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Abstract. We propose a simple and time-optimal algorithm for prop-
erty testing a graph for its conductance in the CONGEST model. Our
algorithm takes only O(logn) rounds of communication (which is known
to be optimal), and consists of simply running multiple random walks of
O(logn) length from a certain number of random sources, at the end of
which nodes can decide if the underlying network is a good conductor
or far from it. Unlike previous algorithms, no aggregation is required
even with a smaller number of walks. Our main technical contribution
involves a tight analysis of this process for which we use spectral graph
theory. We introduce and leverage the concept of sticky vertices which
are vertices in a graph with low conductance such that short random
walks originating from these vertices end in a region around them.

The present state-of-the-art distributed CONGEST algorithm for the
problem by Fichtenberger and Vasudev [MFCS 2018], runs in O(logn)
rounds using three distinct phases : building a rooted spanning tree
(preprocessing), running O(n'°®) random walks to generate statistics
(Phase 1), and then convergecasting to the root to make the decision
(Phase 2). The whole of our algorithm is, however, similar to their
Phase 1 running only O(m?) = O(n*) walks. Note that aggregation
(using spanning trees) is a popular technique but spanning tree(s) are
sensitive to node/edge/root failures, hence, we hope our work points to
other more distributed, efficient and robust solutions for suitable prob-
lems.

Keywords: Graph Conductance - Distributed Property Testing - Ran-
dom Walks.

1 Introduction

Checking whether a distributed network satisfies a certain property is an im-
portant problem. For example, this knowledge may be used to choose appro-
priate algorithms to be run on the network for certain tasks. For instance, the
randomised leader election algorithm of [20] works in sublinear time if the un-
derlying graph is a good expander but not otherwise. However, it may be hard
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to efficiently wverify certain global graph properties in the CONGEST model of
distributed computing. In this model, each vertex of the input graph acts as a
processing unit and works in conjunction with other vertices to solve a compu-
tational problem. The computation proceeds in synchronous rounds, in each of
which every vertex can send an O(logn)-bits message to each of its neighbours,
do some local computations and receive messages from its neighbours.

Distributed decision problems are tasks in which the vertices of the under-
lying network have to collectively decide whether the network satisfies a global
property P or not. If the network indeed satisfies the property, then all vertices
must accept and, if not, then at least one vertex in the network must reject.
For many global properties, lower bounds on the number of rounds of compu-
tation of the form 2(y/n + D) are known for distributed decision, where n is
the number of vertices and D is the diameter of the network. (See [§]). It makes
sense to relax the decision question and settle for an approximate answer in
these scenarios as is done in the field of property testing (see [I4JI7]) in the
sequential setting. A property testing algorithm in the sequential setting arrives
at an approximate decision about a certain property of the input by querying
only a small portion of it. Specifically, an e-tester for a graph property P is a
randomised algorithm that can distinguish between graphs that satisfy P and
the graphs that are e-far from satisfying P with high constant probability. An
m-edge graph G is considered e-far from satisfying P if one has to modify (add
or delete) more than €-m edges of G for it to satisfy P. Two-sided error testers
may err on all graphs, while one-sided error testers have to present a witness
when rejecting a graph. The cost of the algorithm is measured in the number of
queries made. (See [IAITIT6YI5] for a detailed exposition of the subject.)

Distributed Property Testing: A distributed property testing problem is a
relaxed variant of the corresponding decision problem: if the input network sat-
isfies a property, then, with sufficiently high probability, all the vertices accept
but if the input network is e-far from satisfying the property, then at least one
vertex rejects. The definition of "farness" in it remains the same as in the classi-
cal setting. The complexity measures are the number of communication rounds
and the number of messages exchanged during the execution of the tester. Dis-
tributed property testing has been an active area of research recently. The work
of [4] was the first to present a distributed algorithm (for finding near-cliques)
with a property testing flavour. Later, in [5], the authors did a more detailed
study of distributed property testing. There has been further study on the topic
(see [10] and [12]) in the specific context of subgraph freeness.

Conductance Testing: We address the problem of testing the conductance of
an unweighted, undirected graph G = (V, E) in the CONGEST model. Through-
out, we denote |V| by n and |E| by m. A distributed conductance tester can be
a useful pre-processing step for some distributed algorithms (such as [20]) which
perform better on graphs with high conductance. The test can help determine
whether to proceed with the algorithm or not.

Given a graph G = (V, E), and aset A C V, the volume of A (denoted vol(A))
is the sum of degrees of vertices in A. We say that a graph G = (V, E) is an
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a—conductor if every U C V such that vol(U) < vol(V)/2 has conductance at
least «. Here, the conductance of a set A is defined as E(A,V \ A)/vol(A),
where E(A,V \ A) is the number of edges crossing between A and V' \ A. A
closely related property of graphs is their expansion. We call a graph G = (V, E)
an a—vertex expander if every U C V such that |U| < |V|/2 has at least a|U|
neighbours. Here, a vertex v € V \ U is a neighbour of U if it has at least
one edge incident to some u € U. Similarly, G is called an a—edge expander, if
every U C V such that |U| < |V]/2 has at least a|U| edges crossing between
U and V \ U. For a constant d, a graph G = (V| E) is called a bounded-degree
graph with degree bound d if every v € V has degree at most d. In this case,
both the vertex and edge expansions are bounded by a constant (depending on d)
times the conductance. Testing expansion (essentially testing conductance) in the
bounded degree model has been studied for a long time in the classic centralised
property testing model. In this setting, the problem of testing expansion was
first studied by Goldreich and Ron [I§] and later by [7]. Specifically, Czumaj
and Sohler showed that given parameters a, e > 0, the tester proposed by [18]
accepts all graphs with vertex expansion larger than «, and rejects all graphs
that are e-far from having vertex expansion at least o/ = ©(a?/logn). Their
work was followed by the state of the art results by [19] and [25]. Both these
papers present O(n'/2t#/a?)-query testers (for a small constant u > 0) for
distinguishing between graphs that have expansion at least o and graphs that are
e-far from having expansion at least £2(a?). In the general graph model (with no
bound on degrees), Li, Pan and Peng [21I] presented a conductance tester. Their
tester essentially pre-processes the graph and turns it into a bounded degree
graph while preserving (roughly) its expansion and size and then uses a tester
for bounded degree graphs.

In the last few years, the same problem has also been addressed in non-
sequential models of computing such as MPC [23] and distributed CONGEST [11].
There are earlier papers studying distributed random walks whose results can be
adapted towards conductance testing e.g. [26/24] . However, these results yield
large gaps in the conductance of the graphs that are accepted (£2(«)) and that of
the graphs that are rejected (O(a?/polylog(n))). The first distributed algorithm
for the specific task of testing the conductance of an input graph that we are
aware of is by Fichtenberger and Vasudev [L1]. This can test the conductance of
the input network in the unbounded-degree graph model (like ours).

A typical algorithm for the problem in the sequential, as well as non-sequential,
models can be thought of as running in two phases (after possibly a pre-processing
phase). In the first phase, the algorithm performs a certain number of short
(O(logn)-length) random walks from a randomly chosen starting vertex. The
walks should mix well on a graph with high conductance and should take longer
to mix on a graph which is far from having high conductance (at least from some
fraction of starting vertices). In the second phase, the algorithm then checks
whether those walks mixed well or not. For that, the algorithm gleans some
information from every vertex in the graph and computes some aggregate func-
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tion. Specifically in the classical and MPC settings, the algorithms count the
total number of pairwise collisions between the endpoints of the walks.

The distributed algorithm for the problem by Fichtenberger and Vasudev [11]
precedes the first phase by building a rooted BFS spanning tree of the input
graphﬁ This spanning tree is used for collecting information from the endpoints
of the random walks in the second phase. Specifically, their algorithm estimates
the discrepancy of the endpoint probability distribution from the stationary dis-
tribution by collecting the estimate of discrepancy on each endpoint at a central
point. If the overall discrepancy is above a certain threshold, the algorithm rejects
the graph. This process of building a spanning tree and collecting information
at the root to decide if the property holds or not takes a global and centralised
view of the testing process.

The following natural question arises in the context of the second phase:

Question 1. Is it possible to execute the second phase without computing a
global aggregate function?

In the classic setting, one strives for testers that make a sublinear (in n or m)
number of queries which translates to running a sublinear number of walks.
With only a sublinear (O(y/n)) number of walks, one hardly expects to see
any useful information by itself on any individual vertex or in a small constant
neighbourhood around it to know if the walks mixed well or not. Therefore,
one has to rely on an aggregate function such as the total number of pairwise
collisions between the endpoints of the walks. In the non-sequential settings such
as distributed CONGEST, one can utilise the parallelism to run a superlinear
number of short walks while keeping the run time proportional to the length
of the walks. This inspires us to stick to Question [I] in distributed setting and
investigate what information one should store at each vertex during phase 1
and how it should be processed locally to allow each node to decide locally
whether it is part of a good conductor or not. This leads us to our main result
provided all the nodes know n and m beforehand. Note that one can overcome
the requirement of knowing m by performing a rooted spanning tree construction
as in [II] and using this tree to count the number of edges. Note that we will
not use this tree for collecting information about the random walks.

Our Results: Our main result is the algorithm presented in Section [3| (Pseu-
docodes [1| and ‘ The main theorem is restated below:

Theorem (Theorem @) For an input graph G = (V, E), and parameters 0 <
a <1 and € > 0, the distributed algorithm described in Section[3]

— outputs Accept, with probability at least 2/3, on every vertex of G if G is an
a-conductor.

4 If the construction of BFS tree takes longer than O(logn) rounds the algorithm
rejects without proceeding to the first phase since all good conductors have small
diameter. However, a bad conductor such as a dumbbell graph may also have small
diameter, so their algorithm still needs to proceed with the test after the successful
construction of the spanning tree.
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— outputs Reject, with probability at least 2/3, on at least one vertex of G if G
is e-far from any (o /2880)-conductor.

The algorithm uses O¢ o (logn) communication rounds.

To be precise, the algorithm runs 2m? walks of length 3% log n from each of 6(1/e)
starting vertices with the number of communication rounds equal to length of
each random walk i.e. % logn and messages at most O(mlogn). A lower bound
theorem in [II] (Theorem 2) states that any distributed tester with this gap
requires §2(log(n +m)) rounds of communication even in LOCAL model, hence,
our running time is optimal.

Testing in a single phase: The advantage of not having to collect global
information is that it lets us do away with the wasteful construction of a spanning
tree and information accumulation at the root. Since we do not need to construct
a spanning tree, we do not need a pre-processing phase unlike [TT].

Note that setting up a spanning tree creates multiple points of failures for the
aggregation phase. One could attempt to handle failure of the root of a single tree
by setting up multiple spanning trees simultaneously. However, note that a single
node failure (of a node internal to all these trees) could disconnect all these trees
and if this happens early in the phase 2, we may not get enough information for
the root(s) to make their decisions. Since our phase 2 is ‘instant’ i.e. involves no
communication, we do not have any failure issues. This opens up the possibility
of a fully-fault-tolerant tester for dynamic networks if a fault-tolerant phase 1
(i.e. fault-tolerant random walks) could be designed.

1.1 Technical Overview

In this section, we give a general overview of the concepts used in our algorithm.
Like all the previous algorithms for conductance testing, we perform a certain
number of random walks from a randomly selected starting vertex. To boost
the success probability of the process, we repeat this process in parallel from
a constant number of randomly selected starting vertices. The main technical
challenge in running random walks in parallel from different starting vertices is
the congestion on the edges. As done by [I1], we overcome this problem by not
sending the entire trace of the walk from its current endpoint to the next. For
each starting point ¢ and for all the walks going from u to v, we simply send the
ID of ¢ and the number of walks destined for v to v. At the end of this process,
for each starting point ¢, we simply store at each vertex v, the number of walks
that ended at v. Finally, each vertex v € V looks at the information stored at v
to check if the number of walks received from any starting vertex is more than
a certain threshold. If so, it outputs Reject and, otherwise, it outputs Accept.

Stickyness Helps: To show that the number of walks received by a vertex v is
sufficient to decide whether v is part of a good conductor or not, we proceed as
follows. A technical lemma from [22] implies that if a graph G is e-far from being
an a-conductor, then there exists a set S € V of sufficiently low conductance
(of cut (S,V \ S), see Definition [1)) and sufficiently high volume. It follows
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intuitively that it is likely that a short random walk starting from a randomly
selected starting vertex in S should not go very far and end in S. In particular,
we show that there exist a subset P C S such that short walks starting from
any v € P end in a large enough region 7' (subset of S) around v. We make
this notion precise by using spectral graph theory to show that a large portion
of the volume of low-conductance set S (as described above) belongs to sticky
vertices. We call a vertex v € S sticky if there exists a set T C S such that
v € T and short random walks starting from v end in T with a sufficiently
high probability. We define trap(v, T, ¢) as the probability that an ¢ length walk
starting from v € T C S ends in 7.

Trap Probability: Observe that our definition of trap probability is slightly
different from the one generally used in the analysis of similar problems. The
notion of trap probability is generally used to bound the probability of an ¢-step
random walk staying in a specific set for its entire duration (in each of the ¢
steps). See for example the definitions of remain and escape probabilities in [I3].
Similarly, Czumaj and Sohler also implicitly use the concept of trap probability
in their expansion tester [7] and they also bound the probability of a walk staying
inside a set of low conductance for its entire duration. We relax the definition
a bit and only care about the walk ending in a subset of a low conductance
set. This allows us to also use the walks that may have briefly escaped the low
conductance region when counting the number of trapped walks. Thus, if we
run sufficiently many walks from one of the sticky vertices, then a lot of them
will end in a subset T of S and some vertex in T will see a lot more walks than
any vertex in a good conductor should. To ensure that we pick one of the sticky
vertices as a starting vertex, we sample each vertex to be a starting vertex with
appropriate probability.

Spectral Approach: In the analysis of the convergence behaviour of random
walks (to the stationary distribution) using the eigenvectors and eigenvalues of
the random walk matrix M (first introduced by Kale And Seshadhri [19] and
later refined by [I1] for unbounded degree graphs), they divide the set of eigen-
vectors of M into heavy and light sets. All the eigenvectors with eigenvalues
above a certain threshold (appropriately chosen) are considered heavy and the
rest and considered light. This lets one drop all the light eigenvectors from the
analysis since their contribution to the convergence behaviour is minimal. In
our analysis, we use a similar technique where we focus on the heavy eigenvec-
tors of the random walk matrix M to lower bound the trap probability of a
random walk from an appropriately chosen starting vertex. To further tighten
our analysis, we further divide the set H of heavy eigenvectors into the heaviest
eigenvector €; (with the maximum eigenvalue 1) and the set H \ {€1}. We use
both (but separately and not as one bundle H) in our analysis. This also makes
intuitive sense since the heaviest eigenvector makes the maximum contribution
to the trap probability and treating it separately tightens our bound. We note
that [I9] and [I1] analyse a different measure - the discrepancy between their
final endpoint probability distribution and the stationary distribution; and the
contribution of €; to this measure is zero, so their analysis does not benefit from
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segregating the heaviest eigenvector from the set H of the heavy eigenvectors.

Organisation: The rest of the paper is organised as follows. In Section [2| we
provide necessary definitions and state some basic lemmas that are used in rest
of the paper. In Section [3] we provide a detailed description of our testing algo-
rithm. Section [3.1]is dedicated to the proof of our main theorem. For any missing
proofs not provided here, we refer the reader to the full version of the paper [3].

2 Preliminaries

Let G = (V, E) be an unweighted, undirected graph on n vertices and m edges.
We assume that the vertices of G have unique identifiers. For a given vertex
v € V, deg(v) denotes the degree of v. For sets A, B C V', we denote by E(A, B)
the number of edges that have one endpoint in A and the other in B. A cut is
a partition of the vertices into two disjoint subsets. Given a graph G = (V, E)
any subset S C V defines a cut denoted by (S, S), where S =V \ S.

Definition 1. Given a cut (S,S) in G, the conductance of (S,S) is defined as

T §
min{vol(S)vol(S)} where vol(A) = 3

the conductance of a cut (S,S) as the conductance of set S. The conductance of
a graph is the minimum conductance of any cut in the graph.

vea deg(v). Alternatively, we also refer to

Throughout the paper, all vectors & € R™ are column vectors. For a vector & €
R™, we denote by &' the transpose of Z. For two vectors # and ¢ in R”, (&, )
denotes their inner product. We denote the n x n adjacency matrix of the input
graph G by A, where A;; = 1, if (4,j) € E and 0 otherwise. Let D denote
the n x n diagonal degree matrix of G, where D;; = deg(i) if ¢ = j and 0
otherwise. The main technical tool in our analysis will be random walks on the
input graph G. We denote a random walk by its transition matrix M. For a pair
of vertices u,v € V, let My, be the probability of visiting « from v in one step
of M. In the standard definition of a random walk, M,, is defined as 1/ deg(v)
if there is an edge from u to v, and 0 otherwise.

We use a slightly modified version of the standard random walk called a
lazy random walk. A lazy random walk currently stationed at v € V, stays
at v with probability 1/2 and, with the remaining probability 1/2, it visits a
neighbour of v uniformly at random. Let M be a lazy random walk on G, the
transition probabilities for M are defined as follows: for a pair v,w € V such
that v # w, My, = ﬁg(v), if (v,w) € E and 0, otherwise. Further, for v € V,

we define M, = 1/2. Algebraically, M can be expressed as M = %(I +AD™Y),
where I is the n x n identity matrix. Let m be the stationary distribution of M.
In the stationary distribution of a lazy random walk, each vertex is visited with
probability proportional to its degree. More formally, 7 = %, where d is an
n-dimensional vector of vertex degrees and m is the number of edges in G.

In the following, we provide a brief exposition of relevant concepts from
spectral graph theory. We refer the reader to the textbook [6] by Fan Chung
for a detailed treatment of the subject. Note that for irregular graphs, M is
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an asymmetric matrix and may not have an orthogonal set of eigenvectors. For
analyzing random walks on G in terms of the eigenvalues and eigenvectors of its
associated matrices, we rely on a related symmetric matrix called the normalized
Laplacian of G denoted by N. The normalized Laplacian N is defined as

N=1I1-D"Y2AD~1/2,
We show below a way to express M in terms of N.

M =1/2(I+AD ") =1-1/2(I - AD™)
=1—1/2DY*(I — DY2AD~Y?)D~Y/2 = pY/?(] — N/2)D~'/2,

Since N is a symmetric matrix, it has a set of n real eigenvalues and a cor-
responding set of mutually orthogonal eigenvectors. Throughout we let w; <
wy < ... < w, denote the set of eigenvalues and 51,527...,5; denote the
corresponding set of eigenvectors. It is well known that eigenvalues of N are
0=w; <wsy <...<w, <2.1Itis easy to verify that Vd= (Vdi,\dz, ..., \/dy,)
is the first eigenvector 51 of N with corresponding eigenvalue wy; = 0. Each of the
orthogonal eigenvectors (; can be normalized to be a unit vector as & = G; /|G|
Together, these orthogonal unit eigenvectors define an orthonormal basis for R™.
Observe that the first unit eigenvector €7 of this orthonormal basis is \/c? / V2m.
Also observe that the stationary distribution 7 of M is equal to D/2¢; /v/2m.

It is easy to verify that for every unit eigenvector €; of N, we have a corre-
sponding right eigenvector D'/2¢; of M with eigenvalue 1 — w; /2.

On a connected, graph, a lazy random walk M can be viewed as a reversible,
aperiodic Markov chain with state space V' and transition matrix M.

Definition 2. Let M be a reversible, aperiodic Markov chain on a finite state
space V' with stationary distribution m. Furthermore, let w(S) = > g m(v). The
Cheeger constant or conductance ¢(M) of the chain is defined as

. ZxES,yGV\S ﬂ-(l‘)M(gh .’17)
HM) = scv:rﬁ{srl)gl/z 7(9) ’

Here M(y, x) is the probability of moving to state y from state  in one step.

The definition of the lazy random walk matrix M and the the fact that the
stationary distribution m of our lazy random walk is cf/ 2m together imply that
the Cheeger constant ¢(M) (henceforth, ¢,) of the walk M is

_ E(U,V\U)
" Uevvol(U)<vol(V)/2 2 - vol(U)

For an a-conductor, we get that

-
*

I
[N e)
=
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3 A Distributed Algorithm for Testing Conductance

Given an input graph G = (V, E), a conductance parameter «, and a distance
parameter €, our distributed conductance tester distinguishes, with probability
at least 2/3, between the case where G is an a-conductor and the case where G
is e-far from being an §2(a?)-conductor. A key technical lemma from [22] im-
plies that, if G is e-far from being an 2(a?)-conductor, then there exists a
low-conductance cut (.9,.9) such that vol(S) > em/10. We build on this lemma
to show, using spectral methods (see Lemmaand Corollary7 that there exist
a set of sticky vertices with high enough volume in S. Recall that a vertex z in a
low-conductance set S is sticky if there exists a large enough subset 7' C S such
that © € T and a short random walk starting from x ends in T with a sufficiently
high probability. Intuitively, random walks starting from sticky vertices tend to
stick to a small region around them. This leads to some vertex in the graph
receive more than their fair share of number of walks. On the other, hand if a
graph is a good conductor, then the random walks from anywhere in the graph
mix very quickly. This ensures that the fraction of the total number of walks
received by any vertex in the graph is proportional to its degree.

We randomly sample a set @ of £2(1/¢€) source vertices (each vertex v € V
is sampled with probability proportional to its degree). Then we run a certain
number of short random walks from each source in (). Since a large part of
the volume of our high-volume, low-conductance set S consists of only sticky
vertices in a bad conductor, some vertex in @ will be sticky with sufficiently
large probability. We use the number of walks received by each vertex from
a specific source as a test criteria. We implement sampling of the set @ by
having each vertex v sample itself by flipping a biased coin with probability
5000 - deg(v)/(2em). Therefore, we get that |Q] = 5000/e in expectation. It
follows from Chernoff bound that the probability of @ having more than 5500/¢
vertices is at most e=23/¢ < =23, Then, we perform K random walks of length
{ starting from each of the chosen vertices in Q. The exact values of these
parameters are specified later in the sequel. The pseudocode of the algorithm is
presented in Algorithm [} At any point before the last step of random walks, each
vertex v € V' contains a set W of tuples (g, count, i), where count is the number
of walks of length ¢ originating from source ¢ currently stationed at v. All these
walks are advanced by one step (for £ times) by invoking Algorithm [2| At the
end of the last step of the walks, Algorithm [2] outputs a set of tuples C,,. Each
tuple in C, is of the form (g, count), where count is the total number of ¢-step
walks starting at ¢ that ended at v. Then, in Algorithm [T} processor at vertex v
goes over every tuple (g, count) in C, (see Lines [[1] to [15] of Algorithm [I)), and
if the count value of any of them is above a pre-defined threshold 7, it outputs
Reject. If none of the tuples have their count value above threshold, it outputs
Accept. The exact value of 7 is specified later in the sequel.

When advancing the walks originating at a source g € @) by one step, we do
not send the full trace of every random walk. Instead, for every source q € @,
every vertex v € V only sends a tuple (g, k, %) to its neighbour w indicating that
k random walks originating at ¢ have chosen w as their destination in their ith
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step. Since the size of @ is constant with high enough probability, we will not
have to send more than a constant number of such tuples on each edge. Moreover,
each tuple can be encoded using O(logn) bits (given the values of parameters
¢ and K specified in the sequel). Hence, we only communicate O(logn) bits
per edge in any round with high probability. To ensure no congestion, we check
the length of every message (Algorithm |2} lines [13[-[15] ). If a message appears
too large to send, we simply output Reject on the host vertex and abort the
algorithm. Note that the number of tuples we ever have to send along any edge
is upper bounded by |Q| and |Q| < 5500¢, with probability at least 1 — e~23.
Therefore, we may rarely abort the algorithm before completing the execution
of the random walks. If that happens, then the probability of accepting an a-
conductor is slightly reduced. Hence the following observation follows:

Observation 1 Algorithm[1] rejects an a-conductor due to congestion with prob-
ability at most e~23.

We set the required parameters of Algorithm (1] as follows:

— the number of walks K = 2m?2,
— the length of each walk ¢ = % logn
— the rejection threshold for vertex v € V, 7, = m - deg(v) - (1 + 2n~1/4).

Algorithm 1 Distributed algorithm running at vertex v for testing conductance.

1: Algorithm DISTRIBUTED-GRAPH-CONDUCTANCE-TEST(G, ¢, , £, K)
2: > The algorithm performs K random walks of length ¢ from a set Q of ©(1/¢)
starting vertices, where every starting vertex is sampled randomly from V.

3: £ : The length of each random walk

4: K : The number of walks

5: W, : Set of tuples (g, count, i) > where count is the number of walks
originating at source ¢ currently stationed at v

6: Cy : Set of tuples (g, count) > where count is the total number of ¢ step walks
starting at ¢ that ended at v

7 Ty : maximum number of /-length walks v should see from a given source on an

a-conductor.

8: Flip a biased coin with probability p = 5000 deg(v)/(e2m) to decide whether to
start K lazy random walks.

9: If chosen, initialise W, as W, + {(v, K, 0)}.

10: Call Algorithm [2] for £ synchronous rounds.

11: while there is some tuple (g, count) in C, do

12: if count > 7, then > Received too many walks from gq.
13: Output Reject and stop all operations.

14: else

15: Remove (g, count) from C,

16: Output Accept
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Algorithm 2 Algorithm for moving random walks stationed at v by one step.

1: Algorithm MOVE-WALKS-AT-v
2: W, : Set of tuples (g, count, ) > where count is the number of walks
originating at source g currently stationed at v just after their ith step..
3: D, : Set of tuples (g, count, dest) > where count is the number of walks
starting at ¢ that are to be forwarded to dest.
Cy : Set of tuples (g, count) > where count is the total number of walks
starting at ¢ that have v as their final destination or endpoint.
D, + 0.
while there is some tuple (g, k,4) in W, do
if i # L then > If not the last step, process the next set of destinations.
Draw the next set of destinations for the k walks and update the set D,.
Remove (q, k,7) from W,
> If last step of the walks, update how many ended at v.
10: Update C,, to reflect the k walks that ended in v.

> Prepare the messages to be sent
11: while there is some tuple (g, count, dest) in D, do

>

12: Add tuple (g, count,i+ 1) to the message to be sent to dest
> Check each message for length

13: For each message M to be sent

14: if the number of tuples in M > 5500/¢ then

15: Output Reject and stop all operations.

16: Send all the messages to their respective destinations.
> Process the messages received

17: For each source s from which a total of scount walks are received,

18: add tuple (s, Scount, @ + 1) to W,

3.1 Analysis of the Algorithm

The main idea behind our algorithm is that, in a bad conductor, a random walk
would converge to the stationary distribution more slowly and would initially
get trapped within sets of vertices with small conductance. We provide a lower
bound on the probability of an /-step random walk starting from a vertex chosen
at random (with probability proportional to its degree) from a subset T of a low-
conductance set S finishing at some vertex in 7.

Definition 3. Fora setT CV, and a vertexu € T, let trap(u, T, ¢) (henceforth
trap probability) denote the probability of an £-step random walk starting from
u € T finishing at some vertex in T. When the starting vertex is chosen at
random from T with probability proportional to its degree, we denote by trap(T, £)
the average trap probability (weighted by vertex degrees) over set T': trap(T, {) =

voll(T) ZuET deg(u) : trap(ua T, E)

Given a set S of conductance at most § and T' C S, we establish a relationship
between the average trap probability trap(7,¢) and conductance § of S in the
next two lemmas. We first consider the case ' = S in Lemmal|I] and then obtain
a bound when T is a subset (of sufficiently large volume) of S in Lemma
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Lemma 1. Consider a set S C V such that the cut (S,S) has conductance at
most §. Then, for any integer £ > 0, the following holds

Proof. Let 1g denote the n-dimensional indicator vector of set S. We pick a
source vertex v € S with probability deg(v)/vol(S), where deg(v) is degree of
v and vol(S) is the sum of degrees of vertices in set S. This defines an initial
probability distribution denoted by p2 on the vertex set V, where, pg(v) =
d(v)/vol(S) for v € S and p = 0 for v ¢ S. Note that g = ﬁ(S)D]ls, where,
D is the diagonal degree matrix of G. Denote by M the transition matrix of a
lazy random walk on G. The endpoint probability distribution ﬁé of an /-step
lazy random walk on G starting from a vertex chosen from S according to pg is

trap(S, ) >

ps = M'Fg = (1/vol(S)) M D1s.

Recall that M can be expressed in terms of the normalized Laplacian matrix
N =1-D"Y2AD'2 of G as M = D'/*>(I — N/2)D~'/?. (See Section [2])
It follows therefore that p% = (1/vol(S)) (D2 (I — N/2) D_1/2)Z Dls.
The trap probability trap(.S, £) of an ¢-step lazy random walk starting from a
random vertex in S picked according to pg can be expressed as the inner product
of vectors ﬁé and 1g:

1 1 ¢
trap(S, £) = 1TM‘D1g = —— 1§, (D1/2 I—NJ2 D—1/2) D1
rap(S6) = gy L § 7 Jol(S) S (I=N/2) §
1 T
= D'?1g) (I - N/2)" (D'?15).
i (L) = Nj2) (DV2)
Recall that 0 = wy; < wy < --- < w, < 2 are the eigenvalues of N and
@1, €, ..., &, denote the corresponding unit eigenvectors. We can express D'/21 ¢

in the orthonormal basis defined by the eigenvectors of N as D'/21g = > i
It follows that
> o =(D'?15,D'1g) = vol(S). (2)

Taking the quadratic form of N for vector D'/?1g, we get
) N(DY?1g) = (D'/?15) 1(DY?1g) — (DY21g) (D~ Y2AD~Y/2)(D'/?1g)
— vol(S) — (DY21g) (D~Y2AD~Y/2)(DY?14) = vol(S) — 1T ALs.

(D1/2:ﬂ.s

Note that the term 1L Alg corresponds to the number of edges in S x S. There-
fore. it follows that
(DY214)  N(DY?15) = E(S, ).

Since the conductance of the cut (S, S) is at most J, we have that

(DY214) N(DY?1g) = E(S,5) < & - vol(S). (3)
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Expressing D'/?1g as 3, a;€;, the quadratic form of N for D/21g can also be
written as

(Dl/g]l ) Dl/Q]ls Zalel (Z aié}) = Za?wi. (4)
Combining from Eq.s (2 , and . we get that
(DV214)" (I — N/2)(D/?15) = Za . Za wi > vol(S) — évol(S) (5)

Recall that 0 = w; < wy < ... < w, < 2 are the eigenvalues of N and let
€1,€s,...,€, be the corresponding unit eigenvectors. Correspondingly, we can
define a set of eigenvalues 1 = Ay > Ay > ... > A, > 0 and the same set of
eigenvectors €1, €, ..., e, for I — N/2. Notice that for each i, \; = 1 — w;/2.
With this translation of eigenspace, we get that

(DY214)" (I — N/2)(D/?15) = ZaQ)\

We call the quantity >, a? the coefficient sum of the eigenvalue set. We also
call an eigenvalue \; of I — N/2 (and the corresponding eigenvector €;) heavy
if \; > 1 —35. We denote by H the index set of the heavy eigenvalues and let
H be the index set of the rest. Since ., a?X; > (1 — §/2) vol(9) is large for a
set with small conductance, we expect many of the coefficients a? corresponding
to heavy eigenvalues to be large. This would slow down the convergence of the
random walk and make the trap probability for our low-conductance set S large.
The following lemma establishes a lower bound on the contribution of the index
set H to the coefficient sum.

Lemma 2. For {a;};, H, and s as defined above, 3", a2 > 2 vol(S).

See the full version [3] for the proof. Lemma gives us a lower bound on the
average trap probability of set S in terms of the conductance of the cut (S, 5).

—_

trap(S, ¢) = (D'/?15)' (I - N/2)"(D"/*15)

1 o\ ' o
i e -
1

?

.
= F(S)(Z ;€;) (; Qi M) vol Zaz)\f

?

Further, focusing on the contribution of the index set H to the trap probability,

— 244
trap(S, () = (S) a?\E > vol Za A

1
2 + Z 29
vol(S e

> Voll( 5 (af + (5v0l(S) /6 — a?) (1 — 36) ) (6)
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The last inequality follows by the definition of a heavy eigenvalue and by Lemma|2]
(we have that ), aF > 5vol(S)/6). By definition, A\; = 1 and €, = \/E/m,
where, d is the vector of vertex degrees. It follows that a; = <D1/2157€1> =
vol(S)/v/2m. Plugging in the values of a; in @, we get

502 e (S (B) Yy
S G (Z - V‘;lff)) (1-30)".

Next lemma states that every subset T' C S of large enough volume has high
trap probability.

Lemma 3. Consider sets T C S CV, such that the cut (S, g) has conductance
at most § and that vol(T) = (1 — n) vol(S) for some 0 < n < 5/6, then for any
integer £ > 0, there exists a vertex v € T such that

vol(T)
2m

trap(v, T, ¢) > - vol(T)
m

+(fa-vomr - S a-wl o

Refer to the full version [3] for the proof.
Lemma [3] implies the following corollary.

Corollary 1. Consider a set S C V, such that the cut (S,S) has conductance
at most 0. Given any 0 < 1 < 5/6 and integer £ > 0, there exist a set of volume
at least n-vol(S), such that every vertex in this set is sticky. In other words, for
every vertex v is this set, there exists T C S of volume vol(T) = (1 —n) - vol(.S)
such that trap(v, T, €) is given by .

Refer to the full version [3] for the proof.
We build on the following combinatorial lemma from [22]:

Lemma 4 (Lemma 9 of [22]). Let G = (V, E) be an m-edge graph. If there
exists a set P C'V such that vol(P) < em/10 and the subgraph G[V \ P] that is
induced by the vertex set V '\ P has conductance at least ¢, then there exists an
algorithm that modifies at most em edges of G to get a graph G' = (V, E') with
conductance at least ¢/'3.

In the following lemma, we show the existence of a high volume set A with low
enough conductance in a graph that is far from being a good conductor.

Lemma 5. Let G = (V, E) be an n-vertex, m-edge graph such that G is e-far
from having conductance at least o2 /2880, then there exists a set A C'V such
that vol(A) > em /10 and conductance of cut (A, A) is at most a?/960.

Refer to the full version [3] for the proof.
Finally, we need the following classical relation between the conductance or
Cheeger constant of a Markov chain and its second largest eigenvalue.
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Theorem 2 ([2U119]). Let P be a reversible lazy chain (i.e., for allx, P(x,x) >
1/2) with Cheeger constant ¢.. Let Ao be the second largest eigenvalue of P.

2
Then, % <1 -\ < 26,.
We can now state our main theorem.

Theorem 3. For an input graph G = (V, E), parameters 0 < a < 1 and € > 0,
the distributed algorithm described in Section[3

— outputs Accept, with probability at least 2/3, on every vertex of G if G is an
a-conductor.

— outputs Reject, with probability at least 2/3, on at least one vertex of G if G
is e-far from any (a?/2880)-conductor.

The algorithm uses O(logn/a?) communication rounds.

Proof. Let us start by showing that, with high enough probability, the algorithm
outputs Accept on every vertex if G is an a-conductor. By Observation[I]} we may
reject G and abort the algorithm due to congestion with probability at most e ~23.
For now, let us assume that this event did not occur. Denote by A the second
largest eigenvalue of the lazy random walk matrix M on G. It is well known (see,
e.g., [27]) that, for a pair u,v € V, |[M*(v,u) — deg(v)/(2m)| < \§ < e~ t1=A2),

It follows from Theorem [2] that ‘Mz(v,u) — d(;gin(f) < e—l9%/2 < e_%, where

the second inequality above follows from the fact that, for a random walk on an
a-conductor, ¢, = a/2 (see (I))). Thus, in an a-conductor, for ¢ = (32/a?)logn,
any starting vertex u € V' and a fixed vertex v € V', we have that

deg(v)/(2m) — 1/n* < M'(v,u) < deg(v)/(2m) + 1/n*.

Recall that the number K of random walks and rejection threshold 7, for vertex v
are set as K = 2m? and 7, = m-deg(v)-(14+2n~'/%). Let X,_,, denote the number
of random walks starting from w that ended in v. It follows that
d 2m?
EX,, = K - M'(v,u) < 2m?- deg(v) | 2m” _ m - deg(v) + 1.

’ 2m n4
The random variable X, , is the sum of K independent Bernoulli trials with
success probability M*(v,u). Applying multiplicative Chernoff bounds, we get
the following for large enough n.

1/2

Pr(Xy, > (14+n" ") - E[X,,]] < exp(—n~"2- (m - deg(v) +1)/3) < exp( )-

The second inequality above follows from the fact that m - deg(v) >n —1 for a
connected graph. Thus, each vertex y receives at most

(140" E[X,.] < (14074 (m-deg(v) +1) < m-deg(v)+2m/n*/*-deg(v)

walks from u, with probability at least 1 — n~2. Taking union bound over all
y € V and all starting vertices u, we get that, with high probability, our al-
gorithm outputs Accept on every vertex of G for every starting point if G is
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an a-conductor. Finally, taking the union bound over the events that we re-
jected due to congestion or due to receiving too many walks at some vertex, the
claim follows.

Next, we analyse the probability of rejecting if G is far from having the desired
conductance. By Lemma [5] there exists a set S C V, with vol(S) > em/10, such
that the conductance of S is at most «?/960. Further applying Corollary
with n = 5/486 on S as above, we get that there exists a set P of sticky vertices
such that vol(P) > (5vol(S))/486 and for every v € P, there exists a set T C S,
vol(T') = (481 vol(S))/486, such that

4
vol(T) 160 vol(T) a?
T e 12
trap(v, T,0) 2 = 7= + <243 om 320

S vol(T') N <160 B V01(T)> - o—a?1/160

V

- 2m 243 2m
where the last inequality follows from that 1 —x > e=2% for 0 < x < 1/2,
provided that o?/320 < 1/2. For £ = (32/a?)logn and vol(T) < vol(S) <
vol(T) 1

vol(V')/2 = m, we get that, for every v € P, trap(v,T, () > 5~ + % s v
Let us assume that a vertex u € P C A is picked as the starting vertex of K =
2m? random walks in G. By Corollary a set T with vol(T') = (481 vol(S))/486
with trap(v, T, £) > vol(T)/2m + 77/486 - n~ /% will exist, for every v € P. Also
note that vol(T) < vol(S) < vol(V) = 2m. For some appropriate constant ¢y,
vol(T') = ¢; - m = ©(m). Further, let Y,, 7 be the number of walks that ended in
the set T' (corresponding to u as in Corollary [1]) after ¢ steps. It follows that

vol(T) 77 154 m?
2m 486 486 nt/5’

EY,r > K - ( n_1/5> >m-vol(T) +

Let ¢ = 47?76. By an application of Chernoff bound,we get
Pr [Yu,T < (1 ~3(m- vol(T))*W) E[Y%Tﬂ
< exp (—4(m - vol(T)) " - E[Y, 1))
< exp <74(m ~vol(T)) ™t - (Vol(T) -m+ 202m2n*1/5>)
<exp(-4-(1+ 0017 <1/10.
With probability at least 9/10,the total number of walks received by set T is
> (1 - 3(m - vol(T))~1/2) (m -vol(T) + 262m2/n1/5)

> m - vol(T) + 2¢am? /n/® — 3y/m/vol(T) — 6¢cam®/ 2 (vol(T)) =/ 2n=1/5,

The number of walks received by any vertex v € T' is minimum when the walks
within 7" have mixed well reaching their stationary distribution with respect to
T. Tt follows that the number of walks received by a vertex v € T' is at least

m? vm - /vol(T) m3/?
deg(v) - <m +2e2 nl/5 vol(T) 5 vol(T) ~ ez (vol(T))3/2n1/5 |~
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Recalling that vol(T') = ¢;m, the expected number of walks received by a vertex
v €T is at least

co m 3 Co co m
deg(v)-(m + 2am — ﬁ — 6(01)3/2711/5> = deg(v)~<m + 207% — O(l)) .
Therefore, on average, vertex v € T of degree deg(v) receives more than the
threshold 7, = m - deg(v) + 2m - deg(v)/n'/* number of walks for large enough
n. Thus, some vertex in T" will receive more than 7, walks and output Reject.

Let &£ be the event that none of the vertices in P is sampled to be one of
the starting points in (. Since each vertex u € V is sampled with probability
5000 - deg(v)/(2¢ - m) and vol(P) > (5¢ - m) /4860, it follows that

Pr(€] < (1 — 5000 - deg(v)/(2¢ - m)) 85 < =25 = (.08.

Taking a union bound over the probability of the event £ and the probability of
set T around a starting vertex u € P not receiving enough walks, we get that
with probability at most 0.1 + 0.08 = 0.18, no vertex will output Reject. Thus,
our distributed algorithm will output Reject with probability at least 2/3, on at
least one vertex of G. Finally, the upper bound on the number of communication
rounds follows from the length ¢ = % logn of each random walk.
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