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Abstract

Transport engineers employ various interventions to enhance traffic-network performance.
Quantifying the impacts of Cycle Superhighways is complicated due to the non-random as-
signment of such an intervention over the transport network. Treatment effects on asymmetric
and heavy-tailed distributions are better reflected at extreme tails rather than at the median.
We propose a novel method to estimate the treatment effect at extreme tails incorporating
heavy-tailed features in the outcome distribution. The analysis of London transport data using
the proposed method indicates that the extreme traffic flow increased substantially after Cycle

Superhighways came into operation.
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1 Introduction

In the last couple of decades, metropolitan areas in both the developed and the developing coun-

tries have been affected by increasing traffic congestion mainly due to population explosion. Urban
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population in developing nations is projected to grow, adding 2.5 billion people by 2050 (UN En-
vironment Programme, 2019). In addition to the negative impacts on mobility and air quality,
previous studies indicate that severe congestion has a negative impact on GDP, the city’s eco-
nomic competitiveness (Slawson, 2017; Jin and Rafferty, 2017), and road safety, thus imparting
socio-economic distress (Retallack and Ostendorf, 2019). Intelligent transportation systems can
revolutionize traffic-mobility management and offer an integrated approach to infrastructure de-
velopment (Xian et al., 2021). Transport engineers employ network interventions (i.e. treatment)
to control high-consequence traffic events. Often such interventions fail to achieve the intended
objective, and as a consequence transport networks perform poorly concerning traffic flow, capac-
ity utilisation, safety, and economic and environmental impacts. The underlying reason for such
failure could be that the interventions are often made without statistical evidence to guarantee the
intended outcomes. In general, the interventions are typically targeted to address specific network
problems, and the challenge is that their effect is ‘confounded’ if the treated and control units differ
systematically with respect to several characteristics which may also affect the outcome of interest.

In the last decade, cycling has been promoted as an affordable, clean and environment friendly
sustainable means of transportation arond the world. The bicycle contributes to cleaner air and
less congestion that promotes economic growth and reduces inequalities while bolstering the fight
against climate change to achieve sustainable development goals (United Nations, 2021). A recent
study on Traffic Scorecard released in 2021 ranks London as the world’s most congested city out
of more than 1,000 global cities (Reid, 2021). The Mayor of London aims for cycling journeys in
London to increase from 2% of all journeys in 2001 to 5% by 2026. To promote cycling activity,
several policy decisions including Cycle Superhighways (CS), Santander Cycles and Biking Boroughs
have already been implemented (Transport for London, 2010). The CS are 1.5-meter wide barrier-
free cycling paths connecting outer London to central London to provide adequate spatial capacity
for existing cyclists and potential future commuters who adopt cycling as a mode of transport (see
Figure 1). Twelve Cycle Superhighways were announced in 2008 with the aim of enabling faster and
safer cycle journeys. As displayed in Figure 2, these routes were designed in a clock faced layout to
radiate from the city center towards greater London. Currently, only four routes are in operation,
namely CS2 (Stratford to Aldgate); CS3 (Barking to Tower Gateway); CS7 (Merton to the City);
and CS8 (Wandsworth to Westminster). In the very first year, cycling has increased by 83% along
CS3 and 46% along CS7 after their inauguration in 2010. The effects of CS on heavy congestion
are not evaluated in the report by Transport for London (2011) due to the lack of adequate data



and methodological framework for analysis. However, some contradictory reports about the effects
of CS on road traffic congestion have been published in print and electronic media (Norman, 2017;
Blunden, 2016). Due to the intricate nature of the transport network, the quantification of the
effects of CS on high consequence events like extreme traffic congestion is a complex problem.
Moreover, various traffic and socioeconomic characteristics may act as confounders, affecting both
the traffic flow and intervention simultaneously, therefore it is important to study the association

of those factors with the interventions and outcome of interest.

Figure 1: Examples of London Cycle Superhighways

The need to develop statistical methods to study causal quantities is important due to their wide
application and impact in various fields of science, e.g., medical science (Imbens and Rubin, 2015),
transport engineering (Li et al., 2017; Zhang et al., 2021), climate science (Hannart and Naveau,
2018; Naveau et al., 2020) and public policy (Gangl, 2010; Freedman, 2010). Most commonly, the
literature on causal inference is focused on population means of potential outcomes. In many real
scenarios, asymmetric and heavy-tailed distributions are frequently encountered and treatment ef-
fects are often better summarized in tail quantiles rather than in averages. There is a growing
literature that focuses directly on the estimation of casual effects on quantiles. Firpo (2007) pro-
posed estimating the quantiles by minimizing an inverse probability weighted check loss function,

which achieves non-parametric consistency by means of a propensity score estimated as a logistic



Barclays Cycle Superhighways

Indicative Routes Map

[r——y N |

"ihinoerounrese &0 | 0

EAUNG

GrzEwCH

A b

[ Wandsworth to Westminster
[ R v 8

Figure 2: Route map of London Cycle Superhighways

power series with degree increases asymptotically. Melly (2006), and Frolich and Melly (2013);
Chernozhukov et al. (2013) considered estimation of the quantiles under a linear parametric model
for the distribution function, and quantile functions, respectively. Zhang et al. (2012) developed
several methods for estimation of causal effects on quantiles which are analogous to the methods
employed for the average causal effect. Diaz (2017) devised a doubly robust estimator based on a
semiparametric approach using a targeted maximum likelihood estimator for the quantiles. In this
context, Xu et al. (2018) introduced a Bayesian nonparametric approach through Bayesian additive
regression trees to model the propensity score and a Dirichlet process mixture of normal models to
construct the distribution of potential outcomes.

Estimation of extreme quantiles (or equivalently, so-called return levels) of univariate and con-
ditional distributions is an important problem in various application areas, including meteorology,
hydrology, climatology and finance (Embrechts et al., 1997). Extreme value theory provides tools
to estimate the probability of extreme events based on the assumption that the underlying dis-
tribution of the normalized random variable resides in the domain of attraction of extreme value

distribution (Fisher and Tippett, 1928). Thus extreme quantiles can be predicted by estimating



the parameters of the corresponding extreme value distribution and the normalizing constants. An
alternative approach is to characterise the distribution with its tail index and utilise the same for
estimating an extreme quantile. For a detailed review on different models and methods, the readers
are referred to the classical books on extreme value inference by Embrechts et al. (1997) and Coles
(2001), and the review paper by Gomes and Guillou (2015). In the context of causal inference,
Zhang (2018) considered the estimator proposed by Firpo (2007) and developed asymptotic the-
ory for the causal estimator for intermediate and extreme quantiles. Very little work exists in the
literature relating causality and the occurrence of extreme events. Recently Gnecco et al. (2019)
and Engelke (2020) combined causal inference with extreme value theory to characterise causal tail
dependence of two random variables in the context of a directed acyclic graphical model. Gissibl
and Kliippelberg (2018); Gissibl et al. (2017) studied the causal dependence structure through max-
linear models on acyclic graphs. For a hydrological application, Mhalla et al. (2019) studied the
causal relationship between two extreme random variables for modelling daily measurements of river
discharges corresponding to riverflow-connected stations. This modelling approach uses a copula
structure to estimate the dependence between two random variables with the restriction that there
are no confounders (common set of covariates affecting treatment and response simultaneously) in
the model. Deuber et al. (2021) developed a propensity score based estimator of extremal quantile
treatment effect. This method relies on asymptotic tail approximations through the Hill estimator
for the extreme value indices of potential outcome distributions. Recently, there has been a focus
on studying the causal links between the climate system and climate change (attribution) and this
causal link has been used to design event attribution; see Hannart and Naveau (2018) and Ribes

et al. (2020) for more details.

1.1 London transport-network data

The current study is motivated by the problem of estimation of the causal effect of London Cycle
Superhighways on extreme traffic congestion based on a data set over the period 2007-2014. The
data consists of 75 treated zones and 375 control zones which were selected through stratified random
sampling along the 40 km long main corridors radiating from central London to outer London. In
observational data, the effect of CS is confounded due to various factors related to traffic dynamics,
road characteristics, and socio-demographic conditions. Traffic data on both the major and minor
road network are routinely collected by the Department for Transport, Government of the UK.

Additional data on traffic flow and speed are collected from the London Atmospheric Emissions



Inventory. It has been observed that traffic congestion is associated with bus-stop density and road
network density (George, 1970). An association between traffic congestion and socio-demographic
characteristics, such as employment and land-use patterns, has also been indicated in previous
studies (Badoe and Miller, 2000; Chen et al., 2001; Zhang et al., 2017; Bhuyan et al., 2021). A
detailed description of the above data sets can be found in Li et al. (2017). To incorporate these
socio-demographic effects, we obtained relevant data on population and employment density, as well
as the information of land-use patterns from the Office for National Statistics. The data that are
available from the aforementioned sources and the rationale to construct the response and covariates
are described in Section 5.

Recent literature on transport engineering emphasized the importance of developing inferential
tools to predict extreme consequences of interventions or shocks to the system, enabling one to
identify the most effective available interventions to mitigate the consequences of such events (Zheng
and Sayed, 2019; Xu and Nusholtz, 2017; FarahaCarlos and Azevedo, 2017). As mentioned above,
the motivating data on traffic system arises from a study of various interventions targeted at traffic
conditions in the city of London. A vital task for the policy makers is to quantify the causal
effects of these interventions on the extreme traffic flow and investigate its associated consequnces.
The outcome variable (traffic flow) under consideration exhibits heavy tails as there are small but
non-trivial number of locations with very high traffic volume. Heavy-tailed distributions are often
characterized by very large variance. For such cases, standard error of the existing estimators of
the causal quantities are also very high and subsequently precludes statistical significance at most
plausible sample sizes (Diaz, 2017). In this work, we address this issue and propose a method
of estimation of the causal effect at the extreme tails by combining tools of causal inference and
extreme value theory. The method is applied to analyse the motivating data from the transport
engineering application outlined above.

The outline of the article is as follows, in Section 2 we describe the existing models and methods
used in the traditional potential outcome framework. In Section 3, we propose a new method to
estimate the causal effects at extreme quantiles. Simulation studies are performed to assess the
effectiveness of the proposed methods and the results are summarized in Section 4. In Section 5,
we discuss the results obtained by analysing the London Cycle Superhighways data. We summarise

the key findings and conclude with a discussion of future research in Section 6.



2 Potential outcome framework

In usual causal inference problems, the data available for estimation of the causal effects are real-
isations of a random vector, Z; = (Y;, D;, X;), i = 1,...,n, where for the ith unit of observation,
Y; denotes the response, D; the treatment (intervention or exposure) received, and X; a vector
of confounders or covariates. Let the triplet (Y, D, X) represents a generic form of (Y;, D;, X;),
1 =1,...,n. The treatment can be binary, multi-valued or continuous but essentially it is not as-
signed randomly. Therefore, the simple comparisons of average responses across different treatment
groups will not in general reveal a ‘causal’ effect (causation) due to potential confounding. Con-
founding can be addressed if the vector of covariates X is sufficient to ensure unconfoundedness,
or conditional independence of potential outcomes and the treatment. In the context of binary
treatment, the conditional independence assumption requires that (Y(0),Y (1)) L D|X, where D
is the indicator function for receiving the treatment, and Y (1) and Y (0) indicate potential outcomes
under treated or control status, respectively. That is, given the information contained in the covari-
ate vector X, the assigned treatment carries no additional information on the individual’s potential
outcomes. This assumption is also referred to as conditional exchangeability or strong ignorabil-
ity in the literature (Rosenbaum and Rubin, 1983). An additional requirement for valid causal
inference is positivity or overlap assumption: the conditional probability of treatment assignment
is strictly positive for every combination of values of the covariates, i.e. 0 < P[D=1|X =x| < 1
for all . This assumption implies that there exists no strata of X such that treatment assign-
ment is uniquely determined. To illustrate this point, suppose that for a given value of X, say x*,
P[D = 0|X = x*] = 1. Then there will be no triplets of observed data (Y, D, X) such that D =1
and X = x*; thus, any estimates of treatment effects, say a conditional average treatment effect
such as E[Y|D =1, X = *] — E[Y|D = 0, X = «*| would require extrapolation. The readers are
referred to Moodie and Stephens (2022) for more details. Conventionally, the main interest is in
estimating the average treatment effect p = E[Y(1)] — E[Y(0)], which measures the difference in
average outcomes under treatment and control status.

In practice, distributional features are often summarized using quantiles when asymmetric dis-
tribution for the response variable is encountered. In case of a skewed distribution, the median is
a more appropriate measure of location than the mean, and statistics based on quantiles could be
more meaningful measures of the spread of the distribution than the standard deviation. In many

applications, practitioners are interested in the tails of the distribution (say higher than 95th per-



centiles) of the potential outcomes (Zhang et al., 2012; Diaz, 2017). In the presence of confounding,
a simple comparison of the treated and untreated individuals in terms of empirical quantiles would
not have a causal interpretation. In such situation, the causal effects of treatment on the target

7o-th (0 < 79 < 1) quantile is defined as

N = qv1)(T0) — @y (0)(70), (1)

where gy () denotes the quantile associated with the distribution of potential outcome Y'(t) for
t = 0,1 (Zhang et al., 2012). In many contexts, it is also of interest to understand the quantile
effect of applying versus withholding the intervention only for the treated units (rather than for
all the units in the population). This causal quantity is called the quantile treatment effect on the

treated and is defined as
Cro = @y (1)p=1(T0) — @y (0)|p=1(70), (2)

where gy () p=1 denotes the quantile associated with the distribution of the potential outcome Y'(t)
given D =1 for t = 0,1 (Zhang et al., 2012). When there exists no heterogeneity of the treatment
effect induced by the covariates (i.e., no interactions effects of the treatment and the confounders),
the quantile treatment effect on the population and the quantile treatment effect on the treated
are identical provided the effects are additive. However, when treatment heterogeneity exists, these
two treatment effects differ (Moodie et al., 2018).

Causal effects on quantiles can be estimated using quantile regression with appropriate adjust-
ment for confounders. However, it should be noted that the quantile estimates from a quantile
regression model are conditional on all the covariates in the model. When one is interested in esti-
mating the marginal quantile at a given probability level (without conditioning on covariates), it has
to be determined by all conditional quantiles. Zhang et al. (2012) studied the problem of estimating
the causal quantities, defined in (1) and (2), under parametric assumption on the distribution of
the outcome variable. In light of the conditional exchangeability assumption, the distribution of

the potential outcome Y'(t), for t = 0,1, (i.e. counterfractual distribution) is given by
Fi(y) = E[PY () <ylX)]
E[P(Y(t) <y|D =t,X)]
= E[P(Y <y|D =t X)]
- [ Guwia) 3)



where G, (y) = P(Y < y|D =t,X =) for y € R, and H denotes the marginal distribution of
X for t = 0,1. Similarly, the distribution of the potential outcome Y () conditional on D = 1, is
given by
Fuly) = E(POY(H) <9l X)|D = 1} = [ Guuly)ati (), (@)
where H; denotes the marginal distribution of X given D =1 for t =0, 1.
Zhang et al. (2012) estimated the counterfactual distribution, given in (3), by

Fy)=n"" Z Gix,(y), (5)

where G is an estimate of G under the assumption that a normal linear model holds after a Box—Cox
transformation. Finally the target m-th quantile gy )(7) is estimated by inverting the estimated
unconditional distribution function Fj(y) and substituting it into the expression given in (1) to
obtain the estimate of the quantile treatment effect for the population. This is known as outcome

regression (OR) based estimate. Similarly, one can estimate Fy(-), given in (4), by
. 1 L.
En(y) = 55, Z Gix;(y)D;. (6)
i=1

One can then invert Ftu(y) to obtain estimates of gy () p=1(79) and the quantile treatment effect for
the treated (,, defined in (2). An alternative set of estimators of the counterfactual distributions
proposed by Zhang et al. (2012) are based on inverse propensity weighting (IPW) and matching
techniques. Firpo (2007) proposed quantile regression approach for estimation of counterfactual

quantiles using inverse propensity score as weights.

3 Proposed methodology

Note that the conditional distribution of Y (¢) given X = x can be obtained from the conditional
quantile function Qy;4(7) = G;,4(7) of the outcome Y for all 7 € (0,1) (Chernozhukov et al.,
2013). Let U ~ Unif(0,1). Then we can write

Gt,m<y) = P[USGt,m(y)]



where I[-] is an indicator function. When the context suggests the presence of a heavy-tailed nature
in the data generating process and one is interested in the extreme tails of the distribution F; (i.e.
probability levels are close to 0 or 1), it is more appropriate to model G, with some heavy-tailed
components. To model the bulk and the extreme component of G;(y) efficiently, we choose a

suitable transition probability level 7, € (0,1) and decompose (7) as:

Gia(y) = /OT" I [Qy‘m(r) < y] dr + / I [Qy“’m(T) < y] dr. (8)

The transition point 7, is assumed to represent the probability level of quantile above which the
distribution (second part of (8)) exhibits heavy-tailed nature. At the same time a very high proba-
bility level as a choice of 7,, may prevent enough number of observations being generated from the
extreme part of the distribution. In practice, 7, needs to be estimated from the data by balancing
the above two issues. The next section provides a detailed outline of a data driven and efficient error
control approach to determine the probability level 7,,. Note that, any estimation of the unknown
population quantile process involves the evaluation of the quantile process at finite grid points.
Thus the integral in (8) needs to be evaluated at discrete points. A common requirement to reliably
estimate the quantile process is that the mesh width of grids should converge to 0 with a rate 1/y/n
or faster (Chernozhukov et al., 2020).

We propose an estimate of Gy, (+) as

u J
Graly) = Z(Tj — 75-1)1 QYlt,m(Tj) < y} + Z (75 = T-)1 | Qviea(ry) < ), (9)
j=1 j=u+1

where the integer u is determined from 7,, and Qywm(Tj) and Qy;.(7;) are estimates of Qy ;. (7;)
based on simultaneous quantile regression and parametric extreme value modelling, respectively,
such that the issue of quantile crossing (within each of the summands) does not arise. The details
of the above estimation methods are discussed in Subsections 3.1-3.2. The estimated conditional
distribution function is then plugged into (5) to obtain the estimate of counterfactual distributions
E,(y) for t = 0,1. Then Fy(y) is inverted to find the quantile Gyt (70) = inf{z : Ey(z) > 7o} for
t = 0,1, and finally the estimate of quantile causal effect 7,, for the population is given by

ﬁro = QY(1)(TO) - QY(O)(TO)-

Similarly, we obtain Gy p1(70) = inf{z : Fjj1(2|D = 1) > 79} from (6), and the estimate of (y, is
given by

C:TO = @Y(1)|D=1(7’0) - @Y(o)\Dzl(To)-

10



3.1 Selection of transition point

The value of 7,th quantile in (8) determines the transition point of the outcome distribution, below
which the quantile regression model is fitted to the bulk part of the distribution, and above which
a heavy-tailed distribution is fitted. Let Y be a random variable with distribution function ¥ with
right end point yg. Then by the Pickands-Balkema-de Haan Theorem (Balkema and de Haan, 1974;
Pickands, 1975), the conditional distribution of Y — U above an excess U < yy is well approximated
by the generalized Pareto distribution (GPD) for large U under some general regularity conditions.
That is,
lim PlY —U <y|Y >U| - H(y),

yIyw

and H is the distribution function of GPD, given as:

- [1+6(8)]7Y, it e 0,

H(y) = _
1—exp[%}, if £€=0,

wherey > 0if € >0,and0 <y < —g/¢ if £ < 0. Here o and £ are the scale and shape parameters,
respectively. The value of the shape parameter £ = 0, interpreted as & — 0, leads H to be the
exponential distribution with mean . The negative values of £ imply the right tail of H is short and
light, and it has a finite right end point. In particular, for ¢ = —1, H is a uniform distribution over
[0,0]. When £ > 0, the higher the value of ¢ the heavier the tail of the distributions. Choice of the
threshold and fitting of a GPD to the exceedences of the threshold is a widely studied problem in
the extreme value analysis literature. Too low and too high value of the threshold should generally
be avoided (Coles, 2001). A very high threshold leaves fewer exceedances to fit the GPD model and
would yield estimates with high variance, and a too low threshold leads to an inadequate fit to the
GPD model and may produce biased estimates. In the light of the decomposition of the estimate
@t,m, provided in (9), the threshold requires to be a suitable quantile of the conditional distribution
of the outcome. Many threshold selection procedures are available in the literature; see Scarrott
and MacDonald (2012) for a review.

There are broadly four categories of approaches for threshold selection. The first, and most
common approach is based on a graphical diagnosis method (Davison and Smith, 1990; Drees et al.,
2000; Coles, 2001). The second approach involves methods that minimize the asymptotic mean-
squared error of the estimators of the GPD parameters or of the extreme quantiles, under particular

assumptions on the upper tail of the GPD (Hall, 1990; Beirlant et al., 2004; Langousis et al., 2016).
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The third category of methods are based on the goodness-of-fit (gof) test of the GPD (Davison
and Smith, 1990; Bader et al., 2018), where the threshold is selected at a level to ensure that
the GPD provides an adequate fit to the exceedances. The fourth method is automatic threshold
selection method of Bader et al. (2018) for choosing a suitable threshold. Most of the above methods
can incorporate additional covariate information in different levels of the modelling. See Davison
and Smith (1990) and Beirlant et al. (2005) for an extensive review of covariate dependent GPD

modelling.

3.1.1 Two-step approach for selection of 7,

To select the transition point 7, in (7), we develop a two-step approach. In the first step we
use covariates to generate multiple competing and ordered thresholds through constraint quantile
regression (discussed in the following Section 3.2). And in the second step, we adopt the automatic
threshold selection method of Bader et al. (2018) controlling false discovery rate associated with
multiple goodness-of-fit tests. Specifically, in the first step, for a given number [, we consider [
competing thresholds as conditional quantiles obtained by quantile regression (Koenker, 2005) and
denote the fitted quantiles as U(7|w) = wTB(T), where v = (t,z) and w = (1,v)7 is a covariate
vector of dimension (m 4 1) including 1, and B(7) = (Bo(7), ..., Bm(7))T are the estimates of the
regression parameter vector at 7 = 7,..., 7. Therefore, for a given set of [ probability levels, the
method produces thresholds U(m|w) < ... < U(n|w). We then use each of the thresholds, and
fit a GPD to the exceedences above the threshold. A different GPD is obtained for each of the
covariate adjusted threshold. We use maximum likelihood method to estimate the unknown GPD
parameters. Let us assume that there are nj exceedences corresponding to the kth threshold, for
k =1,...,1. Then the sequence of null hypotheses to be tested are Hék): the distribution of ny
observations above U (7|w) follows the GPD.

Bader et al. (2018) adopted and improved the ForwardStop rule of G’Sell et al. (2015) for the
sequential testing (ordered) of null hypotheses Hél), e Hél) when the tests are dependent. The
method uses the p-values corresponding to the tests of | hypotheses as p1,...,p € [0,1]. For
testing multiple hypothesis with an ordered nature, G'Sell et al. (2015) proposed transforming the
sequence of p-values to a monotone sequence and then applying the original method of Benjamini
and Hochberg (1995) on the transformed sequence. The rejection rule is constructed by returning

a cutoff k such that Hél), o Hék) are rejected. They prescribe that if no ke 1,...,1 exists, then no

12



rejection is made. ForwardStop is given by

k
. 1
k:max{ke{l,...l}:—EZIOg(l—pi) Sx\},
i=1

where A is a pre-specified level. In this sequential testing, stopping at k implies that the goodness-
of-fit test of the GPD to the exceedances at the first k thresholds U(7|w), ..., U(7x|w) are rejected.
In other words, the set of first & null hypotheses H(()l), - Hék) are rejected. Let us denote U(7,|w)
as the GPD threshold corresponding to the selected probability level 7, = ;.

3.2 Estimation of quantiles in the bulk part

After the selection of the transition point between the bulk and the extreme part of the distribution,
we need to estimate the conditional quantiles involved in both the summands of (8). The first part
requires estimation of multiple conditional quantiles at different probability levels. One can estimate
these quantiles separately, but this approach has two major drawbacks. Firstly, it could be possible
that multiple estimated quantiles cross each other even if their population versions never cross.
For example, it may be possible that the estimated 90th percentile has a larger value than the
estimated 95th percentile. This results in an invalid estimate of the corresponding distribution
function. Secondly, it fails to incorporate common characteristic among the consecutive quantiles
(Zou and Yuan, 2008). Simultaneous estimation borrows information from all the neighbouring
quantiles that may improve the efficiency of individual quantile estimates (Liu and Wu., 2011).
In their work, Schnabel and Eilers (2013) used splines to model the quantile regression functions
simultaneously but, the drawback with the method is that there is no clear theoretical justification
which guarantees that there will be no crossings.

Alternatively, the method of Bondell et al. (2010) ensures non-crossing for simultaneous quantile
estimation (first part of (9)). Let C C R™, be a closed convex polytope, represented as the convex
hull of n points in m-dimensions. Recall that v = (D, ) and w = (1, )7, and we are interested in
ensuring that the quantile curves do not cross for all values of the covariate v € C. For estimating
multiple quantiles at probability levels 1 <,..., < 7,, Bondell et al. (2010) devised a simple and
computationally efficient procedure using a version of constrained optimization that gureentees non-
crossing of the estimated quantiles for all values of the covariate v € C'. This goal is achieved by
imposing appropriate dominance in every consecutive pair of quantile regression planes. Under this

setup, the parameters associated with the quantile function are estimated by solving the following
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optimization problem:

B= HgHZZPfj (Y —wiB(1y)) ,

j=1 i=1
subject to wT,B(Tj—‘,-l) > 'wTB(Tj) <10)

for 7=1,...,u—1, V wveC,

where p, (w) = 7;(1 — I(w < 0)) is the check function. Note that, the estimated conditional
quantile of Y given D =t and X = z in the first summand of equation (9) is given by Qy(7) =
Bo(T) + tBy(7) + 273 (7), where B () is the (m — 1) dimensional vector of estimated coefficients
corresponding to the covariate vector @, for t =0,1, 7 =7, ...,7,.

The proposed method involves estimation of the quantile regression at several probability levels,
and it also involves a fixed number of covariates. For quantile regression with constraints and with
the assumption that the covariate space is bounded by the convex polytope, the computation be-
comes a linear programming problem with u— 1 constraints (Bondell et al., 2010). Karmakar (1984)
presented a polynomial-time algorithm for linear programming that requires O(m?®°L) arithmetic
operations on O(L) bit numbers, where L is the number of bits in the input expressed as a function

of v and number of covariates m.

3.3 Estimation of quantiles in the extreme part

Note that the choice of transition point or threshold U(7,|w) provided in Subsection 3.1 guarantees
the suitability of GPD to model the exceedences Y — U(r,|w), where U(r,|w) = Bo(7,) + 31 (1) +
w’B3*(7,) for t = 0,1, and B (7,) is the estimated regression coefficient obtained from Section
3.2. Then the estimated conditional quantile of Y given D = t, and X = a at probability level
T = Tu+1,---,7J, in the second summand of (9) is given by the approximation (see Coles (2001),
Section 4.3.3) : )
. s \¢ A
ra(r) Ulrlw) + ¢ [(fTU) _ 1} L ifE4£0,

A (11)
U(ru|w) + 6 log (f%) , i€ =0,

where (y = "L ny is the number of exceedences over the threshold U(r,|w) for the given sample
of size n, and ¢ and é are the maximum likelihood estimates of ¢ and &, respectively. Here, the

treatment and other covariates influence the aforementioned estimate of the quantiles only through
the threshold U(7,|w).
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Note that, under the assumption of a heavy-tailed response distribution (with shape parameter
¢ > 0), the above estimated quantile Qy|t7w(7') in (11) is an increasing function of 7. This fact
ensures no crossings for the fitted quantiles at extreme tails. Also, each of the quantile estimate
Qy/ta(T) is larger than the threshold U(r,|w) which is the highest quantile of the bulk part. This
fact guarantees that there is no crossing at the transition point between the extreme and the bulk

part.

3.4 Bootstrap algorithm

Zhang et al. (2012) used the standard full sample bootstrap method to compute the standard
error and confidence interval of the proposed estimators (OR, IPW, Matching, etc.) for ease of
implementation, avoiding the difficulty of deriving asymptotic variance. However, the validity of the
bootstrap method has not been studied. Zhang et al. (2021) studied the estimator proposed by Firpo
(2007), and showed that the estimator is asymptotically normal and suggested a valid full-sample
bootstrap confidence interval to quantify the uncertainty. For the moderately extreme case, the
paper showed that the limiting distribution of the estimator is no longer Gaussian, and proposed a b-
out-of-n bootstrap for valid inference. Note that, our proposed method is different from the existing
methods, and it involves estimation of the conditional distributions (see Section 3). Recently,
Litvinova and Silvapulle (2020) established the asymptotic validity of the full-sample bootstrap for
constructing confidence intervals for high-quantiles, tail probabilities, and other tail parameters of
a univariate distribution. We employ the full sample bootstap considering the following steps to

compute the standard error and confidence interval of the proposed estimator.
Step 1. Sample (Y;*, Dy, X*) from the observed data (Y;, D;, X;),i=1,...,n.
Step 2. Based on the data (Y;*, Dj, X}), i = 1,...,n, obtain the estimates 7; and A;fo.
Step 3. Replicate Step 1 to Step 2 for Ng number of times, where Np is a large number, say 1000.

Step 4. Estimate the bias, standard error and confidence interval of 7,, and éTO from Np bootstrap

estimates of 7; and @0, respectively.
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4 Simulation study

In this section, we generate synthetic data resembling the main features of the London traffic flow
data set to compare different competing methods. It has been observed that the performance of the
[PW-based method are very poor when the estimated propensity score are very small (Diaz, 2017;
Kang and Schafer, 2007). We seek to avoid such situations for a valid comparison. For this purpose,
the parameters are chosen such that at least 25% of the observations belong to the treated group.
We consider both symmetric and skewed distributions to generate observations for the covariates.
One of the two confounding variables, denoted by X; follows the normal distribution with mean 15
and standard deviation 6, and the other confounder X, follows the exponential distribution with
mean 2. We then include a non-confounding variable X3 generated from the normal distribution
with both mean and standard deviation 1, and specify the following relationships between the

response variable Y and a binary treatment D:

Y =104 15D + X; +3X, + 2X1D + (1 4+ 4X5 + 3D)e,

where error € is generated from two different symmetric distributions with mean 0. In the first
case, we consider € following the normal distribution with mean 0 and standard deviation 10 and
in the second case € follows the t-distribution with degrees of freedom 1. These two choices of error
distribution allows us to compare the performance of the causal estimators for both light-tailed
and heavy-tailed response variable. We generate each of the above data sets for two sample sizes
n = 500 and n = 1000.

The transition point representing the shift from the bulk to the extreme part (7, in (8)) is selected
by the automated threshold selection method described in Section 3.1. As a set of competing
thresholds, we consider 10 quantiles with equally spaced probability levels ranging from 0.75 to
0.99. We then use quantile regression at each probability level 7 with covariates as treatment D,
and three more predictors, X7, X5 and X3. The fitted quantiles are then used as covariate dependent
thresholds for the GPD. The sequential multiple hypothesis approach based on Anderson-Darling
goodness-of-fit test of Bader et al. (2018) is then used to select the best threshold with given level
A = 0.05. The selected threshold is used as the transition point and the corresponding probability
level is taken as the transition point 7,. For evaluating the quantiles involved in the bulk part, as

discussed in Section 3.2, we chose probability levels with an interval of 0.01 (mesh width). This
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choice of mesh width guarantees the required convergence rate to 0. We choose a total of 100
grid points in the computation of (9) with 75 and 25 equidistant points for computing the first
(bulk part) and the second component (extreme part), respectively. For computing the bulk part
of (9), we adopt the simultaneous quantile regression approach of Bondell et al. (2010) and use
the associated R package. In the extreme part of (9), the GPD threshold is modelled with all the
aforementioned covariates and the shape and scale parameters are estimated using the maximum
likelihood method.

We compare the performance of the proposed estimator with the existing estimators for both
population and treated subpopulation. As a set of competing estimators, we consider the targeted
maximum likelihood estimate (TMLE) of Diaz (2017) and the estimator of Firpo (2007) along with
the OR and IPW estimates by Zhang et al. (2012). All these methods are based on correctly specified
OR and/or PS models. The competing estimators are then compared based on 1000 iterations with
respect to the following statistics: the absolute relative bias (ARB), the relative variance (RV) and

relative mean squared error (RMSE). More precisely, we compute the following statistics with L

iterations:
NO NOIE (i 2
arp | L | Si [0 - 2 2k i) - S [ = )
L Z Mo | L [ 1L 0] L [0 27
i=1 Zi:1 Mo — 7 22i=1"Tho Zi:1 Nro — Mg

where ﬁ%) and ﬁ%) are the estimates of the population quantile effect at 7y based on the proposed
method and a competitor in the ith iteration, respectively, with L = 1000. Similarly, we compute
these metrics for the treated subpopulation (i.e., for (). The results for the quantile effects
on population are summarized graphically in Figures 3-4 based on the aforementioned statistics
for all the estimators under consideration. The values for all the statistics are presented on a
natural log-scale. Similar comparison are performed for the quantile treatment effects on the treated
subpopulation and the findings are presented in the Figures 5-6.

First, we discuss the results corresponding to quantile causal effects for the population (Figures 3-
4). The ARB associated with IPW, TMLE and Firpo estimates are small for all the probability
levels except at 79 = 0.995. The ARB increases significantly for all the estimates at probability
level 79 = 0.995. In particular, the ARB of IPW and Firpo estimates are turns out to be very large
compared to the other methods at probability level 75 = 0.995 when the data generation mechanism
involves a heavy-tailed error distribution (see Figure 4). For all the probability levels, the RV and

RMSE of the proposed method are smaller compared to all other methods when the data generation
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mechanism involves a normal error distribution (see Figure 3). Similar patterns are also observed
at 7o = 0.95 when the data generation mechanism involves a heavy-tailed error distribution (see
Figure 4). In this setup, the RV and RMSE of all the competing estimates are exorbitantly high
compared to the proposed method at 75 = 0.995. Next we consider the results corresponding to
quantile causal effects for the treated (see Figures 5-6). Here, the findings are very similar to the
case of causal effects on the population except for a few notable differences. The performance of all
estimates except the OR method at 75 = 0.995 are comparable with respect to the ARB when the
data generation mechanism involves a normal error distribution (see Figure 5). In contrast, when
the data generation mechanism involves a heavy-tailed error distribution, the ARB of the proposed
method is considerably smaller compared to all other competitive methods for n = 500. The RV and
RMSE of all the competitive estimates are considerably higher compared to the proposed method at
probability level 7 = 0.95 and 79 = 0.995. This pattern is more dominant when the data generation
mechanism involves a heavy-tailed error distribution (see Figure 6). These findings for the above
simulation study demonstrate the effectiveness of the proposed method over the existing methods

for estimating the causal effect at extreme quantiles.

5 Analysis of London cycle superhighways effects

The primary focus of this study is to evaluate the effect of London cycle superhighways (intervention)
to contain extreme congestion. The data that are available and the rationale to construct the

response (Annual Average Daily Traffic) and covariates are described below.

(a) Annual Average Daily Traffic (AADT): the total volume of vehicle traffic of a highway or a road
in a year divided by 365 days. To measure AADT on individual road segments, traffic data
is collected by an automated traffic counter, hiring an observer to record traffic or licensing
estimated counts from GPS data providers. AADT is a simple but useful measurement to

indicate busyness of a road.

(b) Total Cycle Collisions (TCS): total number of cycle collisions causing injury based on police
records from the STATS19 accident reporting form and collected by the UK Department for
Transport. The location of an accident is recorded using coordinates which are in accordance
with the British National Grid coordinate system. The CS routes were intended to reduce

the risk of accidents for cyclists and the route allocation is possibly influenced by TCS. It is

18



n=500 n=1000

<t — OR <4 OR
—— W ——  PW
TMLE TMLE
———  Fipo ——<——  Fipo
Proposed Proposed
o~ 4 / o A
—~ —~
o 4
<o <
(o)) (o))
o o —
e
N
o~ |
N
VI' i
VI' i
T T T T
0.85 0.9 0.95 0.995 0.85 0.9 0.95 0.995
To To
n=500 n=1000
< A < A
——%—  OR ————  OoR
——  PW ——  PW

TMLE TMLE
——=——  Fipo ———  Fipo
————  Proposed —————  Proposed

o o
0.85 0.9 0.95 0.995 0.85 0.9 0.95 0.995
To To
n=500 n=1000
0o
0 |
0 | ——— or
o | — —— PW
N I OR TMLE
pw —— Firpo
TMLE — Proposed
S| =
n - n <
z z"
Do | >
o5 kS
10
Lo o |
0 |
o | o
o o
0.85 0.9 0.95 0.995 0.85

Figure 3: Comparison of proposed estimator, ORY IPW, TMLE, and Firpo estimators for quantile
treatment effect for the population at different probability levels based on the data generating
process with Gaussian error. The top, middle and bottom rows show the comparison through three
statistics: ARB, RV and RMSE, respectively, for two different sample sizes 500 and 1000. The
numbers on the horizontal axis of each plot indicate the quantile levels, and five different symbols

on the plot corresponds to five different estimators.
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Figure 4: Comparison of proposed estimator, OR0IPW, TMLE, and Firpo estimators for quantile
treatment effect for the population at different probability levels based on the data generating
process with heavy-tailed error from t-distribution. The top, middle and bottom rows show the
comparison through three statistics: ARB, RV and RMSE, respectively, for two different sample

sizes 500 and 1000. The numbers on the horizontal axis of each plot indicate the quantile levels,

and five different symbols on the plot corresponds to five different estimators.
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Figure 5: Comparison of proposed semiparame#tic, OR, IPW, TMLE, and Firpo estimators for
quantile treatment effect for the treated at different probability levels based on the data generating
process with Gaussian error. The top, middle and bottom rows show the comparison through three
statistics: ARB, RV and RMSE, respectively, for two different sample sizes 500 and 1000. The
numbers on the horizontal axis of each plot indicate the quantile levels, and five different symbols

on the plot corresponds to five different estimators.
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expected that the accident rates will affect the traffic characteristics.

Bus-stop density: the ratio of the number of bus-stops to the road length. The presence
of bus-stops is expected to affect the traffic flow and speed due to frequent bus-stops and
pedestrian activities. The allocation of CS routes were designed to avoid areas with high

bus-stop density for safety of the cyclists.

Road network density: with the available geographical information system we could also
represent the road network density in each zone by using a measure of the number of network
nodes per unit of area. A network node is defined as the meeting point of two or more links.
To safeguard from conflicting turning movements the CS paths are routed through the areas

with high road network density.

Road length: high capacity networks tend to depress land values which in turn will influence
the socio-economic profile of the people who live close together. Data for road length for each

zone was generated using geographical information system software.

Road type: a binary variable where ‘1’ represents dual-carriageway and ‘0’ represents single-
carriage. This is an important feature since we might expect traffic congestion in single-

carriage roads.

Density of domestic buildings: this is a potentially useful feature since we might expect
congestion to be associated with the nature of land use and the degree of urbanization. Also,

the allocation of the CS paths are possibly influenced by land use characteristics.

Density of non-domestic buildings: rising housing costs in business and office districts force
people to live further away, lengthening commutes, and affecting traffic flow and speed. As

mentioned before, this feature may influence allocation of the CS paths.

Road area density: the ratio of the area of the zone’s total road network to the land area of
the zone. The road network includes all roads in the including motorways, highways, main or
national roads, secondary or regional roads. It is expected that the traffic flow is associated

with road density.

Employment density: traffic generation potential depends on economic activity and we proxy

this by employment density. High employment density tends to influence pedestrian activity
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which in turn affects traffic speed. The CS paths are designed to provide coverage in the areas
with high employment density and encourage commuters to use cycling as a regular mode of

transport.

Figure 7 shows density plot of AADT, exhibiting heavy-tailed nature of the response variable.
This feature of the response variable and total sample size of 450 observations is adequate to apply

extreme theory and related inference (Hosking and Wallis, 1987). Using the proposed method (with

Density

T T
0 20000 40000 60000 80000 100000 120000
Annual Average Traffic Flow (AADT)

Figure 7: Density plot of Annual Average Traffic Flow during 2011-2014 in London metropolitan

area.

same set of grid points and level of test as used in the preceding simulation study) we estimate
the quantile treatment effects for the population and for the treated at different intermediate and
extreme quantiles corresponding to probability levels 7o=0.85, 0.90, 0.95 and 0.995. We consider the
OR, IPW, TMLE and Firpo methods along with the proposed method for the analysis. Propensity
score is estimated using a logit model with the following factors: total cycle collision, bus-stop
density, road network density, road length, density of domestic buildings, density of non-domestic
buildings, road area density, and employment density. The OR method by Zhang et al. (2012)

and the proposed method use density of domestic buildings, density of non-domestic buildings,
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road area density, road network density, road type, bus-stop density as covariates. The estimated
quantile treatment effects of CS on annual average daily traffic (AADT) relative to the respective
quantile of AADT in the pre-intervention period are presented in Tables 1-2. The pre-intervention
(2007 to 2010) quantiles of AADT are computed based on the observations from the same locations
as considered for the post-intervention (2011-2014) period. The standard errors (SEs) and the
corresponding 95% confidence intervals (CI) for all the estimates, with the exception of Firpo
estimate at probability level 75 = 0.995, are obtained from 1000 full bootstrap samples. To find the
SE and CI of the causal effects based on Firpo method at probability level 7y = 0.995, we employ
b-out-of-n bootstrap proposed by Zhang et al. (2021). See Section 3.4 for details.

The result based on the proposed estimate indicate roughly 29% increase in traffic flow compared
to the pre-intervention period at probability levels 7y = 0.995 both for the entire city and the treated
locations. The 95% bootstrap CI for the proposed estimate exclude 0, suggesting a significant effect
of CS on AADT. However, as observed in the simulation study, the SE of the estimated causal
effects of CS at probability level 7y = 0.995 based on OR, IPW, and Firpo methods are very high
and the most of the results are not significant except the estimate based on TMLE. The SE of
the proposed method is significantly lower than those of the OR, IPW, TMLE and Firpo methods
which is also reflected in the width of the confidence intervals at all probability levels for treated.
A similar pattern is also observed for the population estimates at probability levels 7 = 0.95 and
7o = 0.995.

Overall, our analysis indicates that the introduction of CS can trigger extreme traffic flows and
increase traffic mobility. The protected cycleways in London including CS is just over 1% of the
capital’s roads and CS is only a quarter of the protected cycleways. In 2020, the five busiest roads
in the U.K. were in London, however, none of these five roads is within proximity of cycleways. The
U.K. has 38.3 million registered motor vehicles, up from 27 million in 2007. With cities such as
London not appreciably adding road capacity with a massive expansion of motor vehicles will lead
to traffic congestion (Reid, 2021). It is not unexpected that several unobserved factors associated
with the transport network and other interventions play a crucial role in mitigating potential traffic
problems anticipated by the introduction of cycle lanes. The results from our analysis provide
more insights, but for a comprehensive understanding to formulate effective transport strategies,

the effect of the cycleways on traffic speed requires further investigation.
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Table 1: The quantile causal effect of CS on AADT relative to the respective quantile of AADT

in the pre-intervention period for population at different probability levels 7.

To Method — Estimate (%) SE 95% CI

OR 43.34 11.50  (25.36, 70.85)

IPW 51.41 73.06  (-3.27, 219.09)

0.85 TMLE 38.08 26.85  (4.47, 135.68)
Firpo 108.17  22.37 (41.85, 135.01)
Proposed 98.52 19.76  (65.19, 135.09)

OR 41.33 11.18  (22.88, 65.65)

IPW 128.95 51.70  (0.35,101.92)

0.90 TMLE 100.47 38.50  (3.24, 98.34)
Firpo 12126 1539 (30.40, 97.85)
Proposed 71.60 14.40  (47.07, 97.63)

OR 37.60 10.43  (19.07, 59.49)

IPW 61.50 19.66  (0.31, 83.81)

0.95 TMLE 55.03 12.15  (2.03, 61.76)
Firpo 59.69 9.71  (19.21, 61.45)
Proposed 44.98 891  (28.57, 60.86)

OR 3671 2081 (-9.16, 69.66)

IPW 2.08 9.32 (-4.78, 22.92)

0.995 TMLE 15.37 6.26 (1.32, 39.97)
Firpo -0.95 1588 (-19.21, 40.90)
Proposed 29.11 5.86  (19.31, 39.77)
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Table 2: The quantile causal effect of CS on AADT relative to the respective quantile of AADT

in the pre-intervention period for treated at different probability levels 7.

To Method — Estimate (%) SE 95% CI
OR 41.27 15.90  (14.56, T1.44)
IPW 49.69 17.10  (21.55, 81.00)
0.85 TMLE 49.22 20.75  (2.56, 77.02)
Firpo 50.80 23.11  (26.97, 99.01)
Proposed 44.65 8.76  (30.56, 62.12)
OR 50.27 1009 (21.61, 62.42)
IPW 60.94 13.51 (19.69, 71.28)
0.90 TMLE 55.43 18.22 (-2.32, 66.11)
Firpo 67.85 19.45  (18.78, 82.99)
Proposed 37.71 7.27  (25.95, 52.19)
OR 45.04 8.65  (26.46, 59.49)
IPW 38.19 13.46 (14.21, 69.27)
0.95 TMLE 31.07 14.33  (-3.63, 56.57)
Firpo 71.63 17.82 (20.72, 76.37)
Proposed 34.31 7.04  (23.06, 48.46)
OR -8.51 25.50 (-80.79, 21.02)
IPW 15.53 8.79  (-2.37, 26.51)
0.995 TMLE -3.60 12.32  (-22.56, 24.75)
Firpo 17.48 1562 (3.08, 63.71)
Proposed 28.80 5.90  (19.27, 40.13)
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6 Discussions

In this article we have introduced a methodology that can be used to draw inference for causal
effects at extreme quantiles. We have modelled the relationships between the covariates and the
response and use those relationships to predict the outcome for both the treatment statuses and to
estimate the treatment effect at certain extreme quantiles. The key methodological contribution is
the improvisation of the conventional outcome regression (OR) model to combine a semi-parametric
quantile regression framework with a heavy-tailed parametric component for the extreme tail of
the response distribution. This approach also addresses issues with model misspecification due to
parametric assumptions and accounts for the high variability at the extreme tails of the distribution.
The inverse propensity weighted (IPW) estimate of Zhang et al. (2012) and the estimator proposed
by Firpo (2007) are the usual alternatives for estimating causal effects at intermediate quantiles
of a heavy-tailed distribution that avoid some of the parametric assumptions associated with the
regression function and/or link function embedded in the OR approach. But these estimators exhibit
high volatility at the extreme tails similar to that of the OR method, whereas the proposed method
performs substantially better than all the competitors under consideration. Recently, Deuber et al.
(2021) considered the estimator proposed by Firpo (2007) and adjusted it with the Hill estimator
for the extreme value indices to estimate the extremal quantile treatment effect. The Hill estimator
depends on the choice of selection of the number of upper order statistics x such that kK — oo
and k/n — 0. The choice of k is a crucial issue and several practical choices are prescribed in the
literature. Our proposed method is different from this method and it doesn’t require for selection
the upper order statistics. Also, the performance of the Hill estimator based method is very similar
to the method proposed by Firpo (2007) with respect to mean squared error.

In observational studies, one can never be sure that a model for the treatment assignment
mechanism or an outcome regression model are correct. An alternative approach is to develop a
doubly-robust (DR) estimator. Several DR estimation methodologies are proposed in the literature
(Kang and Schafer, 2007). The approach suggested by Zhang et al. (2012) for doubly robust
estimation for quantile causal effects is not readily extendable to our case. However, one can use
augmented regression methods considering a suitable function of the propensity score ¢(mw(D;|z;,9))
as an additional covariate in (10) and (11). Although empirical validation of the DR property seems
possible, the study of theoretical properties is a challenging problem under the current set-up. One

can further develop a new doubly robust estimation methodology based on the targeted maximum

28



likelihood approach considered by Diaz (2017).

We have used the proposed method to analyse the effect of London Cycle Superhighways. Our
results suggest that the introduction of Cycle Superhighways can increase extreme traffic low, en-
couraging further research and cautious approaches for any possible extension of Cycle Superhigh-
ways in metropolitan cities like London, which are heavily affected by congestion. In this context,
it would be an interesting problem to develop a statistical framework that can be used to derive in-
ference for quantile causal effects incorporating both pre-intervention and post-intervention data as
discussed in Bhuyan et al. (2021). Also, it is of great interest for general public and epidemiologists,
particularly in light of the increase in cycling and the recent proliferation of emergency cycle lanes
to support safe community during the pandemic. Despite these interventions, we are also seeing
more commuting by private vehicles as people are trying to avoid public transport (Reid, 2021),
hence an understanding of their impact on cycle lanes on congestion is important.

It is also worth noting that we are obliged to assume that the outcomes of one unit are not
affected by the treatment assignment of any other units. While not always plausible, we attempt to
reduce the “spillover” effects by reducing interactions between the treated and control units. One
possible direction of further studies could be using an improved design and defining several types
of treatment effects following Hudgens and Halloran (2008) and Barkley et al. (2020), and develop
associated estimation methodologies for the setting where there may be clustered interference.
Assessment of competing estimators of quantile effect at extreme tails which lies beyond the range
of sample data could be another direction of future research. The scoring method of Gandy et al.
(2021) for unconditional extreme quantile estimates can be extended to assess estimates of causal

effects at extreme tails.
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