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Abstract—In the laminar-constrained spanning tree problem,
the goal is to find a minimum-cost spanning tree which respects
upper bounds on the number of times each cut in a given
laminar family is crossed. This generalizes the well-studied
degree-bounded spanning tree problem, as well as a previously
studied setting where a chain of cuts is given. We give the first
constant-factor approximation algorithm; in particular we show
how to obtain a multiplicative violation of the crossing bounds
of less than 22 while losing less than a factor of 5 in terms of
cost.

Our result compares to the natural LP relaxation. As a
consequence, our results show that given a k-edge-connected
graph and a laminar family L ⊆ 2V of cuts, there exists a
spanning tree which contains only an O(1/k) fraction of the edges
across every cut in L. This can be viewed as progress towards
the Thin Tree Conjecture, which (in a strong form) states that
this guarantee can be obtained for all cuts simultaneously.

I. INTRODUCTION

Let G = (V,E) be a connected undirected graph. Given
any proper S ⊂ V , we use δ(S) to denote the cut with shores
S and V \ S. A spanning tree T of G is called α-thin if the
number of edges of T crossing any given cut of G is at most an
α fraction of the total number of edges: |T ∩ δ(S)| ≤ α|δ(S)|
for each S ⊆ V .

In 2004, Goddyn [10] made the following conjecture: there
exists a function f : Z+ → [0, 1] with limk→∞ f(k) = 0
such that every k-edge-connected graph G has an f(k)-
thin spanning tree. This has become known as the thin tree
conjecture, and it remains open despite substantial efforts.

A natural strengthening of the conjecture, which we will
refer to as the strong thin tree conjecture makes the same
claim, but for f(k) = C/k for some constant C. This
conjecture is found explicitly in [3] and is the best that one
could hope for up to constant factors; clearly no k-edge-
connected graph has an α-thin tree for any α < 1/k. In a
different direction, there is also an algorithmic question one
can ask: if a thin tree always exists, can we find one in
polynomial time?

The thin tree conjecture has some nice implications. It
implies the weak 3-flow conjecture of Jaeger [14]. This has
since been resolved, by Thomassen [30], however this would
provide an alternate proof. Another application lies in the
asymmetric traveling salesman problem (ATSP). As shown by
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Asadpour, Goemans, Madry, Oveis Gharan and Saberi [3, 25],
if the constructive form of the strong thin tree conjecture is
true, it would yield an O(1)-approximation algorithm to ATSP.
This has since been resolved by Svensson, Tarnawski and
Végh [29] using completely different methods. Nonetheless,
a new algorithm stemming from thin trees would be of sig-
nificant interest. Furthermore, a constant factor approximation
algorithm to the bottleneck version of the asymmetric traveling
salesman problem, where the goal is to minimize the longest
edge in the tour rather than the sum, is not known. This
would follow from the constructive form of the thin tree
conjecture [1].

Although the (strong) thin tree conjecture would no longer
imply breakthroughs to these other problems, it remains a
natural question in its own right. Turning things around, the
positive resolution of these implications can perhaps be viewed
as some weak evidence for the conjecture.

For the following discussion, it is useful to observe that
the strong thin tree conjecture has the following equivalent
formulation. Suppose we are given a graph G as well as a point
x in the spanning tree polytope (that is, a convex combination
of characteristic vectors of edge sets of spanning trees of G).
We say that a spanning tree T is α-thin with respect to x if
|T ∩ δ(S)| ≤ αx(δ(S)) for every S ⊆ V . The conjecture is
that there is a universal constant α such that an α-thin tree
with respect to x always exists, for any instance and point
in the spanning tree polytope. The equivalence follows from
the observation that the point x′ defined by x′e = 2/k for all
e ∈ E is in the dominant of the spanning tree polytope for
every k-edge-connected graph G, and so there is a point x in
the spanning tree polytope with xe ≤ 2/k for all e. An α-thin
tree with respect to x is then a (2α/k)-thin tree for the graph.

a) Progress on the thin tree conjecture.: The conjecture
is known to hold for some graph classes, most notably planar
and bounded genus graphs [25]. For general graphs, the best
known result is that there always exists an O(polyloglogn

k )-thin
tree in any k-connected graph [2]. This is non-constructive;
constructively, the best known is only O( logn

log logn·k )-thinness.
One difficulty with the constructive form of the conjecture

is that it’s not even clear how to check if a given tree T is α-
thin, or even O(α)-thin. Nor do we know of a polynomially
checkable certificate that can certify thinness. The problem,
of course, is that there are an exponential number of cuts to
be concerned with. An easier question presents itself: what if
we consider an explicitly given family of cuts, and require the

c©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.



thinness condition |T ∩δ(S)| ≤ α|δ(S)| only for these specific
cuts? And one step further: what if we consider a family of
cuts with some specific structure?

b) Explicitly given cut collections.: Related questions
have been considered from an algorithmic perspective already,
independently from the thin tree conjecture. The first class
considered was that of singleton cuts. Suppose we are given an
integer-valued degree bound bv for each node v of the graph G.
The degree bounded spanning tree problem asks for a spanning
tree satisfying these bounds, if such a spanning tree exists. This
problem is easily seen to be NP-hard, since it captures the
question of finding a Hamiltonian path with a specified start
and end node. So it is necessary to allow for some relaxation
of the degree bounds. Fürer and Raghavachari [9] showed
that relaxing the degree bounds by 1 additively suffices. That
is, they showed how to efficiently find a spanning tree T
satisfying |T ∩ δ(v)| ≤ bv + 1 for all v ∈ V , if there exists a
spanning tree T ∗ that satisfies the degree bounds exactly.

One can also consider a minimum cost version of the
question. Now each edge e ∈ E has a nonnegative cost c(e),
and the goal is to find a cheapest spanning tree satisfying the
degree bounds (again, assuming one exists). Goemans [12]
showed how to efficiently find a spanning tree T which
violates the degree bounds by at most an additive 2, and
satisfies c(T ) ≤ c(T ∗), where T ∗ is a minimum cost spanning
tree that satisfies all the degree bounds exactly. Singh and
Lau [28] then showed how to improve the degree violation to
just 1, while maintaining the same bound on the cost. They use
the method of iterative relaxation; we use iterative relaxation
as well, so we will discuss this further in the sequel.

That ends the story for degree bounds; what about other
families of constraints? So we have a given family F of
subsets, and a “degree bound” bS for each S ∈ F . Olver
and Zenklusen [24] showed how to obtain, constructively, a
constant multiplicative violation of all cut constraints if F is
a chain; that is, F = {S1, S2, . . . , St} with S1 ( S2 ( · · · (
St. Linhares and Swamy [20] showed that a minimum cost
version of this result also holds, if one allows a constant factor
approximation in the cost as well as in the cut constraints.

All of these results compare to the natural fractional relax-
ation. That is, they do not require that there is an actual tree
satisfying the degree bounds, merely that there is a point in the
spanning tree polytope which does. As such, we can view them
in the context of thin trees. They show that weaker versions of
the strong thin tree conjecture hold, where the cut bounds are
enforced only on singleton cuts, or only on a chain of cuts. We
will say that the strong thin tree conjecture holds for a given
family F if given any x in the spanning tree polytope, there
is a spanning tree T satisfying |T ∩ δ(S)| ≤ O(1)x(δ(S)) for
all S ∈ F .

c) Our results.: Given that the strong thin tree conjecture
holds for the family of singletons, and for a chain family,
a very natural question presents itself. Suppose that L is an
arbitrary laminar family of subsets of V ; that is, for every
S, T ∈ L, S ∩T is either equal to ∅, S, or T . Does the strong
thin tree conjecture hold for L?

We show that this is indeed true. Further, our proof is con-
structive, and allows for costs. More precisely, given arbitrary
nonnegative edge costs, our returned tree has cost within a
constant factor of the cost of the starting fractional solution x.

We briefly sketch our high-level approach, leaving a full
overview until Section II-D. As already mentioned, iterative
relaxation has been applied very successfully to the degree-
bounded spanning tree problem, so it is a natural candidate
approach. However, there is an immediate obstruction. Itera-
tive relaxation for degree-bounded spanning tree is fairly in-
sensitive to the use of the graphic matroid; it works just as well
(essentially without changes) if the graphic matroid is replaced
by any other matroid.1 However, the matroid generalization of
the laminar-constrained spanning tree problem does not have
a constant integrality gap, and even obtaining a constant factor
multiplicative violation is hard. This was shown by Olver and
Zenklusen [24] already for the chain case. So any successful
approach will need to exploit the graphic matroid specifically;
it is not clear how to do this directly with iterative relaxation.

We manage to bypass this obstruction and make use of
iterative relaxation. We do this by first reducing to a special
class of instances that we call L-aligned, where the fractional
solution x has the property that for every set S in the laminar
family of constraints L, the restriction of x to S is a point
in the base polytope of the graphic matroid for the graph
restricted to S. Our reduction crucially exploits properties of
spanning trees, and does not apply to general matroids. We
then give an iterative relaxation proof of this L-aligned case.
This part does generalize to arbitrary matroids.

d) Other related work.: For laminar families, the most
directly comparable work is from 2013 by Bansal, Khan-
dekar, Knemann, Nagarajan, and Peis. They give an additive
O(log n) approximation for the laminar constrained spanning
tree problem [4], improving upon an earlier more general result
which given a family of m constraints obtains a violation
of (1 + ε)b + O( 1

ε logm) for each bound b [6]. As previ-
ously mentioned, Olver and Zenklusen [24] demonstrated a
constant factor multiplicative violation for a family of cuts
given by a chain. These three results are with respect to the
fractional relaxation, and thus also solve the related thin tree
problems. Nägele and Zenklusen [22] demonstrated that in
quasi-polynomial time the violation for the chain-constrained
spanning tree problem can be improved to a (1 + ε) multi-
plicative factor, for any ε > 0. They further generalize this
slightly towards laminar families, by allowing for a family of
cuts that form a laminar family of constant width, meaning that
the maximum number of disjoint sets in the laminar family is
bounded by a constant. (Put differently, the number of leaves in
the tree representing the laminar family is constant). However,
this result is not based on the LP relaxation, and so does not
imply anything for the strong thin tree conjecture for chains
or constant-width laminar families.

1With the notable exception of [28] which solves the bounded degree
spanning problem with an additive error of 1 on both lower and upper bounds.
When translated to the general matroid setting, the additive error is only known
to be 2 [16].



This problem has also been studied for general matroids.
Király, Lau and Singh [16] showed that given a matroid M
and a collection of upper bound constraints, one can achieve
an additive violation of ∆ − 1 for all constraints, so long as
every element of the matroid is in at most ∆ constraints. They
achieve a similar guarantee if lower bounds (or both lower
and upper bounds) are present. Similar results and further
generalizations can be found in [6, 4].

Pritchard [26] conjectured that every k-edge-connected
graph contains a spanning tree after whose deletion the graph
remains k − f(k) connected, where f(k) is any function for
which limk→∞ f(k)/k = 0. This can easily be seen as a
weakening of the thin tree conjecture. The strong version of
this conjecture (which is a consequence of the strong thin
tree conjecture) is that f(k) is an absolute constant. Currently
the best known bound for this problem (to the best of our
knowledge) is f(k) = bk2 c− 1 by the Nash-Williams theorem
[23].

There is a natural spectral strengthening of thin trees. Let
LH denote the Laplacian of a graph H , and let � denote
the Löwner ordering on symmetric matrices2. We say T is α-
spectrally-thin if LT � αLG; that is, if zTLT z ≤ αzTLGz
for any vector z ∈ RV . This is a stronger condition than α-
thinness, as can be seen by choosing z to be the characteristic
vector of a set S ⊆ V . A big advantage of spectral thinness
is that it can be efficiently checked. A natural analogue of
the strong thin tree conjecture, where connectivity is replaced
by the minimum effective conductance, can be derived [13]
as a consequence of results on the the Kadison-Singer prob-
lem [21]. This demonstrates that the strong thin tree conjecture
holds for edge transitive graphs (or any graph where the
minimum edge conductance is within a constant factor of the
connectivity). Unfortunately, spectral thinness is too strong
a property to directly aid in proving the (strong or weak)
thin tree conjecture in general; there are instances where
no o(

√
n/k)-spectrally thin tree exists [13, 11]. Nonetheless,

spectral approaches have been fruitful. The current best result
by Anari and Oveis Gharan [2] mentioned previously, that
O(log log n/k)-thin trees exist, makes use of spectral methods
in a sophisticated way. Our approach on the other hand
is completely combinatorial; we will not make use of any
spectral techniques.

II. PRELIMINARIES AND RESULTS

A. Notation

Given a graph G = (V,E) and a subset S ⊆ V , let δ(S) =
{{u, v} : |{u, v}∩S| = 1} denote the set of edges with exactly
one endpoint in S. Let G[S] denote the induced graph of G
whose vertex set is S, and let E(S) ⊆ E denote the set of
edges in G[S]. For P = {P1, . . . , Pk} a partition of a subset
of the vertices of G, we let δ(P) denote the set of edges with
endpoints in two different sets Pi. If the choice of G is not
clear, we may write, e.g., δG(S) or δG(P).

2That is, A � B if B −A is positive semidefinite.

For any edge weight function x : E → R, we write x(F ) :=∑
e∈F x(e). For F ⊆ E, we write x|F to denote x restricted

to F .

B. Polyhedral Background

Edmonds [7] gave the following description for the convex
hull of the spanning trees of any graph G = (V,E), known
as the spanning tree polytope.

Pst(G) =
{
x ∈ RE≥0 : x(E) = |V | − 1,

x(E(S)) ≤ |S| − 1 ∀S ⊆ V
}
.

(1)

The following is the natural LP relaxation for the problem
given in Definition II.2.

min
∑
e∈E

xece

s.t., x(δ(S)) ≤ bS ∀S ∈ L,
x ∈ Pst(G)

(2)

For two x, x′ ∈ RE , we say x dominates x′ if x− x′ ≥ 0.
Let P ↑st(G) denote the dominant of the spanning tree polytope
of G, that is, the set of points in x ∈ RE which dominate some
point in Pst(G). P ↑st(G) has the following characterization:

P ↑st(G) =
{
x ∈ RE≥0 : x(δ(P)) ≥ |P|−1∀ partitions P of V

}
(3)

It is well-known that P ↑st(G) can be separated efficiently.

Theorem II.1 ([5]). Given a graph G = (V,E) and a point
x ∈ RE≥0, A partition P of G minimizing x(δ(P))− (|P|− 1)
can be found in polynomial time.

Suppose M = (E, I) is a matroid with groundset E and
independent sets I. The matroid base polytope of M, which
we will denote PM, is the convex hull of the incidence vectors
of all bases of M. The rank of M, denoted rankM, is the
cardinality of the largest independent set ofM. Given F ⊆ E:

1) The deletion of F fromM is the matroid on the ground-
set M \ F with independent sets {I \ F : I ∈ I}. If
F = {e}, i.e. it is a singleton, we will use the shorthand
M − e.

2) The restriction of M to F , denoted M|F , is the matroid
on groundset F with independent sets {I ∩ F : I ∈ I}.
This is equivalent to the deletion of E \ F .

3) The contraction of M by F , denoted M/F , is the
matroid on the groundset E \ F with independent sets
{I ⊆ E \ F : I ∪ B ∈ I}, where B is an arbitrary
basis of M|F (equivalently, an independent set of M
contained in F of largest cardinality). If F = {e}, i.e. it
is a singleton, we will use the shorthand M/e.

C. Our Results

We recall that a family of sets L ⊆ 2V is laminar if for all
S, T ∈ L, S ∩ T is either equal to ∅, S, or T .

Definition II.2 (Laminar constrained spanning tree problem).
Let G = (V,E) be a connected graph, and L a laminar family
on V , with an associated degree bound bS ∈ Z≥0 for each



S ∈ L. The goal is to find efficiently a spanning tree T for
which |T ∩ δ(S)| ≤ αbS for each S ∈ L, assuming that there
does exist a spanning tree T ∗ satisfying |T ∗ ∩ δ(S)| ≤ bS .
In such a case, we say T is an α-approximate solution to the
laminar constraints. We assume for convenience that V ∈ L,
though the associated constraint is of course vacuous.

To solve the above problem, we first determine if LP (2) is
feasible, which can be done in polynomial time. If it is not,
we may return “no” to the above problem since this would
certify that such a tree does not exist. Thus to obtain an α
approximation for the problem above, it is enough to obtain
an α-thin tree with respect to a solution x of (2).

Definition II.3 (Laminar α-thin tree for (G,L, x)). As input
we get a graph G = (V,E), a laminar family L over V , and a
feasible LP solution x to LP (2). Our goal is to find a spanning
tree T such that |T ∩ δ(S)| ≤ αx(δ(S)) for all S ∈ L, i.e. a
tree that is α thin with respect to x.

The main result of this paper is the following. We remark it
also gives an O(1) approximation in terms of the cost of the
tree.

Theorem II.4. Given an instance (G,L, x), we can in poly-
nomial time find a spanning tree T such that:

i) c(T ) ≤ (2 +
√

7)c(x) < 5c(x), and
ii) |T ∩ δ(S)| ≤ (2 +

√
7)2x(δ(S)) < 22x(δ(S)), i.e., it is

a 22-thin tree for (G,L, x).

Our theorem can be generalized as follows, which can be
used to reduce the cost of the tree arbitrarily close to 2 (at the
expense of incurring a larger multiplicative loss).

Theorem II.5 (Main). Given an instance (G,L, x) and any
η > 2, we can in polynomial time find a spanning tree T such
that:

i) c(T ) ≤ ηc(x), and
ii) |T ∩ δ(S)| ≤ 1

1− 2
η

(2η + 3)x(δ(S)).

We will prove the latter theorem, since the previous theorem
follows by setting η = 2 +

√
7.

D. Proof Overview
A key observation of this paper is the usefulness of the

following definition.

Definition II.6 (L-aligned). Given a graph G = (V,E) and
a laminar family L ⊆ 2V we say a point x ∈ Pst(G) is L-
aligned if x|E(S) ∈ Pst(G[S]) for all S ∈ L.

Note that G[S] should be connected for each set S ∈ L,
otherwise no point can be L-aligned.

In Section III and Section IV we show the following
two theorems which when combined immediately give Theo-
rem II.5.

Theorem II.7 (Laminar thin trees for L-aligned points). Given
an instance (G,L, x) for which x is L-aligned, we can find a
tree T of cost at most c(x) in polynomial time for which

|T ∩ δ(S)| ≤ 2dx(δ(S))e+ 1 ≤ 2x(δ(S)) + 3

for all S ∈ L.

Theorem II.8 (Reduction to L-aligned points). For any in-
stance (G,L, x) and any η > 2, we can find an instance
(G,L′, x′) in polynomial time such that:

i) x′ is L′-aligned,
ii) x′ is dominated by ηx,

iii) If for a spanning tree T there are α, β ≥ 0 such that
|T ∩δ(S)| ≤ αx′(δ(S))+β for all S ∈ L′, then we have
|T ∩ δ(S)| ≤ 1

1− 2
η

(ηα+ β)x(δ(S)) for all S ∈ L.

To obtain our main theorem, given an instance (G,L)
we solve LP (2) to obtain an instance (G,L, x). We then
apply Theorem II.8 to obtain a L-aligned instance (G,L′, x′).
Finally, we apply Theorem II.7 to obtain our tree with the
desired properties.

We remark that while Theorem II.7 can be generalized to
hold for any matroid over the edges of a graph and any laminar
family (see Section IV), Theorem II.8 cannot be. Olver and
Zenklusen [24] showed that there is a matroid and a laminar
family of constraints (in fact, their family is a chain, and
their matroid simply a partition matroid) with no constant-
thin basis, in particular giving a lower bound of O( logn

log logn )
on the multiplicative violation. Thus it is necessary that one
of these two pieces cannot be generalized to all matroids.

Theorem II.8 is proved via a natural combinatorial proce-
dure which iteratively replaces sets in L that are far from
meeting the criteria x|E(S) ∈ Pst(G[S]) with some partition
of them. We first consider the scaling ηx, and show that if
η · x|E(S) ∈ P ↑st(G[S]) for all S ∈ L, then there is a point x′

dominated by ηx which is L-aligned. If not, we iteratively
find a minimal cut S for which η · x|E(S) /∈ P ↑st(G[S]),
and then find the partition P = {P1, . . . , Pk} of S which
maximally violates an inequality in P ↑st(G[S]). We then delete
S from the laminar family and add P1, . . . , Pk. We show that
η · x|E(Pi) ∈ P

↑
st(G[Pi]) for all i. Therefore, by applying this

procedure we get closer to obtaining an L-aligned point. To
finish the proof, we show that this process allows us to still
effectively maintain (iii) of Theorem II.8.

Theorem II.7 (and its generalization to arbitrary matroids) is
proved via an iterative relaxation procedure. The criteria that
x is L-aligned is, in some sense, exactly what is needed to
make the iterative relaxation procedure work.

III. REDUCTION TO L-ALIGNED POINTS

The following definition is key to our reduction to L-aligned
points.

Definition III.1 (Well-connected). Call a set S ⊆ V η-well-
connected if η · x|E(S) ∈ P ↑st(G[S]), i.e., if ηx(δG[S](P)) −
(|P| − 1) ≥ 0 for all partitions P of S.

We will make us of the following simple fact, that allows
us to contract η-well-connected subsets of a given set when
evaluating the well-connectedness of a given set S.



S

P1 P2

< 1
η

Fig. 1. An example of a set which is not η-well-connected (see Defini-
tion III.1). In this case, Algorithm 1 may replace S by P1 and P2 in L.

Lemma III.2. Consider a set S ⊆ V , and suppose that
S1, . . . , Sr are disjoint subsets of S that are all η-well-
connected. Let GS = (VS , ES) be the graph obtained from
G[S] after contracting each of S1, . . . , Sr. Then S is η-
well-connected, i.e., η · x|E(S) ∈ P ↑st(G[S]), if and only if
η · x|ES ∈ P

↑
st(GS).

Proof. Let y = ηx|E(S).
First, if y ∈ P ↑st(G[S]), then certainly y|ES ∈ P ↑st(GS),

since given any convex combination of spanning trees of
G[S] that dominates y, the same convex combination of the
images of these spanning trees upon contracting S1, . . . , Sr is
a convex combination of connected spanning subgraphs of GS
with marginals y|ES .

Conversely, suppose that y|ES ∈ P
↑
st(GS). If y|ES = χ(T )

for some spanning tree T of GS , and each y|E(Si) = χ(Ti)
for some spanning tree Ti of Si, then the claim is clear; T ∪
T1 ∪ · · · ∪Tr is a spanning tree of G[S]. But the claim clearly
remains true upon taking convex combinations, and moreover
taking the dominant of any convex combination.

Algorithm 1 Reduction to a new laminar family
1: L′ ← ∅.
2: while L is nonempty do
3: Choose a minimal set S ∈ L.
4: Let GS be obtained from G[S] by contracting all the

maximal sets in L′ contained in S.
5: Compute a partition P ′ of GS minimizing
ηx(δGS (P ′)) − (|P ′| − 1). Let P be the corresponding
partition of S obtained by uncontracting.

6: Delete S from L and add all parts of P to L′.
7: end while
8: Return L′.

In this section we prove Theorem II.8, which heavily relies
on Algorithm 1. This algorithm will be used to output the new
family L′ in the theorem statement. As such, we first prove
some properties of this algorithm.

Lemma III.3. Algorithm 1 can be implemented in polynomial
time.

Proof. In each iteration, |L| decreases, so there are at most
2|V | − 1 iterations. Each iteration can be implemented in
polynomial time using Theorem II.1.

Lemma III.4. Consider any graph G = (V,E) and η > 0.
Let P be a partition of G that minimizes ηx(δ(P))−(|P|−1).
Then each part of P is η-well-connected.

Proof. Fix any part P ∈ P , and consider any partition Q =
{Q1, Q2, . . . , Qr} of P . Let P ′ be the partition of V ′ obtained
by replacing P with the parts of Q.

Write δP (Q) for δG[P ](Q). Since |P ′| = |P|+ |Q|− 1 and
ηx(δ(P ′)) = ηx(δ(P)) + ηx(δP (Q)), we have ηx(δP (Q))−
(|Q| − 1) being equal to

ηx(δ(P ′))− (|P ′| − 1)−
(
ηx(δ(P))− (|P| − 1)

)
.

This is nonnegative, by our choice of P , and so ηx ∈
P ↑st(G[P ]).

Lemma III.5. The output L′ of Algorithm 1 is a laminar
family, and each S ∈ L′ is η-well-connected.

Proof. We claim that throughout the algorithm, we maintain
the invariant that L ∪ L′ is a laminar family, and that each
S ∈ L′ is η-well-connected. Certainly this holds at the start
of the algorithm. Consider a partition P ′ of GS generated in
step 5. By Lemma III.4, each part of P ′ is η-well-connected.
Then since the sets that were contracted in forming GS are
η-well-connected, by Lemma III.2 all parts of P ′ are η-well-
connected in G. Further, no part of P ′ crosses a set in L′, by
construction. So the invariant is maintained.

The following is the main relevant quality of our reduction.

Lemma III.6. Let S ∈ L and let L′ be the output of
Algorithm 1. Let S1, . . . , S` be the unique maximal sets in L′
whose union is S. Then,

∑`
i=1 x(δ(Si)) ≤ 1

1− 2
η

x(δ(S))− 2
η−2 .

Proof. Consider the iteration of the algorithm where S is
deleted from L, and a partition P of S (corresponding to a
partition P ′ of GS) is added to L′. Then P = {S1, . . . , S`}.
Note that by the choice of P ′, ηx(δGS (P ′))− (|P ′| − 1) ≤ 0
(either P ′ is a violated constraint for P ↑st(GS), or if GS is η-
well-connected, P ′ can be chosen to be the trivial partition of
size 1, and equality is attained). Converting this to a statement
about P , we have ηx(δG[S](P))− (|P| − 1) ≤ 0. Thus

x(δ(S)) =
∑̀
i=1

x(δ(Si))− 2x(δG[S](P))

≥
∑̀
i=1

x(δ(Si))−
2

η
(|P| − 1)

≥
(

1− 2

η

)∑̀
i=1

x(δ(Si)) +
2

η



Where the last line is a consequence of x(δ(Si)) ≥ 1 for each
Si. The claim follows.

We now prove Theorem II.8.

Theorem II.8 (Reduction to L-aligned points). For any in-
stance (G,L, x) and any η > 2, we can find an instance
(G,L′, x′) in polynomial time such that:

i) x′ is L′-aligned,
ii) x′ is dominated by ηx,

iii) If for a spanning tree T there are α, β ≥ 0 such that
|T ∩δ(S)| ≤ αx′(δ(S))+β for all S ∈ L′, then we have
|T ∩ δ(S)| ≤ 1

1− 2
η

(ηα+ β)x(δ(S)) for all S ∈ L.

Proof. First, apply Algorithm 1 to L to obtain a new family
L′ (which requires only polynomial time by Lemma III.3). By
Lemma III.5, L′ is a laminar family of η-well-connected sets.

We now show that ηx dominates a point x′ which is L′-
aligned, giving i) and ii). Let GS = (VS , ES) denote the graph
obtained by restricting to S ∈ L′ and contracting all children
in L′. By definition of η-well-connected, for any S ∈ L′,
ηx|ES ∈ P ↑st(GS). It follows that for every S ∈ L′ we can
find yS ∈ Pst(GS) with yS ≤ ηx|ES . Combining yS for each
S, we obtain x′ ∈ Pst(G) with x′ ≤ ηx, and where x′ is
L-aligned.

It remains to show (iii). Fix some S ∈ L. The algorithm
replaces S by some partition S1, S2, . . . , S` of S in L′. Then
we have

|T ∩ δ(S)| ≤
∑̀
i=1

|T ∩ δ(Si)| (as
⋃̀
i=1

δ(Si) ⊆ δ(S))

≤
∑̀
i=1

(α · x′(δ(Si)) + β) (by assumption)

≤
∑̀
i=1

(ηα · x(δ(Si)) + β) (x′ ≤ ηx)

≤ (ηα+ β)
∑̀
i=1

x(δ(Si)) (x(δ(Si)) ≥ 1, ∀Si).

By Lemma III.6,
∑`
i=1 x(δ(Si)) ≤ 1

1− 2
η

x(δ(S)). The claim
follows.

IV. LAMINAR THIN TREES FOR L-ALIGNED POINTS VIA
ITERATIVE RELAXATION

We will now prove Theorem II.7, or rather a generalization
of it where the graphic matroid is replaced by an arbitrary
matroid. First, we define the obvious generalization of L-
aligned for a point in the base polytope of a matroid M.

Definition IV.1. Given a graph G = (V,E), a matroid M
with groundset E, and a laminar family L of G, we say that a
point x ∈ PM is L-aligned if x(E(S)) = rankM(E(S)) for
all S ∈ L.

(In the case where M is a graphic matroid, this is just
slightly different from the previous definition, if some sets in
L are not connected. The previous definition did not allow for

any L-aligned points in this case, but here it is possible. This
relaxation of the definition is irrelevant; there is no real reason
to consider disconnected sets in L, since they could simply be
split into their connected components.)

The following is the primary reason it is useful for a point
x to be L-aligned in the iterative relaxation process.

Lemma IV.2. Let x be L-aligned. Let S ∈ L and let
S1, . . . , Sk ∈ L such that Si ∩ Sj = ∅ for all 1 ≤ i, j ≤ k,
i 6= j. Let GS = (VS , ES) be the graph arising from
contacting S1, . . . , Sk in the graph G[S].

Then, x(ES) is an integer.

Proof. Since x(E(S)) = rankM(E(S)), it is an integer.
Similarly, x(E(Si)) is an integer for all 1 ≤ i ≤ k. However
ES = E(S)\(∪ki=1E(Si)), from which the claim follows.

Next, we define the notion of a matroid (rather than a point)
being L-aligned.

Definition IV.3. Given a graph G = (V,E), a matroid M
with groundset E, and a laminar family L of G, we say that
M is L-aligned if for any basis B of M, and every S ∈ L,
B ∩ E(S) is a basis of M|E(S).

The relationship between the notion of a matroid being L-
aligned, and a point x ∈ PM being L-aligned, is captured by
the following lemma.

Lemma IV.4. A matroid M is L-aligned if and only if for
every point x ∈ PM, x is L-aligned.

Proof. First suppose M is L-aligned and let x ∈ PM. Then,
we can write x as a convex combination of some bases
B1, . . . , Bk ofM. SinceM is L-aligned, Bi∩E(S) is a basis
of M|E(S) for all S ∈ L. Thus |Bi ∩E(S)| = rank(M|E(S))
for all i. It follows that x(E(S)) = rank(M|E(S)) =
rankM(E(S)) for all S ∈ L as desired, demonstrating that
x is L-aligned.

For the other direction, suppose every point x ∈ PM is L-
aligned. Then for any basis B of M, by taking x to be the
characteristic vector of B, we have |B ∩E(S)| = x(E(S)) =
rank(M|E(S)). Thus M is L-aligned.

In the previous section, we saw how to reduce to the case
where x is a point in the base polytope of the graphic matroid
that is L-aligned. It will be more convenient for our purposes
to work with a matroid that is L-aligned; this is a stronger
property that will ensure that all fractional points we consider
later in the iterative relaxation algorithm are all L-aligned as
well. We can ensure this by refining the matroid, in the sense
defined in [19].

Definition IV.5. Given a matroid M and a nonempty proper
subset R of the groundset, the refinement of M with respect
to R is the matroid M′ obtained as the direct sum of M|R
and M/R.

Note that if M′ is a refinement of M, then every base of
M′ is a base of M. It is easy to show that for R ⊆ E with
x(R) = rankM(R), x remains in the base polytope of the



matroid obtained by refiningM with respect to R (see [19] for
details). As such, given a point x ∈ PM that is L-aligned, we
can repeatedly refine M by each set of L in turn, to obtain a
new matroidM′ such that x ∈ PM′ andM′ is L-aligned. For
M the graphic matroid, this refinement procedure corresponds
to taking M′ to be the direct sum of graphic matroids on GS
for each S ∈ L.

So we consider the generalization of the laminar thin tree
problem to matroids, under the restriction that the matroid is
aligned with the laminar family. An instance of the problem is
defined by a graph G = (V,E), a matroid M with groundset
E, and a laminar family L with degree bounds bS for S ∈ L,
such that M is L-aligned. Edge costs ce may also be given.
The goal is to find a minimum cost basis of M satisfying the
cut constraints, if a solution exists.

The following LP is the natural relaxation that we will
use. Note that since M is L-aligned, no explicit additional
constraints on x are required; any feasible solution must satisfy
x|E(S) ∈ PM|E(S)

, and thus must be L-aligned.

min
∑
e∈E

xece

s.t. x(δ(S)) ≤ bS ∀S ∈ L,
x ∈ PM.

(4)

Theorem IV.6 (Laminar-constrained matroid basis). Given an
instance (G,M,L, b) in which M is L-aligned, and where
the LP relaxation (4) has a feasible solution x, we can find a
basis T of M in polynomial time for which c(T ) ≤ c(x) and
|T ∩ δ(S)| ≤ 2bS + 1 for all S ∈ L.

Theorem II.7 is an immediate consequence, by first refining
the graphic matroid as described above.

The algorithm we will use to prove this theorem is shown
in Algorithm 2. Our algorithm follows the usual iterative
relaxation recipe: it ignores edges set to 0 and 1 and then drops
constraints which are close to being satisfied. We have one
non-standard step which drops a set in L if it is approximately
implied by its immediate parent or child in the family of
tight constraints. This non-standard step is what leads to a
multiplicative violation instead of an additive one.

If a recursive call to LAMCONSTRAINEDBASIS returns
“Fail”, then we consider that the result of the procedure
as a whole is also “Fail”. We also note that if LAMCON-
STRAINEDBASIS is recursively called in any of steps 3, 4 or
6, the required properties of the input to the recursive call are
satisfied. In particular, (4) is feasible. For steps 3 and 4, x|E−e
is feasible for the smaller instance; for step 6, simply x is. With
this in mind, LAMCONSTRAINEDBASIS is well-defined.

We first show that as long as the algorithm does succeed,
the returned basis obeys the theorem statement.

Lemma IV.7. If Algorithm 2 does not return “Fail”, the
returned set B is a basis and obeys c(B) ≤ c(x) and
|B ∩ δ(S)| ≤ 2bS + 1 for all S ∈ L.

Proof. We prove the claim by induction on |E| + |L|. The
claim is trivially true if E = ∅.

Algorithm 2 Procedure LAMCONSTRAINEDBASIS, used to
demonstrate Theorem IV.6.
Input: Instance (G = (V,E, c),M,L, b) where M is tight

for L and (4) is feasible.
Output: Basis B of M.

1: If E = ∅, return ∅.
2: Let x be a basic optimal solution to (4).
3: If there is an edge e with xe = 0, return

LAMCONSTRAINEDBASIS(G− e,M− e,L, b).
4: If there is an edge e with xe = 1, return {e} ∪

LAMCONSTRAINEDBASIS(G − e,M/e,L, b′), where
b′S = bS if e /∈ δ(S), and b′S = bS − 1 if e ∈ δ(S).

5: Let Ltight be the set of cuts S ∈ L with x(δ(S)) = bS .
6: If there is a set S ∈ Ltight for which either

∑
e∈δ(S)(1−

xe) < 3, or there is an S′ 6= S ∈ Ltight with
δ(S′) ⊆ δ(S) and

∑
e∈δ(S)\δ(S′)(1−xe) < 2, then return

LAMCONSTRAINEDBASIS(G,M,L \ {S}, b).
7: return “Fail”. . Should not reach this line

So suppose the claim holds for all smaller values of |E|+
|L|. If xe = 0 for some e in step 3, then the claim is immediate;
as long as the recursive call succeeds, returning a basis B′ of
M− e approximately satisfying the constraints, then B = B′

is of course a basis of M still approximately satisfying the
constraints. Furthermore, since c(B′) ≤ c(x′) where x′ is a
basic optimal solution to the problem on M− e, and x|E\{e}
is feasible for the problem onM−e, c(B) = c(B′) ≤ c(x′) ≤
c(x). If xe = 1 for some e in step 4, and the recursive call
succeeds and returns a basis B′ of M/e, then B := B′ ∪ {e}
is a basis of M. Further, for any set S ∈ L with e /∈ δ(S),
we have

|B ∩ δ(S)| = |B′ ∩ δ(S)| ≤ 2b′S + 1 = 2bS + 1.

On the other hand if e ∈ δ(S), we have

|B ∩ δ(S)| = |B′ ∩ δ(S)|+ 1 ≤ 2b′S + 2 < 2bS + 1.

Finally, since c(B′) ≤ c(x′) where x′ was a basic optimal
solution to the problem on M/e, and x|E\{e} is feasible for
the problem on M/e, c(B) = c(B′) + c(e) ≤ c(x′) + c(e) ≤
c(x).

It remains to consider the situation where we drop a
constraint in step 6. Suppose a set S ∈ Ltight is dropped
because |δ(S)| − x(δ(S)) =

∑
e∈δ(S)(1− xe) < 3. Since the

constraint is tight, we deduce that |δ(S)| − bS < 3, and so
|δ(S)| ≤ bS + 2 ≤ 2bS + 1 as desired.

Now suppose S ∈ Ltight is dropped because there is an
S′ 6= S ∈ Ltight with δ(S′) ⊆ δ(S) and

∑
e∈δ(S)\δ(S′)(1 −

xe) < 2. By tightness, x(δ(S)\δ(S′)) = x(δ(S))−x(δ(S′)) =
bS−bS′ is an integer. Note that either δ(S′) = δ(S), in which
case clearly we can drop the duplicate constraint, or bS > bS′ ;
assume the latter. We have |δ(S) \ δ(S′)| ≤ 1 + bS − bS′ .



Suppose B is any basis satisfying |B ∩ δ(S′)| ≤ 2bS′ + 1.
Then

|B ∩ δ(S)| ≤ |B ∩ δ(S′)|+ |δ(S) \ δ(S′)|
≤ (2bS′ + 1) + 1 + bS − bS′

= bS′ + 2 + bS

≤ (bS − 1) + 2 + bS ≤ 2bS + 1.

Of course, dropping a constraint can only decrease the cost of
a basic optimal solution to (4), so c(B) ≤ c(x) is immediate
by induction in this case.

Now we are ready to prove the theorem.

Proof of Theorem IV.6. By the above lemma, it is enough to
prove that the algorithm succeeds. For this, it suffices to show
that whenever the preconditions of LAMCONSTRAINEDBASIS
are satisfied, the procedure never reaches step 7.

Suppose for a contradiction that we do reach step 7. By
assumption, none of the constraints defining the extreme point
x are of the form xe = 0 or xe = 1, so they all come
from tight cut constraints and tight matroid constraints. Let
Cbasis = {C1, C2, . . . , Cr}, with C1 ( C2 · · · ( Cr ⊆ E and
Lbasis ⊆ Ltight be such that the constraints x(δ(S)) = bS
for S ∈ Lbasis and x(C) = rankM(C) for C ∈ Cbasis are
a collection of linearly independent tight constraints defining
x. Moreover, choose this basis of tight constraints in such
a way that |Cbasis| is as large as possible. The fact that the
tight matroid constraints form a chain follows from standard
uncrossing arguments (see [27] Chapter 41 or [16]). Since
there are precisely |E| defining constraints, we have

|E| = |Lbasis|+ |Cbasis|.

We note that since M is L-aligned, the maximality of Cbasis
ensures that E(S) ∈ span(Cbasis) for each S ∈ L.

Assign 1 splittable token to each e ∈ E; our goal will be to
assign these tokens to the constraints of Lbasis and Cbasis so
that each tight constraint gets 1 token, and there is something
left over. This will be our desired contradiction.

We will assign xe tokens to Ci for each e ∈ Ci \ Ci−1.
Since 0 < xe < 1 for each e, and x(Ci) and x(Ci−1) are both
integers with x(Ci−1) < x(Ci), we can deduce that x(Ci \
Ci−1) ≥ 1.

Now each edge has 1 − xe tokens remaining. Our token
assignment scheme will be as follows. We start with an
assignment that is very reminiscent of the scheme for degree
bounded spanning trees [28]. For each e = {u, v}, we assign
(1 − xe)/2 tokens to the smallest set in Lbasis containing u,
and (1− xe)/2 tokens to the smallest set in Lbasis containing
v. After this, we work bottom up on Lbasis, and if S ∈ Lbasis

has strictly more than the 1 token needed, we assign the excess
to its parent in Lbasis.

First, any minimal set S ∈ Lbasis satisfies
∑
e∈δ(S)(1 −

xe) ≥ 3, meaning that at least 3
2 tokens are initially assigned

to S. So S receives enough tokens to give a half token as
excess to its parent. Inductively, we claim that every set gets
1 token, and moreover, has an excess of at least 1

2 that it

can give to its parent. For any non-minimal S ∈ Lbasis, we
have three cases depending on the number of disjoint maximal
children of S in Lbasis. In each case we will consider the
graph GS = (VS , ES) resulting from contracting the maximal
children of S in Lbasis in the graph G[S]. In Cases 2 and 3
we crucially use that x(ES) is an integer by Lemma IV.2.

- Case 1: S has at least three maximal children in Lbasis.
Then inductively, each of these children has an excess
of at least 1

2 . This gives us at least 3
2 tokens for S, as

desired.

- Case 2: S has exactly two maximal children A,B ∈
Lbasis.

S

A B

E3

E1

E2

E5

E4

Fig. 2. Setting for Case 2. Note some edge sets may be empty.

Inductively, each child has an excess of at least 1
2 , giving

us at least one token. Thus we need to collect at least 1
2

additional tokens.
Consider the edge sets as defined in Fig. 2. In particular,

E1 = δ(S) \ (δ(A) ∪ δ(B))

E2 = (δ(A)4 δ(B)) \ δ(S)

E3 = δ(A) ∩ δ(B)

E4 = (δ(A) ∪ δ(B)) ∩ δ(S)

E5 = ES \ (E2 ∪ E3)

First we observe that E1 ∪ E2 ∪ E5 is nonempty. For
suppose not; then, with χ denoting the incidence vector
of a set, we can write χ(δ(S)) + 2χ(E(S)) as

χ(δ(A)) + χ(δ(B)) + 2χ(E(A)) + 2χ(E(B)).

However, by the maximality of our choice of Cbasis,
E(A), E(B) and E(S) are all in the span of Cbasis,
whereas δ(S), δ(A) and δ(B) are all in Lbasis. Thus we
have a linear dependence among the constraints defined
by Cbasis and Lbasis, a contradiction.
So x(E1) + x(E2) + x(E5) > 0. Therefore, we get

|E1|+ |E2| − x(E1)− x(E2)

2
+ |E5| − x(E5)

= z −
(
x(E1) + x(E2)

2
+ x(E5)

)
> 0



fractional tokens for some z ∈ Z≥0. We will prove that
x(E1)+x(E2)

2 + x(E5) is half integral, from which the
claim follows. By the integrality of x(ES) (using L-
alignment) and the tightness of the constraints on A,B
and S, we have that

a := x(E2) + x(E3) + x(E5)

b := x(E2) + 2x(E3) + x(E4)

c := x(E1) + x(E4)

are all integers. Since a − b/2 + c/2 = x(E1)+x(E2)
2 +

x(E5), the claim follows.

- Case 3: S has precisely one maximal child S′ in Lbasis.

S

S′

E2

E1

E3

E4

Fig. 3. Setting for Case 3.

We need to find 1 token that has been given by edges
directly to S, so that the 1

2 excess token from S′ can be
carried over as the excess of S.
If δ(S′) ⊆ δ(S), then because no relaxation step was
possible in line 6,

∑
e∈δ(S)\δ(S′)(1−xe) ≥ 2. Since each

edge in δ(S) \ δ(S′) contributes (1− xe)/2 tokens, this
gives us our token as necessary. Similarly, if δ(S′) ⊇
δ(S) we get the desired one token.
So assume that δ(S) \ δ(S′) and δ(S′) \ δ(S) are both
nonempty. Let

E1 := δ(S) \ δ(S′),
E2 := δ(S′) \ δ(S),

E3 := ES \ δ(S′), and
E4 := δ(S) ∩ δ(S′).

(See Figure 3.)
Let δ ∈ [0, 1) be the fractional part of x(E4). Note that
the number of tokens assigned to S is

|E3| − x(E3) + 1
2 (|E1|+ |E2| − x(E1)− x(E2)). (5)

Also observe that

x(E2)+x(E3), x(E1)+x(E4), and x(E2)+x(E4)
(6)

are all integer-valued, by tightness of the cut constraints
and L-alignment. We distinguish two subcases.

– δ = 0. Then x(E1) and x(E2) are both integers, and
moreover since E1 and E2 are nonempty, |E1|−x(E1)
and |E2| − x(E2) are both positive integers. This
already gives us the desired 1 token by (5).

– δ > 0. Then by (6) the fractional parts of x(E1) and
x(E2) are both 1− δ, and the fractional part of x(E3)
is then δ. Thus |E1|−x(E1) ≥ δ (being positive, with
fractional part δ); similarly, |E2| − x(E2) ≥ δ and
|E3| − x(E3) ≥ 1 − δ. Substituting into (5), we have
at least 1 − δ + (2δ)/2 = 1 tokens assigned to S, as
required.

We have demonstrated that all sets in Lbasis receive a full
tokens; moreover, any maximal set in Lbasis will have an extra
token that is not needed, since it has no parent to give it
to. So we have our desired contradiction: |E| > |Cbasis| +
|Lbasis|.

V. CONCLUSION

Besides the (strong) thin tree conjecture, our work leaves
open several directions. One fascinating question is whether
it is possible to leverage or strengthen our results to give
a novel constant factor approximation algorithm for ATSP.
While an algorithmic version of the strong thin tree conjecture
is sufficient to give a constant factor approximation algorithm
for ATSP, it is unclear if it is necessary: indeed, the current
constant factor approximation algorithm for ATSP is not
known to imply anything about thin trees. We ask if perhaps it
is sufficient to focus on thinness for a laminar (or near laminar)
family of cuts.

A second open question is to generalize our framework
for other network design problems. One can ask, for ex-
ample, if laminar constrained survivable network design and
laminar constrained Steiner network admit bi-criteria constant
factor approximations. Many results are known in the degree
bounded case, see e.g. [17, 18, 8].

A third open question is whether it is possible to achieve
a minimum cost tree which violates the degree bounds in a
laminar family by any constant factor. One would need to
avoid the scaling currently present in our reduction. A natural
relaxation of this question is to ask for a 1 + ε approximation
for arbitrarily small ε as has been done for the chain case [20].

Finally, we note that our results immediately give a thin
tree with respect to the set of minimum cuts of any graph,
and we believe it may be possible to extend it to the set of
all (1 + ε) near minimum cuts for some small ε > 0 using
results from [15]. We ask whether it is possible to extend our
result to more general families of cuts such as the union of a
constant number of laminar families or the set of cuts with at
most αk edges in the graph for some constant α significantly
larger than 1.
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[16] T. Király, L. C. Lau, and M. Singh. “Degree Bounded
Matroids and Submodular Flows”. Combinatorica 32.
2012, pp. 703–720. DOI: 10.1007/s00493-012-2760-6
(cit. on pp. 2, 3, 8).

[17] L. C. Lau, J. S. Naor, M. R. Salavatipour, and M.
Singh. “Survivable Network Design with Degree or
Order Constraints”. SIAM Journal on Computing 39(3).
2009, pp. 1062–1087. DOI: 10.1137/070700620. eprint:
https://doi.org/10.1137/070700620 (cit. on p. 9).

[18] L. C. Lau and M. Singh. “Additive Approximation for
Bounded Degree Survivable Network Design”. SIAM
Journal on Computing 42(6). 2013, pp. 2217–2242.
DOI: 10.1137/110854461. eprint: https : / /doi .org/10.
1137/110854461 (cit. on p. 9).

[19] A. Linhares, N. Olver, C. Swamy, and R. Zenklusen.
“Approximate multi-matroid intersection via iterative
refinement”. Mathematical Programming 183(1). 2020,
pp. 397–418. DOI: 10 . 1007 / s10107 - 020 - 01524 - y
(cit. on pp. 6, 7).

[20] A. Linhares and C. Swamy. “Approximating Min-Cost
Chain-Constrained Spanning Trees: A Reduction from
Weighted to Unweighted Problems”. Mathematical Pro-
gramming 172. 2018, pp. 17–34. DOI: 10.1007/s10107-
017-1150-7 (cit. on pp. 2, 9).

https://doi.org/10.1145/3478537
https://doi.org/10.1109/FOCS.2015.11
https://doi.org/10.1007/s10107-012-0537-8
https://doi.org/10.1007/s10107-012-0537-8
https://doi.org/10.1016/0167-6377(92)90045-5
https://doi.org/10.1016/0167-6377(92)90045-5
https://doi.org/10.1109/FOCS.2010.60
https://doi.org/10.1109/FOCS.2010.60
https://doi.org/10.1145/2591796.2591837
https://doi.org/10.1145/139404.139469
https://doi.org/10.1145/139404.139469
https://www.sfu.ca/~goddyn/Problems/problems.html
https://www.sfu.ca/~goddyn/Problems/problems.html
https://doi.org/10.1109/FOCS.2006.48
https://doi.org/10.1109/FOCS54457.2022.00084
https://doi.org/10.1109/FOCS54457.2022.00084
https://doi.org/10.1007/s00493-012-2760-6
https://doi.org/10.1137/070700620
https://doi.org/10.1137/070700620
https://doi.org/10.1137/110854461
https://doi.org/10.1137/110854461
https://doi.org/10.1137/110854461
https://doi.org/10.1007/s10107-020-01524-y
https://doi.org/10.1007/s10107-017-1150-7
https://doi.org/10.1007/s10107-017-1150-7


[21] A. Marcus, D. A. Spielman, and N. Srivastava. “In-
terlacing Families II: Mixed Characteristic Polynomials
and the Kadison-Singer Problem”. Annals of Mathemat-
ics 182(1). 2015, pp. 327–350 (cit. on p. 3).
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