and four-digit patent class. Essentially the methodology involves

comparing the geographic distance, and other patent characteristics, between the citing patents and

the control group.

We use linear probability models that relate a dummy variable for whether the patent or pub-

lications is cited to a set of control variables.11 Since the control group is matched on the patent

application date and technology �eld, the methodology automatically controls for these factors in

the regressions. The general empirical speci�cation is

Ci(u;s);j(s0) = �
0Dij + �

0Xij + 
Dws + �ZuDws + �WsDws + �u + "ij

where Ci(u;s);j(s0) is a dummy variable equal to one if patent j located in state s0 cites a patent

(or publication) i from university u located in state s;and zero otherwise. The control variables

(discussed more fully below) include measures of geographic distance between the citing and cited

patent, Dij ; a set of other controls Xij , a within-state dummy (border e¤ect), Dws, equal to one

if the citing patent is in the same state as the cited patent (or publication), interactions between

university and state level variables with the within-state dummy, ZuDws and WsDws, and a set of

university �xed e¤ects, �u: We compute standard errors clustered at the level of the cited patent,

which allows the disturbance "ij to be correlated across citing patents for the same cited patent.

The identi�cation assumption in this analysis is that the key observed characteristics of interest

11The marginal e¤ects implied by Probit models for all of the main speci�cations are nearly identical to those from
the linear probability model (LPM). We use the LPM because it is computationally much easier to accommodate
large number of �xed e¤ects. In addition to the �xed e¤ects for universities and high-tech cluster pairs used in all
speci�cations, we later introduce a complete set of technology �eld-state interaction dummies.
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�geographic distance of the citing patent, university and state level characteristics, and university

local development focus �are exogenous factors, unrelated to the disturbance "ij in the citation

equation. The main concern is unobserved quality of a patent, which might a¤ect both the proba-

bility that it is cited and the distance of the citing patent. But here one would expect that higher

(unobserved) quality would be positively correlated with the distance of citing patents �i.e., weak

patents tend to be cited more locally. Such correlation would induce a positive bias in our coe¢ -

cient on distance, and thus cause us to understate the true localization e¤ects, i.e., to understate

the negative impact of distance on citation behavior.

One important issue to bear in mind is the endogeneity of location. We treat distance between

the citing �rm (inventor) and the cited university as exogenous. We �nd that citation dissipates

with distance, and interpret this result as saying that inventors learn less the further they are from

the cited patent. But it could also be a re�ection of an endogenous spatial distribution of inventors,

driven by an attempt to exploit knowledge spillovers. The extreme version of this is what we might

call �pure assortative matching�� inventors learn only from their own types (e.g. those in their

speci�c technology area), and distance does not a¤ect this learning per se. One way to distinguish

between these interpretations is to use more disaggregated controls for technology �elds (as we do

in this paper), but one cannot entirely rule out endogenous location as part of the explanation.

In an important sense, however, this is not so much an identi�cation issue as an interpretational

one. Nonetheless, we will be able to reject the null hypothesis that the state border e¤ect is solely

driven by endogeneity because we show that it varies systematically with both university and state

policies and characteristics. If the state border e¤ect were driven only by �assortative matching�, by

technology specialization, or the desire of inventors to locate closer to higher quality universities, it

would be hard to explain why this e¤ect is weaker for private than for public universities (holding

constant both patent and university quality) and for universities that are located in states that

more strongly enforce �non-compete�labor laws.

Turning to the key control variables, we measure the distance between the inventor(s) of the

citing patent and the university whose patent with a �exible speci�cation that allows for nonlinear

e¤ects of distance. Speci�cally, we use a set of nine dummy variables for intervals of distance (in

miles): 25-50, 50-100, 100-150, 150-250, 250-500, 500-1000, 1000-1500, 1500-2500 and greater than

2500; the reference category is 0-25 miles (which might be interpreted as a metropolitan e¤ect). This

speci�cation is more �exible than existing studies (e.g., Peri, 2005) and we choose it for two reasons.

First, it is of interest to know how the impact of distance on knowledge spillovers dissipates because
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it may give insight into how information di¤uses. If knowledge is primarily transferred through

personal contact in research collaborations, participation of university inventors in the development

of licensed technologies (including start-ups) and so on, then we might expect di¤usion to be highly

localized and distance not to matter after some point. But if information is spread more though

information technology, or inventor participation in scienti�c conferences, the e¤ects of distance

should be less local. The second reason to use a �exible speci�cation of distance is to avoid any risk

of confounding the e¤ects of distance and the state border.

To examine the e¤ect of state borders on citation, we de�ne a �within-state�dummy variable

that is set equal to one if the inventor of the citing patent is located in the same state as the

university whose patent is cited (zero otherwise)12 Since we control for distance in �exible way, the

within-state dummy will identify whether there is any pure �border e¤ect�on knowledge spillovers.

Of course, the probability a university patent (or scienti�c publication) is cited may depend

on a variety of university characteristics, including the quality and visibility of its faculty, entre-

preneurial orientation, and high-tech density and specialization of the university location, as well

as the university policies for promoting technology transfer and academic interaction (conference

attendance, consulting activities and so on). To capture these factors in a �exible way, we introduce

a complete set of university �xed e¤ects for the cited patent.13

Finally, we include a complete set of dummy variables for pairs of the �ve leading high-tech

clusters in the U.S.: Austin, Boston, Raleigh-Durham, San Diego, and Silicon Valley. We allow for

the ordering of the location of the cited and citing inventor to matter (e.g. the San Diego-Boston

link may di¤er from Boston-San Diego). This gives a total of twenty dummy variables for the

high-tech city pairs. These controls are introduced to account for the possibility of higher citation

rates between high-technology clusters.14

12 If there are multiple inventors, the state dummy is set equal to one if any of the inventors on the citing patent is
located in the same state as the cited university patent.
13This additive speci�cation will not pick up characteristics of universities that a¤ect the geographic pro�le of

citations (i.e., the way they depend on distance). In the empirical analysis we will allow for the ownership type,
quality and other characteristics of the university and state to interact with geographic distance and/or the state
border e¤ect.
14Almeida and Kogut (1999) show that localization e¤ects are stronger in certain high-technology regions in the

U.S. than others. This is not surprising, given the agglomeration of technologically related activity in those areas.
Our university �xed e¤ects should pick up much of this e¤ect. Our dyadic dummies for high-tech clusters should pick
up links between clusters with similar technological focus.
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4. Non-parametric Evidence

Table 1 presents descriptive statistics on the locational characteristics of citations to university

patents (Panel A) and scienti�c publications (Panel B). On average 12 percent of citations originate

from the same state as the inventor, but the share varies widely across patents (from 0 to 100

percent). The average distance between citing and cited patent is 1,218 miles (not reported), but

citations are geographically concentrated �overall, 15 percent of all citations originate within 150

miles, and 29 percent within 500 miles, from the cited university patent.15 At the same time, 53

percent of citations originate at a distance exceeding 1,000 miles from the cited university. The

locational pattern for citations to publications is very similar. However, nothing can be concluded

about the localization of knowledge di¤usion from these facts alone. For that, we need to compare

the geography of citing and a control group of non-citing patents. We do this non-parametrically

in the next table, and econometrically in Section 4.

Insert Table 1 here

Table 2 presents non-parametric comparisons of citing and control patents (Panel A) and sci-

enti�c publications (Panel B). Column (2) in Panel A compares the average di¤erence between the

distance of patents that cite and those that do not (control group), broken down by university

ownership type and patent quality. Several important conclusions emerge. First, in the overall

sample, citing patents are systematically closer to the cited university than the control group �the

di¤erence is -6.9 percent �and we easily reject they hypothesis that there is no di¤erence. This

con�rms that distance constrains university knowledge spillovers. Second, the degree of localization

is more than twice as large for public institutions than for private ones �the di¤erences are �9.2

and -4.3 percent, respectively. Third, the degree of localization is much more pronounced for the

lowest quartile of patent quality, both for public and private institutions. For the upper quartile the

degree of localization is much smaller, and for private universities there is no statistically signi�cant

localization.

Insert Table 2 here

15The distribution of citations across di¤erent distance intervals is similar for public and private universities (not
shown).
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Column (3) compares citing and control patents in terms of the fraction of citations originating

from within-state inventors, another dimension of localization. The pattern is broadly similar to

those in column (2). First, inventors that cite university patents are signi�cantly more likely to

be located in the same state. We decisively reject the null hypothesis that there is no di¤erence

between citing and non-citing patents. Second, this within-state citation bias is stronger for public

universities than for private ones, and it is more pronounced for the lowest quartile of patents �the

di¤erence with the upper quartile is especially large for public universities.

Overall, the pattern for publications is very similar to patents, so we will not go through it in

detail. The similarity is striking, and perhaps a little surprising, because publications correspond to

an open science regime, where dissemination is encouraged by the norms of the profession and the

academic reward structure. In contrast, patents are proprietary knowledge apart from the informa-

tion disclosure mandated in the patent document. The fact that the two knowledge regimes exhibit

similar characteristics suggests that there are common, geographically-mediated determinants of

information dissemination. We return to this point in Section 5, where we discuss the more detailed

econometric results.

Figure 1a provides evidence on how the e¤ects of distance on knowledge spillovers dissipate as

we extend the distance. The light colored bars show the di¤erence between the average citation

probability for an inventor in the speci�ed distance interval and those at greater distances (the 95

percent con�dence interval is given at the top of each bar). These bars show clearly that university

knowledge spillovers are strongly localized. For example, the �rst �distance bar� shows that the

probability that an inventor within 25 miles cites a university patent is 34 percentage points greater

than for inventors located beyond 25 miles from the university. Since the mean citation probability

is 50 percent by construction, this e¤ect is huge �equivalent to a 65 percent decline in the mean

citation probability. There is a further steep decline as we move from 25-50 to 50-100 miles �there

is still a small, but statistically signi�cant, distance e¤ect at 50-100 miles, equivalent to a 10 percent

higher citation probability (relative to the mean) than at greater distances. After that, it appears

that distance exerts no further e¤ect.16

Figure 1b shows the impact of state borders on citation, for di¤erent intervals of distance between

the citing and cited patents. The dark colored bars depict the di¤erence between the citation

16The last bar suggests that the citation probability appears to rise slightly with distance at distances beyond 500
miles. This is an artifact of the higher citation probabilities between high-technology clusters which are at these
greater distances from each other (e.g. Boston, Silicon Valley, San Diego, Raleigh-Durham and Austin). When we
control for cluster pairs and other factors in the econometrics, this anomaly disappears.
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probability for inventors located within the same state as the university and those outside the state,

for each distance interval. For example, the �rst bar shows that inventors located within the state

and within 25 miles of the university are 22 percentage points more likely to cite than inventors

located at that distance but outside the state border. In contrast to the distance gradient, Figure

1b shows that the impact of the state border persists over much longer distances (the maximum

within-state distance is 707 miles, in California). This �nding is consistent with the hypothesis that

the state border e¤ect is determined (at least in part) by university and/or state policies, whose

e¤ects we would not expect to disappear with distance.17

Insert Figures 1a and 1b here

5. Estimation results

5.1. State-border e¤ect

Table 3 presents the baseline linear probability regressions relating patent citation to distance and

state borders. In all regressions, we include university �xed e¤ects, dummy variables for pairs of

�ve high-technology clusters, and a dummy variable for whether the citing and cited patents are in

the same 6-digit IPC patent class. Standard errors are clustered at the level of the cited patent.

Column (1) presents the speci�cation with the dummy variables for di¤erent distance inter-

vals, but no within-state dummy. The results show that geography sharply constrains knowledge

spillovers. Moving from 0-25 to 25-50 miles reduces the citation probability by 16.5 percentage

points (which is about a third of the mean citation rate), and moving out to 50-100 miles further

reduces it by another 8.7 (= 25.2 - 16.5) percentage points. There is a further drop of 5.0 per-

centage points up to 150 miles, but thereafter distance has no appreciable e¤ect on citation. These

econometric results con�rm what we observe in Figure 1a.

In column (2) we report a speci�cation with the within-state dummy but without distance

e¤ects. The results show that citation is much more likely from inventors located within the same

state �the marginal e¤ect of being within-state (0.196) is very large, nearly 40 percent of the mean

citation rate. However, the estimated state border e¤ect is likely to be overstated because we do

not control for pure distance e¤ects in this regression.

17While there is some variation in the border e¤ect at di¤erent distance intervals, this re�ects the fact that these
intervals correspond to di¤erent subsets of states (it depends on the distance of the university from the border) and,
as we show later, there is substantial heterogeneity in the state border e¤ects across states.
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Insert Table 3 here

To address this, in column (3) we introduce both nonlinear distance e¤ects and the within-state

dummy. We refer to this as the baseline speci�cation. Two key �ndings emerge. First, both distance

and the state border e¤ect are statistically signi�cant, and it is important to include both variables

in the speci�cation. Including �exible distance e¤ects reduces the estimated e¤ect of the state

border by more than 50 percent, from 0.196 to 0.084, but this still represents nearly 20 percent of

the mean citation probability. This result con�rms that the state border e¤ect is not simply a proxy

for geographic distance. At the same time, the estimated distance e¤ects are robust to allowing for

a state border e¤ect, and they con�rm that the impact of distance dies out after about between

100-150 miles.18

Second, the coe¢ cient on the technology matching dummy is large and statistically signi�cant,

con�rming that citation is much more likely between patents in the same technology area. This is

not surprising, but the interesting fact is that we still �nd strong geographic localization even after

controlling for this matching dummy at the disaggregated 6-digit IPC level. This �nding suggests

that localization is not just a re�ection of the spatial distribution of technological activity.19 This

conclusion is robust across all speci�cations we estimate.

To investigate the impact of technological clustering on our �ndings more fully, we introduce into

the baseline speci�cation a complete set of �xed e¤ects for technology �eld- state pairs. We use the

3-digit level of aggregation for this purpose, which gives us a total of 3,995 dummy variables. This

is the most �exible way of allowing for state-speci�c technological specialization in order to check

whether the distance or state border e¤ects are simply re�ections of such specialization. Column (4)

18We conducted two additional robustness checks on these baseline �ndings. First, we re-estimated the baseline
speci�cation with a more re�ned distance breakdown of the 0-100 mile bracket using ten mile intervals. The key
�ndings of localized distance e¤ects and the importance of the state border are robust. The main additional insight
from this exercise is that the distance gradient appears to �atten out at somewhere between 70 and 100 miles, but
given the standard errors we would not make too much of this di¤erence.
Second, we checked whether the results are robust to a di¤erent rule for selecting the control group of patents.

Instead of choosing only one random control (non-citing) patent for each citation to a university patent in our sample,
we randomly selected �ve control patents for each citation and re-estimated the baseline speci�cation. The estimated
distance e¤ects are broadly similar and have the same pattern, dissipating after 150 miles. The estimate (standard
error) of the state border e¤ect is 0.052 (0.004), which is about 30 percent of the mean citation rate for this sampling
frame (with one citing patent and �ve control patents).
19 If localization were driven by agglomeration based on technological specialization, we would expect to �nd much

weaker localization when we control in a more re�ned way for matching on technology class. This concern was
originally raised by Thompson and Fox-Keene (2005) in the context of the classic paper by Ja¤e, Trajtenberg and
Henderson (1993). As an additional robustness check, we re-estimated the baseline speci�cation with a full set of
6-digit IPC �xed e¤ects �not just a matching dummy at this level of aggregation. The estimates of the distance and
state border e¤ects are very similar to those reported in Table 3.
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presents the results. The estimated coe¢ cients for the state border e¤ect and distance dummies are

almost unchanged (compare columns 3 and 4). This important result shows that the localization

of knowledge spillovers is not an artifact of state-speci�c technological agglomeration. We maintain

these technology-state dummies in all the subsequent regressions.20

Finally, there is a concern that the results might be driven by a small number of leading uni-

versities which dominate patenting activity. In order to address this issue, we drop the top �ve

universities in terms of their total number of patents, and re-estimate the baseline speci�cation in

column (4). These top universities, in descending order, are MIT, University of California at Berke-

ley, Stanford, California Institute of Technology, and the University of Wisconsin, and together

they account for nearly a quarter of the citations in our sample. Nonetheless, when we drop these

universities, the parameter estimates (reported in column 5) are very similar to those using the

entire sample. This con�rms that our key �ndings about the pattern of localization are robust, and

are not driven by these top performers.

Finally, we also checked whether the geographic pro�le of knowledge spillovers changed over

time. To do this, we re-estimated the baseline speci�cation in column (4) for two sub-periods:

1976-1993 and 1994-2006 (1993 is the median year for patent citations). We do this in two ways:

�rst, using the date of the cited patent, i.e. the �vintage�of the technology; and second, using the

date at which the citation occurs (the second approach is designed to check for changes in di¤usion

associated with improvements in information technology and the internet). The point estimates of

the state border e¤ect are similar, and not statistically di¤erent, between the two periods (0.080

versus 0.087 using the cited patent to date; 0.061 versus 0.086 using the citing patent to date). The

coe¢ cients on the distance dummies show somewhat stronger localization for the later period, using

both dating methods, but in both periods the distance gradient is essentially �at after 150 miles.21

Overall, we do not �nd evidence that the degree of localization changed substantially over time.

5.2. Public and private universities and the state border e¤ect

In this section we examine the di¤erences in knowledge di¤usion from public and private universities.

We begin by estimating the baseline speci�cation separately for each ownership type, allowing for
20We go one step further by allowing these �xed e¤ects for technology �eld-state pairs to change over time, by

including dummies at the technology-state-year level (using the grant year of the citing patent). The results on the
state border e¤ect, and the distance gradients, remain robust (results not reported for brevity).
21For example, using the date of the cited patent to split the sample, for the pre-1993 period the coe¢ cients (s.e.)

on the �rst three distance intervals are -0.152 (.012), -0.187 (.016) and -0.224 (.016). The corresponding numbers
for the later period are -0.158 (.011), -0.245 (.014) and -0.272 (.014). There is even less di¤erence between the two
periods when we use the citing year of the patent.
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all coe¢ cients to di¤er. Table 4 presents the results. A comparison of columns (1) and (2) shows

that there is signi�cantly stronger localization of knowledge spillovers for public universities. This

takes two forms. First, patent citations drop o¤ more sharply with distance for public universities.

For example, moving from 0-25 to 25-50 miles reduces the citation probability by 19.1 percentage

points for public institutions, and moving out to 50-100 miles further reduces it by another 3.9

percentage points (= 23.0-19.1). For private universities, the corresponding incremental declines

are 13.9 and 9.4 percentage points, respectively. Yet for both types of universities, we observe that

distance has no appreciable e¤ect on citation beyond 150 miles. The second important di¤erence

is that the state border more strongly constrains knowledge di¤usion for public universities �the

estimates are 0.065 for public and 0.102 for private institutions.

Insert Table 4 here

In column (3) we pool the two types of universities but continue to allow the distance gradient

and state border e¤ect to di¤er. This speci�cation yields similar results � i.e., constraining the

other coe¢ cients to be the same for public and private universities does not change our main

conclusion that spillovers are more distance sensitive, and more constrained by state borders, for

public universities. In this constrained version, the gap between the state border e¤ect for public

and private universities is even larger (0.125 and 0.045, respectively).

One concern is that the localization of knowledge di¤usion for patents representing important

advances may be very di¤erent than for marginal improvements. In particular, we would expect

important ideas to di¤use more widely. Moreover, in our sample private universities tend to have

somewhat higher quality patents, as measured by the total number of subsequent citations received

(mean numbers of patent citations for public and private universities are 37 and 48, respectively).

Thus part of the di¤erence in the state border e¤ects we �nd might also re�ect these di¤erences in

patent quality.

To check this hypothesis, we re-estimate the speci�cation in column (3) separately for patents in

the bottom and upper quartiles of the distribution of total citations received, our measure of patent

quality.22 The results are presented in columns (4) and (5). Three conclusions are worth noting.

First, the estimated coe¢ cients on the distance dummies show a sharper distance gradient for the
22There is a large empirical literature showing that such citation measures are correlated with measures of economic

value (Ja¤e and Trajtenberg, 2002). We observe patents granted up to 2006 and citations through the year 2007, so
there is an issue of truncation for the more recent patents. However, since we study the relationship between citation
and distance, and not the number of citations per se, truncation would only cause a problem to the extent that the
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lower quartile. Moving from 0-25 to 25-50 miles reduces the citation probability by nearly twice

as much for lowest quartile than for upper quartile (-0.207 versus -0.114). This �nding con�rms

that knowledge di¤uses more widely for important patents. But it also interesting that for both

categories of patents, the e¤ect of distance dies out relatively quickly.

Second, the state border e¤ect is larger for public universities, both for low and high value

patents. For the lower quartile, the estimate of the border e¤ect for public universities is 0.113 and

0.017 for private ones. For the upper quartile, the estimates are 0.158 and 0.102, respectively.

Third, while distance constrains knowledge di¤usion more strongly for low value patents, the

state border is more important for high value patents, both for public and private universities.

If the state border e¤ect is, at least partly, due to a local preference in university technology

commercialization policies, as we show in the next section, this evidence suggests that universities

target high valued innovations for local development.

As a further check, we investigate whether the quality of the university (as opposed to the

speci�c patent) partly explains the localization of knowledge spillovers, and the di¤erence between

public and private institutions. If there is imperfect information about the quality of the individual

patent, the quality of the institution with which the patent is a¢ liated might be an informative

signal and thus a¤ect di¤usion. To do this, we construct quality measures of each university using

data from the National Research Council (1993) on the academic quality of individual departments

in the hard sciences and aggregating them to the university level.23 Column (6) reports the pooled

regression using dummy variables for quality quartiles interacted with the within-state citation

dummy. Allowing for university quality does not a¤ect the distance gradient (compare columns 3

and 6). The new �nding here is that the state border e¤ect is una¤ected by institutional quality

except for the highest quartile, where it is weaker, but the di¤erence between public and private

universities remains robust.

The evidence in this section shows clearly that state borders are more important for public

universities.24 Does this re�ect something intrinsic to ownership, or is it associated with university

timing of citations is correlated with distance (e.g. earlier citations to a patent are from less distant inventors). Since
that is possible, we checked robustness by re-estimating the baseline speci�cation in column (4) in Table 3 using only
patents granted before 2000. The results are very similar to those in the table. For example, the coe¢ cient on the
within-state dummy is 0.080, which is similar to the one obtained with the full sample, which is 0.089.
23We use three alternative measures from the National Research Council data: ranking of faculty quality, publica-

tions per faculty, and citations per faculty. In each case, we assign each university to a quality quartile and interact
quartile dummies with the within-state dummy. The results in the text are based on faculty rankings, but we get
qualitatively similar results with the publications and citation measures.
24 In addition to the public-private distinction, we also examined whether the state border e¤ect was di¤erent for

land grant universities. These are (mostly public) universities established by the federal government in the 19th
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policy that is correlated with ownership? We examine this question, and how other state policies

and characteristics a¤ect the state border e¤ect, in the next section.

5.3. University and state policies and the state border e¤ect

In this section we examine how the strength of the border e¤ect varies across states, and how

policy in�uences it. In particular, we are interested in the role played by university policies toward

technology transfer, and state policies that a¤ect the mobility of scientists and engineers and thus

circulation of local information. We now turn to a discussion of our speci�c hypotheses and how

we test them empirically.

Local Commercialization of Innovation: The main idea is that the state border e¤ect is likely to

be stronger when universities have a policy to promote local and regional development through their

technology transfer activity. These policies take the form of a preference for licensing university

inventions to local �rms, or establishing local start-up companies. In addition, there are sometimes

formal constraints (or informal pressure) on universities � particularly public institutions � that

in�uence licensing behavior (Belenzon and Schankerman, 2009). Such local licensing creates an

information base on which the licensee and other local inventors are likely to build on, and thus a

greater probability of within-state citation (stronger state border e¤ect).

In addition, the state border e¤ect should be larger when the potential for exploiting the knowl-

edge spillovers within the state is greater, and this is more likely in states with a higher density of

scientists and engineers (S&E). However, controlling for the average S&E density in the state, we

expect the border e¤ect to be smaller in states where the high-tech activity is concentrated at the

location of the cited university, since this implies there are fewer potential citing inventors near the

state border.

To test these hypotheses, we interact the within-state dummy with three measures. The �rst

is a dummy variable indicating whether the university reports having a strong local/regional de-

velopment objective in its technology transfer policy. The second is the density of scientists and

engineers per square mile (in 1995).25 The third is a measure of the high-tech density in the city

where the university is located (TechPole), which is constructed by the Milken Institute (Devol,

1999).

century to promote research and technology di¤usion. The coe¢ cient on the interaction between land grant status
and the within-state dummy was not statistically signi�cant.
25The data on the total number of scientists and engineers in each state are taken from the National Science

Foundation, http://www.nsf.gov/statistics/pubseri.cfm?/seri_id=18.
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In the patent citation equation, we expect positive coe¢ cients on the interaction of the within-

state dummy with strong local development objectives and S&E density, and a negative coe¢ cient

on the interaction with TechPole.

Local information: The state border e¤ect is simply the within-state citation bias controlling for

distance. We expect this to be larger the more information that inventors have about the patents

generated by the universities in the state. If information �ows are in fact localized, the border e¤ect

should be stronger in states where 1) inventors are more likely to remain in the state when they

move jobs, which we call �labor mobility�, and 2) inventors working in a state are more likely to have

been educated at the graduate level in that state, which we call �local education�.26 We consider

each in turn.

Local Education: To test the local education hypothesis, we need a measure of the fraction

of S&E working in a state who were educated in that state. Unfortunately there is no large-scale

information we are aware of that links the location of high-tech employees and their graduate

education. The only available source is a single cross-sectional survey on new Ph.D graduates in the

hard sciences conducted by the National Science Foundation (Sumell, Stephan and Adams, 2008).

We use the percentage of new Ph.D. hires in a state who received their degree from universities in

their state of employment �which we call In-State Educated S&E.27 The samples in this survey

are relatively small, and the variable is certainly measured with substantial error. Attenuation bias

will cause us to underestimate the true impact of local education on the border e¤ect.

Labor Mobility: To examine the role of labor mobility, we use two complementary ap-

proaches. First, we use data from the March Current Population Survey (CPS) from the U.S.

Bureau of the Census to construct a state-level measure of scienti�c labor mobility. The March

CPS asks whether people have moved in the last year, the state they currently live in, and the

state they lived it last year, as well as their occupation. We use the CPS data for the available

years within our sample period to identify the level of both inward and outward migration for each

state for the set of occupational categories that correspond to scientists and engineers (in our best

judgment). We normalize this migration by the existing stock of scientists and engineers in each

state, taken from the National Science Foundation. We construct a measure of gross migration

26Of course, scientists who migrate out of state may maintain enduring professional links with local colleagues, and
thus ongoing familiarity with and citation of, their research. Agrawal, Cockburn and McHale (2006) present evidence
using patent citations that support this argument.
27The information is taken from Table 8.2 in Sumell, Stephan and Adams (2008). The fraction of new hires educated

in-state varies widely, from a low of 8.3 in the District of Columbia, and 19.5 percent in New Jersey, to a high of 57.4
percent in Utah and Iowa.
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rates (inward + outward) for this purpose �which we call S&E Mobility �and interact it with the

within-state dummy to test whether states with higher scienti�c labor turnover have weaker border

e¤ects.28

The second approach we use is to build on the recent literature on the economic impact of

non-compete labor laws. These statutes restrict employees from taking jobs, for some period,

with competing (same industry) companies within some geographic boundaries, typically the state.

Exploiting the fact that the scope, and enforcement, of non-compete statutes vary across states,

recent studies have shown that non-complete laws increase the likelihood that employees who change

jobs leave the state, creating less intrastate job mobility (Marx et. al. 2007; 2010). Our hypothesis

is that, by inducing inventors with local information to leave the state, such laws should reduce the

strength of the state border e¤ect. To test this, we use the �non-competition enforceability index�

for each state constructed by Garmais (2009) and interact it with the within-state dummy.29

Table 5 presents the results.30 In these regressions we include as an additional control the

interaction of the within-state dummy with the level of economic activity (log of gross state product

per capita). We begin by estimating a completely �exible speci�cation that allows each state to

have its own border e¤ect, i.e., a di¤erent within-state dummy coe¢ cient for each state (results

not reported for brevity). Even with this general speci�cation of the state border e¤ect, our earlier

�ndings on the impact of distance are robust. The citation probability declines sharply, and the e¤ect

of distance is exhausted after 150 miles.31 However, the estimates indicate substantial variation

across states in the magnitude of border e¤ects. The average state border e¤ect is large �at 0.194,

it is equivalent is 40 percent of the sample mean citation probability �but the point estimates range

from a low of 0.040 in New York to a high of 0.513 in Maine. We strongly reject the null hypothesis

that the border e¤ects are the same across states (p-value <.001). The map of the U.S. in Figure

28The mobility data are taken from http://www.bls.census.gov/cps/ads/adsmain.htm. Gross migration is the ap-
propriate measure for this purpose because both inward and outward migration should reduce the presence of local
information in the state. Scientists who leave the state with local knowledge and subsequently cite the university�s
patents or publications will represent out-of-state citations, and thus reduce the border e¤ect. Scientists migrating to
the state but educated elsewhere will have less local knowledge which again reduces the border e¤ect.
29This index is based on a count of twelve di¤erent dimensions of the scope and enforcement of these statutes (thus

can range from zero to twelve). In the sample it from a low of zero (no enforcement) in California to a high of nine
in Florida. We also tried the simple binary classi�cation used by Marx et. al. (2007, 2010). We obtain a very similar
point estimate with this measure, but it is not statistically signi�cant.
30As before, standard errors are clustered at the patent level. In these regressions the interactions between uni-

versity/state characteristics and the within-state citation dummy vary at the micro (citation) level. This makes it
di¤erent from the case studied by Moulton (1990), where a micro regression includes an aggregate regressor with no
variation over a subset of micro observations, and thus requires adjustment to standard errors.
31The estimates (s.e.) on the �rst 25-50, 50-100 and 100-150 mile distance intervals are -0.143 (.009), -0.208 (.011)

and -0.238 (.011).
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2 summarizes the cross-state variation by identifying the relevant quartile of the distribution into

which each state falls. There is no obvious regional, size or other simple characterization of states

in this �gure. We turn next to an econometric analysis of the cross-state variation in the border

e¤ect.

Insert Table 5 and Figure 2 here

Column (1) presents the results with interactions of the within-state dummy and all of the

factors discussed above, except the university local development dummy. We turn �rst to the local

commercialization hypotheses. The coe¢ cient on the S&E density interaction is positive (though

marginally signi�cant, p-value =.07), indicating that states with greater ability to exploit local

knowledge spillovers have larger border e¤ects. Controlling for this density, we �nd that the state

border e¤ect is smaller when high-tech activity is more concentrated at the university location. A

one standard deviation increase in TechPole (corresponding roughly to a move from Phoenix to

Boston) reduces the estimated border e¤ect by 0.026, which is about 12 percent of the average state

border e¤ect.

We turn next to the role of local information. First, we �nd that non-compete laws reduce

within-state knowledge spillovers, and the e¤ect is large. The estimated coe¢ cient of -0.018 implies

that moving from a regime of complete non-enforcement (California, index=0) to the maximum

enforcement state in our sample (Florida, index=9) reduces the border e¤ect by 0.162, which is 84

percent of the average border e¤ect. Second, the results con�rm that the border e¤ect is stronger

in states that have a higher fraction of locally educated scientists and engineers. Third, states

with greater levels of labor mobility exhibit smaller within-state knowledge spillovers. These results

show that policies that promote retention of local university graduates and reduce scienti�c labor

turnover will increase the localization of knowledge spillovers. In addition, as we found earlier, the

state border e¤ect is smaller for private universities.

In column (2) we add the interaction between the dummy variable for strong local development

objectives and the within-state dummy. This university policy variable is only available for a subset

of the universities (but they account for the majority of the sample patents), so the sample size

drops by about a third. The coe¢ cient on the university policy interaction variable is positive and

signi�cant, con�rming that universities that use technology transfer to promote local development

create stronger within-state knowledge spillovers. Nevertheless, even after we control for university
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local development policy objectives, we still �nd that public universities are more e¤ective at creating

within-state knowledge spillovers than private ones. It remains an important task for future research

to identify the reasons behind this di¤erence.

The coe¢ cients on the other interaction variables are generally robust when university policy

is introduced. The point estimates of the impact of labor mobility and non-compete laws rise

somewhat. The coe¢ cient on S&E density is about twice as large as before, and in this case

statistically signi�cant. Finally, controlling for these other factors, we �nd that states with greater

higher levels of per capita income have smaller state border e¤ects.

5.3.1. The Michigan �Natural�(Policy) Experiment

In the previous section we exploited the cross-state variation in characteristics and policy to identify

the e¤ects of interest. Of course, there is always the concern that unobserved state characteristics

may be correlated with these variables, especially the enforcement of non-compete statutes. For-

tunately, we are able to examine the impact of non-compete statutes on the state border e¤ect in

another way, by exploiting a policy reform in Michigan. Prior to 1985 Michigan outlawed non-

compete agreements, but in 1985 it passed legislation that enforced them. In a series of recent

papers, Marx et. al. (2007, 2010) exploit this reform as a �natural experiment�and show that the

introduction of non-compete legislation induced out-migration from Michigan, and that this was

particularly strong for top-performing inventors. Building on their work, we use the Michigan re-

form to examine the e¤ect of this statute on intrastate knowledge di¤usion �i.e. on the importance

of the state border e¤ect on patent citation.

To do this, we re-estimate the baseline speci�cation with a full set of within-state dummies,

allowing for a discontinuity in the border e¤ect in Michigan after the reform. We would not expect

an immediate impact of the reform, since labor mobility and new citing patents occur with some

lag. To capture this, we estimate four distinct Michigan border e¤ects: the pre-reform period (up

to and including 1985), 1986-89, 1990-95 and post-1995. The prediction is that the state border

e¤ect should decline after the reform.

The results are presented in column (3) in Table 5, and they strongly con�rm this prediction.

We observe a sharp, and statistically signi�cant, drop in the coe¢ cient after 1989, and essentially

no change thereafter.32 Moreover, the magnitude of this shift in the state border e¤ect is consistent

32This conclusion holds up for di¤erent variants where we modify the timing of the dummies. We also estimated a
speci�cation that allows for di¤erent e¤ects in each year during the period 1985-1990 and found similar (but noisier)
changes.
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with the change implied by the parameter estimates obtained from columns (1) and (2), where we

identify the e¤ect from the cross-state variation. Using the estimate of the enforcement index in

column (1), and assuming that Michigan moved from zero enforcement to the maximum level in

the sample, we get an implied decline in the state border e¤ect of 0.162. This is very close to the

estimate using the Michigan policy experiment, which yields a decline of 0.144 (= 0.222 - 0.078).

As a further check, we conduct a set of �placebo�tests by examining whether there is a similar

e¤ect in other states that did not introduce any reform. Finding an e¤ect in those states would

suggest that the change is being driven by some unobserved common factor other than the reform.

We use three variants, based on di¤erent de�nitions of the placebo group of states. In column (4) we

choose two neighboring states, Illinois and Indiana, in order to control for similar industrial structure

(in particular, reliance on the automobile sector) and demand shocks. In column (5) we use the ten

states whose individual, estimated state border e¤ects were closest to the one for Michigan. Finally,

column (6) treats the placebo group as all states other than Michigan. In each case, the states in

the placebo group have their individual state border e¤ects plus a common incremental e¤ect for

the di¤erent subperiods. In all three experiments, we �nd the large decline in the estimated border

e¤ect for Michigan, but no statistically signi�cant drop for the placebo group of states. This gives

us con�dence that the Michigan reform did in fact have the impact we attribute to it.

In Table 6 we summarize the relative importance of the main factors that a¤ect the state border

e¤ect, using the parameter estimates from column 2 in Table 5. We focus on the following three

sets of determinants: 1. university policy (public/private status, and local development objectives),

2. state policy (non-compete laws), and 3. scienti�c labor factors (In-state educated S&E, S&E

mobility and S&E density). We cannot meaningfully decompose the border e¤ect into di¤erent

components because the various factors above are not orthogonal, so any decomposition would be

arbitrary. Instead, we compute the impact of a standard deviation change for continuous measures,

and discrete impacts for the dummy variable measures. In addition, we show the impact of moving

from the minimum to maximum values in the sample of each variable.

Insert Table 6 here

The results show that all of the above factors have large, and roughly similar, impacts on the state

border e¤ect. Turning �rst to policy variables, moving from public to private ownership is associated

with a 29.2 percent decline in the state border e¤ect, while a shift from no (or weak) to strong local
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development objectives raises it by 36 percent. A standard deviation increase in the strength of

state non-compete laws reduces the border e¤ect by 47.7 percent. Local information variables also

have large impacts. A standard deviation increase in the fraction of locally educated scientists and

engineers raises the border e¤ect by 42.2 percent, while for S&E density the corresponding impact

is 22.8 percent. A standard deviation rise in scienti�c labor mobility reduces the border e¤ect by

36 percent.

5.4. Variation in localization across technology �elds

The previous analysis was based on pooling data for di¤erent technology areas. In this section we

disaggregate the data to examine whether our �ndings of localized knowledge spillovers is common

to all �elds, or driven by only a few technology areas. Table 7 presents parameter estimates of

the baseline speci�cation for nine broad technology areas we constructed, based on the IPC patent

class of the cited patent. These areas are: Biotechnology, Chemicals, Pharmaceuticals, Medical

Instruments, Engineering, Electronics, Information Technology, and Telecommunications.33

Insert Table 7 here

We �nd substantial variation across �elds in the degree to which knowledge di¤usion is localized,

both in terms of the distance gradient and the state border e¤ect. While distance strongly mediates

spillovers in all technology areas, the e¤ects are less sharp in Biotechnology, Information Technology

and Telecommunications. The estimated coe¢ cients on the distance dummies, up to 150 miles, are

only about half as large for patents in these relatively younger �elds, as compared to the more

traditional areas. For example, the citation probability declines by an average of 13 percentage

points (26 percent of the mean citation rate) after 100 miles for the newer �elds, but by an average

of 29 percentage points for the others. However, the distance e¤ects largely die out beyond 150

miles in all of the technology areas.

The second important �nding is that the state border e¤ect is not present in all �elds. The border

e¤ect is statistically, and economically, signi�cant only in engineering and the biomedical-related

�elds �Biotechnology, Chemicals, Pharmaceuticals and Medical Instruments. Since we control in

these regressions for additive technology �eld-state �xed e¤ects, this �nding suggests that there

may be some interaction between state or university policies and technological specialization �

33The international patent classes that are included in each technology �eld are given in the appendix.
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e.g., university local development policies that target particular �elds. We leave this for future

investigation. In any event, the technology �eld variation we observe implies that some of the

variation we observe across states in the strength of the border e¤ect may be attributable to

di¤erences in technology specialization.

5.5. Citations to university publications

Thus far we have traced knowledge spillovers by using citations to university patents. In this section

we present a similar analysis using citations to university scienti�c publications. The main question

of interest is whether the geography of knowledge spillovers di¤ers in an �open science�(publication)

regime as compared to a proprietary one (patents), as emphasized by Dasgupta and David (1994).

It is worth bearing in mind, however, that our analysis can only partially inform on this distinction

because we focus exclusively on citations to scienti�c publications by patents, not by other academic

publications.

Table 8 reports the results. In all regressions, we include university �xed e¤ects, dummy variables

for pairs of �ve high-technology clusters, and technology �eld-state interaction dummies. Column (1)

reports the speci�cation with the dummy variables for di¤erent distance intervals, but no within-

state dummy. As with patents, the results show that geography sharply constrains citations to

publications. Moving from 0-25 to 25-50 miles reduces the citation probability by 20.1 percentage

points (40 percent of the mean citation rate), and moving out to 50-100 miles further reduces it

by another 5.7 percentage points. However, citations continue to decline with distance up to about

1000 miles. This �nding also holds in later speci�cations with the state border e¤ect and university

quality controls.

Column (2) reports a speci�cation with the within-state dummy but no distance e¤ects. While it

appears that citation is much more likely from inventors located within the same state, the estimated

state border e¤ect falls dramatically (from 0.193 to 0.036) when we introduce both distance e¤ects

and the within-state dummy (column 3). This speci�cation shows that both distance and the

state border e¤ect are statistically signi�cant, and it is important to include both variables in the

speci�cation. However, after including distance dummies, the estimated state border e¤ect is quite

small, only 7.2 percent of the mean citation rate. This is only a third as large as we found for

citations to patents.

Insert Table 8 here
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Moreover, the state border e¤ect for publications depends strongly on whether the university is

public or private, and on the quality of the institution. We report estimates for the model separately

for public and private universities in columns (4) and (5). We �nd no statistically signi�cant

border e¤ect for private universities. There is a small border e¤ect for private institutions, which is

equivalent to 8.6 percent of the mean citation rate. However, this average e¤ect masks big di¤erences

across universities of di¤erent qualities. In columns (5) and (6) we report estimates where we allow

for universities in di¤erent quality quartiles to have di¤erent state border e¤ects (the reference

group is the lowest quartile). Column (5) con�rms that there is essentially no border e¤ect for any

of the quality groups for private universities. For public universities, there is no border e¤ect for

the top quartile, but the state border strongly constrains di¤usion of information in publications

for the lower quartiles, especially below the median quality level. We leave it for future research to

identify the underlying mechanisms that cause this outcome.34

6. Concluding Remarks

This study examines how geography, and university and state policies, a¤ect knowledge spillovers

from university innovation. We use patent citations both to university patents and scienti�c publi-

cations to trace these knowledge �ows. Our main empirical �ndings are as follows. First, university

knowledge spillovers are strongly localized. They are very sensitive to distance up to about 150

miles for patents, and constant thereafter. Distance also constrains the di¤usion of knowledge in

publications, but the e¤ects are less sharp. Controlling for distance, we �nd strong evidence of a

state border e¤ect. Inventors located in the same state as the cited university are substantially more

likely to cite one of the university patents than an inventor located outside the state. In contrast, we

�nd essentially no state border e¤ect for patent citations to scienti�c publications except for lower

quality public universities. Di¤erences between the open science regime of scienti�c publications

and the proprietary regime of patents seems to be important in shaping the geography of knowledge

spillovers.

The state border e¤ect is in�uenced by the characteristics and policies of the university and state.

34We checked whether the geographic pro�le of knowledge spillovers from scienti�c publications changed over time.
To do this, we re-estimated the speci�cation in column (3) for two sub-periods, 1976-1993 and 1994-2006, using either
the date of the cited publication or the date at which the citation occurs. The point estimates of the state border
e¤ect decline somewhat, though are not statistically di¤erent, between the two periods: 0.047 (.017) versus 0.015
(.019) using the cited publication to date, 0.065 (.027) versus 0.026 (.014) using the citing patent to date. As with
patents, the coe¢ cients on the distance dummies show somewhat stronger localization for publications for the later
period, using both dating methods, and in both periods the e¤ects of distance persist up to about 1000 miles.
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It is signi�cantly larger for public universities, and in particular those (both public and private)

universities that pursue local and regional development in their technology licensing policies. The

magnitude of the state border e¤ect varies widely across states, and these variations are related to

the density of scientists and engineers who can exploit the potential for knowledge spillovers, and

state policy toward non-compete laws that a¤ect intrastate and interstate labor mobility. Finally,

we show that there are di¤erences across technology areas in how distance and state borders a¤ect

knowledge di¤usion.

The key challenge for future research is to identify the channels through which distance and

state borders mediate knowledge spillovers �more speci�cally, why public and private universities

di¤er and how open science and patent regimes a¤ect di¤usion. And, perhaps most important,

what is the impact of intra- and interstate knowledge spillovers on economic growth at the state

level? A promising way forward is to collect systematic information on university and state policies

promoting spillovers, and �rm strategies for exploiting them.
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A. Data Appendix

A.1. Matching patents to universities

Our patent sample includes 3,309,736 patents that were granted between 1975 and 2007. Patents
data are taken from the NBER patent �le for the period 1975-2002 (2,630,106 patents). We directly
extract from the USPTO website all granted patents for the period 2003-2007 (679,630 patents).
We exclude patents that do not include at least one domestic assignee, losing 1,508,612 patents.35

University patents can be assigned directly to the University, or to a¢ liate institutions. We manually
explore the websites of all universities in our sample to identify the di¤erent legal entities to which
the university patents can be assigned. For example, M. D. Anderson Cancer Center is an a¢ liate
of the University of Texas. The matching procedure consists of the following steps:

1. Standardizing names of patent university assignees. This involves erasing phrases which comes
before the name of the university, e.g. �The Boards of Regents of�, �Trustees of�, �A Governing
Body of the�, or after the name, e.g. �Research Foundation�. As an example, the name "The Board
of Trustees of The Stanford University - O¢ ce Of Technology" becomes "Stanford University".

2. Name matching: match the standard names of the patent applicants with our university
sample, including the a¢ liated assignees we have identi�ed for each university.

In total, we match 46,536 patents to 234 universities. The average number of patents per
university is 211 but this varies widely, from a low of one for Oklahoma State University (Tulsa)
to a high of 2,704 for MIT. The patents sample receives 408,155 citations. Of these citations, 19
percent do not include at least one American inventor and are thus excluded from the analysis.

A.1.1. Multiple assignments

Co-assignees In some cases, a patent has more than one assignee (72,714 patents in the
complete sample patents). In case of co-assignment, we make the following assumptions. If the
patent is assigned to two universities, then the patent is counted twice in our sample, once for each
university. If the patent is assigned to a university and a company, then it is included in our sample
as a university patent. Importantly, when selecting the random control sample, we ensure that the
citing patent does not below to the same university or companies that are listed as co-assignees
on the patent. Multiple assignments have important implications for the way we measure distance
between the citing inventor and cited university. In the case of multiple assignments, we assume a
citation from each assignee to the same university patent. We check the sensitivity of our results
to di¤erent ways of dealing with co-assignments. We compute distance as the average, median, and
maximum distance between the location of the citing inventors and cited universities. In all cases,
the results are not sensitive to the way we deal with co-assignments.

35The addresses of USPTO assignees may be ambiguous is certain cases; the address format limits either the US
state name or the non-US country at 2 letters, e.g. �Los Angeles, CA�and �Toronto, CA�. The ambiguity appears
also for DE (Delaware/Germany), IL (Illinois/Israel), AR (Arkansas/Argentina) and IN (Indianapolis/India). We
ensure we keep only US assignees by identifying the cities, and company pre�x (e.g. GMBH �rms are German and
not from Delaware).
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A.1.2. Multiple campuses and central assignments

Patents may be assigned to a university system, rather than to a speci�c campus (e.g. University
of California). In order to compute the correct distance between the inventor and the university, we
have to match the patent to the relevant campus. The matching procedure consists of the following
steps: 1. We generate a list of the di¤erent campuses of the samples universities (e.g., University of
Califronia-Berkeley, University of California-San Francisco etc.) where that information is available
from the university websites 2. In cases where the relevant city is stated in the assignee address
�eld rather than the city of the system�s main campus, the patent is reassigned to the campus in
that city. 3. The remaining �system�patents are matched by the addresses of their inventors: the
distance between each of the inventors which live in the local state to each of the university�s campus
is computed, and the closest university is a¢ liated to each inventor. In total, 12,116 patents were
adjusted using this procedure (details available on request).

A.2. Matching scienti�c publications to universities

Patent documents usually include citations to non-patent literature, such as scienti�c papers. In
total, 365,205 patents cite non-patent literature (the average number of non-patent references is
4.7). We develop specialized extraction software that scans patent documents and systematically
extracts the citations to non-patent literature section. We then match the articles to our university
sample. The matching procedure is quite complex because the name of the university where the
publication�s authors are employed is almost never listed. To assign universities to publications,
we use the Web of Science database by Thomson, which is the largest source of information on
scienti�c publications in �hard-science�journals (covers more than 20 million records). These data
include the publication title, authors, and university name (a¢ liation). We develop additional
specialized software that extracts this information from the Web of Science articles where at least
one of university in our sample appears in the a¢ liation �eld.

Having constructed this list of publications, we match the non-patent citations from the patents
documents to the list of university publications. Identifying the title, author, journal name, and
publication year out of the citation line is extremely di¢ cult, as there are many di¤erent formats.
We follow a similar procedure as we did for patent matching. However, here we apply more manual
checks and rely less on generalized, automated rules. The following examples illustrate the varying
formats of these citations:

1. Greenwalt et al., �Evaluation of fructose diphosphate in RBC preservation�, Transfusion 42:
384-5 (2002).

2. Quality of Service Protocols Use a Variety of Complementary Mechanisms to Enable Deter-
ministic End-to-End Data Delivery, QoS Protocols & Architectures, QoS Forum White Paper,
Stardust.com, Inc., pp. 1-25, Jul. 8, 1999.

3. Swan, �Properties of Direct AVO Hydrocarbon Indicators�, O¤set-Dependent Re�ectivity�
Theory and Practice of AVO Analysis (Castagna, J.P. & Backus, M.M., eds., Soc. Expl.
Geophys., 1993), pp. 78-92.

4. T.J. Kostas, M.S. Borella, I. Sidhu, G.M. Schuster, J. Mahler, J. Grabiec, �Real-time voice
overpacket-switched networks,�IEEE Network, vol. 12, No. 1, pp.1987, Jan./Feb. 1998.
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5. A fast blind source separation for digital wireless applications Toriak, M.; Hansen, L.K.; Xu,
G.; Acoustics, Speech, and Signal Processing, 1998.

Our matching algorithm tries to capture all the di¤erent variants in which citations may appear,
by e¤ectively running the matching procedure for a wide variety of possible formats. For example, we
�rst assume citations appear, as in the �rst example above. We run the whole matching procedure
according to this format, where the authors� names appear �rst, then the name of the article,
followed by the journal where it was published (and year of publication in brackets). We then keep
all unmatched citations, and repeat the matching by assuming all formats are as in the second
example. For the unmatched citations, we proceed to the format in the third example, and so forth.
The intensive manual checking is used to identify all possible formats in which citations can appear.
We manually go over close to 75 percent of all citations to ensure we cover all possible citation
structures.

The way authors� names are listed within di¤erent formats varies widely. The �rst example
shows that names can be listed by indicating the last name of the �rst author followed by �et al.�
The fourth example, however, shows a case where all authors are listed by indicating their last names
and their �rst initial. While the Web of Science database has less variation in the citation formats
(which makes matching easier), citations in the patent document do not follow speci�c rules. Thus,
when matching by authors�names we allow for a wide range of formats according to what we �nd
in our vast manual inspection. For quality assurance, we manually checked the matched sample by
comparing the full reference in the Web of Knowledge to the citation in the patent document. For
a small percentage of the matched sample, we also checked that the publication record appears in
the curriculum vitas of the authors, which were downloaded directly from their personal websites.

In total, we match 26,533 publications to our university sample.36 To compute the distance
between the citing inventor and cited university, we follow the same procedure as for patent citations.
However, there is an important di¤erence between matching citations to university patents and
scienti�c publications. While the assignment of university patents tends to be complex, especially
for public university that in some cases centrally assign patents, scienti�c publications do not have
the same problem, as authors�a¢ liation is indicated at the university and campus level.

A.3. Measuring geographic distance for citations

We develop specialized software that extracts driving distance information between city pairs di-
rectly from Google Maps (http://maps.google.com). We generate a list of all American cities and
states (excluding Hawaii) that appear on all USPTO patent documents before selecting the sample
of control patents. This list includes 33,127 citing inventor�s cities. We add to this list the location
of our sample of cited universities �205 cities. Our distance software computes the distance for all
city pairs.

A.4. De�nition of Patent Technology Fields (IPC codes)

Biotechnology: A01H, C02F3/34, C07G11, C07G13, C07G15, C07 K4, C07K14, C07K16, C07K17,
C07K19/00, C12M, C12N, C12P, C12Q, C12S, G01N27/327, G01N33/53, G01N33/54, G01N33/55,

36Matches are dropped if one of inventors�names and one of the authors�names share the same family name, which
might indicate that the inventor of the patents cites his own publication. This procedure is deliberately conservative
in avoiding possible self-cites (which could give a false appearance of localized spillovers).
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G01N33/57, G01N33/68, G01N33/74, G01N33/76, G01N33/78, G01N33/88, G01N 33/92
Chemicals: C0, C1, B01, D01F, A62D (excluding Biotechnology)
Pharmaceuticals: A61K, A61P
Medical Equipment: A61B, A61C, A61D, A61F, A61G, A61H, A61J, A61L, A61M, A61N,

A01K, A01N
Engineering: A01B, A01C, B021 D21, B06B, B09, B21, B22, B23, B25, B29, B60, B62, B65,

B81, B82, D01D, D02, D03, D04,D05, D06M, D21, E21, F04, F25, G05G, G07
Electronics: H01L, H03, G11C, G06C, G06D, G06E, G06F11, G06F15, G06F17, G06G H01(excluding

H01L), H02, H04, (excluding H04N, H04L, H04M), H05, B03C
Information Technology: G05B, G05D, G06F (excluding G06F17,G06F15,G06F11), G06J, G06K,

G06N, G06T, G11B
Telecommunications: H04L, H04M, H04N

A.5. Other data sources

References

[1] TechPole index: http://milkeninstitute.org/pdf/hightech_metros.pdf

[2] Stock of scientists and engineers (S&E): http://www.nsf.gov/statistics/pubseri.cfm?seri_id=18

[3] Inward/outward migration of S&E : Constructed from data available at
http://www.bls.census.gov/cps/ads/adsmain.htm

[4] Measures of university quality : Constructed from data appendices Research-
Doctorate Programs in the United States: Continuity and Change, available at
http://www.nap.edu/html/researchdoc/intexp.html

[5] State size (land area): http://www.quickfacts.census.gov/qfd/states/04000.html

[6] State population (in year 2000): http://www.census.gov/compendia/statab/2007/population.html

[7] Gross state product (in year 2000): http:www.census.gov/compendia/statab/2007/ in-
come_expenditures_wealth/gross_domestic_product_and_gross_state_product.html
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Notes: Figures 1a and 1b present the effect of distance and state-border on citations probability. For distance, 
each bracket compares the difference between the share of citations by inventors located in that bracket and 
citation by all other inventors located further away from the cited university. For state-border, each bracket 
compares the difference between the share of citations by in-state inventors and inventors located outside the 
state of the cited univesity, in the specified distance bracket. 
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Figure 1a. Distance and Patent Citation Probability 
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Figure 1b. State Borders and Patent Citation Probability 
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Figure 2. Effects of State Borders on Patent Citations



% of 
citations

# cited 
patents

# citing 
patents

% of 
citations

# cited 
articles

# citing 
patents

Dummy for within-state citation 16.3 11,732 27,942 17.3 4,207 5,266

Distance < 25 8.9 8,235 16,677 9.0 2,519 3,113

25 ≤ Distance < 50 2.8 2,600 5,185 2.8 717 957

50 ≤ Distance < 100 1.8 1,712 3,326 2.1 527 694

100 ≤ Distance < 150 1.4 1,547 2,689 1.6 446 527

150 ≤ Distance < 250 3.7 3,447 6,801 3.8 1,029 1,202

 250 ≤ Distance < 500 10.7 8,011 18,583 10.8 2,730 3,252

500 ≤ Distance <1000 17.5 11,149 28,996 15.8 4,032 4,504

Distance ≥ 1000 53.2 19,732 73,948 54.1 11,518 12,333

Panel B. Scientific PublicationsPanel A. Patents

Table 1. Descriptive Statistics on Geography of Citations to University Patents and 
Publications 

Notes:  Distance refers to the driving mileage between the locations of the citing inventor and the cited university. 
The values include only actual citations (not control group patents).The within-state dummy is one if the citing 
inventor resides in the same state as the cited university. 



(1) (4)

Universities: # Obs. # Obs.

All 382,086 69,428

Private 176,174 31,254

Public 205,912 38,174

Cites received: lowest 
quartile

All 98,319 17,192

Private 39,014 9,390

Public 59,305 7,802

Cites received: upper 
quartile

All 95,357 17,192

Private 50,459 9,390

Public 44,898 7,802

Table 2. Distance and State Borders, by University Type and Patent/Publication 
Quality

% Difference 
distance

% Difference 
Within-State

-4.3**

(2) (3) (5)

-6.9** 53.1**

49.0**

Notes: Panel A reports mean comparison tests between cited and control patents for distance from, and fraction in 
the same state as, the cited university. Panel B reports the corresponding figures for scientific publications.  * and ** 
denote statistical significance at the 5 and 1 percent levels, respectively.

% Difference 
Within-State

Panel A: Patents Panel B: Scientific Publications

% Difference 
distance

-10.8**

-14.7**

43.1**

-1.0*

(6)

44.4**

39.5**

-9.2**

-13.1**

56.9**

46.4**

-3.4**

55.1**

67.6**

45.0**

1.0

62.5**

44.2**

40.8**

47.1**

-8.2**

-6.2**

-10.0**

35.0**

44.6**

-6.6**

-5.4**

-8.0**

-8.0**

-6.6**

-5.4**

39.5**

35.0**



(1) (2) (3) (4) (5)

University cited patents: All All All All

Exc. Top 
Patenting 

Universities

Intra-State Citation 0.196** 0.084** 0.089** 0.095**
(0.004) (0.007) (0.007) (0.009)

Match on 6-digit IPC 0.296** 0.300** 0.295** 0.319** 0.321**
(0.003) (0.003) (0.003) (0.003) (0.004)

25 ≤ Distance < 50 -0.165** -0.155** -0.155** -0.182**
(0.008) (0.008) (0.008) (0.011)

50 ≤ Distance <100 -0.252** -0.217** -0.218** -0.246**
(0.010) (0.010) (0.011) (0.012)

100 ≤ Distance <150 -0.302** -0.249** -0.250** -0.271**
(0.010) (0.011) (0.011) (0.013)

150 ≤ Distance <250 -0.306** -0.239** -0.239** -0.263**
(0.007) (0.009) (0.009) (0.011)

250 ≤ Distance <500 -0.302** -0.238** -0.239** -0.258**
(0.005) (0.008) (0.008) (0.010)

500 ≤ Distance <1000 -0.321** -0.241** -0.241** -0.264**
(0.005) (0.008) (0.008) (0.010)

1000 ≤ Distance <1500 -0.318** -0.236** -0.235** -0.256**
(0.005) (0.008) (0.009) (0.011)

1500 ≤ Distance < 2500 -0.312** -0.229** -0.227** -0.244**
(0.005) (0.009) (0.009) (0.011)

Distance ≥ 2500 -0.280** -0.197** -0.194** -0.214**
(0.005) (0.009) (0.009) (0.011)

Technology × State Fixed 
Effects No No No Yes Yes

R2 0.079 0.073 0.080 0.085 0.086

Observations 382,086 382,086 382,086 382,086 282,466

Dependent variable: Citation Dummy

Table 3. Baseline Specifications for Citations to Patents

Notes: This table reports parameter estimates for a linear probability model for citation to 
university patents. Intra-State Citation is a dummy variable equal to one when the citing (or 
control patent) inventor resides in the same state as the cited university. Match on 6-digit IPC is a 
dummy variable equal to one when the citing (or control) and cited patents share the same six-
digit IPC code. All columns include complete sets of university and high-tech cluster pair 
dummies. Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical 
significance at the 5 and 1 percent levels, respectively. 



(1) (2) (3) (4) (5) (6)

University cited patents: Private Public All

Cites 
received  
≤25th

Cites 
received  

>75th All

Intra-State Citation 0.065** 0.102** 0.125** 0.113** 0.158** 0.171**
(0.010) (0.011) (0.009) (0.012) (0.023) (0.016)

Intra-State Citation × Private
-0.080**        

(0.008)
-0.096**        

(0.012)
-0.056**        

(0.023)
-0.069**        

(0.009)

Intra-State Citation × QualityQ2
-0.027            
(0.018)

Intra-State Citation × QualityQ3
-0.031           
(0.016)

Intra-State Citation × QualityQ4
-0.061**         

(0.016)

Match on 6-digit IPC 0.305** 0.335** 0.318** 0.336** 0.312** 0.318**
(0.004) (0.005) (0.003) (0.004) (0.009) (0.003)

25 ≤ Distance < 50 -0.139** -0.191** -0.176** -0.207** -0.114** -0.171**
(0.011) (0.013) (0.013) (0.018) (0.031) (0.013)

50 ≤ Distance < 100 -0.233** -0.230** -0.211** -0.261** -0.160** -0.209**
(0.015) (0.015) (0.014) (0.020) (0.040) (0.014)

100 ≤ Distance < 150 -0.236** -0.288** -0.264** -0.269** -0.316** -0.261**
(0.015) (0.016) (0.015) (0.022) (0.040) (0.015)

150 ≤ Distance < 250 -0.237** -0.257** -0.228** -0.271** -0.175** -0.226**
(0.012) (0.014) (0.012) (0.018) (0.040) (0.012)

250 ≤ Distance < 500 -0.220** -0.281** -0.252** -0.284** -0.207** -0.247**
(0.011) (0.012) (0.009) (0.013) (0.026) (0.009)

500 ≤ Distance < 1000 -0.241** -0.268** -0.234** -0.297** -0.163** -0.231**
(0.012) (0.012) (0.010) (0.014) (0.026) (0.010)

1000 ≤ Distance < 1500 -0.223** -0.267** -0.233** -0.296** -0.125** -0.230**
(0.012) (0.013) (0.010) (0.014) (0.027) (0.010)

1500 ≤ Distance < 2500 -0.219** -0.258** -0.223** -0.289** -0.131** -0.221**
(0.012) (0.013) (0.010) (0.014) (0.027) (0.010)

Distance ≥ 2500 -0.174** -0.246** -0.205** -0.269** -0.107** -0.204**
(0.012) (0.014) (0.009) (0.013) (0.024) (0.009)

Distance Dummies × Private No No Yes Yes Yes Yes

R2 0.079 0.092 0.085 0.105 0.076 0.085

Observations 176,174 205,912 382,086 98,319 95,357 382,086

Dependent variable: Citation Dummy

Table 4.  Public and Private Ownership and the State Border Effect

Notes: This table reports parameter estimates for a linear probability model of citations to university patents, focusing 
on differences between private and public institutions, university quality, and patent quality (as measured by total 
number of citations received). University quality is constructed on the basis of quality scores of academic quality for 
individual departments in the hard sciences (aggregated using faculty size weights) produced by the National 
Research Council of the U.S. Academy of Sciences. See Lach and Schankerman (2008) for details. Univeristies are 
grouped into quality quartiles in the table, with the lowest quartile as the reference group. All columns include 
complete sets of university, high-tech cluster pair, and state-technology interaction dummies.  Standard errors (in 
brackets) are clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent levels, 
respectively. 



(1) (2) (3) (4) (5) (6)

All

Non-
missing 
LocDev No controls

Controls: 
bordering states

Controls: 
similar border 

effect

Controls: All 
non-Michigan 

states

Intra-State Citation 1.123** 0.999**
(0.168) (0.254)

Intra-State Citation × Private
-0.027**               

(0.010)
-0.026*             
(0.012)

Intra-State Citation × Strong Local 
Development Objectives

0.032**               
(0.013)

Intra-State Citation × Techpole  
(×10-1)

-0.031**               
(0.008)

-0.043**               
(0.009)

Intra-State Citation × Index of Non-
Compete Laws

-0.018**               
(0.003)

-0.024**               
(0.004)

Intra-State Citation × In-state 
educated S&E (×10-1)

0.014**               
(0.005)

0.032**               
(0.007)

Intra-State Citation × S&E Mobility 
(×10-1)

-0.018**               
(0.004)

-0.023**               
(0.005)

S&E Density
0.009               
(0.005)

0.023**               
(0.007)

ln(GSP Per Capita)
-0.252**               

(0.058)
-0.176*               
(0.085)

Dummy for Michigan × :

Dummy for Pre-1986 0.159 0.159 0.141 0.141
(0.085) (0.085) (0.088) (0.083)

Dummy for 1986-1989 0.222** 0.222** 0.156* 0.209**
(0.072) (0.072) (0.073) (0.072)

Dummy for 1990-1995 0.078* 0.078* 0.019 0.064**
(0.034) (0.034) (0.035) (0.034)

Dummy for Post-1995 0.082** 0.081** -0.008 0.067**
(0.020) (0.020) (0.019) (0.019)

Dummy for Control States × :

Dummy for Pre-1985 0.070 0.017 0.045*
(0.059) (0.024) (0.020)

Dummy for 1986-1989 0.078 0.065** 0.069**
(0.078) (0.016) (0.014)

Dummy for 1990-1995 0.133** 0.059** 0.075**
(0.037) (0.012) (0.009)

Dummy for Post-1995 0.164** 0.089** 0.096**
(0.021) (0.009) (0.007)

R2 0.085 0.084 0.085 0.085 0.085 0.084

Observations 381,994 259,810 382,086 382,086 382,086 382,086

Dependent variable: Citation Dummy

Table 5. Determinants of the State Border Effect

Notes: This table reports parameter estimates for a linear probability model focusing on the determinants of the state border 
effect for citations to university patents. Local Objectives measures the weight the university technology licensing office 
attaches to local/regional development in its licensing policies. TechPole is a measure of high-tech density constructed by the 
Milken Institute (Devol and Wong, 1999). All columns include a set of dummies for  distance, a dummy for matching on the 
same IPC, and complete sets of university, high-tech cluster pairs, and state-technology interaction dummies. The control 
states in column 4 are IN and IL. The control states in column 5 are NY, PA, MA, CA, NJ, MI, WA, MD, MS, and CT. 
Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent 
levels, respectively. 

State effects Michigan "experiment"



(1) (2) (3) (4) (5) (6)

Private 
Ownership

Strong Local 
Development 

Objectives

State Non-
Compete 

Laws

In-state 
Educated 

S&E S&E Mobility S&E Density

Standard deviation increase -29.2 36.0 -47.7 42.4 -36.0 22.8

Minimum to maximum value -29.2 36.0 -188.8 176.5 -170.6 93.6

% change in state border effect 

Notes: This table shows the impact of different university and state policies/characteristics on the state border effect for 
citations to university patents. Estimates are based on column 2 in Table 5. Percentage changes are computed with respect 
to the pooled state-border effect from column 4 in Table 3.

Table 6. Impact of University and State Policies/Characteristics on Within-State Spillovers



(1) (2) (3) (4) (5) (6) (7) (8)

Technology area: Biotechnology Chemicals Pharma
Medical 

Equipment Engineering Electronics
Information 
Technology

Telecommuni-
cations

Intra-State Citation 0.161** 0.153** 0.116** 0.099** 0.056** 0.015 0.034 0.032
(0.024) (0.023) (0.022) (0.021) (0.016) (0.020) (0.037) (0.045)

Matched on six-digit IPC 0.346** 0.273** 0.341** 0.310** 0.388** 0.284** 0.228** 0.262**
(0.011) (0.009) (0.009) (0.009) (0.007) (0.008) (0.013) (0.018)

25 ≤ Distance < 50 -0.075** -0.215** -0.161** -0.136** -0.143** -0.171** -0.130** -0.100*
(0.028) (0.024) (0.024) (0.025) (0.019) (0.024) (0.050) (0.049)

50 ≤ Distance < 100 -0.104** -0.248** -0.252** -0.200** -0.227** -0.255** -0.159** -0.120
(0.046) (0.030) (0.031) (0.026) (0.022) (0.031) (0.049) (0.089)

100 ≤ Distance < 150 -0.146** -0.276** -0.280** -0.221** -0.251** -0.330** -0.138* -0.159*
(0.035) (0.031) (0.032) (0.030) (0.025) (0.032) (0.065) (0.072)

150 ≤ Distance < 250 -0.172** -0.269** -0.258** -0.210** -0.272** -0.265** -0.121* 0.008
(0.030) (0.026) (0.028) (0.026) (0.020) (0.028) (0.053) (0.059)

250 ≤ Distance < 500 -0.138** -0.262** -0.253** -0.209** -0.245** -0.290** -0.152** -0.114**
(0.027) (0.023) (0.024) (0.024) (0.017) (0.021) (0.040) (0.047)

500 ≤ Distance < 1000 -0.137** -0.291** -0.265** -0.191** -0.258** -0.300** -0.164** -0.105
(0.029) (0.025) (0.025) (0.024) (0.019) (0.024) (0.045) (0.059)

1000 ≤ Distance < 1500 -0.122** -0.265** -0.208** -0.181** -0.255** -0.322** -0.187** -0.078
(0.032) (0.026) (0.027) (0.025) (0.020) (0.025) (0.045) (0.063)

1500 ≤ Distance < 2500 -0.132** -0.242** -0.206** -0.161** -0.250** -0.318** -0.159** -0.120*
(0.030) (0.026) (0.030) (0.025) (0.020) (0.025) (0.046) (0.062)

Distance ≥ 2500 -0.112** -0.242** -0.171** -0.144** -0.228** -0.274** -0.120** -0.061
(0.035) (0.026) (0.029) (0.026) (0.020) (0.025) (0.044) (0.062)

R2 0.104 0.096 0.101 0.084 0.106 0.072 0.040 0.049

Observations 25,804 45,704 35,245 70,005 62,701 43,019 16,118 8,044

Table 7. The Effects of Distance and State Border on Patent Citations, by Technology Field

Dependent variable: Citation Dummy

Notes:  This table reports parameter estimates for a linear probability model of citation to university patents, focusing on differences across technology fields in the effects of 
distance and state borders. For definitions of the technology fields, see the Data Appendix. All columns include complete sets of university, high-tech cluster pairs, and state-
technology interaction dummies. Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent levels, respectively.



(1) (2) (3) (4) (5) (6)

University cited patents: All Private Public

Cites 
received  
≤25th

Cites 
received  

>75th All

Intra-State Citation 0.036** 0.021 0.043* 0.149** 0.089* 0.266**
(0.014) (0.019) (0.020) (0.037) (0.038) (0.040)

Intra-State Citation × Private
-0.152**        

(0.036)
-0.137**           

(0.035)
-0.091**        

(0.016)

Intra-State Citation × QualityQ2
-0.050**        

(0.043)

Intra-State Citation × QualityQ3
-0.141**        

(0.041)

Intra-State Citation × QualityQ4
-0.211**        

(0.039)

25 ≤ Distance < 50 -0.205** -0.164** -0.283** -0.299** -0.230** -0.228**
(0.017) (0.024) (0.023) (0.046) (0.056) (0.023)

50 ≤ Distance < 100 -0.242** -0.200** -0.325** -0.327** -0.235* -0.274**
(0.022) (0.030) (0.032) (0.055) (0.112) (0.029)

100 ≤ Distance < 150 -0.291** -0.278** -0.351** -0.315** -0.277** -0.282**
(0.022) (0.031) (0.030) (0.066) (0.067) (0.029)

150 ≤ Distance < 250 -0.278** -0.235** -0.368** -0.310** -0.298** -0.283**
(0.018) (0.024) (0.027) (0.053) (0.061) (0.024)

250 ≤ Distance < 500 -0.302** -0.251** -0.398** -0.322** -0.392** -0.313**
(0.015) (0.021) (0.020) (0.040) (0.039) (0.017)

500 ≤ Distance < 1000 -0.315** -0.276** -0.396** -0.290** -0.316** -0.304**
(0.017) (0.024) (0.023) (0.044) (0.039) (0.018)

1000 ≤ Distance < 1500 -0.310** -0.289** -0.382** -0.287** -0.309** -0.287**
(0.017) (0.025) (0.024) (0.044) (0.041) (0.019)

1500 ≤ Distance < 2500 -0.314** -0.270** -0.397** -0.289** -0.324** -0.305**
(0.017) (0.025) (0.024) (0.043) (0.040) (0.018)

Distance ≥ 2500 -0.271** -0.217** -0.377** -0.256** -0.280** -0.278**
(0.017) (0.023) (0.025) (0.041) (0.037) (0.017)

R2 0.025 0.022 0.032 0.030 0.023 0.027

Observations 69,428 31,290 38,796 17,632 17,192 69,428

Dependent variable: Citation Dummy

Table 8. Citations to University Scientific Publications

Notes: This table reports parameter estimates for a linear probability model relating citations by patents to university 
scientific publications to the distance of citing inventors from the cited university, state borders, university quality and 
the quality of the publications (as measured by total number of citations received).  All columns include complete sets 
of university, high-tech cluster pairs, and state-technology interaction dummies.  Standard errors (in brackets) are 
clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent levels, respectively. 
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