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Abstract 
We study the interaction between horizontal (peer) and vertical (manager) social factors in workers’ 
motivation. In our setting, individuals work using open-plan desks. Using a natural experiment, we 
identify a sharp increase in workers’ productivity following the occupation of adjacent desks. We link 
this peer pressure effect to two key aspects of the worker-manager relation. First, we find stronger peer 
pressure when managers monitor workers less. Second, we find stronger peer pressure among workers 
performance-evaluated by the same manager. In a set of counterfactual exercises, we illustrate how 
organisations could take advantage of these interdependencies to increase worker productivity. 
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1 Introduction

Motivating workers is one of the central challenges that firms and other organisations

face. The limitations of contractual incentives in many settings (Gibbons and Roberts,

2013) have led to a rapidly expanding body of work examining the role that social

factors play in workers’ effort (for a review, see Ashraf and Bandiera 2018). This work

has progressed along two main, largely independent, lines. One line has examined

‘horizontal’ (i.e. peer) effects, such as the potential of pressure between co-workers

to alleviate free-riding in teamwork production processes. A separate ‘vertical’ line of

enquiry has studied the effect that managers have on their direct subordinates’ effort

and performance.1 While many insights have been gained from the above work, study-

ing horizontal and vertical social factors separately ignores the fact that organisations

and workplaces are complex social systems, characterised by subtle interdependencies

between their parts (Brynjolfsson and Milgrom, 2013).

This paper shows that these interdependencies matter, thereby linking the two

separately-studied sources of social incentives. Specifically, we examine the interaction

between managers and how workers exert peer pressure on each other, in the context of

a public sector occupation characterised by teamwork and low-powered incentives. We

identify two key results. First, we show that peer pressure and manager pressure can

play substitute roles, as peer pressure is empirically stronger when the manager’s abil-

ity to directly monitor the worker is weaker. Second, we find that peer pressure is larger

among pairs of workers exogenously performance-evaluated by the same manager. Im-

portantly, this finding exists despite the fact that sharing a performance-evaluator does

not determine a worker’s team assignment or any other operational characteristic. Our

paper therefore establishes that a key mechanism through which managers affect their

subordinates is by shaping the milieu through which these subordinates interact with

each other. In a set of counterfactual exercises, we illustrate how organisations could

take advantage of these interdependencies to increase worker productivity.

Our study is based on the Operational Control Branch (OCB) of the Greater

1On peer pressure among co-workers, see Mas and Moretti (2009), Cornelissen et al. (2017), Silver
(2021), and Lindquist et al. (2022). On the effects of social connections between managers and
their subordinates, see Bandiera et al. (2009), Hjort (2014), Xu (2018), Nguyen (2022) and Cullen
and Pérez-Truglia (2023). On the wider effects of managers on their subordinates, see Lazear et al.
(2015), Frederiksen et al. (2020), Hoffman and Tadelis (2021), Adhvaryu et al. (2022), Fenizia (2022),
and Minni (2023).
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Manchester Police (GMP) between February 2012 and November 2014. Call handlers

are responsible for answering emergency calls and describing the resulting incidents in

the internal computer system. All handlers working at the same time operate as a

team, in the sense that they take calls from the same call queue and therefore an idle

‘free-riding’ handler would increase the workload of his colleagues.

Handlers are located in a single room, which is organized in rows of desks. Visibil-

ity of each other’s work is highest among handlers in adjacent desks, and more limited

among handlers with desks in different rows. Upon starting their shift, handlers can

choose any desk that is empty, but they remain in the chosen desk until the end of the

shift. Individual shift starting and ending times are set well in advance and staggered

throughout the day in order to respond to expected demand smoothly. This generates

frequent variation in whether the desks adjacent to a working handler are occupied.

We investigate how the productivity of a handler (e.g. number of calls taken

per hour) in the middle of his shift is affected by whether the adjacent desks are

occupied. To credibly identify causal effects we exploit high-frequency variation in

this desk occupation, under the assumption that the sudden arrival or departure of

nearby colleagues is orthogonal to idiosyncratic and sudden shocks to the handler’s

productivity (an assumption that we test). Our first finding is the presence of a peer

pressure effect: handlers start to work harder when a colleague sits next to them

and slack off when an adjacent colleague finishes his shift and departs. This effect is

quantitatively large: the number of calls taken increases by 7% when the two desks

adjacent to a worker become occupied.2 A leads and lags analysis confirms that the

effect is immediate, lasts for more than two hours, and is free from pre-existing trends.

We find smaller effects for the occupation of non-adjacent desks with more limited

visibility of the handler’s position. We find no detrimental effects on the ‘quality’ of

the handler’s work following the occupation of adjacent desks.

Our main contribution is to relate the peer pressure effect to the two main roles

played by managers in the OCB: room supervisors and medium-term evaluators. The

room where the handlers operate includes desks reserved for managers performing their

role as supervisors of the handlers’ contemporaneous work (see Figure 1). On some

2To put this number into perspective consider the peer effects meta-analysis of Herbst and Mas
(2015), in which the consensus is that an increase in the average productivity of a focus worker’s peer
group by 10% leads to the worker increasing his productivity by 1%. Therefore, our estimated effect
is equivalent to increasing the productivity of a focus worker’s peer group by 70%.
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shifts, a handler may sit right next to a supervisor, while, on other days, the same

handler works on the other side of the room. We find that the peer pressure effect (i.e.

the higher productivity when the adjacent desk becomes occupied by a peer) increases

with the distance between the handler’s desk and the closest supervisor’s desk. To

reinforce a causal interpretation of this interaction, we use an instrument to generate

exogenous variation in the distance between the desk where a handler sits during a shift

and the closest supervisor. Our instrument is the average location of the empty desks at

the time when the handler started his shift. This average location is strongly correlated

with a handler’s chosen desk, as one would expect given that arriving handlers can only

choose from among empty desks. Furthermore, the instrument is plausibly exogenous

because it depends on the earlier choices of handlers finishing their shifts just before

the focus handler started his shift. We find qualitatively similar effects using this

instrument and conclude that the peer pressure effect is stronger when the manager’s

ability to monitor the handler is weaker. Thus, peer pressure and direct manager

monitoring substitute each other in motivating handlers to exert effort.

We next relate the peer pressure effect to managers’ roles as evaluators of the

handlers’ performance over the medium term. In the OCB, each of the approximately

three hundred handlers’ performance is tracked and periodically reviewed by one of

fifteen managers. This evaluation has a subjective component, given that (as in most

jobs) objective measures of performance are insufficient to perfectly assess a worker’s

effort. We find that the peer pressure effect is 60% larger among handlers evaluated

by the same manager (i.e. co-evaluated) relative to pairs of handlers that are not co-

evaluated. We reinforce a causal interpretation of this effect by exploiting time variation

in the assignment of handlers to evaluators. Specifically, we find that the same pair of

handlers engage in higher peer pressure when they are being co-evaluated, relative to

periods in which they have different evaluators.3 Expanding our analysis from the desks

adjacent to a worker to the overall OCB room, we further show that handlers work

harder when their shifts coincide with a higher percentage of co-evaluated colleagues.

We interpret these empirical findings through the lens of a theoretical framework

in which managers evaluate and reward workers’ performance, and workers care about

3Note that managers are not supposed to evaluate handlers relative to each other, but instead from
an absolute perspective. ‘Co-evaluated’ here simply means that two handlers have the same evaluator,
rather than that they are being formally compared to each other. Of course, it is still possible that
managers informally compare their evaluatees. We expand on this possibility in Section 8.
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maximising this evaluation. In our stylised model, a manager cannot perfectly infer a

worker’s effort on the basis of objective measures or her own observations, and there-

fore partly relies on the worker’s reputation among the other workers with whom the

manager frequently communicates. Peer pressure then arises because a worker is aware

that his co-workers’ impressions about his effort could (with some probability) reach

his manager, and this motivates him to work harder in front of them.4,5 Interpreting

the empirical findings through the lens of this conceptual framework suggests that the

relation between peer pressure and manager pressure is nuanced. On the one hand,

these two motivating forces play a substitute role, in that the value of peer pressure

is higher when the manager is less able to directly monitor the worker. On the other

hand there is an element of complementarity between them, as our model interprets

the empirically observed ‘peer pressure’ effect as a mechanism through which managers

indirectly monitor and therefore exert pressure on their subordinates.

Our findings have important policy implications, because they provide a frame-

work that open-plan organisations could use to increase worker productivity through

the optimal assignment of workers to seats and shifts. We illustrate the potential of this

framework through a set of counterfactual exercises that take the number of handlers

working at any one time as given. We first find that a seat allocation rule minimising

the number of empty adjacent seats would increase productivity by 3%. An additional

5% increase would result from an algorithm optimising the shift patterns and seat

assignments to ensure that co-evaluated handlers coincide and sit together whenever

possible. These exercises underline how organisations could harness the interactions

between horizontal and vertical factors to improve motivation and performance.

This paper creates a bridge between two sizeable literatures studying social de-

terminants of workers’ productivity (Ashraf and Bandiera, 2018). In the first literature

on horizontal determinants, peer pressure has been a leading explanation for the exis-

4Although they do not provide evidence in this respect, Mas and Moretti (2009) theorise this
mechanism as a potential explanation of their findings when they write ‘For example, if a worker is
slow, other workers may impose a cost on her, for example, by reporting her to management(...).’ It
is important to note that we do not require that peers report a worker’s shirking explicitly through
a formal channel, as in Fiorin (2021). Instead, our mechanism simply requires that the worker’s
reputation for high or low effort spreads with some probability through the organisation and eventually
reaches the worker’s manager.

5While we argue that our framework provides the best explanation of the empirical findings, we
discuss other potential explanations in Section 8. Importantly, all valid explanations must share
the characteristic that the assignment of workers to evaluators determines the pressure that workers
empirically exert on each other.
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tence of productivity spillovers among co-workers (Mas and Moretti 2009, Cornelissen

et al. 2017, Silver 2021 and Lindquist et al. 2022).6 An important yet unanswered

question in this literature is how peer pressure actually works in practice. Kandel and

Lazear (1992) and Mas and Moretti (2009) hypothesise mechanisms through which

workers could pressure their free-riding colleagues, but identifying these mechanisms

empirically has remained elusive. We contribute to this literature by arguing that

peers exert pressure on a worker (partly) through the channel of making the worker’s

manager better informed about his performance. In doing this, we provide evidence

on a specific mechanism in which the horizontal pressure leverages the vertical relation

between workers and their immediate superiors.

The second extensive literature that our paper bridges is on the channels through

which middle managers affect their subordinates’ effort and performance. Prominent

examples include coaching and mentoring (Lazear et al., 2015), task and effort allo-

cation (Bandiera et al. 2009, Adhvaryu et al. 2022), turnover-reducing interpersonal

skills (Hoffman and Tadelis, 2021) and performance evaluations (Frederiksen et al.,

2020). Some of this work highlights the mediating role that social connections be-

tween managers and subordinates can play (Bandiera et al. 2009, Hjort 2014, Xu

2018, Cullen and Pérez-Truglia 2023). Throughout all the above papers, the focus is

on how managers affect their subordinates through their direct actions. We contribute

to this literature by instead showing that managers can also affect subordinates indi-

rectly by shaping the environment in which workers operate; specifically in terms of

how co-workers influence each other.7

Lastly, our paper links to studies on the effect of co-location on productivity

(Catalini 2018, Battiston et al. 2021) and the more general debate about working from

6In addition to peer pressure, the literature on co-worker productivity spillovers (or peer effects
in the workplace) has studied mechanisms such as knowledge spillovers (Waldinger 2012, Sandvik
et al., 2019), helping behaviour (Drago and Garvey, 1998) and socialising activities (Bandiera et al.
2010, Park 2019). The high-frequency variation that we exploit in this paper is not well-suited to the
identification of knowledge spillovers. Helping behaviour is not a relevant mechanism in our setting,
as handlers are not supposed to put a caller on hold to go and seek advice from colleagues who may be
in the middle of their own calls (see, however, Battiston et al. 2021 for evidence of helping behaviour
between call handlers and radio operators dealing with the same incident). We consider socialising
activities generating distraction in our theoretical framework, and argue that they are inconsistent
with the positive peer effects that we find.

7One way to interpret the stronger peer pressure among co-evaluated workers is as the assignment
of workers to evaluators creating ‘monitoring teams’ (i.e. groups of workers who monitor each other
more strongly). For a different interpretation of monitoring teams see Halac et at. (2022).
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home (Bloom et al. 2015, Barrero et al. 2022). We contribute to this literature first by

showing that proximity to peers increases productivity even when workers are based

at the same physical location. Second, we show that this effect of proximity to peers

is itself dependent on the distance between a worker and his supervisor.8

The article is organised as follows. Section 2 briefly discusses a simple theoretical

framework to micro-found the peer pressure function and explore its relation to the

manager’s monitoring. Section 3 describes the institutional setting. Section 4 out-

lines the data and empirical strategy. Section 5 discusses the baseline peer pressure

findings. Sections 6 and 7 relate peer pressure to the relation between managers and

workers. Section 8 discusses alternative explanations. Section 9 estimates the poten-

tial improvements in productivity following the reassignment of handlers to desks and

shifts. Section 10 concludes and briefly discusses the external validity of our findings.

2 Conceptual Framework

In this section, we briefly outline the main ingredients of a theoretical framework micro-

founding the pressure that peers exert on each other, and linking this pressure to their

relations with their manager. The full model and the proofs of the results can be found

in Online Appendix B.

In our model a manager (she) wants to encourage a focus worker (he) to exert

effort. Because effort is costly, the manager offers a reward that depends positively on

her evaluation of the worker’s effort. The manager receives a direct signal of effort,

on the basis of her own observations and objective performance measures. This direct

signal is however noisy, which makes the manager want to use additional signals in her

evaluation of the worker’s effort. A peer sitting in a desk adjacent to the focus worker

can observe the focus worker’s effort. This observation can reach the manager with

some probability, so the presence of the peer in an adjacent desk potentially generates

an indirect signal that the manager can give some positive weight in her evaluation.

In addition to the peer observing effort and improving the manager’s information,

our model also allows the peer to distract the worker. This distraction effect directly

8The main source of variation in studies of peer pressure has been the composition of the peer
group, typically in terms of the group average permanent productivity. By contrast, our main analysis
leverages variation in the physical proximity between co-workers (for examples of this type of variation
see Mas and Moretti 2009 in Table 6 of their paper, Falk and Ichino 2006 and Steinbach and Tatsi
2022.)
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reduces the worker’s productivity (Park, 2019). Our model has three predictions:

Prediction 1: The arrival of a peer can increase the worker’s produc-

tivity. The intuition of this prediction is that the additional signal transmitted by

the peer allows the manager to evaluate effort more accurately. The focus worker then

becomes more motivated because he knows that the reward depends more strongly on

the effort chosen. In our model, the peer ‘pressures’ the focus worker to exert effort

through the channel of making the manager better informed about this effort. When

this positive effect outweighs the negative distraction effect, a peer sitting in an adja-

cent seat increases the focus worker’s productivity.

Prediction 2: The arrival of a peer increases the worker’s productivity

more when the manager’s direct signal is more noisy. The intuition of this

prediction is that the manager evaluates the worker’s effort using both signals, such

that higher noise in one signal results in higher weight assigned to the other. When

the manager has very little direct information about the worker’s effort, she has to rely

more on the signal generated by the peer. As a result, the worker increases his effort

more when the peer arrives.

Prediction 3: The arrival of a peer increases the worker’s productivity

more when the peer’s observation is more likely to reach the manager. This

intuition is immediate. The positive peer pressure effect results from the positive like-

lihood that the peer’s information is transmitted to the manager. When this likelihood

is higher, the arrival of the peer motivates the worker more.

In the remainder of the paper, we examine empirically whether the reaction of

workers to the occupation of adjacent desks is consistent with Predictions 1-3. Predic-

tion 1 has been examined empirically in previous work (Falk and Ichino 2006, Table

6 in Mas and Moretti 2009). Predictions 2 and 3 are unique to a framework that

incorporates the vertical relation between the worker and manager.

Before concluding this section, we note two things. First, our model does not

allow the peer to exert pressure other than through the channel of affecting the man-

ager’s evaluation. This is for simplicity, and because the predictions that we highlight
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in our model would remain unchanged if we added an additional channel of ‘direct’ peer

pressure among co-workers. Second, in our model the precision of the manager’s evalu-

ation increases because the peer actively transmits her observation to the manager. An

alternative though very related interpretation is that the peer improves the manager’s

evaluation passively. For instance, a manager may find it easier to compare efforts

across adjacent workers than to evaluate their efforts from an absolute perspective.

We comment further on this and other interpretations in Section 8.

3 Institutional Setting

The OCB is the GMP unit in charge of answering emergency calls from members

of the public and allocating police officers to the resulting incidents. Call handlers

answer calls and radio operators allocate officers. Our study focuses exclusively on call

handlers. Throughout our sample period, all handlers were based in a single room in

a building in the Trafford area of Manchester.9

Nature and Allocation of Work The role of call handlers is to answer calls, ques-

tion and if necessary provide guidance to the callers, decide whether an official incident

must be created and, if so, assign an urgency grade and record in an electronic log any

information deemed relevant. Handlers’ work is strictly individual in that there is very

little scope for giving or receiving help from other handlers.10

Incoming calls are assigned to handlers using a queueing system such that the

call at the front of the queue is assigned to the first handler that becomes available. If

the call queue is empty, the next incoming call will be assigned to the handler who was

available first. Following the completion of a call, a handler indicates his status as ’not

ready’ (which allows the handler to take a break) or instead as ’ready to receive new

9Throughout our sample period, radio operators were located separately from call handlers. In
a companion paper (Battiston et al., 2021) we study whether the ability of handlers and operators
to communicate in person when co-located allowed them to operate more efficiently. Our focus in
Battiston et al. (2021) is on the period prior to 2012, when handlers and operators were (sometimes)
based in the same location. By contrast, we focus in the current paper on the period after 2012, in
which handlers and operators were never co-located.

10The main reason for this is that other handlers will typically be themselves busy dealing with their
own calls, and it is not considered acceptable to interrupt colleagues in the middle of their calls. If
handlers need help to deal with an incident, they can ask one of the handler supervisors in the room.
Unfortunately, our data does not include the identity of the specific supervisors that are present at
any one point in the handlers’ room.
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calls’. Ready handlers will immediately receive a call if the call queue is not empty.

Handlers can learn the status of the call queue from large screens located throughout

the room.

Two consequences follow from the call allocation system. First, all handlers

working at one point in time are engaged in ‘team’ production, as they are jointly

responsible for dealing with a single call queue. Potential free-riding within this large

team follows from the fact that a handler taking long breaks between calls will not be

contributing to decreasing the length of the call queue, thereby increasing his colleagues’

workload. Second, two workers on duty at the same time will not differ (in expectation)

in the amount and type of work assigned to them by the system, or in the number and

characteristics of the colleagues that share their workload. Therefore, controlling for

the (narrowly-defined) time period during which a handler is working should account

for the work conditions being faced by that handler.11

Seating Architecture Figure A1 displays a screenshot of the actual Trafford room

in which the handlers were based during our sample period.12 The desks were arranged

in rows of differing length and mostly facing in the same direction. Computer monitors

and desk screens implied that workers could only imperfectly observe the colleagues

in the rows in front or behind. On the other hand, workers on row-adjacent desks

could easily observe and monitor each others’ behaviour, as well as potentially engage

in casual conversation and distract each other. Therefore, in this paper our main focus

is on how workers react to their row-adjacent desks becoming occupied or disoccupied.

Consistently with the framework in Section 2 we initially posit that the effects on

productivity could be either positive (i.e. peer pressure) or negative (i.e. distraction).13

11In Battiston et al. (2021) we provide extensive evidence that, after controlling for hour (i.e.
year/month/day/hour of day) fixed effects, the characteristics of incoming calls are uncorrelated with
the characteristics of the handlers assigned to these calls by the system. We provide evidence that
the charactertistics of incoming calls are uncorrelated with our main source of variation in Figures A5
and A6.

12The screenshot is taken from the first episode of the documentary series ’The Force Manchester’,
broadcast in the United Kingdom by the Sky 1 TV channel.

13Note that the characteristics of our workplace imply that the set of co-workers that a handler can
observe from his desk largely coincides with the set of co-workers being able to observe his. Therefore,
we are not able to exploit any asymmetry between observable and observing sets to help isolate the
mechanism at work (Mas and Moretti, 2009).
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Seating Allocation Handlers were free to sit in any desk that was available at that

time that they started their shift (i.e. hot-desking).14 Once seated they were expected

to remain in their positions throughout the full duration of the shift.

The non-random assignment of handlers to desks implies that we cannot regard

handlers who typically sit by themselves as good counterfactuals of handlers who tend

to sit alongside other colleagues. Similarly, the same handler may choose desks with

different exposure to colleagues in a way that is correlated with shocks to his produc-

tivity on that specific day. Our empirical strategy regards seating allocation as fixed

within a shift (a realistic assumption in our setting) and exploits the high-frequency of

the data to estimate the immediate reaction of that handler to the sudden occupation

or disoccupation of the desks adjacent to his.

Measures of Productivity Consistently with previous studies on call centres (Batt

et al. 2000, Bloom et al. 2015), we use two measures of productivity: (1) the number of

calls answered by a handler during a half-hour period, and (2) the number of minutes

in a half-hour that the handler spends on the phone with callers. These measures are

regularly monitored both at the OCB level and at the individual handler level. They are

well-suited to our purposes because (1) the number of calls taken represents the main

channel through which a handler’s behaviour exerts externalities on his colleagues, as

discussed above, and (2) the time spent on the phone is the variable that can be most

easily monitored by nearby co-workers.15

The above ‘quantity’ measures of productivity do not capture how handlers deal

with the calls that they take. Therefore, we also study other ‘quality’ measures such

as the response time of the incidents (i.e. the time between the incident creation

by the handler and the arrival of response officers to the incident’s location) or the

crime clearance rate. We use these quality measures to study whether any potential

improvement in quantity caused by co-worker proximity is at the expense of the quality

of work.

14Handlers’ shifts were staggered to maintain continuity of service and therefore only a small pro-
portion of handlers started or ended their shift at the same time. Figure A2 displays the distribution
of starting and end time of the shifts, in half hour intervals. There are no shifts starting between 12
A.M. and 6 A.M., or ending between 7 A.M. and 10 A.M., but otherwise there is positive density
throughout the workday.

15Conceivably, handlers might respond to the presence of nearby colleagues by either taking more
calls but spending little time on each one, or by dragging the duration of each call. Therefore, we also
study in Table A5 any potential effects on the average call duration.
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Supervisors and Performance Evaluators At any point in time, there were

around twelve to seventeen individuals with the job title of handler ‘manager’ in the

OCB. Each manager performed two related but conceptually different roles, which in

this paper we distinguish with the labels of ‘supervisor’ and (performance) ‘evaluator’.16

First, the OCB handlers’ room always had to contain two to three managers,

whose responsibility was to keep track of the state of the call queue, visually monitor

handlers’ work and provide them with support if necessary. We refer to managers

performing these duties as acting in their role as ‘supervisors’. As is the case with

handlers, managers acting in their supervisory functions worked in shifts and followed

standard rotation patterns.

Second, each manager was assigned an average of twelve handlers, for whom she

performed the additional role of (performance) ‘evaluator’. Performance evaluators

were in charge of evaluating and supporting the performance of their assigned handlers

over the medium term. To do this, they regularly: (1) examined their handlers’ ob-

jective performance measures (e.g. the average number of calls taken per hour or the

percentage of time on the phone) during the previous weeks or months, (2) audited

their assigned handlers’ calls to monitor and ensure quality, and (3) had individual

formal and informal meetings with their handlers, in which past performance, future

objectives and the state of the working environment were discussed. In addition, perfor-

mance evaluators were also responsible for more bureaucratic tasks such as approving

handlers’ vacation requests.

Incentives As is common in public sector organisations, the handlers in the OCB

did not face highly-powered incentives (Fenizia, 2022). Despite this, handlers attached

importance to their performance evaluators’ perception of their performance, for two

reasons. First, the views of their managers (and their corresponding reports) could

influence their pay and job security.17 Second and perhaps as importantly, performance

16Note that these are labels created by the authors of this paper, to describe the economic content
of the roles that managers undertake. In practice, the managers in the OCB are not referred to by
these labels.

17For example, managers’ views affected the choice of handlers for ‘difficult’ shifts (e.g. those
coinciding with important football events) which were compensated with overtime pay. In terms of
job security, during this period the countrywide reduction in police budgets implied that the GMP
reduced the total number of handlers through both redundancy and redeployment to other posts.
Performance evaluators were perceived as transmitting information to the final decision-makers about
who the most efficient handlers were.
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evaluators could exert informal pressure on underperforming subordinates, using the

same informal mechanisms that co-workers often use to exert peer pressure on each

other (Kandel and Lazear, 1992).

It is also important to note that the perceptions of evaluators contained an im-

portant subjective component. Managers routinely accessed objective statistics such

as the average number of calls per hour. However, these statistics were not deemed

sufficient to fully evaluate the performance of a handler. For instance, a handler might

have been assigned to shifts in which the call queue was often empty, resulting in low

calls per hour through no fault of his own. More generally, aggregate statistics could

not lead to a fully accurate evaluation given that managers were not able to fully ac-

count for the average working conditions being faced by the handler. The insufficiency

of objective measures in turn generated a complementary role for subjective percep-

tions, based on the line manager’s direct observations or on the general reputation of

a handler among those with whom the performance evaluator interacted.

Co-Evaluated Handlers We refer to handlers assigned to the same evaluator as ‘co-

evaluated’ handlers. Handlers were typically aware of who their co-evaluated handlers

are.

The assignment of handlers to evaluators was not designed to be ‘random’, al-

though it had a strong idiosyncratic component. For example, a new handler would

typically be assigned to the evaluator with the lowest number of current evaluatees.

The sudden departure of several evaluatees of the same evaluator might prompt a reas-

signment of handlers across evaluators to reestablish approximate parity. In Table A1

and Figure A3, we test whether co-evaluated handlers are more similar to each other

than to other handlers across a range of demographic, shift, and desk choice charac-

teristics. We do not find any dimensions in which co-evaluated handlers resemble each

other disproportionately, with the exception of a small higher overlap in their shifts.18

Two last points. First, co-evaluated handlers did not operate as a ‘team’, in

18To reach this conclusion, we plot in Figure A3 both the observed distribution of the share of
handlers in the room that are co-evaluated handlers, and the distribution that would arise if the
handlers in our dataset were randomly allocated to shifts. We find that the two distributions are
remarkably similar, although the observed distribution is slightly to the right of the counterfactual
random distribution. Unfortunately, we are not able to study empirically whether the supervisor in
the room when a handler is working is more likely to be his performance evaluator, as opposed to
a different manager. This is because we do not observe the rotation patterns for managers in their
supervisory role.
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the economic sense of being jointly responsible for a common output. Instead and as

discussed earlier, it was all handlers working at the same point in time that operated as

an economic team. Second, there was no expectation of relative performance evaluation

in this setting: evaluators were not expected to evaluate the performance of their

assigned handlers relative to each other but instead from an absolute perspective.

4 Data and Empirical Strategy

In this section we present and discuss the dataset and main variables of the paper. We

also outline the baseline empirical strategy to estimate the effect of co-worker proximity

on handler productivity.

Dataset We follow the shifts worked by OCB call handlers between February 2012

and November 2014. Our dataset is constructed using the computerised shift logs,

which automatically record every change in handler activity (e.g. the end of a call

and the start of ‘not ready’ time) together with the exact time at which the change

occurred. We use these logs to calculate the number of calls and the total number of

minutes that a handler spends on the phone for every half-hour period within his shift.

Thus, our baseline dataset is organized as a panel of shift × half-hour periods,

where a shift is the combination of an individual handler working on a specific date

(i.e. John Smith on the 1st of December 2012). For each shift we observe the number

of the desk at which the handler sat, and we use this number and digitised floorplans

to calculate the handler’s spatial position inside the room.19

We use a dataset of incidents to add further information to the baseline dataset.

For instance, we compute the average grade (i.e. official urgency) and type of incident

(including whether it is a crime) of the calls taken by each handler in each half-hour

period. We also calculate the average response time, which is the time between incident

creation and arrival of the response officers to the incident location. For incidents

classified as crimes, we record whether suspects were identified or detained. Lastly,

we add HR information such as handlers’ demographics and career information to the

19We constructed floorplans by combining spreadsheet information of the seat identifiers with our
own measurements of the seat positions within the room. In this way, we identified the desks adjacent
to every position. We then overlapped a grid with x-y coordinates and used this to calculate the
distance between seats. We used this distance, for instance, to calculate how far a handler is sitting
from the closest supervisor position (Section 6).
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baseline shift/half-hour dataset.

Our final dataset includes 343 handlers. During a total of 71,673 shifts and

1,275,483 shift/half-hour periods, these handlers answered a total of 3,124,059 calls.

Table A2 cross-tabulates the observations in our dataset based on the number of adja-

cent desks, and adjacent and occupied desks.20 Note that 72% of observations involve

handlers sitting in desks that have only one adjacent desk. In 64% (respectively, 24%)

of shift/half-hours, handlers are sitting alongside one other (respectively, no other)

colleague. In 45% of the observations with two adjacent desks, both of these desks are

occupied. Table A3 provides summary statistics of the main variables in the empirical

analysis.

Intuition of Empirical Strategy We exploit the granularity of our dataset to study

how productivity reacts to high frequency variation in the occupation of adjacent desks.

Remember that handlers do not change their desks in the middle of their shifts. Con-

sider a handler sitting alongside a colleague and imagine that, in the next half-hour,

the colleague finishes his shift and the desk adjacent to the focus handler becomes

unoccupied. Under the assumption that the end of the colleague’s shift does not coin-

cide with an unrelated shock to the productivity of the focus handler, we can identify

the causal effect of the adjacent seat occupation. Notice that any confounding shock

would have to be both sudden (in a first-differences regression with high-frequency

data) and idiosyncratic (in a regression controlling for common shocks affecting all

handlers working during the specific half-hour in which the seat became unoccupied).

Our empirical strategy also exploits increases in adjacent seat occupation. The

assumption here is that handlers starting their shifts do not choose to sit next to

handlers experiencing a sudden and idiosyncratic change in productivity, relative to

other handlers in the room. In Section 5 we provide empirical evidence in support of

our identification assumption.

Baseline Estimating Equation Consider the productivity ysh of a handler in the

half-hour period h of shift s, where importantly s absorbs the identity of the handler

20Note that a seat is considered occupied in Table A2 if it was used by a handler for at least one
minute during a half-hour period. Throughout the rest of the paper, we instead use a continuous
measure of occupation that captures the minutes in the half-hour period during which the seat was
actually occupied.
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and the date in which the shift started (e.g. ‘John Smith/01-12-2012’). Make ysh

depend on the following factors:

ysh = βOccupiedsh + γs + θh + λt(sh) + γMWsh + ϵsh (1)

where γs is a shift identifier, θh is an identifier for the half-hour period within the

shift and λt(sh) is an identifier for the half-hour t (i.e. year/month/day/half-hour)

corresponding to the sh combination.21

Occupiedsh ∈ [0, 2] is the main independent variable of interest. It captures the

number of desks row-adjacent to the handler in shift s that were occupied in period

h. We allow Occupiedsh to take non-integer values when an adjacent seat changes in

occupation in the middle of a period. The variable then reflects the proportion of the

period when such occupation occurred. Measuring the occupation of adjacent desks in

a continuous way implies that we also need to control for the number of minutes that

the handler actually worked in the half-hour period, MWsh. With this control, we rule

out any effects driven by half-hour periods when the handler was not fully active (e.g.

his first or last periods in the shift).

The controls in (1) account for several sources of unobserved heterogeneity. First,

the inclusion of γs implies that only within-shift variation is exploited. This eliminates

potential confounders such as inherently less productive workers (or workers unpro-

ductive on a particular date) choosing isolated desks upon arrival. It also controls

for all features of a desk (e.g. the amount of noise or the proximity to supervisors)

which might be independently affecting productivity. Importantly, it also captures

the number of desks that are adjacent to the one occupied during the shift. Because

desks are fixed within a shift, variation in Occupiedsh is instead due to other workers

occupying (or not) adjacent seats. Second, θh accounts flexibly for average changes to

productivity within a shift (e.g. handlers becoming tired as time passes). Lastly, λt(sh)

accounts for productivity shocks that are time-varying but affect all handlers in the

room equally (e.g. environmental factors, the number of on-duty colleagues sharing

the workload or the condition of the call queue).

Even in the presence of such a rich set of controls, the absence of experimental

variation requires caution in the interpretation of β. A potential bias may arise if, for

21For instance the fourth half-hour of shift ‘John Smith/01-12-2012’ may correspond to the half-hour
15:00-15:30 1st December 2012.
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instance, handlers are more likely to be alone in periods when they are unproductive,

relative to themselves in that specific shift, to the average handler in that specific

period and to the average within-shift period effect. To overcome this concern we

exploit high-frequency variation in Occupiedsh, resulting from the sudden arrival or

departure of colleagues from adjacent desks. Following Mas and Moretti (2009), we

do this by taking within-shift s differences in (1). Our baseline estimating equation

becomes:

∆ysh = β∆Occupiedsh + πh + µt(sh) + γ∆MWsh +∆ϵsh (2)

where πh ≡ ∆θh is an identifier for the average change in productivity between consec-

utive within-shift periods and µt(sh) ≡ ∆λt(sh) is an identifier for the average (across

all handlers working contemporaneously in the room) change in productivity between

consecutive half-hours. Standard errors are clustered at the shift level, the level at

which the variation occurs (Abadie et al., 2023).

As discussed earlier, estimating (2) by OLS provides consistent estimates of β

under the assumption that the desks adjacent to the desk where a handler is work-

ing during a shift do not change in occupation levels in periods of sudden change in

productivity of the focus handler, relative to his average productivity in that shift, to

the OCB-wide change in productivity between t(sh) and t(sh)− 1 and to the average

change in productivity among handlers entering the within-shift period θh.

5 The Average Peer Pressure Effect

In this section we test Prediction 1 and thus aim to establish if the overall effect of

peer proximity is positive or negative.

Baseline Estimates Columns 1 and 2 of Table 1 estimate (2) and display the base-

line results of the paper. We find that time on the phone is 6% higher for every

adjacent seat that becomes occupied (as discussed, this is up to a maximum of two).

The number of calls is 3.5% higher for every adjacent occupied seat. In the framework

of Section 2, the finding of positive coefficients provides support for the pressure effect

being larger in magnitude than any potential distraction effect.22

22Our baseline panel dataset is constructed at the shift/half-hour period. In Table A4 we investigate
the robustness of the baseline results to decreasing or increasing the duration of the time period.
We find very similar coefficients (always highly statistically significant) when using either a shift/15
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Dynamic Effects of Changes in Occupation We investigate the presence of an-

ticipatory and deferred effects by introducing a set of lead and lag variables to the

main specification:

∆ysh =
4∑

j=−4

βj∆Occupieds(h+j) + πh + µt(sh) + γ∆MWsh +∆ϵsh (3)

where β4 (respectively, β−4) represents the index handler change in productivity in

response to the occupation of an adjacent desk two hours (i.e. four half-hour periods)

into the future (respectively, past), and the other coefficients are interpreted similarly.

The lead coefficients reveal whether productivity was already trending prior to the

change in adjacent seat occupation. The existence of such a ‘pre-trend’ would suggest

that the change in occupation might be endogenous to shocks to the productivity of

the focus handler. The lag coefficients reveal whether the reaction of productivity to

the change in adjacent seat occupation is sustained over longer horizons.

Figure 2 plots the estimated coefficients from (3). Productivity does not appear to

trend strongly prior to the change in occupation. This for instance rules out colleagues

choosing to sit next to handlers whose productivity was already going up (e.g. to

avoid being subjected to distracting chat) or down (e.g. to instead seek distraction

opportunities). Instead, any potential confounding shock to productivity should have

coincided exactly with the half-hour period in which the change in occupation occurred.

The absence of lagged effects indicates that the immediate change in productivity

is persistent. We can observe this persistence more clearly in Figure A4, where we plot

the cumulative estimates corresponding to the Figure 2 coefficients. For instance, the

cumulative effect at t = 2 (i.e. one hour after the period of the change in occupation)

is equal to
∑4

j=−2 β̂j (i.e. from four periods before the change to two periods after

the change). We find that the change in productivity remains broadly constant and

statistically significant until at least two hours after the change in occupation.

Further Tests of Identification Assumption In Figures A5 and A6 we study

there whether the average official urgency of the calls assigned to a handler appears

to be correlated with the change in adjacent seat occupation.23 Consistently with our

minutes panel or a shift/hour panel. Overall, the results do not appear to depend strongly on the
frequency of the panel.

23We display the coefficients from regressions where the dependent variables are the shares of highest
and lowest grades. While the grades are assigned by the handlers themselves, discussions with GMP
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description of the assignment of calls to handlers, the type of calls that handlers receive

are uncorrelated with the occupation of adjacent desks.

A potential source of endogeneity when exploiting increases (although not de-

creases) in occupation consists of arriving colleagues choosing to sit alongside handlers

who, in that specific half-hour period, are subject to a sudden and idiosyncratic pro-

ductivity shock. Because this confounding effect relies on colleagues’ ability to choose

where to sit, the resulting bias should be larger in magnitude when most seats are

empty and handlers starting their shift enjoy ample choice. In Figure A7 we interact

the baseline effect in (2) with dummies for the four quartiles of room occupation. We

find very similar coefficients regardless of whether arriving handlers are constrained in

their desk choices or instead have a lot of discretion. This suggests that the ‘endogenous

choice of seat’ confounding mechanism does not appear to be empirically relevant.

Individual-Level Effects Columns 1 and 2 Table 1 and Figure 2 reveal that the

average effect of adjacent seat occupation is positive. However, it may still be the case

that any potential distraction effect outweighs the pressure effect for a subset of the

handlers. This (hypothetical) distraction effect for some handlers may not be apparent

in our estimates if it is more than offset by the existence of a few handlers experiencing

large productivity gains when their adjacent seats are occupied. In this subsection, we

therefore estimate the effect of co-worker proximity on productivity separately for each

of the handlers in the data. We do this by interacting ∆Occupiedsh in (2) with a set

of dummies ηi(s) taking value one for the handler i corresponding to shift s:

Figure A8 plots the distribution of the estimated βi(s) coefficients. In Figure A9,

we display only the coefficients that are statistically different from zero at the 10%

level. We can see that the vast majority of handlers are positively affected by the

presence of co-workers. This suggests that the baseline effect in Table 1 is not driven

by a few handlers with abnormally high responses to our treatment, but is instead

widely present among our sample of handlers.24

workers suggest that there is very little discretion in this assignment.
24Instead of estimating different effects depending on the identity of the focus handler, we can

also interact the effect of the adjacent seat occupation with dummies for the identity of the peer.
Conceptually, different peers may have different effects on the same focus handler. For instance, some
peers may be noisier or more willing to engage in distracting conversations, while other peers may be
more willing to monitor and put pressure on their colleagues. In Figures A10 and A11, we display the
distribution of effects on the basis of the peer. Again, we find that the overwhelming majority of the
effects are positive, especially those effects that are statistically significant at the 10% level.

19



Effects on Quality We now study the effect of adjacent seat occupation on variables

related to the ‘quality’ with which handlers deal with their incidents. We study three

variables: (1) the average response time of the calls received during the half-hour

period, (2) the average allocation time of the calls, and (3) the share of crimes for

which a suspect is identified or detained. A handler who is observed by his colleagues

may allocate effort towards improving observable ‘quantity’ outcomes and potentially

away from ‘quality’ outcomes that cannot be easily observed by colleagues.

We also examine potential effects on the average call duration. In principle,

handlers might respond to the presence of nearby colleagues by either taking more

calls but spending little time on each one, or by dragging the duration of each call. We

restrict the sample to half-hours in which the handler took at least one call, and take

the average call duration as the dependent variable.

Table A5 displays the results of estimating the baseline specification with the

quality measures above as dependent variables.25 Throughout, we find non-significant

effects.26

Increases vs Decreases in Occupation Equation (2) imposes the effect of a change

in occupation to be invariant to its sign. In Columns 3 and 4 in Table 1, we instead allow

for different effects depending on whether ∆Occupiedsh is positive or negative. We find

that both types of effects are positive and statistically significant. The implication is

that productivity increases when a vacant adjacent seat becomes occupied and it also

decreases when an adjacent worker finishes his shift and leaves. The coefficients are

statistically different from each other, with the effect of an increase in occupation being

larger than the effect of a decrease in occupation.27

25Note that the allocation and response times are only relevant for calls classified as official incidents,
and requiring an actual police response. The clearance dummy variable is only relevant for incidents
classified as crimes. These restrictions explain the lower number of observations in Table A5, relative
to Table 2.

26The coefficients in Table 1 indicate that handlers increase their time on the phone by 6% and
the number of calls by 3.5%. It might seem from comparing these coefficients that the average call
duration must have increased. The analysis in Table A5 includes only half-hour periods in which at
least one call was taken, and the regression gives equal value to all half-hours regardless of the number
of calls taken by the handler. These differences explain the qualitatively different findings in Table
A5, relative to Table 1.

27One potential explanation for this difference is in terms of ‘the technology of shirking’. An isolated
handler who is shirking and in ‘not ready’ status can quickly press ‘ready’ and immediately receive a
call (if the call queue is not empty) when he is suddenly observed by an arriving colleague. On the
other hand, a handler in the middle of a call who eyes the departure of a nearby colleague and intends
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In Figure A12 we estimate the effect of adjacent seat occupation non-parametrically,

splitting non-zero values of ∆Occupiedsh into intervals of equal size. We find that the

effects are monotonic and economically large. For instance, moving from having no

nearby colleagues to having more than 1.5 nearby colleagues increases the number of

calls by 10%.

Seats in the Row Behind and Seats in the Row in Front The presence of

computer screens and dividing panels implies that handlers are not as easily monitored

from other rows as they are from the adjacent seats in the same row. Nevertheless,

we study now whether handlers situated directly behind or directly in front of the

focus handler may also have a, perhaps smaller, effect on his productivity. We define

‘directly’ as immediately behind (or in front), plus one position in diagonal. Therefore,

a maximum of three seats are considered to be behind (or in front).

Two conclusions arise from the results in Columns 5 and 6 Table 1. First, the

coefficients for the positions behind and in front are positive and statistically significant.

Second, they are much smaller than the effect of adjacent seats’ occupation. Overall,

we conclude that handlers finely regulate their levels of effort to colleagues’ degree of

visibility of their work.

6 Peer Pressure and Direct Manager Monitoring

We now examine the empirical evidence regarding Prediction 2, which predicts that

handlers will respond more strongly to the presence of nearby colleagues when their

managers’ direct ability to observe their performance is lower. The intuition is that,

lacking a precise direct signal of the worker’s performance, the manager will assign

higher weight to the indirect signal that she can obtain through the worker’s peer.

Manager Monitoring and the Distance to the Supervisor Desk We test Pre-

diction 2 by taking advantage of the fact that, in the OCB room, supervisors do not

typically monitor each desk position with the same intensity. Instead, supervisors are

based at their own desks, and as a result are much better able to observe the perfor-

mance of workers sitting nearby than the performance of workers on the other side of

to start shirking must first complete his current call.
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the room (see Figure 1).28

Our dataset contains information about the seats designated as supervisor posi-

tions.29 We convert the OCB floorplan into a matrix in the (x, y) format and calculate

the euclidean distance between each handler desk and the closest supervisory position,

Distances =
√

(xs − xm(s))2 + (ys − ym(s))2, where xs and ys are the coordinates cor-

responding to the desk where the handler is sitting during shift s, and xm(s) and ym(s)

are the coordinates of the closest supervisor desk.30

We now examine empirically the relevance of Distances, in terms of predicting

the supervisor monitoring ability and the associated worker performance. To do this,

we restrict the sample to including only the time periods in which the seats adjacent

to a handler are unoccupied. We then estimate the equation below to study whether

handlers exert less effort when sitting further from their supervisors:

ysh = αDistances + ηi(s) + θh + λt(sh) + γMWsh + ϵsh, (4)

Note that (4) is in levels rather than in within-shift changes as, within shifts, handlers

do not change desks and the variable Distances is therefore fixed. The introduction of

handler fixed effects ηi(s) implies that we are comparing the productivity of the same

handler on shifts where he is sitting at different distances from the closest supervisor.

The introduction of half-hour fixed effects λt(sh) implies that we are comparing handlers

working at the same point in time, but in different areas of the OCB room and therefore

at different distances from the closest supervisor.

In Figure A13 we find that handlers sitting far away from the supervisory desks

spend less time on the phone and take less calls. Note that, despite our extensive

array of controls, the absence of within-shift high-frequency variation implies that we

cannot interpret the estimates here as causal effects. It is conceivable, for instance, that

28During our visits, supervisors were often sitting at their desks, sometimes standing around their
desks (perhaps in conversation with other OCB workers) and occasionally walking around the room.
Overall, we concluded that the closer a handler sat to the supervisor desk, the better the supervisor
was able to observe the handler’s work.

29Unfortunately, we do not have any information regarding the supervisors’ activities. For instance,
we do not know the identity of the specific managers who are on duty performing the supervisory
roles. We do not even know how many supervisors there are in the room during a specific half-hour, or
which supervisory desks are being used during that period. As a result, our measure of distance to the
closest supervisory position should be interpreted as capturing the supervisor’s monitoring abilities
with non-negligible measurement error.

30Our constructed floorplan is not fully to scale, which prevents us from measuring distance in metric
units and is likely to introduce further measurement error in the handler-supervisor seat distance
variable.
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handlers determined to work less hard during a specific shift choose to place themselves

as far as possible from their supervisors. Nevertheless, the evidence in Figure A13 is

at least consistent with the intuition that managers are better able to observe and

monitor handlers located nearby.

Peer Pressure and Direct Manager Monitoring We now test Prediction 2,

which predicts that peers will have a stronger effect on handlers’ productivity when

supervisors’ ability to monitor is weaker. To test this, we expand the baseline regres-

sion by including the interaction between ∆Occupiedsh and the distance to the closest

supervision position. We find in Columns 1 and 2 of Table 2 that the estimated co-

efficients for the interaction are positive and significant, indicating that workers react

more strongly to the occupation of an adjacent seat when they are sitting further away

from the supervisory position.

We provide intuition regarding the economic magnitude of the interaction coeffi-

cient in Figure A14. We display there the five coefficients that result from interacting

∆Occupiedsh with five bins for different distances between the handler and the closest

supervisor position. We find that handlers sitting right next to a supervisor increase

the time on the phone (respectively, the number of calls) by 3.8% (respectively, 2.4%)

following the occupation of an adjacent desk. These effects are more than twice higher

(10% and 6.2%) for handlers at the most distant positions, suggesting that the man-

agers’ ability to monitor workers is a salient factor in the degree to which workers react

to pressure from their peers.

Interpreting the Interaction as a Causal Effect While strongly suggestive, the

coefficients from Columns 1 and 2 Table 2 (and Figure A14) must be interpreted with

the standard caution associated with heterogeneity analyses. Even in studies in which

the baseline regression isolates causal effects, the heterogeneity regression incorporating

an interaction may be difficult to interpret if one of the two variables comprising the

interaction is not exogenously generated. We address this issue here in two ways.

First, we control in the specification for two expansive sets of interactions. The

first set is the interactions between ∆Occupiedsh and the handler dummies ηi(s). This

allows us to compare the reactions (to the occupation of an adjacent seat) of the same

individual handler across days in which he is sitting closer or further away from a
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supervisory desk. The second set is the interactions between ∆Occupiedsh and the

half-hour fixed effects. By doing this, we are comparing the reactions of handlers

working at the same exact time but in different areas of the OCB room and therefore

at different distances to the closest supervisor. Together, these two sets of interactions

control for the fact that handlers sitting further away from the supervisor (or in half-

hours in which the room is perhaps busier and more handlers are sitting farther away

from the supervisor) may, for whatever reason, be inherently associated with a stronger

or weaker reaction to the occupation of an adjacent seat. In Columns 3 and 4 Table 2,

we find that the coefficients of interest are essentially identical with or without these

expansive interaction controls.

Our second strategy to evaluate whether the estimates for the interaction between

the occupation of adjacent seats and the distance to the supervisor can be given a causal

interpretation is to exploit an instrument for this interaction. The intuition behind our

instrument is as follows. Remember that, upon starting their shifts, handlers can

choose where to sit conditional on those desks being unoccupied. The average location

of unoccupied seats (at the time at which a handler starts his shift) will be often

idiosyncratic, as it will depend on the earlier choices of handlers finishing their shifts

just before the focus handler started his. This implies that, on some days, an arriving

handler will find that a large proportion of the available seats are close to a supervisor

desk and, on average, the handler will sit relatively close to a supervisor. Conversely,

on other days the empty desks will on average be far from the supervisor positions

and the handler will tend to sit far. As a result, two handlers working at the exact

same time may be at different distances from the closest supervisors purely due to

the location of the desks that were empty at the different times at which they started

working. Hence, we use the average distance of the free seats at the time at which the

handler started his shift as an instrument for his current distance to the supervisor’s

desk.31

Table 3 displays the estimates of this 2SLS approach. Notice first that our in-

strument is very strong (Kleibergen-Paap F = 2,666), suggesting that arriving handlers

are strongly constrained in their seating choices. Columns 1 and 2 display the reduced

31Strictly speaking, we use the interaction between the distance of the free seats and the change in
occupation of adjacent desks as an instrument for the interaction between the distance to the closest
supervisor and the change in occupation of adjacent desks.
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form estimates, which indicate that on shifts in which the empty desks at the start

of the shift are far from the supervisor positions, the handler will react more to the

occupation of adjacent seats. In Columns 4 and 5, we find that the 2SLS estimates are

positive and highly statistically significant. They are also larger than the corresponding

OLS estimates from Table 2.

Overall, we interpret the robustness of the interaction estimates to the alternative

empirical strategies as supporting a causal interpretation of our main findings. We

therefore conclude that, in our setting, peer pressure substitutes for the effect of (direct)

manager pressure.

7 Peer Pressure Between Co-Evaluated Handlers

Prediction 3 predicts that a worker will react more strongly to the presence of a nearby

peer if the information available to this peer is more likely to reach his manager. In this

section we examine whether the empirical evidence is consistent with this prediction.

Co-Evaluation as a Proxy for Communication Between Manager and Peer

Measuring communication links inside organisations is notoriously difficult (Gant et

al. 2002, Battiston et al. 2021, Impink et al. 2021). Our proxy for whether the focus

handler’s evaluator and the handler’s peer regularly talk with each other is whether the

focus handler’s evaluator is also the peer’s evaluator. As discussed in Section 3, each

OCB manager is assigned a specific set of handlers who she mentors, gives general ad-

vice, and produces performance reviews for. This ‘evaluation’ relation requires regular

meetings and communication between the handler and his evaluator. As a result, we

posit that a handler sitting alongside a co-evaluated colleague will often be conscious

of the fact that his colleague has a direct communication link with his evaluator. Our

corresponding prediction is that workers should react more to the presence of a nearby

peer if that peer is a co-evaluated handler.

To test this prediction, we expand the baseline equation (2) with an interaction

between ∆Occupiedsh and a dummy for whether the nearby peer and the focus handler

have the same evaluator at that point in time. Column 1 Table 4 shows that this

interaction is positive and statistically significant, indicating that handlers reaction to

the presence of nearby colleagues is around 60% higher if these colleagues are currently
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evaluated by the same manager.

In Column 2 we again control for the set of interactions between ∆Occupiedsh

and the handler dummies ηi(s). We do this to account for the fact that handlers with

a different propensity to react to the presence of nearby peers might, for whatever

reason, be differentially likely to sit alongside co-evaluated colleagues. The coefficients

remain essentially unchanged.

Interpreting the Interaction as a Causal Effect An immediate question in in-

terpreting the interaction coefficient from the previous subsection is whether handlers

allocated to the same evaluator might be similar along unobserved dimensions, as it

might be these dimensions that cause the stronger reaction captured by the interac-

tion coefficient. This is a concern in our setting because the allocation of handlers to

evaluators is not explicitly random, although it has a strong idiosyncratic component.

We test this prediction by taking advantage of the fact that there are sufficiently

frequent re-allocations of handlers across evaluators in our dataset. For instance, an

evaluator losing several handlers (e.g. because of their retirements) will sometimes be

assigned handlers from other evaluators, until parity in the number of evaluatees per

manager is regained. These re-allocations imply that we can observe pairs of handlers

that do not share the same evaluator in the present but either shared it in the past or

will share it in the future. Using these pairs can provide the basis of a placebo test

because the potential confounding effect discussed above should largely extend to the

interactions of ∆Occupiedsh with these ‘co-evaluated in the past’ and ‘co-evaluated in

the future’ dummies.

We introduce these interactions in Column 3 Table 4 and find that handlers do

not react more strongly to the presence of nearby peers that do not share the same

evaluator in the present but either will share it in the future or have shared it in

the past. The coefficient on the interaction with co-evaluated in the present remains

unchanged.

An alternative way to exploit the variation in the assignment of handlers to

evaluators is to control for the set of interactions between ∆Occupiedsh and indicators

for each pair of handlers. In this type of equation, we are comparing the reaction of

the same focus handler to the nearby presence of the same peer, in periods in which

they are and are not co-evaluated. In Column 4 Table 4 we find that the introduction
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of this expansive set of controls does not impact the estimated coefficients, although

these become a bit noisier.

Lastly, it may be that co-evaluated handlers tend to sit together and that it is the

history of working alongside each other that generates the positive effect captured by

the interaction coefficient.32 To investigate this, we compute the number of times that

the focus handler and the nearby peer have sat alongside each other in the past. In

Column 5 Table 4 we include the interaction between this variable and ∆Occupiedsh.

We find that handlers work harder when the nearby peer is a handler that has often sat

close by in the past. However, the coefficient of the interaction with being co-evaluated

remains essentially unchanged.

We conclude that the ‘co-evaluated’ interaction effect likely reflects the treatment

of being evaluated by the same manager, as opposed to an unobserved characteristic

that may link to co-evaluated handlers.

The Share of Co-Evaluated Handlers in the Room Throughout this paper our

focus has been on the effect of the occupation of adjacent seats, both in terms of the

overall effect and in terms of the differential effects depending on the characteristics

of the occupants. In this subsection, we instead study whether the presence of co-

evaluated handlers anywhere in the OCB room affects the productivity of a focus

handler.

There are two reasons why we might expect an effect. First, colleagues in other

areas of the room may still be able to observe a handler’s effort, albeit in a more limited

way than if they were sitting alongside his. For instance, non-adjacent colleagues may

observe the work of a focus handler if they step away from their desks to stretch their

legs.33 As discussed earlier, a handler may in turn be more incentivised if these potential

observations are likely to reach his evaluator, relative to being held by colleagues with

no direct connection to his evaluator. Second, an evaluator may be able to better

evaluate a handler’s effort if she is also evaluating and therefore closely tracking other

32Two comments regarding this potential mechanism: (a) consistently with the hot-desking pol-
icy discussed in Section 3, there is no rule in the OCB dictating that co-evaluated handlers must sit
together, and (b) the issue discussed here is not necessarily an effect that confounds the co-evaluated ef-
fect, but instead a potential mechanism through which being co-evaluated affects productivity through
the different channel of generating a history of interactions between two otherwise unrelated handlers.

33Note that the introduction of half-hour fixed effects in (2) implies that we were estimating the
baseline peer pressure effect β net of the pressure that an additional handler in the room exerts on
the focus handler.
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handlers who work at the same time (and are affected by the same shocks) as that

focus handler (see Section 8 for a further discussion of this mechanism).

In our baseline dataset there are, on average, 29.8 colleagues in that half-hour

in the room, out of which 2.47 are co-evaluated handlers.34 We calculate the share of

handlers in the room that have the same evaluator as the focus handler, and estimate:

∆ysh = γ∆ShareCoEvaluatedsh + πh + µt(sh) + γ∆MWsh +∆ϵsh, (5)

Note that our equation continues to be in first-differences and include time (half-hour)

fixed effects. We are therefore comparing handlers working at the same exact time,

on the basis of whether the colleagues starting or ending their shifts in that half-hour

are co-evaluated. The identification assumption is that the arrival or departure of

co-evaluated colleagues (typically scheduled weeks in advance) does not coincide with

idiosyncratic shocks to the productivity of a handler in that specific half-hour.

Column 1 Table 5 shows that increasing the share of handlers in the room that

are co-evaluated increases a handler’s productivity. The average share of co-evaluated

handlers is 2.47/29.8 = .083. The estimated coefficient implies that moving from having

no co-evaluated handlers to having the average share increases a handler’s time on the

phone by .083× .183×100 = 1.5%. This is a plausible magnitude, as it is smaller than

the effect of a single co-evaluated handler sitting right next to the focus handler. We

also note in Column 1 Table 5 that the number of handlers that will be co-evaluated

in the future or were co-evaluated in the past does not affect productivity.

In Column 2 Table 5 we add the occupation of adjacent desks, together with its

interaction with whether these occupants are co-evaluated. We find that the two effects

(i.e. the co-evaluation of handlers adjacent and non-adjacent to the focus handler) are

largely orthogonal to each other. This is unsurprising given the vast array of controls

in our estimating equation, and lends further credibility to our baseline identification

strategy. Adding interactions in Columns 3 and 4 between the focus handler (or the

focus/peer pair) and the occupation of adjacent desks does not, reassuringly, affect the

coefficients.

Overall, Table 5 confirms that the assignment of handlers to evaluators and

shifts/desks represents a channel through which firms can manipulate the generation

34These numbers do not include the desks that are adjacent to the focus handler. We do not include
these desks either in the calculation of the share of handlers in the room that are co-evaluated that
we use in Table 5.
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and magnitude of peer pressure among co-workers.

8 Discussion of Alternative Interpretations

We now list our main findings below and interpret them in light of both the Section 2

conceptual framework and potential alternative explanations.

F1: the average peer effect is positive (Table 1). When estimating separate peer

effects for each handler, the overwhelming majority of the statistically significant

effects are positive (Figure A9).

F2: the peer effect is larger when the handler is sitting further away from a supervisor

(Tables 3-4).

F3: the peer effect is larger among handlers who have the same performance evaluator,

relative to handlers who do not (Tables 4-5).

The Section 2 conceptual framework provides an explanation of all three findings.

Handlers care about impressing their managers and these managers receive both direct

(through their own observations) and indirect (through the reputation among the peers

that the managers interact with) signals of the handlers’ performance. The arrival

and observation by a peer leads to increased effort (F1), especially if the manager

cannot directly monitor the handler (F2) and the peer communicates with the manager

frequently (F3).

Relative Performance Evaluation Objective measures of performance such as

the average number of calls per hour are insufficient to fully assess a handler’s effort,

which implies that evaluators partly rely on other information (including their own

observations) about how a handler is performing. This prompts the question of whether

evaluators compare their evaluatees in informally assessing how well they are doing.

It is important to emphasise that it is not immediately clear how relative per-

formance evaluation would predict F2 or F3. A potential explanation of F3 would be

that evaluators in the room are somehow better able to visually assess the effort of

their handler when that handler is sitting alongside another evaluatee, relative to sit-

ting alongside a colleague who has a different evaluator. F3 would then arise because

the manager receives a more precise signal of the handler’s effort when a co-evaluated
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handler sits nearby. This mechanism is conceptually very similar to our preferred expla-

nation, as both rely on the nearby presence of a peer improving the manager’s signal of

the handler’s effort. The only difference between the two mechanisms is in whether the

peer is actively (i.e. voluntarily transmitting information) or passively (i.e. through his

presence improving the signal-to-noise ratio) improving the manager’s information.35

Pro-Social Preferences All the handlers working at the same point in time are

engaged in teamwork, and potentially under the temptation to free-ride on each other.

A potential explanation of F1 would be that the arrival of a colleague at an adjacent

desk triggers pro-social preferences in a handler, leading to a desire for cooperative

behaviour and higher effort. Related to this, observing an adjacent colleague may

somehow create motivation through the ‘warm glow’ of working alongside others.

Again, it is not clear why this trigger in pro-social preferences should be stronger

when the handler is sitting further away from a supervisor (F2), or why this desire would

be stronger if the adjacent colleague happens to be evaluated by the same manager (F3).

One might expect these pro-social preferences to arise more strongly among colleagues

who are similar to each other, or who often sit next to each other (as we find in

Column 5 Table 4). However, co-evaluated handlers are not more similar to each other

(Table A1) and do not interact with each other much more strongly or frequently as a

result of being co-evaluated. Furthermore, note that F3 is quantitatively unchanged in

Column 5 Table 4 when controlling for both the pair fixed effects and the pair’s past

interactions (interacted with the main effect), suggesting that the co-evaluated variable

is not proxying for the similarities or intensity of contact between the pair.

35Consider a similar, if less plausible, explanation. A handler finishes a shift having taken very few
calls, and an evaluator wonders the reason behind the low objective measure of performance. One
potential reason would be that few calls (or calls of particular difficulty and length) were received
during the shift, and the other would be that the handler shirked. The presence of a co-evaluated
colleague in the same shift might allow the evaluator to compare the relative performance of the focus
handler and the co-evaluated colleague, determining which explanation is more likely to be correct,
and increasing the pressure on the focus handler to perform. There are some deficiencies with this
intuition as a potential explanation of F3. First, the comparison above could be made with any co-
evaluated colleague working at the same time rather than those sitting nearby. Second, evaluators
have access to the average number of calls for all OCB handlers rather than just their evaluatees, so it
is not clear how the presence of a co-evaluated colleague in a shift would generate better information.
Nevertheless, even if it is less plausible, this explanation again relies on the presence of the peer
generating a more precise signal of the focus worker’s effort, and is therefore conceptually similar to
our preferred framework in Section 2.
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Peers as Reference Points Imagine that a handler is unaware about the minimum

amount of calls that are regarded as acceptable (or the ‘minimum norm’), either in the

organisation in general or for his evaluator in particular. The arrival of a colleague to

an adjacent desk might provide the handler with a point of reference in this respect,

leading to an adjustment in the focus handler’s effort.

An immediate problem with this explanation is that the corresponding effort

adjustment need not be in a positive direction. Instead, around half of the handlers will

find that they are exerting more effort than they want to (given that effort is costly, and

that they are exceeding the minimum norm), and therefore adjust downwards when

a colleague sits nearby. However, this prediction is inconsistent with F1, especially

in light of Figure A9 which shows that the overwhelming majority of handlers react

positively to the arrival of a nearby peer. It is also unclear how the hypothesis that

an adjacent colleague creates a reference point would predict that the arrival of a such

a colleague has a stronger (positive) effect if the focus handler is sitting far from a

supervisor (F2).

Conformity to a Norm Related to the interpretation above, Kandel and Lazear

(1992) mention the possibility of peer pressure to not exceed a maximum amount of

effort (or a ‘maximum norm’). The logic here is that, in the presence of a ratchet effect,

hard workers (i.e. ‘rate busters’) may be ostracised if they alert management to the

possibility of greater productivity (see also Jones, 1984). As a result, rate busters may

be pressured to decrease their effort when they are observed by their colleagues.

Again, the prediction here would be that the presence of an adjacent worker

decreases rather than increases effort. While this is possible in some organisations, it

is difficult to reconcile with our empirical finding F1.

Other Peer Effects Lastly, we comment on types of peer effects affecting produc-

tivity without necessarily affecting effort. One such channel would entail knowledge

spillovers arising across adjacent workers (Waldinger 2012, Sandvik et al. 2020). How-

ever, this slow-moving mechanism is unlikely to be the cause of the rapid reaction of

productivity to the occupation of an adjacent seat that we document in this paper.

Another potential channel is mutual help among adjacent workers. We have

indeed documented such an effect in previous work (Battiston et al., 2021). However,
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we studied there communication as help between two workers engaging sequentially

with the same incident. In the GMP, it is regarded as acceptable for the latter worker

(i.e. the operator) to solicit additional information from the former (i.e. the handler),

about the case that they are both assigned to. However, we study in this paper only

the handlers, who work in parallel on separate cases to each other. Therefore, there is

little scope for mutual help in this paper. It is also unclear how this mechanism would

predict F2 or F3.36

9 Counterfactual Exercises

In this section we use our earlier estimates to compute the potential productivity gains

that could arise from alternative assignments of workers to seats and shifts. Throughout

these counterfactual exercises, we keep every shift observed in the data, and therefore

the number of handlers working at each point in time, unchanged.37 We also maintain

the practice that handlers do not change seats in the middle of their shifts. We make

three additional simplifying decisions. First, we rearrange the desks within the room

to create rows of ten contiguous seats each. Second, we perform all exercises on the

median month in our sample period (May 2013).38 Lastly, our focus is on illustrating

how incorporating information on the vertical relations between workers and managers

can help to augment the strength of horizontal incentives. Because of this, we design

a first counterfactual to leverage F1 and a second counterfactual to leverage F1 + F3.

Increasing Horizontal Incentives while Ignoring Vertical Relations In this

counterfactual exercise we increase the strength of the average peer pressure, but do

not leverage how such a horizontal incentive depends on the vertical relations between

36For instance, there is no reason why handlers with the same evaluator should help each other
more. Handlers who are similar to each other or interact often with each other might help each other
more, but F3 is unchanged when controlling for these characteristics.

37The length and starting time of each shift is determined by the OCB to meet the expected call
volume while adhering to formal and/or informal constraints on the shift patterns. For instance, shifts
are not expected to last beyond a certain maximum number of hours. It is also inadvisable for shifts
to start at, say, 3am. We do not know the precise set of restrictions that OCB central planners operate
under, so we conservatively keep every shift unchanged. Instead, we vary the assignment of handlers
to desks and, in our second counterfactual, the identity of the handlers working in each shift.

38This sample restriction is motivated by the fact that counterfactually assigning handlers to desks
in a continuous and dynamic fashion is a computationally demanding problem. This computational
complexity increases exponentially with the length of the time horizon. We have confirmed that very
similar conclusions result from using alternative months (available upon request).
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workers and their managers. In our context, this implies increasing the number of

adjacent seats that are occupied to exploit F1, while ignoring the finding that co-

evaluated handlers in the same shift and adjacent seats will exert stronger peer pressure

on each other (F3).

We use the following heuristic algorithm to allocate handlers to seats. At every

point in time, we keep track of every seat being occupied and the remaining time left

in the shift of its occupying handler. For each handler starting a shift we identify all

empty seats and compute, for each of these seats, a score based on the time left in the

shifts of the handlers occupying the adjacent seats.39 We then allocate the starting

handler to the empty seat with the highest score.

We have also used mixed-integer programming to solve the full dynamic problem

(see Online Appendix C for a description of the optimal allocation problem). We favour

the heuristic approach for three reasons. First, its simplicity increases the likelihood

of implementation by real-world organisations, relative to time-consuming approaches

relying on complex optimisation techniques. To illustrate, in our setting the heuristic

algorithm can be calculated in a small fraction of the many hours required to implement

the mixed-integer programming approach. Second, the heuristic algorithm performs

quite well relative to the programming approach, in a dataset comprising of a single

day (details available upon request). Lastly, the heuristic algorithm also performs well

from an absolute perspective, more than doubling the average occupation of adjacent

seats from .8 to 1.7.

We compute the predicted productivity increase under the counterfactual allo-

cation of handlers to seats as follows. For each handler and half-hour period, we use

the number of adjacent seats occupied and the regression coefficients from Columns 1

and 2 Table 1 to calculate the associated increases in the measures of productivity. We

then aggregate across all the handlers in the room and then across all the half-hours in

the sample period. We display the results from this counterfactual exercise in Column

1 Table 6. We find that the total time that handlers spend on the phone increases by

39The score is the sum of the time left in each of the adjacent seats. Naturally, an adjacent seat
unoccupied is regarded as a zero in this addition. Similarly, an adjacent seat that does not exist
(because the focus seat is at the end of a row) is also a zero.
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4.84% and the number of calls increase by 2.88%.40,41

Leveraging Both Horizontal and Vertical Relations In this counterfactual ex-

ercise we leverage information on what handlers are co-evaluated to further increase the

magnitude of the peer pressure effect. We utilise this information in two ways. First,

we modify the score determining the seat assigned to an incoming handler so that it

gives a higher weight to empty seats adjacent to co-evaluated colleagues. Second, we

use another heuristic algorithm to reassign handlers to shifts in a way that increases

the likelihood that co-evaluated handlers work at the same time.

This shift-assignment algorithm works as follows. We start with the first shift of

the month (say, 12am-9am 1st May 2013) and assign handlers from the first evaluator

to that shift. We repeat this process with the second shift, and then the third shift,

until we have exhausted the handlers from the first evaluator. We then take the next

shift and start assigning handlers from the second evaluator to that shift, and proceed

until the handlers from the second evaluator are exhausted. When we have finished the

handlers from the last evaluator, we start assigning handlers from the first evaluator

again and proceed in this fashion until the last shift of the month. It is easy to see that

this process significantly increases the likelihood that co-evaluated handlers coincide

in the room.

Note that the reassignment of shifts and the reassignment of seats complement

each other because the increased shift overlap between co-evaluated handlers both

leverages the findings from Table 5 and makes it easier to find co-evaluated handlers

who can sit alongside each other thereby leveraging the findings from Table 4. Overall,

this process increases: (1) the average occupation of adjacent seats from .8 to 1.6, (2)

the occupation of adjacent seats by co-evaluated colleagues from .04 to 1.08, and (3)

the average share of co-evaluated handlers in the room from .06 to .27.

We compute the predicted productivity increase under the counterfactual alloca-

40Table 6 reports standard errors calculated from 200 bootstrap repetitions, clustered at the handler
level. Each bootstrap repetition accounts for the underlying variation in the counterfactual seating
allocation as well as drawing a new coefficient from a normal distribution with mean and standard
deviation equal to the estimated coefficient and standard error from the regression in Table 1.

41An important implicit assumption in our counterfactual exercises is that the call queue permits
the increase in productivity resulting from higher effort, at least to the same extent as it does in
the observed sample period generating the baseline estimates in Table 1. To the extent that the call
queue might start to empty when productivity increases, any organisation should be able to achieve
the same number of calls taken while reducing its payroll.
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tion of handlers to shifts and seats in the same way as in the previous subsection. We

find in Column 2 Table 6 that this second counterfactual is associated with increased

time on the phone of 11.98% and increased number of calls of 7.64%.

Discussion The two exercises above illustrate the potential for using alternative

seat and shift arrangements to increase the size of the peer pressure. In Figure A15

we confirm this potential improvement by displaying the simulated distributions of our

dependent variables, together with the observed distribution. We find that the coun-

terfactual distributions are shifted to the right of the observed distribution, indicating

an increase in average productivity along the whole support.

The key message from this section is that accounting for the vertical assignment

of handlers to evaluators (Column 2 Table 6) more than doubles the productivity gains,

relative to an approach that uses seat assignment to increase peer pressure but ignores

the interdependencies between horizontal and vertical incentives (Column 1 Table 6).

10 Concluding Remarks

We have provided evidence on the interplay between peer pressure and manager pres-

sure in organisations. Handlers exert more effort when a colleague sits in an adjacent

desk, and this effect is mediated by the relation between workers and their managers.

Through a series of counterfactual exercises we have illustrated how organisations could

leverage these effects to increase worker productivity.

The richness of our analysis has been made possible thanks to our focus on a

single organisation, for which we have been able to gather uniquely precise data and

exploit its advantageous features. While this focus has substantial benefits in terms of

the identification of causal effects and the range of questions that we can tackle, it also

poses the question of how our findings might extend to other settings. We believe that

the characteristics at the centre of our findings are likely present in many other contexts.

For instance, team production and the potential to free-ride are pervasive features of

modern workplaces. Similarly, many workers are co-located and can mitigate free-riding

through peer pressure. The vertical relations in this paper are not atypical either. In

many firms, managers are in charge of monitoring and evaluating their subordinates,

and observe only imperfect measures of performance. Together, these ingredients make
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the interrelation between managers and peer pressure a likely mechanism in many other

settings. We leave further explorations of this interrelation to future work.
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FIGURES

FIGURE 1: EXAMPLE OF OCB ROOM FLOORPLAN

This figure displays an example of the OCB room. The figure is not realistic, either in the number of seats or in the
relative location of the seats. The purpose of the figure is to illustrate that the supervisory positions are scattered
throughout the room and at different distances from different handler desks.
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FIGURE 2: LAGS AND LEADS EVIDENCE

This figure displays the coefficients and 95% confidence intervals of regressions of productivity on the leads and lags of the
(change in the) number of adjacent seats that are occupied next to a handler. The unit of observation is a half-hour unit h
within a shift s, where a shift is defined as the combination of a specific handler and a specific date (e.g. an observation is the
fourth half-hour of the shift of handler John Smith that starts on 1st December 2012). The estimating equation is:

∆ysh =

4∑
j=−4

βj∆Occupieds(t+j) + πh + µt(sh) + γ∆MWsh +∆ϵsh,

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the (change
in the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent variable
is the (change in the) log of the number of calls answered by the handler in the half-hour. All regressions include the (change in
the) log of the number of minutes worked by the handler, indicators πh for the half-hour period in which the handler is within
the shift, and indicators µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day). Standard errors are
clustered at the shift level.
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TABLE 2: HETEROGENEOUS EFFECTS
BY DISTANCE TO CLOSEST SUPERVISOR POSITION

Feb2012-Nov2014; Handlers=341; Shifts= 64,089; Half-Hours= 48,022; Observations= 982,861.

(1) (2) (3) (4)
Dependent Variable: ∆ Log ∆ Log ∆ Log ∆ Log

Minutes on Number Minutes on Number
Phone Calls Phone Calls

∆ Occupied -.001 -.001
(.0134) (.0081)

∆ Occupied × (Log) Distance to Supervisor .026*** .016*** .025*** .016***
(.0064) (.0038) (.0074) (.0045)

∆ Log Minutes Worked Yes Yes Yes Yes

Time (Half-Hour) F.E. Yes Yes Yes Yes

Half-Hour within Shift F.E. Yes Yes Yes Yes
∆ Occupied × Focus Handler F.E. No No Yes Yes

∆ Occupied × Time (Half-Hour) F.E. No No Yes Yes

This table displays estimates of OLS regressions of productivity on the number of adjacent seats that are occupied next to
a handler, interacted with the (log of the) distance between the handler’s desk and the closest supervisor position. The unit
of observation is a half-hour period h within a shift s, where a shift is defined as the combination of a specific handler and
a specific date (e.g. an observation is the fourth half-hour of the shift of handler John Smith that starts on 1st December
2012). The estimating equation is in Columns (1)-(2):

∆ysh = β1∆Occupiedsh + β2(∆Occupiedsh ×Distances) + πh + µt(sh) + γ∆MWsh +∆ϵsh,

The dependent and independent variables are in first-differences within a shift. The occupied variable ranges between -2
(when both seats next to a handler were fully occupied in the previous half-hour and became fully unoccupied in the current
half-hour) and +2 (when both seats were unoccupied and they became occupied). The variable is continuous, as it reflects
the percentage of the half-hour that the seats are occupied. In Columns (1),(3) the dependent variable is the (change in
the) log of the number of minutes that the handler spends on the phone in the half-hour. In Column (2),(4) the dependent
variable is the (change in the) log of the number of calls answered by the handler in the half-hour. All regressions include
indicators πh for the half-hour period in which the handler is within the shift, indicators µt(sh) for the natural unit of time

(i.e. year X month X day X half-hour of day), and the (change in the) log of the number of minutes worked by the handler.
Columns (3)-(4) include interactions between the change in the occupation of adjacent seats and: (a) a set of focus handler
identifiers ηi(s), and (b) a set of half-hour identifiers. Standard errors are clustered at the shift level.
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TABLE 4: HETEROGENEOUS EFFECTS
BY EVALUATOR AFFILIATION OF PEER

Feb2012-Nov2014; Handlers=343; Shifts= 71,589; Half-Hours= 48,033; Observations= 1,120,440.

(1) (2) (3) (4) (5)

Panel A: Dependent Variable - ∆ Log Minutes on Phone

∆ Occupied .057***
(.0036)

∆ (Occupied × Current Co-Evaluated) .027*** .029*** .027*** .029* .029*
(.0103) (.0106) (.0107) (.0153) (.0153)

∆ (Occupied × Past Co-Evaluated) -.023* -.017 -.022
(.0124) (.0185) (.0185)

∆ (Occupied × Future Co-Evaluated) -.013
(.0207)

∆ (Occupied × Number Past Interactions) .011***
(.0015)

Panel B: Dependent Variable - ∆ Log Number Calls

∆ Occupied .033***
(.0021)

∆ (Occupied × Current Co-Evaluated) .02*** .018*** .017*** .018* .017*
(.0062) (.0064) (.0065) (.0091) (.0091)

∆ (Occupied × Past Co-Evaluated) -.009 -.011 -.014
(.0076) (.011) (.011)

∆ (Occupied × Future Co-Evaluated) -.006
(.0123)

∆ (Occupied × Number Past Interactions) .006***
(.001)

∆ Log Minutes Worked Yes Yes Yes Yes Yes

Time (Half-Hour) F.E.d Yes Yes Yes Yes Yes

Half-Hour within Shift F.E. Yes Yes Yes Yes Yes
∆ Occupied × Focus Handler F.E. No Yes Yes No No

∆ Occupied × Focus/Peer Pair F.E. No No No Yes Yes

This table displays estimates of OLS regressions of productivity on the number of adjacent seats that are occupied next to
a handler, interacted with whether the occupying peers are co-evaluated with the focus handler. The unit of observation is
a half-hour period h within a shift s, where a shift is defined as the combination of a specific handler and a specific date
(e.g. an observation is the fourth half-hour of the shift of handler John Smith that starts on 1st December 2012). The
estimating equation in Column (1) is:

∆ysh = β1∆Occupiedsh + β2∆(Occupiedsh × CurrentCoEvaluatedi(sh)) + πh + µt(sh) + γ∆MWsh +∆ϵsh,

where Columns (2)-(5) include additional interactions between the change in the occupation of adjacent seats and other
characteristics. In (2)-(3), the interactions are with the focus handler indicators. In (4), we add the interactions are with
the indicators for the interaction between the focus handler and the peer handler. In (5), we add the interaction with the
number of times that the handler pair have sat next to each other in the past. The dependent and independent variables
are in first-differences within a shift. The occupied variable ranges between -2 (when both seats next to a handler were
fully occupied in the previous half-hour and became fully unoccupied in the current half-hour) and +2 (when both seats
were unoccupied and they became occupied). The variable is continuous, as it reflects the percentage of the half-hour that
the seats are occupied. The calls received in the room is the number of incoming calls arriving to the GMP router in the
existing half-hour. All regressions include indicators πh for the half-hour period in which the handler is within the shift,
indicators µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day), and the (change in the) log of
the number of minutes worked by the handler. Standard errors are clustered at the shift level.
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TABLE 5: HETEROGENEOUS EFFECTS
BY EVALUATOR AFFILIATION OF PEER

AND EVALUATOR AFFILIATION OF SAME-ROOM HANDLERS

Feb2012-Nov2014; Handlers=342; Shifts= 71,575; Half-Hours= 47,903; Observations= 1,120,350.

(1) (2) (3) (4)

Panel A: Dependent Variable - ∆ Log Minutes on Phone

∆ Share Current Co-Evaluated in the Room .183*** .215*** .215*** .215***
(.0493) (.0492) (.0492) (.0512)

∆ Share Past Co-Evaluated in the Room -.008 -.009 -.007 .001
(.0422) (.0422) (.0422) (.044)

∆ Share Future Co-Evaluated in the Room -.028 -.025 -.026 -.023
(.0425) (.0425) (.0425) (.0447)

∆ Occupied .057***
(.0036)

∆ Occupied × Current Co-Evaluated .028*** .03*** .033**
(.0103) (.0106) (.0153)

Panel B: Dependent Variable - ∆ Log Number Calls

∆ Share Current Co-Evaluated in the Room .115*** .134*** .134*** .125***
(.0305) (.0305) (.0305) (.0317)

∆ Share Past Co-Evaluated in the Room .002 .001 .002 0
(.0272) (.0272) (.0272) (.0283)

∆ Share Future Co-Evaluated in the Room .012 .014 .013 .018
(.0271) (.027) (.027) (.0283)

∆ Occupied .033***
(.0021)

∆ Occupied × Current Co-Evaluated .021*** .018*** .02**
(.0062) (.0064) (.0091)

∆ Log Minutes Worked Yes Yes Yes Yes

Time (Half-Hour) F.E. Yes Yes Yes Yes

Half-Hour within Shift F.E. Yes Yes Yes Yes
∆ Occupied × Focus Handler F.E. No No Yes No

∆ Occupied × Focus/Peer Pair F.E. No No No Yes

This table displays estimates of OLS regressions of productivity on the share of handlers in the room that are co-evaluated
with the focus handler. The unit of observation is a half-hour period h within a shift s, where a shift is defined as the
combination of a specific handler and a specific date (e.g. an observation is the fourth half-hour of the shift of handler John
Smith that starts on 1st December 2012). The estimating equation in Column (1) is:

∆ysh = γ∆ShareCoEvaluatedsh + πh + µt(sh) + γ∆MWsh +∆ϵsh,

where the regression includes the handlers co-evaluated in the present, in the past and in the future. In (2), we include
the occupation of adjacent seats, interacted with whether the occupants are co-evaluated. In (3), we add the interaction
between the occupation of adjacent seats and indicators for the focus handler. In (4), we add the interaction between
the occupation of adjacent seats and indicators for the interaction between the focus handler and the peer handler. The
dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the (change
in the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent
variable is the (change in the) log of the number of calls answered by the handler in the half-hour. All regressions include
indicators πh for the half-hour period in which the handler is within the shift, indicators µt(sh) for the natural unit of time

(i.e. year X month X day X half-hour of day), and the (change in the) log of the number of minutes worked by the handler.
Standard errors are clustered at the shift level.
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TABLE 6: COUNTERFACTUAL EXERCISES
AVERAGE PRODUCTIVITY INCREASES

Counterfactual 1: Counterfactual 2:

Increasing + Leveraging
Horizontal Vertical
Incentives Relations

Hourly change (%) in: (1) (2)

Minutes on Phone 4.84*** 11.98***
(0.31) (2.98)

Number of Calls 2.88*** 7.64***
(0.17) (1.94)

This figure displays the average productivity increases resulting from alternative allocations of handlers to seats
and shifts. We assume that the room layout consists of rows of ten contiguous seats. In both counterfactual
exercises we maintain the starting time and duration of every shift observed in the data. As a result, the number
of handlers working at each point in time is the same in the observed and counterfactual distributions. In Column
1 we reallocate handlers to seats to maximise the number of adjacent seats that are occupied. In Column 2 we
reallocate handlers to shifts to maximise the number of adjacent seats that are occupied by a co-evaluated handler.
We further reallocate handlers to shifts to increase the likelihood that co-evaluated handlers work at the same time.
The estimated productivity increase in Column 1 is calculated as

y1 = y0
[
1 + β̂1(Occupiedcounter −Occupiedobserved)

]
where y0 is the observed productivity of the handler, Occupiedcounter is the simulated occupation of adjacent seats,

Occupiedobserved is the observed occupation of adjacent seats and β̂1 is the coefficient from Table 2. The estimated
productivity increase in Column 2 is calculated as

y1 = y0
[
1 + β̂1(Occupiedcounter −Occupiedobserved)

]
+y0β̂2 [(Occupied× CoEvaluated)counter − (Occupied× CoEvaluated)observed]

+y0β̂3 [ShareCoEvaluatedcounter − ShareCoEvaluatedobserved]

where (Occupied × CoEvaluated)counter is the simulated occupation of adjacent seats by a co-evaluated handler,
and ShareCoEvaluatedcounter is the simulated share of co-evaluated handlers in the room (excluding co-evaluated

handlers sitting in an adjacent seat). β̂2 is the coefficient from Column 2 Table 8 and β̂3 is the coefficient from Column
2 Table 9. Each cell reports the standard errors clustered at the handler level obtained by 200 bootstrap repetitions.
Each bootstrap repetition additionally draws random coefficients β1, β2 and β3 from normal distributions with mean
and variance acording to Tables 2 and 9. Asterisks denote significance based on the boostrapped distribution. The
dependent variables are aggregated at the room-hour level.
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ONLINE APPENDIX A (NOT FOR PUBLICATION):

ADDITIONAL TABLES AND FIGURES

FIGURE A1: THE CALL HANDLING ROOM AT THE
GREATER MANCHESTER POLICE

SCREENSHOT FROM
‘THE FORCE MANCHESTER’

This figure displays a photograph of the actual room that we study in this paper. The screenshot is taken
from the first episode of the documentary series ’The Force Manchester’, broadcast in the United Kingdom
by Sky 1 TV channel.
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FIGURE A2: DISTRIBUTION OF STARTING AND ENDING
TIMES OF THE HANDLERS’ SHIFTS

This figure displays the distributions of starting and end times for the shifts in our dataset. An observation is an individual
shift.

FIGURE A3: DISTRIBUTION OF SHARE OF HANDLERS
IN THE ROOM THAT ARE CO-EVALUATED HANDLERS

This figure displays the distribution of the share of handlers in the room that are co-evaluated. An observation is a shift/half-
hour period, consistently with our baseline sample. For each observation, we calculate the percentage of handlers that are
working in the room and who are co-evaluated with the focus handler. We also calculate and plot this percentage under a
counterfactual in which the allocation of handlers to shift/half-hour periods is randomly created.
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FIGURE A4: CUMULATIVE LEADS AND LAGS

This figure displays the coefficients and 95% confidence intervals of regressions of productivity on the leads and lags of the
(change in the) number of adjacent seats that are occupied next to a handler. The figures plot the cumulative effect over
time, calculated as the sum up to a certain period and starting two hours before the change in occupation. For instance, the
cumulative effect at t = 2 (i.e. one hour after the period of the change in occupation) is equal to

∑4
j=−2 β̂j (i.e. from four

periods before the change to two periods after the change). The unit of observation is a half-hour unit h within a shift s, where
a shift is defined as the combination of a specific handler and a specific date (e.g. an observation is the fourth half-hour of the
shift of handler John Smith that starts on 1st December 2012). The estimating equation is:

∆ysh =
4∑

j=−4

βj∆Occupieds(t+j) + πh + µt(sh) + γ∆MWsh +∆ϵsh,

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the (change
in the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent variable
is the (change in the) log of the number of calls answered by the handler in the half-hour. All regressions include the (change in
the) log of the number of minutes worked by the handler, indicators πh for the half-hour period in which the handler is within
the shift, and indicators µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day). Standard errors are
clustered at the shift level.
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FIGURE A5: LAGS AND LEADS PLACEBO

This figure displays the coefficients and 95% confidence intervals of regressions of pre-determined average call characteristics on
the leads and lags of the (change in the) number of adjacent seats that are occupied next to a handler. The unit of observation
is a half-hour unit h within a shift s, where a shift is defined as the combination of a specific handler and a specific date (e.g.
an observation is the fourth half-hour of the shift of handler John Smith that starts on 1st December 2012). The estimating
equation is:

∆ysh =

4∑
j=−4

βj∆Occupieds(t+j) + πh + µt(sh) + γ∆MWsh +∆ϵsh,

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the
(change in the) share of calls that are classified as Urgent (Grade 1 calls). In Panel B the dependent variable is the equivalent
for Non-Urgent (Grade 3 calls). All regressions include the (change in the) log of the number of minutes worked by the handler,
indicators πh for the half-hour period in which the handler is within the shift, and indicators µt(sh) for the natural unit of time
(i.e. year X month X day X half-hour of day). Standard errors are clustered at the shift level.
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FIGURE A6: CUMULATIVE LAGS AND LEADS PLACEBO

This figure displays the coefficients and 95% confidence intervals of regressions of pre-determined average call characteristics
on the leads and lags of the (change in the) number of adjacent seats that are occupied next to a handler. The figures plot the
cumulative effect over time, calculated as the sum up to a certain period and starting two hours before the change in occupation.
For instance, the cumulative effect at t = 2 (i.e. one hour after the period of the change in occupation) is equal to

∑4
j=−2 β̂j

(i.e. from four periods before the change to two periods after the change). The unit of observation is a half-hour unit h within
a shift s, where a shift is defined as the combination of a specific handler and a specific date (e.g. an observation is the fourth
half-hour of the shift of handler John Smith that starts on 1st December 2012). The estimating equation is:

∆ysh =
4∑

j=−4

βj∆Occupieds(t+j) + πh + µt(sh) + γ∆MWsh +∆ϵsh,

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the
(change in the) share of calls that are classified as Urgent (Grade 1 calls). In Panel B the dependent variable is the equivalent
for Non-Urgent (Grade 3 calls). All regressions include the (change in the) log of the number of minutes worked by the handler,
indicators πh for the half-hour period in which the handler is within the shift, and indicators µt(sh) for the natural unit of time
(i.e. year X month X day X half-hour of day). Standard errors are clustered at the shift level.
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FIGURE A7: HETEROGENEITY OF BASELINE EFFECT
BY OVERALL OCCUPATION OF ROOM

This figure displays the coefficients and 95% confidence intervals of regressions of productivity on the (change in the) number
of adjacent seats that are occupied next to a handler, interacted with quartiles for the occupation of the room. The unit of
observation is a half-hour unit h within a shift s, where a shift is defined as the combination of a specific handler and a specific
date (e.g. an observation is the fourth half-hour of the shift of handler John Smith that starts on 1st December 2012). The
estimating equation is:

∆ysh =

4∑
j=1

βj(∆Occupiedsh ×Qjt(sh)) + πh + µt(sh) + γ∆MWsh +∆ϵsh,

The dependent and independent variables are in first-differences within a shift. Qjt(sh) is a dummy variable for whether the
half-hour (i.e. year X month X day X half-hour of day) t corresponds to the quartile j in terms of the overall occupation of
the room. In Panel A the dependent variable is the (change in the) log of the number of minutes that the handler spends on
the phone in the half-hour. In Panel B the dependent variable is the (change in the) log of the number of calls answered by
the handler in the half-hour. All regressions include the (change in the) log of the number of minutes worked by the handler,
indicators πh for the half-hour period in which the handler is within the shift, and indicators µt(sh) for the natural unit of time
(i.e. year X month X day X half-hour of day). Standard errors are clustered at the shift level.
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FIGURE A8: DISTRIBUTION OF
INDIVIDUAL-SPECIFIC EFFECTS (FOCUS HANDLER)

This figure displays the distribution of the individual-specific coefficients β̂i(s) arising from regressions of productivity on the
(change in the) number of adjacent seats that are occupied next to a handler. The unit of observation is a half-hour unit h
within a shift s, where a shift is defined as the combination of a specific handler and a specific date (e.g. an observation is the
fourth half-hour of the shift of handler John Smith that starts on 1st December 2012). The estimating equation is:

∆ysh =
343∑

i(s)=1

βi(s)(∆Occupiedsh × ηi(s)) + πh + µt(sh) + γ∆MWsh +∆ϵsh

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the (change
in the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent variable
is the (change in the) log of the number of calls answered by the handler in the half-hour. The main independent variable
∆Occupiedsh is interacted with focus-handler dummies, ηi(s). All regressions include the (change in the) log of the number of
minutes worked by the handler, indicators πh for the half-hour period in which the handler is within the shift, and indicators
µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day). Standard errors are clustered at the shift
level.
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FIGURE A9: INDIVIDUAL-SPECIFIC EFFECTS
(FOCUS HANDLER)

This figure displays the individual-specific coefficients β̂i(s) arising from regressions of productivity on the (change in the)
number of adjacent seats that are occupied next to a handler. Only the coefficients that are different from zero at the 10% are
displayed, together with the 95% confidence levels. The unit of observation is a half-hour unit h within a shift s, where a shift
is defined as the combination of a specific handler and a specific date (e.g. an observation is the fourth half-hour of the shift of
handler John Smith that starts on 1st December 2012). The estimating equation is:

∆ysh =
343∑

i(s)=1

βi(s)(∆Occupiedsh × λi(s)) + πh + µt(sh) + γ∆MWsh +∆ϵsh

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the (change
in the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent variable
is the (change in the) log of the number of calls answered by the handler in the half-hour. The main independent variable
∆Occupiedsh is interacted with focus-handler dummies, λi(s). All regressions include the (change in the) log of the number of
minutes worked by the handler, indicators πh for the half-hour period in which the handler is within the shift, and indicators
µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day). Standard errors are clustered at the shift
level.
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FIGURE A10: DISTRIBUTION OF
INDIVIDUAL-SPECIFIC EFFECTS (PEER HANDLER)

This figure displays the distribution of the peer-specific coefficients β̂i(s) arising from regressions of productivity on the (change
in the) number of adjacent seats that are occupied next to a handler. The unit of observation is a half-hour unit h within a
shift s, where a shift is defined as the combination of a specific handler and a specific date (e.g. an observation is the fourth
half-hour of the shift of handler John Smith that starts on 1st December 2012). The estimating equation is:

∆ysh =
343∑

i(s)=1

βi(s)(∆Occupiedsh × λi(s)) + πh + µt(sh) + γ∆MWsh +∆ϵsh

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the (change
in the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent variable
is the (change in the) log of the number of calls answered by the handler in the half-hour. The main independent variable
∆Occupiedsh is interacted with peer-handler dummies, λi(s). All regressions include the (change in the) log of the number of
minutes worked by the handler, indicators πh for the half-hour period in which the handler is within the shift, and indicators
µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day). Standard errors are clustered at the shift
level.

Online Appendix Page 9



FIGURE A11: INDIVIDUAL-SPECIFIC EFFECTS
(PEER HANDLER)

This figure displays the peer-specific coefficients β̂i(s) arising from regressions of productivity on the (change in the) number of
adjacent seats that are occupied next to a handler. Only the coefficients that are different from zero at the 10% are displayed,
together with the 95% confidence levels. The unit of observation is a half-hour unit h within a shift s, where a shift is defined
as the combination of a specific handler and a specific date (e.g. an observation is the fourth half-hour of the shift of handler
John Smith that starts on 1st December 2012). The estimating equation is:

∆ysh =
343∑

i(s)=1

βi(s)(∆Occupiedsh × ηi(s)) + πh + µt(sh) + γ∆MWsh +∆ϵsh

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the (change
in the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent variable
is the (change in the) log of the number of calls answered by the handler in the half-hour. The main independent variable
∆Occupiedsh is interacted with peer-handler dummies, ηi(s). All regressions include the (change in the) log of the number of
minutes worked by the handler, indicators πh for the half-hour period in which the handler is within the shift, and indicators
µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day). Standard errors are clustered at the shift
level.
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FIGURE A12: INCREASES VS. DECREASES
IN ADJACENT SEATS OCCUPATION

This figure displays the coefficients and 95% confidence intervals of regressions of productivity on the (change in the) number
of adjacent seats that are occupied next to a handler. The changes are grouped non-parametrically into eight dummy variables
∆Occupiedjsh, where ∆Occupiedjsh = 1 if the change in period sh falls into interval j. For instance, ∆Occupied8sh = 1 if in
the current half hour, the two seats adjacent to the handler change from being unoccupied to being occupied more than 75% of
the time. The unit of observation is a half-hour unit h within a shift s, where a shift is defined as the combination of a specific
handler and a specific date (e.g. an observation is the fourth half-hour of the shift of handler John Smith that starts on 1st
December 2012). The estimating equation is:

∆ysh =

8∑
j=1

βj∆Occupiedjsh + πh + µt(sh) + γ∆MWsh +∆ϵsh,

The dependent and independent variables are in first-differences within a shift. In Panel A the dependent variable is the (change
in the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent variable
is the (change in the) log of the number of calls answered by the handler in the half-hour. All regressions include the (change in
the) log of the number of minutes worked by the handler, indicators πh for the half-hour period in which the handler is within
the shift, and indicators µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day). Standard errors are
clustered at the shift level.
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FIGURE A13: DESCRIPTIVE EVIDENCE OF THE
RELATION BETWEEN PRODUCTIVITY

AND DISTANCE TO THE CLOSEST SUPERVISORY DESK

This figure displays the coefficients and 95% confidence intervals of regressions of productivity on the distance to the closest
supervisory desk. The distance levels are grouped non-parametrically into five dummy variables. The unit of observation is a
half-hour unit h within a shift s, where a shift is defined as the combination of a specific handler and a specific date (e.g. an
observation is the fourth half-hour of the shift of handler John Smith that starts on 1st December 2012). The dataset includes
only half-hours in which the seats adjacent to a handler are unoccupied. The estimating equation is:

ysh = αDistances + ηi(s) + θh + λt(sh) + γMWsh + ϵsh,

In Panel A the dependent variable is the log of the number of minutes that the handler spends on the phone in the half-hour.
In Panel B the dependent variable is the log of the number of calls answered by the handler in the half-hour. All regressions
include the log of the number of minutes worked by the handler, indicators ηi(s) for the handler corresponding to the shift,
indicators θh for the half-hour period in which the handler is within the shift, and indicators λt(sh) for the natural unit of time
(i.e. year X month X day X half-hour of day). Standard errors are clustered at the shift level.
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FIGURE A14: HETEROGENOUS EFFECTS
BY DISTANCE TO SUPERVISOR

This table displays estimates of OLS regressions of productivity on the number of adjacent seats that are occupied next to a
handler, interacted with dummies for the distance between the handler’s desk and the closest supervisor position. The unit of
observation is a half-hour unit h within a shift s, where a shift is defined as the combination of a specific handler and a specific
date (e.g. an observation is the fourth half-hour of the shift of handler John Smith that starts on 1st December 2012). The
estimating equation is:

∆ysh =
5∑

j=1

βj(∆Occupiedsh ×Distancejs) + πh + µt(sh) + γ∆MWsh +∆ϵsh

The dependent and independent variables are in first-differences within a shift. Distancejs is a dummy variable for whether
the desk corresponding to shift s is at j distance to the closest supervisor. In Panel A the dependent variable is the (change in
the) log of the number of minutes that the handler spends on the phone in the half-hour. In Panel B the dependent variable is
the (change in the) log of the number of calls answered by the handler in the half-hour. All regressions include the (change in
the) log of the number of minutes worked by the handler, indicators πh for the half-hour period in which the handler is within
the shift, and indicators µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day). Standard errors are
clustered at the shift level.
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FIGURE A15: COUNTERFACTUAL EXERCISES
OBSERVED AND COUNTERFACTUAL DISTRIBUTIONS

This figure displays the counterfactual distributions of productivity resulting from alternative allocations of handlers to seats
and shifts, together with the observed distributions. Panel A shows the (kernel estimated) distributions of the hourly time
spent in the phone across handlers. Panel B shows the equivalent distributions for the hourly number of calls taken. We assume
that the room layout consists of rows of ten contiguous seats. In both counterfactual exercises we maintain the starting time
and duration of every shift observed in the data. As a result, the number of handlers working at each point in time is the
same in the observed and counterfactual distributions. In Counterfactual 1 we reallocate handlers to seats to maximise the
number of adjacent seats that are occupied. In Counterfactual 2 we reallocate handlers to shifts to maximise the number of
adjacent seats that are occupied by a co-evaluated handler. We further reallocate handlers to shifts to increase the likelihood
that co-evaluated handlers work at the same time. The output in Counterfactual 1 is calculated as

y1 = y0
[
1 + β̂1(Occupiedcounter −Occupiedobserved)

]
where y0 is the observed productivity of the handler, Occupiedcounter is the simulated occupation of adjacent seats, Occupiedobserved
is the observed occupation of adjacent seats and β̂1 is the coefficient from Table 1. The output in Counterfactual 2 is calculated
as

y1 = y0
[
1 + β̂1(Occupiedcounter −Occupiedobserved)

]
+y0β̂2 [(Occupied× CoEvaluated)counter − (Occupied× CoEvaluated)observed]

+y0β̂3 [ShareCoEvaluatedcounter − ShareCoEvaluatedobserved]

where (Occupied× CoEvaluated)counter is the simulated occupation of adjacent seats by a co-evaluated handler, and
ShareCoEvaluatedcounter is the simulated share of co-evaluated handlers in the room (excluding co-evaluated handlers sitting

in an adjacent seat). β̂2 is the coefficient from Column 2 Table 4 and β̂3 is the coefficient from Column 2 Table 5. The dependent
variables are aggregated at the room-hour level.
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TABLE A1 - BALANCING TESTS
CO-EVALUATION OF HANDLERS

Feb2012-Nov2014; Handlers=280; Observations= 107,596.

(1) (2)

Same Gender -.011 -.001
(.019) (.002)

Difference in Age -.026 -.002
(.017) (.002)

Difference in Experience -.037* -.004
(.021) (.003)

Average Distance Within Room -.004 0
(.012) (.001)

Overlap in the Night Shifts -.017 -.003
(.011) (.002)

Overlap in the Morning Shifts -.005 0
(.009) (.001)

Difference in Share of Urgent Calls -.013 -.001
(.011) (.001)

Difference in Number of Hours Worked -.02 -.001
(.013) (.001)

Difference in Share of Time with Adjacent Seats Occupied .003 .001
(.008) (.001)

First Handler Fixed Effects Yes Yes

Second Handler Fixed Effects Yes Yes

Year/Semester Fixed Effects Yes Yes

F-Statistic Coefficients Jointly Equal to Zero 1.16

This table displays estimates of regressions of whether two handlers are co-evaluated in a
specific semester on a set of characteristics of the handler pair. An observation is a pair of
handlers in a semester (an observation only exists if both handlers were working during that
semester). Average Distance within the Room is the average distance between the desks of
the two handlers, calculated over all the half-hours in which the handlers coincide. Overlap
in the Night Shifts is the difference in the share of time that the handlers spend on the night
shift, relative to the afternoon shift. Overlap in the Morning Shifts is the difference in the
share of time that the handlers spend on the morning shift, relative to the afternoon shift.
Difference in the Share of Urgent Calls is the difference in the share of the Grade 1 calls
received. Column 1 displays the estimates of nine separate regressions of the type:

Charackijt = ψCoEvaluatedijt + θi + λj + πt + ϵijt

where Charackijt is characteristic k of the pair ij during semester t. CoEvaluatedijt = 1 if
the pair were co-evaluated in semester t. θi and λj are handler 1 and 2 fixed effects, and πt
are semester fixed effects. Column 2 displays the estimates of a single regression of the type:

CoEvaluatedijt =
K∑

k=1

βkCharackijt + θi + λj + πt + ϵijt

Standard errors are clustered at the Handler 1 and Handler 2 levels.
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TABLE A2: VARIATION IN THE BASELINE SAMPLE
CROSS-TABULATION BY NUMBER OF ADJACENT SEATS

AND NUMBER OF ADJACENT OCCUPIED SEATS

Number of Number of Adjacent Seats
Adjacent and
Occupied Seats 0 1 2 Total

0 7,645 230,132 39,409 277,186
1 0 610,793 137,724 748,517
2 0 0 143,160 143,160

Total 7,645 840,925 320,293 1,168,863

This table displays the main source of variation in the baseline sample. The unit of obser-
vation is a half-hour period h within a shift s, where a shift is defined as the combination of
a specific handler and a specific date (e.g. an observation is the fourth half-hour of the shift
of handler John Smith that starts on 1st December 2012). Along the column dimension, we
display the number of seats that are row-adjacent to the seat that the handler is occupying
during that observation. Along the row dimension, we display the number of seats that are
both row-adjacent and occupied by other handlers. In this table, a seat is considered occu-
pied if it was occupied by a handler for at least one minute during the half-hour period. Due
to the construction of the table, below-diagonal cells take value zero.
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TABLE A3: DESCRIPTIVE STATISTICS

Variable Name Mean SD Min Max Observations

N Handlers in Room 30.86 9.44 1 64 1,275,483
Handler Age 39.13 11.47 19 65 1,274,731

Female Handler Dummy .68 .47 0 1 1,274,731
Handler Experience (in Years) 5.6 5.73 .03 29.17 1,274,731

Shift Duration (in Hours) 8.99 1.69 .02 14.63 1,275,483
N Minutes Worked 26.96 8.23 0 30 1,275,483

N Calls 2.45 1.67 0 29 1,275,483
Time on Phone 13.7 8.46 0 30 1,275,483

N Calls Taken by All Handlers 75.93 27.14 0 208 1,275,483
Share of Desks Occupied .53 .16 .02 1 1,275,483

Distance to Closest Supervisor 3.5 2.2 1 10.13 1,117,457
N Evaluators 14.97 1.37 12 17 1,273,138

N Handlers Managed by Evaluator 12.23 2.83 1 27 1,273,138
N Adjacent Desks 1.27 .46 0 2 1,275,483

N Desks in Row Behind 1.43 1.13 0 3 1,275,483
N Desks in Row in Front 1.58 1.11 0 3 1,275,483

Occupation of Adjacent Desks .82 .59 0 2 1,275,483
Occupation of Adjacent Desks Current Co-Evaluated .13 .35 0 2 1,275,483

Occupation of Adjacent Desks Past Co-Evaluated .05 .23 0 2 1,275,483
Occupation of Adjacent Desks Future Co-Evaluated .02 .15 0 2 1,275,483

Share Current Co-Evaluated in the Room .09 .08 0 1 1,275,329

This table displays the summary statistics of the main variables used in the empirical analysis. All the statistics have been
calculated at the shift/half-hour level, before the panel dataset is converted into first differences. N Handlers in Room is
the total number of handlers that are present in the room in the specific half-hour. N Calls is the number of calls taken
by the handler in the specific half-hour. Time on Phone is the number of minutes that the handler spent on the phone in
the specific half-hour. Share of Desks Occupied is the percentage of the total desks in the room that are occupied in the
specific half-hour. N Evaluators is the number of managers that are acting as performance evaluators at that point in time.
N Handlers Managed by Evaluator is the number of handlers assigned to an average performance evaluator at that point
in time. Occupation of Adjacent Desks is the main independent variable in the study, and it captures the number of desks
adjacent to the focus handler that are occupied during that specific half-hour. Share Current Co-Evaluated in the Room is
the percentage of handlers in the room during that half-hour that are evaluated by the same manager as the focus handler.
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TABLE A5: EFFECTS ON QUALITY

(1) (2) (3) (4)
Dependent Variable: ∆ Log ∆ Log ∆ Log ∆ Log

Average Call Allocation Response Clearance
Duration Time Time Dummy

∆ Occupied .005 .02 .012 -.026
(.0029) (.0165) (.0124) (.0327)

∆ Log Minutes Worked Yes Yes Yes Yes

Time (Half-Hour) F.E. Yes Yes Yes Yes

Half-Hour within Shift F.E. Yes Yes Yes Yes

Observations 908,253 355,363 351,023 9,625

This table displays estimates of OLS regressions of quality measures on the number of adjacent seats that
are occupied next to a handler. The unit of observation is a half-hour period h within a shift s, where a
shift is defined as the combination of a specific handler and a specific date (e.g. an observation is the fourth
half-hour of the shift of handler John Smith that starts on 1st December 2012). The estimating equation is:

∆ysh = β∆Occupiedsh + πh + µt(sh) + γ∆MWsh +∆ϵsh,

The dependent and independent variables are in first-differences within a shift. The independent variable
ranges between -2 (when both seats next to a handler were fully occupied in the previous half-hour and
became fully unoccupied in the current half-hour) and +2 (when both seats were unoccupied and they
became occupied). The variable is continuous, as it reflects the percentage of the half-hour that the seats
are occupied. In Column (1) the dependent variable is the (change in the) log of the average duration of the
calls answered by the handler in the half-hour. In Column (2) the dependent variable is the (change in the)
log of the average time between the handler creating the incident and the radio operator assigning an officer.
In Column (3) the dependent variable is the (change in the) log of the average time between the handler
creating the incident and the police officer reaching the scene of the incident. In Column (4) the dependent
variable is the (change in the) ratio of incidents classified as crimes for which a suspect is identified by the
police. All regressions include indicators πh for the half-hour period in which the handler is within the shift,
indicators µt(sh) for the natural unit of time (i.e. year X month X day X half-hour of day), and the (change

in the) log of the number of minutes worked by the handler. Standard errors are clustered at the shift level.
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ONLINE APPENDIX B (NOT FOR PUBLICATION):

CONCEPTUAL FRAMEWORK

We now outline a theoretical framework to understand: (a) how physical proximity among
co-workers can affect productivity and, (b) how pressure among peers can interact with (or
derive from) the pressure that workers receive from their managers. Our framework is very
stylised, as our intention is simply to propose a simple mechanism and highlight the resulting
predictions that we take to the data. We discuss other potential mechanisms and effects both
in Section 8 and at the end of this Appendix.

Assume an organization composed of a manager (she) and N workers (each of them
a he), where N is a very large number. The production yi of worker i, yi = f(ei), depends
exclusively on his own effort ei ≥ 0 and we assume f ′ > 0 and f ′′ < 0.

Direct and Indirect Signals The worker’s manager does not observe his production
but instead receives a direct noisy signal zi = yi + ui where ui is an idiosyncratic shock.1

Following Mas and Moretti (2009) we assume that the manager infers worker’s output using
a linear projection, based partly on the observed average (i.e. across all workers) production
and signal. The manager direct inference is therefore:

ŷi = ȳ + b(zi − z̄)

where ȳ =
∑N

i=1 yi/N , z̄ =
∑N

i=1 zi/N and b = cov(yi,zi)
var(yi)+var(ui)

.

The room where workers work is organized into N
2

blocks of two contiguous desks
each. This implies that each worker i has an adjacent desk that can be free or occupied by
co-worker j. We assume that the occupation of the adjacent desk is a continuous variable
tij ≥ 0 (e.g. the desk may be occupied only a fraction of the time).2

The nearby presence of worker j provides the manager with an additional indirect
signal about i’s effort, pij. Our main rationale for the existence of this signal is that i’s effort
is observable to j (when he occupies the adjacent desk), and j’s information can reach the
manager with some probability. Specifically, j’s information can be directly communicated
to the manager or, more indirectly, contribute to i’s reputation within the company which
is observed by the manager. We assume that

pij = −P [(ej − ei)tij]

where P ′ > 0 and P ′′ < 0. One way to interpret P is as the likelihood that a negative signal
(e.g. a negative anecdote mentioned by a co-worker, which damages i’s reputation) about i

1As we discuss in Section 3, the best way to interpret production in our setting is as the contribution by
the handler to minimising the call queuing time. The noisy nature of the signal received by the manager is
motivated by the fact that she cannot evaluate this contribution precisely without accounting for the state of
the call queue at every point in time, the characteristics of the calls taken, etc. In addition, the manager may
have a limited attention span that allows her to focus during short periods of time on only a few workers,
further limiting her ability to monitor them.

2The organisation of the room implies that if tij > 0 then tij = tji and tih = tjh = 0, ∀h ̸= {i, j}. This
simplifying assumption allows us to ignore spillovers that the occupation of other desks can have on the pair
of workers i and j.
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is generated. Intuitively, P is therefore increasing in j’s effort and decreasing in i’s effort.
The multiplicative presence of tij captures the aforementioned notion that the indirect signal
only depends on these relative efforts if the adjacent desk is occupied.3

Manager Evaluation and Manager Pressure The manager uses both the direct sig-
nal/inference ŷi and the indirect signal pij to construct an evaluation of the worker’s perfor-
mance qi, where

qi = αŷi + θijpij

qi is a linear combination of the two signals, with α > 0 capturing the average relative
weight given to the direct signal. The manager further weighs the indirect signal by θij > 0
to account for the fact that she may be more likely to receive (or to give weight to) an
indirect signal about i if it comes through a specific peer j. For instance, certain peers may
have a stronger relation with i’s manager, which implies that their perceptions (when they
sit next to i) may be particularly likely to reach said manager. For simplicity, we assume
that θij = θji.

Effort entails disutility C(ei, tij), which is increasing and convex on ei. We also allow
the cost of effort to depend on the nearby presence of j, tij, where we assume that Cet =
∂2C(ei,tij)

∂ei∂tij
> 0 to capture a potential ‘distraction effect’ (Park, 2019) generated by adjacent

colleagues.4

Finally, each worker chooses effort to maximize

U(w)qi − C(ei, tij)

where U(w) is the utility derived from the manager’s reward.5 Note that, despite effort
being costly, the manager is able to pressure the worker to exert positive effort through two
channels, both operating through her overall evaluation qi. First, higher effort improves
the direct signal/inference ŷi. Second, higher effort decreases the likelihood of a negative
indirect signal being generated, if the adjacent desk is occupied. Note that, in this second

3We make two further simplifying assumptions. First P > 0 in the entire domain, which implies that
there is always a strictly positive probability that a negative signal is generated. Second, we abstract
from strategic transmission of information. Under the interpretation that pij captures the peer (directly or
indirectly) revealing his signal to the manager, this revelation is assumed to be truthful.

4There is no a priori reason why the occupation of adjacent desks should be detrimental to productivity
from a marginal cost perspective. If Cet < 0, workers would instead be ‘motivated’ by working with colleagues
nearby and there would be no trade-off between the peer’s ability to generate the indirect signal pij and his
provision of distraction opportunities. We do not analyse the case where Cet < 0 as it is conceptually less
interesting but all conclusions from the model remain valid, with the caveat that Cet < 0 by itself cannot
generate Propositions 2 and 3 (see Section 8).

5We regard the manager’s reward broadly. One specific interpretation is that w denotes a fixed wage
and qi captures the worker’s probability of keeping his job (for a similar interpretation, see Mas and Moretti
2009). In practice, managers have a range of mechanisms through which reward or punish a worker, even
in settings without explicit performance pay or a realistic likelihood of firing the worker (Fenizia, 2022).
For instance, the manager can allocate opportunities to earn overtime on the basis of her perception of
the worker’s performance. The manager can also use the range of social sanctions described in Kandel
and Lazear (1992), potentially even more effectively than the worker’s peers. This is especially the case in
settings such as the OCB, in which managers have typically previously worked as handlers and are therefore
socially proximate to their subordinates.
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mechanism, j generates ‘peer pressure’ because he can transmit his signal to the manager,
who in turn can reward or punish i.

Equilibrium and Predictions We study the symmetric equilibrium where ei = ej and
(given the large N) workers take the effort of non-adjacent workers (and therefore ȳ and z̄)
as given. All proofs are at the end of this Appendix.

Proposition 1 (Peer Effect is Positive)
∂ei
∂tij

> 0 if and only if θijU(w)P ′ > Cet.

Proposition 1 implies that the response of effort to the occupation of the adjacent desk is
ambiguous and depends on the pressure-distraction trade-off. Intuitively, the condition that
the peer effect is positive is more likely to hold when: (a) the probability of generating a
negative signal from the peer is more sensitive to reductions in effort (i.e. P ′ is large), (b)
the manager is more likely to receive the signal observed by the peer (i.e. higher θij), and
(c) the distraction effect is less severe (i.e. lower Cet).

Proposition 2 (Peer Effect and Direct Manager Pressure)

If the peer effect is positive (i.e. ∂ei
∂tij

> 0), then ∂2ei
∂tij∂var(ui)

> 0.

Proposition 2 implies that (if the peer effect is positive) effort’s response to the presence
of nearby colleagues is larger when the manager has a less informative direct signal of the
worker’s productivity. Intuitively, this makes the manager have to rely more on j’s signal,
increasing i’s reaction to the occupation of an adjacent desk.

Proposition 3 (Peer Effect and Peer/Manager Information Link)

If the peer effect is positive (i.e. ∂ei
∂tij

> 0), then ∂2ei
∂tij∂θij

> 0.

Proposition 3 captures the idea that the occupation of an adjacent desk increases worker’s
effort more when the information link between the peer j and the manager is stronger (i.e.
when θij is larger). Intuitively, this makes the manager’s reward w depend more strongly on
j’s observation, increasing i’s reaction to the occupation of an adjacent desk.

Interpretation of pij We have interpreted the indirect signal received by the manager,
pij, as arising from j’s observation of i’s effort, which can, with some probability, reach the
manager. An alternative though very related interpretation is that the nearby presence of
j allows the manager to better evaluate i’s production. Consider, for instance, a manager
visually monitoring worker i and observing that i is idle. The manager may be more likely
to assign weight to this negative observation when there is an adjacent worker, j, who may
instead appear busy. More generally, managers may find it easier to compare production
levels across adjacent workers than to evaluate their absolute levels in isolation (Lazear and
Rosen, 1981). We comment further on this interpretation in Section 8.

Note that we have not allowed peers to exert pressure other than through the channel
of affecting the manager’s evaluation, pij. In practice, peers may have a wider range of
tools to directly discipline each other (Kandel and Lazear, 1992). The predictions that we
highlight in this paper would remain unchanged if we added an additional channel of ‘direct’
peer pressure among co-workers.
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Proof of Proposition 1 Given the large N , we assume that the worker ignores the
(partial) effect that her own effort has on the average productivity observed by the manager

(i.e.
∂ȳi
∂ei

∼ 0 and
∂z̄i
∂ei

∼ 0). It can be shown that the conclusions remain qualitatively

similar if we relax this assumption. The first order condition of the worker’s maximization
problem is given by:

Λ = U(w) (αbf ′ + θijP
′tij)− Ce = 0 (A1)

A symmetric Nash equilibrium of the game where the worker and the peer perform effort
e∗i = e∗j exists given the assumptions that θij = θji and the fact that both workers choose
their own effort taking the average effort in the room as given. Therefore, the first order
condition of the problem is symmetric for i and j. By implicit differentiation we get:

∂ei
∂tij

= −∂Λ/∂tij
∂Λ/∂ei

=
Cet − θijU(w)(P ′ + tij(ej − ei)P

′′)

U(w)
(
αbf ′′ − θijP ′′t2ij

)
− Cee

=
Γ

Ω
(A2)

In order to simplify notation, we have respectively defined Γ and Ω as the numerator
and denominator in equation (A2). Note that Ω < 0 in a local maxima since it corresponds
to the second order condition of the maximization problem. Since ej = ei in equilibrium, we
can conclude that:

∂ei
∂tij

> 0 ⇔ θijU(w)P ′ > Cet

Notice that if Cet < 0 (i.e. the peer’s presence does not create distraction thereby increasing
the cost of additional effort, but instead reduces it), this condition trivially holds.

Proof of Proposition 2 We can differentiate equation (A2) with respect to var(ui) (ap-
plying the Envelope Theorem):

∂2ei
∂tij∂var(ui)

= −ΓU(w)αf ′′

Ω2

∂b

∂var(ui)
(A3)

From the definition of b =
cov(yi, zi)

var(yi) + var(ui)
=

var(yi)

var(yi) + var(ui)
,

we have that
∂b

∂var(ui)
=

−var(yi)

(var(yi) + var(ui))2
< 0.

Noticing that Ω2 > 0, f ′′ < 0 and that ej = ei in equilibrium, we conclude that:

∂2ei
∂tij∂var(ui)

> 0 ⇔ θijU(w)P ′ > Cet

Proof of Proposition 3 We can differentiate equation (A2) with respect to θij (applying
the Envelope Theorem):

∂2ei
∂tij∂θij

=
−ΩU(w)(P ′ + tij(ej − ei)P

′′) + U(w)P ′′t2ijΓ

Ω2
(A4)
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The first term in the numerator is positive since Ω < 0, P ′ > 0 and ei = ej in equilibrium.
Since P ′′ < 0, we have that Γ < 0 is a sufficient condition for the sign of expression (A4) to
be positive:

θijU(w)P ′ > Cet ⇒ ∂2ei
∂tij∂θij

> 0

Note two things. Firstly, strictly speaking, only the assumption P ′′(0) ≤ 0 is required
for Proposition 3 to hold. Secondly, this is a sufficient but not necessary condition. Given

θijU(w)P ′ > Cet, even if P ′′(0) > 0, expression (A4) remains positive if
∂ei
∂tij

>
P ′(0)

t2ijP
′′(0)

(i.e.

when the peer pressure effect is sufficiently high).

ONLINE APPENDIX C (NOT FOR PUBLICATION):

DESCRIPTION OF THE OPTIMAL ALLOCATION

PROBLEM

Consider a room with m seats per row, and a set of workers with shifts defined by their
starting and ending times. The goal is to assign each worker to a seat in such a way that
maximizes the total time during which workers have both adjacent seats occupied. Let S be
the set of shifts, R be the set of rows, and Ar be the set of existing seats in row r. Each seat
is labelled with the index (r, j) which identifies the row and number of seat within the row.
Let Ti and Di denote the starting and ending times of shift i, respectively. The overlapping
time between shift i and shift k is represented by Ωi,k.

We partition the time frame of interest into discrete intervals, e.g., 5-minute intervals.
Let t denote the index of these intervals.

The binary decision variable xi,(r,j) is equal to 1 if shift i is assigned to seat (r, j), and
0 otherwise. The optimization problem can be formulated as follows:

max
∑
i∈S

∑
k∈S i ̸=k

∑
r∈R

(
m−1∑
j=1

Ωi,k · (xi,(r,j) · xk,(r,j+1)) +
m∑
j=2

Ωi,k · (xi,(r,j) · xk,(r,j−1))

)

subject to the following constraints:

1. Each shift must be assigned to exactly one seat:∑
r∈R

∑
j∈Ar

xi,(r,j) = 1 ∀i ∈ S

2. No two shifts can be assigned to the same seat at the same time:6

yi,(r,j),t + yk,(r,j),t ≤ 1

6This constraint states that for any two different shifts i and k, at most one of them can be assigned to
the same seat (r, j) at any time interval t.
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∀i ̸= k ∈ S,∀r ∈ R, ∀j ∈ Ar, ∀t such that Ti ≤ t < Di and Tk ≤ t < Dk

where the variable yi,(r,j),t is the time that shift i is allocated to seat (r, j) during the time
interval t.7 Notice that the objective function tracks the overlapping time between each seat
and the adjacent seats to the left and to the right separately.

The solution for this problem is an optimal assignment of shifts to seats that maximizes
the total overlapping time between adjacent seated workers, subject to the constraints of seat
assignments and non-overlapping shifts in the same seat. The presence of discrete decision
variables xi,j and linear constraints make this problem a mixed-integer linear programming
(MILP) problem.

MILP problems are characterized by the combination of continuous and integer vari-
ables, and they often arise in optimization scenarios involving discrete decisions. In general,
MILP problems are NP-hard, meaning that their complexity increases rapidly with the size
of the problem. Obtaining a feasible solution requires the use of modern solvers that uses
algorithmic approaches that can find near-optimal solutions in an efficient way. Unlike con-
tinuous linear programming problems that can be efficiently solved using techniques such as
simplex methods or stochastic gradient descent, MILP problems lack the convexity properties
that facilitate fast optimization. Additionally, the combination of discrete and continuous
variables often lead to a combinatorial explosion in the solution space. As a result, solving
MILP problems optimally often entails exploring a vast solution space, potentially involving
branching, backtracking, and enumerating numerous potential solutions. This exhaustive
search process can be computationally expensive,

We use Gurobi, a widely-used commercial optimization solver which is capable of solv-
ing large-scale mixed-integer linear programming problems by employing cutting-edge al-
gorithms, advanced heuristics, and parallel computing techniques for pruning the solution
space efficiently. 8

7If the time interval t is sufficiently short, yi,(r,j),t can be defined as a dummy variable. This prevents
the same seat being occupied by two handlers in a non-overlapping way within the interval of time t. We
follow this approach when implementing the solution algorithm. Alternatively, we can set the constraint as
yi,(r,j),t + yk,(r,j),t−1 ≤ 1 which will allow for small overlapping (e.g. less than 5 minutes) in the occupation
of seats.

8One of the most widely used algorithms for solving MILP problems is the branch-and-bound algorithm,
which is a systematic enumeration method that searches through the solution space by exploring and elim-
inating branches of a search tree. The algorithm uses linear programming relaxations to compute bounds
on the optimal solution, which helps to prune branches that cannot contain the optimal solution. Another
technique often employed in solving MILP problems is cutting-plane methods. These methods involve iter-
atively generating linear inequalities (cuts) that separate the optimal solution of the integer problem from
the optimal solution of the linear programming relaxation. The generated cuts are then added to the linear
programming relaxation, tightening the feasible region and potentially improving the quality of the bounds.
Modern MILP solvers like Gurobi combine multiple techniques such as branch-and-bound, cutting planes,
and various heuristics to efficiently explore the solution space and find an optimal or near-optimal solution.
The difficulty of solving MILP problems depends on the specific problem instance, its structure, and the size
of the problem. Some instances can be computationally challenging or even intractable.
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