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Abstract: Scientific progress in many technologies exploits new materials. The unique
properties of a wide range of Rare Metals (RMs) make them key inputs to achieve the
functionality of emerging technologies. The speed of technological progress can therefore be
influenced by the availability of necessary RM materials. This paper discusses these relations
and provides a first exploratory empirical analysis of the link between critical raw materials
and frontier technological innovation. By text mining 5,146,615 USPTO patents during the
period 1976-2015, we explore the dependence of new inventions of 13 key RMs, finding that
the latter play an increasingly important role as the material basis of modern technologies: in
the four decades observed, more than 1/10 patents rely on at least one RM. This dependence
increases significantly over time and is particularly high for emerging technologies such as
semiconductors, nanotechnology, and green energy. Further, we adopt a panel of 5644
technology subgroup-RM pairs to explore the impact of variations in RM supply. The results
show that, controlling for science & technology push and demand-pull factors, innovation in
RM-based technologies is positively associated with its supply conditions, contributing to the
understanding of the shifts of critical materials' use in frontier technologies.
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1. Introduction

Through the Stone Age to that of Bronze, Iron, and up to the modern times, technological
progress has always been accompanied by tremendous shifts in the utilization of material
resources. Especially after the emergence of Material Science in the 20" century, the
development of modern technologies in a variety of fields has shown growing dependence on
advancements in material usage, unveiling new properties of existing materials but also making
their use more diversified in achieving specialized functionalities and meeting specific market
demands. Indeed, material changes and evolving technologies have long been recognized as

one key dimension in technological paradigm shifts (Dosi, 1982; 1988).

We are currently entering the so-called “Age of Rare Metals” (RMs) (Abraham, 2015) — that
is, a special group of raw materials are becoming increasingly prominent in high-tech industries

and are often regarded as “technology metals” with great criticality at the innovation frontier

(Graedel et al., 2015; European Commission, 2020). Differently from major and base metals

(e.g., copper, iron, and aluminium), RMs can be considered as industrial “vitamins” or “spices”

—only used in very small quantities, but providing unique and essential chemical, electrical or
mechanical properties, and leading to extensive applications in a variety of high-tech products,
such as semiconductors, catalysts, engines, turbines, batteries, as well as medical equipment
and weapons (e.g. Gunn, 2014; Abraham, 2015; Watari et al., 2020).

While the importance of RMs for technological innovation is steadily expanding, they also
face significant supply risks (e.g., National Research Council, 2008; Humphries, 2010;
European Commission, 2012; Hayes & McCullough, 2018). These are related to depletion due
to mineral scarcity, geographical concentration of deposits, political instability of producing
countries, geopolitical risks in global RM trade as well as low recycling rates (Radetzki, 2008;
Narine, 2012; Lederer & McCullough, 2018). Taken together, such supply conditions may
constrain industrial development and influence the trajectory of modern technologies. For
example, the solar energy industry and the corresponding technologies are seriously affected
by fluctuations in the supply of gallium (Ga) and indium (In) (Gunn, 2014). On the other hand,
RM extraction may give rise to serious negative externalities in the supply locations: this is the
case, for instance, of tantalum and cobalt, labelled “conflict minerals” as specifically associated
with armed conflict, human rights abuses and corruption. Despite such criticalities in frontier
technologies, neither innovation studies nor economics research have so far paid enough

attention to the topic.

The case of RMs provides a relevant context to analyse the material shifts in frontier
technologies, and the interplay between changing material supply conditions, technological

progress and market demands. Specifically, in what follows we attempt to address two crucial
2


https://www.sciencedirect.com/science/article/pii/S0301420718301296#bib36

research questions:
1. To what extent do different areas of modern technologies use various RMs?

2. Are RM supply conditions associated with the innovation output of RM-based technology

areas?

Conceptually, we draw upon Dosi’s classical technology paradigm framework (1982, 1988)
to explore technological reliance or dependence on RMs or, in other words, to investigate the
use of RMs as a prerequisite for the commercialization of technology. This dependence is
jointly influenced by basic discoveries in Material Science on RMs’ properties, market needs
demanding RMs’ functionalities, as well as the fragile supply conditions of RMs. Empirically,
we first examine the technological use of RMs by identifying RM-related keywords in the
USPTO patent text. We observe a high dependence: namely, 10.87% of 5,146,615 patents
granted over the period 1976-2015 mention at least one RM. Subsequently, we estimate a panel
model of 5,644 technology subgroup-RM pairs to explore the relationship between RM supply
variation — measured by the annual global metal production — and the innovation output of
technological areas using RMs, also controlling for science & technology push and demand-
pull factors. A major challenge in estimating our regression model stands in the endogeneity of
the relationship under analysis, whereby technology developments may reversely influence
metal production decisions; in addition, they can be simultaneously influenced by unobservable
factors, such as policy changes. To alleviate this potential issue, we develop an instrumental
variable (V) that captures the exogenous variation of RM supply by considering the metal
companionability and co-production relationship between RMs and their geological hosts, i.e.
the base metals (Nassar et al., 2015; Sprecher et al., 2017). Our IV results point to a positive
association between RM supply and technology trajectories, which is highly robust to the use
of alternative IVs, regression models, samples and identification methods of RM-based
technologies. These findings bring support to the idea that changes in the supply of critical raw
materials may directly influence the dynamics of frontier technological innovation and

paradigm shifts.

Our paper contributes to the literature in two main respects. First, we extend the debate on
technological evolution to a scarcely explored aspect, that is, the shift of critical materials’ use,
suggesting that changes in their supply conditions could be a driving force of technology
dynamics. Innovation processes lead to production paradigm shifts and new combinations of
production factors (Schumpeter, 1949). Seminal contributions in economics have argued that
technological innovation solves or improves issues related to resource scarcity, enabling society
to overcome resource supply constraints and achieve sustainable development (e.g., Solow,
1974; Stiglitz, 1974; Rosenberg, 1976; Acemoglu et al., 2012). However, such a “technology
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optimism” overlooks the endogeneity of technological change: innovation itself may be

reversely influenced by material and resource supply conditions. It is less clear whether and
how material and resources’ availability in turn affects technology dynamics, especially when
we consider some critical raw materials with relatively low recycling and substitution rates like
RMs (Graedel, 2015). In this paper we argue that, because of their unique properties, the supply
condition of RMs may become the potential factor influencing the innovation dynamics of
frontier technologies, contributing to our understanding of the trade-off between economic and

technological dimensions in paradigm shifts (Dosi, 1988).

Second, this paper contributes to current literature on resource criticality, which has mainly
focused on material flow analysis and supply chain management (e.g., Kim & Davis, 2016;
Sauer & Seuring, 2017); criticality assessment (e.g., Hayes & McCullough, 2018); international
regulations, as well as the corresponding behaviours and responsibilities of firms (e.g., Diemel
& Cuvelier, 2015; Hofmann et al., 2018). Although regarded as “technology metals”, RMs have
rarely been systematically studied from a broad technological perspective. It is widely
recognized in the literature that modern technology is strongly dependent on such critical raw
materials, and possible supply risks may cause shocks to technological change, particularly in
high-tech industries (Eggert, 2010). However, it is still unknown how intense and varied this
dependence is: following Diemer et al. (2022), this paper attempts to quantitatively measure

technological reliance on RMs through patent text mining.

The paper is organized as follows: Sections 2 reviews the relevant literature and establishes
the theoretical foundations of our analysis; Sections 3 explains the selection and data sources
for both RMs and technologies, as well as the text mining methods, whilst Section 4 calculates
the technological dependence on RMs; Sections 5 and 6 estimate the relationship between RM
supply and innovation dynamics and test the robustness of the findings; Section 7 concludes,

providing further research directions.

2. Literature review
2.1 Technological paradigm and material inputs

The literature on the driving forces of technological dynamics is rich and longstanding. In
his seminal papers, Dosi (1982, 1988) introduced the concept of technological paradigm as a
widespread cluster of innovations which represents a response to a related set of technological
problems, based on a common set of scientific principles and on similar organisational methods.
This perspective includes three core aspects, that is: “1. The needs that are meant to be fulfilled;
2. The scientific principles utilized for the task and 3. The material technology to be used”
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(Dosi, 1988, p.1127). Most subsequent research has focused on the first two elements, giving
rise to the ‘demand pull versus science & technology push’ debate on the sources of
technological change (e.g., Mowery & Rosenberg, 1979). In this line of research, science &
technology push and demand pull interactively shape frontier innovation, with scientific
knowledge providing the trajectories of the innovative effort and demand working as a crucial
force in directing the trajectory towards the right economic targets (e.g., Dosi, 1982; Kline &
Rosenberg, 1986).

The third aspect of the above definition, implying a physical foundation of technology and
the changing patterns of material use, has been mostly neglected by social scientists’ attention.
Yet, an explicit consideration of critical materials and the related properties they possess is
essential for fully capturing technology dynamics, as such materials may be key for problem
solving within a certain technology paradigm (Dosi, 1988). Furthermore, a fundamental feature
of the evolution of modern technologies pertains to the shift in materials’ use — whereby radical
technology and paradigm changes are always closely related to changing materials, with the
appearance of new critical elements, as well as new processes and uses for existing ones and

disappearance of those outdated and harmful (Cameron & Metcalfe, 1987; Tilton, 1991).

In this context, as critical raw materials, RMs provide a good case for analysing the
mechanism of material use shifts in frontier technologies. Recent academic research emphasises
a growing technological dependence on RMs, which work as essential components to achieve
the functionality of technologies especially relevant for the two on-going main technological
transitions (Grandell et al., 2016). In fact, almost all core green technologies, including solar
electricity, wind power, fuel cells, hydrogen production and storage, electric cars and energy-
efficient lighting are heavily dependent on different RMs (Grandell et al., 2016; Valero et al.,
2018). Likewise, alongside the advent of industry 4.0, revolutionary technology breakthroughs
in digitalisation and artificial intelligence have significantly increased the complexity and
sophistication of electronic equipment, raising the demand for various RMs as essential inputs.
For instance, the elements used in computing devices grew from 11 in the 1980s to 15 in the
1990s to 60 in the 2010s (Zepf & Achzet, 2015), including RMs such as lithium (Li) and cobalt
(Co) in batteries, gallium (Ga) and germanium (Ge) in integrated circuits, tantalum (Ta) in
capacitors, molybdenum (Mo) in transistors as well as indium (In) in displays (e.g., Eggert,
2010; Gunn, 2014).

Frontier technologies have thus experienced significant changes in their reliance on RMs,
which occur through the competition and substitution process between two technology
trajectories, the RM-based trajectory and that non-RM-based. Drawing upon the technology

paradigm framework by Dosi (1982; 1988), we explore the relevance of RMs for both the
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demand and the supply sides of innovation. The changing dependence on RMs can be
understood as a process fundamentally driven by the progress in basic science which discovers
RM properties, is enabled by the market demand for functionality improvements based on such
properties, and is also influenced by the dynamics of RM supply.

2.2 Science and technology push and RMs

From the science & technology-push perspective, scientific discoveries and technological
breakthroughs set new innovation paradigms by defining entirely new modes of problem
solving, and shaping the technological dynamics by changing the direction of R&D investments.
Science and technology are becoming increasingly interdependent and inseparable in the
modern society. One key scientific development in the 20" century was the emergence of
Material Science in the 1960s as an amalgam of physics, chemistry and metallurgy, advancing
the understanding of components, structure, properties, application and performance of a
variety of materials. Over the last decades, many technological innovations have taken
advantage of the progress in Material Science (Dosi & Nelson, 2010): technology paradigm
shifts have increasingly been connected to discoveries on material properties and changes in

material use.

Recent scientific progress has deepened the understanding of intrinsic properties of RMs —
the unique electrical, thermal, chemical, and optical features gradually emerging, and
expanding the boundaries within which they can be applied in frontier innovation. Many radical
technological changes and paradigm shifts were triggered by key “Science Events” of
breakthrough discoveries on specific RMs (Thirtle & Ruttan, 1987). For example, the material
scientists Herb Maruska, in the 1970s, and Nobel Prize Isamu Akasaki, in the 1990s, discovered
the properties of Gallium which resulted in the invention of blue and white LED. Such a
discovery laid the foundation for a new paradigm in the lighting technologies, replacing the old
one based on incandescent lamps; subsequent inventions have witnessed a significant material
use shift from Tungsten to Gallium*. Another renowned example is the utilization of Uranium,
whose discovery dates back to 1789, but whose properties remained unknown until 1938, when
experiments by the chemist Otto Hahn led to the discovery of nuclear fission: this resulted in
the application of Uranium in nuclear weapons in 1945 and the ensuing nuclear energy
technologies. At the same time, continuous scientific advancement on input materials led also
to incremental changes within the same technology paradigm (Rosenberg, 1976, 1982) and to
the emergence of new technological trajectories. An example can be seen in the progress of
studies on photovoltaic materials, leading to different generations of solar energy technologies.

This process was accompanied by dramatic material shifts from mono-crystalline silicon cells

1. See also Figure 2 in this paper.



to multi-crystalline ones, moving then to the 2" generation, with film cells using Cadmium,
Telluride, Selenium, and later Gallium and Indium. These examples suggest that, due to
scientific progress, the range of useful RM materials for the global economy and society has
gradually expanded, allowing new uses and leading to a higher dependence of frontier
technologies on RMs. In addition, scientific progress not only influences the demand for RMs,
but a deeper understanding of their properties may also improve the efficiency of metal
production and increase the supply, which in turn reinforces technological paradigms centred
on RMs.

2.3 Market and demand pull for RM-based technologies

Besides scientific discoveries, research has also maintained that the demand for
technology plays an important role in the establishment and selection of technology paradigms
(e.g., Di Stefano et al., 2012). Not only do market signals work as selective devices, but they
can also direct innovative activities and technical changes within a large set of possibilities
allowed by science (Rosenberg, 1973; Dosi, 1978). Various economic factors are important in

shaping the direction of the RM-based innovative processes.

Consumers’ demand for product improvements is a fundamental driver of innovation,
encouraging inventors to seek alternative technological trajectories with functional
improvements, including searching for advanced materials. The selection among trajectories
happens through market competition between products using different technologies. The
adoption of RM-based technologies generates substantial improvements in the performance of
existing products, also leading to the creation of entirely new goods, which can better fulfil
customers’ needs. New products using RM-based technologies have the potential to gain larger
market shares than old ones, gradually bringing up new dominant designs. Changes in the sales
of different products are followed by changes in technological patenting in the same direction
(Schmookler, 1962). For example, in the last decades, significant material changes in
permanent magnet technologies have been driven by the increasing demands for stronger
magnetic properties by wind turbines and machineries. Such demand pressures led to shifts
from steel-based magnets to those based on Rare Earth elements, such as Samarium-Cobalt
(Sm-Co) and Neodymium (Nd-Fe-B) magnets. Once the technology trajectory is established,
RMs become critical materials hardly replaceable in the short and medium run (Ayres & Peiro,
2013; Abraham, 2015). Engineering and natural science research indicate that for many RMs
“no suitable substitutes can be found no matter what price is offered without performance and
function being seriously compromised” (Graedel et al., 2015, p. 6299). R&D aimed at
identifying possible substitutes often requires very long cycles and high costs, thus making

alternatives for many RMs rarely available (European Commission, 2012, 2020). As such, the



resource scarcity characterising RMs as well as their technological uniqueness make their
supply increasingly central to understand the contemporary trajectories of frontier technology
development.

2.4 Supply conditions of RMs

The development of technological trajectories confronts the “trade-offs between
technological and economic dimensions” (Dosi, 1988, p. 1128). In the case here, on the one
hand innovators are eager to exploit the useful technological properties of RMs in their
inventions, on the other they face the fact that the RMs, as the name suggests, are scarce and
the supply chain is impacted by potential critical obstacles. These supply risks come from
different stages of the value chain, from upstream mineral mining to metal production (smelting,
refining and heat processing) and then to global trade. For some RMs, the ore extraction is
concentrated in a small number of locations subject to weak institutional and political
environments, which make the critical ore supply vulnerable to conflicts and wars, social and
political instability, human rights” violations and natural disasters (e.g., Berman et al., 2017;
Giuliani, 2018; Diemer et al., 2022). In addition, the smelting and refining of many RMs has
gradually shifted to multinational companies from emerging countries (especially China),
leading to more uncertainties from trade conflicts and geopolitical crises (e.g., Narine, 2012;
Mancheri, 2015; Fiaschi et al., 2017; Lederer & McCullough, 2018). The high demand and
criticality of RMs in high-tech industries further increase the risk of extreme price spikes or

even material unavailability (Moss & Tzimas, 2013).

The induced innovation hypothesis argues that technological progress is significantly
influenced by the supply dynamics of input factors (Hicks, 1932; Schmookler, 1962;
Chakraborty & Chatterjee, 2017). Existing studies mainly focus on how the shortage of general
inputs and relative prices (e.g., conventional energy sources, land, labour) stimulate advanced
technologies that use relatively abundant resources as a substitute. For example, research shows
how land supply conditions determine the trajectories of agricultural technologies (e.g., Hayami
& Ruttan, 1970; Kawagoe et al., 1986; Olmstead & Rhode, 1993), and the inducement effect
of conventional energy price on alternative energy technologies (e.g., Newell et al., 1999;
Cheon & Urpelainen, 2012; Aghion et al., 2016).

This perspective, however, fails to fully consider resource heterogeneity: differently from
general inputs, critical raw materials are technologically crucial, working as essential inputs
and directly entering core technologies and functions (Graedel et al., 2015). They are also
closely related to the scientific principles of the technological paradigm of reference, for
instance, the “photoelectric effect” depending on semiconductor materials in the solar energy

technologies. General inputs are unlikely to achieve the same functions and customer utility:
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nevertheless, to our knowledge, very little research has investigated the relationship between

the supply of critical resources and technological change.

In this context, RM supply conditions may influence researchers’ incentives of investing
in RM-based technologies. It is well-known that innovation is a risk-taking investment where
invention efforts are allocated depending on the expected market returns. Fluctuations in the
supply chain affects RM availability in downstream industries. Sufficient supply increases the
production scale and market size of products intensive in RM-based technologies, therefore
rising the probability of their application and commercialization and accelerating the
advantages of RM-based technologies over others (Cameron & Metcalfe, 1987; Acemoglu,
2002). On the other hand, the scarcity of certain critical materials makes it less rewarding to
invest in related technologies if the costs of alleviating scarcity are too high (Smulders, 2005).
For the case of RMs, it is difficult to find viable alternatives to achieve the same functionality.
As a result, insufficient production or disruption in an RM supply may directly render the
downstream application and manufacturing more costly and reduce the returns of R&D in RM-
based technologies.

Based on the above background, in the following sections, we analyse the trends of RM
use in frontier technologies and employ econometric models to first explore the relationship

between RM supply dynamics and RM-based patenting.

3.Data and methodology
3.1 Selection of RMs and global production trends

There is no universal list for Rare/Minor metals: definition and criteria vary from study to
study (Ayres & Peiro, 2013). As described by the Minor Metal Trade Association?, RMs
encompass a vast array of metals which are: 1. reserved and produced in significantly smaller
guantities than base metals, and almost do not exist alone in the earth but are obtained largely
or entirely as a by-product of host metals from geologic ores; 2. not traded on formal exchanges,
like the London Metal Exchange; 3. important for emerging industries as “technology metals”
and “critical raw materials” (European Commission, 2012). In this paper, we select the most
concerned RMs by referring to the resource criticality literature, as listed in Table 1. It is
important to note that we did not include two groups of RMs which are also widely discussed
in public debates. The first is precious metals, such as gold, silver and platinum which are also

relatively rare and technologically important. However, their supply and demand conditions are

2. https://mmta.co.uk/glossary-of-minor-metal-terms/



very different from those of RMs, because of the financial and trade conditions in specialized
precious metal markets, and because they are also used as currency or jewelleries rather than
only as industrial materials, making it difficult to measure the actual availability by metal
production. Second, we did not include rare earth metals®: although also crucially important
and widely investigated by the literature (e.g., Humphries, 2010), information on their

production is not available for individual elements.

INSERT TABLE 1 HERE

We obtained global production data of the selected 13 rare metals for the years 1975-2015
from the United States Geological Survey database of historical statistics for mineral and
material commodities. Figure 1 shows the annual production of RMs during the whole period.
In general, the production of most RMs has risen with fluctuations and, especially after 2000,
the upward trends accelerate. At the same time, the production trends of different metals show
significant variation: cadmium, tantalum, and selenium fluctuate greatly, while cobalt, lithium,
vanadium, indium, and bismuth are relatively stable. We also observe that some macro events
have common impacts on the production of all metals. For example, around 2010, almost all
metals (although with different intensity) show some decline of production following the great
financial crisis in 2008. We further compare production changes relative to 1975 across metals*.
It emerges that RMs experienced different trends over the four decades: gallium and indium
have the fastest growth, by 40 and 20 times respectively, lithium and cobalt have also increased

by 5 times, while the growth of cadmium, germanium and tellurium remains limited.

INSERT FIGURE 1 HERE

3.2 Patent data and technology dynamics

We use patents granted by the US Patent and Trademark Office (USPTO) over the period
1976-2015 to measure the global dynamics of RM-based technologies. Patent statistics are a
reasonable measurement for innovation output and technological structure (e.g., Pavitt, 1985;
Griliches, 1990; Castellacci & Natera, 2013; Consoli et al., 2016, 2021).

There are in total about 5,300,000 granted patents in the USPTO during the observed

3. Rare earth elements are a group of 17 elements: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,
plus Scand Y.

4. See Figure Al in the online Appendix.
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period > . We use two technological classifications. First, the Cooperative Patent
Classification (CPC) system is used in the econometrics analysis. CPC is a more detailed and
advanced version of the International Patent Classification (IPC) and has been officially used
by both USPTO and European Patent Office (EPO) for classifications at five technological
digits, which ensure consistency over time®. Following Consoli et al., (2021), we extract the
CPC class for each patent from the ‘cpc_current’ table in the “Patents View” database. Second,
the WIPO technology classification is then employed to analyse the dependence of different
technology areas on RMs. This taxonomy, initially developed by Schmoch (2008), assigns all
patents to 35 technology fields which are further aggregated into five main technology sectors
— Chemistry, Electrical engineering, Instruments, Mechanical engineering, and Others. This is
a useful classification in cross-sector comparison because of the balanced patent size, full
coverage of all technology areas, within-sector homogeneity and cross-sector differences, and

has been widely used in patent analyses (e.g., d’Agostino et al., 2013; Balland et al., 2019).

3.3 Identification of RM-based technologies

The identification of RMs in the patent databases is carried out by text-mining, searching
within the patent description for the name/keyword of the relevant metals in the section
“Detailed description text”. This text-mining method has been used to identify specific
characteristics of technologies, such as dependence on rare earth elements (Fifarek et al., 2008),
and on conflict minerals (Diemer et al., 2022).” The detailed description text is the information
disclosed by the inventors in the patent application: it includes information on the function and
application of the invention, the detailed technical process and the materials used to achieve its
function®. We note that mentioning a material could have different motivations: new
technologies may result directly from basic and applied research on a specific material, or
innovations may be in applied technologies for which that material is an essential component
(Fifarek et al., 2008); patents can mention materials also in relation to obtaining, saving,

substituting or recycling them (Diemer et al., 2022).

5. Patent data source: https://patentsview.org/

6. Technological classification standards have been evolving over time due to emergence of new areas and
disappearance of old ones, making cross-time comparison impossible. The use of CPC avoids this issue because all
historical patents are reclassified retrospectively by USPTO according to the current CPC classification.

7. More advanced methods of analysis have recently been developed on the basis of patent text-mining: for example,
Biggi et al. (2022) identify patents related to target chemical compounds and calculate the patent toxicity according
to the chemical structure of ingredients.

8. The text-mining analyses on RM-based patents may vary with the specific section of the patent text. The advantage
of'this description text is that it discloses all technological processes through which we can capture all materials used
in the invention. The disadvantage is that it may be too detailed and the mentioned RMs may not be used as major
components; thus, the patent may not be really “RM-based”. On the contrary, the “claim text” includes the core
innovative aspects of a patent for which the inventors want legal protection. Therefore, we provide a comparison
and discussion on two patent samples identified by descriptions and patent claims respectively, shown in Figure AS
in the online Appendix.
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In this paper, we focus on the technologies “based on” RM or employing them as inputs.
To do so, we exclude two groups of technologies: (1) those potentially related to mining
technologies (41,239 patents in the class E21), and (2) metallurgy technologies (67,328 patents
in classes C21-C30), which include those for producing, refining, smelting as well as recovering
and recycling metals and metalloids. Our final sample for the analysis includes 5,146,615
patents®. If the patent mentions an RM keyword in the detailed description text, we consider
the innovation as resulting from the properties of the specified RM and the patent as RM-based.
However, this method has other potential limitations. For example, it fails to identify the degree
of dependence on individual RM: for two patents, which both mention an RM, one may use it
as a necessity, while for the other RM may not play a major role. Nevertheless, in this paper we
are concerned mainly about the relative proportion of RM-based patents in different aggregated
technology groups and their temporal trends, rather than individual patents. We assume that if
a technology field has a higher proportion of RM-based patents, then it has a higher dependence

upon RM materials.

One may wonder whether this method really captures materials’ use in innovation. In
Figure 2 we provide an example of lighting technology which, as stated in section 2.2 above,
has experienced a significant paradigm shift in the last four decades, from Tungsten-based
incandescent to Gallium-based LED. Applying the aforesaid method, we observe that the patent
share using Gallium increased rapidly from 5% to 26% while that of Tungsten gradually
decreased and was surpassed by the former in 2010. Such an example provides support to the

methods we use to identify the materials shifts in frontier technologies.

INSERT FIGURE 2 HERE

4. Technological dependence on RMs

In this section we focus on the technological dependence on RMs by describing the general

trends of RM-based patents and their distribution across technologies and RMs.

4.1 General trends

Through keyword identification, we find that 559,328 patents (10.87%) mention at least one
RM keywords. Therefore, more than one tenth of modern technologies are somehow dependent

on the selected 13 RMs, indicating their high importance in innovation. The technological

9. For a detailed description see Figures A2 and A3 in the online Appendix.
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dependence on RMs is measured in both absolute and relative terms: 1. the total number of
RM-based patents (with at least one RM keyword); 2. the share of RM-based patents in the
total patent number. Figure 3 shows that the number of RM-based patents rose by nearly 7 times
over the 40 years: from 6,000 new RM patents in 1976 to more than 40,000 in 2015. At the
same time, despite two slight drops from 1976 to 1987 and 1993 to 1998, the share of RM-
based patents on the total increased from 9% to 14%. This indicates the progressively more

important role that RMs play in modern technologies.

INSERT FIGURE 3 HERE

Trends are observed also for the 5 WIPO sectors (Figure 4). On the left chart, in terms of
absolute RM patent numbers the Chemistry sector started at a high level and had the most RM-
based patents for nearly 25 years, maintaining relatively stable growth until 2005, which since
then accelerated. For the Electronic engineering sector, we observe a sharp increase since 1997:
in 2004 it surpassed Chemistry. The number of RM-based patents in Instruments also showed

a stable increase, whilst that in Mechanical engineering was modest.

INSERT FIGURE 4 HERE

In terms of shares, Chemistry is significantly higher than other sectors, and the gap further
widened over time, rising to 32% in 2015. In comparison, the share of Electrical engineering
remained relatively constant over time and was overtaken by Instrument technologies in 1992.
Mechanical engineering and Other technologies had lower shares, slightly increasing since the
1990s. We also compare the technological dependence on different RMs over time': the
number of patents using lithium remained the highest, followed by indium and cobalt patents
which also experienced the fastest growth. Patents based on gallium, germanium, and tantalum
also increased significantly. This indicates that the technological dependence is dynamic and

the relative importance of different RMs varies over time.

4.2 RM dependence by technology field

We then consider the RM dependence of specialized technologies by zooming into the 35
WIPO fields (Figure 5).

10. See Figure A4 in the online Appendix.
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INSERT FIGURE 5 HERE

Technological fields in the Chemistry sector show high shares of RM-based patents: Micro-
structure and nano-technology shows the highest dependence (i.e. 37% of patents are related to
at least one RM). Other three fields — Material, metallurgy*!; Organic fine chemistry; and,
Macromolecular chemistry, polymers — also show a strong dependence: these four fields are all
closely related to Material Science (Schmoch, 2008), indicating that different technologies
which imply inventing and producing new materials use RMs as main components and search
for property improvements. It is important to note that these technologies are usually general-
purpose technologies (GPTs) and work as the basis for others, such as nano-technologies for
semiconductors (Moser & Nicholas, 2004; Petralia, 2020).

For the Electrical engineering technological sector, unsurprisingly, the highest RM-
dependence is recorded by the field of Semiconductors, which is one of the core technologies
in the hardware infrastructure for ICT (Schmoch, 2008). The second by importance is Electrical
machinery, apparatus, energy. Other fields in the sector, such as Computer technology, are
mainly about software technologies, thus depend much less on RMs. In the Instruments sector,
Optics, Analysis of biological materials, and Medical technology show relatively high RM-
dependence, whilst fields in Mechanical engineering and Other technologies are far less
dependent on RMs. Regarding Green energy technologies, several fields show very high
reliance on the selected RMs: Fuel cells, where 34% patents use at least one RMs as input,
particularly lithium and cobalt; Bio-fuels, Solar energy and Nuclear energy also show a strong
dependence, consistently with the literature on green and renewable energy technologies (e.g.,

Valero et al., 2018; Dominish et al., 2019; European Commission, 2020).

To sum up, the descriptive analysis illustrates a strong reliance of modern technologies on
RMs which varies across technologies, levels of analysis as well as RM types. RMs have
become critical inputs in more and more patents, and have diversified applications in a number
of GPTs, especially material technologies and many emerging technologies. At the same time,
each technology field depends on specific RMs, reflecting specialized technical requirements

and specific properties of RMs.

5. The impact of RM supply on technology dynamics

11. As mentioned earlier, we excluded metallurgy patents. Hence, this field only includes material technologies.
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In this section, we use econometrics models to further explore whether dynamics in the
metal supply influence the innovation output of RM-based technologies, controlling for science

discoveries and demand.

5.1 Sample, RM-based technology areas

The CPC technology system has 5 levels of classification, namely: section, class, subclass,
group and subgroup. We use the finest subgroup level to capture the relationship between RM
and specialized technologies. Our dataset is structured in the format of technology-RM pairs.
We focus on RM-based technology areas, Tech; — RM, which are defined as all subgroups in
which more than 10% of patents use a certain RM; during the research period. All pairs
exceeding this threshold enter the main sample'?. This pair structure allows us to explain the
technology dynamics by the joint effects of both dimensions. For each Tech;, there may be one
or several pairs, depending on how many RMs it depends upon. In order to ensure that
subgroups in our sample are comparable, we exclude the extremely small ones whose total
number of patents is less than 100 during the four decades. The final sample consists of 5,644
Tech; — RM; pairs in which 2,534 subgroups were granted 611,249 patents (accounting for
11.88% of all USPTO granted patents) during 1976-2015 (details of the sample are shown in
Tables Al and A2 in the online Appendix).

5.2 Model specification

The model is set according to our conceptual framework and also by referring to studies on
the induced innovation hypothesis, as mentioned in Section 2 (e.g., Popp, 2002). New patents
in RM-based technology areas are explained by science & technology push, demand pull and
also supply dynamics of RM materials. The dependent variable is the patent output of RM-
based technological subgroups, measured by the share of patent numbers in each subgroup over
the total USPTO patents in each year. Independent variables include the lagged production of

the corresponding RMs as well as other control variables.

Patent Number of Subgroup,
Total Patent Number,

= 1 RM production;,_, + B, Science papers on RM;._, + B3 Forward citation ;,_
+ B, Knowledge stock ;;_, + Bs RM price;,_y + Tech — RM FE + Year FE + ¢,
where i indexes 2,534 technology subgroups, j stands for the 13 RMs and t denotes the
years 1976-2015. Our dependent variable is normalized by z-score. The model uses the

application date rather than the granting date of patents as measure of innovation in order to

12. Results remain consistent when we change this threshold to 20% and 30%.
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document it as early as possible (Popp, 2003; Bohringer et al., 2017). RM production;,_y
measures the production of RM j in k years after t, k= 3 and 5 to consider the lagging effect of
patent application. Along with production amount, we control the yearly prices for each metal®,
RM pricej._,: when production is constant, price dynamics reflects changes in the demand
side. These two variables are measured by ratios relative to the initial level in 1975, because
different metals are produced in very different amounts and units and have large price
difference, making the comparison on absolute values meaningless. In addition to this model
setting, we also check the robustness of our results by considering a fixed effect Poisson model
in which the dependent variable is the absolute number of patents in each subgroup.

The effect of science & technology push is measured by the variable
Science papers on RM;,_, — the number of academic publications on each RMs, divided by
the total scientific publication to control for the changing tendency of publication across years.
Existing studies found that a science or technology breakthrough is followed by a sharp increase
in scholarly publications on the topic (Winnink & Tijssen, 2015). So, we assume that an
increasing share of papers on an RM means that there is more scientific research and deeper
understanding of RM properties and applications. We only focus on the journals in the SCI
Index which covers science and engineering areas. A paper is regarded as studying an RM if
the RM keyword appears in the title: data is collected from Web of Science.

The demand pull for RM-based technologies is further measured by forward patent citation
information. Previous studies found that the number of citations a patent received is closely
related to its economic value and commercialization chances (Harhoff et al., 1999; Hall et al.,
2005; Gambardella et al., 2008). If a technology is cited by many following inventions, this
implies that it has a higher demand. Using a time window of 3 years, the mean forward citation

numbers are calculated to measure whether the technological subgroup faces higher demand.

We also control for Knowledge stock;,_, Which is the number of patents accumulated
until the previous year in technology subgroup i: this variable represents the cumulative and
path-dependent nature of technology development, a higher value reflecting deeper knowledge

in the specialized technology area i. It is calculated as follows:

P

Knowledge stock;;_y = Z e ns. (1 — e'VZ(S“)) - Patents ;;_
s=0

Referring to Popp (2001), this formula measures the pre-existing state of knowledge at each

time t for technology subgroup i. Since innovation decays in value with time, y; is the

13. Price data is from: https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-
mineral-and-material-commodities
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depreciation rate of past technologies and y, is the diffusion rate of existing patents, under the
assumption that it takes time for technological knowledge to diffuse among innovators.

Following (Kim et al., 2017), we use the mean values as estimated by Popp (2001) with y1 =
0.44 and y2 = 2.97. The two variables Knowledge stock;,_,and Forward citation ;,_,

measuring the weighted patent numbers, are both log transformed after adding 1.

Main descriptive statistics and correlation matrix for the independent variables are reported
in Table A3 in the online Appendix. We include Tech-RM fixed effect in the model to control
for constant unobservable factors for each pair. The propensity to patent innovation varies
across technology areas: in some, such as Chemistry and Electronic engineering, it is higher
than that in others, where secrecy is more important to protect innovation. Tech-RM fixed effect
also helps to account for RM-specific unobserved heterogeneity. The year fixed effect is used

to control for macrolevel economic development and technological trends.

5.3 Endogeneity and identification strategy

The empirical setting proposed above may be threatened by potential endogeneity issues.
First, reverse causality can be a concern if technology dynamics influence the production of
RMs. In fact, when more patents using an RM occur, the expected and actual demand for the
metal will increase, stimulating metal producers to increase production capacity. Second, an
omitted variable bias may also affect our estimates: besides demand and science, some other
factors may influence RM production and technology dynamics. For example, government
policies pay special attention to the shortage of certain RMs and try to stabilize their supply
(European Commission, 2012); at the same time, policies may support certain industries or

technologies which are impacted by potential RM shortages.

To mitigate these endogeneity concerns, we develop a new instrumental variable strategy
by using the metal co-production relationships to identify exogenous shocks to RM production.
Unlike major metals, RMs are typically found in relatively low concentrations in the mineral,
and they are only, or largely, constituents in deposits of more abundant base metals (copper,
iron, aluminium, etc.). As a result, RMs seldom form viable deposits on their own, and instead
are mined and produced as companion metal or by-products and recovered from the different
forms of waste, scraps, slags or gas of the base metals in the processing, smelting, refining
stages (e.g., Eggert, 2010; Harper et al., 2015; Nassar et al., 2015;), as shown in Figure 6.
Therefore, RM supply is strongly influenced by the demand for base metals: a major demand
reduction for a base metal causes significant supply constraints for its companion RMs (Graedel,
2015; Sprecher et al., 2017).
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INSERT FIGURE 6 HERE

We argue that the influence of the base metal production on RM production is exogenous
for two reasons. First, this influence is unidirectional, the production of RM does not reversely
influence base metal production because the latter accounts for the major revenue of mining
and is mainly driven by macroeconomic factors such as, for instance, urbanization speed in
China and India. On the other hand, even if the prices for by-product metals are high, a small
market scale means the commercial incentive is limited (Moss et al., 2013). Therefore, mining
and producing decisions are mainly determined by the exogenous shocks on base metals, and
RMs do not typically experience supply expansions in a short timespan (Sprecher et al., 2017).
A production increase for base metals results in supply increases and price drops for the by-
product and co-product RMs (e.g. Campbell, 1985; Hageliiken, 2011; Moss et al., 2013).
Second, the production of base metals does not impact the dependent variable — i.e., patents in
RM-based technology areas — because base metals are more widely used as basic materials in
much larger amounts in a variety of industrial sectors, such as construction materials and metal
containers, and have very different properties and functions than RMs. This assumption is

further verified in the robustness test.

The type of base metal and the degree of metal companionability vary greatly among RMs,
are shown in Table 2. For almost all RMs in our sample, more than 50% of the production is
from a single base metal. Some RMs are entirely co-produced with one base metal, for example
cadmium from zinc, zirconium from titanium, and gallium from aluminium. Others have more

than one base metal as source, like cobalt and tantalum.

INSERT TABLE 2 HERE

Therefore, we use the production of the base metal (if one RM have multiple base
metals, we use the primary one with the highest companionability degree) as an instrumental
variable to predict the exogenous shocks to the RM production. Similar to the RMs production

variable, our instrument is also standardised relative to the production in 1975.

5.4 Regression results

Table 3 shows the OLS regression results and the second stage results of the IV estimation®*.

We start with the simple model in column 1, which solely includes RM production, with Tech-

14. The first stage estimation results are shown in Table A8 in the online Appendix.
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RM pair fixed effects to capture the unobserved heterogeneity at these fine-grained levels. In
column 2 we include the full battery of covariates discussed above, whilst in columns 3 and 4,
we implement our 1V strategy for the same specifications of column 1 and 2. In all models, the

variable of interest, RM production;,_3 is always positive at the 1% significance level,

indicating that the supply of an RM is positively correlated to the patent output of RM-based
technology subgroups. The coefficient of RM production in the specification of column 4
indicates that a one-unit increase (100% increase relative to 1975%) in the production of a

certain RM on average leads to a rise in the share of patents in each RM-based technological

subgroup by 0.0373 standard deviation, which corresponds to an increase of 7.11% (% =

0'0352’;%32221836) in the share of this subgroup in all granted patents. By comparing the results

between the OLS and IV regressions, we notice that the coefficients on RM production;;_;

are always larger in the IV models. This indicates that the simple OLS estimation
underestimates the effect of RM supply. There are many factors, such as for instance public
policies and trade regulation shocks, exerting opposite influences on RM supply and RM-based
innovation. For example, national and international governments, including the US, Japan and
the EU Commission, provide supports for sectors under the threats of critical raw material
scarcities. Moreover, as the major RM supplier, China has imposed export restrictions on some
RMs with increasing technological criticality. In general, these findings are in line with our
expectation that increasing the supply of RMs does provide incentives to innovation in the
relevant technological areas and encourage new patents. On the contrary, a decreasing supply
or supply disruption of RMs may constrain the generation of new technologies in areas based

on these materials?®.

The validity of the IV rests on the assumption that the base metal production is related to
the RM production, but uncorrelated with innovation in RM-based technology areas. However,
the possibility exists that the base metals are also used in those technologies, which may
invalidate the IV and bias the estimation results. To address this potential problem, by using
the same text mining method, we identify keywords of base metals in the patent descriptions
and exclude all Tech; — RM; in which any patent in Tech; mentioned the main base metals of
RM j. By doing so, we rule out the possibility that RMs and base metals are not only related on
the supply (production) side but also on the technological demand side. The regression results
are shown in column 5 of Table 3. After excluding those patents, the estimated effect remains

significantly positive.

15. Until 2015, the production of the 13 RMs, on average, increased by 647.15% relative to the initial values in 1975.

16. The results for the T-5 period are shown in Table A4 in the online Appendix, in which we observe similar results.
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In general, these findings support our expectation that increasing supply of RMs does
provide incentives to innovation in the subgroups based on them and encourages more R&D
activities. On the contrary, a decreasing production or supply disruption of RMs may constrain
the generation of new technologies based on these materials. Hence, these results provide a first
suggestion that the supply of RMs influences frontier technological dynamics.

As far as the other variables are concerned, we find strong evidence for demand pull: patent
output in subgroup i is positively related to the average forward citation numbers. Moreover,
the effect of Knowledge stock;._y on patents is significant and positive, indicating that past
knowledge accumulation in a technology area leads to more dependence on it in the future. In
line with other studies (e.g. Kim et al., 2017), innovation is path-dependent and builds on the
existing knowledge stock of its own technology subgroup. The science & technology push
argument is only partially supported — the variable scientific papers on the corresponding RM
is only significantly positive in the OLS model but loses significance in the 1V estimation.

INSERT TABLE 3 HERE

6. Robustness checks

We further test the robustness of our results by: (1) checking the validity of the 1V, (2)
using different identification of RM-based technologies, and (3) applying alternative regression
methods. All robustness tests reported are for T-3 period, results for T-5 are available upon

requests.

(1) Further validations of the instrumental variable

First, the IV in the main model captures the production of the primary base metal of the RMs
without considering differences in the companionability across RMs and corresponding base
metals (BMs) and changes with time. First, RMs with a high companionability may be more
impacted by changes in the base metal production. To consider this heterogeneity, we re-
construct our IV by weighting the base metal production by the degree of companionability (the
percentage of an RM produced from co-production process with a base metal) between RMs
and base metals. Another regression was then run on the Tech-RM pairs for which the
companionability degree between RM and BM is higher than 80%. Next, we introduce the cross
term of BM production with the two-dimensional dummies of 13 RMs and time (decades) in
order to further control the fact that the relationship between base and rare metal production
may change with both metal type and time. Next, we pay attention to the influence of the energy

transition, which has a strong dependence on some RMs and BMs: in such case, both BM and
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RM production are influenced by the green energy transition, which may invalidate our
assumptions. We thus exclude all RMs who are intensively used as energy transition metals
(Molybdenum, Lithium, Cobalt), and RMs whose base metals are energy transition metals
(Selenium, Tellurium, Indium, Cadmium, Germanium) (IEA, 2021)*". All results are shown in
Table A5 in the online Appendix: the coefficients of interest and other variables remain similar

and highly significant, further validating our IV estimation approach.

(2) Using the claim text of patents to identify RMs

In the above regressions, we use the “full description text” to identify the RM-based patents.
As an alternative, we use the “claim text” which includes the core innovative aspects of a patent
for which the inventors want legal protection. The results based on claim text are shown in
Table A6 in the Appendix: RM production is still significantly positive in both OLS and 1V

estimations.

(3) Changing regression methods

We further check the robustness of our findings by adopting a Poisson model as an
alternative regression method. In this setting, the dependent variable is now the absolute
number of patents in subgroup i, based on RM j. We also take the first difference for both
dependent and independent variables. The results are shown in Appendix, Table A7. Overall,
the variable of interest, RM production, remains significant and positive, thus further

corroborating our findings.

The robustness checks above suggest that our main findings are stable with alternative
samples and methods, no matter how we change the IV, or use alternative patent texts for
identification, or regression models. We interpret this evidence as suggestive that the effect of

RM supply on innovation dynamics is robust.

7. Conclusion and discussion

Technological innovation co-evolves with the availability and supply of natural resources
and materials. On the one hand, frontier technologies are experiencing tremendous shifts,
changing types, modes, and efficiency in the utilisation of different inputs. Economists believe
that technological innovation makes it possible to replace rare and expensive resources with
relatively abundant and cheap ones, which helps overcoming natural resource constraints and
achieving sustainable development (Rosenberg, 1976). For example, for energy resources, new

technologies enabled us to shift from wood to coal, to petroleum to hydropower, and then to

17. Executive summary — The Role of Critical Minerals in Clean Energy Transitions — Analysis - [EA
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solar, nuclear, and other unconventional energy sources. On the other hand, technological
progress also makes the materials in use become more diversified and advanced to achieve
some specific functionalities. As a result, modern society is more and more dependent on some
important non-renewable resources like critical raw materials, which have become essentials in
technological progress and economic growth (Groth & Schou, 2002). In this way, natural

resource and material supply in turn influences the trajectory of frontier technology dynamics.

By using 13 widely concerned RMs, this paper contributes to the understanding of the
material shifts of modern technologies, with particular focus on the deep interdependence
between material supply and technology progress. RMs are regarded as “technology metals”
with great criticality to high-tech manufacturing and cutting-edge technological innovation,
especially under the paradigm shifts of clean and green energy and Al revolution. The
functionality and special properties of RMs cannot be easily replaced with substitutes (Ayres
& Peiro, 2013; Graedel et al., 2015; Leader, 2019). The case of RMs suggests that, by
controlling for the effects of science & technology push and demand pull, the availability of

critical raw materials has a direct influence on the dynamics of frontier innovation —

technological progress in the current society is still endogenously subject to the natural
environment and the supply of resources and materials with technological criticality. Our
research broadens the understanding of technological paradigm shifts by adding the perspective
of “material shift”, which is fundamentally driven by the discoveries on materials in basic
science, enabled by market demands for functionality improvement based on RM properties

and also influenced by the RM supply dynamics.

Empirically, this paper contributes by providing a first exploration of the dependence of
frontier technologies on RMs. We find that during the last four decades, 10.87% of patents
granted by the USPTO use RMs as inputs, and that this dependence varies with technology area,
scale of analysis as well as type of rare metals. Technology application of RMs has experienced
scale and structural changes over time: the number of RM-based patents has increased by 7
times over the observed decades, and Electronic engineering surpassed Chemistry, becoming
the technological sector most reliant on RMs. Our econometric exercise, which accounts for
endogeneity, indicates that RMs supply is positively associated with the innovation output of

RM-based technologies.

Our findings have policy relevance and implications for future research. The case of RMs
may further encourage scholars and policymakers to devote attention to the entire global
organisation and value chain networks within which innovation occurs, considering the
distribution of benefits and costs across actors and geographies involved. Given the high

dependence on critical natural resources, it is likely that a constantly increasing supply of RMs
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would be needed to ensure steady innovation rates. However, RM supplies are recognized to
be subject to great societal and environmental risk and uncertainty (National Research Council,
2008; Humphries, 2010; Hayes & McCullough, 2018; European Commission, 2020). The
extraction, exploitation and trade of many rare metals, such as cobalt and tantalum which are
labelled among others as “conflict minerals”, contribute to wars, conflicts and human right
violations in developing countries and regions (Hofmann et al., 2018). Exploring the
relationship between RM supply and technological dynamics provides a fuller grasp of the
“dark side of innovation™ and help resolve the apparent trade-off between technological change
and global fairness and equity (Castellacci & Archibugi, 2008; Giuliani, 2018; Diemer et al.,
2022).

Our research has limitations and further investigation is required. First, because of data
availability, this paper only focuses on 13 critical RMs. Other RMs are also of significant
technological importance, especially the widely concerned Rare Earth Elements (REE) (Hayes
& McCullough, 2018). Different critical raw materials have distinct technological properties
and applications and may experience different supply risks. Second, our empirical analysis
mainly focuses on the influence of material supply by keeping other important elements —
scientific discoveries and demand — as control variables. Further research should be done to test
the whole Dosi’s framework. For example, it would be very interesting to study the endogenous
relationship between Material Science and downstream technology inventions, on the one hand,
and science-pushed technology applications, on the other; application potentials may also
encourage more research efforts. Third, in this paper RM supply and technological dynamics
are measured at the global scale. However, their actual availability varies with geography, thus
being influenced by multifaceted factors such as geological mineral distribution, local socio-
economic and political conditions, national and international policies, trade agreements as well
as global geopolitics events. For example, in 2010 under the embargo of China, Japan had little
access to new REEs (Mancheri, 2015); and because of the Dodd Frank Act, business companies
listed in the US stock market have additional limits in obtaining RMs included in the “conflict
minerals” category from the Democratic Republic of Congo (Dalla & Perego, 2018). Future
research should focus on finer geographic scales (Diemer et al., 2022) to explore whether and
how differences in the availability of RMs shape the development trajectories of firms, regions
and countries. From a methodological standpoint, we acknowledge the limitations of our
instrumental variable approach, particularly as not all by-product RMs are extracted from base
metal production leading to a “slack condition”. Furthermore, our definition of RM-based
technologies relies on a criterion where over 10% patents in a CPC subgroup utilizes an RM.
Future research may consider different criteria for selecting technology areas or focus on case

studies for specific ones.
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Table 1. Selected RMs and examples of related literature

Rare metals

Related Literature

Bismuth (Bi)
Cadmium (Cd)
Cobalt (Co)
Gallium (Ga)
Germanium (Ge)
Indium (In)
Lithium (Li)
Molybdenum (Mo)
Selenium (Se)
Tantalum (Ta)
Tellurium (Te)
Vanadium (V)

Zirconium (Zr)

Hageltken (2011); Moss et al. (2011);

Moss et al. (2011); Valero et al. (2018)
Humpbhries (2010); Campbell (2020)

Ayres & Peiro (2013); Frenzel et al. (2017)
Harper et al. (2015); Frenzel et al. (2017)
Elshkaki & Shen. (2019); Grandell et al. (2016); Frenzel et al. (2017)
Liu et al. (2019); King & Boxall (2019)

Leader et al. (2019); Zhu et al. (2020)

Grandell et al. (2016); Elshkaki & Shen (2019);
Humpbhries (2010); Kim et al. (2019)

Watari et al. (2020); Valero et al. (2018)

Moss et al. (2013); Gunn et al. (2014)

Moss et al. (2011); Zhu et al. (2020)

Note: Two elements, selenium and tellurium are metalloids rather than metals. However, they have some similar

characteristics and applications with metals, therefore they are analysed together with other metals in the literature
(i.e. Elshkaki & Shen, 2019; Zhu et al., 2020; Watari et al., 2020).

Table 2. Metal companionability between base and rare metals

Rare metals

Base metals and companionability degree

Bismuth (Bi)
Cadmium (Cd)
Cobalt (Co)
Gallium (Ga)
Germanium (Ge)
Indium (In)
Lithium (Li)
Molybdenum (Mo)
Selenium (Se)
Tantalum (Ta)
Tellurium (Te)
Vanadium (V)

Zirconium (Zr)

Lead (Pd) (54%)
Zinc (Zn) (100%)

Nickel (Ni) (50%); Copper (Cu) (35%)
Aluminium (Al) (100%)

Zinc (Zn) (60%)

Zinc (Zn) (80%)

Potassium (K) (52%)

Copper (Cu) (46%)

Copper (Cu) (90%)

Tin (Sn) (15%); Niobium (Nb) (13%)
Copper (Cu) (90%)

Iron (Fe) (62%)

Titanium (Ti) (100%)

Information Sources: Nassar et al. (2015); Harper et al. (2015). Companionability degree measures what percentage of an RM is

produced from the co-production process with a base metal.
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Table 3. Regression results for (T-3)

OoLS v
VARIABLES 1) ) 3) 4) (5)
RM production;;_; 0.0271*** 0.0120%** 0.0647*** 0.0373*** 0.0211***
(0.00286) (0.00252) (0.00865) (0.00659) (0.00752)
Science papers on RM;;_; 0.0803*** 0.0314 -0.00529
(0.0201) (0.0247) (0.0293)
Forward citation dif ference j;_3 0.0724*** 0.0723*** 0.0663***
(0.00179) (0.00180) (0.00409)
Knowledge stock ;3 0.377*** 0.372%** 0.174%**
(0.0143) (0.0140) (0.0139)
RM pricej;_3 0.00410* 0.00716*** 0.00713
(0.00225) (0.00242) (0.00491)
Constant -0.0934*** -1.038***
(0.00573) (0.0477)
Tech-RM Fixed effect Yes Yes Yes Yes Yes
Observations 214,004 214,004 214,004 214,004 12,718
R-squared 0.023 0.186 0.011 0.182 0.244
Number of pairs 5,644 5,644 5,644 5,644 347

Note: *, ** *** indicate significance level at 10%, 5% and 1%, respectively. First stage results for columns 3, 4 and 5 are reported

in Table A8 in the online Appendix. Robust standard errors are clustered at the Tech-RM level, shown in the parentheses.

The sample of the column 5 excludes subgroups in which any patents use BM.
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Figure 1. Global annual production of the 13 RMs, 1975-2015 (Unit, metric ton)
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Figure 2. Example: material shift in lighting technologies, share of patents based on different
RMs: Gallium vs Tungsten

2 '
&7 /
AN /
o Ao Iy /
85 n I.'I \\.l'l Iﬂl / \ A ’(
o~ | L ,'"ll N [\ J'I A
|'II " \_ /\‘]"l \‘ A /4 ll,ll,u' b
/ ~ \ SN A \J/ !
39‘ \ . \\/ ~ 1"'.’ f(l.' \.\
E 7 \\\/// II".II// _\-\__-hx\ ""’ xr——)’ J N
— /
I -,
E / \
—
//
57 \__ . / /_\\/
~
A/
T T T T T T T T T
1975 1980 1985 1990 1995 2000 2005 2010 2015
year
Gallium patent share —————— Tungsten patent share

Note: Lighting technologies include H01J: electric discharge tubes or discharge lamps; HO1K: electric incandescent lamps;
HO1L33: Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission,
including LED technologies.

Figure 3. General trends of technological dependence on RMs
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Figure 4. Trends in RM-dependence by WIPO technology sector, 1976-2015 (left: absolute nos.; right: % shares)
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Figure 5. Share of RM-based patents by technology field, 1976-2015
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Figure 6. Co-production process of base metals (main product) and RMs (by-product)
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Information Sources: (Nassar et al., 2015; Harper et al., 2015)
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Online Appendix. Supplementary materials

A.1 Description of RM global production

Figure Al. Production changes for the 13 RMs, 1975-2015, relative to 1975 (Y axis has unequal
intervals)
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A.2 Patent Description
Figure A2. Patent trends, 1976-2015
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Figure A3. Total patent number by WIPO 35 technology fields and 5 sectors
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Figure A4. Trends of technological dependence by RM, 1976-2015 (left: absolute patent nos.; right:
ratios relative to 1976)
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Figure A5. Number of RM-based patents identified using different parts of the patent text

By descriptions

By claims

122.158

18,162 437,170

As figure A5 shows, there are in total 577,490 RM-based patents that can be identified as such
either by descriptions or claims. Of these, 437,143 (75.69%) can only be identified as RM-based
by description, and 18,162 (3.14%) only by claim; the remaining 122,158 (21.15%) can be
identified by both. This means that most RM-based patents identified as such by claim can also be
identified by description; instead, for those identified on the basis of RM keywords found in the
descriptions, only 22% are also identified in claims (in such cases, RMs are materials used in the
technology but are not regarded as the major innovative content by the inventor). Therefore, using
both parts of the patent text to identify RM keywords provides a balance between the “completeness”

and “innovativeness” of patent information.
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A.3 Sample description

Table Al. Distribution of Tech-RM pairs by technology sector and field

Sector Field Number of pairs
Chemistry Organic fine chemistry 618
Chemistry Basic materials chemistry 263
Chemistry Macromolecular chemistry, polymers 216
Chemistry Chemical engineering 157
Chemistry Materials, metallurgy 117
Chemistry Biotechnology 111
Chemistry Environmental technology 49
Chemistry Surface technology, coating 29
Chemistry Micro-structural and nano-technology 26
Chemistry Food chemistry 6
Electrical engineering Semiconductors 1807
Electrical engineering Electrical machinery, apparatus, energy 589
Electrical engineering Audio-visual technology 173
Electrical engineering Computer technology 78
Electrical engineering Basic communication processes 21
Electrical engineering Telecommunications 11
Electrical engineering Digital communication 1
Instruments Optics 751
Instruments Medical technology 260
Instruments Analysis of biological materials 65
Instruments Measurement 55
Instruments Control 5
Mechanical engineering Textile and paper machines 75
Mechanical engineering Machine tools 41
Mechanical engineering Other special machines 30
Mechanical engineering Transport 30
Mechanical engineering Engines, pumps, turbines 22
Mechanical engineering Thermal processes and apparatus 9
Mechanical engineering Mechanical elements 8
Mechanical engineering Handling 3
Other fields Furniture, games 16
Other fields Civil engineering 1
Other fields Other consumer goods 1
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Table A2. Distribution of Tech-RM pairs by metal

Metal Number of pairs
lithium 1117
cobalt 764
indium 657
tantalum 546
molybdenum 522
gallium 451
zirconium 446
germanium 437
vanadium 206
cadmium 182
selenium 135
bismuth 129
tellurium 52
Sum 5,644

Table A3. Independent variables description and correlation matrix

Mean Std dev Min Max 1 2 3 4 5
1.RM productionj‘t 2.83419 4.34898 352 426363 1.0000
2.Science papers on RM; . (z-score) 0 1 -1.3069 2.6912 -0.2368 1.0000
3.Forward citation ;. (log) 2.478011 1.908416 0 8.070594 0.0154 -0.1196 1.000
4. Knowledge stock ; (10g) 1.699815 1.144589 0 7.069808 0.2777 -0.1982 0.456 1.0000
5.RM price;,; 2.382514 2.00034 .0488529 15.9375 -0.0187 -0.1373 0.025 0.2194 1.0000
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Table A4. Regression results (T-5)

OLS v
VARIABLES (1) @ ®) @ ®
RM production;,_; 0.0368*** 0.0169*** 0.182*** 0.136*** 0.0591***
(0.00411) (0.00384) (0.0222) (0.0210) (0.0226)
Science papers on RM;;_3 0.122%** -0.105** -0.0379
(0.0227) (0.0473) (0.0459)
Forward citation ;j;_3 0.0891*** 0.0878*** 0.0652***
(0.00227) (0.00233) (0.00487)
Knowledge stock ; j;_3 0.240*** 0.227*** 0.0709***
(0.0142) (0.0141) (0.0175)
RM price;;_3 0.00276 -0.000869 -0.00659
(0.00221) (0.00223) (0.00446)
Constant -0.107*** -0.694***
(0.00710) (0.0526)
Tech-RM Fixed effect Yes Yes Yes Yes Yes
Year Fixed effect Yes Yes Yes Yes Yes
Observations 202,820 202,820 202,820 202,820 12,128
R-squared 0.022 0.124 0.008 0.082 0.157
Number of pairs 5,644 5,644 5,644 5,644 347

Note: *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results for columns 3, 4 and 5 are reported in Table
A8 in the online appendix. Robust standard errors are clustered at the Tech-RM level, shown in the parentheses.

The sample of the column 5 excludes subgroups in which any patent use the base metal.
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A.4 Robustness test results

Table A5. Robustness tests on 1V

(3) First stage with

@) )
: - cross term of BM
VARIABLES Heterogeneous Companionability and RM-decade

(4) Excluding
energy transition

companionability higher than 80% dummies metals
RM production;,_s 0.0272%** 0.0185* 0.0144%** 0.0130**
(0.00559) (0.0104) (0.00288) (0.00536)
Science papers on RM;;_; 0.0554** 0.0131 0.0756*** 0.0334
(0.0236) (0.0797) (0.0200) (0.0902)
Forward citation ; j,_3 0.0714%*=* 0.0656*** 0.0724*** 0.0761***
(0.00179) (0.00291) (0.00179) (0.00309)
Knowledge stock ;3 0.373*** 0.367*** 0.377*** 0.377***
(0.0141) (0.0177) (0.0143) (0.0162)
RM pricej;_3 0.00543** -0.00745 0.00439* -0.00387
(0.00239) (0.0105) (0.00225) (0.00508)
Year Fixed effect Yes Yes Yes Yes
Tech-RM Fixed effect Yes Yes Yes Yes
R-squared 0.182 0.212 0.186 0.208
Observations 208,360 72,606 214,004 67,564
Number of pairs 5,644 1,923 5,644 1,778

Note: *, ** *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level,
shown in the parentheses. First stage results of column 1, 2 and 4 are reported in column 1-3 in Table A9. First stage results of column 3 are
reported in Table A10.
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Table A6. Identifying RM key words by claims

VARIABLES (1)oLs 2)1v
RM production;;_s 0.0129*** 0.0205***
(0.00292) (0.00645)
Science papers on RMj't_3 0.0450 0.0299
(0.0335) (0.0343)
Forward citation ; j;_s 0.00658 0.00655
(0.00477) (0.00476)
Knowledge stock ; ;3 0.192%** 0.190***
(0.0239) (0.0244)
RM pricej;_s -0.0300*** -0.0294***
(0.00960) (0.00959)
-1.151%**
Constant
(0.102)
Tech-RM Fixed effect Yes Yes
Observations 26,660 26,660
R-squared 0.182 0.181
Number of pairs 703 703

Note: *, ** *** indicate significance level at 10%, 5% and 1%, respectively. First stage results of column 3 are in Table A11. Robust standard
errors are clustered at the Tech-RM level, shown in the parentheses.
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Table A7. Robustness test by alternative regressions

(1) Poisson IV (2) First Difference IV

RM production;,_3 0.0435%** 0.0188***
(0.00866) (0.00707)
Science papers on RM;j; 3 0.190%** -0.0256%*
(0.0293) (0.0119)
Forward citation; j;_3 0.246%* 0.00241%**
(0.00331) (0.000555)
Knowledge stock ; ;3 0.444%* 0.00225
(0.00801) (0.00450)
RM pricej_3 0.00511** 0.00443***
(0.00255) (0.00107)
Constant 0.0937*** 0.0109***
(0.000829) (0.000915)
Tech-RM Fixed effect Yes Yes
Year Fixed effect Yes Yes
Observations 197,540 208,360
R-squared -0.000
Number of pairs 5,644 5,644

Note: *, **, *** indicate significance level at 10%, 5% and 1%, respectively. First stage results of column 3 are in Table A11. Robust standard
errors are clustered at the Tech-RM level, shown in the parentheses.
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A.5 First stage regression results

Table A8. First stage regression results of Table 3, Table A4 and Table A5

@143 exclucin
VARIABLES (1) T+3 (2) T+3 excluding BM (4) T+5 (5) T+5 9
BM key
key words
words
BM production;,,_y 2.983*** 3.082%** 5.451%** 1.365%** 1.236%** 2.453%**
(0.0900) (0.0434)
(0.0830) (0.152) (0.0453) (0.0967)
Science papers on RM;;_j 2.070%** -0.248 1.854%** 0.449%**
(0.0574) (0.291) (0.0539) (0.166)
Forward citation i j—x 0.000525 0.0196 0.00826** 0.0216*
(0.00457) (0.0175) (0.00383) (0.0122)
Knowledge stock ; 0.142%** 0.269%** 0.0865%** 0.0349
(0.0197) (0.0882) (0.0170) (0.0679)
RM pricej ;i -0.132%** -0.229%** 0.00819** -0.0471**
(0.00564) (0.0222) (0.00404) (0.0199)
Constant 0.743*** 1.499*** -0.278 2.603*** 3.516*** 2.025%**
(0.128) (0.122) (0.370) (0.0641) (0.0946) (0.331)
Observations 214,004 214,004 12,718 202,820 202,820 12,128
R-squared 0.408 0.483 0.672 0.359 0.485 0.612
Number of pairid 5,644 5,644 347 5,644 5,644 347
Underidentification test (Kleibergen-
Paap rk LM statistic): 527.420*** 611.589*** 150.003*** 513.468*** 429.763*** 118.053***
Weak identification test (Kleibergen-
Paap rk Wald F statistic): 1098.672 1379.718 1278.082 991.156 745.868 642.953
Stock-Yogo weak ID test critical
values:
10% maximal IV size 16.38 16.38 16.38 16.38 16.38 16.38
15% maximal IV size 8.96 8.96 8.96 8.96 8.96 8.96
20% maximal 1V size 6.66 6.66 6.66 6.66 6.66 6.66
25% maximal 1V size 5.53 5.53 5.53 5.53 5.53 5.53
Year FE Yes Yes Yes Yes Yes Yes
Tech-RM FE Yes Yes Yes Yes Yes Yes

Note: *, **, *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level,
shown in the parentheses.

The IV Base metal productionj,t_k is significantly and positively correlated with the variable of
interest RM productionj +— Indicating that one unit increase in the production of primary base metal

corresponds to a 3.082 unit increase in the by-product RM production, controlling for other variables
and fixed effects. We now obtain the levels of RM production exogenously predicted by the instrument
and examine their effects on innovation dynamics. Considering that our models account for clustered
standard errors for Technology and RM pairs, the i.i.d assumption is not valid and we report the LM
and Wald versions of the Kleibergen and Paap (2006) statistics. The results reject the under-
identification null hypothesis, as shown by the p-values of LM statistics. Moreover, as the Kleibergen-
Paap rk Wald F statistics is larger than all Stock-Yogo critical values, we can also reject the weak
identification null hypothesis.
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Table A9. First stage regression results for alternative 1V

(1) Heterogeneous (2) Companionability  (3) Excluding energy

VARIABLES companionability lower than 80% transition metals
BM production;;_y 25.50%** 4.386*** 6.557***
(0.475) (0.122) (0.0756)
Science papers on RM;;_ 1.895*** 6.887*** 3.402%**
(0.0609) (0.135) (0.182)
Forward citation ; j_ -0.00149 0.0352*** 0.00342
(0.00456) (0.00953) (0.00516)
Knowledge stock ; j._i 0.138*** 0.459*** 0.228***
(0.0194) (0.0433) (0.0185)
RM price;j;_ -0.127%** -0.702%** -0.513***
(0.00537) (0.0177) (0.0118)
Constant 0.961*** 11.18*** 1.534%**
(0.106) (0.478) (0.222)
Observations 208,360 72,606 67,564
R-squared 0.520 0.695 0.732
Number of pairs 5,644 1,923 1,778
Underidentification test (Kleibergen-
Paap rk LM statistic): 595.267*** 411.498*** 1166.334***
Weak identification test (Kleibergen-
Paap rk Wald F statistic): 2885.850 1286.273 7533.44
Stock-Yogo weak ID test critical
values:
10% maximal IV size 16.38 16.38 16.38
15% maximal IV size 8.96 8.96 8.96
20% maximal 1V size 6.66 6.66 6.66
25% maximal 1V size 5.53 5.53 5.53
Year FE Yes Yes Yes
Tech-RM FE Yes Yes Yes

Note: *, **, *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level,
shown in the parentheses.
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Table A10. First stage with cross term Of BM and RM-decades dummies

First stage with cross term Of

VARIABLES BM and RM-decade dummies

BMxDummy_bismuth_decadel -4,091***
(0.163)

BMxDummy_bismuth_decade2 -5.221%**
(0.185)

BMxDummy_bismuth_decade3 -13.43***
(0.521)

BMxDummy_bismuth_decade4 -0.182***
(0.0670)

BMxDummy_cadmium_decadel -2.662***
(0.0261)

BMxDummy_cadmium_decade2 -2.543%**
(0.0339)

BMxDummy_cadmium_decade3 -7.143%**
(0.217)

BMxDummy_cadmium_decade4 0.456***
(0.109)

BMxDummy_cobalt_decadel -3.980***
(0.153)

BMxDummy_cobalt_decade2 -3.335%**
(0.128)

BMxDummy_cobalt_decade3 -6.756***
(0.285)

BMxDummy_cobalt_decade4 0.826***
(0.0347)

BMxDummy_gallium_decadel 11.31%**
(0.0213)

BMxDummy_gallium_decade2 9.709***
(0.0166)

BMxDummy_gallium_decade3 4.622%**
(0.146)

BMxDummy_gallium_decade4 9.256***
(0.0654)

BMxDummy_germanium_decadel -1.816***
(0.0228)

BMxDummy_germanium_decade2 -2.227%**
(0.0330)

BMxDummy_germanium_decade3 -6.984***
(0.216)

BMxDummy_germanium_decade4 0.736%**
(0.110)

BMxDummy_indium_decadel 6.797***
(0.0257)
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BMxDummy_indium_decade2

BMxDummy_indium_decade3

BMxDummy_indium_decade4

BMxDummy_lithium_decadel

BMxDummy_lithium_decade2

BMxDummy_lithium_decade3

BMxDummy_lithium_decade4

BMxDummy_molybdenum_decadel

BMxDummy_molybdenum_decade2

BMxDummy_molybdenum_decade3

BMxDummy_molybdenum_decade4

BMxDummy_selenium_decadel

BMxDummy_selenium_decade2

BMxDummy_selenium_decade3

BMxDummy_selenium_decade4

BMxDummy_tantalum_decadel

BMxDummy_tantalum_decade2

BMxDummy_tantalum_decade3

BMxDummy_tantalum_decade4

BMxDummy_tellurium_decadel

BMxDummy_tellurium_decade2

BMxDummy_tellurium_decade3

BMxDummy_tellurium_decade4

BMxDummy_vanadium_decadel
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6.860%**
(0.0344)
3.619%**
(0.216)
11.83%%+
(0.108)
-0.956%**
(0.0458)
-0.952%%*
(0.0528)
-6.937%%*
(0.315)
4.284%%*
(0.134)
-0.922%%*
(0.0541)
-0.897**
(0.0414)
-4.314%%%
(0.150)
1.719%%*
(0.106)
-1.967*%*
(0.0513)
-1.798%**
(0.0421)
-5.174%%*
(0.148)
0.738%**
(0.107)
1.875%%*
(0.0526)
1.353%%
(0.0489)
-4.201%%*
(0.245)
5.457%**
(0.206)
-0.615%**
(0.0750)
1.OTTRR*
(0.0600)
-4, 573%x
(0.134)
0
(0)
-1.041%%*
(0.0431)



BMxDummy_vanadium_decade2 -1.399***

(0.0385)
BMxDummy_vanadium_decade3 -7.074***
(0.274)
BMxDummy_vanadium_decade4 1.879***
(0.0985)
BMxDummy_zirconium_decadel 0.115***
(0.0186)
BMxDummy_zirconium_decade2 0.0367
(0.0247)
BMxDummy_zirconium_decade3 -4,135***
(0.173)
BMxDummy_zirconium_decade4 2.011***
(0.0890)
Science papers on RMj,_5 0.352***
(0.00987)
Forward citation j;_3 -0.00342**
(0.00145)
Knowledge stock ;3 -0.00474
(0.00425)
RM pricej't_3 0.0287***
(0.00189)
Constant -1.829***
(0.170)
Observations 214,004
Number of pairs 5,644
R-squared 0.867
Underidentification test (Kleibergen-Paap rk LM statistic): 5521.551***
Weak identification test (Kleibergen-Paap rk Wald F statistic): 3.9e+07
Stock-Yogo weak D test critical values:
5% maximal IV relative bias 21.31
10% maximal IV relative bias 1111
20% maximal 1V relative bias 5.87
30% maximal IV relative bias 4.08
10% maximal 1V size 136.30
15% maximal 1V size 70.03
20% maximal IV size 47.65
25% maximal IV size 36.43
Year FE Yes
RM-Tech FE Yes

Note: *, ** *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level,
shown in the parentheses.
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Table A1l. First stage regression results for alternative model settings and claim model

VARIABLES (1) Poisson regression (2) Claim model VARIABLES (3) First difference
BM production;;_s 3.082%** 3.652%** D.BM production;;_3 1.890%**
(0.0830) (0.235) (0.0576)
Science papers on RM;,_3 2.070%%% 2.407%** D.Science papers on RM;;_3 0.404%**
(0.0574) (0.148) (0.00724)
Forward citation j, 3 0.000525 0.00326* D.Forward citation j,_3 -0.00477***
(0.00457) (0.00174) (0.000831)
Knowledge stock ;3 0.142%%% 0.450%%% D.Knowledge stock  j;_3 -0.0584%%*
(0.0197) (0.0722) (0.00844)
RM price;, s 01325 -0,238%** D.RM price;;—3 0.0416%**
(0.00564) (0.0286) (0.000845)
Constant 1.499%** 0.931%* Constant 0.123%**
(0.122) (0.441) (0.00172)
Observations 214,004 26,660 Observations 208,360
R-squared 0.483 703 R-squared 0.080
Number of pairs 5,644 0.503 Number of pairid 5,644
Underidentification test (Kleibergen- Underidentification test (Kleibergen-
Paap rk LM statistic): 611.589*** 91.750%** Paap rk LM statistic): 956.495***
Weak identification test (Kleibergen- Weak identification test (Kleibergen-
Paap rk Wald F statistic): 1379.718 240.644 Paap rk Wald F statistic): 1077.271
Stock-Yogo weak ID test critical
values: Stock-Yogo weak D test critical values:
10% maximal 1V size 16.38 16.38 10% maximal 1V size 16.38
15% maximal 1V size 8.96 8.96 15% maximal 1V size 8.96
20% maximal 1V size 6.66 6.66 20% maximal 1V size 6.66
25% maximal 1V size 5.53 5.53 25% maximal 1V size 5.53
Year FE Yes Yes Year FE Yes
RM-Tech FE Yes Yes RM-Tech FE Yes

Note: *, ** *** indicate significance level at 10%, 5% and 1%, respectively. Robust standard errors are clustered at the Tech-RM level,
shown in the parentheses.

56



