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Abstract: Scientific progress in many technologies exploits new materials. The unique 

properties of a wide range of Rare Metals (RMs) make them key inputs to achieve the 

functionality of emerging technologies. The speed of technological progress can therefore be 

influenced by the availability of necessary RM materials. This paper discusses these relations 

and provides a first exploratory empirical analysis of the link between critical raw materials 

and frontier technological innovation. By text mining 5,146,615 USPTO patents during the 

period 1976–2015, we explore the dependence of new inventions of 13 key RMs, finding that 

the latter play an increasingly important role as the material basis of modern technologies: in 

the four decades observed, more than 1/10 patents rely on at least one RM. This dependence 

increases significantly over time and is particularly high for emerging technologies such as 

semiconductors, nanotechnology, and green energy. Further, we adopt a panel of 5644 

technology subgroup-RM pairs to explore the impact of variations in RM supply. The results 

show that, controlling for science & technology push and demand-pull factors, innovation in 

RM-based technologies is positively associated with its supply conditions, contributing to the 

understanding of the shifts of critical materials' use in frontier technologies.  
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1. Introduction  

Through the Stone Age to that of Bronze, Iron, and up to the modern times, technological 

progress has always been accompanied by tremendous shifts in the utilization of material 

resources. Especially after the emergence of Material Science in the 20th century, the 

development of modern technologies in a variety of fields has shown growing dependence on 

advancements in material usage, unveiling new properties of existing materials but also making 

their use more diversified in achieving specialized functionalities and meeting specific market 

demands. Indeed, material changes and evolving technologies have long been recognized as 

one key dimension in technological paradigm shifts (Dosi, 1982; 1988). 

We are currently entering the so-called “Age of Rare Metals” (RMs) (Abraham, 2015) – that 

is, a special group of raw materials are becoming increasingly prominent in high-tech industries 

and are often regarded as “technology metals” with great criticality at the innovation frontier 

(Graedel et al., 2015; European Commission, 2020). Differently from major and base metals 

(e.g., copper, iron, and aluminium), RMs can be considered as industrial “vitamins” or “spices”

– only used in very small quantities, but providing unique and essential chemical, electrical or 

mechanical properties, and leading to extensive applications in a variety of high-tech products, 

such as semiconductors, catalysts, engines, turbines, batteries, as well as medical equipment 

and weapons (e.g. Gunn, 2014; Abraham, 2015; Watari et al., 2020).  

While the importance of RMs for technological innovation is steadily expanding, they also 

face significant supply risks (e.g., National Research Council, 2008; Humphries, 2010; 

European Commission, 2012; Hayes & McCullough, 2018). These are related to depletion due 

to mineral scarcity, geographical concentration of deposits, political instability of producing 

countries, geopolitical risks in global RM trade as well as low recycling rates (Radetzki, 2008; 

Narine, 2012; Lederer & McCullough, 2018). Taken together, such supply conditions may 

constrain industrial development and influence the trajectory of modern technologies. For 

example, the solar energy industry and the corresponding technologies are seriously affected 

by fluctuations in the supply of gallium (Ga) and indium (In) (Gunn, 2014). On the other hand, 

RM extraction may give rise to serious negative externalities in the supply locations: this is the 

case, for instance, of tantalum and cobalt, labelled “conflict minerals” as specifically associated 

with armed conflict, human rights abuses and corruption. Despite such criticalities in frontier 

technologies, neither innovation studies nor economics research have so far paid enough 

attention to the topic. 

The case of RMs provides a relevant context to analyse the material shifts in frontier 

technologies, and the interplay between changing material supply conditions, technological 

progress and market demands. Specifically, in what follows we attempt to address two crucial 

https://www.sciencedirect.com/science/article/pii/S0301420718301296#bib36
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research questions:  

1. To what extent do different areas of modern technologies use various RMs?    

2. Are RM supply conditions associated with the innovation output of RM-based technology 

areas? 

Conceptually, we draw upon Dosi’s classical technology paradigm framework (1982, 1988) 

to explore technological reliance or dependence on RMs or, in other words, to investigate the 

use of RMs as a prerequisite for the commercialization of technology. This dependence is 

jointly influenced by basic discoveries in Material Science on RMs’ properties, market needs 

demanding RMs’ functionalities, as well as the fragile supply conditions of RMs. Empirically, 

we first examine the technological use of RMs by identifying RM-related keywords in the 

USPTO patent text. We observe a high dependence: namely, 10.87% of 5,146,615 patents 

granted over the period 1976-2015 mention at least one RM. Subsequently, we estimate a panel 

model of 5,644 technology subgroup-RM pairs to explore the relationship between RM supply 

variation – measured by the annual global metal production – and the innovation output of 

technological areas using RMs, also controlling for science & technology push and demand-

pull factors. A major challenge in estimating our regression model stands in the endogeneity of 

the relationship under analysis, whereby technology developments may reversely influence 

metal production decisions; in addition, they can be simultaneously influenced by unobservable 

factors, such as policy changes. To alleviate this potential issue, we develop an instrumental 

variable (IV) that captures the exogenous variation of RM supply by considering the metal 

companionability and co-production relationship between RMs and their geological hosts, i.e. 

the base metals (Nassar et al., 2015; Sprecher et al., 2017). Our IV results point to a positive 

association between RM supply and technology trajectories, which is highly robust to the use 

of alternative IVs, regression models, samples and identification methods of RM-based 

technologies. These findings bring support to the idea that changes in the supply of critical raw 

materials may directly influence the dynamics of frontier technological innovation and 

paradigm shifts. 

Our paper contributes to the literature in two main respects. First, we extend the debate on 

technological evolution to a scarcely explored aspect, that is, the shift of critical materials’ use, 

suggesting that changes in their supply conditions could be a driving force of technology 

dynamics. Innovation processes lead to production paradigm shifts and new combinations of 

production factors (Schumpeter, 1949). Seminal contributions in economics have argued that 

technological innovation solves or improves issues related to resource scarcity, enabling society 

to overcome resource supply constraints and achieve sustainable development (e.g., Solow, 

1974; Stiglitz, 1974; Rosenberg, 1976; Acemoglu et al., 2012). However, such a “technology 
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optimism ”  overlooks the endogeneity of technological change: innovation itself may be 

reversely influenced by material and resource supply conditions. It is less clear whether and 

how material and resources’ availability in turn affects technology dynamics, especially when 

we consider some critical raw materials with relatively low recycling and substitution rates like 

RMs (Graedel, 2015). In this paper we argue that, because of their unique properties, the supply 

condition of RMs may become the potential factor influencing the innovation dynamics of 

frontier technologies, contributing to our understanding of the trade-off between economic and 

technological dimensions in paradigm shifts (Dosi, 1988). 

Second, this paper contributes to current literature on resource criticality, which has mainly 

focused on material flow analysis and supply chain management (e.g., Kim & Davis, 2016; 

Sauer & Seuring, 2017); criticality assessment (e.g., Hayes & McCullough, 2018); international 

regulations, as well as the corresponding behaviours and responsibilities of firms (e.g., Diemel 

& Cuvelier, 2015; Hofmann et al., 2018). Although regarded as “technology metals”, RMs have 

rarely been systematically studied from a broad technological perspective. It is widely 

recognized in the literature that modern technology is strongly dependent on such critical raw 

materials, and possible supply risks may cause shocks to technological change, particularly in 

high-tech industries (Eggert, 2010). However, it is still unknown how intense and varied this 

dependence is: following Diemer et al. (2022), this paper attempts to quantitatively measure 

technological reliance on RMs through patent text mining.  

The paper is organized as follows: Sections 2 reviews the relevant literature and establishes 

the theoretical foundations of our analysis; Sections 3 explains the selection and data sources 

for both RMs and technologies, as well as the text mining methods, whilst Section 4 calculates 

the technological dependence on RMs; Sections 5 and 6 estimate the relationship between RM 

supply and innovation dynamics and test the robustness of the findings; Section 7 concludes, 

providing further research directions.  

 

2. Literature review  

2.1 Technological paradigm and material inputs 

The literature on the driving forces of technological dynamics is rich and longstanding. In 

his seminal papers, Dosi (1982, 1988) introduced the concept of technological paradigm as a 

widespread cluster of innovations which represents a response to a related set of technological 

problems, based on a common set of scientific principles and on similar organisational methods.  

This perspective includes three core aspects, that is: “1. The needs that are meant to be fulfilled; 

2. The scientific principles utilized for the task and 3. The material technology to be used” 
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(Dosi, 1988, p.1127). Most subsequent research has focused on the first two elements, giving 

rise to the ‘demand pull versus science & technology push’ debate on the sources of 

technological change (e.g., Mowery & Rosenberg, 1979). In this line of research, science & 

technology push and demand pull interactively shape frontier innovation, with scientific 

knowledge providing the trajectories of the innovative effort and demand working as a crucial 

force in directing the trajectory towards the right economic targets (e.g., Dosi, 1982; Kline & 

Rosenberg, 1986).  

The third aspect of the above definition, implying a physical foundation of technology and 

the changing patterns of material use, has been mostly neglected by social scientists’ attention. 

Yet, an explicit consideration of critical materials and the related properties they possess is 

essential for fully capturing technology dynamics, as such materials may be key for problem 

solving within a certain technology paradigm (Dosi, 1988). Furthermore, a fundamental feature 

of the evolution of modern technologies pertains to the shift in materials’ use – whereby radical 

technology and paradigm changes are always closely related to changing materials, with the 

appearance of new critical elements, as well as new processes and uses for existing ones and 

disappearance of those outdated and harmful (Cameron & Metcalfe, 1987; Tilton, 1991). 

In this context, as critical raw materials, RMs provide a good case for analysing the 

mechanism of material use shifts in frontier technologies. Recent academic research emphasises 

a growing technological dependence on RMs, which work as essential components to achieve 

the functionality of technologies especially relevant for the two on-going main technological 

transitions (Grandell et al., 2016). In fact, almost all core green technologies, including solar 

electricity, wind power, fuel cells, hydrogen production and storage, electric cars and energy-

efficient lighting are heavily dependent on different RMs (Grandell et al., 2016; Valero et al., 

2018). Likewise, alongside the advent of industry 4.0, revolutionary technology breakthroughs 

in digitalisation and artificial intelligence have significantly increased the complexity and 

sophistication of electronic equipment, raising the demand for various RMs as essential inputs. 

For instance, the elements used in computing devices grew from 11 in the 1980s to 15 in the 

1990s to 60 in the 2010s (Zepf & Achzet, 2015), including RMs such as lithium (Li) and cobalt 

(Co) in batteries, gallium (Ga) and germanium (Ge) in integrated circuits, tantalum (Ta) in 

capacitors, molybdenum (Mo) in transistors as well as indium (In) in displays (e.g., Eggert, 

2010; Gunn, 2014).  

Frontier technologies have thus experienced significant changes in their reliance on RMs, 

which occur through the competition and substitution process between two technology 

trajectories, the RM-based trajectory and that non-RM-based. Drawing upon the technology 

paradigm framework by Dosi (1982; 1988), we explore the relevance of RMs for both the 

https://www.sciencedirect.com/science/article/pii/S0048733312000820#bib0200
https://www.sciencedirect.com/science/article/pii/S0048733312000820#bib0430
https://www.sciencedirect.com/science/article/pii/S0048733312000820#bib0430


6 

 

demand and the supply sides of innovation. The changing dependence on RMs can be 

understood as a process fundamentally driven by the progress in basic science which discovers 

RM properties, is enabled by the market demand for functionality improvements based on such 

properties, and is also influenced by the dynamics of RM supply.  

2.2 Science and technology push and RMs 

 From the science & technology-push perspective, scientific discoveries and technological 

breakthroughs set new innovation paradigms by defining entirely new modes of problem 

solving, and shaping the technological dynamics by changing the direction of R&D investments. 

Science and technology are becoming increasingly interdependent and inseparable in the 

modern society. One key scientific development in the 20th century was the emergence of 

Material Science in the 1960s as an amalgam of physics, chemistry and metallurgy, advancing 

the understanding of components, structure, properties, application and performance of a 

variety of materials. Over the last decades, many technological innovations have taken 

advantage of the progress in Material Science (Dosi & Nelson, 2010): technology paradigm 

shifts have increasingly been connected to discoveries on material properties and changes in 

material use.  

Recent scientific progress has deepened the understanding of intrinsic properties of RMs – 

the unique electrical, thermal, chemical, and optical features gradually emerging, and 

expanding the boundaries within which they can be applied in frontier innovation. Many radical 

technological changes and paradigm shifts were triggered by key “Science Events” of 

breakthrough discoveries on specific RMs (Thirtle & Ruttan, 1987). For example, the material 

scientists Herb Maruska, in the 1970s, and Nobel Prize Isamu Akasaki, in the 1990s, discovered 

the properties of Gallium which resulted in the invention of blue and white LED. Such a 

discovery laid the foundation for a new paradigm in the lighting technologies, replacing the old 

one based on incandescent lamps; subsequent inventions have witnessed a significant material 

use shift from Tungsten to Gallium1. Another renowned example is the utilization of Uranium, 

whose discovery dates back to 1789, but whose properties remained unknown until 1938, when 

experiments by the chemist Otto Hahn led to the discovery of nuclear fission: this resulted in 

the application of Uranium in nuclear weapons in 1945 and the ensuing nuclear energy 

technologies. At the same time, continuous scientific advancement on input materials led also 

to incremental changes within the same technology paradigm (Rosenberg, 1976, 1982) and to 

the emergence of new technological trajectories. An example can be seen in the progress of 

studies on photovoltaic materials, leading to different generations of solar energy technologies. 

This process was accompanied by dramatic material shifts from mono-crystalline silicon cells 

 
1. See also Figure 2 in this paper. 
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to multi-crystalline ones, moving then to the 2nd generation, with film cells using Cadmium, 

Telluride, Selenium, and later Gallium and Indium. These examples suggest that, due to 

scientific progress, the range of useful RM materials for the global economy and society has 

gradually expanded, allowing new uses and leading to a higher dependence of frontier 

technologies on RMs. In addition, scientific progress not only influences the demand for RMs, 

but a deeper understanding of their properties may also improve the efficiency of metal 

production and increase the supply, which in turn reinforces technological paradigms centred 

on RMs. 

2.3 Market and demand pull for RM-based technologies 

Besides scientific discoveries, research has also maintained that the demand for 

technology plays an important role in the establishment and selection of technology paradigms 

(e.g., Di Stefano et al., 2012). Not only do market signals work as selective devices, but they 

can also direct innovative activities and technical changes within a large set of possibilities 

allowed by science (Rosenberg, 1973; Dosi, 1978). Various economic factors are important in 

shaping the direction of the RM-based innovative processes.  

Consumers’ demand for product improvements is a fundamental driver of innovation, 

encouraging inventors to seek alternative technological trajectories with functional 

improvements, including searching for advanced materials. The selection among trajectories 

happens through market competition between products using different technologies. The 

adoption of RM-based technologies generates substantial improvements in the performance of 

existing products, also leading to the creation of entirely new goods, which can better fulfil 

customers’ needs. New products using RM-based technologies have the potential to gain larger 

market shares than old ones, gradually bringing up new dominant designs. Changes in the sales 

of different products are followed by changes in technological patenting in the same direction 

(Schmookler, 1962). For example, in the last decades, significant material changes in 

permanent magnet technologies have been driven by the increasing demands for stronger 

magnetic properties by wind turbines and machineries. Such demand pressures led to shifts 

from steel-based magnets to those based on Rare Earth elements, such as Samarium-Cobalt 

(Sm-Co) and Neodymium (Nd-Fe-B) magnets. Once the technology trajectory is established, 

RMs become critical materials hardly replaceable in the short and medium run (Ayres & Peiro, 

2013; Abraham, 2015). Engineering and natural science research indicate that for many RMs 

“no suitable substitutes can be found no matter what price is offered without performance and 

function being seriously compromised” (Graedel et al., 2015, p. 6299). R&D aimed at 

identifying possible substitutes often requires very long cycles and high costs, thus making 

alternatives for many RMs rarely available (European Commission, 2012, 2020). As such, the 
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resource scarcity characterising RMs as well as their technological uniqueness make their 

supply increasingly central to understand the contemporary trajectories of frontier technology 

development.  

2.4 Supply conditions of RMs 

The development of technological trajectories confronts the “trade-offs between 

technological and economic dimensions” (Dosi, 1988, p. 1128). In the case here, on the one 

hand innovators are eager to exploit the useful technological properties of RMs in their 

inventions, on the other they face the fact that the RMs, as the name suggests, are scarce and 

the supply chain is impacted by potential critical obstacles. These supply risks come from 

different stages of the value chain, from upstream mineral mining to metal production (smelting, 

refining and heat processing) and then to global trade. For some RMs, the ore extraction is 

concentrated in a small number of locations subject to weak institutional and political 

environments, which make the critical ore supply vulnerable to conflicts and wars, social and 

political instability, human rights’ violations and natural disasters (e.g., Berman et al., 2017; 

Giuliani, 2018; Diemer et al., 2022). In addition, the smelting and refining of many RMs has 

gradually shifted to multinational companies from emerging countries (especially China), 

leading to more uncertainties from trade conflicts and geopolitical crises (e.g., Narine, 2012; 

Mancheri, 2015; Fiaschi et al., 2017; Lederer & McCullough, 2018). The high demand and 

criticality of RMs in high-tech industries further increase the risk of extreme price spikes or 

even material unavailability (Moss & Tzimas, 2013). 

The induced innovation hypothesis argues that technological progress is significantly 

influenced by the supply dynamics of input factors (Hicks, 1932; Schmookler, 1962; 

Chakraborty & Chatterjee, 2017). Existing studies mainly focus on how the shortage of general 

inputs and relative prices (e.g., conventional energy sources, land, labour) stimulate advanced 

technologies that use relatively abundant resources as a substitute. For example, research shows 

how land supply conditions determine the trajectories of agricultural technologies (e.g., Hayami 

& Ruttan, 1970; Kawagoe et al., 1986; Olmstead & Rhode, 1993), and the inducement effect 

of conventional energy price on alternative energy technologies (e.g., Newell et al., 1999; 

Cheon & Urpelainen, 2012; Aghion et al., 2016).  

This perspective, however, fails to fully consider resource heterogeneity: differently from 

general inputs, critical raw materials are technologically crucial, working as essential inputs 

and directly entering core technologies and functions (Graedel et al., 2015). They are also 

closely related to the scientific principles of the technological paradigm of reference, for 

instance, the “photoelectric effect” depending on semiconductor materials in the solar energy 

technologies. General inputs are unlikely to achieve the same functions and customer utility: 

https://www.sciencedirect.com/science/article/pii/S0301420718301296#bib36
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nevertheless, to our knowledge, very little research has investigated the relationship between 

the supply of critical resources and technological change.  

In this context, RM supply conditions may influence researchers’ incentives of investing 

in RM-based technologies. It is well-known that innovation is a risk-taking investment where 

invention efforts are allocated depending on the expected market returns. Fluctuations in the 

supply chain affects RM availability in downstream industries. Sufficient supply increases the 

production scale and market size of products intensive in RM-based technologies, therefore 

rising the probability of their application and commercialization and accelerating the 

advantages of RM-based technologies over others (Cameron & Metcalfe, 1987; Acemoglu, 

2002). On the other hand, the scarcity of certain critical materials makes it less rewarding to 

invest in related technologies if the costs of alleviating scarcity are too high (Smulders, 2005). 

For the case of RMs, it is difficult to find viable alternatives to achieve the same functionality. 

As a result, insufficient production or disruption in an RM supply may directly render the 

downstream application and manufacturing more costly and reduce the returns of R&D in RM-

based technologies.  

Based on the above background, in the following sections, we analyse the trends of RM 

use in frontier technologies and employ econometric models to first explore the relationship 

between RM supply dynamics and RM-based patenting. 

 

3.Data and methodology  

3.1 Selection of RMs and global production trends 

There is no universal list for Rare/Minor metals: definition and criteria vary from study to 

study (Ayres & Peiro, 2013). As described by the Minor Metal Trade Association2, RMs 

encompass a vast array of metals which are: 1. reserved and produced in significantly smaller 

quantities than base metals, and almost do not exist alone in the earth but are obtained largely 

or entirely as a by-product of host metals from geologic ores; 2. not traded on formal exchanges, 

like the London Metal Exchange; 3. important for emerging industries as “technology metals” 

and “critical raw materials” (European Commission, 2012). In this paper, we select the most 

concerned RMs by referring to the resource criticality literature, as listed in Table 1. It is 

important to note that we did not include two groups of RMs which are also widely discussed 

in public debates. The first is precious metals, such as gold, silver and platinum which are also 

relatively rare and technologically important. However, their supply and demand conditions are 

 
2. https://mmta.co.uk/glossary-of-minor-metal-terms/ 
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very different from those of RMs, because of the financial and trade conditions in specialized 

precious metal markets, and because they are also used as currency or jewelleries rather than 

only as industrial materials, making it difficult to measure the actual availability by metal 

production. Second, we did not include rare earth metals3: although also crucially important 

and widely investigated by the literature (e.g., Humphries, 2010), information on their 

production is not available for individual elements.  

----------------------------------- 

INSERT TABLE 1 HERE 

----------------------------------- 

 

We obtained global production data of the selected 13 rare metals for the years 1975-2015 

from the United States Geological Survey database of historical statistics for mineral and 

material commodities. Figure 1 shows the annual production of RMs during the whole period. 

In general, the production of most RMs has risen with fluctuations and, especially after 2000, 

the upward trends accelerate. At the same time, the production trends of different metals show 

significant variation: cadmium, tantalum, and selenium fluctuate greatly, while cobalt, lithium, 

vanadium, indium, and bismuth are relatively stable. We also observe that some macro events 

have common impacts on the production of all metals. For example, around 2010, almost all 

metals (although with different intensity) show some decline of production following the great 

financial crisis in 2008. We further compare production changes relative to 1975 across metals4.  

It emerges that RMs experienced different trends over the four decades: gallium and indium 

have the fastest growth, by 40 and 20 times respectively, lithium and cobalt have also increased 

by 5 times, while the growth of cadmium, germanium and tellurium remains limited. 

----------------------------------- 

INSERT FIGURE 1 HERE 

----------------------------------- 

 

3.2 Patent data and technology dynamics 

We use patents granted by the US Patent and Trademark Office (USPTO) over the period 

1976-2015 to measure the global dynamics of RM-based technologies. Patent statistics are a 

reasonable measurement for innovation output and technological structure (e.g., Pavitt, 1985; 

Griliches, 1990; Castellacci & Natera, 2013; Consoli et al., 2016, 2021).  

There are in total about 5,300,000 granted patents in the USPTO during the observed 

 
3. Rare earth elements are a group of 17 elements: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 

plus Sc and Y. 

4. See Figure A1 in the online Appendix.  
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period 5 . We use two technological classifications. First, the Cooperative Patent 

Classification (CPC) system is used in the econometrics analysis. CPC is a more detailed and 

advanced version of the International Patent Classification (IPC) and has been officially used 

by both USPTO and European Patent Office (EPO) for classifications at five technological 

digits, which ensure consistency over time6. Following Consoli et al., (2021), we extract the 

CPC class for each patent from the ‘cpc_current’ table in the “Patents View” database. Second, 

the WIPO technology classification is then employed to analyse the dependence of different 

technology areas on RMs. This taxonomy, initially developed by Schmoch (2008), assigns all 

patents to 35 technology fields which are further aggregated into five main technology sectors 

– Chemistry, Electrical engineering, Instruments, Mechanical engineering, and Others. This is 

a useful classification in cross-sector comparison because of the balanced patent size, full 

coverage of all technology areas, within-sector homogeneity and cross-sector differences, and 

has been widely used in patent analyses (e.g., d’Agostino et al., 2013; Balland et al., 2019). 

3.3 Identification of RM-based technologies 

The identification of RMs in the patent databases is carried out by text-mining, searching 

within the patent description for the name/keyword of the relevant metals in the section 

“Detailed description text”. This text-mining method has been used to identify specific 

characteristics of technologies, such as dependence on rare earth elements (Fifarek et al., 2008), 

and on conflict minerals (Diemer et al., 2022).7 The detailed description text is the information 

disclosed by the inventors in the patent application: it includes information on the function and 

application of the invention, the detailed technical process and the materials used to achieve its 

function 8 . We note that mentioning a material could have different motivations: new 

technologies may result directly from basic and applied research on a specific material, or 

innovations may be in applied technologies for which that material is an essential component 

(Fifarek et al., 2008); patents can mention materials also in relation to obtaining, saving, 

substituting or recycling them (Diemer et al., 2022).  

 
5. Patent data source: https://patentsview.org/ 

6 . Technological classification standards have been evolving over time due to emergence of new areas and 

disappearance of old ones, making cross-time comparison impossible. The use of CPC avoids this issue because all 

historical patents are reclassified retrospectively by USPTO according to the current CPC classification.  

7. More advanced methods of analysis have recently been developed on the basis of patent text-mining: for example, 

Biggi et al. (2022) identify patents related to target chemical compounds and calculate the patent toxicity according 

to the chemical structure of ingredients. 

8. The text-mining analyses on RM-based patents may vary with the specific section of the patent text. The advantage 

of this description text is that it discloses all technological processes through which we can capture all materials used 

in the invention. The disadvantage is that it may be too detailed and the mentioned RMs may not be used as major 

components; thus, the patent may not be really “RM-based”. On the contrary, the “claim text” includes the core 

innovative aspects of a patent for which the inventors want legal protection. Therefore, we provide a comparison 

and discussion on two patent samples identified by descriptions and patent claims respectively, shown in Figure A5 

in the online Appendix. 

https://patentsview.org/
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In this paper, we focus on the technologies “based on” RM or employing them as inputs. 

To do so, we exclude two groups of technologies: (1) those potentially related to mining 

technologies (41,239 patents in the class E21), and (2) metallurgy technologies (67,328 patents 

in classes C21-C30), which include those for producing, refining, smelting as well as recovering 

and recycling metals and metalloids. Our final sample for the analysis includes 5,146,615 

patents9. If the patent mentions an RM keyword in the detailed description text, we consider 

the innovation as resulting from the properties of the specified RM and the patent as RM-based. 

However, this method has other potential limitations. For example, it fails to identify the degree 

of dependence on individual RM: for two patents, which both mention an RM, one may use it 

as a necessity, while for the other RM may not play a major role. Nevertheless, in this paper we 

are concerned mainly about the relative proportion of RM-based patents in different aggregated 

technology groups and their temporal trends, rather than individual patents. We assume that if 

a technology field has a higher proportion of RM-based patents, then it has a higher dependence 

upon RM materials.  

One may wonder whether this method really captures materials’ use in innovation. In 

Figure 2 we provide an example of lighting technology which, as stated in section 2.2 above, 

has experienced a significant paradigm shift in the last four decades, from Tungsten-based 

incandescent to Gallium-based LED. Applying the aforesaid method, we observe that the patent 

share using Gallium increased rapidly from 5% to 26% while that of Tungsten gradually 

decreased and was surpassed by the former in 2010. Such an example provides support to the 

methods we use to identify the materials shifts in frontier technologies.    

----------------------------------- 

INSERT FIGURE 2 HERE 

----------------------------------- 

 

 

4. Technological dependence on RMs 

In this section we focus on the technological dependence on RMs by describing the general 

trends of RM-based patents and their distribution across technologies and RMs. 

4.1 General trends 

Through keyword identification, we find that 559,328 patents (10.87%) mention at least one 

RM keywords. Therefore, more than one tenth of modern technologies are somehow dependent 

on the selected 13 RMs, indicating their high importance in innovation. The technological 

 
9. For a detailed description see Figures A2 and A3 in the online Appendix. 
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dependence on RMs is measured in both absolute and relative terms: 1. the total number of 

RM-based patents (with at least one RM keyword); 2. the share of RM-based patents in the 

total patent number. Figure 3 shows that the number of RM-based patents rose by nearly 7 times 

over the 40 years: from 6,000 new RM patents in 1976 to more than 40,000 in 2015. At the 

same time, despite two slight drops from 1976 to 1987 and 1993 to 1998, the share of RM-

based patents on the total increased from 9% to 14%. This indicates the progressively more 

important role that RMs play in modern technologies. 

----------------------------------- 

INSERT FIGURE 3 HERE 

----------------------------------- 

 

Trends are observed also for the 5 WIPO sectors (Figure 4). On the left chart, in terms of 

absolute RM patent numbers the Chemistry sector started at a high level and had the most RM-

based patents for nearly 25 years, maintaining relatively stable growth until 2005, which since 

then accelerated. For the Electronic engineering sector, we observe a sharp increase since 1997: 

in 2004 it surpassed Chemistry. The number of RM-based patents in Instruments also showed 

a stable increase, whilst that in Mechanical engineering was modest.  

----------------------------------- 

INSERT FIGURE 4 HERE 

----------------------------------- 

 

In terms of shares, Chemistry is significantly higher than other sectors, and the gap further 

widened over time, rising to 32% in 2015. In comparison, the share of Electrical engineering 

remained relatively constant over time and was overtaken by Instrument technologies in 1992. 

Mechanical engineering and Other technologies had lower shares, slightly increasing since the 

1990s. We also compare the technological dependence on different RMs over time10: the 

number of patents using lithium remained the highest, followed by indium and cobalt patents 

which also experienced the fastest growth. Patents based on gallium, germanium, and tantalum 

also increased significantly. This indicates that the technological dependence is dynamic and 

the relative importance of different RMs varies over time.  

4.2 RM dependence by technology field  

We then consider the RM dependence of specialized technologies by zooming into the 35 

WIPO fields (Figure 5).  

----------------------------------- 

 
10. See Figure A4 in the online Appendix. 
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INSERT FIGURE 5 HERE 

----------------------------------- 

 

Technological fields in the Chemistry sector show high shares of RM-based patents: Micro-

structure and nano-technology shows the highest dependence (i.e. 37% of patents are related to 

at least one RM). Other three fields – Material, metallurgy11; Organic fine chemistry; and, 

Macromolecular chemistry, polymers – also show a strong dependence: these four fields are all 

closely related to Material Science (Schmoch, 2008), indicating that different technologies 

which imply inventing and producing new materials use RMs as main components and search 

for property improvements. It is important to note that these technologies are usually general-

purpose technologies (GPTs) and work as the basis for others, such as nano-technologies for 

semiconductors (Moser & Nicholas, 2004; Petralia, 2020).  

For the Electrical engineering technological sector, unsurprisingly, the highest RM-

dependence is recorded by the field of Semiconductors, which is one of the core technologies 

in the hardware infrastructure for ICT (Schmoch, 2008). The second by importance is Electrical 

machinery, apparatus, energy. Other fields in the sector, such as Computer technology, are 

mainly about software technologies, thus depend much less on RMs. In the Instruments sector, 

Optics, Analysis of biological materials, and Medical technology show relatively high RM-

dependence, whilst fields in Mechanical engineering and Other technologies are far less 

dependent on RMs. Regarding Green energy technologies, several fields show very high 

reliance on the selected RMs: Fuel cells, where 34% patents use at least one RMs as input, 

particularly lithium and cobalt; Bio-fuels, Solar energy and Nuclear energy also show a strong 

dependence, consistently with the literature on green and renewable energy technologies (e.g., 

Valero et al., 2018; Dominish et al., 2019; European Commission, 2020). 

To sum up, the descriptive analysis illustrates a strong reliance of modern technologies on 

RMs which varies across technologies, levels of analysis as well as RM types. RMs have 

become critical inputs in more and more patents, and have diversified applications in a number 

of GPTs, especially material technologies and many emerging technologies. At the same time, 

each technology field depends on specific RMs, reflecting specialized technical requirements 

and specific properties of RMs.  

 

5. The impact of RM supply on technology dynamics 

 
11. As mentioned earlier, we excluded metallurgy patents. Hence, this field only includes material technologies. 



15 

 

In this section, we use econometrics models to further explore whether dynamics in the 

metal supply influence the innovation output of RM-based technologies, controlling for science 

discoveries and demand.  

5.1 Sample, RM-based technology areas 

The CPC technology system has 5 levels of classification, namely: section, class, subclass, 

group and subgroup. We use the finest subgroup level to capture the relationship between RM 

and specialized technologies. Our dataset is structured in the format of technology-RM pairs. 

We focus on RM-based technology areas, 𝑇𝑒𝑐ℎ𝑖 − 𝑅𝑀𝑗, which are defined as all subgroups in 

which more than 10% of patents use a certain 𝑅𝑀𝑗  during the research period. All pairs 

exceeding this threshold enter the main sample12. This pair structure allows us to explain the 

technology dynamics by the joint effects of both dimensions. For each 𝑇𝑒𝑐ℎ𝑖, there may be one 

or several pairs, depending on how many RMs it depends upon. In order to ensure that 

subgroups in our sample are comparable, we exclude the extremely small ones whose total 

number of patents is less than 100 during the four decades. The final sample consists of 5,644 

𝑇𝑒𝑐ℎ𝑖 − 𝑅𝑀𝑗 pairs in which 2,534 subgroups were granted 611,249 patents (accounting for 

11.88% of all USPTO granted patents) during 1976-2015 (details of the sample are shown in 

Tables A1 and A2 in the online Appendix). 

5.2 Model specification   

The model is set according to our conceptual framework and also by referring to studies on 

the induced innovation hypothesis, as mentioned in Section 2 (e.g., Popp, 2002). New patents 

in RM-based technology areas are explained by science & technology push, demand pull and 

also supply dynamics of RM materials. The dependent variable is the patent output of RM-

based technological subgroups, measured by the share of patent numbers in each subgroup over 

the total USPTO patents in each year. Independent variables include the lagged production of 

the corresponding RMs as well as other control variables.  

 𝑃𝑎𝑡𝑒𝑛𝑡 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑖,𝑗,𝑡

   𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑡𝑒𝑛𝑡 𝑁𝑢𝑚𝑏𝑒𝑟𝑡

= 𝛽1  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−𝑘 + 𝛽2  𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−𝑘 + 𝛽3  𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑡−𝑘

+ 𝛽4  𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑡−𝑘 + 𝛽5  𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−𝑘 + 𝑇𝑒𝑐ℎ − 𝑅𝑀 𝐹𝐸 +  𝑌𝑒𝑎𝑟 𝐹𝐸 + 𝜀𝑖,𝑗,𝑡 

 where i indexes 2,534 technology subgroups, j stands for the 13 RMs and t denotes the 

years 1976-2015. Our dependent variable is normalized by z-score. The model uses the 

application date rather than the granting date of patents as measure of innovation in order to 

 
12. Results remain consistent when we change this threshold to 20% and 30%. 
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document it as early as possible (Popp, 2003; Böhringer et al., 2017).  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−k 

measures the production of RM j in k years after t, k= 3 and 5 to consider the lagging effect of 

patent application. Along with production amount, we control the yearly prices for each metal13, 

𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−𝑘: when production is constant, price dynamics reflects changes in the demand 

side. These two variables are measured by ratios relative to the initial level in 1975, because 

different metals are produced in very different amounts and units and have large price 

difference, making the comparison on absolute values meaningless. In addition to this model 

setting, we also check the robustness of our results by considering a fixed effect Poisson model 

in which the dependent variable is the absolute number of patents in each subgroup. 

The effect of science & technology push is measured by the variable  

 𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−𝑘 – the number of academic publications on each RMs, divided by 

the total scientific publication to control for the changing tendency of publication across years. 

Existing studies found that a science or technology breakthrough is followed by a sharp increase 

in scholarly publications on the topic (Winnink & Tijssen, 2015). So, we assume that an 

increasing share of papers on an RM means that there is more scientific research and deeper 

understanding of RM properties and applications. We only focus on the journals in the SCI 

Index which covers science and engineering areas. A paper is regarded as studying an RM if 

the RM keyword appears in the title: data is collected from Web of Science.  

The demand pull for RM-based technologies is further measured by forward patent citation 

information. Previous studies found that the number of citations a patent received is closely 

related to its economic value and commercialization chances (Harhoff et al., 1999; Hall et al., 

2005; Gambardella et al., 2008). If a technology is cited by many following inventions, this 

implies that it has a higher demand. Using a time window of 3 years, the mean forward citation 

numbers are calculated to measure whether the technological subgroup faces higher demand.  

We also control for 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−k which is the number of patents accumulated 

until the previous year in technology subgroup i: this variable represents the cumulative and 

path-dependent nature of technology development, a higher value reflecting deeper knowledge 

in the specialized technology area i. It is calculated as follows: 

 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−𝑘 = ∑ 𝑒−𝛾1𝑠 · (1 − 𝑒−𝛾2(𝑠+1)) · 𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑖,𝑡−𝑠

𝑃

𝑠=0

 

Referring to Popp (2001), this formula measures the pre-existing state of knowledge at each 

time t for technology subgroup i. Since innovation decays in value with time,  𝛾1 is the 

 
13 . Price data is from: https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-

mineral-and-material-commodities 
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depreciation rate of past technologies and 𝛾2 is the diffusion rate of existing patents, under the 

assumption that it takes time for technological knowledge to diffuse among innovators. 

Following (Kim et al., 2017), we use the mean values as estimated by Popp (2001) with γ1 = 

0.44 and γ 2 = 2.97. The two variables  𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−𝑘 and   𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑡−𝑘 , 

measuring the weighted patent numbers, are both log transformed after adding 1. 

Main descriptive statistics and correlation matrix for the independent variables are reported 

in Table A3 in the online Appendix. We include Tech-RM fixed effect in the model to control 

for constant unobservable factors for each pair. The propensity to patent innovation varies 

across technology areas: in some, such as Chemistry and Electronic engineering, it is higher 

than that in others, where secrecy is more important to protect innovation. Tech-RM fixed effect 

also helps to account for RM-specific unobserved heterogeneity. The year fixed effect is used 

to control for macrolevel economic development and technological trends. 

5.3 Endogeneity and identification strategy 

The empirical setting proposed above may be threatened by potential endogeneity issues. 

First, reverse causality can be a concern if technology dynamics influence the production of 

RMs. In fact, when more patents using an RM occur, the expected and actual demand for the 

metal will increase, stimulating metal producers to increase production capacity. Second, an 

omitted variable bias may also affect our estimates: besides demand and science, some other 

factors may influence RM production and technology dynamics. For example, government 

policies pay special attention to the shortage of certain RMs and try to stabilize their supply 

(European Commission, 2012); at the same time, policies may support certain industries or 

technologies which are impacted by potential RM shortages.  

To mitigate these endogeneity concerns, we develop a new instrumental variable strategy 

by using the metal co-production relationships to identify exogenous shocks to RM production. 

Unlike major metals, RMs are typically found in relatively low concentrations in the mineral, 

and they are only, or largely, constituents in deposits of more abundant base metals (copper, 

iron, aluminium, etc.). As a result, RMs seldom form viable deposits on their own, and instead 

are mined and produced as companion metal or by-products and recovered from the different 

forms of waste, scraps, slags or gas of the base metals in the processing, smelting, refining 

stages (e.g., Eggert, 2010; Harper et al., 2015; Nassar et al., 2015;), as shown in Figure 6. 

Therefore, RM supply is strongly influenced by the demand for base metals: a major demand 

reduction for a base metal causes significant supply constraints for its companion RMs (Graedel, 

2015; Sprecher et al., 2017). 

----------------------------------- 
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INSERT FIGURE 6 HERE 

----------------------------------- 

 

We argue that the influence of the base metal production on RM production is exogenous 

for two reasons. First, this influence is unidirectional, the production of RM does not reversely 

influence base metal production because the latter accounts for the major revenue of mining 

and is mainly driven by macroeconomic factors such as, for instance, urbanization speed in 

China and India. On the other hand, even if the prices for by-product metals are high, a small 

market scale means the commercial incentive is limited (Moss et al., 2013). Therefore, mining 

and producing decisions are mainly determined by the exogenous shocks on base metals, and 

RMs do not typically experience supply expansions in a short timespan (Sprecher et al., 2017). 

A production increase for base metals results in supply increases and price drops for the by-

product and co-product RMs (e.g. Campbell, 1985; Hagelüken, 2011; Moss et al., 2013). 

Second, the production of base metals does not impact the dependent variable – i.e., patents in 

RM-based technology areas – because base metals are more widely used as basic materials in 

much larger amounts in a variety of industrial sectors, such as construction materials and metal 

containers, and have very different properties and functions than RMs. This assumption is 

further verified in the robustness test.  

The type of base metal and the degree of metal companionability vary greatly among RMs, 

are shown in Table 2. For almost all RMs in our sample, more than 50% of the production is 

from a single base metal. Some RMs are entirely co-produced with one base metal, for example 

cadmium from zinc, zirconium from titanium, and gallium from aluminium. Others have more 

than one base metal as source, like cobalt and tantalum. 

----------------------------------- 

INSERT TABLE 2 HERE 

----------------------------------- 

 

Therefore, we use the production of the base metal (if one RM have multiple base 

metals, we use the primary one with the highest companionability degree) as an instrumental 

variable to predict the exogenous shocks to the RM production. Similar to the RMs production 

variable, our instrument is also standardised relative to the production in 1975.  

5.4 Regression results 

Table 3 shows the OLS regression results and the second stage results of the IV estimation14. 

We start with the simple model in column 1, which solely includes RM production, with Tech-

 
14. The first stage estimation results are shown in Table A8 in the online Appendix.  
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RM pair fixed effects to capture the unobserved heterogeneity at these fine-grained levels. In 

column 2 we include the full battery of covariates discussed above, whilst in columns 3 and 4, 

we implement our IV strategy for the same specifications of column 1 and 2. In all models, the 

variable of interest,  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3  is always positive at the 1% significance level, 

indicating that the supply of an RM is positively correlated to the patent output of RM-based 

technology subgroups. The coefficient of RM production in the specification of column 4 

indicates that a one-unit increase (100% increase relative to 197515) in the production of a 

certain RM on average leads to a rise in the share of patents in each RM-based technological 

subgroup by 0.0373 standard deviation, which corresponds to an increase of 7.11% (
𝛽1×𝑆𝑡𝑑

𝑀𝑒𝑎𝑛
=

0.0373∗0.00007836

0.00004114
) in the share of this subgroup in all granted patents. By comparing the results 

between the OLS and IV regressions, we notice that the coefficients on  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3 

are always larger in the IV models. This indicates that the simple OLS estimation 

underestimates the effect of RM supply. There are many factors, such as for instance public 

policies and trade regulation shocks, exerting opposite influences on RM supply and RM-based 

innovation. For example, national and international governments, including the US, Japan and 

the EU Commission, provide supports for sectors under the threats of critical raw material 

scarcities. Moreover, as the major RM supplier, China has imposed export restrictions on some 

RMs with increasing technological criticality. In general, these findings are in line with our 

expectation that increasing the supply of RMs does provide incentives to innovation in the 

relevant technological areas and encourage new patents. On the contrary, a decreasing supply 

or supply disruption of RMs may constrain the generation of new technologies in areas based 

on these materials16.  

The validity of the IV rests on the assumption that the base metal production is related to 

the RM production, but uncorrelated with innovation in RM-based technology areas. However, 

the possibility exists that the base metals are also used in those technologies, which may 

invalidate the IV and bias the estimation results. To address this potential problem, by using 

the same text mining method, we identify keywords of base metals in the patent descriptions 

and exclude all 𝑇𝑒𝑐ℎ𝑖 − 𝑅𝑀𝑗 in which any patent in 𝑇𝑒𝑐ℎ𝑖 mentioned the main base metals of 

RM j. By doing so, we rule out the possibility that RMs and base metals are not only related on 

the supply (production) side but also on the technological demand side. The regression results 

are shown in column 5 of Table 3. After excluding those patents, the estimated effect remains 

significantly positive. 

 
15. Until 2015, the production of the 13 RMs, on average, increased by 647.15% relative to the initial values in 1975. 

16. The results for the T-5 period are shown in Table A4 in the online Appendix, in which we observe similar results. 
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 In general, these findings support our expectation that increasing supply of RMs does 

provide incentives to innovation in the subgroups based on them and encourages more R&D 

activities. On the contrary, a decreasing production or supply disruption of RMs may constrain 

the generation of new technologies based on these materials. Hence, these results provide a first 

suggestion that the supply of RMs influences frontier technological dynamics. 

As far as the other variables are concerned, we find strong evidence for demand pull: patent 

output in subgroup i is positively related to the average forward citation numbers. Moreover, 

the effect of  𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘𝑖,𝑡−k on patents is significant and positive, indicating that past 

knowledge accumulation in a technology area leads to more dependence on it in the future. In 

line with other studies (e.g. Kim et al., 2017), innovation is path-dependent and builds on the 

existing knowledge stock of its own technology subgroup. The science & technology push 

argument is only partially supported – the variable scientific papers on the corresponding RM 

is only significantly positive in the OLS model but loses significance in the IV estimation.  

----------------------------------- 

INSERT TABLE 3 HERE 

----------------------------------- 

 

 

6. Robustness checks 

We further test the robustness of our results by: (1) checking the validity of the IV, (2) 

using different identification of RM-based technologies, and (3) applying alternative regression 

methods. All robustness tests reported are for T-3 period, results for T-5 are available upon 

requests. 

(1) Further validations of the instrumental variable 

First, the IV in the main model captures the production of the primary base metal of the RMs 

without considering differences in the companionability across RMs and corresponding base 

metals (BMs) and changes with time. First, RMs with a high companionability may be more 

impacted by changes in the base metal production. To consider this heterogeneity, we re-

construct our IV by weighting the base metal production by the degree of companionability (the 

percentage of an RM produced from co-production process with a base metal) between RMs 

and base metals. Another regression was then run on the Tech-RM pairs for which the 

companionability degree between RM and BM is higher than 80%. Next, we introduce the cross 

term of BM production with the two-dimensional dummies of 13 RMs and time (decades) in 

order to further control the fact that the relationship between base and rare metal production 

may change with both metal type and time. Next, we pay attention to the influence of the energy 

transition, which has a strong dependence on some RMs and BMs: in such case, both BM and 
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RM production are influenced by the green energy transition, which may invalidate our 

assumptions. We thus exclude all RMs who are intensively used as energy transition metals 

(Molybdenum, Lithium, Cobalt), and RMs whose base metals are energy transition metals 

(Selenium, Tellurium, Indium, Cadmium, Germanium) (IEA, 2021)17. All results are shown in 

Table A5 in the online Appendix: the coefficients of interest and other variables remain similar 

and highly significant, further validating our IV estimation approach.  

(2) Using the claim text of patents to identify RMs  

In the above regressions, we use the “full description text” to identify the RM-based patents. 

As an alternative, we use the “claim text” which includes the core innovative aspects of a patent 

for which the inventors want legal protection. The results based on claim text are shown in 

Table A6 in the Appendix: RM production is still significantly positive in both OLS and IV 

estimations.  

(3) Changing regression methods 

 We further check the robustness of our findings by adopting a Poisson model as an 

alternative regression method. In this setting, the dependent variable is now the absolute 

number of patents in subgroup i, based on RM j. We also take the first difference for both 

dependent and independent variables. The results are shown in Appendix, Table A7. Overall, 

the variable of interest, RM production, remains significant and positive, thus further 

corroborating our findings.  

The robustness checks above suggest that our main findings are stable with alternative 

samples and methods, no matter how we change the IV, or use alternative patent texts for 

identification, or regression models. We interpret this evidence as suggestive that the effect of 

RM supply on innovation dynamics is robust. 

 

 

7. Conclusion and discussion 

Technological innovation co-evolves with the availability and supply of natural resources 

and materials. On the one hand, frontier technologies are experiencing tremendous shifts, 

changing types, modes, and efficiency in the utilisation of different inputs. Economists believe 

that technological innovation makes it possible to replace rare and expensive resources with 

relatively abundant and cheap ones, which helps overcoming natural resource constraints and 

achieving sustainable development (Rosenberg, 1976). For example, for energy resources, new 

technologies enabled us to shift from wood to coal, to petroleum to hydropower, and then to 

 
17. Executive summary – The Role of Critical Minerals in Clean Energy Transitions – Analysis - IEA 

https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive-summary
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solar, nuclear, and other unconventional energy sources. On the other hand, technological 

progress also makes the materials in use become more diversified and advanced to achieve 

some specific functionalities. As a result, modern society is more and more dependent on some 

important non-renewable resources like critical raw materials, which have become essentials in 

technological progress and economic growth (Groth & Schou, 2002). In this way, natural 

resource and material supply in turn influences the trajectory of frontier technology dynamics. 

By using 13 widely concerned RMs, this paper contributes to the understanding of the 

material shifts of modern technologies, with particular focus on the deep interdependence 

between material supply and technology progress. RMs are regarded as “technology metals” 

with great criticality to high-tech manufacturing and cutting-edge technological innovation, 

especially under the paradigm shifts of clean and green energy and AI revolution. The 

functionality and special properties of RMs cannot be easily replaced with substitutes (Ayres 

& Peiro, 2013; Graedel et al., 2015; Leader, 2019). The case of RMs suggests that, by 

controlling for the effects of science & technology push and demand pull, the availability of 

critical raw materials has a direct influence on the dynamics of frontier innovation— 

technological progress in the current society is still endogenously subject to the natural 

environment and the supply of resources and materials with technological criticality. Our 

research broadens the understanding of technological paradigm shifts by adding the perspective 

of “material shift”, which is fundamentally driven by the discoveries on materials in basic 

science, enabled by market demands for functionality improvement based on RM properties 

and also influenced by the RM supply dynamics.  

Empirically, this paper contributes by providing a first exploration of the dependence of 

frontier technologies on RMs. We find that during the last four decades, 10.87% of patents 

granted by the USPTO use RMs as inputs, and that this dependence varies with technology area, 

scale of analysis as well as type of rare metals. Technology application of RMs has experienced 

scale and structural changes over time: the number of RM-based patents has increased by 7 

times over the observed decades, and Electronic engineering surpassed Chemistry, becoming 

the technological sector most reliant on RMs. Our econometric exercise, which accounts for 

endogeneity, indicates that RMs supply is positively associated with the innovation output of 

RM-based technologies.  

Our findings have policy relevance and implications for future research. The case of RMs 

may further encourage scholars and policymakers to devote attention to the entire global 

organisation and value chain networks within which innovation occurs, considering the 

distribution of benefits and costs across actors and geographies involved. Given the high 

dependence on critical natural resources, it is likely that a constantly increasing supply of RMs 
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would be needed to ensure steady innovation rates. However, RM supplies are recognized to 

be subject to great societal and environmental risk and uncertainty (National Research Council, 

2008; Humphries, 2010; Hayes & McCullough, 2018; European Commission, 2020). The 

extraction, exploitation and trade of many rare metals, such as cobalt and tantalum which are 

labelled among others as “conflict minerals”, contribute to wars, conflicts and human right 

violations in developing countries and regions (Hofmann et al., 2018). Exploring the 

relationship between RM supply and technological dynamics provides a fuller grasp of the 

“dark side of innovation” and help resolve the apparent trade-off between technological change 

and global fairness and equity (Castellacci & Archibugi, 2008; Giuliani, 2018; Diemer et al., 

2022). 

Our research has limitations and further investigation is required. First, because of data 

availability, this paper only focuses on 13 critical RMs. Other RMs are also of significant 

technological importance, especially the widely concerned Rare Earth Elements (REE) (Hayes 

& McCullough, 2018). Different critical raw materials have distinct technological properties 

and applications and may experience different supply risks. Second, our empirical analysis 

mainly focuses on the influence of material supply by keeping other important elements – 

scientific discoveries and demand – as control variables. Further research should be done to test 

the whole Dosi’s framework. For example, it would be very interesting to study the endogenous 

relationship between Material Science and downstream technology inventions, on the one hand, 

and science-pushed technology applications, on the other; application potentials may also 

encourage more research efforts. Third, in this paper RM supply and technological dynamics 

are measured at the global scale. However, their actual availability varies with geography, thus 

being influenced by multifaceted factors such as geological mineral distribution, local socio-

economic and political conditions, national and international policies, trade agreements as well 

as global geopolitics events. For example, in 2010 under the embargo of China, Japan had little 

access to new REEs (Mancheri, 2015); and because of the Dodd Frank Act, business companies 

listed in the US stock market have additional limits in obtaining RMs included in the “conflict 

minerals” category from the Democratic Republic of Congo (Dalla & Perego, 2018). Future 

research should focus on finer geographic scales (Diemer et al., 2022) to explore whether and 

how differences in the availability of RMs shape the development trajectories of firms, regions 

and countries. From a methodological standpoint, we acknowledge the limitations of our 

instrumental variable approach, particularly as not all by-product RMs are extracted from base 

metal production leading to a “slack condition”. Furthermore, our definition of RM-based 

technologies relies on a criterion where over 10% patents in a CPC subgroup utilizes an RM. 

Future research may consider different criteria for selecting technology areas or focus on case 

studies for specific ones. 
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Table 1. Selected RMs and examples of related literature 

Rare metals Related Literature 

Bismuth (Bi) Hagelüken (2011); Moss et al. (2011); 

Cadmium (Cd) Moss et al. (2011); Valero et al. (2018) 

Cobalt（Co） Humphries (2010); Campbell (2020) 

Gallium (Ga) Ayres & Peiro (2013); Frenzel et al. (2017) 

Germanium (Ge) Harper et al. (2015); Frenzel et al. (2017) 

Indium (In) Elshkaki & Shen. (2019); Grandell et al. (2016); Frenzel et al. (2017) 

Lithium (Li) Liu et al. (2019); King & Boxall (2019) 

Molybdenum (Mo) Leader et al. (2019); Zhu et al. (2020) 

Selenium (Se) Grandell et al. (2016); Elshkaki & Shen (2019);  

Tantalum (Ta) Humphries (2010); Kim et al. (2019) 

Tellurium (Te) Watari et al. (2020); Valero et al. (2018) 

Vanadium (V) Moss et al. (2013); Gunn et al. (2014) 

Zirconium (Zr) Moss et al. (2011); Zhu et al. (2020) 

Note: Two elements, selenium and tellurium are metalloids rather than metals. However, they have some similar 

characteristics and applications with metals, therefore they are analysed together with other metals in the literature 

(i.e. Elshkaki & Shen, 2019; Zhu et al., 2020; Watari et al., 2020). 

 

Table 2. Metal companionability between base and rare metals 

Rare metals Base metals and companionability degree 

Bismuth (Bi) Lead (Pd) (54%) 

Cadmium (Cd) Zinc (Zn) (100%) 

Cobalt（Co） Nickel (Ni) (50%); Copper (Cu) (35%) 

Gallium (Ga) Aluminium (Al) (100%) 

Germanium (Ge) Zinc (Zn) (60%) 

Indium (In) Zinc (Zn) (80%) 

Lithium (Li) Potassium (K) (52%) 

Molybdenum (Mo) Copper (Cu) (46%) 

Selenium (Se) Copper (Cu) (90%) 

Tantalum (Ta) Tin (Sn) (15%); Niobium (Nb) (13%) 

Tellurium (Te) Copper (Cu) (90%) 

Vanadium (V) Iron (Fe) (62%) 

Zirconium (Zr) Titanium (Ti) (100%) 

 

Information Sources: Nassar et al. (2015); Harper et al. (2015). Companionability degree measures what percentage of an RM is 
produced from the co-production process with a base metal. 

 

 

 

 

 

 



33 

 

Table 3.  Regression results for (T-3) 

 OLS IV  

VARIABLES (1) (2) (3) (4) (5) 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3 0.0271*** 0.0120*** 0.0647*** 0.0373*** 0.0211*** 

 (0.00286) (0.00252) (0.00865) (0.00659) (0.00752) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−3  0.0803***  0.0314 -0.00529 

  (0.0201)  (0.0247) (0.0293) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖,𝑗,𝑡−3  0.0724***  0.0723*** 0.0663*** 

  (0.00179)  (0.00180) (0.00409) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−3  0.377***  0.372*** 0.174*** 

  (0.0143)  (0.0140) (0.0139) 

 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−3  0.00410*  0.00716*** 0.00713 

  (0.00225)  (0.00242) (0.00491) 

      

      

Constant -0.0934*** -1.038***    

 (0.00573) (0.0477)    

      

Tech-RM Fixed effect Yes Yes Yes Yes Yes 

Observations 214,004 214,004 214,004 214,004 12,718 

R-squared 0.023 0.186 0.011 0.182 0.244 

Number of pairs 5,644 5,644 5,644 5,644 347 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results for columns 3, 4 and 5 are reported 
in Table A8 in the online Appendix. Robust standard errors are clustered at the Tech-RM level, shown in the parentheses. 

The sample of the column 5 excludes subgroups in which any patents use BM. 
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Figure 1. Global annual production of the 13 RMs, 1975-2015 (Unit, metric ton) 

 

Data source: US Geological Survey 
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Figure 2. Example: material shift in lighting technologies, share of patents based on different 

RMs: Gallium vs Tungsten  

      

Note: Lighting technologies include H01J:  electric discharge tubes or discharge lamps; H01K: electric incandescent lamps; 

H01L33: Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission, 

including LED technologies. 

 

 

Figure 3. General trends of technological dependence on RMs 
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Figure 4. Trends in RM-dependence by WIPO technology sector, 1976-2015 (left: absolute nos.; right: % shares) 
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Figure 5. Share of RM-based patents by technology field, 1976-2015 
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Figure 6. Co-production process of base metals (main product) and RMs (by-product) 

Information Sources: (Nassar et al., 2015; Harper et al., 2015) 
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Online Appendix. Supplementary materials 

 

A.1 Description of RM global production 

 

Figure A1. Production changes for the 13 RMs, 1975-2015, relative to 1975 (Y axis has unequal 

intervals) 

 

Data source: US Geological Survey 
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A.2 Patent Description 

Figure A2. Patent trends, 1976-2015  

 

  

Total USPTO granted patents Total USPTO patents by WIPO technology sector 
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Figure A3. Total patent number by WIPO 35 technology fields and 5 sectors 

 

Note: Green technologies are identified according to the WIPO Green Inventory list. 

(https://www.wipo.int/classifications/ipc/green-inventory/home) 
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Figure A4. Trends of technological dependence by RM, 1976-2015 (left: absolute patent nos.; right: 

ratios relative to 1976)  
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Figure A5. Number of RM-based patents identified using different parts of the patent text 

 

As figure A5 shows, there are in total 577,490 RM-based patents that can be identified as such 

either by descriptions or claims. Of these, 437,143 (75.69%) can only be identified as RM-based 

by description, and 18,162 (3.14%) only by claim; the remaining 122,158 (21.15%) can be 

identified by both. This means that most RM-based patents identified as such by claim can also be 

identified by description; instead, for those identified on the basis of RM keywords found in the 

descriptions, only 22% are also identified in claims (in such cases, RMs are materials used in the 

technology but are not regarded as the major innovative content by the inventor). Therefore, using 

both parts of the patent text to identify RM keywords provides a balance between the “completeness” 

and “innovativeness” of patent information. 
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A.3 Sample description 

 

Table A1. Distribution of Tech-RM pairs by technology sector and field 

Sector Field    Number of pairs 

Chemistry Organic fine chemistry 618 

Chemistry Basic materials chemistry 263 

Chemistry Macromolecular chemistry, polymers 216 

Chemistry Chemical engineering 157 

Chemistry Materials, metallurgy 117 

Chemistry Biotechnology 111 

Chemistry Environmental technology 49 

Chemistry Surface technology, coating 29 

Chemistry Micro-structural and nano-technology 26 

Chemistry Food chemistry 6 

Electrical engineering Semiconductors 1807 

Electrical engineering Electrical machinery, apparatus, energy 589 

Electrical engineering Audio-visual technology 173 

Electrical engineering Computer technology 78 

Electrical engineering Basic communication processes 21 

Electrical engineering Telecommunications 11 

Electrical engineering Digital communication 1 

Instruments Optics 751 

Instruments Medical technology 260 

Instruments Analysis of biological materials 65 

Instruments Measurement 55 

Instruments Control 5 

Mechanical engineering Textile and paper machines 75 

Mechanical engineering Machine tools 41 

Mechanical engineering Other special machines 30 

Mechanical engineering Transport 30 

Mechanical engineering Engines, pumps, turbines 22 

Mechanical engineering Thermal processes and apparatus 9 

Mechanical engineering Mechanical elements 8 

Mechanical engineering Handling 3 

Other fields Furniture, games 16 

Other fields Civil engineering 1 

Other fields Other consumer goods 1 

 

 

 

 

 

 

 

 

 

 

 



45 

 

Table A2. Distribution of Tech-RM pairs by metal 

                 Metal        Number of pairs 

lithium 1117 

cobalt 764 

indium 657 

tantalum 546 

molybdenum 522 

gallium 451 

zirconium 446 

germanium 437 

vanadium 206 

cadmium 182 

selenium 135 

bismuth 129 

tellurium 52 

Sum 5,644 

 

 

 

Table A3. Independent variables description and correlation matrix 

 Mean Std dev Min Max 1 2 3 4 5 

1.𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑗,𝑡

 2.83419 4.34898 .352 42.6363 1.0000     

2. 𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡 (z-score) 0 1 -1.3069 2.6912 -0.2368 1.0000    

3. 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡 (log) 2.478011 1.908416 0 8.070594 0.0154 -0.1196 1.000   

4. 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑡 (log) 1.699815 1.144589 0 7.069808 0.2777 -0.1982 0.456 1.0000  

5. 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡 2.382514 2.00034 .0488529 15.9375 -0.0187 -0.1373 0.025 0.2194 1.0000 
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Table A4.  Regression results (T-5)  

 OLS IV  

VARIABLES (1) (2) (3) (4) (5) 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3 0.0368*** 0.0169*** 0.182*** 0.136*** 0.0591*** 

 (0.00411) (0.00384) (0.0222) (0.0210) (0.0226) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−3  0.122***  -0.105** -0.0379 

  (0.0227)  (0.0473) (0.0459) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡−3  0.0891***  0.0878*** 0.0652*** 

  (0.00227)  (0.00233) (0.00487) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−3  0.240***  0.227*** 0.0709*** 

  (0.0142)  (0.0141) (0.0175) 

𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−3  0.00276  -0.000869 -0.00659 

  (0.00221)  (0.00223) (0.00446) 

      

      

Constant -0.107*** -0.694***    

 (0.00710) (0.0526)    

      

Tech-RM Fixed effect Yes Yes Yes Yes Yes 

Year Fixed effect  Yes Yes Yes Yes Yes 

Observations 202,820 202,820 202,820 202,820 12,128 

R-squared 0.022 0.124 0.008 0.082 0.157 

Number of pairs 5,644 5,644 5,644 5,644 347 

 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results for columns 3, 4 and 5 are reported in Table 
A8 in the online appendix. Robust standard errors are clustered at the Tech-RM level, shown in the parentheses. 

The sample of the column 5 excludes subgroups in which any patent use the base metal. 
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A.4 Robustness test results 

Table A5. Robustness tests on IV 

VARIABLES 

(1) 

Heterogeneous 

companionability 

(2) 

Companionability 

higher than 80% 

(3) First stage with 

cross term of BM 

and RM-decade 

dummies 

(4) Excluding 

energy transition 

metals 

     

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3 0.0272*** 0.0185* 0.0144*** 0.0130** 

 (0.00559) (0.0104) (0.00288) (0.00536) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−3 0.0554** 0.0131 0.0756*** 0.0334 

 (0.0236) (0.0797) (0.0200) (0.0902) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡−3 0.0714*** 0.0656*** 0.0724*** 0.0761*** 

 (0.00179) (0.00291) (0.00179) (0.00309) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−3 0.373*** 0.367*** 0.377*** 0.377*** 

 (0.0141) (0.0177) (0.0143) (0.0162) 

 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−3 0.00543** -0.00745 0.00439* -0.00387 

 (0.00239) (0.0105) (0.00225) (0.00508) 

 
    

     

     

Year Fixed effect  Yes Yes Yes Yes 

Tech-RM Fixed effect Yes Yes Yes Yes 

R-squared 0.182 0.212 0.186 0.208 

Observations 208,360 72,606 214,004 67,564 

Number of pairs 5,644 1,923 5,644 1,778 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level, 
shown in the parentheses. First stage results of column 1, 2 and 4 are reported in column 1-3 in Table A9. First stage results of column 3 are 
reported in Table A10. 
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Table A6. Identifying RM key words by claims 

VARIABLES (1) OLS (2) IV 

   

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3 
0.0129*** 0.0205*** 

 
(0.00292) (0.00645) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−3 
0.0450 0.0299 

 
(0.0335) (0.0343) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡−3 
0.00658 0.00655 

 
(0.00477) (0.00476) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−3 
0.192*** 0.190*** 

 
(0.0239) (0.0244) 

 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−3 
-0.0300*** -0.0294*** 

 
(0.00960) (0.00959) 

   

Constant 
-1.151***  

 
(0.102)  

   

Tech-RM Fixed effect Yes Yes 

Observations 26,660 26,660 

R-squared 0.182 0.181 

Number of pairs 703 703 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results of column 3 are in Table A11. Robust standard 
errors are clustered at the Tech-RM level, shown in the parentheses. 

. 
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Table A7. Robustness test by alternative regressions 

 (1) Poisson IV (2) First Difference IV 

𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3 0.0435*** 0.0188*** 

 
(0.00866) (0.00707) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−3 0.190*** -0.0256** 

 
(0.0293) (0.0119) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖,𝑗,𝑡−3 0.246*** 0.00241*** 

 
(0.00331) (0.000555) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−3 0.444*** 0.00225 

 
(0.00801) (0.00450) 

 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−3 0.00511** 0.00443*** 

 
(0.00255) (0.00107) 

Constant 0.0937*** 0.0109*** 

 (0.000829) (0.000915) 

   

Tech-RM Fixed effect Yes Yes 

Year Fixed effect Yes Yes 

Observations 197,540 208,360 

R-squared  -0.000 

Number of pairs 5,644 5,644 

 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results of column 3 are in Table A11. Robust standard 
errors are clustered at the Tech-RM level, shown in the parentheses. 
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A.5 First stage regression results 

Table A8. First stage regression results of Table 3, Table A4 and Table A5 

VARIABLES (1) T+3 (2) T+3 

(3) T+3 

excluding BM 

key words 

(4) T+5 (5) T+5 

(6) T+5 

excluding 

BM key 

words 

𝐵𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−k 2.983*** 3.082*** 5.451*** 1.365*** 1.236*** 2.453*** 

 (0.0900) 
(0.0830) (0.152) 

(0.0434) 
(0.0453) (0.0967) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−𝑘 
 2.070*** -0.248  1.854*** 0.449*** 

 
 (0.0574) (0.291)  (0.0539) (0.166) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡−𝑘 
 0.000525 0.0196  0.00826** 0.0216* 

 
 (0.00457) (0.0175)  (0.00383) (0.0122) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−𝑘 
 0.142*** 0.269***  0.0865*** 0.0349 

 
 (0.0197) (0.0882)  (0.0170) (0.0679) 

 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−𝑘 
 -0.132*** -0.229***  0.00819** -0.0471** 

 
 (0.00564) (0.0222)  (0.00404) (0.0199) 

       

Constant 0.743*** 1.499*** -0.278 2.603*** 3.516*** 2.025*** 

 (0.128) (0.122) (0.370) (0.0641) (0.0946) (0.331) 

       

Observations 214,004 214,004 12,718 202,820 202,820 12,128 

R-squared 0.408 0.483 0.672 0.359 0.485 0.612 

Number of pairid 5,644 5,644 347 5,644 5,644 347 

Underidentification test (Kleibergen-

Paap rk LM statistic):  527.420*** 611.589*** 150.003***  513.468*** 429.763*** 118.053*** 

Weak identification test (Kleibergen-

Paap rk Wald F statistic):   1098.672 1379.718 1278.082 991.156 745.868 642.953 

Stock-Yogo weak ID test critical 

values:        

10% maximal IV size 16.38 16.38 16.38 16.38 16.38 16.38 

15% maximal IV size 8.96 8.96 8.96 8.96 8.96 8.96 

20% maximal IV size 6.66 6.66 6.66 6.66 6.66 6.66 

25% maximal IV size 5.53 5.53 5.53 5.53 5.53 5.53 

Year FE Yes Yes Yes Yes Yes Yes 

Tech-RM FE Yes Yes Yes Yes Yes Yes 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level, 
shown in the parentheses. 

 

 

The IV  𝐵𝑎𝑠𝑒 𝑚𝑒𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−𝑘 is significantly and positively correlated with the variable of 

interest  𝑅𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−k, indicating that one unit increase in the production of primary base metal 

corresponds to a 3.082 unit increase in the by-product RM production, controlling for other variables 

and fixed effects. We now obtain the levels of RM production exogenously predicted by the instrument 

and examine their effects on innovation dynamics. Considering that our models account for clustered 

standard errors for Technology and RM pairs, the i.i.d assumption is not valid and we report the LM 

and Wald versions of the Kleibergen and Paap (2006) statistics. The results reject the under-

identification null hypothesis, as shown by the p-values of LM statistics. Moreover, as the Kleibergen-

Paap rk Wald F statistics is larger than all Stock-Yogo critical values, we can also reject the weak 

identification null hypothesis. 
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Table A9. First stage regression results for alternative IV 

 

VARIABLES 

(1) Heterogeneous 

companionability 

(2) Companionability 

lower than 80% 

(3) Excluding energy 

transition metals 

𝐵𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−k 25.50*** 4.386*** 6.557*** 

 (0.475) (0.122) (0.0756) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−𝑘 1.895*** 6.887*** 3.402*** 

 (0.0609) (0.135) (0.182) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡−𝑘 -0.00149 0.0352*** 0.00342 

 (0.00456) (0.00953) (0.00516) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−𝑘 0.138*** 0.459*** 0.228*** 

 (0.0194) (0.0433) (0.0185) 

 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−𝑘 -0.127*** -0.702*** -0.513*** 

 (0.00537) (0.0177) (0.0118) 

    

Constant 0.961*** 11.18*** 1.534*** 

 (0.106) (0.478) (0.222) 

    

Observations 208,360 72,606 67,564 

R-squared 0.520 0.695 0.732 

Number of pairs 5,644 1,923 1,778 

Underidentification test (Kleibergen-

Paap rk LM statistic):  595.267*** 411.498*** 1166.334*** 

Weak identification test (Kleibergen-

Paap rk Wald F statistic):   2885.850 1286.273 7533.44 

Stock-Yogo weak ID test critical 

values:     

10% maximal IV size 16.38 16.38 16.38 

15% maximal IV size 8.96 8.96 8.96 

20% maximal IV size 6.66 6.66 6.66 

25% maximal IV size 5.53 5.53 5.53 

Year FE Yes Yes Yes 

Tech-RM FE Yes Yes Yes 

 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level, 
shown in the parentheses. 
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Table A10.  First stage with cross term Of BM and RM-decades dummies 

VARIABLES 

First stage with cross term Of 

BM and RM-decade dummies 

  

BM×Dummy_bismuth_decade1 -4.091*** 

 (0.163) 

BM×Dummy_bismuth_decade2 -5.221*** 

 (0.185) 

BM×Dummy_bismuth_decade3 -13.43*** 

 (0.521) 

BM×Dummy_bismuth_decade4 -0.182*** 

 (0.0670) 

BM×Dummy_cadmium_decade1 -2.662*** 

 (0.0261) 

BM×Dummy_cadmium_decade2 -2.543*** 

 (0.0339) 

BM×Dummy_cadmium_decade3 -7.143*** 

 (0.217) 

BM×Dummy_cadmium_decade4 0.456*** 

 (0.109) 

BM×Dummy_cobalt_decade1 -3.980*** 

 (0.153) 

BM×Dummy_cobalt_decade2 -3.335*** 

 (0.128) 

BM×Dummy_cobalt_decade3 -6.756*** 

 (0.285) 

BM×Dummy_cobalt_decade4 0.826*** 

 (0.0347) 

BM×Dummy_gallium_decade1 11.31*** 

 (0.0213) 

BM×Dummy_gallium_decade2 9.709*** 

 (0.0166) 

BM×Dummy_gallium_decade3 4.622*** 

 (0.146) 

BM×Dummy_gallium_decade4 9.256*** 

 (0.0654) 

BM×Dummy_germanium_decade1 -1.816*** 

 (0.0228) 

BM×Dummy_germanium_decade2 -2.227*** 

 (0.0330) 

BM×Dummy_germanium_decade3 -6.984*** 

 (0.216) 

BM×Dummy_germanium_decade4 0.736*** 

 (0.110) 

BM×Dummy_indium_decade1 6.797*** 

 (0.0257) 
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BM×Dummy_indium_decade2 6.860*** 

 (0.0344) 

BM×Dummy_indium_decade3 3.619*** 

 (0.216) 

BM×Dummy_indium_decade4 11.83*** 

 (0.108) 

BM×Dummy_lithium_decade1 -0.956*** 

 (0.0458) 

BM×Dummy_lithium_decade2 -0.952*** 

 (0.0528) 

BM×Dummy_lithium_decade3 -6.937*** 

 (0.315) 

BM×Dummy_lithium_decade4 4.284*** 

 (0.134) 

BM×Dummy_molybdenum_decade1 -0.922*** 

 (0.0541) 

BM×Dummy_molybdenum_decade2 -0.897*** 

 (0.0414) 

BM×Dummy_molybdenum_decade3 -4.314*** 

 (0.150) 

BM×Dummy_molybdenum_decade4 1.719*** 

 (0.106) 

BM×Dummy_selenium_decade1 -1.967*** 

 (0.0513) 

BM×Dummy_selenium_decade2 -1.798*** 

 (0.0421) 

BM×Dummy_selenium_decade3 -5.174*** 

 (0.148) 

BM×Dummy_selenium_decade4 0.738*** 

 (0.107) 

BM×Dummy_tantalum_decade1 1.875*** 

 (0.0526) 

BM×Dummy_tantalum_decade2 1.353*** 

 (0.0489) 

BM×Dummy_tantalum_decade3 -4.201*** 

 (0.245) 

BM×Dummy_tantalum_decade4 5.457*** 

 (0.206) 

BM×Dummy_tellurium_decade1 -0.615*** 

 (0.0750) 

BM×Dummy_tellurium_decade2 -1.077*** 

 (0.0600) 

BM×Dummy_tellurium_decade3 -4.573*** 

 (0.134) 

BM×Dummy_tellurium_decade4 0 

 (0) 

BM×Dummy_vanadium_decade1 -1.041*** 

 (0.0431) 
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BM×Dummy_vanadium_decade2 -1.399*** 

 (0.0385) 

BM×Dummy_vanadium_decade3 -7.074*** 

 (0.274) 

BM×Dummy_vanadium_decade4 1.879*** 

 (0.0985) 

BM×Dummy_zirconium_decade1 0.115*** 

 (0.0186) 

BM×Dummy_zirconium_decade2 0.0367 

 (0.0247) 

BM×Dummy_zirconium_decade3 -4.135*** 

 (0.173) 

BM×Dummy_zirconium_decade4 2.011*** 

 
(0.0890) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−3 0.352*** 

 (0.00987) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡−3 -0.00342** 

 (0.00145) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−3 -0.00474 

 (0.00425) 

 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−3 0.0287*** 

 (0.00189) 

  

Constant -1.829*** 

 (0.170) 

  

Observations 214,004 

Number of pairs 5,644 

R-squared 0.867 

Underidentification test (Kleibergen-Paap rk LM statistic): 5521.551*** 

Weak identification test (Kleibergen-Paap rk Wald F statistic): 3.9e+07 

Stock-Yogo weak ID test critical values:  

5% maximal IV relative bias 21.31 

10% maximal IV relative bias 11.11 

20% maximal IV relative bias 5.87 

30% maximal IV relative bias 4.08 

10% maximal IV size 136.30 

15% maximal IV size 70.03 

20% maximal IV size 47.65 

25% maximal IV size 36.43 

Year FE Yes 

RM-Tech FE Yes 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level, 
shown in the parentheses. 
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Table A11. First stage regression results for alternative model settings and claim model 

VARIABLES (1) Poisson regression (2) Claim model VARIABLES (3) First difference 

     

𝐵𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3 3.082*** 3.652*** 𝐷. 𝐵𝑀 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗,𝑡−3 1.890*** 

 
(0.0830) (0.235)  (0.0576) 

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−3 
2.070*** 2.407*** 

𝐷. 𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑝𝑎𝑝𝑒𝑟𝑠 𝑜𝑛 𝑅𝑀𝑗,𝑡−3 
0.404*** 

 
(0.0574) (0.148)  (0.00724) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡−3 
0.000525 0.00326* 

𝐷. 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗,𝑡−3 
-0.00477*** 

 
(0.00457) (0.00174)  (0.000831) 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−3 
0.142*** 0.452*** 

𝐷. 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑠𝑡𝑜𝑐𝑘 𝑖,𝑗,𝑡−3 
-0.0584*** 

 
(0.0197) (0.0722)  (0.00844) 

 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−3 
-0.132*** -0.238*** 

 𝐷. 𝑅𝑀 𝑝𝑟𝑖𝑐𝑒𝑗,𝑡−3 
0.0416*** 

 
(0.00564) (0.0286)  (0.000845) 

     

Constant 1.499*** -0.931** Constant 0.123*** 

 
(0.122) (0.441) 

 
(0.00172) 

  
 

  

Observations 214,004 26,660 Observations 208,360 

R-squared 0.483 703 R-squared 0.080 

Number of pairs 5,644 0.503 Number of pairid 5,644 

Underidentification test (Kleibergen-

Paap rk LM statistic):  611.589*** 91.750*** 

Underidentification test (Kleibergen-

Paap rk LM statistic):  956.495*** 

Weak identification test (Kleibergen-

Paap rk Wald F statistic):   1379.718 240.644 

Weak identification test (Kleibergen-

Paap rk Wald F statistic):   1077.271 

Stock-Yogo weak ID test critical 

values:    Stock-Yogo weak ID test critical values:   

10% maximal IV size 16.38 16.38 10% maximal IV size 16.38 

15% maximal IV size 8.96 8.96 15% maximal IV size 8.96 

20% maximal IV size 6.66 6.66 20% maximal IV size 6.66 

25% maximal IV size 5.53 5.53 25% maximal IV size 5.53 

Year FE Yes Yes Year FE Yes 

RM-Tech FE Yes Yes RM-Tech FE Yes 

Note:  *, **, *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level, 
shown in the parentheses. 

 

 

 

 

 

 

 

 

 

 


