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Abstract. We consider a financial market in which traders potentially face restrictions in
trading some of the available securities. Traders are heterogeneous with respect to their beliefs
and risk profiles, and the market is assumed thin: traders strategically trade against their price
impacts. We prove existence and uniqueness of a corresponding equilibrium, and provide an
efficient algorithm to numerically obtain the equilibrium prices and allocations given market’s
inputs. We find that restrictions may increase the market’s welfare if traders have different
views regarding the covariance matrix of securities returns. The latter heterogeneity regarding
covariance matrix disagreement is essential in modelling; for instance, when traders agree
on the covariance matrix, restricting participation in some securities for some traders leaves
equilibrium prices unaltered in the unrestricted securities, a certainly undesirable model effect.

Introduction

Discussion. Traders often face restrictions on investing in certain type of financial assets.
Several exogenous factors may prevent retail or institutional investors from accessing certain
classes of securities. Standard examples are the proprietary trading of banks, allowable invest-
ments of mutual funds and pension funds, which by regulation are not allowed to hold certain
instruments (e.g., non-investment graded bonds, classes of over-the-counter derivatives, secu-
rities in private placements, etc.).1 Even for hedge funds, restrictions may stem from inflexible
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1According to Volcker rule (see e.g. Whitehead [2011]), US banks are prohibited from trading several secu-

rities, derivatives and commodities for their own profit. Similar restrictions are imposed to European banks by
Markets by the Financial Instruments Directive II—see e.g. Busch [2017]).

Restrictions on the asset classes that regulated mutual funds are allowed to trade stem from two reasons.
First, restrictions arise from the category that the mutual fund belongs; for example, a money market mutual
fund is not allowed to invest in long-term bonds or equity, and a government bond mutual fund is not allowed
to invest in securities issued by corporations. Second, registered mutual funds are generally not allowed to
trade asset classes like private equity and commodities, which can be traded by other institutional investors;
see SEC, Office of Investor Education and Advocacy [2016], as well as Fulkerson and Hong [2021].

For regulatory investment restrictions for pension funds, we refer to the survey OECD [2019].
1
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investment statement policies, whereby managers choose not to trade in some securities in or-
der to emphasise the speciality of their investment strategies; see, among others, Blake et al.
[2013].

Institutional investors may additionally avoid certain securities due to asymmetrically high
transaction costs and margin requirements [Koijen and Yogo, 2019], or due to the difficulty
in processing information related to assets’ valuations—see Cornet and Gopalan [2010] and
the references therein. Such exogenous restrictions imply that some traders (such as mutual
funds) cannot sufficiently diversify or hedge their risks, while their counterparties (such as
hedge or private funds) can; a situation that affects the market’s competitiveness and hence
its risk-sharing efficiency.

When several institutional traders are not allowed to trade some securities, large unre-
stricted traders gain significant market power to impact allocations and prices. In the fi-
nancial literature, markers dominated by few large traders are usually called thin [Rostek
and Weretka, 2016]. Such markets become non-competitive solely due to a small number
of participants possessing market power. Market’s non-competitiveness does not stem from
asymmetric information or asymmetric exogenously-imposed bargaining power; rather, the
structure of the security market is oligopolistic, where all traders can buy or sell the tradeable
assets under a uniform-price double auction setting.

In markets with restricted participation, the assumption that traders are price-takers be-
comes particularly problematic, and ignoring traders’ price impact is not consistent with
observable practice. Furthermore, under participation restrictions, price impact has an addi-
tional component: a trader’s strategy should take into account not only their, but also their
counterparties’ restrictions, and traders’ actions also impact securities they are restricted from
trading. In other words, traders recognise the impact they have on all equilibrium prices,
thereby acting strategically, resulting in price impacts endogenously derived in equilibrium.

Even though institutional investors, whose participation is restricted, are some of the
largest2 protagonists of the financial markets, theoretical studies of equilibria with asym-
metric restricted participation in markets with few large participants are rare. Our initial goal
is to consider a non-competitive equilibrium model (as the one in Rostek and Weretka [2015]
and Malamud and Rostek [2017]) under a general structure of traders’ restricted participation
and prove the existence and uniqueness of such equilibrium.

Besides asymmetric participation, traders’ heterogeneity substantially impacts strategic be-
haviour. Recent theoretical models on price impact, such as Malamud and Rostek [2017], An-
thropelos [2017], Babus and Partatore [2019] and Anthropelos et al. [2020], predict that

2In Bretscher et al. [2020], it is estimated that roughly 50% of corporate bonds hold by institutional investors,
while a recent study by Pension and Investments [2017] estimated that 80% of equity markets is owned by
institutional investors—see also the related discussions in Asker et al. [2014] and Koijen and Yogo [2019].
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traders’ heterogeneity plays a crucial role, not only on the distribution of trading gains, but
also on the market’s total welfare. In the view of these insights, we choose to consider a model
that is in line with the classic CARA-normal setting, with traders being heterogeneous on all
of their characteristics, i.e., initial risky endowments, risk aversions and beliefs.

Traders’ deviations on risk aversion, initial endowment and payoff’s expectations have been
studied in both competitive and non-competitive security market models [Rostek and Yoon,
2020]; however, herein we additionally consider traders with different views on the covariance
matrix of the tradeable assets. This adds an extra non-trivial layer of analysis with respect to
related literature, where the effect of different second moments on non-competitive equilibrium
transactions has not been addressed.

It is rather unrealistic to assume that traders agree on the (co)variances of tradeable assets—
see also the related argument in Duchin and Levy [2010].3 In this manuscript, we aim to
extensively study how this demonstrated traders’ general disagreement on the second moments
effects equilibrium prices, allocations, impacts and welfare. Such additional heterogeneity on
trader’s beliefs is not included only for the sake of theoretical generalisation. It turns out that
deviation on beliefs regarding second moments of payoffs is an important factor that affects
both equilibrium price impacts, as well as the induced market’s efficiency. In particular, an
indicative example demonstrates that if traders disagree simply on the correlation of payoffs,
then participation’s restrictions may increase welfare.4

Recapitulating, we consider a model that includes three quite common market’s features,
all heavily affecting the formulation of the equilibrium transaction: (i) possible restricted
participation of some traders for some securities; (ii) market’s thinness, stemming solely from
oligopolistic structure; and (iii) general traders’ heterogeneity and especially to regards on
their beliefs on the securities’ second moments. To the best of our knowledge, this is the first
work that simultaneously includes the combination of these three features.

Contributions. We consider a static model and a finite number of traders under the standard
CARA-normal setting as, for instance, in Vayanos [1999] and Vives [2011], and study equilib-
rium pricing and allocations of securities, where traders can take both long and short positions.

3Difference on beliefs about (co)variances could also be supported by the large volume on derivatives whose
underlying asset is realised variance, such as variance swaps. Although some traders of such assets are simply
hedgers, a large number of them trade these products based on personal prediction or estimation regarding
volatility and correlations of the associated securities—see Bakshi et al. [2015].

4Under competitive market models, the effect of traders’ disagreement about the asset’s second moments on
the equilibrium has already been highlighted. For example, Duchin and Levy [2010] show that disagreement
about (co)variances heavily affects prices, while Bakshi et al. [2015] connect heterogeneity in beliefs with trading
of contingent claims written on volatility.
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Under potential restricted participation, motive for trading stems from the heterogeneity in
the traders’ risky existing positions, risk profiles and beliefs.

We deviate from a price-taking framework; equilibrium forms within a game played among
traders, with all of them realising that their actions impact prices. We model market’s oper-
ation as a uniform-price double auction and traders’ strategic sets are the downward-sloping
demand schedule they submit in the transaction, following the tradition of Kyle [1989].

Under the aforementioned setting, Theorem 1.5 establishes existence and global uniqueness
of a non-competitive Nash equilibrium. (The only additional imposed assumption is that at
least three traders participate in the transaction of each security. The latter is necessary for
equilibrium to exist; see Kyle [1989].) To our knowledge, the present work is the first instance
where existence and uniqueness of non-competitive equilibrium is shown under restricted par-
ticipation and such extensive traders’ heterogeneity.

An algorithm that numerically calculates the equilibrium quantities is also provided. Besides
its obvious computational value, this iterative procedure is economically motivated too, as it
can be seen as a mechanism where traders update their best responses in a Walrasian type
of auction. This procedure converges to the associate fixed point, as the Walrasian auction
converges to its equilibrium.

Traders’ disagreement on the covariance matrix brings interesting consequences on equilib-
rium transactions, that other forms of heterogeneity cannot yield. While both the covariance
matrix and risk aversion are part of the risky component of traders’ demand function, there
are important effects in equilibrium that only heterogeneity on the covariance matrix unveils.
In Theorem 2.2, we show that when traders agree on the covariance matrix, the equilibrium
price of the unrestricted assets remains unchanged when restrictions to other assets are im-
posed. This is an unrealistic feature when assets are correlated and traders have price impact;
traders’ strategies, in principle, should take into account the pool of the assets that they are
allowed to trade and hence restrictions should affect the equilibrium of all the market. This
unreasonable result does not hold when traders disagree on the covariance matrix. Under such
disagreement, we further show that equilibrium price impacts are not necessarily monotone
(in positive-semi-definite order) with respect to traders’ covariance matrices, in contrast to
the case of common trader beliefs, where there is monotonicity between trader’s risk tolerance
and price impact [Malamud and Rostek, 2017, Theorem 2]. Lower estimated variances do not
necessarily imply higher price impact.

Of further importance is the effect of the discrepancy of covariance matrices on the market’s
welfare. We argue that lifting participation restrictions in a non-competitive market may not
be socially beneficial, via an indicative example where traders disagree on the covariance of the
security payoffs. This comes in sharp contrast with no-price-impact competitive equilibrium,
where full participation leads to Pareto optimal allocations and is always optimal, regardless
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of traders’ heterogeneity. Boosts of efficiency through restrictions do not necessarily stem from
heterogeneity in traders’ optimism; in our example, higher efficiency in restricted participation
occurs when traders agree on expectations and variances of two securities, and only disagree
on the correlation between them. In fact, this disagreement may result in reduction of the
price impact of the trader who mostly benefits by trading. In such cases, it is possible that
the total welfare decreases due to withdrawal of restrictions for that particular trader.

It should be emphasised that different estimations on covariance matrices of tradeable assets
are obviously market-specific, while traders’ risk aversions (common or not) reflect trader’s
risk preferences in any market. This is an important discrimination, since predictions of a
model that are based on risk aversion heterogeneity in one market may be heavily violated to
another when therein traders disagree on second moments. A simple and direct explanation,
beyond the previous discussion, is that difference on covariances could be another source of
mutually beneficial trading (for traders elsewhere homogeneous), since traders may estimate
the correlation of their endowment with the tradeable asset differently.

Connections with existing literature. Our work mostly relates to two strands of litera-
ture on security equilibrium pricing. On the one hand, we contribute to the ongoing research
on imperfectly competitive financial markets, where traders are assumed strategic and het-
erogeneous; on the other hand, our results belong to the study of equilibrium models under
restricted (also referred as limited or constrained) traders’ participation.

Motivated by related empirical evidence, several authors have studied so-called thin financial
market models, where investors impact prices with their demands/orders; a recent and extent
literature review on this strand is provided by Rostek and Yoon [2020]. For the formulation
of our non-competitive equilibrium model, we follow the uniform-price double-auction setting
developed by Rostek and Weretka [2015], where, in the spirit of Kyle [1989] and Vayanos
[1999] and Vives [2008], traders act strategically in a demand submission game, trading against
residual supply. Rostek and Weretka [2015] treat a dynamic version of this game, assuming
however that traders have the same beliefs and risk aversion. The same Nash equilibrium
setting is considered in Malamud and Rostek [2017], where the focus is on the effect of such
strategic behaviour when traders with potentially different risk aversions trade securities in
decentralised markets.5 Rostek and Yoon [2023] consider similar non-competitive equilibrium
under incomplete demand conditioning. In all these models, traders are assumed to have
same estimations for the (co)variances of the tradeable securities. In this paper, we highlight
the importance that heterogeneity in securities’ covariance matrices has on equilibrium price

5Demand submission games in fragmented markets operating under double auctions are also studied in Chen
and Duffie [2021], Rostek and Yoon [2021] and Wittwer [2021]; however, therein demand schedules are not
contingent on prices.
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impacts and gains from trading, showing that it is not just a theoretical generalisation, and
emphasising that the induced effects cannot be captured by heterogeneity on risk aversion.

There is also large literature on thin financial markets with exogenously given price-impact
functions for each strategic trader—e.g., Almgren and Chriss [2000], Almgren et al. [2005]
and Huberman and Werner [2004]. We deviate from this literature; similar to Kyle [1989], Ros-
tek and Weretka [2015] and Vives [2011], price impact in our model is derived endogenously
as part of the market’s equilibrium.

Additionally to heterogeneity of beliefs, and instead of decentralised markets or incomplete
demand, we focus on restricted participation. In our setting, we establish existence and global
uniqueness of Nash equilibrium; in contrast, uniqueness in the decentralised market setting
has only been shown to hold locally.

Restricted access may be regarded as a constraint on the traders’ set of admissible portfolios.
Among others, equilibrium models of financial markets that impose constrained sets have been
studied by Duffie [1987] and Polemarchakis and Siconolfi [1997], by Basak and Cuoco [1998]
in a continuous-time setting, and more recently by Cass [2006], Hens et al. [2006], Aouani and
Cornet [2009], Cornet and Gopalan [2010]. All these papers consider competitive markets6,
where traders are essentially price-takers; price impact during transactions and its implication
on market’s efficiency are not addressed. However, several empirical studies—for instance, Koi-
jen and Yogo [2019], Hau et al. [2019], Hameed et al. [2017], Frazzini et al. [2018] and the
related discussions in Neuhann and Sockin [2020] and Rostek and Yoon [2020]—have shown
that large institutional investors comprise a significant part of the market’s volume, with or-
ders influencing security prices and eventually the portfolio allocations of all traders. Under a
restricted participation setting, price impact has an additional dimension, since traders, when
acting strategically, influence even transactions of assets they do not trade.

Further to including price impact within a restricted participation setting, we show how
different beliefs on payoffs’ covariance matrix heavily affect the consequences of such restric-
tions to prices and the market’s efficiency. In particular, and in contrast to the comparison
between decentralised and centralised markets, restricted participation may result in higher
efficiency even if traders have the same risk tolerance.7 From this perspective, our work is also
connected with the broader literature on financial market design, and especially on the effects

6Under competitive market structure, participation restrictions may arise endogenously—see, among oth-
ers, Carosi et al. [2009] and Calvet et al. [2004].

7It is shown in Malamud and Rostek [2017] that centralised markets are always socially better than decen-
tralised ones, when traders have the same risk aversion. We show here that this is not necessarily true when
traders disagree on assets’ second moments. The importance of strategic investors’ heterogeneous beliefs is also
highlighted in Babus and Partatore [2019]. Therein, trading is done through intermediaries, and it is shown
that when investors’ disagreement is low, a fragmented market structure may arise endogenously at equilibrium;
however, in centralised markets investors’ welfare is always higher than in fragmented settings. Cases where
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of imposing or withdrawing participation’s restrictions to certain market participants. Since
equilibrium existence and uniqueness under any arbitrary restriction setting is established, we
argue that difference of beliefs on second moments is a crucial factor that should be taken into
account when analysing market’s design, and especially participation rules.

Finally, there is a further link of our model with literature that considers asymmetric market
power and segmented markets. For example, Tuckman and Vila [1992], Rahi and Zigrand
[2009], Zigrand [2004, 2006] consider financial markets with restricted participation where
market participants are distinguished to arbitrageurs and competitive investors; arbitrageurs
have access to all tradeable assets and act strategically in a Cournot-type of framework, while
investors are assumed price-takers. In our model, all traders act strategically, making it more
appropriate when large investors know that they can influence the market, even if they are
restricted to trade only a subset of the securities.

Structure of the paper. Section 1 introduces the price-impact model and states the exis-
tence and uniqueness result. Section 2 is dedicated to the importance of the beliefs’ hetero-
geneity on the price impact and welfare issues. We conclude at Section 3, whereas all proofs
are provided in Appendix A.

1. Equilibrium Price Impact with Restricted Participation

1.1. Traders, securities and notation. In the market, we consider a finite number of
traders and use the index set I to denote them. There is a finite number of tradeable risky
securities, and their index set is denoted by K. Traders may be restricted to trade some of
the risky assets: this is modelled by assuming that trader i ∈ I has access to (effectively, is
allowed to trade in) only a subset Ki ⊆ K of the securities. In other words, trader i ∈ I may
select units of securities in the subspace of X ≡ RK defined via

Xi := {x ∈ X | xj = 0, ∀ j ∈ K \Ki} , i ∈ I.

We shall call full participation the market setting for which Ki = K, for all i ∈ I. Before
giving more details of the model’s structure, we need to establish some necessary definitions
and notation. For each i ∈ I, we shall denote by πi the projection operator from X on the
space Xi: for x ∈ X , πix has the effect of keeping all coordinate entries of x corresponding to
Ki intact, while setting all coordinate entries of x corresponding to K \Ki equal to zero. We
also define S� as the set of all linear, symmetric, nonnegative-definite forms on X . On S�, we
define the partial order � via

A � B ⇐⇒ (B −A) ∈ S�.

fragmentation structure is beneficial occur under the equilibrium model of Chen and Duffie [2021] and Wittwer
[2021], where however traders have common beliefs and traders’ demands are not price contingent.
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Furthermore, for a subspace Y of X , let SY� consist of A ∈ S� such that Ax = 0 for all x ∈ X
orthogonal to Y, and which are strictly positive definite on Y: if y ∈ Y is such that 〈y,Ay〉 = 0,
then y = 0.8 Under this notation, B ∈ SXi

� can be regarded as a K×K matrix where only the
elements Bj` with (j, `) ∈ Ki ×Ki may be nonzero. Also note that for all B ∈ SXi

� , it holds
that πiB = B = Bπi. For A ∈ SY� and B ∈ SY�, we write A ≺Y B to mean that (B−A) ∈ SY�.
Furthermore, for B ∈ SXi

� , we shall denote by B−Xi the unique element of SXi
� which, on Xi,

coincides with the unique inverse of B; in other words, in order to compute B−Xi , we consider
the inverse of the Ki ×Ki sub-matrix and set the rest of the elements equal to zero.

For k ∈ K, define Ik := {i ∈ I | k ∈ Ki} to be the set of traders that have access to trading
security k. A minimal requirement for any meaningful equilibrium model is that |Ik| ≥ 2, for
all k ∈ K. When we deal with price impact later on, we shall see that the slightly stronger
condition |Ik| ≥ 3, for all k ∈ K, is necessary and sufficient for existence (and uniqueness) of
equilibrium.9

1.2. Preferences and demand. Let S ≡ (Sk; k ∈ K) denote the payoff vector of all the
tradeable securities, which are assumed to be linearly independent. In addition, we let Ei

denote the initial position (random endowment) of trader i ∈ I. Note that we do not re-
strict Ei to belong to the span of S. Following the related literature—see, for instance, Kyle
[1989], Vayanos [1999] and Malamud and Rostek [2017], we adapt the classic CARA-normal
setting. More precisely, we assume that all traders are constant absolute risk aversion (CARA)
expected utility maximisers and vector (Ei, S) has a joint Gaussian law under the subjective
probability Pi of trader i ∈ I. Let Ci be the covariance matrix under Pi of S, where only the
components of Ki are regarded, and the other entries are equal to zero. Linear independence
of securities implies that Ci ∈ SXi

� , for each i ∈ I. Furthermore, let ci ∈ Xi stand for the
vector whose entry k ∈ Ki is the covariance under Pi between Ei and Sk, and fi ∈ Xi denote
the vector whose entry k ∈ Ki is the expectation under Pi of Sk. Traders’ endowments and
beliefs are considered private information.

The baseline utility (when there is no investing on S) of trader i ∈ I is set to be the random
endowment’s certainty equivalent, that is

ui := −δi logEi

[
exp

(
−Ei

δi

)]
∈ R,

where δi > 0 is the risk tolerance of trader i ∈ I. Then, a position q ∈ Xi on the securities
that trader i ∈ I is allowed to trade, leads to certainty equivalent equal to

Xi 3 q 7→ Ui(q) ≡ −δi logEi

[
exp

(
−Ei + 〈q, S〉

δi

)]
= ui + 〈q, fi − (1/δi)ci〉 −

1

2δi
〈q, Ciq〉 .

8Throughout the paper, 〈·, ·〉 denotes standard Euclidean inner product.
9The necessity of the latter assumption on linear Nash demand equilibria is well-known in the literature—see,

for instance, Kyle [1989] and Vives [2011].
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To ease the notation of the analysis that follows, we further define

(1.1) gi := fi −
1

δi
ci, Bi := δiC

−Xi
i ,

where Bi ∈ SXi
� and gi ∈ Xi. Therefore, trader i ∈ I has preferences numerically represented

via the following linear-quadratic functional10

(1.2) Xi 3 q 7→ Ui(q) = ui + 〈gi, q〉 −
1

2

〈
q,B−Xi

i q
〉
.

Above, gi includes the trader’s expectation fi of the payoffs, but also takes hedging needs into
account: positive ci implies that selling securities tends to decrease the trader’s risky exposure.
Such hedging needs form a crucial part of the analysis, motivating traders to make transactions,
even if they have homogeneous beliefs. The matrix B−Xi

i captures jointly the trader’s risk
tolerance level and the subjective covariance matrix of the securities. Finally, note that the
certainty equivalent measures utility in monetary terms, facilitating utility comparisons among
different equilibria.

Emphasis should be given on the multi-level heterogeneity that is accommodated in this
model. In particular, we allow:

• heterogeneity in the traders’ risk aversions;
• heterogeneity in the traders’ subjective beliefs regarding the expectations and covari-

ance structure of the securities; and
• traders’ initial random endowments which may not be spanned by the securities.11

To the best of our knowledge, this is the first work in a non-competitive setting, with or
without restricted participation, which allows all the above concurrently. As already stated in
the introductory section, all the aforementioned heterogeneities are fairly reasonable, especially
under price impact models where each trader’s personal characteristics and beliefs affect the
equilibrium transaction.

1.3. Price impact. Under a competitive market setting, each trader i ∈ I is assumed to be a
price-taker; therefore, for any given vector of security prices p ∈ X , the aim is the maximisation
of the utility Ui(q) − 〈q, p〉, over demand vectors q ∈ Xi. However, and as emphasised in the
introductory section, there are several security markets where such a price-taking assumption
is problematic. Especially under a restricted participation environment as the one dealt with

10The linear-quadratic functional (1.2) is more general than the CARA-normal setting, in the sense that
such functional could be the primary objective function of a trader, a special case of which would be our present
certainty equivalent under CARA-normal setting.

11Under the standard setting of CARA expected utilities and Gaussian distributions, general initial random
endowments have been considered also in non-competitive models of [Anthropelos, 2017, Anthropelos et al.,
2020]. Therein, it is emphasised that the beta of CAPM becomes a projected beta, i.e., the beta of the projection
of the trader’s random endowment onto the span of the tradeable securities.
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here, the possibility that large investors may influence the market is more intense, and the
need arises to take into account the strategic behaviour of participating traders in the market.

We consider and analyse the concept of Bayesian Nash market equilibrium in linear bid
schedules, as has appeared in Rostek and Weretka [2015] and Malamud and Rostek [2017],
among others. It is assumed that all traders are strategic, and that no noise traders or traders
without price impact are involved in the transactions. We extend the one-round full partic-
ipation game appearing in Rostek and Weretka [2015], in that, in our setting, traders have
heterogeneous preferences (both in risk aversions, as well as on expectations and covariances),
and do not necessarily have access to all the securities. On the other hand, the decentralised
market of Malamud and Rostek [2017] has a richer structure on possible restrictions for trading,
but all traders have the same subjective views on covariances of the securities. It is important
to point out that, although traders may have access to only a subset of all securities, their
actions will impact the equilibrium prices and allocations of all the securities.

Below, we give the line of argument for the individual trader’s optimal allocation given a
perceived price impact. We follow Weretka [2011] and Rostek and Weretka [2015], assuming
that traders perceive a linear price impact of the orders they submit; more precisely, a net
order of ∆q ∈ Xi for trader i ∈ I will move prices by Λi∆q, where Λi ∈ S� is the so-called price
impact (similar to Kyle’s lambda Kyle [1989]), and will be eventually endogenously determined
in equilibrium.12 Let p̃ ∈ X be a vector of pre-transaction security prices. Under this linear
price impact setting, an allocation q ∈ Xi for trader i ∈ I will cost 〈q, p〉 = 〈q, p̃+ Λiq〉, where
p = p̃+Λiq will be the actual transaction security prices. This means that the post-transaction
utility of trader i ∈ I will equal

Ui(q)− 〈q, p〉 = ui + 〈q, gi − p̃〉 − 1

2

〈
q,B−Xi

i q
〉
− 〈q,Λiq〉 .

Given Λi, each trader i ∈ I wants to maximise the above utility by choosing demand vectors
q from the allowable subspace Xi. Therefore, with pre-transaction prices p̃, the optimisation
problem that trader i ∈ I faces is

(1.3) qi = argmax
q∈Xi

(
〈q, gi − p̃〉 − 1

2

〈
q,B−Xi

i q
〉
− 〈q,Λiq〉

)
.

Since the above maximisation problem is strictly concave on Xi, we may use first-order con-
ditions for optimality, which give gi − πip̃−B−Xi

i qi − 2πiΛiqi = 0; in other words,

gi − πi(p̃+ Λiqi) = B−Xi
i qi + πiΛiqi ⇐⇒ gi − πip = (B−Xi

i + πiΛiπi)qi,

12The requirement that the price-impact matrix Λi is symmetric is not without economic motivation. In
fact, symmetric demand slope is consistent with the demand function of utility maximising traders—see, among
others, [Mas-Colell et al., 1995, Chapter 3].
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where the fact that πiqi = qi holds (since qi ∈ Xi) was used. Note that the above first order
conditions are consistent with [Malamud and Rostek, 2017, optimisation relation (5)], adjusted
to our restricted participation setting. Since

(
B−Xi

i + πiΛiπi
)
∈ SXi

� , upon defining

(1.4) Xi :=
(
B−Xi

i + πiΛiπi

)−Xi

∈ SXi
� , i ∈ I,

and noting that Xiπi = Xi, we obtain that

(1.5) qi = Xigi −Xip.

To recapitulate: given a perceived linear price impact Λi ∈ S�, and with Xi given by (1.4),
the relationship between the optimal allocation qi ∈ Xi of trader i ∈ I with actual transaction
prices p ∈ X is given by (1.5). In view of (1.5), the matrix Xi ∈ SXi

� of (1.4) has the
interpretation of a negative demand slope for trader i ∈ I.

1.4. Equilibrium with restricted participation and price impact. Given the above
best response individual trader’s problem, we shall discuss now how price impact is formed in
a standard uniform-price equilibrium.

Given the relationship between the optimal allocation qi ∈ Xi of trader i ∈ I with trans-
action prices p ∈ X and Xi ∈ SXi

� given by (1.5) and (1.4) respectively, the market-clearing
equilibrium prices p̂ satisfy

0 =
∑
i∈I

qi =
∑
i∈I

Xigi −

(∑
i∈I

Xi

)
p̂.

The following Lemma helps the analysis of several points.

Lemma 1.1. Suppose that |Ik| ≥ 2, for all k ∈ K. For fixed j ∈ I, if Di ∈ SXi
� for all

i ∈ I \ {j}, then with D−j :=
∑

i∈I\{j}Di, we have D−j ∈ SX� , i.e., D−j is invertible.

From, Lemma 1.1, it follows that

(1.6) p̂ =

(∑
i∈I

Xi

)−1(∑
i∈I

Xigi

)
.

The equilibrium allocation (q̂i; i ∈ I) will be given by substituting p̂ in (1.6) for p in (1.5).
Within equilibrium, each trader’s perceived market impact should coincide with their actual

ones; in this regard, see also [Rostek and Weretka, 2015, Lemma 1]. Assume that all traders,
except trader i ∈ I, have price impacts (Λj ; j ∈ I \{i}), leading to (Xj ; j ∈ I \{i}) as in (1.4).
If trader i ∈ I wishes to move allocation from q̂i to

(
q̂i + ∆q

)
∈ Xi, the aggregate position

of all other traders has to change by −∆q, which would imply that new prices would equal
p̂+∆p, where, by (1.5),

−∆q +
∑

j∈I\{i}

q̂j =
∑

j∈I\{i}

Xjgj −

 ∑
j∈I\{i}

Xj

 (p̂+∆p) .
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Given that ∑
j∈I\{i}

q̂j =
∑

j∈I\{i}

Xjgj −

 ∑
j∈I\{i}

Xj

 p̂,

we obtain that

∆p = X−1
−i ∆q, where X−i :=

∑
j∈I\{i}

Xj .

It follows that Λi = X−1
−i has to hold in equilibrium, for all i ∈ I. With the above understand-

ing, and recalling (1.4), we state the following definition of equilibrium.

Definition 1.2. A collection of (X∗
i ; i ∈ I) ∈

∏
i∈I S

Xi
� , (q∗i ; i ∈ I) ∈

∏
i∈I Xi and p∗ ∈ X will

be called Nash equilibrium if

(1.7) X∗
i =

(
B−Xi

i + πi(X
∗
−i)

−1πi

)−Xi

, i ∈ I,

where X∗
−i :=

∑
j∈I\{i}X

∗
j , for all i ∈ I, while p∗ and (q∗i ; i ∈ I) satisfy the corresponding

market-clearing condition (1.6) and trader’s optimization solution (1.5), i.e.,

p∗ =

(∑
i∈I

X∗
i

)−1(∑
i∈I

X∗
i gi

)
and q∗i = X∗

i (gi − p∗), i ∈ I.

Given a Nash equilibrium as above, the equilibrium price impacts (Λ∗
i ; i ∈ I) ∈ (S�)I

are given by Λ∗
i = (X∗

−i)
−1, i ∈ I.13

Note that Nash equilibrium as in Definition 1.2 is solely characterized by condition (1.7),
since both equilibrium allocations and prices follow directly from the market-clearing condition
and the traders’ individual optimization problems. Therefore, the task of establishing existence
and uniqueness of Nash equilibrium is focused on the solution of (1.7).

Remark 1.3 (Competitive equilibrium). Competitive equilibrium under heterogeneous beliefs
and restricted participation will be used as a benchmark for comparisons. Letting all traders

13As already mentioned, the equilibrium is consistent to the standard uniform-price double auction as the
ones in Kyle [1989] or Vayanos [1999], where traders’ beliefs and endowments are considered private information.
The optimal demand of each trader at equilibrium solves the point-wise optimization problem (1.3) with Λi

determined within equilibrium, depending on other traders’ demands. In particular, the optimal demand at
each price is invariant on the distribution that the trader has over the endowments and the beliefs of the rest
of the traders (which is private information). As pointed out also in [Malamud and Rostek, 2017, Section I.], a
learning process will not change the optimal demand schedule of the traders, as long as the a-priori distribution
that each trader has over their counterparties’ private endowment and beliefs is stochastically independent to
the rest of the model.
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be price-takers formally means that Λi = 0 for each i ∈ I. Therefore, we obtain directly
from (1.6) that competitive equilibrium prices equal

(1.8) pco =

(∑
i∈I

Bi

)−1(∑
i∈I

Bigi

)
.

The corresponding competitive equilibrium allocation is Pareto optimal (see e.g. Vives [2011]),
and given via (1.5):

(1.9) qco
i = Bi(gi − pco), ∀i ∈ I.

Remark 1.4 (No-trading condition). We directly obtain from (1.8) and (1.9) that there is
no trading in competitive equilibrium (i.e., qco

i = 0 for all i ∈ I) and the initial position
coincides with a Pareto optimal allocation) if and only if all (gi; i ∈ I) are equal, in which
case they equal pco. Hence, a necessary and sufficient condition for mutually beneficial trading
is traders’ different hedging needs (and/or different beliefs on the expected payoffs). While
traders’ different estimations on the (co)variances of the tradeable assets do not form part
of this condition, difference of beliefs on second moments may still create room for mutually
beneficial trading. Indeed, recall from (1.1) that gi = fi − ci/δi, where ci is the vector of
covariances between the trader’s endowment and the tradeable assets, under the subjective
probability measure Pi. In particular, even under the case where traders’ endowments are the
same random variable E, disagreement on the covariance Covi(E,S) is sufficient to induce
non-zero trading. This fact highlights the effect of such disagreement on equilibrium models.

Interestingly enough, a similar conclusion holds in the case of the non-competitive equilib-
rium. Indeed, we readily get from (1.5) and (1.6) that Nash equilibrium allocations are all
zero if and only if (gi; i ∈ I) are equal, where we recall that (X∗

i ; i ∈ I) are solely determined
by (Bi; i ∈ I). Therefore, the necessary and sufficient condition for non-zero trading is not
affected by the price impact, which however (as we shall see in the sequel) heavily affects both
equilibrium quantities and utility gains, especially when traders’ beliefs on the second moment
deviate.

1.5. Existence and global uniqueness of equilibrium. Recall that, in order to have a
meaningful equilibrium discussion, we assume at least two traders for every security: |Ik| ≥ 2

holds for all k ∈ K. As Lemma A.2 shows, if |Ik| = 2 holds for some k ∈ K, then there exists no
Nash equilibrium in the sense of Definition 1.2. Therefore, the stronger condition |Ik| ≥ 3 for
all k ∈ K is necessary for Nash equilibrium14. Theorem 1.5 below reveals that this condition

14The necessity of at least three traders for formation of non-competitive equilibrium is also mentioned in
all related literature; e.g., Kyle [1989], Vayanos [1999] and Vives [2011]. Intuitively, and in the view of the
discussion in §1.3 and §1.4, three individuals are necessary because a trader’s strategy impacts a price that is
formed through clearing by at least two other traders.
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is also sufficient for existence of a Nash equilibrium, and that it is also unique. In previous
literature, under full participation and symmetric traders with common beliefs [Rostek and
Weretka, 2015] show existence and uniqueness of price-impact Nash equilibrium. In the setting
of decentralised markets (again with traders of common beliefs), existence and local uniqueness
of Nash equilibrium is shown in [Malamud and Rostek, 2017].

Theorem 1.5. Whenever |Ik| ≥ 3 holds for all k ∈ K, a unique Nash equilibrium (X∗
i ; i ∈ I)

in the sense of Definition 1.2 exists. Moreover, for any initial collection (X0
i ; i ∈ I) ∈∏

i∈I S
Xi
� , if one defines inductively the updating sequence

Xn
i :=

(
B−Xi

i + πi
(
Xn−1

−i

)−1
πi

)−Xi

, i ∈ I, n ∈ N,

it holds that
lim
n→∞

Xn
i = X∗

i , ∀i ∈ I.

Theorem 1.5 not only guarantees the existence of a unique Nash equilibrium, but also
provides an iterative algorithm to numerically calculate the equilibrium demands and price
impacts. The only inputs for these calculations are the traders’ participation restrictions sets
(Ki; i ∈ I) and matrices (Bi; i ∈ I). This is a very important feature of the model, which
highlights the connection between the difference of beliefs in the covariance matrix and the
induced price impact.

Recall from (1.1) that the matrices (Bi; i ∈ I) are affected by the traders’ risk aversions and
beliefs on the securities covariance structure; equilibrium price impacts will not depend on the
traders’ beliefs on the securities’ expectations and the hedging needs, that is, on the vectors
(gi; i ∈ I). However, these features are still important parts of the model, since they affect
the after-transaction individual and aggregate utilities and hence the market’s (in)efficiency.

Note from (1.5) and (1.6) that Nash equilibrium is a no-trade equilibrium (i.e., qi = 0 for
all i ∈ I) if, and only if, all vectors (gi; i ∈ I) are equal. In fact, as stated in Remark 1.4, the
same necessary and sufficient non-trading condition holds for competitive equilibrium.

1.6. The case of a risk-neutral trader. It is common in market microstructure literature
to assume that some strategic traders are risk neutral, an assumption usually imposed to
market makers or liquidity providers (see, e.g., Kyle [1985], Farmer and Joshi [2002], Biais
et al. [2005] and the references therein). Although the definition of Nash equilibrium and
Theorem 1.5 cannot be applied directly to risk neutral traders, we can accommodate the case
of a single trader whose preferences approach risk neutrality via a limiting procedure.15. The
proof of the well-defined limit is given in §A.6 of Appendix A.

15The limiting procedure is more general than simply assuming trader’s risk aversion goes to zero. We
actually assume that the matrix-coefficient of the utility’s quadratic term in (1.2) converges to zero, which
includes the case where a risk averse trader’s estimations for the variances of the tradeable assets decrease.
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The existence of the limiting equilibrium can be seen as an extension of price-impact equi-
libria that have been used in Rostek and Weretka [2015] and Malamud and Rostek [2017],
so that a risk neutral trader is included in these market models. In fact, we may allow both
difference of beliefs and restrictive participation in this limiting argument too.

Proposition 1.6. Let I = {0, . . . ,m}, where m ≥ 2. Consider fixed (Bi; i ∈ I \ {0}), as
well as a nondecreasing sequence (Bn

0 ; n ∈ N) with the property that limn→∞(Bn
0 )

−X0 = 0.
If (Xn; n ∈ N) stands for the sequence of equilibria corresponding to (Bn

0 ; n ∈ N), then
(Xn; n ∈ N) monotonically converges to a limit X∞ ∈

∏
i∈I S

Xi
� . Furthermore, (X∞

i ; i ∈ I)

solves the system

X∞
0 =

(
π0
(
X∞

−0

)−1
π0

)−X0

and X∞
i =

(
B−Xi

i + πi
(
X∞

−i

)−1
πi

)−Xi

, i ∈ I \ {0} .

Vanishing risk aversion is also related to welfare gains from the equilibrium. For example,
for full participation, [Malamud and Rostek, 2017] show that traders with lower risk aver-
sion have higher price impact in Nash equilibrium. Furthermore, under the non-competitive
market models for thin risk-sharing markets studied in [Anthropelos, 2017], [Anthropelos and
Kardaras, 2017] and [Anthropelos et al., 2020], traders with sufficiently low risk aversion prefer
non-competitive markets. It turns out that this is also the case under the price-impact model
at hand. Indeed, a trader with full access to the whole market who is also sufficiently close
to risk neutrality prefers non-competitive to competitive equilibrium whenever the limiting
transaction is non-zero (despite the fact that the aggregate utility welfare is reduced when
equilibrium departures from Pareto optimal allocation). In other words, sufficiently low risk
averse traders benefit by the price impact as they get higher utility at equilibrium trading.
We state this (consistent to the literature) result below, where we recall the notation of the
competitive equilibrium given in Remark 1.3. The proof is given in §A.7 of Appendix A.

Proposition 1.7. Let K0 = K. Trader 0 will be such that δ0 → ∞, while traders I \ {0} are
fixed. Then, in the limit we have

lim
δ0→∞

{U0(q
∗
0)− 〈q∗0, p∗〉 − u0}︸ ︷︷ ︸

Utility gains at Nash

≥ lim
δ0→∞

{(U0(q
co
0 )− 〈qco

0 , pco〉 − u0)}︸ ︷︷ ︸
Utility gains at competitive

= 0,

and, except for the (uninteresting) case limδ0→∞ q∗0 = 0, the previous inequality is strict.

Intuitively, the above result implies that risk neutral trader possesses power to impact the
non-competitive equilibrium, since Λ∞

0 is not zero. This means that while in the competitive
equilibrium a risk-neutral trader is indifferent to participate in the market in terms of utility
gains, in the non-competitive setting the trader is willing to participate due to the positive
utility effect of price impact. This is a clear evidence that traders with risk aversion close to
zero are more willing to participate in thin markets than fully competitive ones.
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2. Heterogeneous Beliefs, Restricted Participation & Market Efficiency

The difference in beliefs on the covariance matrix of the tradeable assets has important
implications on equilibrium price impacts, as well as on market efficiency and utility gains.
The goal of this section is to highlight these implications and to separate them from the
implications that are induced by simpler forms of traders’ heterogeneity, such as differences
in their risk aversion. We start with a quite interesting result about equilibrium pricing with
and without restrictions, we then provide comparative statics, and finally give a simplified
example that indicates the importance of different beliefs on second moment on the welfare
comparison.

2.1. An undesirable effect of common beliefs on second moments. Given that trade-
able assets are generally correlated, imposing participation restrictions on some of them should
affect both prices and allocations of the whole market. For example, if an investor’s endow-
ment is negatively correlated to two assets, a long position on both of these assets will decrease
the total risk. A restriction on trading one of these assets will intuitively imply that the long
position in the unrestricted asset will increase. Under an equilibrium asset perspective, (ce-
teris paribus) this will increase the demand of the unrestricted asset and hence its equilibrium
price. This effect should be even more pronounced in a model with price impact, in the
sense that traders are not price takers, and the effect of restrictions to the their strategies
(demands) should also affect prices. However, when all traders agree on the assets’ second
moments, this reasonable conjecture does not hold. In particular, under common beliefs on
covariance matrices, restrictions on some asset leave the equilibrium prices of the unrestricted
assets unchanged (although the equilibrium allocations change). In other words, disagreement
on the covariance matrices is a necessary condition in order to have the reasonable effect of
prices changing due to restrictions. In fact, we show that this result holds both in competitive
and the non-competitive market settings.

We start with the competitive equilibrium of Remark 1.3, and consider a market with full
participation. When Ci = C for all i ∈ I, (1.8) directly gives equilibrium prices pco,f =∑

i∈I w
co
i gi, where wco

i = δi/δ, i ∈ I, δ :=
∑

i∈I δi. The equilibrium price vector does not
depend on the common covariance matrix; it is a weighted average of the linear parts of
traders’ demand functions (gi; i ∈ I). When traders agree on risk estimations, the equilibrium
price reflects the source of the mutually beneficial trading, i.e., their different hedging needs,
wherein the weights on the price formulation solely depend on traders’ different risk appetite.
On the other hand, when traders disagree on the covariance matrix of the tradeable assets,
the equilibrium price vector does depend on traders’ different beliefs: it is again a weighted
average of traders’ hedging needs, but now the weights also reflect their different estimation
of risks—see again (1.8). Roughly speaking, relatively lower Ci/δi means relatively higher
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weight. This is intuitive, since, as in the common-beliefs case, weights reflect traders’ different
risk appetite, which now includes the different estimations.

As we shall argue in Remark 2.1 below, restricted participation does not alter the price
independence on common variance: the effect of restricted traders to the prices of the unre-
stricted assets remains the same, even if their demands for some other assets is forced to be
zero. More precisely, the equilibrium prices of the unrestricted assets remain the weighted av-
erage of (all) traders’ hedging needs and the weights are again traders’ relative risk tolerances.
This is mainly due to the agreement on covariance matrix. If Ci’s do not coincide, the weights
of the prices depend on the “restricted” variances πiCiπi (not the whole Ci), which means
that compared with the full participation setting restrictions generally change the weights
and hence the equilibrium prices.

Surprisingly, including price impact in the market model does not change this fact. Similar
to the competitive case, and in view of (1.6), Nash equilibrium prices can be regarded as
a weighted average of traders’ hedging needs, with weights weights depend on equilibrium
demand slopes (X∗

i ; i ∈ I), that are strongly linked to each trader’s price impact. If traders
agree on the covariance matrix, these weights again depend solely on traders’ risk tolerances
and not on this common covariance matrix (however, these weights are not the relative risk
tolerances, as shown in Rostek and Weretka [2015] and Malamud and Rostek [2017]). As we
shall see in Theorem 2.2 and the discussion following it, and again similar to the competitive
case, restrictions on some assets keep weights unchanged for the unrestricted assets. This is
a highly unexpected, and in our view undesirable result: when traders are not price-takers,
their strategies that impact prices should depend on the pool of the assets they are allowed
to trade. As it turns out, the unrestricted assets’ prices will depend on the restrictions only if
we allow traders to have different beliefs on the asset’s second moments.

Below we formally prove the points made in the above discussion for both competitive and
non-competitive markets. We assume that all traders agree on the covariance matrix: Ci = C

for i ∈ I, but we allow potentially different risk tolerance levels (δi; i ∈ I). For the restricted
participation set-up, define

Kc :=
⋂
i∈I

Ki; Xc :=
⋂
i∈I

Xi.

In words, Kc contains the common assets that can be traded by everyone (i.e., the unrestricted
assets), and Xc is the subspace of X ≡ RK containing points x ∈ X such that xj = 0 for all
j /∈ Kc. We shall show that equilibrium prices of the unrestricted assets (those that belong in
Kc) remain the same when we pass from full to restricted participation. As the next remark
implies, this holds both in competitive and Nash equilibria, even though the prices will be
different in these two different scenarios.
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To ease notation throughout, we set πc the projection to Xc, and ζ = idX − πc to be the
projection on the orthogonal complement Y of Xc, i.e.,

Y := {x ∈ X | xj = 0, ∀j ∈ Kc} .

Remark 2.1 (Competitive equilibrium). Recall Remark 1.3. Under competitive equilibrium
setting, Xf

i = δiC
−1 holds for all i ∈ I in the full participation case, which implies (see

also (1.8)) that pf := pco,f =
∑

i∈I w
co
i gi (recall that wco

i = δi/δ, i ∈ I, δ :=
∑

i∈I δi). In
restricted participation, straightforward but slightly tedious computations given in §A.8 of
Appendix A give prices πcp

co,r =
∑

i∈I w
co
i πcgi for assets in Kc, which agree with the full

participation equilibrium prices for these assets.

We now consider equilibrium with price impact. Here, in the full participation case we have
Xf

i = ηiC
−1, where the coefficients ηi are the unique solutions to the system16

1/ηi = 1/δi + 1/η−i; i ∈ I.

Indeed, it is immediate to see that the equations

(Xf
i )

−1 = δ−1
i C + (Xf

−i)
−1; i ∈ I,

are satisfied at the equilibrium. We therefore have pf =
∑

i∈I wigi, where wi = ηi/η, i ∈ I,
η :=

∑
i∈I ηi.

A result similar to the one of Remark 2.1 under restricted participation comes as a corollary
of Theorem 2.2 below, the proof of which is given at §A.9 of Appendix A. Before stating the
result, we introduce some additional notation: With Xc, πc, Y and ζ as above, we define

Yi := Y ∩ Xi; i ∈ I,

and set ζi to be the projection on Yi, so that πi = πc + ζi for all i ∈ I. Also, we define

D := ζ(C − CC−XcC)ζ ∈ SY�; E := C−XcCζ.

Note that from Theorem 1.5, we know that there exists a unique solution (Yi; i ∈ I) ∈
∏

i∈I S
Yi
�

of the system
Yi = (ζi(δ

−1
i D + Y −Y

−i )ζi)
−Yi ; i ∈ I.17

Theorem 2.2. Under the above assumptions and notation, the Nash equilibrium at the re-
stricted participation case is determined by (Xr

i ; i ∈ I) ∈
∏

i∈I S
Xi
� which satisfies

Xr
i = ηiC

−Xc + EYiE
′ − EYi − YiE

′ + Yi; i ∈ I.

16The fact that this system has a unique solution comes from Malamud and Rostek [2017]. It also follows
from Theorem 1.5, in the trivial “single asset” case.

17In the case where Yi = {0} (i.e., when Ki = Kc) for i ∈ I, we tacitly assume that Yi ≡ 0; then, the
equation for trader i ∈ I may be removed from the system.
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As a corollary of Theorem 2.2, straightforward computations in §A.10 of Appendix A give
prices πcp

r =
∑

i∈I wiπcgi for assets in Kc, agreeing with the full participation case.

2.2. Comparative statics. The main input of our market model is the traders’ covariance
matrices, properly scaled with their risk tolerance coefficients. In this context, the following re-
sult states that equilibrium price impacts are monotonically increasing (in positive-semidefinite
order) with respect to these covariance matrices; the proof follows directly from Lemma A.9.18

Proposition 2.3. Let B1 = (B1
i ; i ∈ I) ∈

∏
i∈I S

Xi
� and B2 = (B2

i ; i ∈ I) ∈
∏

i∈I S
Xi
� be

such that B1 � B2. If Λ1 = (Λ1
i ; i ∈ I) ∈ (S�)I and Λ2 = (Λ2

i ; i ∈ I) ∈ (S�)I stand for the
associated unique equilibrium price impacts, then Λ2 � Λ1.

Recall that Bi = δiC
−Xi
i , for i ∈ I. Therefore, if one trader believes in increased market

variance (keeping risk tolerances fixed), equilibrium price impacts increase even for the assets
the trader does not have access to and, more importantly, the same happens for all other
traders as well. This holds under any market’s limited participation setting and yields that
there is higher price impact in the market where estimated risk is higher (all else being equal).
Intuitively, higher (Ci; i ∈ I), i.e., lower (Bi; i ∈ I), implies lower demand slopes for all
traders. The latter implies less elastic demand functions, hence traders require higher price
compensation in order to offset risky positions, yielding higher price impact for all. Similar
reasoning applies when subjective variances remain the same and the traders’ risk tolerances
(δi; i ∈ I) increase.

While the aforementioned monotonicity holds even when traders have common beliefs, dif-
ferences of beliefs on payoffs’ (co)variances do affect the comparison of traders’ price impact
within equilibrium. Based on Proposition 2.3 and related literature, it is reasonable to ex-
pect that traders with less elastic demand functions have higher price impact at equilibrium,
when compared with their more risk-averse counterparties. This is indeed the case when
the covariance matrix is common for all traders and traders’ heterogeneity stems from dif-
ferent risk aversions; in particular, traders with lower risk aversion have higher price impact
at equilibrium—see [Malamud and Rostek, 2017, Theorem 2]. However, such monotonicity
does not occur necessarily when the market has at least two assets and the heterogeneity of
the demand function’s slope also involves the covariance matrices: traders with less elastic
demand functions do not necessarily have higher price impact, when they disagree on the as-
sets’ second moments. This situation is demonstrated through an indicative counterexample,
developed in §A.11 of Appendix A. We formally state this result.

18This result is in line with [Malamud and Rostek, 2017, Theorem 2, item (ii)], but we further consider
heterogeneous covariance matrices, and not just different risk aversions.
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Proposition 2.4. Let Ki = K, for all i ∈ I and |Ik| ≥ 3 for each k. Then, even if traders
have the same risk aversion, Bi � Bj does not necessarily imply that Λ∗

j � Λ∗
i for (i, j) ∈ I×I,

where (Λ∗
i ; i ∈ I) ∈ (S�)I stands for the unique equilibrium price impacts.

If traders agree on the assets’ second moments, less risk-averse traders face more elastic
residual demand functions and hence their counterparties have lower price impact (ceteris
paribus). Intuitively, more risk tolerant traders are more willing to offset risky positions (lower
required cash compensation), which implies the impact that their counterparties’ demand has
on the prices to be lower. However, this situation changes when traders disagree on the
second moments of a market with at least two assets. In particular, if (say) trader 1 has lower
estimation of the risk in terms of covariance matrix than (say) trader 0, it is not necessarily true
that trader 1 faces a more elastic residual demand than trader 0 at equilibrium. This is because
the residual demand that traders face depends on the sum of other traders’ estimated variance-
covariance matrices and the price impact is not proportional to a common matrix, as in the
case of common covariance matrix. The counterexample that we provide in order to prove
Proposition 2.4 considers two tradeable assets and focuses on trader 0 who estimates them
as uncorrelated, while trader 1 estimates lower variances for both assets and also estimates
negative correlation, resulting in C1 � C0. Therein, we show that, when we include yet one
more trader having covariance matrix with positive estimated correlation, the price impact
of trader 1 is not higher than that of trader 0. This is partially because opposite estimated
correlations of traders 1 and the extra trader does not imply that the residual demand that
trader 0 faces is less elastic than trader 1. (It is also not true that trader 0 has higher price
impact than trader 1; ordering of symmetric matrices is not a complete relation.)

2.3. Under different beliefs, restrictions may increase welfare. As mentioned in the
Introduction, in the presence of price impact there exist circumstances for which there is social
benefit under participation restrictions in the market, as compared to the unrestricted case.
The differences of beliefs in the covariance structure of the securities’ returns is a crucial part
of this phenomenon. The following example, where the equilibrium quantities are explicitly
calculated, provides intuition on how disagreement among traders on the covariance matrix
may increase aggregate utility when restrictions are imposed.

Although a related result appears also under other forms of market’s frictions (such as mar-
ket decentralization of), we show here that the heterogeneity on second moments’ beliefs can
create welfare-increasing restrictions even under a minimal set-up, i.e., the least number of as-
sets and traders, common risk aversions and disagreement solely on correlation. Furthermore,
the welfare loss of utility from the restriction’s withdrawn does not coincide with higher price
impact of the trader for which the restrictions are withdrawn.
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For the purposes of the whole §2.3, we assume two securities and four traders: K = {1, 2},
I = {0, 1, 2, 3}, and that δi = 1 holds for all i ∈ I. Traders in I−0 = {1, 2, 3} are assumed
identical, and such that gi = 0 and Ci = C1 for i ∈ I−0, where

C1 =

(
1 0

0 1

)
.

Trader 0 agrees with the rest of the traders on the assets’ variance, but has different beliefs
on the securities’ correlation, i.e.,

C0 =

(
1 ρ

ρ 1

)
,

with ρ ∈ (−1, 1). Lastly, we set g0 = (γ1, γ2) ∈ R2 \ {0} and recall that vector g0 takes into
account not only the subjective expectations of security payoffs, but also their covariance with
the trader’s initial endowment. For instance, positive values for γ1 do not necessarily mean
that trader 0 is more optimistic about the first security than the rest of the traders, and may
simply reflect traders’ difference in hedging needs. Note also that since traders in I−0 have
equal gi’s, they will not trade between each other, rather they will get utility gain from the
transaction through equally offsetting the hedging needs of trader 0. We will show below that
in such simply thin market, the price impact of the trader 0 (who has the highest need for
trading) is lower if unrestricted to trade both assets. This creates cases where the total gain
of utility is lower in the setting of full participation.

2.3.1. Restricted participation. We assume that traders in I−0 have no trading restrictions
(Ki = K, for i ∈ I−0), while trader 0 is restricted to trade only the first asset (K0 = {1}).
Write (Xr

i ; i ∈ I) for the solution to the system (1.7) of equations, where the superscript “r”
denotes restricted participation. By symmetry, Xr

1 = Xr
i holds for all i ∈ I−0. Noting that

Xr
1(i, j) = 0 whenever (i, j) 6= (1, 1), we obtain the equations

1/Xr
0(1, 1) = 1 + (1/3)(1/Xr

1(1, 1)),

Xr
1 =

(
C1 + (Xr

0 + 2Xr
1)

−1
)−1

.

In fact, one may solve the above explicitly, directly checking that the (unique) solution of
these equations and the induced equilibrium price impacts are

Xr
0 =

(
2/3 0

0 0

)
, Xr

1 =

(
2/3 0

0 1/2

)
, Λr

0 =

(
1/2 0

0 2/3

)
, Λr

1 =

(
1/2 0

0 1

)
.

From (1.6), the equilibrium price vector under the restricted participation setting is pr =

(Xr
0 + 3Xr

1)
−1Xr

0g0 = (γ1/4, 0). Also (1.5) yields the equilibrium position qri = −Xr
i p

r =

−(γ1/6, 0) for i ∈ I−0, and a position qr0 = −3qr1 = (γ1/2, 0) for trader 0; when γ1 > 0, trader
0 buys the first security (equally) from the rest of the traders at a positive price (required
cash compensation). Note that there is no transaction for the second asset, since all the
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unrestricted traders are identical, leaving no room for sharing risks or beliefs (implying that
disagreement on assets’ correlation does not affect equilibrium in the restricted market).

Following related literature, we measure the market’s efficiency with aggregate utility. It
readily follows that, at equilibrium in the restricted participation setting, this quantity equals∑

i∈I

(
〈qri , gi〉 −

1

2δri
〈qri , Ciq

r
i 〉
)

= 〈qr0, g0〉 −
1

2
〈qr0, C0q

r
0〉 − 3

1

2
〈qr1, qr1〉 =

γ21
3
.

As expected, higher equilibrium transaction leads to higher trading welfare. The individual
after-transaction utility gain is γ21/4 for trader 0 and γ21/36 for each trader i ∈ I−0. Despite
restrictions, trader 0’s motive to trade leads to higher utility gain compared to the rest of the
traders, who just offset trader 0’s demand.

2.3.2. Full participation. Here, we lift the restriction that trader 0 faced, assuming Ki = K

for all traders i ∈ I. Write (Xf
i ; i ∈ I) for the solution to the system of equations, where

the superscript “f” denotes full participation. This full participation equilibrium is a more
complicated problem, but we shall derive an analytic expression below. By symmetry, Xf

1 =

Xf
i for all i ∈ I−0, and we have the equations

(2.1) Xf
0 =

(
C0 + (3Xf

1 )
−1
)−1

; Xf
1 =

(
C1 + (Xf

0 + 2Xf
1 )

−1
)−1

.

Substituting the first to the second, we obtain

(2.2) (Xf
1 )

−1 = C1 + ((C0 + (3Xf
1 )

−1)−1 + 2Xf
1 )

−1.

Hence, from the solution of (2.2), we also have the value of Xf
0 from (2.1). One can find a

closed-form expressions for Xf
1 in (2.2), and therefore obtain all relevant quantities (in partic-

ular, prices pf , price impacts Λf
i , optimal positions qfi for i ∈ I, as well as aggregate utility) in

this full participation equilibrium. All these quantities, which are explicitly expressed in terms
of ρ and g0, are not very indicative, and their calculation is deferred to §A.12 of Appendix A.
However, their usefulness emerges when we wish to compare the efficiency of the equilibria
under full and restricted participation, which we tackle next.

2.3.3. Efficiency comparison. Equipped with analytic formulas for the equilibrium price and
quantities in both full and restricted participation, we are able to compare the utility differ-
entials and identify situations where restricted participation yields higher welfare. In such
scenarios, it is socially optimal to impose trading restrictions, depending on the difference of
beliefs regarding correlation and traders’ hedging needs. The proof of the following result is
given in §A.13 of Appendix A.

Lemma 2.5. Within the present setting, and with r := (2/3)
√√

113− 9 ≈ 0.851, whenever
|ρ| < r and ρ 6= 0, there exists g0 which results in higher aggregate utility within the restricted,
as compared to full, participation equilibrium.
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Through this above example, we present a situation where lifting participation restrictions
for one trader results in lower aggregate utility gains. One may conjecture that this utility loss
stems from the fact that this specific trader has higher price impact under full participation,
the exploitation of which reduces the transaction’s welfare. However, this is not the case as
we now state; the proof of Lemma 2.6 below can be found in §A.14 of Appendix A.

Lemma 2.6. Within the present setting, for all ρ ∈ (−1, 1) it holds that Λf
0 � Λr

0.

Intuitively, Lemma 2.6 can be explained in the following way. As already mentioned, trader
0 has motive to trade with the rest of the traders, who collectively take the opposite position.
When trader 0 is restricted, the difference of beliefs on the assets’ correlation does not affect
equilibrium prices, allocations and price impact, which is symmetrically allocated between
trader 0 and all traders in I−0 (this is also because traders in I−0 do not trade the second
asset). However, when trader 0 is allowed to trade the second asset, a different estimated
correlation stands against the beliefs of traders in I−0; this difference gives them more room
to apply pressure against trader 0, since they are more in number and their price impact works
aggregately against trader 0. Note that trader 0 has lower price impact for every ρ ∈ (−1, 1):
it is the existence of the disagreement which matters, and not its direction or size.

Lower price impact of trader 0 at full participation causes reduction of welfare when restric-
tions are withdrawn, at least for some initial risk exposures. The counterexample indicates
first that it is possible that full participation reduces the price impact of a trader who has more
need to trade (benefits more from risk-sharing), and secondly that the total welfare may be
lower due to the withdrawal of restrictions. Importantly, a trader’s lower price impact with less
restriction (that potentially leads to restricted markets with higher welfare) may only occur
when traders disagree on second moments.

Remark 2.7. In principle, two features affect the market’s welfare differential due to restricted
participation: non-competitiveness (stemming from the traders’ price impact) and heterogene-
ity of beliefs, especially on second moments. As stated in Remark 1.3, competitive equilibrium
in full participation leads to Pareto optimal allocations, regardless of traders’ heterogeneity;
therefore, welfare can only decrease upon imposing any kind of restricted participation in
a competitive setting. On the other hand, the previous counterexample demonstrates that
even the slightest heterogeneity in beliefs on second moments alone may render restricted
participation beneficial in welfare terms, under non-competitive market structures.

The effect of traders’ heterogeneity within a full-participation structure, either competitive
or non-competitive, is not straightforward to analyse. For example, there seem to be no general
monotonicity implications between the aggregate utility gains from trading and the deviation
of traders’ beliefs on second moments. The implications of such heterogeneity on the welfare
of a competitive market needs further analysis that is beyond the scope of this work.
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3. Conclusive Remarks

In this paper we consider a thin financial market, where traders are potentially restricted
to trade some of the tradeable assets. Traders are not price-takers; each one strategically
exploits their price impact, rendering the market non-competitive. Our main contribution to
the related literature is the imposed traders’ heterogeneous beliefs on the covariance matrix
of the tradeable assets. As mentioned in the introduction, empirical evidence has indicated
that traders indeed disagree on the (co)variances of tradeable assets.

We first prove existence and global uniqueness of a Nash equilibrium for a general restriction
structure. We also provide an algorithm that numerically calculates the equilibrium quantities.

We then focus on traders’ heterogeneity on covariance matrices, and argue that this is far
form being just a theoretical venture. Different beliefs on second moments result in several
economic deviations from the corresponding equilibrium under common beliefs, but where
other sources of heterogeneity are present. First of all, we show that assuming common
beliefs on second moments implies that restrictions on the trading of certain assets keep do
not affect equilibrium prices on unrestricted assets. This is clearly an unrealistic modelling
outcome, especially when assets are correlated. When traders disagree on second moments,
this unfortunate feature disappears. Therefore, a prediction of our model is that restrictions
change equilibrium prices only when traders disagree on the variance-covariance matrices.

Furthermore, we argue that traders with lower estimated variances do not necessarily have
higher price impact in the non-competitive market, a result that comes in sharp contrast to
models where heterogeneity appears in the traders’ risk aversion, to which the equilibrium
price impact is monotonically linked.

Through a simple counterexample we show that, under a non-competitive market structure,
restrictions may increase the market’s welfare if equally risk averse traders have different
views regarding the assets’ covariance matrix. While this example does not provide general
conditions rendering restrictions socially optimal, it gives an indicative situation when this
happens. First, traders’ disagreement creates conditions under which withdrawn restrictions
for a certain trader reduces their price impact. Second, it is possible that when this trader is
the one benefiting most from trading, aggregate utility gets reduced in full participation. The
example also highlights that non-competitive market’s welfare is generally very sensitive with
respect to traders’ disagreement on second moments, a fact that stems from the minimum
possible dimension and level of disagreement imposed in the example.

The above results clarify that heterogeneity on second moment is structurally different than
the plainer heterogeneity on traders’ risk aversion. Even though both these quantities appear
as factors affecting the position’s risk under quadratic preferences, the effect of risk aversion
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to the Nash equilibrium is quantitatively and qualitatively different from the corresponding
effect of the covariance matrix.

The results presented in the previous sections could have implications on thin markets
(where relatively few traders who have price impact), and when considering imposing or
withdrawing trading restrictions. When the market’s efficiency and increase of its social
welfare are concerned, our findings are linked to the policy maker decisions.

In competitive markets, the market clearing equilibrium will result in a Pareto optimal
allocation; this implies that any imposed restrictions on traders’ pool of available assets will
decrease the market’s welfare. This conclusion is no longer valid when the market is thin
and all traders act strategically against their price impact to the market. Therein, and for
the first time in the literature, we point out that a very important factor for a thin market’s
welfare is the traders’ disagreement on the second moment of the tradeable assets. Under this
disagreement, withdrawal of restrictions doesn’t necessarily increase the welfare. In particular,
while difference on risk aversion also affects the market’s welfare, it turns out that difference
of beliefs on the second moment is a more influential feature when studying market’s welfare.
Note also that, although risk aversion is supposed to be a personal characteristic of each
trader and independent on the tradeable assets, estimations on covariance matrices are—by
definition—market-specific. This implies that, even when traders have the same risk aversion,
a negative relation between restrictions and market welfare is not guaranteed for each market
when traders disagree on second moments.

While there is no clear relation between traders’ heterogeneity and welfare effect of market
restrictions, the message to a policy maker is apparent. Assuming that a market is thin, then
even if traders have similar risk aversion, disagreements about even a single component of the
covariance matrix could make a withdrawal of market’s restriction welfare-deteriorating. In
fact, such situation could happen even in the minimum possible market setting, a result that
indicates the high sensitivity of the relation between the restrictions and the welfare.

The above imply that a more effective road to higher market’s welfare is the improvement
of market’s competitiveness (such as the decrease of all traders’ price impact), rather than
simple separated withdrawals of participation restrictions.

Appendix A. Proofs

A.1. Proof of Lemma 1.1. Set D−j :=
∑

i∈I\{j}Di. Let z ∈ X , and assume 〈z,D−jz〉 = 0.
Then, 〈z,Diz〉 = 0 for all i ∈ I \ {j}. Since Di ∈ SXi

� , we have z` = 0 for all ` ∈ Ki, whenever
i ∈ I \ {j}. Therefore, z` = 0 for all ` ∈

⋃
i∈I\{j}Ki. But,

⋃
i∈I\{j}Ki = K, since we assume

that |Ik| ≥ 2 for all k ∈ K.
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A.2. The fixed point equation. The proof of Theorem 1.5 will be given in a series of
subsections, starting with the present §A.2 and concluding in §A.5.

Let F :
∏

i∈I S
Xi
� 7→

∏
i∈I S

Xi
� be defined via

(A.1) Fi(X) =
(
B−Xi

i + πi(X−i)
−1πi

)−Xi

, i ∈ I.

According to Definition 1.2, the equilibrium negative demand slopes are given as the fixed
points of F , i.e., solutions to the equation

(A.2) X = F (X) ⇐⇒ Xi =
(
B−Xi

i + πi(X−i)
−1πi

)−Xi

, i ∈ I.

The following lemma provides upper bounds for the functional F .

Lemma A.1. For each i ∈ I, it holds that Fi(X) ≺Xi Bi, as well as

Fi(X) ≺Xi πiX−iπi � X−i.

Proof. For the first part of the lemma, we readily have that B−Xi
i ≺Xi B

−Xi
i + πi(X−i)

−1πi,
which implies the order

Fi(X) =
(
B−Xi

i + πi(X−i)
−1πi

)−Xi

≺Xi Bi, ∀i ∈ I.

For the second order, we first show that

(A.3) (πiX−iπi)
−Xi � πi(X−i)

−1πi

holds for each i ∈ I. Indeed, upon rearranging the columns and rows of X−i bringing the
sub-matrix corresponding to Ki on the left top, write X−i and X−1

−i in block format as

X−i =

(
A C

C ′ B

)
, X−1

−i =

(
D F

F ′ E

)
where A and D are (Ki ×Ki)-dimensional. Since(

A C

C ′ B

)(
D F

F ′ E

)
=

(
AD + CF ′ AF + CE

C ′D +BF ′ C ′F +BE

)
,

the fact that X−iX
−1
−i is the identity matrix gives

AF + CE = 0 ⇒ F = −A−1CE; D = A−1 −A−1CF ′ = A−1 +A−1CEC ′A−1 � A−1.

We then obtain (A.3), since

(πiX−iπi)
−Xi =

(
A−1 0

0 0

)
�

(
D 0

0 0

)
= πi(X−i)

−1πi.

Then, it follows from (A.3) that (πiX−iπi)
−Xi ≺ B−Xi + πi(X−i)

−1πi. The latter gives that

Fi(X) =
(
B−Xi

i + πi(X−i)
−1πi

)−Xi

≺Xi πiX−iπi.
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�

We can already see that there is no hope for equilibrium in the case where there exists at least
one asset that can be traded by at most two traders. This result is consistent with the corre-
sponding no-equilibrium result in two-trader markets—see, for instance, Kyle [1989], Vayanos
[1999] and Vives [2011].

Lemma A.2. If |Ik| = 2 holds for some k ∈ K, there exists no Nash equilibrium.

Proof. Suppose that X∗ is Nash equilibrium, so that X∗ = F (X∗), and that Ik = {i, j} holds
for some k ∈ K and i, j ∈ I with i 6= j. If ek ∈ RK stands for the zero vector with entry 1

only in the kth coordinate, then (since πiek = ek = πjek), we get from Lemma A.1 that

X∗
i (k, k) = 〈ek, X∗

i ek〉 <
〈
ek, X

∗
−iek

〉
= X∗

−i(k, k) = X∗
j (k, k).

A symmetric argument shows that X∗
j (k, k) < X∗

i (k, k), which leads to contradiction. �

A.3. Existence of fixed points. Taking into account Lemma A.2, we assume hereafter that
|Ik| ≥ 3 holds for all k ∈ K. Under that assumption and based on the characterisation of the
equilibrium negative demand slopes through (A.2), we first show that there always exists such
an equilibrium. The next step toward this goal is to show that functional F defined in (A.1)
is nondecreasing. For this, we need to extend the order � on

∏
i∈I S

Xi
� , by defining the order

X ≡ (Xi; i ∈ I) � (Yi; i ∈ I) ≡ Y ⇐⇒ Xi � Yi, ∀i ∈ I.

Since X � Y implies X−i � Y−i, for all i ∈ I, i.e., πi(Y−i)
−1πi � πi(X−i)

−1πi, it follows that

Fi(X) =
(
B−Xi

i + πi(X−i)
−1πi

)−Xi

�
(
B−Xi

i + πi(Y−i)
−1πi

)−Xi

= Fi(Y),

for all i ∈ I. Therefore,

(A.4) X ≡ (Xi; i ∈ I) � (Yi; i ∈ I) ≡ Y =⇒ F (X) � F (Y),

which means that F is nondecreasing. Furthermore, Lemma A.1 gives

(A.5) F (X) � B, ∀X ≡ (Xi; i ∈ I) ∈
∏
i∈I

SXi
� ,

where B ≡ (Bi; i ∈ I).
Define now the two sets:

(A.6) L :=

{
X ∈

∏
i∈I

SXi
� | X � F (X)

}
, U :=

{
X ∈

∏
i∈I

SXi
� | F (X) � X

}

and note that L ∩ U coincides with the set of fixed points of F . From (A.5), we obtain that
tB ∈ U, for all t ∈ [1,∞). The next result is complementary.
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Lemma A.3. There exists Z ∈
∏

i∈I S
Xi
� with Z � B and with the property that rZi ≺Xi Fi(rZ)

for all i ∈ I and r ∈ (0, 1]; in particular, rZ ∈ L, for all r ∈ (0, 1].

Proof. Pick α > 0 small enough so that

4απi � Bi, ∀i ∈ I.

Let Zi = απi, for all i ∈ I, and note that Z � (1/4)B � B. The fact that |Ik \ {i} | ≥ 2 holds
for all k ∈ K implies

Z−i = α
∑

i∈I\{i}

πj � 2αidX .

Fix r ∈ (0, 1]. Since B−Xi
i � (4α)−1πi, we have

B−Xi
i + πi(rZ−i)

−1πi �
1

2α

(
1

2
+

1

r

)
πi =

2 + r

2rα
πi.

for all i ∈ I. Therefore, we obtain that

Fi(rZ) =
(
B−Xi

i + πi(rZ−i)
−1πi

)−Xi

� 2

2 + r
rαπi �Xi rZi

for all i ∈ I, which in particular shows that rZ � F (rZ), i.e., rZ ∈ L. �

In the lemma below, F ◦n stands for the n-fold composition of the function F with itself.

Lemma A.4. Suppose that X ∈ U and Y ∈ L are such that Y � X, and form sequences
(Xn; n ∈ N) and (Yn; n ∈ N) via Xn := F ◦n(X) and Yn := F ◦n(Y) for n ∈ N. Then:

(1) The sequence (Xn; n ∈ N) is nondecreasing, the sequence (Yn; n ∈ N) is nonincreasing,
and Yn � Xn holds for all n ∈ N; in particular, the limits X∗ := limn→∞Xn ∈∏

i∈I S
Xi
� and Y∗ := limn→∞Yn ∈

∏
i∈I S

Xi
� exist, and satisfy Y � Y∗ � X∗ � X.

(2) It holds that X∗ = F (X∗) and Y∗ = F (Y∗), i.e., X∗ and Y∗ are equilibrium price
impacts.

(3) Whenever Z ∈
∏

i∈I S
Xi
� is such that Z = F (Z) and Y � Z � X, then Y∗ � Z � X∗

Proof. Applying F iteratively to the inequality Y � X, and using the facts that X ∈ U and
Y ∈ L and the monotonicity property (A.4), the claims of statement (1) immediately follow.

Since the monotone limits X∗ := limn→∞Xn and Y∗ := limn→∞Yn exist and are
∏

i∈I S
Xi
� -

valued, continuity of F gives

X∗ = lim
n→∞

Xn = lim
n→∞

F (Xn−1) = F ( lim
n→∞

Xn−1) = F (X∗),

and similarly that Y∗ = F (Y∗), which is statement (2).
Finally, take Z ∈ L ∩ U with Y � Z � X. Using the results and notation of statements

(1) and (2) with (Y,Z) replacing (Y,X), we obtain Y∗ � Z∗ = Z. Similarly, with (Z,X)

replacing (Y,X), we obtain Z = Z∗ � X∗. �
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The next result shows in particular that a globally maximal solution to (A.2) exists.

Lemma A.5. Let X = B. Form a sequence (Xn; n ∈ N) via Xn = F ◦n(X), for all n ∈ N.
Then, the limit X∗ := limn→∞Xn ∈

∏
i∈I S

Xi
� exists, it holds that X∗ = F (X∗), and for any

Y ∈ L it holds that Y � X∗.

Proof. Recall that X = B ∈ U and that there exist Z ∈ L with Z � X by Lemma A.3.
Therefore, Lemma A.4 gives that X∗ exists and F (X∗) = X∗. If Y ∈ L, then Y � F (Y) �
B = X, and again by Lemma A.4 we get that Y � X∗. �

A.4. Uniqueness of the fixed point. Lemma A.5 in fact shows that a maximal solution
X∗ of (A.2) exists; combined with Lemma A.4, it follow that, whenever Y ∈ L, there exists a
minimal solution of (A.2) that is dominated below by Y and above by X∗. By Lemma A.3,
there exists Z ∈

∏
i∈I S

Xi
� such that rZ ∈ L, for all r ∈ (0, 1]. We shall show below that the

minimal fixed point dominated below by rZ coincides with X∗ for all r ∈ (0, 1]; since r ∈ (0, 1]

is arbitrary, this will also imply (global) uniqueness of the fixed point.
In the sequel, along with the maximal solution X∗ = (X∗

i ; i ∈ I) to (A.2) of Lemma A.5,
we take Z ∈

∏
i∈I S

Xi
� as in Lemma A.3, fix r ∈ (0, 1], and let X ≡ (Xi; i ∈ I) be the minimal

fixed point that is bounded below by rZ. We shall show that, necessarily, X = X∗.
Define H := X∗ − X; by statement (3) of Lemma A.4, Hi := (X∗

i − Xi) ∈ S� holds for
all i ∈ I. Another application of statement (3) of Lemma A.4 gives rZi ≺Xi Fi(rZ) � Xi for
all i ∈ I, which implies that we can pick a sufficiently small ε > 0 such that rZ � X − εH.
Consider now the mapping

[−ε, 1] 3 t 7→ X(t) := (X+ tH) ∈
∏
i∈I

SXi
� ,

and note that X(0) = X and X(1) = X∗.
It follows directly from definition of functional F , that the mapping

(−ε, 1) 3 t 7→ Φ(t) ≡ F (X(t)) ∈
∏
i∈I

SXi
�

is twice continuously differentiable. The next result shows that it is, in fact, “concave”.

Lemma A.6. With Φ(t) := F (X(t)) for t ∈ (−ε, 1), it holds that

−∂2Φ(t)

∂t2
∈
∏
i∈I

S�, ∀t ∈ (−ε, 1).

It follows that the mapping (−ε, 1) 3 t 7→ −∂Φ(t)/∂t is nondecreasing in the order of (S�)I .

Proof. For all t ∈ (−ε, 1) and i ∈ I, it holds that

∂

∂t
X−i(t)

−1 = −X−i(t)
−1

(
∂

∂t
X−i(t)

)
X−i(t)

−1 = −X−i(t)
−1H−iX−i(t)

−1.
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Since Φi(t) =
(
(Bi)

−Xi + πiX−i(t)
−1πi

)−Xi ∈ SXi
� holds for t ∈ (−ε, 1) and i ∈ I, it follows

that
∂Φi(t)

∂t
= −Φi(t)

(
∂

∂t

(
Φi(t)

−Xi
))

Φi(t)

= −Φi(t)

(
πi

∂

∂t
X−i(t)

−1πi

)
Φi(t)

= Φi(t)πiX−i(t)
−1H−iX−i(t)

−1πiΦi(t)

= Φi(t)X−i(t)
−1H−iX−i(t)

−1Φi(t),

where the last line follows because Φi(t)πi = Φi(t) = πiΦi(t). Call

t 3 (−ε, 1) 7→ Di(t) := X−i(t)
−1H−iX−i(t)

−1 ∈ S�, ∀ i ∈ I.

Since X−i(t)Di(t)X−i(t) = H−i is a constant matrix as a function of t ∈ (−ε, 1), we obtain(
∂

∂t
X−i(t)

)
Di(t)X−i(t) +X−i(t)

(
∂

∂t
Di(t)

)
X−i(t) +X−i(t)Di(t)

(
∂

∂t
X−i(t)

)
= 0,

i.e.,

H−iDi(t)X−i(t) +X−i(t)

(
∂

∂t
Di(t)

)
X−i(t) +X−i(t)Di(t)H−i(t) = 0,

which gives
∂

∂t
Di(t) = −X−i(t)

−1H−iDi(t)−Di(t)H−iX−i(t)
−1

= −2X−i(t)
−1H−iX

−1
−i (t)H−iX−i(t)

−1

= −2Di(t)X−i(t)Di(t).

Therefore, since ∂Φi(t)/∂t = Φi(t)Di(t)Φi(t), we obtain

∂2Φi(t)

∂t2
=

∂Φi(t)

∂t
Di(t)Φi(t) + Φi(t)

(
∂Di(t)

∂t

)
Φi(t) + Φi(t)Di(t)

∂Φi(t)

∂t

= 2Φi(t)Di(t)Φi(t)Di(t)Φi(t)− 2Φi(t)Di(t)X−i(t)Di(t)Φi(t)

= −2Φi(t)Di(t)(X−i(t)− Φi(t))Di(t)Φi(t).

From Lemma A.1, we have that Φi(t) � X−i(t). Also, since Φi(t)Di(t) ∈ S�, it is clear that

−∂2Φi(t)

∂t2
∈ S�, ∀ t ∈ (−ε, 1) and ∀ i ∈ I.

For −ε ≤ t1 < t2 ≤ 1, the above implies that

∂Φi(t)

∂t

∣∣∣
t=t1

− ∂Φi(t)

∂t

∣∣∣
t=t2

=

∫ t2

t1

−∂2Φi(t)

∂t2
dt ∈ S�, ∀i ∈ I,

completing the argument. �

Recall that X ≡ (Xi; i ∈ I) stands for the minimal fixed point of F that is bounded below
by rZ, and our aim is to show that X = X∗.
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Lemma A.7. When −ε ≤ s < 0, it holds that X(s) ∈ U, i.e., F (X(s)) � X(s).

Proof. Note that

H = X∗ −X = F (X(1))− F (X(0)) =

∫ 1

0

∂F (X(t))

∂t
dt.

In view of the fact that (−ε, 1) 3 t 7→ −∂F (X(t))/∂t is nondecreasing as follows from
Lemma A.6, we have

H =

∫ 1

0

∂F (X(t))

∂t
dt � 1

s

∫ s

0

∂F (X(t))

∂t
dt =

1

s
(F (X(s))− F (X(0))) , s ∈ (0, 1].

Therefore,
∂F (X(s))

∂s

∣∣∣
s=0

= lim
s↓0

F (X(s))− F (X(0))

s
� H.

Using again the fact that (−ε, 1) 3 t 7→ −∂F (X(t))/∂t is nondecreasing, which implies that
∂F (X(t))/∂t � H holds for all t ∈ (−ε, 0), we obtain

X− F (X(s)) = F (X(0))− F (X(s)) =

∫ 0

s

∂F (X(t))

∂t
dt � −sH, ∀ s ∈ [−ε, 0),

which shows that F (X(s)) � X+ sH = X(s) holds when −ε ≤ s < 0. �

We are now ready to complete the proof of uniqueness. Recall that ε > 0 was picked such
that rZ � X(−ε). Since additionally rZ ∈ L and X(−ε) ∈ U, Lemma A.4 gives existence
of a fixed point Y with the property rZ � Y � X(−ε). Since X is the smallest fixed point
dominated below by rZ, this would give X � Y which together with Y � X − εH and
H ∈

∏
i∈I S� gives H = 0, i.e., X = X∗.

A.5. Convergence to solutions through iteration. Now that uniqueness has been estab-
lished, we can show that the iterative procedure will always converge to the unique root and
hence finish the proof of Theorem 1.5.

Lemma A.8. For an arbitrary X0 ∈
∏

i∈I S
Xi
� , form a sequence (Xn; n ∈ N) by induction,

asking that Xn = F (Xn−1), for all n ∈ N. Then, it holds that

lim
n→∞

Xn = X∗.

Furthermore, if X0 ∈ L, the sequence (Xn; n ∈ N) is nondecreasing, while if X0 ∈ U, the
sequence (Xn; n ∈ N) is nonincreasing.

Proof. If X0 ∈ L, the inequality X0 � F (X0) = X1 and the monotonicity of F of the
form (A.4) show by induction that (Xn; n ∈ N) is nondecreasing. Similarly, if X0 ∈ U,
the inequality X1 = F (X0) � X0 and the monotonicity of F show that (Xn; n ∈ N) is
nonincreasing.

Given an arbitrary X0 ∈
∏

i∈I S
Xi
� , recall that Lemma A.1 implies that tB ∈ U for all

t ∈ [1,∞) and that Lemma A.3 guarantees the existence of Z ∈
∏

i∈I S
Xi
� , such that Z � B
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and rZ ∈ L for all r ∈ (0, 1]. Pick r̂ ∈ (0, 1] sufficiently small and t̂ ∈ [1,∞) sufficiently large
such that

W0 := r̂Z � X0 � t̂B =: Y0

holds. Then, define the sequences (Wn; n ∈ N) and (Yn; n ∈ N) by iteration via F , that is
Wn := F(Wn−1) and Yn := F(Yn−1), for each n ∈ N. Since W0 � X0 � Y0, monotonicity
of F and induction gives Wn � Xn � Yn, for each n ∈ N. Also, since W0 ∈ L and Y0 ∈ U,
the sequence (Wn; n ∈ N) is nondecreasing and, in fact, bounded above by Y0, while the
sequence (Yn; n ∈ N) is nonincreasing and bounded below by W0. It follows that both
sequences have limits W∞ and Y∞, respectively, with W∞ � Y∞. Continuity of F gives
that W∞ = F (W∞) and Y∞ = F (Y∞), exactly as in the proof of Lemma A.5. By uniqueness
of the solution to (A.2), it follows that W∞ = X∗ = Y∞, from which it further follows that
limn→∞Xn = X∗. �

A.6. Proof of Proposition 1.6. The main input of our market model is the traders’ co-
variance matrices, properly scaled with their risk tolerance coefficients. In this context, the
next result generalises [Malamud and Rostek, 2017, Proposition 1, item (iv)] by considering
heterogeneous covariance matrices. It implies that equilibrium price impact is monotonically
increasing (in positive-semidefinite order) with respect to these covariance matrices.

Lemma A.9. Let B1 = (B1
i ; i ∈ I) ∈

∏
i∈I S

Xi
� and B2 = (B2

i ; i ∈ I) ∈
∏

i∈I S
Xi
� be such that

B1 � B2. If X1 = (X1
i ; i ∈ I) ∈

∏
i∈I S

Xi
� and X2 = (X2

i ; i ∈ I) ∈
∏

i∈I S
Xi
� stand for the

associated unique equilibria, then X1 � X2.

Proof. Set F 2 to be as in (A.2) with B2 in place of B there, and note that

X1
i = ((B1

i )
−Xi + πi(X

1
−i)

−1πi)
−Xi � ((B2

i )
−Xi + πi(X

1
−i)

−1πi)
−Xi = F 2

i (X
1), i ∈ I,

which shows that X1 � F 2(X1). Then, statement (1) of Lemma A.4 and uniqueness imply
that X1 � X2. �

We are now in position to complete the proof of Proposition 1.6. By monotonicity from
Lemma A.9 and the nondecreasing assumption of (Bn

0 ; n ∈ N), we have that (Xn; n ∈ N) is
also nondecreasing in

∏
i∈I S

Xi
� . Furthermore, from Lemma A.1 we have that

Xn
i � Bi, ∀i ∈ I \ {0}

and also that

Xn
0 � Xn

−0 �
∑

i∈I\{0}

Bi.
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It follows that (Xn; n ∈ N) has a monotone limit X∞ ∈
∏

i∈I S
Xi
� . Since limn→∞(Bn

0 )
−X0 = 0,

condition (1.7) in the limit gives that

X∞
0 = lim

n→∞
Xn

0 = lim
n→∞

(
(Bn

0 )
−X0 + π0(X

n
−0)

−1π0
)−X0

=
(
π0(X

∞
−0)

−1π0
)−X0 .

The same limiting argument shows that

X∞
i =

(
B−Xi

i + πi
(
X∞

−i

)−1
πi

)−Xi

, i ∈ I

A.7. Proof of Proposition 1.7. Let us first consider the competitive market. The demand
function for each trader i ∈ I is given as the solution of the problem (1.3) when Λi = 0 for
each i ∈ I. Since B0 = δ0C

−1
0 from (1.1), equations (1.8) and (1.9) give that

lim
δ0→∞

pco = g0; lim
δ0→∞

qco
0 = − lim

δ0→∞

∑
i∈I\{0}

qco
i =

∑
i∈I\{0}

δiBi(g0 − gi).

It then follows that, as δ0 → ∞,

U0(q
co
0 )− 〈qco

0 , pco〉 − u0 = 〈qco
0 , g0 − pco〉 − 1

2δ0
〈qco

0 , C0q
co
0 〉 → 0.

On the other hand, we get from Proposition 1.6 and the assumption K0 = K that

X∞
0 =

((
X∞

−0

)−1
)−1

= X∞
−0.

But then X∞
−i = 2X∞

−0−X∞
i holds for all i ∈ I\{0}, and hence we obtain that (X∞

i ; i ∈ I\{0})
solves the system

(X∞
i )−Xi = B−Xi

i + πi
(
2X∞

−0 −X∞
i

)−1
πi, i ∈ I \ {0} .

Now, by (1.5), (1.6) and Proposition 1.6, from where it particularly follows that (X∗
i ; i ∈ I)

converge as δ0 → ∞ and X∗
0 = X∗

−0 in the limit, we obtain

lim
δ0→∞

p∗ =
1

2
g0 +

1

2
(X∞

0 )−1
∑

i∈I\{0}

X∞
i gi; lim

δ0→∞
q∗0 =

1

2

X∞
0 g0 −

∑
i∈I\{0}

X∞
i gi

 .

Hence, it follows that

U0(q
∗
0)− 〈q∗0, p∗〉 − u0 →

1

4

〈
X∞

0

X∞
0 g0 −

∑
i∈I\{0}

X∞
i gi

 , X∞
0 g0 −

∑
i∈I\{0}

X∞
i gi

〉
.

Since X∞
0 is positive-definite matrix, the above limit is non-negative, and equal to zero if, and

only if, X∞
0 g0 −

∑
i∈I\{0}X

∞
i gi = 0; the latter is equivalent to limδ0→∞ q∗0 = 0.
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A.8. Calculations in Remark 2.1. We keep all notation from Remark 2.1. In restricted
participation, Xr

i = δiC
−Xi for all i ∈ I. We readily obtain πc(CXr

i )πc = δiπc = πc(CXr
i );

therefore, πc(CXr
i )ζ = 0. With Xr :=

∑
i∈I X

r
i , we then have πc(CXr)πc = δπc = πc(CXr)

and, therefore, πc(CXr)ζ = 0. The last also implies that πc(CXr)−1πc = δ−1πc = πc(CXr)−1.
(This can be readily seen by computing the inverse.) Therefore,

πc(X
r)−1Xi = πc(CXr)−1CXr

i = πc(CXr)−1πcCXr
i = wco

i πc.

This implies prices πcp
co,r =

∑
i∈I w

co
i πcgi for assets in Kc.

A.9. Proof of Theorem 2.2. We only need to show that the given (Xr
i ; i ∈ I) ∈

∏
i∈I S

Xi
�

satisfy the system
Xr

i = (πi(δ
−1
i C + (Xr

−i)
−1)πi)

−Xi ; i ∈ I,

which is that same as

(Xr
i )

−Xi = δ−1
i πiCπi + πi(X

r
−i)

−1πi; i ∈ I.

To show this, first note that direct computation involving inverses show that

ηi(X
r
i )

−Xi = πcCπc + ζiCπc + πcCζi + ζiCC−XcCζi + ηiY
−Yi
i .

Using that πi = πc + ζi and the definition of D, this gives us

(Xr
i )

−Xi = η−1
i (πiCπi − ζiDζi) + Y −Yi

i

Furthermore, since

Xr
−i = η−iC

−Xc + EY−iE
′ − EY−i − Y−iE

′ + Y−i

where Y−i ∈ SY�, so that Xr
−i is invertible, giving, similar to above,

η−i(X
r
−i)

−1 = πcCπc + ζCπc + πcCζ + ζCC−XcCζ + η−iY
−Y
−i

It follows that

η−iπi(X
r
−i)

−1πi = πcCπc + ζiCπc + πcCζi + ζiCC−XcCζi + η−iζiY
−Y
−i ζ ′i

again, using πi = πc + ζi and the definition of D, this gives us

πi(X
r
−i)

−1πi = η−1
−i (πiCπi − ζiDζi) + ζiY

−Yi
i ζi.

Since δ−1
i + η−1

−i = η−1
i holds for i ∈ I, we have

δ−1
i πiCπi + πi(X

r
−i)

−1πi = η−1
i πiCπi − η−1

−i ζiDζi + ζiY
−Yi
i ζi

= (Xr
i )

−Xi − Y −Yi
i + η−1

i ζiDζi − η−1
−i ζiDζi + ζiY

−Yi
i ζi

= (Xr
i )

−Xi + δ−1
i ζiDζi − Y −Yi

i + ζiY
−Yi
i ζi = (Xr

i )
−Xi

completing the argument.
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A.10. Calculations after Theorem 2.2. Given the statement of Theorem 2.2, straightfor-
ward computations give πc(CXr

i )πc = ηiπc = πc(CXr
i ) and, therefore, πc(CXr

i )ζ = 0. The
situation now is the same as the calculations in §A.8. More precisely, with Xr :=

∑
i∈I X

r
i ,

we have πc(CXr)πc = ηπc = πc(CXr) and, therefore, πc(CXr)ζ = 0; the latter also implies
that πc(CXr)−1πc = η−1πc = πc(CXr)−1, by computing the inverse. Therefore,

πc(X
r)−1Xi = πc(CXr)−1CXr

i = πc(CXr)−1πcCXr
i = wiπc,

implying prices πcp
r =

∑
i∈I wiπcgi for assets in Kc.

A.11. Proof of Proposition 2.4. The proof is based on an indicative counterexample. For
this, we first need the following lemma.

Lemma A.10. In full participation Nash equilibrium, with X∗ :=
∑

j∈I X
∗
j , it holds that

X∗
i = Bi +

1

2
X∗ − (Bi)

1/2

(
id+

1

4

(
(Bi)

−1/2X∗(Bi)
−1/2

)2)1/2

(Bi)
1/2, i ∈ I.

Proof. Recall that

(X∗
i )

−1 = (Bi)
−1 + (X∗

−i)
−1, i ∈ I,

Define the matrices

Pi =
1

2
(Bi)

−1/2X∗
i (Bi)

−1/2, Ti =
1

2
(Bi)

−1/2X∗(Bi)
−1/2, i ∈ I,

and note that Pi ∈ S�, Ti ∈ S� satisfy 2id ≺ P−1
i (because X∗

i ≺ Bi), Pi ≺ Ti (because
X∗

i ≺ X∗), and that

P−1
i = 2id+ (Ti − Pi)

−1, i ∈ I.

Let Pi = Q>
i LiQi be the decomposition of Pi ∈ S�, where Qi is orthonormal and Li is diagonal,

for all i ∈ I. Then, note that

Ti = Pi + (P−1
i − 2id)−1 = Q>

i

(
Li + (L−1

i − 2id)−1
)
Qi, i ∈ I.

which implies that also Ti = Q>
i MiQi holds for a diagonal Mi (the decomposition of Ti is with

the same Qi as that of Pi), and, therefore, that

L−1
i = 2id+ (Mi − Li)

−1, i ∈ I.

In other words, simple algebra (all matrices are diagonal) gives

L2
i − (id+Mi)Li + (1/2)Mi = 0, i ∈ I.

For concreteness, set Li = diag(li) and Mi = diag(mi); then, 0 < li(k) < mi(k) for k ∈ K, and

l2i (k)− (1 +mi(k))li(k) + (1/2)mi(k) = 0, i ∈ I, k ∈ K.
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The above quadratic equation (in li(k)) has in general the two roots

1 +mi(k)±
√
1 +mi(k)2

2
, i ∈ I, k ∈ K;

however, the one with the “+” sign gives a value strictly greater than mi(k), which the one
with the “−” sign gives a value lying in the interval (0,mi(k)). It follows that

2li(k) = 1 +mi(k)−
√
1 +mi(k)2, i ∈ I, k ∈ K.

Given that both Li and Mi are diagonal, one may write this in matrix notation as

2Li = id+Mi −
(
I +M2

i

)1/2
, i ∈ I.

Multiplying the above equation with Q>
i from the left and Qi from the right, we obtain that

2Pi = id+ Ti −
(
I +K2

i

)1/2
, i ∈ I.

Recalling the definitions of Pi and Ti, and multiplying the above equation with (Bi)
1/2 from

both the left and the right, we obtain

X∗
i = Bi +

1

2
X∗ − (Bi)

1/2

(
id+

1

4

(
(Bi)

−1/2X∗(Bi)
−1/2

)2)1/2

(Bi)
1/2, i ∈ I.

This concludes the proof of Lemma A.10. �

We continue with the counterexample that will establish Proposition 2.4. Consider a full
participation setting with three traders I = {0, 1, 2} and two assets. As a baseline “0” model,
and using superscripts to denote quantities under the model we are considering, assume that
B0

0 = diag(1, 2/3) = B0
1 , while B0

2 = diag(1, 12/5). Then, in equilibrium we have X0
0 =

diag(1/2, 2/5) = X0
1 , while X0

2 = diag(1/2, 3/5).
We now consider “ε” model perturbations. In all models, trader 0 remains unchanged

(Bε
0 = B0

0 for ε > 0), and we shall construct equilibrium such that Xε ≡ Xε
0 + Xε

1 + Xε
2 is

always equal to X0 = diag(3/2, 7/5) for all sufficiently small ε > 0. (We shall see how to
accommodate this last part.) In this case, Lemma A.10 implies that Xε

0 = X0
0 for ε > 0. For

trader 1, we consider

Bε
1 = B0

1 + εB0
1

(
1 1− ε

1− ε 1

)
B0

1 = B0
1 + εB0

1CB0
1 + o(ε); C :=

(
1 1

1 1

)
,

where in this particular formula (but not the ones below) the error term o(ε) equals exactly

ε2

(
0 −2/3

−2/3 0

)
.

First of all, note that Bε
0 ≺ Bε

1 holds for 0 < ε < 2, since then the matrix(
1 1− ε

1− ε 1

)
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is strictly positive definite. Secondly, and since we aim at keeping Xε constant in ε > 0,
Lemma A.10 implies that we will have Xε

1 = X0
1 + ε∆X0

1 + o(ε), for a matrix ∆X0
1 to be

determined. Again, using the fact that we want to keep Xε = X0 for ε > 0, differentiating
both sides the equality (Xε

1)
−1 = (Bε

1)
−1+(X0−Xε

1)
−1 with respect to ε and taking the limit

as ε → 0, we obtain

(X0
1 )

−1∆X0
1 (X

0
1 )

−1 = (B0
1)

−1(B0
1CB0

1)(B
0
1)

−1 − (X0 −X0
1 )

−1∆X0
1 (X

0 −X0
1 )

−1.

Noting that X0 − X0
1 = id, we have ∆X0

1 + diag(2, 5/2)∆X0
1diag(2, 5/2) = C. Solving for

∆X0
1 , we obtain

∆X0
1 =

(
1/5 1/6

1/6 4/29

)
.

For small ε > 0, Xε
0 ≺ Xε

1, which is equivalent to Λε
0 ≺ Λε

1, is equivalent to ∆X0
1 � 0; however,

the determinant of ∆X0
1 equals 4/145− 1/36 = −1/5220 < 0. It follows that Λε

0 ≺ Λε
1 fails in

this case for small ε > 0, which is exactly the context of Proposition 2.4.
For completeness, it has to be mentioned how to keep Xε constant here, so that the previous

calculations are valid. With Xε
0 and Xε

1 defined as previously, we set

Bε
2 =

(
(X0 −Xε

0 −Xε
1)

−1 − (Xε
0 +Xε

1)
−1
)−1

;

for small ε > 0, this will be a positive definite matrix. Then, by Theorem 1.5, the unique
Nash equilibrium will be such that Xε = X0 for all small enough ε > 0.

A.12. Equilibrium in the setting of §2.3.2. We keep all notation from §2.3, and in par-
ticular §2.3.2. We first diagonalise C0 as

C0 = V

(
1 + ρ 0

0 1− ρ

)
V, where V =

1√
2

(
1 1

1 −1

)
.

Note that V is symmetric and unitary: V 2 = id, where id stands for the 2× 2 identity matrix.
Therefore, V also trivially diagonalises the identity matrix C1. It then follows that V Xf

1 V

will be also diagonal. To ease notation below, define the matrix

Dρ :=

(
1/(1 + ρ) 0

0 1/(1− ρ)

)
,

so that C−1
0 = V DρV , and for functions h : (0,∞) → R write h(Dρ) for the 2 × 2 diago-

nal matrix with diagonal entries (h(1/(1 + ρ)), h(1/(1 − ρ))). Then, one solves the matrix
equation (2.2) for Xf

1 to obtain

Xf
1 = V h1(D

ρ)V, where h1(x) =
1

4
− 5

12
x+

√(
1

4
− 5

12
x

)2

+
2

3
x, x ∈ (0,∞).
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It then also follows from (2.1) that

Xf
0 = V h0(D

ρ)V, where h0(x) = (x−1 + (3h1(x))
−1)−1 =

3xh1(x)

x+ 3h1(x)
, x ∈ (0,∞).

Hence, the price impacts at the full participation equilibrium are

Λf
0 = V h̃0(D

ρ)V, Λf
1 = V h̃1(D

ρ)V,

where

h̃0(x) =
1

3h1(x)
and h̃1(x) =

1

h0(x) + 2h1(x)
=

x+ 3h1(x)

h1(x)(5x+ 6h1(x))
, x ∈ (0,∞).

Prices at full-participation equilibrium are given by

pf = (Xf
0 + 3Xf

1 )
−1Xf

0 g0 = V (h0(D
ρ) + 3h1(D

ρ))−1h0(D
ρ)V g0.

We directly obtain from (1.5) that traders i ∈ I−0 have equilibrium position qfi = qf1 , where

qf1 = −Xf
1 p

f = −V h1(D
ρ)(h0(D

ρ) + 3h1(D
ρ))−1h0(D

ρ)V g0 = V η1(D
ρ)V g0,

and

η1(x) = −h1(x)(h0(x)+3h1(x))
−1h0(x) = − h1(x)

1 + 3h1(x)/h0(x)
= − xh1(x)

2x+ 3h1(x)
, x ∈ (0,∞).

We then calculate that the aggregate utility at Nash equilibrium in full participation equals∑
i∈I

(〈
qfi , gi

〉
− 1

2δi

〈
qfi , Ciq

f
i

〉)
=
〈
qf0 , g0

〉
− 1

2

〈
qf0 , C0q

f
0

〉
− 3

1

2

〈
qf1 , q

f
1

〉
= g′0V κ(Dρ)V g0,

where

κ(x) = −3η1(x)−
9

2

η21(x)

x
− 3

2
η21(x), x ∈ (0,∞).

A.13. Proof of Lemma 2.5. Retain all notation of §A.12. Also, recall that

γ21
3

=
1

3
g′0

(
1 0

0 0

)
g0

is the aggregate utility in restricted participation equilibrium; therefore, the difference between
aggregate utilities in full and restricted participation equilibrium equals

(A.7) g′0V κ(Dρ)V g0 −
1

3
g′0

(
1 0

0 0

)
g0 = g′0V

(
κ(Dρ)− 1

6

(
1 1

1 1

))
V g0.

To see whether this quadratic form may become negative, we check whether the smallest
eigenvalue of the matrix

M ≡ Mρ := κ(Dρ)− 1

6

(
1 1

1 1

)
=

(
κ(1/(1 + ρ))− 1/6 −1/6

−1/6 κ(1/(1− ρ))− 1/6

)
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becomes negative. If this happens, we may choose g0 so that V g0 equals the eigenvector
corresponding to this minimal eigenvalue, and the result of (A.7) will be negative. The smallest
of the two eigenvalues of the matrix M is given by

eM (ρ) :=
κ((1 + ρ)−1) + κ((1− ρ)−1)− 1/3−

√
(κ((1 + ρ)−1)− κ((1− ρ)−1))2 + 1/9

2
.

In order to see analytically that this function may become negative, we analyse how eM (ρ)

behaves when ρ ≈ 0, which involves the behaviour of κ(x) when x ≈ 1. The function κ depends
on the function η1, which in turn depends on the function h1; all these functions involve
algebraic expressions, and therefore derivatives can be explicitly. Straightforward (but lengthy
and uninteresting) computations give eM (0) = 0, e′M (0) = 0, and e′′M (0) = −1/5000 < 0. It
follows that there exists r ∈ (0, 1) such that, for |ρ| < r and ρ 6= 0, we have eM (ρ) < 0. In
fact, and since eM is clearly an even function of ρ ∈ (−1, 1), one may solve algebraically the
equation eM (r) = 0 for r ∈ (0, 1), obtaining a unique solution r = (2/3)

√√
113− 9 ≈ 0.851.

As a visual indication of the previous, Figure 1 presents a plot of eM (ρ) against ρ ∈ (−1, 1).

A.14. Proof of Lemma 2.6. Based on the discussion of §A.12, the inequality Λf
0 � Λr

0 is
equivalent to 12(V Λr

0V − h̃0(D
ρ)) being positive definite. For this, we compute

12V Λr
0V = 6

(
1 1

1 −1

)(
1/2 0

0 2/3

)(
1 1

1 −1

)
=

(
7 −1

−1 7

)
.

Furthermore, since

12h̃0(x) =
4

1/4− 5x/12 +
√
(1/4− 5x/12)2 + 2x/3

=
−3/x+ 5 +

√
(3/x− 5)2 + 96/x

2
,

with h̄0(x) = −5− (3/2)x+
√
(1− (3/2)x)2 + 24(1 + x) we have 6+ h̄0(x) = 12h̃0(1/(1+x)),

so that

12(V Λr
0V − h̃0(D

ρ)) =

(
1− h̄0(ρ) −1

−1 1− h̄0(−ρ)

)
.

The above matrix will be positive definite if its trace is positive and its determinant nonneg-
ative. It can be checked that h̄0 is concave, which implies that the trace 2− h̄0(ρ)− h̄0(−ρ) is
convex and (obviously) even in ρ; therefore it is always greater or equal than 2−2h̄0(0) = 2 > 0.
Furthermore, the determinant equals

(1− h̄0(ρ))(1− h̄0(−ρ))− 1 = h̄0(ρ)h̄0(−ρ)− h̄0(ρ)− h̄0(−ρ);

this function of ρ is also even, and can be checked to be convex; therefore, it always dominates
(1− h̄0(0))

2 − 1 = 0.
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Figure 1. The smallest eigenvalue of matrix M as a function of trader 0’s
correlation parameter ρ. In the areas where this function is negative, there
are initial risk exposures of trader 0 that yield higher welfare for the restricted
market setting compared to the full participation.
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