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Abstract

Probabilistic forecasting of electricity load curves is of fundamental impor-
tance for effective scheduling and decision making in the increasingly volatile
and competitive energy markets. We propose a novel approach to construct
probabilistic predictors for curves (PPC), which leads to a natural and new
definition of quantiles in the context of curve-to-curve linear regression. There
are three types of PPC: a predict set, a predictive band and a predictive quan-
tile, and all of them are defined at a pre-specified nominal probability level. In
the simulation study, the PPC achieve promising coverage probabilities under
a variety of data generating mechanisms. When applying to one day ahead

∗The authors gratefully acknowledge please remember to list all relevant funding sources in the
unblinded version
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forecasting for the French daily electricity load curves, PPC outperform several
state-of-the-art predictive methods in terms of forecasting accuracy, coverage
rate and average length of the predictive bands. For example, PPC achieve up
to 2.8-fold of the coverage rate with much smaller average length of the pre-
dictive bands. The predictive quantile curves provide insightful information
which is highly relevant to hedging risks in electricity supply management.

Keywords: Dimension reduction via SVD; Electricity load forecasting; Linear curve-
to-curve regression; Curve quantile; Probabilistic predictors for curves.

1 Introduction

Electricity load forecasting is an essential element for effective scheduling and deci-

sion making in energy markets. The conventional methods of load forecasting are

fundamentally deterministic and focus on the mean level of future consumption.

However, future is uncertain and costs are more driven by extreme events when,

for example, the electricity storage capacities are exhausted. The modern upgrades

of power grids with integration of renewable energy and development of efficient

electricity management system further introduce uncertainty and fluctuations in the

volatile markets. This advocates for probabilistic forecasting methods, aiming at not

only accurate point prediction of load, but also insightful predictive intervals and

predictive quantiles at pre-determined nominal probability levels.

One-day-ahead high temporal resolution (hourly or half-hourly) load forecasting

plays a key role in power system planning and operation, where many operating

decisions rely on the load forecasts, such as dispatch scheduling of production trans-

formation, reliability analysis and demand management, see Rolnick et al. (2019).

On one hand, the development and integration of renewable production such as

photovoltaic panel or wind turbines increases the proportion of electricity produc-

tion units dependent on meteorological conditions, making the supply of electricity
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more volatile and unpredictable, see Gielen et al. (2019). On the other hand, the

electricity storage capacities are still expensive and limited, though the smart grid

infrastructures (Wang et al., 2018) and smart charging programs (Garćıa-Villalobos

et al., 2014) allow for more information to transit between end users and producers,

increasing the efficiency of demand response (Wang et al., 2015).

While a point prediction is most frequently used in forecasting future electricity

loads, the associated risk and the uncertainty are not immediately clear. A predic-

tive interval with a pre-specified coverage probability is more informative, which is

arguably the most frequently used probabilistic forecaster. Hong and Fan (2016) sur-

veys the available models/methods for probabilistic forecasting for electricity loads,

including evaluation methods and common misunderstanding. See also Hong et al.

(2016, 2019). Nevertheless, most available methods and analysis are for forecast-

ing individual loads separately, as simultaneous probabilistic forecasting for multiple

values (such as the loads on each 30 minute interval over a day) imposes extra

complication and challenges. Simply using individual predictive intervals together,

though commonly used in practice, losses the probability interpretation immediately.

Adjusting each individual coverage probability requires sophisticated modeling for

the intricate dependence among different predictive intervals, which is almost al-

ways formidable. The approximation based on the Bonferroni correction is often

too crude to be useful. Direct construction of a joint predictive region, with a pre-

specified coverage probability, is only possible in some simple cases. Even then, one

faces the difficulties in choosing the geometric shape of the region (Polonik and Yao,

2000).

Within the context of forecasting daily loads with high temporal resolution, it is

attractive to review the loads over a day as a curve. It embeds nonstationary daily

patterns into a stationary framework in a Hilbert space, and, therefore, provides
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competitive and reliable pointwise forecasting; see Cho et al. (2013, 2015); Chen and

Li (2017); Chen et al. (2020). The goal of this paper is to develop some probabilistic

predictors for curves (PPC) with a pre-specified coverage probability. We advocate

three types of PPC: a predictive set which consists of a bundle of curves, a predictive

band which is a continuous region, and a predictive quantile. The key idea of the

new approach is to transfer a curve-to-curve linear regression into several scalar

linear regressions (Cho et al., 2013). Then a joint predictive region for the error

terms across all scalar linear regression models is constructed via a χ2-type statistic,

based on which a predictive set for the original targeted curve is induced. The

calibration to the nominal coverage probability is achieved either via a residual-based

χ2-approximation or the empirical distributions of the residuals. For the latter, a

bootstrap adjustment should be applied when the sample size is small. We define the

envelope of the predictive set as the predictive band, and the most ‘outside’ curves

in the predictive set as the predictive quantiles. The ‘outsideness’ is quantified using

the concept of the extremal depth for curve data due to Narisetty and Nair (2016).

Our simulation study indicates that PPC achieve accurate coverage rates. When

applying to the French electricity loads data with a temporal resolution of 30 minutes,

PPC provide the probabilistic forecasts for the daily loads as a whole. The predictive

quantiles at different probability levels also deliver insightful information on prospec-

tive future scenarios, which is valuable for hedging risks in electricity management.

In the context of forecasting each individual loads, it also outperforms several state-

of-the-art predictive methods in terms of not only more accurate pointwise forecasts,

but also more accurate predictive intervals in the sense of larger coverage probability

and shorter length of the intervals.

To our best knowledge, this is the first attempt to construct probabilistic fore-

casting predictors at a given nominal probability for a curve. The proposed quantile
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curves also admit natural and explicit probability interpretation. The literature on

forecasting electricity loads is large. We only list a selection of those on predic-

tive interval forecasting for individual values. Taylor and Buizza (2003) constructed

interval forecasting based on weather ensemble prediction consisting of 51 weather

scenarios. Petiau (2009) proposed interval forecasts based on empirical quantiles of

the relative forecasting errors in the past. Kou and Gao (2014) proposed a het-

eroscedastic Gaussian model for predictive distribution of one day ahead electricity

loads. Recently, there are some approaches extending quantile regression based on

pin-ball loss optimization of Koenker and Bassett (1978) to produce interval fore-

casts, such as quantile additive models (Gaillard et al., 2016; Dordonnat et al., 2016;

Fasiolo et al., 2020), tree-based ensemble with gradient boosting models (Roach,

2019), and ensemble of experts neural network, quantile random forest and tree-

based ensemble (Smyl and Hua, 2019). Apart from constructing predictive intervals,

Cabrera and Schulz (2017) derived daily quantile curves based on pointwise quan-

tile estimation and forecasted the future load curves based on functional principal

component analysis. Unfortunately, the quantile curves do not inherent the proba-

bility interpretation of pointwise quantiles. Therefore, the coverage probabilities of

the resulting forecasting bands are unknown. Antoniadis et al. (2016) proposed a

nonparametric function-valued model which combines kernel regression and wavelet

transformation to produce simultaneous loads predictions at multiple time horizons,

where construction of predictive interval for the whole daily curves is considered

difficult; see Section 4 of Antoniadis et al. (2016).

The rest of the article is structured as follows. Section 2 introduces the curve

linear regression framework to model the dependence structures between curves and

proposes the method to construct predictive sets, predictive bands and the predictive

quantiles for curves. Several simulation studies are conducted in Section 3 to illus-
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trate the finite sample performance of the proposed PPC methodology. In Section

4, PPC are applied to predict day-ahead French electricity load curves in 2019 based

on the historical values from 2012 to 2018. Section 5 concludes.

2 Methodology

2.1 Curve regression and dimension reduction

Let Yt(u), u ∈ I1, be the electricity load curve on the t-th day. Associated with

each Yt(·), there is a regressor curve Xt(v), v ∈ I2, which may be Yt−1(·), or multiple

lagged curves such as Yt−1(·) and Yt−2(·) together, or even contain multiple exogenous

variables such as (predicted) temperature curve for the day. We assume that the first

two moments of {Yt(·), Xt(·)} are time-invariant. Consider the curve linear regression

Yt(u) = µy(u) +

∫
I2
{Xt(v)− µx(v)}β(u, v)dv + εt(u), u ∈ I1, (1)

where µy(u) = E{Yt(u)}, µx(v) = E{Xt(v)}, εt(·) is zero-mean independent noise

curve. This is the same setting as Cho et al. (2013, 2015). Perform the singular-

value-decomposition (SVD):

Σyx(u, v) ≡ Cov(Yt(u), Xt(v)) =
∞∑
j=1

√
λjϕj(u)ψj(v),

where λ1 ≥ λ2 ≥ · · · ≥ 0 are singular values, then it holds that

Yt(u)− µy(u) =
∞∑
j=1

ξtjϕj(u), Xt(v)− µx(v) =
∞∑
j=1

ηtjψj(v), (2)

where

ξtj =

∫
I1
{Yt(u)− µy(u)}ϕj(u)du, ηtj =

∫
I2
{Xt(u)− µx(u)}ψj(u)du.

6



It follows from Theorem 1 of Cho et al. (2013) that the curve regression (1) is

effectively equivalent to

ξtj =
∞∑
`=1

bj`ηt` + εtj, εtj ∼ (0, σ2
j ), j = 1, 2, · · · , (3)

where

bj` =

∫
I1×I2

ϕj(u)ψ`(v)β(u, v)dudv, εtj =

∫
I1
εt(u)ϕj(u)du.

To simplify the exploration, we assume from now on

Yt(u)− µy(u) =
d∑
j=1

ξtjϕj(u), (4)

where d ≥ 1 is an unknown but finite integer. We will specify how to estimate d in

practice below. Furthermore, we assume that (3) admits the finite expression

ξtj =
∑
`∈πj

bj`ηt` + εtj, εtj ∼ (0, σ2
j ), j = 1, · · · , d, (5)

where πj is a set containing the indices of the finite number of the regressors ηt` for

ξtj. By the virtue of SVD, it holds that j ∈ πj.

With available data {(Yt(·), Xt(·)), 1 ≤ t ≤ N}, put

µ̂y(u) =
1

N

N∑
t=1

Yt(u), µ̂x(u) =
1

N

N∑
t=1

Xt(u), (6)

Σ̂yx(u, v) =
1

N

N∑
t=1

{Yt(u)− µ̂y(u)}{Xt(v)− µ̂x(v)}.

Performing SVD on Σ̂yx(u, v), we obtain

Σ̂yx(u, v) =
∞∑
j=1

λ̂
1
2
j ϕ̂j(u)ψ̂j(v), (7)
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where λ̂1 ≥ λ̂2 ≥ · · · are the singular values of Σ̂yx(u, v). Now replacing {ξtj, ηtj} in

(5) by

ξ̂tj =

∫
I1
{Yt(u)− µ̂y(u)}ϕ̂j(u)du and η̂tj =

∫
I2
{Xt(u)− µ̂x(u)}ψ̂j(u)du, (8)

we select regressors in model (5), for each fixed j, using stepwise regression controlled

by AIC, leading to an estimated index set π̂j. Other methods such as the least squares

estimation with `1 (Lasso) or `2 (Ridge) penalty can also be used, which produce

similar performance in our analysis and are omitted in the manuscript. The fitted

model is then of the form

ξ̂tj =
∑
`∈π̂j

b̂j`η̂t` + ε̂tj, j = 1, · · · , d̂, (9)

where d̂ is an estimator for d to be specified below, and

ε̂tj = ξ̂tj −
∑
`∈π̂j

b̂j`η̂t`, σ̂2
j =

1

N − |π̂j|

N∑
t=1

(
ε̂tj
)2
. (10)

In the above expression, |π̂j| denotes the cardinality of π̂j.

When estimating the predictive curve E{Yt(·)|Xt(·)}, Cho et al. (2013) chose d

by

d̃1 = arg min
1≤j≤d0

λ̂j+1

/
λ̂j,

where d0 is a pre-specified positive integer. Given that λ1 ≥ · · · ≥ λd > 0 = λd+1 =

· · · , this selection attempts to ensure that ξt1, · · · , ξtd catch all the information on

Yt(·) from Xt(·). Hence d̃1 is appropriate for constructing a confidence set for the

expectation curve E{Yt(·)|Xt(·)}. This is different from our goal of constructing a

predictive set for Yt(·) given Xt(·), for which the noise term εt(·) in (1) also matters.

Letting d̃2 be the minimum value of d such that the total variation of the RHS of (4)
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over t = 1, · · · , N accounts for more than a certain percentage of the total variation,

e.g. 99.9%, of {Yt(·)}, we estimate d by

d̂ = max(d̃1, d̃2). (11)

2.2 Predictive sets for Y (·) given X(·)

Given a new value of X(·), our goal is to predict Y (·) defined by the RHS of (1) with

{Xt(·), εt(·)} replaced by {X(·), ε(·)}, where ε(·) is unobservable. Then it follows

from (2) and (4) that

Y (u)− µy(u) =
d∑
j=1

ξjϕj(u), X(v)− µx(v) =
∞∑
j=1

ηjψj(v). (12)

Denote εt(d) = (εt1, · · · , εtd)′ and Σ = Var{εt(d)}. Write ε(d) = (ε1, · · · , εd)′.

For any α ∈ (0, 1), define

E1−α =
{
ε(d)

∣∣ ε(d)′Σ−1ε(d) ≤ Cα,d
}
,

where 0 < Cα,d <∞ is a constant determined by

P{εt(d) ∈ E1−α} = 1− α. (13)

Put

C1−α(X) =
{
µy(·) +

d∑
j=1

ξjϕj(·)
∣∣∣(ξ1 −∑

`∈π1

b1`η`, · · · , ξd −
∑
`∈πd

bd`η`

)′
∈ E1−α

}
.

It follows from (5), (12) and (13) that

P{Y (·) ∈ C1−α(X)|X(·)} = 1− α,

i.e. C1−α(X) is a true predictive set for Y (·) based on X(·) with the nominal coverage

probability 1− α. In practice, we replace d by d̂ in (11), µy(·) by µ̂y(·) in (6), ϕj(·)
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by ϕ̂j(·) in (7), and (bj`, πj) by (̂bj`, π̂j) in (9). A realistic predictive set, i.e. an

estimator for C1−α(X) can be defined as

Ĉ1−α(X) =
{
µ̂y(·) +

d̂∑
j=1

(
εj +

∑
`∈π̂j

b̂j`η̂`

)
ϕ̂j(·)

∣∣∣ ε(d̂)′Σ̂
−1
ε(d̂) ≤ Cα,d̂

}
, (14)

where {η̂`} are obtained in (8) with Xt(·) replaced by X(·), Σ̂ is the sample covariance

matrix of ε̂t ≡ (ε̂t1, · · · , ε̂td̂)′ for t = 1, · · · , N , and ε̂tj is given in (10). The (i, j)-th

element of Σ̂ is defined as
∑N

t=1 εtiεtj
/

(N−γij), where γij is the cardinality of π̂i∪ π̂j.

Now, we propose two methods to determine the constant Cα,d̂ .

(i) χ2-approximation: Assuming that εt1, · · · , εtd are jointly normal, then εt(d)′Σ−1εt(d) ∼

χ2
d . Let Cα,d̂ be the (1− α)-th percentile of the χ2 distribution with d̂ degrees

of freedom. We use in (14)

(ε1, · · · , εd̂)
′ = Σ̂

1/2
(z1, · · · , zd̂)

′, (15)

where z1, · · · , zd̂ are independent and N (0, 1), and
∑

i z
2
i ≤ Cα,d̂. In principle

Ĉ1−α(X) consists of infinite number of curves.

(ii) Empirical distribution for residuals: An alternative is to let Cα,d̂ be the (1−α)-

th percentiles of the empirical distribution of

(ε̂t1, · · · , ε̂td̂)
′ Σ̂
−1

(ε̂t1, · · · , ε̂td̂) t = 1, · · · , N. (16)

Then Ĉ1−α(X) consists of the [N(1−α)] curves generated via εt(d̂) = (ε̂t1, · · · , ε̂td̂)′

for which the inequality in (14) holds and 1 ≤ t ≤ N .

2.3 Predictive bands for Y (·) given X(·)

In spite of the clear probability interpretation, the predictive set Ĉ1−α(X) consists of

a bundle of curves. In practice, it is more convenient to use a band or a region which
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covers the target curve Y (·) with probability 1−α. A natural predictive band is the

envelope of Ĉ1−α(X):

B̂1−α(X) =
(
Ŷlow(·), Ŷup(·)

)
,

where

Ŷlow(u) = min{Z(u)
∣∣Z(·) ∈ Ĉ1−α(X)}, Ŷup(u) = max{Z(u)

∣∣Z(·) ∈ Ĉ1−α(X)}.

(17)

For Ĉ1−α(X) constructed based on the χ2 distribution, the infinite number of

curves in Ĉ1−α(X) fills in every space in B̂1−α(X) due to the continuity of the normal

distribution; see also (15). It holds that

P{Y (·) ∈ B̂1−α(X) |X } ≥ P{Y (·) ∈ Ĉ1−α(X) |X } ≈ 1− α. (18)

Some adjustment may be applied to make the coverage probability more in line with

the nominal level. On the other hand, there is a potential problem in B̂1−α(X) when

Ĉ1−α(X) is constructed based on the empirical distribution, as then Ĉ1−α(X) consists

of merely [N(1− α)] curves, and the width Ŷup(·)− Ŷlow(·) increases as N increases.

For small N , the band B̂1−α(X) could be too narrow to cover Y (·) with probability

1 − α. For forecasting electricity load curves as well as other real world data, the

sample sizes are often small in order to retain the ‘stationarity’.

We propose a bootstrap method to adjust the coverage probability of B̂1−α(X).

For a given positive integer K, let ε?1j, · · · , ε?Kj be drawn independently (with re-

placement) from ε̂1j, · · · , ε̂Nj, j = 1, · · · , d̂. Put ε?i = (ε?i1, · · · , ε?id̂)
′ and

C?1−α(X) =
{
µ̂y(·) +

d̂∑
j=1

(
ε?ij +

∑
`∈π̂j

b̂j`η̂`

)
ϕ̂j(·)

∣∣∣ (ε?i )′Σ̂−1ε?i ≤ Cα,d̂ , 1 ≤ i ≤ K
}
.

(19)

See also (14). To define B̂1−α(X), we replace Ĉ1−α(X) by Ĉ1−α(X)∪C?1−α(X) in (17).
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To determine the bootstrap sample size K, we adopt a leave-one-out procedure

as follows. For each 1 ≤ i ≤ N , we construct a predictive band for Yi(·) conditionally

on Xi(·) in a similar way as above, i.e. we construct Ĉ1−α(Xi) and C?1−α(Xi) as in

(14) and (19) respectively, replacing η̂j by η̂ij. Leave out the term (ε̂i1, · · · , ε̂id̂) in

(14), and take the bootstrap sample from the other (N − 1) residual vectors. We

calculate the relative frequency for the occurrence of the event that the resulting

envelop contains Yi(·) for i = 1, · · · , N . Then choose K such that the corresponding

relative frequency is closest to the nominal level 1 − α. In practice, we choose K

among a finite set, for example, 0, 200, 400, 600, 800 and 1000. Also note that in the

above cross validation approach, we use µ̂y(·), b̂j`, η̂ij and ϕ̂j(·) estimated from the

whole sample of the available observations. The leave-one-out strategy only applies

to the residuals.

We can also develop a bootstrap procedure to determine the number of random

curves to be included in the χ2-based predict set Ĉ1−α(X) such that the resulting

B̂1−α(X) has the coverage probability 1− α; see (18).

2.4 Predictive quantiles for Y (·) given X(·)

For forecasting a univariate random variable, it is informative to look at predictive

(i.e. conditional) quantiles at different levels to gauge the associated risk and un-

certainty. This is effectively equivalent to looking at how a predictive interval varies

with respect to its coverage probability. Unfortunately this analogue is no longer

available in forecasting a random vector or a random curve, for which the concept

of quantiles is not well-defined. Nevertheless it remains attractive to look at some

‘typical’ scenarios among the curves in Ĉ1−α(X) and to observe how they vary with

respect to the values of α.
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One plausible way forward is to define the most ‘outside’ curve (or curves) in

Ĉ1−α(X) as the (1 − α)-th quantile(s). However the concept of ‘outsideness’ needs

to be relaxed as it is unlikely that one single curve lies completely on the one side of

all the other curves in Ĉ1−α(X), as the curves often cross over with each other. We

adopt the so-called extremal depth curves of Narisetty and Nair (2016) to quantify

the degree of ‘outsideness’ for each curve. We introduce the concept of the extremal

depth first.

Let S = {f1, · · · , fp} be a bundle of curves defined on set I. For any curve g

defined on I and u ∈ I, a pointwise depth of g(u) with respect to S is defined as

Dg(u,S) = 1− 1

p

∣∣∣ p∑
i=1

[
I{fi(u) < g(u)} − I{fi(u) > g(u)}

]∣∣∣,
where I(·) denotes the indicator function. Obviously, Dg takes values 0, 1/p, 2/p, · · · , 1,

and the larger Dg is, the more central g(u) is with respect to {fi(u)}. Note that g may

or may not be a member of S. A depth cumulative distribution function (d-CDF) is

defined as

Φg(r) =
1

A(I)

∫
I
I{Dg(u,S) ≤ r}du, r ∈ [0, 1],

where A(I) =
∫
I du. Note that if Φg has most of its mass close to 0 (or 1), g is away

from (or close to) the ‘center’ of S.

Narisetty and Nair (2016) adopts the left-tail stochastic ordering for d-CDFs to

rank the ‘outsideness’ or ‘extremeness’ of two curves, which differs from the other def-

initions for curve data depth in literature (López-Pintado and Romo, 2009; Fraiman

and Muniz, 2001):

Let 0 ≤ u1 ≤ · · · ≤ um ≤ 1 be m pre-specified points. For two curves

g and h defined on I, g is said to be more extremal than h, denoted by
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g ≺ h, if there exists 1 ≤ k ≤ m for which

Φg(uk) > Φh(uk), and Φg(ui) = Φh(ui) for 1 ≤ i < k.

Now the extremal depth (ED) of function g in relation to curve bundle S is defined

as

ED(g,S) =
∣∣{i : fi � g, 1 ≤ i ≤ p}

∣∣/p,
where | · | denotes the cardinality of a set, and fi � g if either fi ≺ g or fi(uj) = g(uj)

for all j = 1, · · · ,m. Note that the smaller ED(g,S) is, the more outside g is from

S. We refer readers to Narisetty and Nair (2016) for further elaboration of the ED

concept.

Now we are ready to define the predictive quantile curves of Y (·) given X(·).

Definition 1. For any α ∈ (0, 1), a curve g ∈ C1−α(X) is called the (1 − α)-th

predictive quantile curve of Y (·) given X(·) if

ED{g, C1−α(X)} = min
h∈C1−α(X)

ED{h, C1−α(X)}. (20)

Intuitively, the (1− α)-th conditional quantile is the most outside curve, on the

most possible points in I1, among all the curves in C1−α(X). An estimator for the

quantile curve can be obtained from replacing C1−α(X) by Ĉ1−α(X) in the above

definition. In addition, we recommend also take the 2nd or even the 3rd minimizers

of (20) as the (1−α)-th quantiles, as the most outside can be either above, or below,

the other curves in C1−α(X). Furthermore, when Cα,d̂ is estimated by the empirical

distribution of (16), we use the union Ĉ1−α(X) ∪ C?1−α(X) in place of Ĉ1−α(X); see

(19).

Remark 1. The definitions for Dg(u,S) and ED(g,S) presented above are for S with

a finite cardinality. It serves the purpose since in practice we always use Ĉ1−α(X)
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with finite members. The extension to the cases with |S| =∞ can be formulated in

terms of distribution on S such as

Dg(u,S) = 1− |E[I{f(u) < g(u)} − I{f(u) > g(u)}]|, ED(g,S) = P (f � g),

where both the expectation and the probability are taken with respect to the distri-

bution of f on S.

3 Simulation

We illustrate the proposed PPC by simulation. In line with electricity load forecast-

ing, we set Xt(·) = Yt−1(·), and Yt(·) follows the functional autoregressive (FAR)

model

Yt(u) =
d∑
j=1

ξtjϕj(u), ξtj =
∑
`∈πj

bj`ξt−1,` + εtj, εtj ∼ IID(0, σ2), (21)

where ϕ1(u) = 1/
√

2 and ϕj(u) = cos((j − 1)πu) for j ≥ 2, u ∈ [−1.1]. We sample

d characteristic roots for an AR model from the interval [2, 5] ∪ [−5,−2] uniformly,

based on which the parameters bj`, ` = 1, · · · , d are determined for each j = 1, · · · , d.

Experiment 1: Let d = 4, πj = {1, · · · , 4}, εtj be normal distributed, and σ = 0.25

or 0.50 in (21). We draw Y1(·), · · · , YN+Ns(·) from the model, and use the first N

curves for estimation and the last Ns curve to check the forecasting accuracy. We

set the nominal coverage probability at 1 − α = 0.9. For N = 100, 200, 400, 800 or

1, 600, and Ns = 200, we calculate the predictive set Ĉ0.9(·) and the predictive band

B̂0.9(·) based on three methods: χ2-approximation, empirical distribution for residu-

als (ECDF), and ECDF with bootstrap (ECDF-B). With the χ2-approximation, we

include 1,500 curves in Ĉ0.9(·). For ECDF-B, we choose the bootstrap sample size as

a multiple of 200 between 0 and 1,000. We check the coverage rates of B̂0.9(·) for the
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200 post-sample curves and draw illustrative predictive quantile curves at the 40%

and 90% confidence levels. For more comprehensive evaluation, we also calculate the

pointwise mean absolute errors (MAE) on a grid ui = −1+0.04(i−1) (i = 1, · · · , 51)

over the 200 post-sample curves {Yk(·)}:

MAE =
1

51× 200

200∑
k=1

51∑
i=1

|Ŷk(ui)− Yk(ui)|. (22)

For each setting, we replicate the above exercise 400 times.

Figure 1 displays the box plots of the coverage rates of B̂0.9(·) based on, χ2-

approximation, ECDF and ECDF-B respectively, for the 200 post-sample curves

over 400 replications. Since εtj are normal, χ2-based B̂0.9(·) performs the best. The

sample size has minimal impact for predictive region with χ2, where the coverage

rates are all close to 0.9 except for N = 100. A simple trial shows that, when using

10, 000 instead of 1, 500 simulated curves, the coverage rate can be corrected to be

around the nominal rate for N = 100. It is also clear that the bootstrap adjustment

for the ECDF-based method is necessary, as the coverage rates of B̂0.9(·) based on

ECDF-B are clearly closer to the nominal coverage probability 0.9 than those based

on ECDF, especially for N ≤ 400. Also clearly noticeable is the improvement of

performance as the sample size N increases. On the other hand, the different noise

levels σ = 0.25 and 0.5 has no impact on the performance, as the signal-to-noise

ratio of a stationary AR process is invariant with respect to the noise level.

Table 1 lists the means and standard errors (in parentheses), over 400 replications,

of MAE in (22), the average length (AvL) of B̂0.9(·) over the 51 grid points, and the

proportion of the overlapping area:

POA = Area{B̂0.9(·) ∩ B0.9(·)}
/

Area{B0.9(·)}, (23)

where Area{B0.9(·)} is evaluated by simulation from the true model. The AvL for
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Figure 1: Experiment 1 – Box plots of post sample coverage rates of B̂1−α(X) based on

(a) χ2, (b) ECDF, and (c) ECDF-B for N = 100, 200, 400, 800, 1600 and σ = 0.25, 0.5. The

horizontal dash lines mark the positions of the nominal coverage probability 0.9.

B̂0.9(·) based on χ2 or ECDF-B tends to be larger than that based on ECDF. This

is due to the fact that B̂0.9(·) based on ECDF tends to be smaller, reflected by lower

coverage rates (see Figure 1) and smaller overlapping areas. Since the overlapping
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areas are always at least, respectively, 94.8%, 82.9%, 91.9% based on χ2, ECDF,

ECDF-B, B̂0.9(·) provides an accurate estimator for B0.9(·). The average length of

B̂0.9(·) with σ = 0.5 is significant larger than that with σ = 0.25, reflecting more

uncertainty in forecasting due to large noise. Note that the true AvL is 1.66 with

σ = 0.25, and 3.32 with σ = 0.50. The improvement due to the increase of N is

evident. For B̂0.9(·) based on ECDF-B, we also report the mean and standard errors

for B, where 200B is the selected bootstrap sample size. Also included in the table

are the average estimated values d̂. In fact, d̂ is always equal to the true value 4 in

the 400 replications.

As illustration, Figure 2 depicts 2 randomly selected post-sample curves together

with their 90% predictive regions and quantile curves at 40% and 90% confidence

levels based on χ2 with N = 100 and σ = 0.25. Even for the small sample size

case, the 90% predictive regions of the 2 curves are overlapping with the true regions

to a large extent. In addition, the 90% predictive quantile curves derived from

ED coincide with some parts of the bounds of 90 % predictive regions, and indeed

represent the most ‘outside’ curve in the associated predictive regions. The predictive

quantile curves at a higher confidence level (90%) are more ‘outside’ than those at a

lower level (40%) for most parts of the domain of the curves.

Experiment 2: We set in (21) d = 6, πj = {1, · · · , 6}, and consider three distribu-

tions for εtj: N(0, σ2), the centered and rescaled standard exponential distribution,

and the rescaled t-distribution with 5 degrees of freedom. The rescaling makes the

standard deviation σ = 0.25 for all the three distributions. Since PPC based on

ECDF-B are clearly superior than those based on ECDF in Experiment 1, we drop

the results based on ECDF.

We adopt the similar setting as in Experiment 1. The results are reported in
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Table 1: Experiment 1 – The means and standard errors (in parentheses) of MAE in (22),

the average length (AvL) of B̂0.9(·), the proportion of the overlapping area (POA) in (23),

and d̂ over 400 replications. For B̂0.9(·) based on ECDF-B, the selected bootstrap sample

size is 200B, and the means and standard errors of B are also included.

χ2 ECDF ECDF-B

σ N d̂ MAE AvL POA AvL POA AvL B POA

0.25 100 4 .297(.035) 1.726(.063) .948(.028) 1.420(.065) .829(.038) 1.626(.075) 4.01(.95) .919(.034)

200 4 .288(.016) 1.753(.045) .970(.015) 1.549(.054) .900(.026) 1.690(.056) 3.89(.96) .954(.020)

400 4 .284(.008) 1.765(.036) .980(.009) 1.648(.044) .947(.017) 1.722(.045) 3.20(1.1) .971(.013)

800 4 .282(.008) 1.771(.029) .985(.007) 1.723(.034) .975(.010) 1.736(.033) .87(.92) .978(.010)

1600 4 .282(.008) 1.777(.024) .988(.006) 1.779(.024) .989(.006) 1.779(.024) .00(.00) .989(.006)

0.5 100 4 .595(.098) 3.447(.122) .949(.030) 2.835(.128) .829(.039) 3.250(.149) 4.07(.92) .920(.036)

200 4 .575(.016) 3.506(.087) .970(.012) 3.097(.103) .901(.024) 3.379(.109) 3.92(.97) .954(.018)

400 4 .567(.016) 3.530(.071) .980(.008) 3.296(.087) .947(.016) 3.443(.090) 3.19(1.11) .971(.012)

800 4 .564(.016) 3.542(.057) .985(.007) 3.444(.068) .975(.010) 3.471(.066) .87(.93) .978(.010)

1600 4 .563(.015) 3.553(.048) .988(.006) 3.558(.049) .989(.006) 3.558(.049) .00(.00) .989(.006)

Tables 2. The performance of both the pointwise and probabilistic forecasting are

satisfactory, and are about the same with the three different distributions for εti.

The coverage rates (CR) of B̂0.9(·) are almost as good as in Experiment 1, especially

for N ≥ 400. In terms of CR, AvL and POA, there are hardly any substantial

differences between B̂0.9(·) based on χ2 or on ECDF-B. It is somehow surprising

that the χ2 based method works fine with the heavy-tailed t5 distribution and the

highly skewed exponential distribution. Note that the comparison of AvL can only be

made for the two cases with about the same CR. When N = 1, 600 with exponential

distributed εti, the CR for B̂0.9(·) based on the two methods are the same, the

AvL based on ECDF-B is 2.318 which is smaller than 2.359, the AvL based on χ2.

This may be due to the fact that the residuals from the fitted model capture the

skewed exponential distribution better than the χ2 approximation, though one may
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Figure 2: Experiment 1– Randomly selected 2 post-sample curves (solid lines), their true

90% regions (light blue shadow areas), predictive mean curves (dash-dotted lines), 90%

predictive regions (grey shadow areas) and quantile curves at 90% and 40% confidence

levels (dotted and dashed lines respectively) based on χ2, for N = 100 and σ = 0.25.

argue if such a difference is really substantial. The true AvL is 2.17, 2.13 and 2.10,

respectively, with normal, t5 and exponential distributed innovations.

Experiment 3: We investigate the performance of PPC for higher order curve

regressions. Consider an FAR(3) process Yt(·) defined as in (21) in which the second

equation is replaced by one of the three equations below.

Non sparse: ξtj =
d∑
l=1

bjlξt−1,l +
d∑
l=1

bj,l+dξt−2,l +
d∑
l=1

bj,l+2dξt−3,l + εtj,

Lag sparse: ξtj =
∑
`∈πj

bj`ξt−3,l + εtj, πj = {1, · · · , 6},

Diagonal sparse: ξtj = bj1ξt−1,j + bj,2ξt−2,j + bj,3ξt−3,j + εtj.
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Table 2: Experiment 2 – The means and standard errors (in parentheses) of MAE in

(22), the coverage rate (CR) and the average length (AvL) of B̂0.9(·), the proportion of the

overlapping area (POA) in (23), and d̂ over 400 replications. For B̂0.9(·) based on ECDF-B,

the selected bootstrap sample size is 200B, and the means and standard errors of B are

also included.

χ2 ECDF-B

N dist d̂ MAE CR AvL POA CR AvL B POA

100 norm 6 .364(.010) .849(.040) 2.298(.069) .952(.016) .787(.053) 2.138(.081) 4.20(.86) .920(.024)

t5 6 .355(.014) .851(.045) 2.288(.133) .952(.022) .806(.055) 2.146(.128) 4.09(.94) .926(.032)

exp 6 .349(.015) .850(.040) 2.284(.128) .951(.025) .820(.052) 2.171(.151) 3.99(.94) .931(.033)

200 norm 6 .353(.009) .890(.029) 2.332(.054) .969(.011) .859(.039) 2.237(.073) 4.05(.85) .953(.017)

t5 6 .344(.011) .886(.031) 2.325(.092) .972(.014) .866(.034) 2.251(.093) 4.05(.93) .960(.019)

exp 6 .339(.012) .879(.031) 2.324(.106) .969(.018) .870(.035) 2.289(.130) 3.99(.96) .963(.022)

400 norm 6 .349(.008) .907(.023) 2.347(.042) .978(.009) .886(.025) 2.278(.052) 3.23(1.01) .968(.012)

t5 6 .340(.010) .902(.024) 2.346(.070) .980(.012) .888(.028) 2.301(.075) 3.36(1.01) .972(.014)

exp 6 .333(.011) .892(.025) 2.344(.079) .977(.014) .891(.025) 2.337(.094) 3.28(.95) .976(.016)

800 norm 6 .348(.007) .911(.022) 2.352(.036) .983(.007) .890(.027) 2.291(.040) .82(.68) .974(.010)

t5 6 .338(.009) .905(.023) 2.355(.053) .983(.011) .893(.024) 2.313(.055) 1.74(.72) .976(.014)

exp 6 .332(.013) .895(.025) 2.356(.057) .981(.012) .893(.028) 2.332(.071) 1.96(.85) .980(.013)

1600 norm 6 .346(.008) .916(.022) 2.359(.032) .985(.007) .918(.022) 2.365(.034) .00(.00) .986(.007)

t5 6 .338(.011) .907(.022) 2.360(.045) .986(.009) .902(.022) 2.345(.044) .03(.19) .983(.010)

exp 6 .331(.012) .898(.023) 2.359(.042) .983(.011) .898(.023) 2.318(.046) .18(.39) .982(.011)

Similar to Experiment 1, we set d = 4 and let εtj ∼ N(0, σ2) with σ = 0.25. But

now Xt = [Yt−1, Yt−2, Yt−3]
′

Table 3 shows the detailed predictive results based on either χ2 or ECDF-B,

for the non-sparse FAR(3) and the two sparse FAR(3) models above. The first 10

singular value components of the regressor curve are included for the AIC selection.

The true AvL is 1.66 for all the three FAR(3) models. In general, PPC work well for

the higher order curve regressions, with CRs close to the nominal coverage probability
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Table 3: Experiment 3 – The means and standard errors (in parentheses) of MAE in

(22), the coverage rate (CR) and the average length (AvL) of B̂0.9(·), the proportion of the

overlapping area (POA) in (23), and d̂ over 400 replications. For B̂0.9(·) based on ECDF-B,

the selected bootstrap sample size is 200B, and the means and standard errors of B are

also included.

χ2 ECDF-B

sparsity N d̂ MAE CR AvL POA CR AvL B POA

non sparse 100 4 .310(.017) .834(.047) 1.768(.090) .939(.020) .773(.061) 1.645(.093) 4.08(1.00) .905(.029)

200 4 .296(.016) .882(.031) 1.787(.096) .962(.013) .849(.037) 1.712(.095) 3.90(.91) .944(.019)

400 4 .289(.013) .900(.026) 1.790(.062) .976(.010) .881(.032) 1.740(.061) 2.98(1.14) .964(.015)

800 4 .286(.010) .905(.024) 1.785(.043) .980(.008) .889(.025) 1.744(.042) .86(.91) .972(.011)

1600 4 .285(.012) .910(.023) 1.792(.059) .986(.007) .911(.022) 1.795(.058) .00(.00) .986(.007)

lag sparse 100 4 .302(.014) .832(.046) 1.714(.071) .936(.022) .780(.058) 1.613(.082) 3.97(.93) .906(.031)

200 4 .292(.011) .880(.030) 1.756(.054) .963(.013) .851(.037) 1.689(.062) 3.93(.99) .945(.018)

400 4 .286(.009) .898(.025) 1.772(.043) .976(.008) .881(.029) 1.730(.052) 3.12(1.13) .967(.013)

800 4 .284(.009) .905(.023) 1.779(.037) .982(.007) .892(.025) 1.743(.038) .97(.92) .975(.009)

1600 4 .284(.008) .910(.023) 1.785(.028) .987(.006) .909(.023) 1.786(.030) .00(.00) .987(.007)

diag sparse 100 4 .332(.175) .803(.104) 1.705(.070) .920(.062) .750(.107) 1.606(.079) 3.71(1.09) .891(.065)

200 4 .297(.033) .864(.053) 1.746(.050) .955(.026) .838(.060) 1.685(.060) 3.92(.98) .940(.030)

400 4 .290(.033) .893(.029) 1.777(.146) .973(.011) .876(.035) 1.734(.134) 3.09(1.06) .964(.014)

800 4 .289(.046) .904(.023) 1.801(.286) .981(.008) .893(.026) 1.763(.246) .86(.85) .973(.010)

1600 4 .282(.010) .911(.020) 1.781(.041) .986(.007) .913(.021) 1.784(.031) .00(.00) .987(.007)

0.9, POA above 90% and AvL close to the true AvL. The patterns of CRs and POAs

are very similar to those in Experiment 1, though with slightly worse performance

for small sample size (N ≤ 400). Performance for the lag sparse models is better

than the non-sparse one, producing narrower AvLs for similar coverage rates. When

comparing thediag sparse model with non-sparse model,there is no clear pattern.

Note that our estimation method makes no use of the information of the particular

sparse structures.
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4 Probabilistic forecasting for daily electricity loads

In this section, we apply the proposed PPC to a real data set consisting of French

daily electricity load curves from January 1, 2012 to December 31, 2019.

4.1 Data

The French electricity consumption data are collected from the website of the system

operator RTE (Réseau et Transport d’Électricité): https://opendata.rte-france.

com) at a temporal resolution of every half-hour (i.e. 48 points on each day). We

remove the data on public holidays, the day before and the day after the holidays,

and also in the Christmas periods. Empirical experience indicates that the electricity

demand on those days behaves differently, and requires different treatment.

Temperature is a key exogenous factor for electricity consumption in France

due to electrical heating and cooling. We obtained data from 96 meteostations

in France from the website of the French weather forecaster MétéoFrance (https:

//donneespubliques.meteofrance.fr/). Temperature are provided at a three

hours resolution and interpolated with natural cubic splines at a half-hour reso-

lution. Figure 3 displays the dynamic evolution of the daily load curves from 2012

to 2019, the corresponding daily temperature curves and a scatter plot showing the

strong dependence between the load and the temperature.

Electricity loads, like other energy data, highly depend on economic and meteo-

rological factors. The changes of temperature introduce seasonality in the demand

which is higher in winter and lower in summer. The shift of working routines causes

varying diurnal patterns between weekdays and weekends. Therefore, the profiles

of daily load curves differ in months and days. As an illustration, Figure 4 de-

picts the daily curves on Tuesday-Wednesday in June, Saturday-Sunday in June and
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Figure 3: (a) Daily loads curves (b) Daily temperature curves (c) Scatter plot of temper-

ature vs loads at half-hour frequency. Data are from 2012 to 2019.

Tuesday-Wednesday in November between 2012 to 2018. In June, the curves on

Tuesday-Wednesday are similar, but differ from those on Saturday-Sunday. Further-

more, the demand is higher on weekdays than that in weekends. In addition, the

diurnal pattern varies over different months. For example, peaks occur at noon in

June (due to cooling consumption) while in the evening in November (due to heat-
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Figure 4: Electricity load curves on Tuesday-Wednesday in June (black dashed lines),

Saturday-Sunday in June (red dotted lines) and Tuesday-Wednesday in November (blue

solid lines) between 2012 to 2018.

Table 4: Classification rule for electricity load data

Day Class 1 2 3 4 5

Day type Mon Tue, Wed, Thu Fri Sat Sun

Month Class 1 2 3 4 5 6 7

Month Dec, Jan, Feb Mar Apr, May Jun, Jul, Sep Aug Oct Nov

ing consumption). The inhomogeneous phenomena dictate the need to segment days

into different homogeneous groups, as the proposed PPC are developed under a sta-

tionary framework. Table 4 lists the segmentation rule adopted by EDF: each week

is divided into 5 groups and the 12 months are classified into 7 groups, leading to in

total 35 groups. We will fit a separate model for each of the 35 groups.

25



4.2 Probabilistic forecasting

For each of the 35 groups, we pair the daily load curve Yt(·) on day t and Xt(·)

consisting of three curves: the load curve on the previous day Yt−1(·), the load curve

one week earlier Yt−7(·), and the daily temperature curve Tt(·). The temperature

forecasts can be obtained from e.g. Météo-France, which maintain a stable high

accuracy. We thus directly use the actual temperature in our analysis, which is

commonly adopted in the literature of electricity load forecasting. To make the

three curves on the same scale, we standardize each of them (within each of the 35

groups) first before combining them into Xt(·). The standardization uses the training

data only, see below.

We use the data in 2019 for testing the post-sample forecasting performance.

More precisely, for each day in 2019 we use all the data in the same group before

that day to fit the model. The day-ahead forecasts are produced at noon of each

day, in alignment with the forecasting operation in EDF. The sample size N varies

among the 35 groups from 24 to 284. For determining π̂j in (9) by AIC, we include

the first min(dN/2e, 48) η̂tj as the candidate regressors to avoid over-fitting problem

for small N . We set the nominal coverage probability at 1 − α = 0.9. The predict

set Ĉ0.9(·) based on χ2-approximation contains K randomly generated curves, where

K = 5, 000 or 20,000.

For the comparison purpose, we also include three state-of-art models popular in

electricity load forecasting. Those models are designed for forecasting the load at

time point h on day t, denoted by yt,h. Fitting these models separately for each hour

of the day is a common practice in electricity load forecasting as hour of the day

plays a prominent role.
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1. The generalized additive model (GAM):

yt,h =ψDt,h + f1,h(t) + f2,h(St) + f3,h(yt−1,h, Dt) + f4,h(yt−7,h) + f5,h(t, Tt,h)

+ f6,h(T
s
t,h(0.95)) + f7,h(T

s
t,h(0.99)) + f8,h(T

max
t,h , Tmin

t,h ) + εt,h,

where Tt,h denotes the temperature at time h on day t, Tmax
t,h , Tmin

t,h are the daily

maximum, minimum temperatures, T st,h(v) = vT st−1(v)+(1−v)Tt is an exponentially

smoothed version of Tt,h, St represents an annual cycling effect, Dt denotes the

day effect and each fj,h is a smooth function of the covariates with the thin plate

regression splines basis functions.

2. The seasonal autoregressive (SAR) model:

yt,h − µy,h = ω1,h (yt−1,h − µy,h) + ω2,h (yt−2,h − µy,h) + ω3,h (yt−7,h − µy,h) + εt,h.

3. The SAR with exogenous variable (SARX) model:

yt,h − µy,h =ω1,h (yt−1,h − µy,h) + ω2,h (yt−2,h − µy,h) + ω3,h (yt−7,h − µy,h)

+ ωT,h(Tt,h − µT,h) + εt,h.

The GAM was proposed by Pierrot and Goude (2011) and engineered by EDF.

It serves here as an industry benchmark. The SAR and SARX are implemented

periodically for series attached to each half-hour and fitted separately for each of the

35 groups. For fair comparison to our curve regression approach, a residual correction

method is adopted for GAM, SAR and SARX given the intraday dependence among

the half-hourly series, in which the residuals from 48 half-hours are jointly modeled.

Specifically, an ARMA model is fitted with the 10-fold cross validation residuals on

the in-sample data. The forecasted distributions of the residuals for the next 48

half-hours are then used to obtain the mean, 5% quantile and 95% quantile of loads.
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Table 5: The mean absolute percentage error (MAPE), coverage rate (CR), pointwise

coverage rate (PCR), and the average length (AvL) of the predictive intervals at the 48

half-hour points of the different forecasting methods. The nominal coverage probability is

0.9.

Method d̂ MAPE CR PCR AvL

B̂0.9(·) based on χ2 (K = 5, 000)

15.8 1.10%

0.563 0.943 3128

B̂0.9(·) based on χ2 (K = 20, 000) 0.669 0.955 3340

B̂0.9(·) based on ECDF-B 0.484 0.898 2611

GAM - 1.36% 0.342 0.907 3376

SAR - 2.03% 0.238 0.823 4065

SARX - 1.65% 0.238 0.812 3176

For each testing day in 2019, we compute the mean absolute percentage error:

MAPE =
1

48

48∑
h=1

|ŷt,h − yt,h|
yt,h

.

Table 5 summarizes the results. In terms of forecast accuracy, PPC deliver the best

performance with MAPE = 1.10%. Compared to the GAM, SAR and SARX, this

corresponds to the reduction in MAPE of 19.1%, 45.8% and 33.3% respectively. It

is noticeable that the coverage rate (CR) of the predictive bands are smaller than

the nominal level 0.9. One possible reason is the small sample sizes of some groups,

for which the variances of noise are likely to be underestimated, as the possible

variation in the future is unlikely to be reflected by the small number of the available

observations. This is particularly pronounced with the method based on ECDF-B.

Nevertheless PPC performs significantly better than the other method, as all the

three B̂0.9(·) listed in Table 5 provide much high coverage rates (CV) for the whole
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Figure 5: Bar charts of MAPE, coverage rate, pointwise coverage rate and AvL of χ2-based

B̂0.9 (K = 20,000) over different months.

curve than GAM, SAR and SARX.

One may argue that the comparison above is unfair as the predictive intervals

based on GAM, SAR and SARX are constructed in the pointwise manner rather

than for a whole curve. Table 5 also lists the pointwise coverage rates (PCR) of the

different methods for the 48 points (corresponding the 48 30-minute intervals) on a

daily curve. It is interesting to observe that the two B̂0.9(·) based on χ2 approximation

provide significantly higer PCR than those of GAM, SAR and SARX, and B̂0.9(·)

based ECDF-B offers comparable PCR to GAM with much smaller AvL. It is worth

to point out that B̂0.9(·) based on χ2 with K = 5, 000 outperforms GAM, SAR and

SARX in terms of all the three measures: delivering higher CR (increases by 0.221 -

0.325), higher PCR (improves by 0.036 - 0.131) and narrower AvL (decreases by 48

- 937).

29



Figure 6: Bar charts of MAPE, coverage rate, pointwise coverage rate and AvL of χ2-based

B̂0.9 (K = 20,000) over different weekdays.

To appreciate the variation in forecasting performance over different weekdays

and different months, Figures 5 and 6 display the bar-charts of MAPE, CR, PCR

and AvL of B̂0.9(·) based on χ2-approximation with K = 20, 000. It is clear that the

forecasting in summer is more accurate than that in winter in terms of both MAPE

(Figure 5(a)) and AvL (Figure 5(d)), and the forecasting in Monday – Friday is more

accurate than that in weekends in terms of MAPE (Figure 6(a)). There is no clear

pattern in terms of the two coverage rates.

Moreover, Figure 7 elaborates 2 randomly selected forecasts, showing the pre-

dictive mean curves, 90% predictive regions B̂0.9(·) and the quantile curves at 99%

and 40% confidence levels in 2019 based on χ2-approximation with K = 20, 000. As

expected, the predictive quantile curves at a higher confidence level is more ‘outside’

than those at a lower level. The 99% predictive quantile curves help to visualize the
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Figure 7: Plots of the true load curves (solid lines), predictive mean curves (dash-

dotted lines), 90% predictive regions (grey shadow areas) and predictive quantile

curves at 99% and 40% confidence level (dotted and dashed lines) for 2 randomly

selected curves, one from summer time and one from winter time.

possible extreme cases, which is useful for the optimal controlling of the electricity

operation system.

5 Conclusion

In this paper, we propose a novel method to construct three types of probabilistic

predictors for curves (PPC): the predictive set, the predictive band and the pre-

dictive quantile with probability interpretation for daily electricity load curves in a

curve-to-curve linear regression framework. The PPC achieve excellent performance

with coverage rates very close to the nominal probabilities for different simulated
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data generating processes. When applied to the French load curves, the proposed

method provides much smaller forecast errors, with almost half of that of the alterna-

tive seasonal autoregressive models. Compared to the powerful generalized additive

model, it produces higher coverage rate with narrower average length of the pre-

dictive regions. The significant improvement is likely due to the curve regression

setting which embeds the nonstationary daily patterns into a stationary framework.

The constructed predictive intervals and the predictive quantile curves are mean-

ingful and can be used in the future for risk hedging in the electricity management

system.
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Garćıa-Villalobos, J., Zamora, I., San Mart́ın, J. I., Asensio, F. J., and Aperribay, V.

(2014). Plug-in electric vehicles in electric distribution networks: A review of smart

charging approaches. Renewable and Sustainable Energy Reviews, 38:717–731.

Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., and Gorini, R.

33



(2019). The role of renewable energy in the global energy transformation. Energy

Strategy Reviews, 24:38 – 50.

Hong, T. and Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review.

International Journal of Forecasting, 32(3):914 – 938.

Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., and Hyndman, R. J.

(2016). Probabilistic energy forecasting: Global energy forecasting competition

2014 and beyond. International Journal of Forecasting, 32:896–913.

Hong, T., Xie, J., and Black, J. (2019). Global energy forecasting competition 2017:

Hierarchical probabilistic load forecasting. International Journal of Forecasting,

35(4):1389 – 1399.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46(1):33–

50.

Kou, P. and Gao, F. (2014). A sparse heteroscedastic model for the probabilistic

load forecasting in energy-intensive enterprises. International Journal of Electrical

Power and Energy Systems, 55:144–154.
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SUPPLEMENTARY MATERIAL

1 Additional figures for simulation studies

Figure 8: Experiment 2 – Box plots of post-sample coverage rates and average lengths of the

predictive region by the envelop of Ĉ1−α(X) based on χ2 distribution (left column), and those of

Ĉ1−α(X) ∪ C?1−α(X) based on ECDF-B (right column) for the case of σ = 0.25. The horizontal

dash lines mark the positions of the nominal coverage probability 0.9.
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Figure 9: Experiment 3 – Box plots of post-sample coverage rates and average lengths of the

predictive regions by the envelop of Ĉ1−α(X) based on χ2 (left column), and those of Ĉ1−α(X) ∪

C?1−α(X) based on ECDF-B (right column) for FAR(3) and sparse FAR(3) data generating processes

with σ = 0.25. The horizontal dash lines mark the positions of the nominal coverage probability

0.9.
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