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Abstract 
We propose a benchmark prior for the estimation of vector autoregressions: a prior about 
initial growth rates of the modelled series. We first show that the Bayesian vs frequentist 
small sample bias controversy is driven by different default initial conditions. These initial 
conditions are usually arbitrary and our prior serves to replace them in an intuitive way. To 
implement this prior we develop a technique for translating priors about observables into 
priors about parameters. We find that our prior makes a big difference for the estimated 
persistence of output responses to monetary policy shocks in the United States.  
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1 Introduction

The ordinary least squares (OLS) estimator tends to underestimate per-
sistence in autoregressive models when a small sample is available. This
may significantly affect empirical results, especially the impulse responses at
longer lags. For a frequentist the problem with OLS is manifested in its bias
and a large mean squared error, known since 1950s.1 Bayesians also tend to
be dissatisfied with the flat prior posterior, centered at the OLS estimate.2

Many techniques have been designed to estimate autoregressions in small
samples using both classical and Bayesian approaches. However, it is safe
to say that there is no widely accepted way to proceed. In fact, many ap-
plied papers still use OLS in highly overparameterized vector autoregressions
(VARs). Any deviation from OLS, whether inspired by classical or Bayesian
procedures, is liable to criticism for having made certain ad hoc choices that
may be (and often are) crucial for the results.

Our aim is to design a widely acceptable procedure for estimating autore-
gressions with small samples. We begin by reexamining the following well
known puzzle: despite the small sample bias in autoregressions, OLS is the
best estimator for a Bayesian with a flat prior and quadratic loss.3 Hence, a
classical econometrician concerned with small sample issues and a Bayesian
have very different views about the validity of OLS in autoregressions. One
interpretation is that there is no puzzle: Bayesians and frequentists belong
to different camps, differences in estimation are natural. We find this is a
disappointing conclusion, as many applied economists do not have strong
view about Bayesian vs classical approach.

In section 2 we show that there is no such puzzle: in fact, given the
same treatment of the initial condition, Bayesian and classical econometri-
cians agree about the appropriateness or not of OLS. And, in particular,
both of them would adjust the OLS estimate towards non-stationarity for
“reasonable” treatments of the initial observations.

1The earliest references are Quenouille (1949), Hurwicz (1950), Marriott and Pope
(1954) and Kendall (1954). A general characterization of the effects of the bias on the
highest root is in Stine and Shaman (1989). Abadir et al. (1999) show that the bias
becomes more severe in multivariate models, see also Doornik et al. (2003) and Abadir
et al. (2003).

2See e.g. Phillips (1991), Uhlig (1994b), Sims and Zha (1998), Sims (2000). Sims (2000)
argues that under a flat prior posterior the initial condition explains an unreasonably large
share of the variation. Sims and Zha (1998, p.959) refer to the excessive stationarity of
the flat-prior posterior as “the other side of the well-known bias toward stationarity of
least-squares estimates of dynamic autoregressions.”

3This has been known for a long time. Sims and Uhlig (1991) revived this point and
illustrated it with graphical and analytic arguments.
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Therefore, it is fundamental to relate the initial observations to parame-
ters. Again, there is a myriad of alternatives for modeling initial conditions
in the literature. We propose to relate initial observations and parameters in
a truly Bayesian way and to incorporate information that most economists
do have. Our proposal is to use an informative prior based on the a priori
distribution of the observed series in the first few periods of the sample. For
example, if GDP is one of the variables in a VAR, the analyst should ask
the following question to his/her client “what is your a priori distribution of
GDP growth in the beginning of the sample?”. The answer to this question
should be incorporated in the posterior distribution.

This kind of prior has many advantages: i) it allows to clearly relate initial
observations and parameters, as required by our previous discussion, ii) it
may be a near consensus prior: a room full of economists is sure to be full of
disagreements, but the range of opinions about the prior distribution of GDP
growth is bound to be relatively narrow, and whatever differences remain will
have a clear interpretation, iii) it is much easier to express an opinion about
a prior distribution of observed variables than of VAR parameters, iv) it
entirely sidesteps the issue of what is a “truly” uninformative prior in time
series,4 we prefer to use priors that are indeed informative but that are widely
acceptable.

The usefulness of thinking about priors on observables is brought out by
reexamining the validity of the flat prior from this, purely Bayesian, per-
spective. A flat prior about the parameters in a VAR with a constant term
corresponds to an a priori belief that the growth rate of GDP in the first
few periods is very likely to exceed, say, 100%! Researchers routinely use
flat priors in the hope that such priors are neutral and yield posteriors close
to posteriors from reasonable subjective priors. But in this paper we show
many examples where posteriors with reasonable subjective priors differ sig-
nificantly from the flat prior posteriors. Therefore, estimating a VAR by
OLS is unjustified unless one genuinely has crazy beliefs about initial growth
rates.

Another great advantage of our prior approach is that it should be highly
appealing to a frequentist. In section 5 we study the frequentist performance
of an estimator constructed as the posterior mean obtained with a purely
data-driven prior about initial growth rate. We show that from a purely
frequentist point of view this estimator is an attractive alternative to other
classical bias corrected estimators. Therefore, applied economists who do
not have strong views about the validity of Bayesian or classical approaches
should be at ease with our approach.

4This issue has been raised by Phillips (1991).
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A substantial technical difficulty arises in using a priori information about
observable time series, because the standard Bayesian analysis requires a
prior about parameters, not about observables. A classical discussion of pri-
ors specified in terms of observables can be found in Berger (1985, Ch.3.5).
The prior about observables has to be “translated” into a prior about coeffi-
cients. This operation involves solving a Fredholm integral equation. There
has been a recent interest in the microeconometrics literature in solving these
inverse problems.5 The techniques used in this literature, as well as those
discussed by Berger, can not be applied directly to our case due to the very
high dimension of the parameter space in VARs and because we are only
interested in approximate solutions to the relevant Fredholm equation. In
section 3 we design an algorithm based on a fixed point formulation of the
problem. We show that this algorithm works very well in various empirical
applications.

Section 4 discusses two empirical applications. First, we show how our
prior affects the estimates of persistence of stock prices from the well known
Extended Nelson-Plosser dataset. This application shows that the alterna-
tives available in the literature give many different results with little guidance
about which to choose, and it shows how our estimate compares with others.
The second example is the famous study by Christiano et al. (1999) on the
macroeconomic effects of monetary policy shocks. This example shows that
even in a large-scale VAR the algorithm we propose works and it influences
the results in a significant way: the effect of monetary shocks on output is
much higher using our approach than using that of Christiano et al. (1999).

A very large literature is concerned with the issues tackled in our paper.
The frequentist literature has proposed many methods for correcting the
OLS estimator in small samples.6 But each correction focuses only on some
aspects of the problem (for example, it focuses on the bias of a specific trans-
formation of the parameters). Construction of confidence intervals for these
estimators is tricky.7 Decision-theoretical justifications of these approaches
are questioned.8

Applied Bayesians dissatisfied with the flat prior have used priors which
are supposed to push the posterior towards unit roots, such as the famous

5See Carrasco et al. (2007) for a summary of such applications.
6Some examples of such estimators are Quenouille (1949), Orcutt and Winokur (1969),

Andrews (1993), MacKinnon and Smith (1998), Kilian (1998) and Roy and Fuller (2001).
A large literature using local to unity asymptotics is also justified in terms of it small
sample properties.

7See e.g. Mikusheva (2007) and references therein.
8Berger and Wolpert (1988) discuss how a concern about frequentist properties of

statistical procedures can lead to unreasonable inferences.
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Minnesota prior or dummy observations priors.9 However, these priors are
rarely seen as actually representing prior knowledge and they are often con-
sidered ad hoc.10 Furthermore, the Minnesota prior can give rise to paradox-
ical behavior, sometimes pushing the posterior away from the unit root, as it
does in our example in section 4.1. One of the contributions of our approach
is that it provides a rationale for dummy observation priors, as we show that
they are equivalent to priors about growth rates with particular variances.

The importance of the initial condition in estimating autoregressions with
small samples has also been discussed before.11 What is new in our paper is
the point that the treatment of the initial condition is what drives much of
the disagreement about OLS between frequentists and flat-prior Bayesians.
The literature on the so-called “exact likelihood” is one attempt to relate
parameters and the initial observation. But this approach has well recognized
problems that we discuss in section 2.4. It rests on many ad hoc assumptions
and it is rarely used in applied work. Instead we focus on informative priors
about the initial behavior of the series which, we think, are much more likely
to generate consensus and which achieve the same goal of relating initial
condition and parameters.

Priors stated in terms of observables are rare in the time series literature.
Kadane et al. (1996) use priors about one period ahead forecasts. Villani
(2009) uses a prior about the unconditional long run mean of growth rates
and his prior can be specified directly for parameters in a reparameterized
VAR. His VAR is in differenced variables and not in levels, which implies a
dogmatic prior about the low frequency behavior.

The paper is organized as follows. In section 2 we discuss the role of the
initial condition in classical and Bayesian estimation of autoregressions. This
is useful to motivate our prior about initial growth rates. In section 3 we
discuss translating priors about observables into a prior distribution of model
parameters. In section 4 we present two empirical applications. Finally, in

9See Doan et al. (1984), Uhlig (1994b), Sims (1996), Sims and Zha (1998) and Sims
(2006).

10Sims (2000, p.452) recognizes that these priors are unsatisfactory, when he concludes:
“There are open research questions here, and few well-tested procedures known to work
well in a wide variety of applications. More research is needed - but on how to formulate
reasonable reference priors for these models, not on how to construct asymptotic theory for
nested sequences of hypothesis tests that seem to allow us to avoid modeling uncertainty
about low-frequency components.”

11The role of the initial condition is discussed among others in in Blundell and Bond
(1998); Chamberlain (2000); Arellano (2003) from the classical perspective and in Schot-
man and Van Dijk (1991b); Uhlig (1994a); Sims (2000) from the Bayesian perspective.
DeJong et al. (1992) and Müller and Elliott (2003) show how the initial condition influ-
ences the power of frequentist unit root tests.
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section 5 we present a frequentist evaluation of our prior in the case of the
AR(1) process. We conclude in section 6.

2 OLS: Classical vs Bayesian or Initial Con-

dition?

We first argue that the differing views between classical and Bayesian-flat-
prior approach about whether to correct OLS are driven entirely by a different
treatment of the initial condition. Throughout this section we use as example
an AR(1) model with an intercept:

yt = α + ρyt−1 + ut, t = 1 . . . T (1)

where ut is i.i.d. N(0, σ2
u). OLS estimates are denoted (αOLS, ρOLS).

2.1 A Puzzle

The following facts about the adequacy of ρOLS are well known:

• Frequentist view : for given values of (α, ρ) and with ρ near 1, the small
sample distribution of ρOLS is skewed to the left and its mean is lower
than ρ. An example of this density is displayed with the solid line in
Figure 1 for ρ = .95 and T = 100.

• Bayesian view : under a flat prior for (α, ρ) the posterior distribution
of ρ is symmetric and centered, precisely, at ρOLS. This posterior is
represented by the dashed line in Figure 2.12

These facts imply that a classical econometrician proceeds very differ-
ently from a Bayesian econometrician who has a flat prior. Classical econo-
metricians concerned about small sample performance have designed various
corrections for OLS. On the other hand, many empirical papers using OLS
to estimate autoregressions with small samples justify this estimator by in-
voking the flat prior. This contrast is intriguing and it is disturbing for
practitioners who do not have a strong preference towards either frequentist
or Bayesian approach with weak priors.13

12This dashed line is in fact an average of all posteriors that give ρOLS = 0.95. It
corresponds to an approximately flat prior, see further discussion.

13While it is controversial what priors are really weak in the appropriate sense (see
Phillips, 1991; Sims, 1991), the flat prior remains the baseline and it is justified as a tool
for reporting the shape of the likelihood.
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Figure 1 – Frequentist Density. Density of ρOLS conditional on ρ = 0.95.
Initial condition (2) with σ2

0 = σ2
u

∑S−1
i=0 ρ

2i (continuous line) and σ2
0 =

100σ2
u

∑S−1
i=0 ρ

2i (dashed line). We take S = 100. Sample size is T = 100.
Construction of these densities is explained in Appendix A.

2.2 Initial Condition, Just a Detail?

To make the discussion concrete, assume the following relation between the
initial observation and parameters:

y0 = α

(
S−1∑
i=0

ρi

)
+ u0 with u0 ∼ N(0, σ2

0) (2)

with S and σ2
0 given. This condition can be justified by assuming that the

process started at time −S with a known initial value y−S = 0. The first
term of (2) is the deterministic component of the process at time 0 and u0

is the stochastic component. Throughout this section we assume finite S. A
large variety of alternatives for modelling initial conditions are available in
the literature, we review them in section 2.4. Some papers assume instead
S =∞, reparameterize the constant term α as µ(1− ρ) or/and use separate
assumptions when ρ ≥ 1. Our main results are not affected by these details.

To a frequentist equation (2) gives the distribution of the initial obser-
vation given parameter values for α, ρ. Most frequentist studies consider a
variance σ2

0 that is related to the parameter values considered. One com-
mon assumption is that the shocks in periods {−S+ 1, . . . , 0} have the same
distribution as the shocks in periods {1, . . . , T}, i.e. N(0, σ2

u) so that the
variance of the stochastic component σ2

0 = σ2
u

∑S−1
i=0 ρ

2i. We have used this
value of σ2

0 to construct the density represented by the solid line in Figure 1.
To a Bayesian (2) specifies a restriction on the prior about α, ρ given the

observed y0. For example, assume a flat prior for ρ, p(ρ) ∝ 1. Then (2) can
be used to derive the prior density p(α|ρ, y0, σ

2
0). It is clear that the flat prior
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Figure 2 – Bayesian Density. Densities of ρ conditional on ρOLS = 0.95.
Initial condition (2) with σ2

0 = σ2
u

∑S−1
i=0 ρ

2i (continuous line) and σ2
0 =

100σ2
u

∑S−1
i=0 ρ

2i (dashed line). We take S = 100. Sample size is T = 100.
Construction of these densities is explained in Appendix A.

corresponds to taking σ2
0 = ∞. Correspondingly, the dashed line in Figure

2 shows the posterior density of ρ conditional on an estimate ρOLS for a
very large σ2

0 (specifically, 100 times the σ2
0 used in the previous paragraph).

As expected for a nearly flat prior, the posterior is nearly symmetric and
centered at ρOLS.14

This highlights that a flat-prior Bayesian analysis differs from the stan-
dard frequentist small sample approach not only with the Bayesian treatment
of data and parameters, but also in the treatment of the initial condition.
Flat-prior Bayesian takes extremely large σ2

0 while frequentists tend to use
“reasonable” values for σ2

0. Which of these differences is responsible for the
puzzle mentioned above?

2.3 The role of the initial condition

To see the impact of the initial condition let us now reverse the assumptions
about σ2

0 between the frequentist and the Bayesian.

2.3.1 Frequentist analysis with large σ2
0

Consider now the frequentist distribution of ρOLS when the stochastic compo-
nent of the initial condition has σ2

0 =∞, as in the flat-prior initial condition.
It is known, but rarely highlighted, that in this case the small sample bias

14We show σ2
0 large but not infinite for better graphical representation, to insure that

both densities are still clearly visible on the same graph.
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vanishes.15 This can be seen in Figure 1. The dashed line shows the fre-
quentist distribution of ρOLS when ρ = .95 but the initial condition is drawn
from (2) with the same very large value of σ2

0 that we used in the case of
the near-flat prior shown in Figure 2. It is clear that the bias becomes much
smaller and the small sample distribution of the OLS estimator becomes
concentrated near the true value.

Using such a large σ2
0 is probably unreasonable, but this discussion serves

to show that both a frequentist and a flat-prior-Bayesian agree that OLS is
a good estimator as long as they model initial conditions with a large σ2

0.
The reason why OLS is a good estimator for large σ2

0 is illustrated in Figure
3. Each row of graphs represents a realization of y1, ..., yT , with the same
sequence of shocks u1, . . . , uT in both rows, but different realized u0 in each
row: in the top row u0 = 0 while in the bottom row u0 is large and negative.
The left column of graphs plots yt against time. The process is stationary and
the transition from the remote starting value to the steady state dominates
the dynamics of the series in the lower row.

The right column shows a scatterplot of the right-hand-side variable (yt−1)
against the left-hand-side variable (yt) in the regression on equation (1) for
each sample. This is the “cloud of points” that undergraduate econometrics
books display to show how a regression line fits the data. The solid line in the
scatterplots is the regression line implied by the true parameters in (1) while
the dashed line is the fitted regression implied by the parameters estimated
by OLS for this realization. The slope of the dashed line is lower than the
actual regression line. The lower slope in the top-right graph reflects the
OLS bias which usually results in ρOLS < ρ for the present parameter values.
The slope in the bottom-right graph, however, almost coincides with the true
regression line reflecting the result mentioned in the first paragraph of this
subsection.

These graphs make it clear why the initial condition is the key: the
explanatory variable (yt−1) shows much higher dispersion in the bottom row
of graphs. Realizations like the one in the bottom row are more common
when the density of the initial observation is more spread out, ie. when σ2

0

is large. In such realizations OLS is a good estimator even for a frequentist,
because the sample variance of the explanatory variable yt−1 is large. As is
well known, a high variance of the explanatory variable means that OLS is a
good estimator. This is why the fitted regression in the bottom row is much
closer to the true regression line.

15This result can be found in Phillips (1987, section 6) and Phillips and Magdalinos
(2009). Also Arellano (2003, p.86) and Chamberlain (2000) point this result for some
special cases in the context of panel data.
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Figure 3 – Two cases of the AR(1) process and the performance of the OLS
estimator of the coefficients. The left column plots yt against time. The
right column shows scatter plots of yt against yt−1, along with true and fitted
regression lines.

2.3.2 Bayesian analysis with small σ2
0

We now incorporate a small σ2
0, standard in the frequentist literature, into a

Bayesian analysis. This is also the approach of Bayesian papers using the so
called “exact likelihood”16 and papers that specify a prior for the parameters
conditional on the initial observation.17

Figure 2 illustrates the effect of σ2
0 on the posterior beliefs about ρ. The

continuous line represents the density of ρ given an observed ρOLS when we
take σ2

0 = σ2
u

∑S−1
i=0 ρ

2i. This Bayesian density is clearly asymmetric and its
mean is higher than the OLS estimate. In this example, upon observing
ρOLS = 0.95 a Bayesian would believe that the true parameter ρ is around
0.97, adjusting the OLS estimate upwards, in the same direction as a fre-
quentist concerned about the bias. This illustrates that when a reasonable
initial condition is assumed, Bayesians tend to agree with the frequentists

16See Zellner (1971, ch.7.1), Uhlig (1994a) and Lubrano (1995).
17See Schotman and Van Dijk (1991a,b).
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that the OLS estimate is too low and they also correct it upwards.
While the argument given here is purely numerical and for a specific

example, we give an analytic result for a related case in the next subsection,
see our discussion after Result 1.

To our minds this resolves the puzzle we mentioned in section 2.1: classical
and Bayesian econometricians qualitatively agree about the virtues of OLS
near unit roots when they model the initial observation analogously. For
large σ2

0 they agree that OLS is great. But for small σ2
0 they agree that ρOLS

should be adjusted upwards.

2.4 The delta prior

The above discussion suggests that it is crucial to have a plausible joint
distribution relating the initial observation y0 and the parameters α, ρ when
we only have small samples.

One possibility would be to find a “good” model of the initial condition,
that is, to find the best possible specification of equations such as (2), and
apply the so-called “exact likelihood” approach. The literature has proposed
very many alternative ways of specifying this initial condition. These alter-
natives differ in the number of periods S for which the model was holding
in the past, in the way that past uncertainty enters, in what to do for pa-
rameter values ρ ≥ 1, etc. To cite a few: the initial condition we consider
in section 2.2 is one of the cases of Uhlig (1994a). Andrews (1993) takes
S =∞ for ρ ∈ (−1, 1) but he uses an arbitrary initial condition at ρ = 1 and
rules out ρ > 1. Bhargava (1986) and MacKinnon and Smith (1998) assume
S =∞ in the deterministic component when |ρ| < 1 and they assume α = 0
when ρ = 1; for the stochastic component they assume S = 1, i.e. they
take σ2

0 = σ2
u. Phillips and Magdalinos (2009), on the other hand, assume

σ2
0 = κσ2

u for a certain κ.
It is obviously very difficult to choose from among these options. For

example, the most widely used approach is to take S → ∞ for |ρ| < 1, but
this amounts to making the identifying assumption that the model and its
parameters have been stable for infinitely many periods before the start of
the sample. This assumption is often implausible in practice. Moreover, this
approach gives rise to a disturbing discontinuity at ρ = 1. An alternative
would be to agree on a reasonable value S for which the model has been
stable, but it would be difficult to build consensus on a reasonable value for
S. Then one needs another identifying assumption about y−S. Then one still
needs to choose one of the myriad alternative specifications of the stochastic
component.

There is no guidance to choose among these alternatives. We find this

12



approach unsatisfactory and given how few papers have used the initial con-
dition in applications of VARs we are probably not alone.

Our proposal is to use a purely Bayesian approach and specify the prior
beliefs about the behavior of the series for the first few periods. Since we
condition on the initial observation y0, this prior relates the initial observation
to parameters as is required by the discussion in Section 2.3. In the case of
non-stationary variables it is most natural to state a prior about growth
rates, so we will concentrate on this prior in the discussion, but it would
be trivial to adapt our arguments for the use of prior information about the
likely level of a variable instead.

This approach has several advantages. First, it seems much easier to build
a (near-) consensus view about reasonable values of growth rates for many
variables than about the initial condition used in the “exact likelihood”.
Another advantage is that this prior is easy to elicit: it should be easy for
most economists to express their views about the likely behavior the growth
rate of, say, GDP. Also, such conditional growth rate is well defined regardless
of the model being stationary or not, so the discontinuity at a unit root
is entirely avoided. Most economists do have strong opinions about likely
behavior of many variables, ignoring this knowledge amounts to throwing
away relevant information in VARs that are very often highly parameterized.

Let us say that we ask an economist about his/her prior beliefs regarding
the growth rate of some series in period t = 1. Letting y represent the log of
the series, the answer might be expressed as

∆y1 ∼ N(µ∆, σ
2
∆) (3)

for some values µ∆, σ
2
∆. For reasons to be discussed below, we need to assume

σ2
∆ > σ2

u.
18 This economist should think about what he/she thought about

this series back in period t = 0, when the sample started, given knowledge
of y0. We leave conditioning on y0 implicit in the above notation.

The prior information (3) should be incorporated in the posterior of α, ρ.
One difficulty in forming this posterior is that (3) is not a prior statement
about the distribution of parameters, as required in Bayes’ rule. For this
purpose we have to translate (3) into a prior distribution of parameters α, ρ.
To clarify our semantics: throughout the paper we call a statement such as
(3) a “prior about observables” and we reserve the name “delta prior” for
the implied distribution of unobservable parameters.

Prior (3) implies
(1− ρ)y0 − α = u0 (4)

18The assumption of normality in the prior is convenient in this section. However, the
techniques discussed in section 3 and applied in section 4 do not need normality.
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for u0 ∼ N(µ∆, σ
2
∆−σ2

u). Hence, this is a restriction on the joint distribution of
y0 and the parameters derived from the prior knowledge about the analyzed
series.

For simplicity, in the rest of this section we assume y0 = 0. In the AR(1)
case translating the prior (3) is very easy and it implies the following prior
about the constant term

α ∼ N(µ∆, σ
2
∆ − σ2

u). (5)

The following result characterizes the effect of this prior on the posterior
mean of ρ. A complete formula for this mean is given in equation (B.2) in
the Appendix. Let Y T ≡ [y1, ..., yT ].

Result 1. Assume a flat prior p(ρ) ∝ 1 and any prior p(σ2
u) defined for

σ2
u > 0.

If ρOLS < 1 and
(
yT−y0
T
− µ∆

)
is sufficiently small, then

E(ρ|Y T ) > ρOLS. (6)

Result 1 implies that the Bayesian with a delta prior thinks that the
persistence of the process is higher than the OLS estimate. That is, he/she
adjusts the OLS estimator in the same direction as frequentists worried about
the small sample bias. The conditions needed for this result are very weak:
ρOLS < 1 includes the range where the frequentists are most concerned with
the bias (many papers in the frequentist literature design estimators explicitly
only for the range ρOLS < 1 but close to 1, see e.g. Roy and Fuller (2001)).
The condition that the sample mean growth rate yT−y0

T
is close to the prior

mean growth rate µ∆ simply means that the prior is “reasonable”, not too
different from the observed growth rate.

Result 1 is perhaps surprising, since the delta prior only concerns α for
the case considered, when y0 = 0.

Result 1 is illustrated in Figure 4, showing the Bayesian density of ρ|ρOLS
for two different delta priors. The figure conditions on a realization ρOLS =
0.95. The dashed line shows the density of ρ|ρOLS when the prior growth
rate has mean zero (µ∆ = 0) and standard deviation 6.5%, while the dotted
line takes a growth rate of 3% (µ∆ = 0.03). As Result 1 suggests, we can
see that both densities shift the mean to the right: for µ∆ = 0 we find
E(ρ|ρOLS) = 0.97 and for µ∆ = 0.03 we find E(ρ|ρOLS) = 0.952, both higher
than ρOLS = 0.95.

This Figure is also useful to highlight the great advantage of using priors
about growth rates: a discussion about which is the relevant posterior distri-
bution in Figure 4 turns into a discussion about what is a reasonable value
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Figure 4 – Bayesian posteriors. Densities of ρ conditional on ρOLS = 0.95.
Initial condition (2) for σ2

0 = σ2
u

∑S−1
i=0 ρ

2i with S = 100 (continuous line); delta
prior with µ∆ = 0, σ∆ = 0.065 (dashed line); delta prior with µ∆ = 0.03, σ∆ =
0.065 (dotted line). In all cases σu = 0.057 and T = 100. Construction of the
these densities is explained Appendix A.

a priori for E0(∆y1). The answer, of course, depends on the exact series at
hand. For example, if y represents log real GNP most economists are likely
to disagree with µ∆ = 0, they might prefer to state that GNP is likely to
grow, for example, at 3% and therefore prefer the dotted line in Figure 4.
This matters for inference since, as we can see from the figure, the posterior
with µ∆ = 0.03 is concentrated on values closer to the OLS estimate and the
implied upward correction of ρOLS is smaller.

This also allows us to compare the delta prior with previously used
Bayesian approaches. For example, the exact likelihood approach in a Bayesian
framework (as in section 2.3.2) implies that, a priori, the researcher thinks
that E0(∆y1) = 0. We would probably think that this is not appropriate for
GNP, and we would prefer the delta prior with µ∆ = 0.03 instead. We can
also discuss the appropriateness of the widely used flat prior. This amounts
to assuming σ2

0 =∞ in (2) and it implies a prior belief that the growth rate
is very likely to be larger than, say, 100%. Since this is a prior belief that
no analyst would ever hold about GNP and since it matters for estimation
(because only in this case OLS is justified) we hope that applied economists
will never again use OLS in autoregressions including GNP.

Result 1 also gives analytic support to our claim in section 2.3.2 that the
posterior mean under exact likelihood is higher than OLS. So far we only
backed this claim with a numerical result shown in Figure 2, which made
a standard assumption on the initial condition. It is easy to check that
the delta posterior when µ∆ = 0 is equal to the exact likelihood posterior
under the less standard assumption on the initial condition that σ2

0 is given
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and independent of ρ (for example, this is the assumption in Phillips and
Magdalinos (2009)) and S = 0. Although the initial condition we used in
Figure 2 is slightly different, we can see that the continuous line of Figure 4
which repeats the continuous line of Figure 2, is actually very similar to that
with the delta prior and µ∆ = 0.

Another effect of the delta prior is that it does push the highest root
towards one. To see this in a simple case, consider the AR(1) case without a
constant and y0 6= 0. It is trivial to show that in this case the delta translates
to ρ ∼ N(1, (σ2

∆−σ2
u)/y0), therefore it pushes the root towards one. Similarly,

in the case of an AR(2) without a constant, and assuming y0 = y−1 6= 0, the
delta prior implies ρ1 + ρ2 ∼ N(1, (σ2

∆ − σ2
u)/y0).

In this section it was easy to translate the prior analytically because
the prior about growth rates (4) only involved one period t = 1. But in
models with many parameters stating a prior for only one period amounts
to throwing away a lot of information and it is desirable to use priors about
more periods. In this case analytic solutions such as (5) are not available,
which motivates the next section.

3 Translating Priors

We discuss how to translate a general prior about observables into a prior
distribution of unobservable parameters. The numerical method that we
propose can be used to incorporate other information on VARs, for example
arising from experience or formal economic models, or it can be used in other
time series models.

3.1 Defining the prior for parameters

Let us consider a general N -dimensional stochastic process {yt}. We define
Y T ≡ [y1, ..., yT ]′ as a T × N matrix gathering the random variables from
which the sample of T observations is drawn. A model (say, a VAR with a
given lag length) determines the likelihood function known to the researcher,

pY T |B(Y
T

;B) (Y
T

and B denote realizations of random variables Y T and B).
The observed initial observation is a parameter entering the functional form
of pY |B.

We assume that the researcher is willing to state a prior density about
Y ≡ [y1, ..., yT0 ]

′, the studied variables in periods 1, . . . , T0 for some T0 which
needs not be equal to T . (For consistency, we should be using Y T0 but we
omit the superscript for brevity). This density will be denoted as pY . It
represents what the researcher thinks before observing the sample about the
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likely behavior of the series in the first T0 periods. It is, therefore, a marginal
density of the observable data in the first T0 periods. The likelihood function
of Y , consistent with the same model as before, will be denoted as pY |B. The
uncertainty represented in pY is a combination of the researcher’s uncertainty
about the actual values of parameters B and the error terms of the model in
pY |B.

Let B be the space of possible parameters B and let Y be the space of
possible values for Y . It is clear that knowledge of pY |B and pY places the
following restriction on the marginal density of the parameters pB:∫

B
pY |B(Y ; ·) pB = pY (Y ) for almost all Y ∈ Y (7)

This equation says that the joint density of observables Y and parameters
B, integrated over the parameters, has to equal the marginal density of Y as
specified by the prior pY . Our task will be, given the known density pY and
the likelihood pY |B, to find the prior density pB that satisfies the functional
equation (7). Equations of this type are known in calculus as Fredholm
equations of the first kind and in statistics as inverse problems.

The above problem may not have any solution for some pairs of pY and
pY |B. For example, we already pointed out in the AR(1) case analyzed in
section 2.4 that in order for (3) to be consistent with the model (1) we needed
a prior variance σ2

∆ ≥ σ2
u. If this is violated, the researcher’s belief in pY is

incompatible with the model pY |B, the researcher is asking the model to do
something it can not do. As we will see later, in practice this needs not
be a problem because even if the exact solution does not exist, one may be
able to find a prior for parameters which approximately delivers the desired
distribution pY to a satisfactory degree.

Another possibility is that the above problem has multiple solutions. This
is likely to be the case e.g. when the dimension of B is larger than the
dimension of Y , as in section 2.4 above. In this case equation (7) delivers
only a restriction on the prior. Then the researcher needs to complete the
prior with a density of the so far unrestricted dimensions, which can be e.g.
flat if no additional prior knowledge is available. Therefore, multiplicity of
solutions of (7) needs not be a problem.

The Bayesian econometrics literature has paid little attention to the issue
of translating priors. An exception is Chapter 3.5 of Berger (1985).19 The

19A related approach is the ‘predictive approach’ to elicitation, where a prior about
observables takes the form of a statement about one step ahead predictive density condi-
tional on the known right hand side variables (Kadane, 1980; Kadane et al., 1980). This
approach has been applied in the time series context in Kadane et al. (1996). Translating
the prior in this literature was typically an easy step.
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techniques used in this literature and those used to solve Fredholm equa-
tions are usually designed to obtain very accurate solutions to relatively low-
dimensional problems. They often involve solving non-linear systems of equa-
tions with gradient methods that would be unfeasible for our purpose since
standard VARs involve very high-dimensional problems.20 Furthermore, we
are not too worried about matching pY exactly. In practice, researchers would
rarely have very strong views about the exact mean, variance and functional
form of the prior about initial growth rates of the modeled series, and they are
probably willing to accept Bayesian analysis with a slightly different prior.
Therefore it is enough to find a prior for parameters that matches “reason-
ably well” the specified prior about growth rates. What is “reasonable” is
also subjective, but much easier to specify when we talk about prior mean
for output growth than, say, the mean of the fourth lag of an autoregressive
parameter.

3.2 Fixed point formulation

We now reformulate the problem of translating the prior from observables
to parameters as the solution to a fixed point problem. This formulation
suggests a practical algorithm to find an approximate prior by successive
iterations.

Let g : B → R+ be any density on B. Define the functional FpY as

FpY (g)(B) ≡
∫
Y

pY |B(Y ;B) g(B)∫
B pY |B(Y ; ·) g

pY (Y ) dY for all B ∈ B (8)

Clearly FpY (g) : B → R+ is itself a density, hence FpY maps the space of
densities for B into itself. FpY (g) has the following interpretation: the term

pgB|Y (B|Y ) ≡
pY |B(Y ;B) g(B)∫
B pY |B(Y ; ·) g

is the posterior obtained if the prior on parameters is g and if the data
realization Y would be observed. Therefore, FpY (g) is a mixture of posteriors
for different realizations Y , each weighted by its probability pY (Y ).

Applying this functional repeatedly is like learning better and better
about the parameters B by repeatedly computing posteriors given samples
drawn from pY . In the fixed point of such iteration the parameters prior pB
is fully consistent with the observables prior pY and with the model. The

20For example, the prior distribution for the coefficients in the Christiano, Eichenbaum
and Evans (1999) model that we discuss in section 4.2 has more than 20,000 parameters.

18



relationship between this fixed point and problem (7) is given in the following
proposition:

Proposition 1. If pB satisfies (7), then pB is a fixed point of FpY .

Proof
We show if pB solves (7) then FpY (pB) = pB. We have for all B ∈ B

FpY (pB)(B) =

∫
Y
pY |B(Y ;B) pB(B) dY = pB(B)

∫
pY |B(·;B) = pB(B)

The first equality holds from the definition of F and (7), the second equality
takes pB(B) before the integral since it does not depend on Y . The last
equality holds because pY |B is a density so it integrates to 1 over Y .�

3.3 Gaussian approximate fixed point

The previous proposition suggests that pB might be found by iterating on
FpY in order to find a fixed point. This means iterating on densities. Only in
very special cases these iterations can be performed analytically: we discuss
one such special case in Appendix D. We propose here a numerical method
that has worked for us in all practical applications we have tried.

For the case of a normal likelihood we start at a normal density for B
and iterate on FpY only approximately, always staying within the realm of
normal densities along the iterations. This is convenient for three reasons.
First, it guarantees that along the way we always have a proper density for
B.21 Second, a normal density is fully described by its mean and variance,
which greatly reduces the dimensionality of the problem. Third, and most
important, for normal error terms u and normal priors we have closed form
formulas for the posteriors pgB|Y involved in the definition of FpY , and we use
these closed form formulas to speed up the calculations. The prior pY can
take any form as long as Monte-Carlo draws from it can be easily computed.

We now make some assumptions to build the likelihood. We assume in
the rest of the paper that {yt}Tt=1 is a VAR(P ) process:

yt =
P∑
i=1

Φi yt−i + γ + ut t = 1, ..., T (9)

21A well-known problem with trying to solve Fredholm equations is that common ap-
proximation schemes fail because the approximation may fall outside the admissible set of
functions. For example, discretizing pY |B , pB and pY and solving (7) as a linear system
of equationa is known to fail because it is likely to yield an approximate discrete pB that
is not a distribution and because it is very sensitive to small changes in the discretization
scheme.
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ut ∼ N(0,Σu) i.i.d., Φi are N × N matrices and γ is vector of N constant
terms (generalizing this to the case with other exogenous variables is straight-
forward). The VAR(P ) for t = 1, ..., T0 can be written in matrix form as

Y = XB + U (10)

Here Y is defined as at the beginning of section 3, X collects lagged values
of Y in the usual way and it also has a column of ones which multiplies the
constant terms, B ≡ [Φ1, . . . ,ΦP , γ]′ and U ≡ [u1, ..., uT0 ]

′. We assume for
simplicity the error variance Σu to be known.

Throughout this section we always condition on P actual initial observa-
tions Y0 ≡ [y−P+1, ...,y0]′ but we omit the symbol “|Y0” for brevity. Then
pY |B is the standard conditional likelihood function of a gaussian VAR:

pY |B = NvecY ((IN ⊗X) vecB, (Σu ⊗ IT0)) (11)

Note that Y0 is contained in the first N rows of X.
We now look for successive approximate iterations on the mapping FpY

within the space of normal distributions. A well known result in Bayesian
econometrics is that given a gaussian prior g = N (µg,Σg) , with some mean
µg and variance Σg, the posterior pgB|Y conditional on observing a value Y is
also gaussian with variance and mean

Varpg(·|Y )(B) =
(

Σ−1
g + Σ−1

u ⊗X
′
X
)−1

(12)

Epg(·|Y )(B) = Varpg(·|Y )(B)
(

Σ−1
g µg + vec(X

′
Y Σ−1

u )
)

(13)

This implies that FpY (g) is a mixture of normal distributions pgB|Y , which

is not in general a normal distribution. However, we approximate FpY (g)
itself with a gaussian distribution with the mean and variance of B under
the distribution FpY (g). This mean and variance can be found with a Monte
Carlo procedure based on the following result:

Result 2. Given any g, for any function h : B → Rm we have

EFpY
(g)(h(B)) = EpY

[
Epg(·|Y )(h(B))

]
(14)

and, in particular,

EFpY
(g)(B) = EpY

[
Epg(·|Y )(B)

]
(15)

VarFpY
(g)(B) = EpY

(
Varpg(·|Y )(B)

)
+ VarpY

[
Epg(·|Y )(B)

]
(16)
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Proof 22

EF(g)(h(B)) =

∫
B
h(B)

(∫
Y
pgB|Y (B|Y ) pY (Y ) dY

)
dB

=

∫
Y

(∫
B
h(B) pg(B|·) dB

)
pY = EpY

(
Epg(·|Y )(h(B))

)
(17)

where the first equality follows by definition of FpY (g), the second by Fubini
and the third by definition of EpY . This proves (14).

Clearly, (15) follows when we consider h(B) = B.
Also, (16) follows from (14) and

VarFpY
(g)(B) = EFpY

(g)(B
2)−

[
EFpY

(g)(B)
]2

�

This result immediately suggests the following Monte-Carlo approxima-
tion to compute EFpY

(g) and V arFpY
(g): draw M realizations of Y from pY ;

for each draw Y compute Epg(·|Y )(B) and Varpg(·|Y )(B) using the closed-form
expressions (12) and (13), finally approximate EpY by averaging these closed-
formed expressions to evaluate the right side of (15) and (16) over the M
draws. The normal density with the resulting mean EFpY

(g)(B) and variance
VarFpY

(g)(B) is our proposed approximation to FpY (g). This normal distri-
bution can be interpreted as a second order approximation to logFpY (g).

In the empirical applications below we find approximate fixed points of
FpY by successive iterations. We start with a relatively flat normal distribu-
tion as an initial guess. We find successive means and variances of FpY (g)
using the approximate iteration described. We iterate until the scheme de-
livers satisfactory approximation to the desired prior marginal distribution
of observables pY .

23 Obviously if such iteration failed to converge there are a
number of search algorithms that could be used to find a fixed point of the
mean and variance if the dimensionality of the problem is sufficiently low for
gradient algorithms to work. The simplicity of successive approximations is
highly desirable.

As with any algorithm it is important to check for accuracy. We should
check that the approximate fixed point pB satisfies (7) closely enough. This

22Note that this result does not follow from the law of iterated expectations. The law
of iterated expectations can only be invoked in the fixed point. Outside the fixed point,
FpY

(g) is not the marginal density of B consistent with pY and pgB|Y .
23At this writing we have no theorem that this algorithm will always work. However,

in all practical applications we have tried, it delivered priors implying marginal data
densities quite close to the desired one. In all cases it worked similarly as the analytically
tractable special case in Appendix D: after the first few iterations the means of parameters
stabilized, and subsequent iterations were only shrinking the prior variances.
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is even more important since, as of this writing, we do not have a suffi-
ciency result for Proposition 1 stating that any fixed point of FpY is indeed a
prior consistent with pY . Checking for accuracy is straightforward: we draw
parameter values B from the candidate fixed point, and then we simulate
data for T0 periods given this parameter value, drawing gaussian errors and
starting from the initial observation in the data x0 = (y′0,y

′
−1, ...y

′
−P+1, 1).

This gives the distribution of Y in the left side of (7). We compare this
distribution with the prior marginal distribution of the data pY to see if (7)
approximately holds.

The approximate fixed point approach can be adapted to a wide range of
problems. Linearity and normality are not essential for the algorithm to be
feasible. What is key is a family of priors g and a likelihood for which pgB|Y
is known analytically. Any distribution for pY can be used, as long as we can
generate random draws from it.

3.4 The case T0 = 1, gaussian pY

In the case when T0 = 1 the prior is only specified for the growth rate at the
first date of the sample. When the prior about this growth rate is gaussian
we can find an analytic expression for the delta prior:

Result 3. In the VAR(P ) model, given an initial condition x0 ≡ (y′0, y
′
−1, ...y

′
−P+1, 1)′

assume the prior growth rate is

∆y1|x0 ∼ N(µ∆,Σ∆) (18)

This is compatible with any prior pB satisfying

B′x0 ∼ N (y0 + µ∆,Σ∆ − Σu) (19)

Note that, although our approach is to always set x0 equal to the value
x0 actually observed in the data, the above result holds for any value of the
vector x0. This generality will serve to make the connection with dummy
observation priors in section 3.5.

Proof
We first show that (19) implies the mean and variance in (18). The VAR

model implies
∆y1 = B′x0 + u1 − y0 (20)

Taking expectations and using (19) we have E(∆y1) = µ∆. Taking variances
we have

var(∆y1) = var(B′x0) + Σu + cov(B′x0, u
′
1) + cov(u1, x

′
0B)
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Since the uncertainty about B′x0 comes only from the uncertainty about
parameters, these covariances are zero. Therefore using (19) we have

var(∆y1) = Σ∆ − Σu + Σu = Σ∆

Finally, normality ofB′x0 and u and (20) imply that ∆y1 is normally distributed.�

Comment 1 : Prior (18) restricts N linear combinations of parameters.
Therefore in general it needs to be completed with a prior on the remaining
K −N parameters where K is the total number of parameters.

Comment 2 : The delta prior in section 2.4 follows from the above result
using the actual observation in the data x0, and completing this prior with
a flat prior in ρ.

Therefore, the advantage of prior (19) is that there is no need to engage
in the numerical procedure that we discuss in section 3.3, sinced we have an
analytic solution. The drawback is that taking T0 = 1 means using very little
prior information. In the empirical section 4.2 we find that using T0 > 1
can make a big difference in terms of empirical results. For example, the
“exact likelihood” approach amounts to introducing information about PN
dimensions, which suggests setting T0 = P to introduce a similar amount of
information.

Unfortunately, analytic solutions such as the one given in Result 3 are
unlikely to be found when T0 > 1, because then the prior about growth rates
implies a complicated non-linear restriction on the distribution of shocks and
parameters. To see this, consider the univariate AR(1) example of section
2. In this case, in addition to the prior about the first growth rate (3) one
might specify a prior

∆y2|y0 ∼ N(µ∆,Σ∆).

The above prior about ∆y2 implies

α + (ρ− 1)α + (ρ− 1)ρy0 + ρu1 + u2 ∼ N(µ∆, σ∆)

in addition to (4). It should be clear that now the analytic solution is impos-
sible. A change-of-variable formula can not be used to find the distribution of
pB because we cannot express the parameters α, ρ as a function of variables
with a known distribution. This is due to the fact that the joint uncondi-
tional distribution of u’s and y’s consistent with the prior growth rates is
non-trivial and unknown. More details are offered in Appendix C.

3.5 Relationship with dummy observation priors

We relate our approach with other Bayesian approaches in the context of
specific applications in the next section.

23



The closest prior to ours is Sims’ “one-unit-root” dummy observation
prior, so this merits a more detailed discussion.24 It is implemented by aug-
menting the sample with a “dummy observation” for an artificial date d. In
this fictitious observation current and past values of the process are equal to
λȳ, where λ is a constant specified a priori determining the weight given to
the prior, and ȳ is the mean of the initial observations ȳ ≡ 1

P

∑P−1
i=0 y−i. So,

the dummy observation is:

yd = B′xd + ud (21)

for ud ∼ N(0,Σu) independent of U , xd = λ(ȳ′, ..., ȳ′, 1)′ and yd = λȳ. The
literature has also used other dummy observation priors with different xd. In
absence of other prior knowledge, the posterior is computed by adding the
dummy observation to the actual observations and using an otherwise flat
prior.

It is easy to check that the posterior found in this manner is also the
posterior that would arise from stating the following prior about growth
rates for T0 = 1:

∆y1|(ȳ′, . . . ȳ′, 1) ∼ N
(
0, (λ−2 + 1)Σu

)
(22)

This follows from our Result 3 and inspection of the formula for the posterior.
Therefore, the one-unit-root prior is a special case of the prior about

growth rates with four restrictions: First, the prior is restricted to the growth
rate in one period only, it takes T0 = 1. Second, the prior about growth
rates is conditional on a particular fictitious state of the process given by
(ȳ′, . . . ȳ′, 1), i.e. after P periods of no growth, while we use the actual initial
condition x0 observed. Third, the mean growth rate is usually assumed to be
zero. Fourth, the prior variance in (22) is equal to the variance of the error
terms Σu increased by a factor (λ−2 + 1).

As we have argued in section 3.4, the first restriction is binding: the
dummy observation approach cannot be generalized to T0 > 1, although ex-
tending T0 introduces important information and it often matters in practice,
as our applications below demonstrate. Setting λ > 1 does not correspond to
a prior about growth rates for many periods, as for this case the numerical
solution is needed.

The fourth restriction is binding too: when the variance of the growth
rates prior Σ∆ is not a scalar multiple of the error variance Σu, the prior
cannot be implemented by adding a dummy observation, and instead our
Result 3 should be used. In general there is no reason why the researcher’s

24See Sims and Zha (1998, eq.22 and Table 3) or Sims (2006, section 2.1).
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prior uncertainty about the growth rate of all variables is proportional to
the variance of the innovations. Furthermore, the usual approach is to take
λ = 1 and the standard interpretation is that this gives the prior the weight
of one observation. But (22) shows that λ = 1 corresponds to the variance
of the growth rate which is double that of the error term, which may or may
not correspond with an actual prior about variables. This matters also the
empirical results: in the application in section 4.1 of this paper λ = 1 turns
out to produce a very weak prior, leading to results that differ significantly
from the results of our preferred prior.

The second and third restrictions can be generalized within the dummy
observation approach and different values of λ can be set to change the impact
of the prior on the posterior. However, it is not easy to elicit these elements
of the prior in an intuitive way.

This brings us to the key difference between the priors about observables
proposed in this paper and the dummy observations priors: Researchers inter-
pret the dummy observations as “mental observations” on VAR parameters,
and not on the observables themselves. But it is difficult to make convincing
statements about VAR parameters, because they do not have an intuitive
interpretation. In absence of such intuitive interpretation, any choice of e.g.
the prior parameter λ seems arbitrary. Our approach allows the researcher
to relate λ (or more generally Σ∆) to intuitive quantitative prior statements
about observables.

The above discussion serves to rationalize the dummy observation ap-
proach and gives it a clear Bayesian interpretation. We think an advantage
of our approach is that we are explicit about the interpretation of the prior
about observables, which allows a meaningful elicitation of this prior. In
addition, our approach allows the researcher to incorporate much more in-
formation by using T0 > 1.

4 Empirical Applications

In this section we apply our approach in two empirical time series studies
taken from the literature. The first is a univariate example. It is useful
to demonstrate that available techniques can give a wide range of estimates
with little guidance for choosing among them, while our approach provides
a clear interpretation. The second example is a large-scale VAR. It shows
that the algorithm we propose works in practice even in a case with many
parameters and that it can make a difference for inference in practice.

The first step in the empirical analysis is to specify the prior about initial
growth rates which should, in principle, be independent from the sample.
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Instead, we proceed in all cases by specifying the “prior” distribution based
on the actual growth rates in the sample. Such data-based priors are common
in the literature, they have well known shortcomings and advantages, so we
do not comment on them any further. We do report sensitivity analysis to
help the reader figure out the implications of her preferred Bayesian prior.

Our baseline delta prior is derived from a prior on growth rates that is
normally distributed with mean and standard deviation equal to the uncon-
dition mean and standard deviation of growth rates in the sample. This prior
conveys the assumption that the first few observations behave, in terms of
growth rates, similarly as the rest of the sample.25 We specify T0 = P , the
number of lags in the VAR, so that our prior carries as much information as
the additional terms for the distribution of initial observations that would
enter in the “exact likelihood”. Finally, we assume that the variance matrix
of growth rates is diagonal. This specifies the distribution for N ×P observ-
able variables. As the number of parameters is larger than N ×P , this prior
is incomplete. We complete the prior with an approximately flat prior on the
remaining dimensions of the parameter space.

We use the algorithm described in section 3.3. We start the iterations
with a candidate prior which is normal with mean zero and variance equal
to 104I (where I is an identity matrix of appropriate dimension). In most
cases after about 100-250 iterations densities of growth rates implied by the
normal delta prior match very well the prior density on growth rates. By this
time most variances have shrunk by many orders of magnitude, but some of
them remain barely different from the starting point, consistently with the
baseline delta prior being improper in some dimensions.

As in previous sections we assume for simplicity that the variance of
shocks is known and we set it equal to the variance of OLS residuals from
the analyzed autoregressive model.

4.1 Persistence of Stock Prices

In this subsection, we show the effect of the delta prior on the estimated per-
sistence of Stock Prices measured by the log of the S&P500 index, observed
annually from 1871 to 1988, taken from the Extended Nelson-Plosser (ENP)
dataset (Nelson and Plosser, 1982; Schotman and Van Dijk, 1991b). Many
papers have tested for unit roots in this dataset. However, it has been argued

25This assumption seems reasonable in our cases, but there are many situations where
it would not be appropriate. For example, for a sample starting after the end of a war
the researcher may want to specify a higher initial growth rate of GDP than if the sample
started after a period of undisturbed growth. One could also use a training sample to
inform this prior, but in our case earlier data is not available.
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that unit root tests usually have low power. Therefore, it is of interest to
just characterize the uncertainty about long run properties of these series
in terms of a posterior distribution, without reference to a particular point
null hypothesis. The model used in these papers is AR(3) with intercept and
trend:

yt = α + γt+ ρ1yt−1 + ρ2yt−2 + ρ3yt−3 + ut (23)

As Andrews and Chen (1994) we focus on the sum of the autoregressive
parameters

∑3
i=1 ρi, which they argue is a relevant measure of persistence.

It is straightforward to adapt our approach from section 3 to include the
trend that appears in (23). Of course, we specify our prior on “total” growth
rates, not on deviations from trend, since total growth rates are the quantity
for which a prior distribution is natural to elicit.

The baseline prior about growth rates has mean 3.5% and standard devia-
tion of 16%. Figure 5 illustrates the match between prior densities of growth
rates and the densities of growth rates implied by the delta prior after 100
iterations. The solid line represents the left-hand side of equation (7) while
the dashed line represents its right-hand side. It is clear from the picture
that the match is very good, and that the normal approximation of section
3.3 works very well.
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Figure 5 – Stock Prices, AR(3) with trend: density of growth rates in periods
t = 1, 2, 3, obtained by Monte Carlo simulation; ’delta prior’ - the marginal
density of the data (growth rates) implied by the delta prior; ’desired’ - the
assumed growth rate which is to be matched by the delta prior.

Figure 6 compares the posterior found with the baseline delta prior with
some other Bayesian and frequentist procedures that are currently available.
We first discuss the other procedures available. We use the Minnesota prior
with the standard hyperparameters recommended in Doan (2000). Perhaps
surprisingly, this prior pushes persistence downward compared with the flat
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prior, even though it is centered at a unit root model! The reason is that
the Minnesota prior shrinks the lagged parameters towards zero. This prior
dampens the contributions of ρ2 and ρ3 to the persistence measure more
than it pushes ρ1 towards unity. One-unit-root dummy observation with
λ = 1 has a very weak effect here and it delivers a similar persistence as
the flat prior. As another comparison, we try the bootstrap-after-bootstrap
correction of the mean bias proposed for VARs by Kilian (1998).26 This
procedure produces a frequency distribution of the estimator, which is a
different object than a posterior density, but we compare the two as is often
done informally in applied work. Kilian’s bias corrected estimation implies
that the process is much more persistent than under all considered Bayesian
procedures.

We also compare with the approximately median unbiased estimation of
Andrews and Chen (1994). Andrews and Chen do not report the results as
a density. Instead, they report the point estimate and a confidence interval.
Their point estimate is 1, as a result of their assumed truncation of the
parameter space to values

∣∣∑3
i=1 ρi

∣∣ < 1. Their initial estimate is larger than
1 and in this case they pull back the estimate to their upper bound of 1.
The 90% confidence interval is [0.91, 1] (see their Table 4 p.197), very similar
to the 90% posterior probability interval obtained with the baseline delta
prior.27 However, the fact that the point estimate is 1 suggests that, overall,
the Andrews and Chen approach yields stronger persistence than all other
approaches except for the Killian’s.

We conclude that the available Bayesian and frequentist techniques de-
liver a wide range of estimates of persistence. Point estimates/posterior
means vary between 0.93 and 1, even though the sample spans over one cen-
tury. These different estimates imply huge differences in the medium run
behavior of the model. An applied economist would have a difficult time
forming intuition about which procedure to choose.

Figure 6 also displays the posterior density of
∑

i ρi using our baseline
delta prior (drawn with the thick continuous line). As expected, given our
discussion of section 2, the delta prior increases persistence and it pushes the
estimate in the same direction as a classical bias correction. The increase in
persistence relative to OLS (flat prior) is substantial (E

∑
i ρi = 0.956 with

the delta prior, instead of 0.93 with OLS). This has strong effects on an im-
pulse response function at medium lags. Our baseline delta prior suggests, in
this case, that the posterior is between the flat prior (OLS) and the bootstrap

26We do not restrict the polynomial in ρ1...ρ3 to be stationary. When we do shrink all
nonstationary draws towards the unit root, as recommended by Kilian (1998), the density
is simply truncated at 1 and has a spike there.

27The 5th and the 95th percentiles of the posterior are 0.90 and 1 respectively.
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bias-corrected estimates of persistence. To the extent that our prior is based
on statements about observables which are easier to assess, we find it more
convincing than the rules used to derive previously available procedures.
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Figure 6 – Stock Prices, AR(3) with trend: density of the sum of autoregressive
parameters

∑
i ρi. Various priors and estimation methods.

Figure 7 shows the sensitivity of the posterior to various choices of priors
about growth rates. For the T0 = 1 case the posterior is a bit more spread
out, as is to be expected from a prior that uses less information, but the
posterior mean is very close to that of the baseline prior. When we double
the prior variance, so that the standard deviation of growth rate is 22.3%,
the prior becomes very weak and the posterior (labeled “double variance”)
is very close to the flat-prior posterior. Arguably, this standard deviation
is large, few people would argue this is a reasonable standard deviation of
yearly growth rates of stock prices. This shows that it is important to use
a “reasonable” variance of prior growth rates, one that does represent our
opinion about the likely behavior of the series, in order for the prior to matter
substantially for inference.

Next we model the prior in a richer way. Assuming no serial correlation in
the prior growth rates as we have done in the baseline delta prior is question-
able, because parameter uncertainty by itself implies a positive correlation
in prior growth rates. Therefore we make an effort to use empirically-based
serial correlation and to account for parameter uncertainty. For this pur-
pose we use an auxiliary model. We fit an AR(1) model to growth rates
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∆yt = α+Γ ∆yt−1 +εt on the whole sample and we let our prior distribution
of (∆y1,∆y2,∆y3) be given by this auxiliary model when the uncertainty
on auxiliary parameters (α,Γ) is given by the flat-prior-posterior using the
whole sample. To find this prior on observables we simulate the marginal
density of growth rates in the first 3 periods, repeatedly drawing the param-
eters from the mentioned flat-prior-posterior. This density of growth rates
has a mean of 4.5%, standard deviation of 17.2%, correlation of consecutive
growth rates of about 0.24 and the correlation between the first and the third
growth rate of about 0.07. This prior has, therefore, both higher standard
deviation and higher correlation than the baseline but the posterior is rather
similar to the baseline case, as can be seen in the figure.
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Figure 7 – Stock Prices, AR(3) with trend: Posterior density of the sum of
autoregressive parameters

∑
i ρi. Various priors about initial growth rates.

Our conclusion is that reasonable informative priors give a similar picture:
the estimated persistence of the S&P500 is corrected significantly upwards
relative to OLS, but very little weight is placed on roots equal to or larger
than 1.

4.2 Responses to Monetary Policy Shocks in a VAR

In this subsection we reconsider the estimation of the effects of a monetary
shock in Christiano et al. (1999). They estimate a VAR with quarterly data
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on output, prices, commodity prices, federal funds rate, total reserves, non-
borrowed reserves and money. (Details about data and sample are provided
in Appendix E.) Residuals are orthogonalized with the Choleski decompo-
sition of the variance of innovations given the above variable ordering. The
monetary policy shock is the one corresponding to the federal funds rate.

Means and standard deviations of growth rates of the variables in the
sample, which are used in the baseline prior, are reported in Table 1. Since
T0 = 4 the dimension of the prior is only 4×7 = 28, compared with 4×72+7 =
203 parameters in the VAR, so the prior is quite weak.

After about 200 iterations the match between the 28 assumed densities of
growth rates and their densities implied by the actually used gaussian prior
is very good, we report these densities in Appendix E.

Figures 8 and 9 display the responses of output to a monetary policy
shock, estimated with alternative approaches. For brevity, we focus on the
response of output, first because it is a key policy issue, second because
the output response is among the most affected by the frequentist small
sample bias and by alternative prior assumptions. Responses of the remaining
variables are reported in Appendix E.

Our benchmark is the posterior distribution of the impulse response ob-
tained with the standard flat prior p(B,Σ) ∝ |Σ|−N+1

2 . To facilitate com-
parisons we display this posterior as the shaded region in all plots. This is
the region enclosed between quantiles 0.025 and 0.975 of the posterior dis-
tribution of the impulse response. The flat prior band is almost symmetric
around the OLS point estimate.

Figure 8 compares the baseline posterior with other approaches used in
the literature. The first plot reproduces the results in Christiano et al. (1999)
who use a bootstrap procedure with the OLS point estimate of the parameters
taken to be the data generating process. The continuous lines show the
percentiles of the distribution of the impulse response estimated by OLS from
the bootstrapped series (this procedure is also known as ‘other-percentile’
bootstrap, see Sims and Zha, 1999). As is well known, the confidence bands
from this procedure contain a second dose of OLS bias and, as a result, output
response to the monetary policy shock dies out even sooner than under the
flat prior.

Impulse response band obtained with our benchmark prior is displayed in
the second plot of Figure 8. The effect on output is delayed considerably rel-
ative to the flat prior or the bootstrap procedure of Christiano et al. (1999).
If the confidence bands from the delta prior show more persistence than the
flat prior they contrast even more with the bootstrap bands which are less
persistent than the flat prior. The effect on the economic interpretation of
the results is fairly large. The cumulative effect of the shock after 4 years is
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-6.6% of the quarterly GDP (at the median) when estimated with the delta
prior. This effect is only -4.6% when estimated with OLS and only -3.1%
according to the bootstrap bands. Therefore, the flat prior underestimates
the cumulative effects of monetary shock by about one third, and bootstrap
bands by more than a half, relative to the delta prior.28 Since, at least to
our mind, the delta prior is a natural prior to impose, we conclude that the
negative effects of monetary shocks on output have been previously under-
estimated. The difference is also large if we focus only on the short run (up
to 6 quarters) since the delta prior implies that the effect on output has a
larger delay than previously estimated.

The second row of plots in Figure 8 displays the effects of standard
Bayesian VAR priors designed to push the persistence of the process upwards:
the Minnesota prior and the Sims’ one-unit-root prior. The Minnesota prior
(with the default hyperparameters recommended by Doan (2000)) has little
effect in this case and the impulse response band is close to the flat prior
band. The one-unit-root prior (with λ = 1) increases the persistence of
the response similarly to the delta prior, although it predicts a much larger
negative effect in the short run.

The third row of Figure 8 displays, for comparison, the effect of applying
frequentist bias correction procedures in the present context. The caveat
mentioned in section 4.1 about comparing Bayesian posteriors and post-
sample uncertainty applies here too. We show the bootstrap-after-bootstrap
procedure to construct error bands for impulse responses proposed in Kilian
(1998). We present results with two versions of this procedure: the one in
which stationarity is imposed and the one in which we allow for nonstation-
arity. The results depend strongly on the handling of nonstationarity: in the
first case the effect of monetary policy on output is much weaker than in the
second case.

Again, it would be difficult for an applied economist to choose between
the previously available alternatives and they do give different results. Our
baseline results might be preferred since they are based on an intuitive and
reasonable prior.

Figure 9 studies deviations from the various choices involved in the base-
line delta prior. First, we consider the case T0 = 1, when an analytical
solution is available. The error bands almost overlap with the flat prior error
band. Only when we increase to T0 = 4 the effect of the prior kicks in, so

28Our conclusions are not affected by the fact that we condition the delta prior on the
fixed value of σ2

u estimated by OLS. To verify this, we recomputed all impulse responses
in Figure 8 this time conditioning in all procedures on the fixed value of σ2

u estimated by
OLS. The resulting bands were only slightly narrower and overall the results were very
similar to those in Figure 8.
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Figure 8 – Impulse responses of output to monetary shocks, 95% probability
bands generated in alternative ways. In all plots the gray area shows the 95%
probability band obtained with the flat prior.
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the technical difficulties of translating the prior when T0 > 1 are definitely
worthwhile in this case. Second, we change the baseline prior assuming that
µ∆ = 0. Note that this prior is different from the one-unit-root prior in the
previous Figure, because it has a different variance and assumes T0 = 4. This
prior makes the output responses more persistent (see the band labeled ‘zero
mean’). However, a zero mean for output growth rate is not a reasonable
prior. Finally, we use an auxiliary model as described in the study of Stock
Prices to allow for a reasonable joint distribution of the growth rates. Output
response band with this prior is slightly wider and less persistent than in the
baseline case.
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Figure 9 – Impulse responses of output to monetary policy shocks, 95% prob-
ability bands generated with various priors about initial growth rates.

We draw several conclusions from this example. First, it shows that our
procedure for approximately solving equation (7) works efficiently in practice.
With a standard personal computer it took about two hours to find a fixed
point in the space of 20,909 parameters! (this includes the mean and the
variance of the parameter matrixB, which has 203 entries). Second, imposing
priors about initial growth rates in this case pushes the posterior estimates
in the same direction as bias corrections. We find that the cumulative effects
of monetary policy shocks on output have been strongly underestimated and
they are more delayed than previously thought. There is little guidance as to
what other available procedures should be chosen. For large models it may
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be important to specify T0 > 1. Again, when specifying the delta prior in
alternative but reasonable and informative ways the results are quite robust.

5 Frequentist Evaluation of a Delta Estima-

tor in the AR(1) Model

In this section we study the adequacy of the delta prior in the AR(1) model
from the classical point of view. We define a delta estimator to be the
posterior mean obtained with the baseline delta prior. We find that, although
this estimator is inspired by Bayesian principles it works very well under the
usual Monte-Carlo evaluation procedures that classical econometricians use
to justify the validity of small samples estimators. In fact, the delta estimator
works better than classical procedures available.

Classical bias corrections have an element of arbitrariness in that a full
correction of the mean bias is never achieved. In part for that reason, and
in part because it is recognized that focusing on the bias is arbitrary, much
of the bias correction literature ends up reporting the root mean squared
error (RMSE) reduction for “relevant” parameter values as an important
selling point of bias correcting estimators. We show that the delta estimator
has a substantially lower RMSE than classical alternatives in a wide and
empirically relevant range of parameter values.

We repeat the Monte Carlo study of MacKinnon and Smith (1998, section
5), adding the delta estimator to it. In the simulations we fix α = 0 although
the econometrician is assumed to estimate the constant. We simulate 100,000
realizations of the AR(1) process for each value of ρ = 0.40, 0.42, 0.44, . . . , 1.2.
This is a relevant range in many practical applications. In order to highlight
the small sample problems we take a sample size T = 25. Initial observations
are generated as in MacKinnon and Smith (1998).29 For each realization of
the process we estimate (α, ρ) with OLS, with the constant-bias-correcting
(CBC) estimator of MacKinnon and Smith (1998) and with the delta esti-
mator.

Figure 10 shows the biases of the three estimators for many values of ρ.
The OLS estimator has the largest bias. The CBC estimator has a much
smaller bias but, as is well known, the bias is not completely removed. We
can see that for ρ ∈ (0.68, 1.1) the bias of the delta estimator is in between
that of OLS and CBC. Therefore, the Bayesian estimator also reduces the
bias in this parameter range although the correction is less precise than CBC.

However, as is well known, bias reduction is not desirable per se, since it

29Their initial condition amounts to y0 ∼ N(0, σ2
u) for all ρ.
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Figure 10 – Bias of the OLS, the CBC and the delta estimator, sample size
T=25.
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could lead to large RMSE. Figure 11 shows the RMSE of the three estimators.
The CBC has a lower RMSE than OLS only when ρ > 0.5.30 But the delta
estimator beats both OLS and CBC when 1.1 > ρ > 0.5. When ρ = 1
the RMSE of the CBC is 21% larger than the RMSE of the delta estimator.
Therefore, for roots close to unity the gain in efficiency of switching from CBC
to the delta estimator is the same as if we suddenly found 50% more data
points and added them to the sample. We think this is a large improvement.

We have repeated the Monte Carlo study using other initial conditions
from the literature and we obtained similar results. Notice that all the cards
are stacked in favor of the CBC estimator, because the delta estimator uses
only the current realization of the data while we always construct the CBC
using the same initial condition as in the Monte Carlo study. Therefore, the
CBC uses the information about the true initial condition used in the Monte-
Carlo draws, in addition to each realization of the data. In the real world it
is hard to know the “true” initial condition, so we would expect CBC to be
at an even larger disadvantage in practice.

Our conclusion is that, as long as one is willing to believe that the true ρ
is between .5 and 1.1, the delta estimator is an attractive alternative to bias
corrections even from the frequentist point of view.

6 Conclusions

The estimation of autoregressions using small samples is a long-standing
problem. Considerable effort has been devoted to designing corrections for
this problem, often having to address very difficult analytic problems. A
myriad of alternatives can be found in the literature designed to address this
issue both from the Bayesian and classical point of view. But small sample
issues are rarely addressed in practice. An applied economist has a hard time
choosing among these alternatives because they require decisions that are not
intuitive and, in practice, are often made ad hoc. Disappointingly, the most
widely used alternative to estimate VARs is still OLS, which amounts to
ignoring a problem that was pointed out sixty years ago.

We start by reexamining the classical versus flat-prior-Bayesian contro-
versy about the validity of OLS. We find that for a similar treatment of ini-
tial conditions both Bayesian and classical econometricians agree that OLS
should be adjusted towards a unit root. Therefore, what is important is to

30This finding is not specific to the CBC estimator in this particular experiment. Bias
corrections increase for |ρ| approximately less than 0.5 for many sample sizes, also when
using more sophisticated bias correcting estimators. See MacKinnon and Smith (1998,
Figures 4 and 6), Roy and Fuller (2001, Tables 1 and 3).
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relate parameter values and observed initial conditions.
We propose to do this by specifying a prior about growth rates for the

first few observations or, more generally, a prior about the behavior of the
observables. Contrary to the contenders, this prior has a clear interpretation,
it embodies information that economists do have, it is easy to elicit, and
perhaps it is even possible seek a near-consensus about it.

Translating this prior about observables into a prior about coefficients we
have to address a series of technical problems. Our approach to solving the
relevant Fredholm equation may be useful in many other contexts.

To illustrate the effect of the delta prior we use it in two empirical ap-
plications from the literature. In a VAR for the US economy the delta prior
delivers much more persistent response of output to monetary policy shocks
than found in the literature. First, this shows that the delta prior matters
in practice. Second, this illustrates that the tools developed in this paper
allow to handle even large scale models like VARs. This opens a possibility
of many more interesting empirical applications.

Even from the classical perspective, our Bayesian posterior estimates are
attractive. Our estimator has an edge in terms of mean squared error relative
to other classical bias correction procedures.

We conclude the delta prior is a way to approach the long standing prob-
lem of estimating autoregressions in small samples. Even though we advocate
a Bayesian solution, our work also points to some dangers from the Bayesian
approach, namely, that one can easily formulate priors on parameters that
have totally unreasonable implications for series. From this point of view the
flat prior is completely unreasonable, and using OLS in autoregressions is
unwarranted. What is needed is a careful specification of informative priors,
and specifying priors on observables is the more natural alternative.

Future research will no doubt improve the prior combining it further with
other usable information from expert knowledge and available theoretical
models, and it will sharpen the analytic results that we used to translate our
prior.
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Appendices

Appendix A Construction of Figures 1, 2 and

4

Figure 1: Each density in Figure 1 is generated with the following Monte
Carlo experiment. We simulate 20,000 realizations of the AR(1) process (1).
For each realization we compute ρOLS. Then we approximate the frequentist
density of ρOLS with a histogram of these 20,000 estimates.

In each simulation we take ρ = 0.95, sample length T = 100 and error
variance σu = 1. We set y0 = 0 and for each realization we draw α from the
distribution consistent with (2) i.e. from N(0, σ2

0/(
∑S−1

i=0 ρ
i)), where S = 100.

As discussed in the text, the only difference between the two densities is in
the choice of σ2

0.
We use a fixed y0 = 0 and random α for consistency with the subse-

quent Bayesian experiments. At first glance this might seem inconsistent
with the frequentist discussion of Figure 1 which treats α as fixed and y0 as
random. However, the results in Figure 1 would have been exactly the same
if we performed the frequentist simulation instead. To see this, suppose that
instead we keep α fixed at an arbitrary assumed value and draw y0 from

N
(
α(
∑K

i=0 ρ
i), σ2

0

)
. Suppose that in this alternative simulation we use the

same seed of the random number generator. Then it is easy to check that
although in each draw we would obtain a different αOLS, we would obtain
the same ρOLS as in the corresponding draw of our baseline simulation.

Figure 2: We generated densities in Figure 2 following Sims and Uhlig
(1991). That is, we perform a Monte Carlo simulation analogous to that
underlying Figure 1 for each value of ρ on the grid 0.70, 0.71, ... 1.20. Then
we line up the obtained histograms to obtain the bivariate density of ρ and
ρOLS. Each density in Figure 2 is a cross-section of such bivariate density at
ρOLS = 0.95. Therefore, it is the Bayesian posterior density of ρ conditional
on a value of ρOLS. The prior underlying this posterior is

p(α, ρ|y0, y−S, σ
2
u, σ

2
0) = p(ρ|y0, y−S, σ

2
u, σ

2
0)p(α|ρ, y0, y−S, σ

2
u, σ

2
0) (A.1)

where

p(ρ|y0, y−S, σ
2
u, σ

2
0) ∝ 1dρ (A.2)

p(α|ρ, y0 = 0, y−S = 0, σ2
u, σ

2
0) = N(0, σ2

0/(
S−1∑
i=0

ρi)) (A.3)
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The fact that the marginal prior for ρ is flat is reflected in the uniformly
spaced grid of ρs in the Monte Carlo simulations. We verified that the trun-
cation of the grid at 0.7 and 1.2 introduces only a negligible error, since, with
the sample size T = 100, values of ρ beyond these bounds are quite unlikely
to yield realizations that produce ρOLS = 0.95. The prior for α is implied by
condition (2). σ2

u is a known constant equal to 1.

A question arises how sensitive Figures 1 and 2 are to various choices of
parameter values. Let µ denote the deterministic component of y0, i.e.

µ = α

(
S−1∑
i=0

ρi

)
+ ρSy−S (A.4)

The following results proves that the shape of the density of ρOLS|ρ is invari-
ant to the choice of µ and σ2

u. As a consequence, the shape of the density of
ρ|ρOLS is also invariant to these choices.

Result 4. Assume the model parameterized as

yt − µ = ρ (yt−1 − µ) + ut for t = 1 . . . T (A.5)

and assume that the initial condition is given by:

y0 = µ+ σuψ (A.6)

where ψ is a random variable. Then, if ψ independent of the shocks u and its
distribution is independent of µ and σu the distribution of the OLS estimator
of ρ in (1) is independent of µ and σu.

Proof. Define normalized errors: v ≡ u/σu. (A.6) allows to write:

yt = µ+ σu

(
t∑
i=1

ρt−ivi + ρtψ

)
= µ+ σỹt

where ỹ is the process with µ = 0, which would obtain from the same realiza-
tion of errors, but rescaled to have a unit variance. Then it is a matter of
simple algebra to show that:

ρ̂ ≡ T
∑
ytyt−1 −

∑
yt−1

∑
yt

T
∑
y2
t−1 − (

∑
yt−1)2 =

T
∑
ỹtỹt−1 −

∑
ỹt−1

∑
ỹt

T
∑
ỹ2
t−1 − (

∑
ỹt−1)2

Similar results about invariance of ρOLS have been used in the literature.
Andrews (1993, Appendix A), contains a verbal proof for |ρ| ≤ 1 and for a
particular distribution for ψ. DeJong et al. (1992) contains a similar proof for
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a fixed initial displacement y0 − µ. As can be seen, the proof is very simple,
but we could not find a formal result focused on giving a general form of the
initial condition which guarantees independence of the distribution of ρOLS

from nuisance parameters, so we offer it here for completeness.

Figure 4: The construction of the densities in Figure 4 is similar to the
construction of densities in Figure 2, except that now to generate each real-
ization of the process we draw α from (5). We take σu = 0.057, which is the
standard error of an AR(1) model fitted by OLS to the ‘Real GNP’ series
for the years 1909-1988, taken from the Extended Nelson-Plosser dataset of
Schotman and Van Dijk (1991b). σu matters here for the variance of the
delta prior in (5) given the prior about growth rate.

Appendix B Proof of Result 1

We will use the notation σ2
α ≡ σ2

∆ − σ2
u. Using a standard formula we know

that the posterior mean conditional on σ2
u is

E

(
α
ρ

∣∣∣∣Y T , σ2
u

)
=

(
X ′X +

(
σ2
uσ
−2
α 0

0 0

))−1(
X ′X

(
αOLS

ρOLS

)
+

(
σ2
uσ
−2
α µα
0

))
(B.1)

where, taking mkl = 1
T

∑T
t=1 y

k
t−1y

l
t for integer powers k, l

X ′X =

(
T Tm10

Tm10 Tm20

)

Letting ξ = det

(
T + σ2

uσ
−2
α Tm10

Tm10 Tm20

)−1

it follows from simple algebra that

(
X ′X +

(
σ−2
α 0
0 0

))−1

X ′X =

(
ξT 2 (m20 −m2

10) 0
ξTm10σ

2
uσ
−2
α 1

)
.

Plugging this in (B.1) and using αOLS = m01 − ρOLSm10 we have

E
(
ρ|Y T , σ2

u

)
= ρOLS + (m01 − ρOLSm10 − µα)ξTm10σ

2
uσ
−2
α .

Simplifying, using m01 = m10 + (yT − y0)/T and taking expectation over the
posterior density of σ2

u we obtain that

E
(
ρ|Y T

)
= ρOLS +

[
1 +

(yT − y0)/T − µα
m10

− ρOLS
]
ξT (m10)2E(σ2

uσ
−2
α |Y T ).

(B.2)
Since ξ > 0 the whole term multiplying the brackets is positive. If |(yT − y0)/T − µα| <(
1− ρOLS

)
|m10| the bracket is positive, and this implies the result. �
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Appendix C Our prior can not be found by

a change of variable

It is sometimes more convenient to specify a prior about a nonlinear function
of the parameters, rather than to specify a prior directly about the param-
eters. This amounts simply to reparameterizing the initial model. Villani
(2009) uses this approach in an application related to the present paper. Al-
ternatively, one can derive the implied prior about the original parameters
from the prior about their nonlinear function using the change of variable
technique. This section shows that a prior about growth rates in a VAR can-
not be handled with a change of variable. The reason is that growth rates are
not a deterministic function of parameters. There is no one-to-one mapping
between observables and parameters. In fact one can express parameters as
a function of observables and shocks, (y, u). Therefore to apply the change
of variable formula we would need the joint density of (y, u). This joint den-
sity would need to be consistent with the prior about observables, with the
assumed density of the shocks, and with the independence of parameters and
shocks. Unfortunately, the joint density of (y, u) satisfying these constraints
is non-trivial and generally unknown. So this procedure does not work. To be
more explicit, consider the AR(1) model with the constant term and T0 = 2.
In this case, the mapping from (α, ρ, u) to (y, u) is as follows:

y1 = α + ρy0 + u1 (C.1)

y2 = α + αρ+ ρ2y0 + ρu1 + u2 (C.2)

u1 = u1 (C.3)

u2 = u2 (C.4)

It is easy to verify that the Jacobian matrix of this transformation is:
1 y0 1 0

1 + ρ α + 2ρy0 + u1 ρ 1
0 0 1 0
0 0 0 1


The determinant of this matrix is α+(ρ−1)y0 +u1, and the absolute value of
this term multiplies the distribution in the new parameter space (α, ρ, u1, u2).
This term cannot be factorized into terms involving only us and terms involv-
ing only the parameters. Therefore, the obtained density will not, in general,
be consistent with independence of the model parameters and errors.
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Appendix D Analytical iteration on the map-

ping F for AR(1)

Consider the AR(1) model without the constant term, with y0 6= 0 given.
The first observation must be nonzero, because if we are unlucky to start
exactly at the mean, growth rate in the first period does not depend on
the parameters and the prior for growth rate will not carry any information
about ρ. But we only require (7) to hold in a probability one set of ys. For
simplicity, σ2

u is given. Everywhere we will implicitly condition on y0 and σ2
u.

The model is
yt = ρyt−1 + ut ut i.i.d. N(0, σ2

u) (D.1)

and the density of an observation in period 1 is

py1|ρ(ȳ1; ρ̄) = N(ρ̄ȳ0, σ
2
u) (D.2)

Introduce the prior assumption about zero (without loss of generality) growth
rate in the first period:

p∆y1(∆ȳ1) = N(0, σ2
∆) (D.3)

which implies:
py1(ȳ1) = N(y0, σ

2
∆) (D.4)

Let’s find the marginal prior pρ(ρ̄) which will be consistent with the above
py1|ρ and py1 , i.e. which will satisfy∫

py1|ρ(ȳ1; ρ)pρ(ρ)dρ̄ = py1(ȳ1) (D.5)

D.1 Guess of the solution

It is easy to guess that the solution is:

pguessρ (ρ̄) = N

(
1,
σ2

∆ − σ2
u

y2
0

)
(D.6)

Verifying (we skip algebraic details which are tedious, the integral can be
performed by completing the square):∫

py1|ρ(ȳ1; ρ̄)pguessρ (ρ̄)dρ̄ = ... = (2π)−
1
2σ−1

∆ exp

(
−1

2

(ȳ1 − y0)2

σ2
∆

)
= pY (ȳ1)

(D.7)
so the guess was right: pguessρ (ρ̄) satisfies condition (D.5).
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D.2 Approaching the prior by fixed point iteration

Suppose we start with the flat prior p(ρ) ∝ 1. One iteration with mapping
F produces:

pF(1)
ρ (ρ̄) =

∫
p(ȳ1; ρ̄)× 1∫
p(ȳ1; ρ̃)× 1dρ̃

pY (ȳ1)dȳ1 = ... = N

(
1,
σ2

∆ + σ2
u

y2
0

)
(D.8)

As before, the integral is tedious but easy to compute by ’completing the
square’. Verifying if p

F(1)
ρ satisfies D.5, i.e. if it is consistent with the desired

marginal distribution of y1 yields:∫
py1|ρ(ȳ1; ρ̄)pF(1)

ρ (ρ̄)dρ̄ = ... = N
(
y0, σ

2
∆ + 2σ2

u

)
6= pY (ȳ1) (D.9)

The marginal distribution of y1 implied by p
F(1)
ρ (ρ̄) is not what we wanted.

It has the correct mean, but the variance is too high. In the second iteration,
first we compute the prior p

F(F(1))
ρ (ρ̄) by applying mapping F to the prior

obtained in the first step

pF(F(1))
ρ (ρ̄) =

∫
p(ȳ1; ρ̄)× pF(1)

ρ (ρ̄)∫
p(ȳ1; ρ̃)× pF(1)

ρ (ρ̃)dρ̃
pY (ȳ1)dȳ1 = . . .

· · · = N

(
1,
σ2

∆ + σ2
u

y2
0

× σ4
∆ + 2σ2

∆σ
2
u + 2σ4

u

(σ2
∆ + 2σ2

u)
2

)
(D.10)

Conveniently, we already computed the integral in the denominator while
verifying F(1) (equation D.9 above). This prior has a smaller variance than
the prior from the first step. To see this, note that the second quotient in the
variance is less then 1, which can be seen after expanding the denominator.
So the prior F(F(1)) has a smaller variance then the prior F(1). However,
it still does not satisfy (D.5):∫
py1|ρ(ȳ1; ρ̄)pF(F(1))

ρ (ρ̄)dρ̄ = ... = N

(
y0,

σ6
∆ + 4σ4

∆σ
2
u + 8σ2

∆σ
4
u + 6σ6

u

(σ2
∆ + 2σ2

u)
2

)
6= pY (ȳ1)

(D.11)

The marginal distribution of y1 implied by p
F(F(1))
ρ (ρ̄) is still not right. The

mean remains correct. The variance is smaller than in the first step, but
larger than the correct variance.

σ2
∆ <

(σ2
∆ + 2σ2

u)
3 − (2σ4

∆σ
2
u + 4σ2

∆σ
4
u + 2σ6

u)

(σ2
∆ + 2σ2

u)
2

< σ2
∆ + 2σ2

u (D.12)

The transformation is intended to facilitate seeing the second inequality. The
first inequality is easy to prove too. Concluding, in the second iteration we
got closer to the right prior.
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Appendix E Data and additional results for

the monetary VAR

The data for the Christiano et al. (1999) VAR were downloaded from Chris-
tiano’s webpage. All data are quarterly and the sample is from 1965Q3
to 1995Q2. Table 1 reports means and variances of their first differences.
Figure 12 reports the match between the prior densities of growth rates and

Table 1 – Average growth rates and standard deviations of the endogenous
variables in the sample (1965Q3:1995Q2)

variable definition

mean
annualized
growth rate

annualized
standard
deviation

Y real GDP, logs 2.7 3.6
P implicit GDP deflator, logs 5.0 2.5

PCOM
smoothed change in
an index of sensitive
commodity prices

3.2 206

FF Federal Funds rate 0.1 4.8
NBR nonborrowed reserves, logs 5.4 9.1
TR total reserves, logs 5.2 6.6
M1 M1, logs 6.5 4.0

Note: The quarterly growth rates and their standard deviations are multiplied by 4. The

original quarterly values were used in the prior.

the densities of growth rates implied by the delta prior. Figure 13 reports
impulse responses of all variables to the monetary policy shock. In each plot,
continuous lines delimit the 95% probability band. The OLS point estimate
is also plotted on each plot for comparison, with the dashed line.
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Figure 12 – Densities of growth rates of all variables in the periods t=1,2,3,4.
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Figure 13 – Impulse responses to monetary shocks: OLS point estimate
(dashed line) and the 95% uncertainty bands (continuous lines) generated by
alternative methods
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