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Inherited inequality

A general framework and an application to South Africa

Paolo Brunori, Francisco H.G. Ferreira, and Pedro Salas-Rojo?

Abstract: Scholars have sought to quantify the extent of inequality which is inherited from past
generations in many different ways, including a large body of work on intergenerational
mobility and inequality of opportunity. This paper makes three contributions to that
broad literature. First, we show that many of the most prominent approaches to
measuring mobility or inequality of opportunity fit within a general framework which
involves, as a first step, a calculation of the extent to which inherited circumstances can
predict current incomes. The importance of prediction has led to recent applications of
machine learning tools to solve the model selection challenge in the presence of
competing upward and downward biases. Our second contribution is to apply
transformation trees to the computation of inequality of opportunity. Because the
algorithm is built on a likelihood maximization that involves splitting the sample into
groups with the most salient differences between their conditional cumulative
distributions, it is particularly well-suited to measuring ex-post inequality of opportunity,
following Roemer (1998). Our third contribution is to apply the method to data from
South Africa, arguably the world’s most unequal country, and find that almost three-
quarters of its current inequality is inherited from predetermined circumstances, with
race playing the largest role, but parental background also making an important
contribution.
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1 Introduction

People’s educational and professional achievements, their incomes, and their wealth are generally
not independent of their backgrounds. Various attributes that are determined at or before birth —
such as biological sex; race or ethnicity; parental income and other aspects of family background -

are powerful predictors of a person’s own economic outcomes later in life.

Economists have typically considered this an important fact: a copious literature has sought to
guantify the extent to which inherited or pre-determined characteristics shape people’s life
outcomes, and to compare results across societies or over time. There is very little in that literature
that attempts to disentangle the multiple causal pathways or to estimate full structural models with
behavioral parameters, because it was quickly understood that the identification problems are

almost insurmountable.?

Although there are obviously multiple studies that seek to estimate the causal effects of specific
characteristics, - say, race or gender — on specific outcomes — say, wages or job interviews — all of
the dominant approaches used to quantify the overall extent to which the variation in, say, current
incomes reflects the effects of inherited factors, have been descriptive. These approaches include

the literatures on intergenerational mobility; inequality of opportunity; and sibling correlations.

This paper contributes to that broad literature in three ways. First, we note that all of these
descriptive approaches rely on using observed inherited characteristics to predict future outcomes
— hereafter incomes, for simplicity. We suggest a simple general framework for the measurement
of inherited inequality which relies on comparisons of inequality in observed and predicted

incomes, and show that a wide range of measures in current use are special cases.

2 parental education, for example, will generally affect both the quantity and quality of the parent’s time
inputs into the child’s development at home. It will also affect, or interact with, school choice and
neighborhood location, each of which are likely to have their own separate effects. It may also affect the
child’s employment and marriage (or household formation more broadly) opportunities later in life. Some of
these effects of parental education will operate through parental income, others will operate directly. They
will potentially operate differently across sexes, races or castes. They will likely interact with family wealth,
separately from parental income. They may be confounded with genetic endowments, which are also
transmitted separately. And so on. See Haveman and Wolfe (1995) for a classic discussion of (some of) these
multiple pathways.



Once the central role of prediction is recognized, it is natural to consider options among modern
data-driven (or machine learning) techniques, which have been shown to be more accurate
predictors than many standard econometric approaches used historically (see, e.g., Mullainathan
and Spiess, 2017). Specifically, conditional inference trees, random forests, and transformation

trees are three highly promising approaches.

Since conditional inference trees and random forests have already been used in this context (see
Brunori, Hufe, and Mahler, 2023), we focus on transformation trees, which have recently been
developed by Hothorn and Zeileis (2021). Our second contribution is thus to show that, because
this approach provides a powerful algorithm to predict not only means, but full conditional
distributions for different population subgroups, it is particularly well-suited to inequality
decompositions that depend on differences in higher moments of the income distribution between
subgroups, e.g., “ex-post” inequality of opportunity (Ex-post 10p). It also provides an optimal
solution — in a well-defined statistical sense — to a problem that has bedeviled the literature(s) so

far, namely the choice of model specification.

To the best of our knowledge, ex-post 10p was first used empirically to estimate the share of
inequality predicted by inherited circumstances by Checchi and Peragine (2010), with an application
to Italy.® But it draws on a rich theoretical tradition in normative economics that argues that equal
opportunities are achieved when all individuals who exert the same degree of effort or
responsibility can ultimately achieve the same outcomes, regardless of inherited circumstances
(see, e.g., Roemer, 1993, 1998; Fleurbaey, 1994, 2008). Under some assumptions, the theory
suggests, the appropriate degree of effort, once cleansed of the effects of circumstances, can be
proxied by the relative position — that is, the quantile — of an individual in the income distribution

of those that have the same inherited circumstances as she does — her “type”. (Roemer, 1998).

Although this perspective — same efforts, same rewards — has considerable theoretical appeal (see,
e.g., Fleurbaey and Peragine, 2013), it has hitherto faced serious empirical challenges which have
severely limited its use in practice. Our proposed approach can significantly alleviate these
challenges. That said, the attractiveness of the approach does not require adherence to the specific

normative views embodied in the theoretical literature. Our results can also be interpreted in the

3See also Lefranc, Pistolesi, and Trannoy (2009).



spirit of alternative inequality decompositions, in which the between-groups term is not
independent of within-group inequality.* In our third contribution, we apply the method to South
Africa, arguably the world’s most unequal country. We present the full decomposition, including
the type-specific conditional distributions. We find that more than 70% of the country’s Gini

coefficient of 0.6 is accounted for by inherited circumstances.

The paper proceeds as follows. The next section describes a general framework for the estimation
of the importance of inherited inequality, of which the most common approaches in the
measurement of mobility and inequality of opportunity are shown to be special cases. Section 3
discusses the key empirical challenges faced by these approaches, focusing on model selection.
Section 4 then introduces our own approach to estimating ex-post I0p using transformation trees

as another case, and describes its operation.

Section 5 describes our data and Section 6 presents results. These results include not only estimates
of the share of current inequality in South Africa which are predicted by a set of inherited
circumstances, but also (i) a schematic description of the population partition which generates the
most salient cleavages in South African society (again, in a well-defined statistical sense); (ii)
estimates of the conditional cumulative distributions by ‘type’ (or population sub-group); (iii) the
implied decomposition of the density function into a mixture of these sub-group distributions; (iv)
a Shapley-Shorrocks decomposition of the relative (predictive) importance of individual
circumstances in the overall decomposition; and (v) an estimate of the lower-envelope of the
decomposition, which corresponds to the maximand in Roemer’s original policy objective. It also
compares our ex-post |0p results to ex-ante estimates from conditional inference trees and forests,
as in Brunori, Hufe and Mahler (2023). Taken together, this set of analytical and visualization
methods represent complementary tools that enable a deeper understanding of inequality of

opportunity. Section 7 concludes.

4 See Foster and Shneyerov (2000) and Ebert (2010) for discussions of why it might make sense to account for
differences in the full distributions within groups — rather than just the means — when defining the between-
group term of the decomposition.



2. Inherited inequality: a general framework

Consider a population of N individuals, indexed by i € N ={1,...,N}, each of whom is
characterized by a current-generation outcome y;; and a set of inherited characteristics, which we
call circumstances (following Roemer, 1998). For individual i, these are represented by a k-
dimensional vector c;. In general, many people may share the same vector of circumstances, and
each of those groups is called a “type”. The population can then be exhaustively divided into a set
of types, C = {14, ..., Ty, .., Ty}, Where 7,,,: = {Vi|¢; = ¢}, such that U¥ 7, = Nand N¥t,, =

@. C € C, the set of all possible partitions.

A situation in which there is no inherited inequality is one in which the joint distribution {y, c} is
characterized by y L c. In that case, there is obviously no difference between the conditional

income distributions obtained from that joint distribution:

F(ylcl) = F(YICm): Ve, e € C (1)

If (1) does not hold, then the associations between the vector ¢ and y across the population imply
that the circumstances ¢ have (some) predictive power over y. l.e., there exist non-constant

prediction functions,

y=f(ce),.feF (2)

that outperform constant functions in predicting y out of sample.

It is straightforward to see that most methods for estimating the intergenerational transmission of
advantage currently in use revolve around estimating models of the general form (2), using different
functions in the set of possible functions F. In addition, in many cases the final estimates are
summarized by a comparison of inequality in current-generation income, I(y) and inequality in the
distribution of the incomes predicted by the inherited circumstance: § = f(c), I($). In other

words, measures of mobility or inequality of opportunity are often of the form 0 = g(l()“/), I(y)).

Intergenerational mobility



What generally distinguishes estimates of intergenerational mobility is the assumption that there
is a single circumstance, namely the previous generation value of y, y,.°> Then f(c, &) may for

example take the form:

y = fM(C: ) = e tBlogyp+e (3)

Taking logarithms, equation (3) becomes the standard Galtonian regression that has been the
workhorse of intergenerational mobility estimates from Solon (1992) to Chetty et al. (2014).

Predicted income is then:

Py = fM(C) — e&+ﬁlogyp+02/2 (4)

Where, o denotes the standard deviation of the residuals . Now, although the regression
coefficient ﬁ —the intergenerational elasticity — is often used as a summary index of persistence or
“inheritability” (the opposite of mobility), another commonly used measure (which has the
advantage of being equally sensitive to both margins), is the correlation coefficient between logy
and logy,. Since this coefficient is the square root of the R? of the Galtonian regression, it can be

written as a specific case of 0 = g(](f/),](y)), namely:

5 = /M - (5)
=7 when [I(x) =Varlogx

Noting that the rank of an observation x; in a distribution F(x) is simply the quantile g; = F(x;),
and that this cumulative distribution function is inversible, it is clear that there will also be a specific

predictor fz(c, €) for rank-rank regression or correlation coefficients.
Ex-ante inequality of opportunity

The literature on inequality of opportunity has usually considered a vector (k >1) of circumstance
variables, rather than a scalar. When information on parental income or wealth is available, those

variables can be elements in c. But they are complemented by others, such as ethnicity, sex,

> We say ‘generally’ because there are studies that include the incomes of more than one generation as
circumstances (Olivetti, Paserman, and Salisbury, 2018). There are also studies that consider interactions with
race. (e.g., Mazumder, 2014).
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parental education or occupation, etc.® Frequently, however, this approach has been used for

societies or periods for which reliable information on parental income is not readily available.

In that case too, scalar indices summarizing the extent of inheritability (here: inequality of
opportunity) are often of the form 0 = g(l(f/),l(y)). In the ex-ante parametric approach of
Ferreira and Gignoux (2011) or Niehues and Peichl (2014), the logarithm of parental income in (3)

is simply replaced by the vector of circumstances, and the prediction function is given by:

fea(c,e) = e®+er+e (6)

This generates a vector of predicted incomes analogous to that in (4) — without the Blackburn (2007)

correction — and the relative measure of inequality of opportunity is precisely:

I1(Jga) (7)
1(y)

A version of Equation (7) can also describe the ex-ante non-parametric estimator of inequality of

IOREA =

opportunity (Checchi and Peragine, 2010; Ferreira and Gignoux, 2011) when the prediction function
is changed from (6) to (8):

1 8
feo) = [ yrolo (®)
0

Equation (8) simply yields the conditional means for all those who share the same vector of
circumstances c. So I(?EA(n)) is simply computed over the smoothed distribution where individual
incomes are replaced by the average incomes of all individuals who share the same vector of

circumstances — that is, individuals in the same type.”’

In fact, both the parametric and non-parametric prediction functions - (6) and (8) — are predicting
type means, with the caveat that (6) imposes a linear functional form on the relationship between

c and y. The reference situation of equality of opportunity is therefore:

uyle) = uyley), Ve, ¢y € C (9)

So, inequality of opportunity quantifies deviations from (9).

6 See Bjorklund, Jantti, and Roemer (2012) for an example of IOp using parental income as a circumstance.
7 See Foster and Shneyerov (2000).



Ex-post inequality of opportunity

But equation (9) is clearly weaker than (1): it is implied by but does not imply (1). It is possible that
two types have cumulative distribution functions (CDF) that are different but have the same mean.
Since it is Equation (1) — full equality of the type-conditional distribution functions — that really
implies and is implied by the orthogonality of income and circumstances, many authors have
preferred empirical approaches that use estimates of the CDF, rather than just the mean, to either
detect or measure inequality of opportunity. Lefranc, Pistolesi, and Trannoy (2009), for example,
use stochastic dominance techniques to test for differences across type distribution functions, and

thus the null hypothesis of equal opportunities.

For measuring 10p, Checchi and Peragine (2010) propose to aggregate income differences across
the quantiles of the conditional distributions, while abstracting from level differences across types.

Their prediction function is given by:

fep(c, &) = iF—l(ch) (10)
Hq
Since y,c = F~(qlc),
i (11)
[(Pep) = J ﬁlq(ch)dq
Hq
a=0
And
1o 12
I0Rgp = % (12)

Equation (12) is analogous to (7), but uses (11) to predict incomes, rather than (6) or (8). In words,
Checchi and Peragine (2010) compute inequality in predicted incomes by computing some
inequality measure across types for each decile; then multiplying that inequality by the ratio of the
overall mean to the quantile mean (again, computed across types), and finally aggregating across

quantiles. I0p is, once again, the ratio of inequality in predicted incomes to observed inequality.

The case for computing inequality of opportunity as horizontal gaps between cumulative
distribution functions — as departures from the definition of equality of opportunity in (1) — can

therefore be made with no reference to the notion of effort. There is no effort variable in equations
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(10) — (12). Historically, this logic has appealed to theorists of equal opportunities because, under
some assumptions, the relative degree of effort expended — or responsibility taken — by a person
can be proxied by her relative position (quantile) in the income distribution of her type (see Roemer,
1998). Under those assumptions, Equation (1) does not simply denote the orthogonality of
outcomes and predetermined circumstances. It also corresponds to a situation in which people who
exert the same degree of effort achieve the same outcomes.® But the use of (12) as a meaningful
measure of deviations from the ideal of incomes orthogonal to circumstances does not require

adherence to the theory or its assumptions.
3 The central empirical challenge: model selection

Empirical applications of all three versions of the prediction problem described above may suffer
from a variety of challenges, including data availability, measurement error (particularly) in
variables such as parental income or occupation, small sample sizes, etc. More fundamentally,

though, they all suffer from a model selection problem, and this is the issue this section focuses on.

The intergenerational mobility literature makes most sense when interpreted as attempts to
estimate, as accurately as possible, a descriptive measure of association between two variables.
This may be a regression coefficient, a correlation coefficient, or some summary statistic from a
transition matrix or copula. It is presumably understood that these parameter estimates do not
represent — in any way, shape, or form — estimates of the causal effect of parental income on child
income, since they are hopelessly biased by omitted variables with which parental incomes are
bound to be correlated. So, they must clearly be interpreted as simple estimates of bivariate

association.?

In the I0p literature, where the explicit intent is to quantify the extent to which today’s inequality

is inherited — that is, the extent to which inherited circumstances predict incomes today — authors

8 These assumptions are: the degree of effort exerted is by definition orthogonal to circumstances; all
circumstances are observable; the effect of luck cannot re-rank individuals in terms of income; and income is
a monotonic function of effort (for a discussion see Roemer and Trannoy (2015)).

% Yet, as shown earlier, measures of association such as the correlation coefficient are very closely related to
measures of the share of inequality predicted by the background variable —and are sometimes interpreted
as such in the literature.



make use of additional background variables that might be available in the data. And as soon as one
considers the use of additional background variables — which may be many and may consist of
multiple categories — one faces the standard issue of model selection in the presence of two

competing biases.

The first bias arises from the partial observability of circumstances. It is rather common for data
sources that contain information about individual outcomes to also contain various variables
describing inherited circumstances such as sex, race and socioeconomic background. But the set of
available information is inevitably a strict subset of background circumstances. Omission of the
unobserved circumstances tends to bias estimates of I0p downwards (Ferreira and Gignoux, 2011;

Roemer and Trannoy, 2016).

On the other hand, a second source of bias arises from the classic overfitting problem, whereby
saturating the model with a large number of independent variables and their multiple interactions
leads to an upward bias in the estimates of goodness of fit. This is a problem for both parametric
and non-parametric methods. In a non-parametric setting, the same problem manifests as
exploding sampling variation around cell means as cell sizes decline below a certain level. This
problem introduces an upward biased in the estimation of explained variance (Chakravarty and

Eichhorn 1994; Brunori, Peragine, and Serlenga, 2019).

Although this problem was recognized from the outset, most of the early literature failed to address
the trade-off between the two kinds of bias in a systematic way.° The early studies that proposed
either parametric or non-parametric methods to estimate I0p relied on ad-hoc specifications, either
of the regression model or of the type partition. Yet, changing the number of regressors in such a

model can dramatically alter the final estimates of IOp

To illustrate the point, we show here the values for IO 4 that we obtain by specifying hundreds of

regression models of increasing complexity. The illustration is based on the data that we will

10 Ferreira and Gignoux (2011), for example, note that “As sampling variance is high for cells containing few
observations, estimated between-type inequality may become inflated, thereby inducing an overestimation
of inequality of opportunity.” (p.640). However, their proposed solution is to exercise “considerable
parsimony in the partitioning of the population...” (p.642). They selected categories arbitrarily and restricted
the number of types to a maximum of 108, but there was no sense in which that particular number
represented an optimal choice between the downward bias from omitting certain interactions between the
variables and categories, and the upward bias from including too many.

10



subsequently use for estimating inherited inequality in South Africa. (See Section 5.) Figure 1, which
plots 10p estimates (using the Gini coefficient as I(x)) against the number of regressors included in
a linear regression using our own data, illustrates this variation. It reports results from a standard
ex-ante parametric approach, as models rise in complexity by adding regressors. In constructing this
figure, we used all circumstance variables we use in the remainder of the paper. Furthermore, we
restricted interactions to pairwise interactions, thereby dampening the potential growth in the 10p
estimates. Moreover, given that all regressors are categorical and the inclusion of all interactions
leads to a large number of sparsely populated categories, we consider “only” the 493 regressors
that describe at least 10 observations in the sample (e.g. we exclude the interaction “Father
education == 1 and Mother education==10" which concerns no observation in the sample). Still the
number of possible interaction terms is huge (approximately 1.948 x 10%%®). Therefore, for each
possible number of regressors we select the most appropriate specification by backward stepwise
selection (Lumley, 2022). Even with these restrictions, ex-ante 10p Gini estimates from our dataset

with models of increasing complexity range from 0.016 to 0.52 (from 2.5% to 86% of total

inequality).
Figure 1: Ex-ante parametric IOp by backward stepwise selection
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Source: Author’s calculation on NIDS 5
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It should be clear from Figure 1 that, in the presence of these two biases working in opposite
directions, obtaining a meaningful estimate of I(9)/1(y) depends crucially on selecting the ‘right’
model for the prediction function y = f(c, €). But what the ‘right’ model is depends on the nature
and purpose of the exercise. If one is estimating a structural model, guidance from the theory being
tested is indispensable, and econometric methods suitable for the estimation of structural
parameters should be used. When the model is being used for prediction, however, as is the case
here, it may very well be that machine-learning methods from data science perform better. See
Mullainathan and Spiess (2017) for an excellent discussion of the role of machine learning in

economics and its advantages in prediction problems.

Indeed, some machine learning methods have recently been applied to the measurement of
inequality of opportunity, in attempts to let the data determine the right prediction model. Li Donni,
Rodriguez, and Dias (2015) for example, suggest the use of finite mixture model to define types. But
these models are extremely costly in terms of parameters and tend to produce rather parsimonious

partitions, leading to very conservative 10p estimates.!

In a similar spirit, Brunori, Hufe, and Mahler (2023) use conditional inference trees and random
forests (CITF), which were introduced by Hothorn, Hornik, and Zeileis (2006). CITF partition a
regressor space with the aim of predicting a dependent variable via the estimation of subgroup
means. This feature makes them ideally suited to choosing a type-partition in an ex-ante
framework, because each binary split is chosen by identifying the most significant differences across
means in the two resulting cells. Since the ex-ante approach to IOp involves computing inequality
among type means, such an algorithm is the conceptually right approach to selecting the partition

and estimating Equation (7), albeit with a different functional form f € F than those in (6) or (8).

But precisely because conditional inference trees focus on differences between means, not full

distribution functions, those who subscribe to the stricter criterion of equal CDFs for equality of

1 These models have been extensively used in the health economics literature. The typical partition obtained
is made of an unrealistically low number of types. Li Donni, Rodriguez, and Dias (2015) use a five-type partition
to model 10p in health a sample of 17,000 individuals, representative of the cohort of individuals born in UK
in the third week of March 1958. The partition used by Carrieri, Davillas, and Jones (2020) is even more
parsimonious. Using a subsample of the Understanding Society: The UK Household Longitudinal Study made
of 5,800 respondents they define a partition in three types. Brunori, Trannoy, and Guidi (2021) suggested the
use of cross-validation to obtain a more realistic number of nodes, which nevertheless remains constrained
by the large number of parameters necessary to estimate latent classes.

12



opportunity —including those who follow Roemer (1998) in interpreting the quantiles of those CDF’s
as relative measures of individual effort — will need an alternative data-driven approach. In what
follows, we propose the use of one such approach, namely transformation trees. Transformation
trees are supervised machine learning algorithms recently introduced by Hothorn and Zeileis
(2021). In the next section we explain how the algorithm works and how it represents an exact

empirical implementation of Roemer’s approach to inequality of opportunity.
4 Estimating 10p using Transformation Trees

As noted in Section 2, an ex-post approach to inequality of opportunity essentially consists of
measuring inequality for each quantile, across the types’ conditional distributions functions, as in
Eq (11) above, and then appropriately aggregating across quantiles. The key ingredient for the
approach, therefore, is to estimate the income level at quantile g in type ¢, that is: the conditional
quantile function y,. = F~1(q|C = c¢). When data on the joint distribution {y, C} is not observed
for the full population, estimating these conditional quantile — or their inverse, distribution —

functions from a sample notionally involves two steps.

First, an optimal type partition C € C needs to be defined, trading off the downward bias that arises
from combining sub-types into types against the upward bias from overfitting that arises from an
excessively fine partition, (i.e., by subdividing types into sub-types. See Brunori, Peragine, and
Serlenga, 2019). Second, given a partition C € C, the conditional quantile functions must be
estimated, either parametrically or non-parametrically. Once that has been done, the resulting
estimates {ch} can be used to compute quantile-specific inequality levels (across types), which are

then suitably aggregated across quantiles.

Previous attempts to compute ex-post IOp (e.g., Checchi and Peragine, 2010) have typically suffered
from two shortcomings. First, the partition C € C was chosen rather arbitrarily, and second
quantiles were computed at a highly aggregated level, e.g., quartiles or deciles, so as to ensure that
there were sufficient observations in each quantile (or “tranche”) for a meaningful computation of
inequality across types to take place. Indeed, the fact that the ex-post approach to I0p requires
information on the entire conditional distribution F(chlC = c), rather than merely the mean p,
of that distribution for each type, makes it more data-intensive and has been one of the reasons

why the ex-ante approach has dominated empirical applications.

13



The combined requirements to choose an optimal type-partition given the available dataset and to
estimate conditional distribution functions for each of those types in a data scarce environment
make this problem well-suited to a new variety of tree-based estimator, recently developed by
Hothorn and Zeileis (2021). This estimator, known as a transformation tree (TrT), was specifically

designed to estimate conditional distributions for terminal nodes of trees.

TrT relies on the assumption that there exist “good enough” parametric approximations to

F(quIC = c). In the limit, they assume that there exist parameters 8 € 0 such that:

F(YaelC = ¢) = F (3¢, 0(c)),6:C > © (13)
6(c) is known as the conditional parameter function, which maps from the set of all possible type
partitions on to the set of possible distributional parameters. Under this assumption, the problem
of estimating the conditional distributions across types in the optimal partition, and hence {¥,.},
reduces to the problem of selecting the optimal parameter estimates, g, given the data {y, C}. TrT
uses an adaptive local likelihood maximization approach for that purpose. Specifically, it selects ]

as:

A N (14)
6V(c) = argmaxgeo ) wi(c)4i(0)

i=1
where i € {1, ..., N} denotes each observation in the data set and #;(6) denotes the log-likelihood
contribution of i, when the parameters are given by 8. The recursive binary splitting process that

creates a transformation tree is implemented by choosing weights:

5 (15)
w;i(c) = 2 I(c € By, Ac; € Byp)
b=1

The indicator function takes the value 1 when observation i is sufficiently “close” to c, so the weights
in (14) simply count the number of observations in each bin B;,. At the terminal nodes, B,
corresponds to a type, so the maximization process in (14-15) allocates each observation to a type
and sums the local likelihood functions across types. The type partition and the parameter vector 6
are chosen so as to maximize that sum of likelihoods. That is, given the available data {y, C} and the

recursive splitting approach to weights, the likeliest set of types and income distributions
conditional on type is that given by F (ch, éN(c)). So, our prediction function under this method
is given by:

14



A 2 uo ~ _ ~
r = fr(c) =H_ch where Yqc = F1 (q: HN(C)) (16)
q

The Transformation Tree estimate of ex-post inequality of opportunity is simply:

I(yr) (17)

Details of how the likelihood maximization is implemented (using Bernstein polynomials to fit the

conditional distribution functions at each node) are given in Appendix 1. In practice, the process

can be summarized by the following seven-step algorithm:

7.

set a confidence level (a);

set a polynomial order (M);

estimate the unconditional distribution with the Bernstein polynomial of order M;

test the null hypothesis of polynomial parameters stability for all possible partitions based
on each x and store p — values.

if Vx and each possible partition the Bonferroni-adjusted p — value > a, stop the
algorithm;

otherwise, choose the variable and the splitting value producing the smallest p — value to
obtain two subgroups,

repeat step 4:6 for the resulting subgroups.

In our application below, we follow statistical convention and set a to 0.01. Then, we set M, the

order of the Bernstein Polynomial. The selection of M is not as simple as that of a, because how

well a certain order interpolates the distribution is intrinsically data-dependent. An order too small

might result in a poor approximation of the distribution, while a too elevated order would translate

into a loss of degrees of freedom and high computational costs.

To find an appropriate order, we tune the algorithm by estimating the out-of-sample log-likelihood,

after a 5-fold cross validation, for several order values of the Bernstein Polynomial (ranged between

2 and 10). We select the lowest order in which the relative improvement of the log-likelihood that

would be obtained by estimating an additional parameter is smaller than 0.1%. In our application,

this procedure — summarized in Figure 2 below — yields a Bernstein polynomial of order 8.
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In step 3, an unconditional CDF for our sample is estimated with a Bernstein polynomial of order 8.
The key step is then step 4, where the M-fluctuation test is performed to detect instability of the
parameters in the conditional distribution functions across potential types. To intuitively illustrate
this key test, Appendix 2 provides a simple example of the procedure, using made-up data. Further

details can be found in Hothorn and Zeileis (2021) and Kopf, Augustin, and Strobl (2013).

Figure 2: Out of Sample Log-Likelihood by orders of Bernstein Polynomial
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Source: Authors’ elaboration from NIDS 5.

After following steps 4-7 we obtain an estimated Transformation Tree for South Africa and, from
that tree, a number of outputs that are described in Section 6. But before presenting those results,

we briefly describe our dataset in Section 5.

5. Data

We apply this method to the latest wave of the National Income Dynamics Study (NIDS 5) survey,
carried out by the Southern Africa Labour and Development Research Unit (SALDRU) for the year
2017 (Brophy et al., 2018). NIDS is a longitudinal survey, with previous waves collected in 2008,

2010/11, 2012, and 2014/5. It is an interesting dataset for studying the inheritance of inequality
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because it is a reliable and extensive source of information about incomes and circumstances for
arguably the world’s most unequal country.!> Moreover, I0p has already been analyzed in South
Africa (see Piraino, 2015, and Brunori, Ferreira, and Peragine, 2021), so our results can be readily

benchmarked against alternative methods.

Before any filters, the NIDS 2017 contains 20,461 individuals. The reason we use only the 2017 wave
of the survey is that, in that year, SALDRU oversamples rich households, allowing for more precise
inequality estimates due to the inclusion of more detailed information from the top of the income
distribution (Branson, 2019). This was done in earlier waves. Our main results are obtained from
this complete sample. However, SALDRU also provides appropriate weights to exclude wealthy
households oversampled in 2017 and we report statistics on both samples in this section for

comparability. We refer to the sample without oversampling of the rich as 2017b.

As our outcome variable we use monthly age-adjusted equivalized disposable household income,
in 2015 rands. It includes all regular incomes received by households, including imputed rental
income from owner-occupied housing, net of taxes. To account for scale economies in
consumption, the square-root equivalence scale is used (Buhmann et al., 1988; OECD, 2013). The
age adjustment — applied to account, at least in part, for life-cycle dynamics — consists of regressing
our income variable (as defined so far) on age and age squared, and using the sum of constant and

residual as the adjusted variable (see, e.g., Palomino et al., 2022).

The circumstances available in the NIDS 2017 dataset are: sex (male and female), ethnicity (African,
Asian/Indian, coloured, and white), fathers’ and mothers’ education (13 levels, ranging from "Non-
educated" to "Grade 12 or more") and fathers’ and mothers’ occupation (11 categories, 10
associated to the 1-Digit ISCO and one extra including other categories, such as out of the labour
force, deceased or other unclassified occupations)®®. Item non-response is a serious issue in these

data, particularly for information on respondent’s parents. We are able to alleviate the problem

12 See Mahler and Baur (2023) for recent estimates.

13 Note that the question refers to current occupation of the parents or the last occupation. We exploit the
panel structure of NIDS and look at information about circumstances reported by the same individuals in
previous waves and a) For those with missing circumstances, we will with the oldest value available, and b)
we use the first value of the parental occupation reported in the data.
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somewhat by matching individuals across waves of the NIDS, which is a longitudinal dataset with
previous waves collected in 2008, 2010/11, 2012, and 2014/5. Table 1 reports the shares of
observations with missing information by circumstance variable, before and after this cross-wave
matching. Although substantial progress is made in the parental occupation variables, this is less

the case with mother’s education.

Table 1. Missing circumstances before and after cross-wave matching

Matching | Ethnicity | F.Occ | M.Occ | F.Edu | M.Edu | Sex

Before 5.07 37.67 | 35.95 | 44.21 | 44.72 | 5.03

After 0.01 5.03 | 5.04 30.83 | 43.42 | 0.00

Source: Own elaboration from NIDS 5. F.Occ stands for Father Occupation, M.Occ stands for
Mother Occupation, F.Edu stands for Father Education, M.Edu stands for Mother Education

We then apply two filters to the sample: we restrict the analysis sample to adults aged between 18
and 80; and omit all observations with any missing information in either income or circumstances.
This leaves us with 7,297 observations for the analysis. There is clearly a risk of sample selection if
observations are not missing at random. We cannot completely address that problem, which
plagues most studies of intergenerational mobility or inequality of opportunity in developing
countries. However, we do at least use cross sectional weights calibrated to province, sex, race, and
age group totals. As proposed in (Brunori, Salas-Rojo, and Verme 2022), we correct these weights
for item non-response by applying the reweighting method proposed in (Korinek, Mistiaen, and
Ravallion 2006) and implemented by Munoz and Morelli (2021). The reader is referred to those

papers for details.

Table 2 shows some basic descriptive income statistics for both the 2017 and 2017b analysis
samples, including Gini coefficients which, in both cases, are just over 0.6 — despite the equivalence

scale and age adjustments.*

14 These two adjustments are likely to reduce inequality, relative to per capita income unadjusted for age.
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Table 2: Descriptive Income Statistics

Sample N Mean Sd Gini MLD
2017 7297 6474.20 11173.20 | 0.605 0.678
2017b 6730 6418.23 11470.35 | 0.599 0.664

Source: Own elaboration from NIDS 5. N stands for the analysis sample size. Sd stands for
Standard Deviation, MLD stands for Mean Logarithmic Deviation. Incomes in rands (2015).

Table 3 contains summary descriptive statistics for the circumstance variables, as proportions of

the weighted analysis sample.

Table 3: Descriptive Circumstance Statistics

Ethnicity | Figure labels 2017 2017b
African 1 78.27 83.58
Asian/Indian 2 1.9 1.1
Coloured 3 11.55 12.12
White 4 8.28 3.19
Sex Figure labels 2017 2017b
Female 1 37.14 36.12
Male 0 62.86 63.88
Education | Figure labels | Mother (2017) | Mother (2017b) | Father (2017) |Father (2017b)
c dﬁga”te . 0 54.73 58.59 57.38 61.71
Grade 1 1 0.59 0.64 0.67 0.73
Grade 2 2 1.47 1.56 1.52 1.63
Grade 2 3 2.38 2.54 2.32 2.39
Grade 4 4 3.38 3.54 2.54 2.66
Grade 5 5 2.71 2.82 2.37 2.44
Grade 6 6 3.03 3.12 2.63 2.64
Grade 7 7 4.32 4.37 3.29 3.19
Grade 8 8 7.83 7.37 7.35 6.91
Grade 9 9 1.9 1.87 1.82 1.72
Grade 10 10 4.77 3.92 4.4 3.49
Grade 11 11 2.03 2.05 1.6 1.53
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Sr:jdrsolrze 12 10.85 7.61 12.11 8.95
Occupation | Figure labels | Mother (2017) | Mother (2017b) | Father (2017) |Father (2017b)
Army 0 0.01 0.01 0.58 0.55
Managers 1 0.58 0.42 2.64 1.78
Professionals 2 5.8 4.1 4.15 3.05
Technicians 3 14 0.91 2.1 1.6
Clerks 4 1.69 0.85 0.9 0.7
Service 5 3.1 2.75 6.43 6.37
Skilled 6 0.22 0.24 0.88 0.85
Craft 7 1.34 1.26 10.65 9.81
Operators 8 0.26 0.21 12.16 12.38
Elementary 9 24.06 25.13 20.58 21.25
Other/not in
the labour 10 61.55 64.13 38.93 41.66
force

Source: Own elaboration from NIDS 5. All values are shares (%) of the analysis sample,

6. Results: Inequality of Opportunity in South Africa.

Applying the algorithm outlined in Section 4 to estimate Equation (16), yields the transformation
tree shown in Figure 3. The splitting process generated by the algorithm should be read from left
to right. The first split divides the population between the White population (ethnicity = 4; above)
and all others (ethnicity = 1, 2, 3). As we move to the right, other circumstances subsequently
partition the population following the algorithm, until the final nodes — types — are reached. There
are fourteen types in this optimal partition, and the Figure shows the parametrically estimated
density function for each of them, as well as indicating the population share accounted for by each

type, and its mean income as a multiple or share of the overall mean.?

In terms of the model selection challenge illustrated in Figure 1, the algorithm partitioned the
population into these fourteen groups (and fit CDF’s to them) so as to maximize the likelihood of

fitting the data, under the restrictions f € F, with F being the class of recursive binary TrT

15 For clarity, given the high right-skewness of South African income distribution, and although we use
income in levels to compute all our measures, we plot the density of log income.
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estimators. The partition corresponds to the products (or interactions) of various dummy variables
defined over the circumstances. Type 27, for example, which is the richest type at the top of the
Figure, corresponds to the product of dummy variables x; = 1,4c0=white X
Lfather education=110r 12+ TYPE 8, Which is the poorest type and second from the bottom of the
Figure, corresponds to x13 = lyqce=black X 1rather educationefo-7} X Lmother occup. €{0,6,10} X

1sex=female X 1mother education €{0—4,6,7,9,11}* And so on.

Figure 3: Transformation Tree for South Africa, NIDS 2017.
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The ability to identify these specific patterns in data does have some cost in terms of model
variance. This type of tree is not immune to the problem of sensitivity to the estimated model,

which is common to regression and classification trees, and therefore, we caution against
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overinterpreting the obtained partition and complementing the analysis with resampling-based
tools that we introduce in the following pages. Moreover, when interpreting trees, it is important
to keep in mind that in some cases a split can be misleading. When the algorithm uses a certain
circumstance to divide the sample, it must place all individuals from the node that originates the
split either in one subgroup or the other. If there are very few respondents who have a specific
value for the characteristic in question, the assignment to the group can be almost random. To
address this issue, it is possible to complement the analysis of the tree structure with tabulations
that show the share of observations in each type and category by circumstance like the ones
presented in Appendix 4. Take, for example, the composition of type 8, the first row of table A.6
regarding mother's occupation. Type 8 includes both respondents with non-working mothers and
mothers in skilled manual occupations. However, the relative composition is extremely different,
with the first group consisting of over two thousand respondents, while only six respondents report

a mother in a skilled manual job.

Figure 4 shows the estimated cumulative distribution functions (ECDF) for all fourteen types. The
different colors denote types characterized by a certain ethnic group or mix of groups. The
polarization of South African society by race is clearly visible, with the two richest types, 26 and 27,
(a) being exclusively white and (b) comprising all of white people in the sample. There are no white
people in the other twelve types in our sample. Together, they represent 8.3% of the sample. At
the same time, although the whites are isolated at one end of the distribution of opportunities in
this country, they are not homogeneous. The tree has split those with the most highly educated
fathers (completed secondary or tertiary) from the rest. The difference between their average
incomes is 135% of overall the sample mean. At the other extreme, the poorest type consists
exclusively of black females with generally less educated parents and mothers in certain low-skilled
occupations’®. This is a large group, accounting for over 28% of the population and earning less than
40% of the overall mean. In between, the socially intermediate position of South Africans of Indian
and Asian origin (alongside some of the so-called ‘coloured’) is evident in Types 10 and 24, pictured

in yellow.

16 To allow for maximum flexibility in the estimation, both parental occupation and parental education are
treated as categorical, rather than ordinal, variables. Nevertheless, with few exceptions, the sample is split
consistently with the order of the variables.
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Figure 4: Conditional Income Distributions by Type.
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The same information can be represented in yet another potentially useful way, by showing the
country’s overall population density function (of log incomes) as a mixture of the distributions of
the fourteen types, as shown in Figure 5 below. Vertical slices of this kernel density estimate would
then yield the racial composition of each income range corresponding to the logarithmic scale on

the horizontal axis.
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Figure 5: Density function as a mixture of type distributions
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The dashed line accompanying each ECDF in Figure 4 is the outcome predicted by the Bernstein
polynomial: F (ch, 9”(0)) for each type. The estimated incomes at each quantile, y,, are used to

compute I0p through Equations (16-17). We use two different inequality measures I(x) for that
computation, namely the Gini coefficient and the mean log deviation (MLD). The mean log deviation
was used extensively in the early 10p literature, given its ideal decomposability properties (see
Foster and Shneyerov, 2000 and Ferreira and Gignoux, 2011). As it became increasingly clear that
standard decomposability was not, in fact, required for the measurement of IOp — unless one wishes
to interpret within-group inequality as being entirely driven by effort —the Gini has been used more
frequently. It has the advantage, as noted by Brunori, Palmisano, and Peragine (2019), that it is
more sensitive to the central parts of the distribution, where group means tend to cluster, rather
than to the lower tail. In that sense, the Gini is better suited to studying I0p and, although we report
both measures in Table 4 below, we focus the discussion on the Gini estimates. The upper part
contains results for the main sample for 2017 (which oversamples the rich) and the bottom part

reports results for the alternative sample (2017b), as discussed in Section 3.
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Table 4: Inequality of Opportunity Results

Sample . Abs. Gini Rel. Gini Abs. MLD. | Rel. MLD.
2017 Gini 10p 10p MLD 10p 10p Types
TRT 0.605 0.445 73.58 0.678 0.330 48.75 14
T 0.605 0.408 67.44 0.678 0.274 40.41 12
CIRF 0.605 0.430 71.07 0.678 0.299 44.10

Sample . Abs. Gini Rel. Gini Abs. MLD. | Rel. MLD.

2017b Gini 10p 10p MLD 10p 4.10p Types
TRT 0.599 0.418 69.77 0.664 0.288 43.44 14
T 0.599 0.401 66.96 0.664 0.264 39.82 9
CIRF 0.599 0.379 63.24 0.664 0.229 34.42

Source: Own elaboration from NIDS 5. TrT stands for Transformation Tree, CIT for Conditional
Inference Tree, CIRF for Conditional Inference Random Forest, Abs. for Absolute, Rel for Relative.

The headline results are in the first row of the table. The Gini coefficient calculated on the vector
yr (see Eq.16) obtained from the ECDFs of the fourteen types in our ex-post partition is 0.44, or
73% of the overall Gini coefficient of 0.61 for South Africa. This is a remarkable number: the
“opportunity Gini” for South Africa is higher than the overall income Gini coefficient of the United
States (0.41 as reported by the World Bank for the same year).” Not only that, but inherited
inequalities account for almost three-quarters of the (extremely high) inequality in current incomes
in the country. While this is perhaps not entirely surprising, given the history of Apartheid, it is
certainly the case that previous methods had not found similarly high opportunity ratios. Piraino
(2015), for example, employs the ex-ante approach and two possible econometric methods to
estimate inequality of opportunity on gross employment earnings (using up to 54 Roemerian types).
Depending on the set of circumstances considered he finds a level of I0p ranging between 17% and
24% of total inequality measured with mean logarithmic deviation (MLD) — which compares to our
MLD estimate of 48%. This difference is in part due to the oversampling of richer households, but

it persists when using comparable samples where the relative IOp in MLD is 36%.

17 See https://data.worldbank.org/indicator/SI.POV.GINI?locations=US
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The second and third rows in each part of Table 4 contain benchmark estimates from applying ex-
ante approaches to our data. Figure 6 shows the ex-ante tree obtained with same data, replicating
(exactly) the approach of Brunori, Hufe, and Mahler (2023) to construct conditional inference trees
and random forests. As noted in Section 3, these two (closely related) machine-learning estimators
have recently been applied to the computation of 10p (in Europe) and we include their estimates
here for comparison and benchmarking only.*® Note that although the structure of the ex-ante tree
is similar, with a preponderant role of race in the definition of the tree structure, some differences

emerge (e.g., white respondents are no longer split in two types).

Figure 6: Conditional Inference Tree for South Africa, 2017

/"~ Ethnicity
A p<0.001
23 4
e Father_Edu I
N pcoum /
0‘1,2,3,4‘5‘ 67911 a,m 2
¢ Mother_Edu ™y Mmher 1sC5™, y |
\ p<0001 P <0001/ \
T — ~— - -'\\ \
0,1.2.3.4 5.6.7.8,9,10,11,12 1.2,3.84.5,7.9.10
/ ’ lher ISCE™ | 4 Ethmclty ™~
\ p<ODD1 / i \._p<0001
s R 0.5.8. 710 1‘2,3‘ 4.8.9 \
¢~ Ethnicity /7 Ethnicity ™ e Emm:\ry ™ 7 Mother_|SCT™ | 23
\_p=0002 / \_p<0001 / \_p<0001 \_p=0008 / ;

12 3 E 2.3 E ia 1,2,354,! 9

Exp. outcome Exp. outcome Exp. outcome Exp. outcome Exp. outcome Exp om Exp. aulcome Exp. cutcome . Exp. outcome Exp. outcome Exp. cutcome
0.533 0481 0423 0489 068 0876 1174 0811 1.022 1735 3613

Pop. Share (%] Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%)
411 8 544 10.15 3.03 B.28

17.62 203 35.27

Source: Own elaboration from NIDS 5.

In terms of the IOp summary statistics in Table 4, the ex-ante (CITF) tree estimates are a little lower
than for the ex-post (TrT): an opportunity Gini of 0.41 in the ex-ante case, versus 0.44 in the ex-post
case. It is tempting to conclude that this might be because, by looking only at type means, the ex-

ante approach misses additional differences along the ECDFs. But one should be cautious with this

18 They are not our focus in this paper and readers are referred to Brunori, Hufe, and Mahler (2023) for
definitions and methodological descriptions.
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interpretation. The random forest ex-ante estimate in the third row (0.43), which is known to be
more robust than that of a single tree, is very close to the ex-post tree result. We interpret the
broad similarity in the estimates across the three different methods — particularly the the TrT and
the random forest — for both the Gini coefficient and the MLD — as an indication of the robustness

of the data-driven approach to the assessment of inherited inequality.

We also interpret the fact that these methods tend to find higher shares of inherited inequality in
overall dispersion than earlier approaches as a reflection of the ability of the algorithms to identify
the most salient inequalities across subgroups. With fourteen “variables” or sets of interactions
between dummy variables, our transformation tree finds an inequality in predicted incomes roughly
similar to that of 200 regressors in the backward stepwise selection procedure depicted in Figure 1.
Furthermore, adding another 300 regressors in that exercise yielded another six Gini points, likely
by overfitting the data. This reflects the ability of the trees and forests to identify the “right”

subgroups to focus on, by the very design of the algorithms.

Yet, although the ex-ante and ex-post methods presented here yield similar headline measures of
I10p, they do identify different partitions —as one would expect from the fact that CITFs (and forests)
are designed to find the most statistically significant differences between averages, and the TrT are
looking for more general differences across CDFs, including in higher moments. Since both
partitions (into 14 ex-post types and 12 ex-ante types) are of the same sample, we can map which
ex-ante and ex-post type each individual in the sample belongs to. The mapping is shown in the
Sankey plot in Appendix 3. Although space limitations preclude a detailed analysis of the plot, we
note that movements between ex-ante and ex-post types are commonest when the ECDFs in Figure
4 are not far apart and cross one another. Examples include ex-post types 7 and 13, as well as 10
and 16. Indeed it can be seen that most members of ex-post type 13 are merged with either type 8
or 10 in the ex-ante case. These different allocations are the result of allowing differences in higher

moments of the type distributions to affect splitting decisions in the tree.

While it may not always be possible to provide an intuitive explanation for the differences between
the two partitions, there are cases in which it is possible to understand which characteristics
distinguish respondents who are in two different types in the two partitions. Ex-ante type 17, for
example, consists of non-white respondents whose mothers were employed in elementary
occupations. Within this group, there are several subtypes in the ex post partition, but the majority

of observations, over 80%, are concentrated in two ex-post types: 50% of the observations belong
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to ex-post type 15, constituting 95% of this type, while 31% are categorized as ex-post type 16,
making up 97% of this type. The distinguishing circumstance between the two groups is the
occupation of their fathers. Individuals in ex-post type 15 tend to have fathers in craft occupations
or unspecified occupational statuses which include also fathers outside the labor force, while the
majority of individuals in type 16 have fathers whose occupation falls under the category of
operators and elementary workers. The latter group, represented by respondents in ex-post type
16, have higher average income, although the difference is not significant enough to allow a split in
the ex-ante tree. But also display a different cumulative distribution function with a substantially

higher income variance.

Ex-ante and ax-post trees are therefore complementary tools to understand inequality of
opportunity. It should be noted, however, that both CIT and TrT — as well as trees in general — are
well known for their ability to detect complex interaction effects (low bias), but also to be highly
sensitive to the exact sample observed (high variance). For this reason, the structure of a single tree
should never be interpreted beyond its statistical meaning: the most likely partition in types in the
observed sample, among the many probable partitions that could be obtained from other samples

equally representative of the population of interest.

In the remainder of this section, we briefly present two additional sets of results that can also
improve the robustness of our understanding of the phenomenon and can be easily obtained from
this approach to inherited inequality: (i) a descriptive decomposition of the role of each individual
circumstance variable, and (ii) an estimate of the objective function for a Rawlsian opportunity-

egalitarian.
The role of individual circumstances

The prediction function in equation (16) is highly non-linear in circumstances, so that any
assessment of the relative contribution of individual circumstances to inequality in predicted
incomes, I(y1) cannot rely on marginal effects. As in other similar cases in inequality analysis, the
decomposition method most suitable to our application is the Shapley-Shorrocks decomposition
(Shapley, 1953; Shorrocks, 2013). This decomposition computes the total contribution of a
particular circumstance variable ¢, to predicted inequality as the reduction in the latter when ¢y, is

omitted from the prediction, averaged across all possible combinations of circumstances that omit
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Ci.- (See Shorrocks, 2013). A description of the algorithm used to compute the decomposition also

helps clarify its logic:

A)

B)

Q)

D)

E)

F)

G)

H)

Draw a subsample of the full sample;*°

Estimate I0p in this subsample, as described in Section 4, but setting a = 1;

Further, estimate I0p in the subsample for all possible permutation sequences that
eliminate circumstance c. This elimination is performed by replacing ¢, with a constant
vector 1;

Estimate a tree and I0p after each elimination sequence and store its difference with
respect to 10p;

Average I0p across all permutation sequences. The difference between overall I0p and this
average is the specific contribution of c¢y;

Repeat steps A-E z times, to account for different potential data-generating processes. In
our case, we set z = 100;

Estimate the contribution of ¢, to IOp as the average contribution across these z
repetitions;

Repeat the algorithm for each ¢y, k € {1, ..., K}.

Analogously to the common approach used in estimating random forests, we construct trees on a

subsample of the initial population, permitting each tree to attain significant depth. These two

adjustments enable all circumstances with predictive power to contribute to defining the partition

of types, at least in certain iterations, making the assessment of the relative contribution of each

circumstance robust to the typical problem of variance of estimates based on a single tree.

Table 5 presents the results of the Shapley-Shorrocks decomposition across the six circumstance

variables available in our data set. Results are presented as percentage shares of the ex-post

opportunity Gini coefficients reported in Table 5, for both the main 2017 sample and the secondary

sample 2017b.

1% Following the convention often used in tree bagging procedures, we draw subsamples 63.2% of the original
sample size (see Hothorn, Hornik, and Zeileis, 2006).
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Table 5: Ex-post tree Shapley value Decomposition (as % of Gini IOp)

Year Ethnicity | F.Occ | M.Occ | F.Edu | M.Edu | Sex

2017 30.59 14.16 | 16.07 | 17.63 | 17.23 | 4.33

2017p 44.64 10.18 | 12.29 | 14.57 | 13.01 | 5.3

Source: Own elaboration from NIDS 5. F.Occ stands for Father Occupation, M.Occ stands for Mother
Occupation, F.Edu stands for Father Education, M.Edu stands for Mother Education.

The importance of the race or ethnicity variable, which was already evident from the tree in Figure
3, is confirmed here: it contributes 31% of I0p in the sample that oversamples the rich, and as much
as 45% of the other sample. The difference reflects the fact that much of the “added” inequality
among the rich is inequality among whites. Fathers’ and mothers’ educational levels come next in
importance, with about 17% each, followed closely by their occupational categories, where the
mother’s occupation appears to contribute just a little more than the father’s. Naturally, it should
go without saying that, in keeping with the measurement-using-prediction spirit of our analysis,

these decompositions are purely descriptive.
The lower envelope of quantile functions

Although the analysis of inherited inequality, in any of the forms described in Section 2, is inherently
descriptive, it often raises normative questions about what the policy objectives should be with
regard to intergenerational persistence, or inequality of opportunity. As with inequality in general,
one must contend, in particular, with the leveling-down objection: if the objective were simply to
eliminate inequality in predicted incomes, I(¥), and thus immobility or inequality of opportunity,
this might be achieved by setting all incomes to zero — or some other very low value. Policies might

be arranged in such a way that there was no inherited inequality, but everyone lived in poverty.

The standard normative response to this philosophical objection is Rawls’s argument that
inequalities should be tolerated only insofar as they are to the benefit of the worst-off (Rawls,
1971). This gives rise to Rawlsian maximin objective functions, familiar to economists. And indeed,

various versions of maximin objectives have been proposed in the context of inequality of
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opportunity.?° One version is to arrange society and choose policies so as to maximize the (average
of the) lowest incomes at each quantile of the conditional distribution functions, across all types.
Recalling from the general framework in Section 2, that there are M types, 7,,,: = {Vi|c; = ¢},
whose conditional cumulative distribution functions are of the form F(y|c,,), define the lower

envelope of the joint distribution {y, c} as:

L(g) = min F71(q, cm) (18)

And choose policies so as to:

! (19)
Max J L(q)dq
0
As Roemer and Trannoy (2016) put it: “We do not simply want to render the functions identical at a
low level, so we need to adopt some conception of ‘maxi-minning’ these functions. |[...] A natural
approach is therefore to maximize the area under the lower envelope of the [quantile] functions.”

(p. 231).

Equation (18) defines the lower envelope of the set of quantile functions (inverse functions of the
distribution function). Graphically, if one inverts the conditional CDFs in Figure 4, one obtains the
type quantile functions, as in Figure 7 below. L(q) defines the lowest points in the graph at each
quantile. If the poorest type were first-order stochastically dominated by all other types, then this
would simply be its quantile function, and Equation (19) would mandate maximizing its average
income, equal to the area under the quantile function. When quantile functions cross at the bottom
of the graph, Equation (19) mandates maximizing the average income of the lower envelope of the

quantile functions. If there were no inequality of opportunity, all of society would be one type and
fo L(g)dq would be its average income. Therefore, the value of the maximand in (19) is informative
per se, as a measure of shared income in a society, and is interestingly read in relative terms, as a

JJ L(@aq

measure of how close the shared income is to the average income, T Fada’
q)dq
0

20 5ee, e.g., Van de Gaer (1993) and Bourguignon, Ferreira, and Menendez (2007).
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Figure 7: Type quantile functions and the lower envelope
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Source: Authors’ elaboration from NIDS 5

In practice, a literal computation of fol L(g)dq might be over-sensitive to small (and possibly
unstable) types detected in a particular sample. We therefore propose a robust version of the lower
envelope which consists, in each quantile, of the average of the worst-off types adding up to at least
10% of the population. In the present application, however, the robust version is almost identical
to the strict definition in (18), because South Africa’s worst-off type (Type 8 in Figure 3) is dominated

to a large extent by all other types and is also very large in terms of population. The area below
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South Africa’s lower envelope in 2017 is 2,203 Rand, or 34% of the overall mean of 6,474.20 rand,

as shown in Table 2.2
7. Conclusions

The extent to which inequality is inherited from previous generations and shaped by pre-
determined circumstances is a matter of both positive and normative interest. Many, if not most,
approaches to quantifying this phenomenon, rely on prediction exercises, essentially assessing
how well incomes can be predicted by pre-determined circumstances such as biological sex, race,
parental income, or other indicators of family background. We have shown that an array of
commonly used measures of intergenerational mobility and inequality of opportunity can be
written down as functions of the ratio of inequality in these predicted incomes to inequality in
current-generation incomes. What varies between them is the number and nature of the variables
used for prediction, and of the prediction function itself. But they can all be expressed as a two-
step procedure, in which incomes are first predicted by parental incomes or other inherited

characteristics, and then inequality in those predictions is compared to observed inequality.

Such prediction problems inherently involve a statistical trade-off between a downward bias arising
from omitting certain variables and interaction terms, and an upward bias from including too many
such variables and overfitting the model. Data-driven, machine learning techniques, which are
designed to perform well out of sample and avoid overfitting by regularization were developed to
solve this class of prediction problems. In particular, we have proposed the use of transformation
trees (Hothorn and Zeileis, 2021) to estimate ex-post inequality of opportunity, which involves
computing horizontal distances across the conditional distribution functions of suitably defined

population subgroups (types) and aggregating them across quantiles.

Transformation trees are particularly well-suited to the ex-post |Op approach because they predict
incomes by simultaneously partitioning the sample and fitting flexible parametric esimates of these

conditional distribution functions, so as to solve a well-defined local adaptive maximum likelihood

21 The strict (non-robust) lower envelope is 2,168 rand in the 2017 sample. This declines to 1,941
rand in the 2017b sample (2,125 rand in the robust version).
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problem. They should be of interest to those whose normative view of equal opportunities follow
Roemer (1993, 1998), in which conditional quantiles are associated with relative degrees of
responsibility or effort. But we argue that the method is of more general appeal: if one thinks of
equal opportunity — or the absence of inherited inequality — as a situation in which predetermined
and parental characteristics are orthogonal to — have no predictive power over — present-
generation outcomes, then Equation (1) is the critical condition for it to hold. Equality of group
means, which is tested by other algorithms such as linear regressions, tranditional non-parametric
inequality decompositions, or conditional inference trees, is necessary but not sufficient.
Transformation trees compute detect and quantify differences along the full conditional

distribution functions.

We applied this method to South Africa, arguably the world’s most unequal country, and found an
opportunity Gini coefficient — our preferred measure of inequality in predicted incomes — of 0.44,
corresponding to almost three-quarters of overall South African income inequality. When using an
alternative measure like the mean log deviation, our estimate of inequality of opportunity the
predicted share of inequality was at least twice as high in our estimate than in the previous

literature.

Another advantage of this approach is that it generates a number of byproducts which are
descriptively informative of the structure of inequality in South Africa. These include the
transfomation tree itself, graphical depictions of the conditonal distributions, a Shapley
decomposition of the relative contributions of individual circumstance, and an estimate of lower
envelope of the set of quantile functions, an average of which is a meaningful measure of

opportunity deprivation and an estimate of the policy maximand proposed by Roemer (1998).

That said, all estimation methods have advantages and disadvantages, and data-driven learning
algorithms are no exception. Among the limitations of regression trees is the relatively high variance
in the identified structure. As a result, researchers should not report only trees and forests, but also
incorporate relative importance decomposition through bagging, and potentially integrating other
standard econometric models, as supplementary tools. Employing these approaches collectively is

most likely to lead to a thorough and robust understanding of inherited inequalities.
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Appendix 1: The likelihood maximization using Bernstein polynomials

In practice, implementation of the likelihood maximization is facilitated by using a monotonic
transformation function of y, z = h(y), with h'(y) > 0,Vy. Monotonicity ensures that F(y) =
Fz(h(y)). We follow Hothorn and Zeileis (2021) in using Bernstein polynomials of order M to
construct the transformation function: h(y) = a(y)” . Note that a(y) is a polynomial of order M in
y. The choice of M implies the choice of the dimension of the parameter vector, P=M+1. The higher

that order, the greater the flexibility with which F (ch, 9(0)) can be modelled, and the greater the

degree to which differences in their higher moments affect the partition and the estimation.

Bernstein polynomials are a particular application of this transformation function, in which:

(¢1,M+1(}’)» e ¢M+1,1()’))
M+1

an(y) = (A1)

where ¢, y denote the density of the Beta distribution with parameters m and M. Using this
particular vector for the polynomial in h(y) implies a simple log likelihood function that can be used

for the maximization implicit in (5):

£,(8) = log[fz(a(»)")] + log(a(y)"6) (A.2)

With this specific functional form for £;(8), all that is needed to solve (5) and thus have the
parameter estimates to model the conditional income distributions for all types in the tree terminal
nodes is the algorithm to split the sample into types. This proceeds sequentially. Start from the
case when w;(c) = 1, Vi. This corresponds to no splits: all observations are in a single bin, and have
the same weight in the log likelihood maximization. The parameter estimates obtained under that

assumption are the simple maximum likelihood estimates:

N
O4.(c) = argmaxpeo ) £:(0) (4.3)

=1

To decide whether or not a split can improve prediction, test the null hypothesis:

Ho:s(OM.ly) L C (A.4)
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where s(ély) denotes the gradient contribution of observation i. For continuous distributions, the
score contribution is simply the derivative of the log density with respect to 8. Differentiating (A.2)

we obtain:

f'z@’®) d®)
f(a()"0) a' ()T

s(0ly) = a(y) (A.5)

There are a number of methods to test (A.4), and we follow Hothorn and Zeileis (2021) in using M-
fluctuation tests. When these tests reject Hy, the algorithm implements a binary split in the
circumstance x (an element of the vector c) that has the most significant association with the P x P
score matrix, measured by the marginal multiplicity adjusted p-value (see Hothorn, Hornik, and

Zeileis. 2006).

The algorithm is then repeated by testing hypotheses analogous to (A.4) in each of the resulting
cells, and so on recursively, until H, can no longer be rejected. At this point, the algorithm has
identified the optimal partition of the population into types: 3 = Up=1,_pBp. Over this final
partition, the likelihood function given by (A.2) and the weights given by (15) are used to solve (14),

yielding the final parameter vector §N(c), which fully characterizes the conditional distribution

F (ch, H(C)) in each type (terminal node) B,,.

These parametric conditional distributions can then be inverted to yield the estimated type quantile

functions ¥, = F1 (q, é(c)), from which a measure of ex-post inequality of opportunity can be

computed as I0p = f;zO Walg(Fgc) -
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Appendix 2: An illustration of the M-fluctuation test using made-up data

The algorithm employs an M-fluctuation test on parameters stability to allow the number of
Roemerian types proliferate. Purely as an example, we show how the algorithm performs the
partition in types in a simplified hypothetical case in which father’s occupation is the only
circumstance and the logarithm of income is the outcome of interest-?? The objective is testing
whether the parameters defining the income distribution are significantly different when the

population is split in two subgroups.

Following the steps described in the main text, we set a confidence level (a = 0.01) and, in order to
obtain a graphical intuition of the instability of the parameters, a lower order of the polynomial (w
= 3), hence using four parameters to estimate the log-income distribution. We generate a mock
dataset to split incomes according to father occupation, which takes 6 categories ordered from

smaller associated expected income to higher associated expected income.

In Figure A.1 below, we show the values of the parameters in the Bernstein polynomial associated
with each split. Beginning from the left-hand side in both plots, the first four points represent the
parameters associated with the nodes created when we split the population in two groups: those
whose father occupation is 1 (right-hand plot) and the rest, that is, those whose father’s occupation
is 2 to 6 (left-hand plot). As we move to the right through the X-axis, we generate other splits, move
observations associated to categories in fathers’ occupation from one node to the other, changing
the resulting conditioned distributions. It is evident from Figure A.1 that, when transitioning
observations from one terminal node to another, parameters undergo a change in magnitude.
However, it is not immediately apparent which partition exhibits the most statistically significant

parameter instability. That is, which occupational category should be selected as splitting point.

22 Qurs is a different version of a similar example proposed by Kopf, Augustin, and Strobl (2013).
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Figure Al. Values for the Parameters of the Bernstein Polynomial in each node
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That selection is guided by the M-fluctuation test. Figure A.2 shows the value of the statistics for
the tests described in step 4. The higher value (associated with a smaller p-value) is achieved when
the bottom node has categories 1 and 2. That is the splitting point, as confirmed in Figure A.2. The
population is thereby divided in two groups: those with father’s occupation equal to 2 or less, and

the rest, generating the simple tree in Figure A.3.

Figure A2. M-fluctuation quadratic test Statistics
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Figure A3. Transformation Tree (example)
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This partition into two types allows us, for instance, to graphically explore Roemer’s theory by
plotting the cumulative density functions (CDF) of the outcome of interest by types (Figure A4).
Here, the colored lines represent the empirical cumulative density functions (ECDF), while the

dashed lines represent the interpolation of the distribution predicted with the polynomial

approximation.

Figure A4. ECDFs (example)
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Appendix 3: The Sankey Plot

The Sankey plot below, also known as an alluvial diagram, connects the ex-ante and ex-post types
to which each individual in the sample belongs. Ex-ante types are on the left-hand column, and ex-
post types are the right. In both columns, types are ordered from higher income (top) to lower
income (bottom). While for the white population the only difference between the two approaches
is that the single ex-ante type is split into two by the ex-post TrT algorithm, much more movement

is observed among poorer types.

Source: Own elaboration from NIDS 5.
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Table Al: Ethnicity by ex-post types

Appendix 4: Type composition by circumstances.

Circum 1 2 3 4 Type Sh.
Types Mean 0.67 | 1.82| 1.07 | 3.61

8 0.39 2852 0 0 0 28.52
13 0.49 11.28| 0.07| 3.08 0 14.43
7 0.55 1444 0 0 0 14.44
10 0.64 0 09| 3.19 0 4.09
17 0.65 229 01| 047 0 2.86
15 0.75 1.36 | 0.03] 04 0 1.79
22 0.77 5.25 0 0 0 5.25
9 0.8 3.3 0 0 0 3.3

16 0.93 2.01 0 0.79 0 2.81
23 1.24 3.08 0 0 0 3.08
20 1.31 6.73 0 0 0 6.73
24 1.9 0 0.81] 3.62 0 4.43
26 2.76 0 0 0 3.26 3.26
27 4.11 0 0 0 5.02 5.02

Circ Share| 78.27| 1.90| 11.55| 8.28 100

Source: Own elaboration from NIDS 5. Circumstance categories are 1: African; 2:
Asian/Indian; 3: Coloured; 4: White. Circum. Stands for Circumstance Categories, Type Sh.
stands for Type Shares, Circ. Sh. stands for Circumstance Shares.

Table A.2: Sex by ex-post types

Circum 0 1 Type Sh.
Types Mean 1.15| 0.88

8 0.39 0 28.52 28.52
13 0.49 4.71| 9.72 14.43
7 0.55 14.44 0 14.44
10 0.64 1.55| 2.55 4.09
17 0.65 1.1 1.75 2.86
15 0.75 0.63| 1.15 1.79
22 0.77 0 5.25 5.25
9 0.8 1.25| 2.06 3.3

16 0.93 099 | 1.82 2.81
23 1.24 0 3.08 3.08
20 1.31 6.73 0 6.73
24 1.9 1.88 | 2.55 4.43
26 2.76 149 | 1.77 3.26
27 4.11 2.37 | 2.64 5.02

Circ Share| 37.14| 62.86 100

Circumstance Shares.
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Table A.3: Father Education by ex-post types

0 1] 2| 3| 4| 5| 6] 7] 8] 9] 10] 11| 12 | Typesh.
Types Mean | 049 | 0.43| 0.66| 0.63] 0.72] 0.68] 0.68] 0.8 1.32| 0.89| 1.85 1.33] 255
8 039 | 2535 0.23] 0.37| 0.55| 0.64] 0.47] 044 047 o | o | o | o 0 28.52
13 0.49 11.46| 0.15| 0.37| 0.45] 059] 04| 038/ 063 0| o | o | o© 0 14.43
7 0.55 12.29] 0.12| 0.19] 0.33] 0.44] 034] 045/ 027 o | o | o | o 0 14.44
10 0.64 27 | 0 | 008 029 0.19] 0.18] 022] 044] o | o | o | o 0 4.09
17 0.65 1.58 | 0.04| 0.12] 0.29] 0.14| 0.23] 0.16] 029] 0 | 0o | o0 | o 0 2.86
15 0.75 096 | 0.01| 0.03] 0.12] 0.1 0.14] 0.16| 026] 0| o | o | © 0 1.79
22 0.77 0 ol o o] of o] o] o] 278 074] 101] 0.71] o0 5.25
9 0.8 1.75 | 0.04] 0.19] 0.1] 0.15| 0.36] 038/ 033] 0 | 0| 0 | o 0 3.3
16 0.93 1.16 | 0.07| 0.15] 0.19] 0.27| 0.18] 033/ 045 0o | 0o | o | o 0 2.81
23 1.24 0 ol o o of of o of of o o] o] 308 3.08
20 1.31 0 ol o o] o o] o o[ 193] 053] 0.89] 0.48] 2.89 6.73
24 1.9 0 ol o o] of o o o 147] 041] 1.01] 0.25] 1.29 4.43
26 2.76 012 o | 001] o | 0.01] 0.08] 01| 0.15] 1.16] 0.14| 1.48] © 0 3.26
27 411 0 ol o o o o] o o of ol o o016 485 5.02
Circ Share| 57.38] 0.67| 1.52] 2.32] 2.53| 2.37| 2.63| 3.29| 7.35| 1.82] 44| 1.6 12.11 100

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Non-Educated, Then the remaining values correspond to Grades from
1 to 12 (or more). Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. stands for Circumstance Shares.



Table A.4: Mother Education by ex-post types

Circum 0 1 2 3 4 5 6 7 8 9 10 11 12 Type Sh.
Types Mean 0.48 | 0.53| 0.58| 0.56| 0.74| 1.02| 0.69| 1.01| 1.34| 1.19| 1.85| 1.05| 2.51

8 0.39 24.49| 0.19| 0.44| 0.66| 1.11] 0 | 0.58| 0.6 0 | 025 0 | 0.21 0 28.52
13 0.49 11.55| 0.25| 0.53| 0.63| 1.04| 0 0 0 0 | 021 O 0 0.22 14.43
7 0.55 12.37| 0.08| 0.11| 0.36| 0.42| O | 0.33]| 047 0 | 0.16] 0 | 0.14 0 14.44
10 0.64 2.82 | 0.03| 0.04| 0.1| 0.1 0.25| 0.12| 0.29| 0.21| 0 0.1 0 0.05 4.09
17 0.65 0.77 | 0.01| 0.07| 0.19| 0.08| 0.05| 0.22| 0.21| 0.44| 0.11| 0.19| 0.14| 0.37 2.86
15 0.75 0 0 0 0 0 | 0.33| 0.29| 0.47| 047 0 | 0.12| 0.11 0 1.79
22 0.77 1.01 | 0.03| 0.08| 0.18| 0.23| 0.19| 0.42| 0.38| 1.26| 0.27| 0.45| 0.3 | 0.42 5.25
9 0.8 0 0 0 0 0 | 089 O 0 | 144, 0 | 051 O 0.47 3.3
16 0.93 0 0 0 0 0 | 0.55| 0.44| 0.73| 0.78] 0 | 0.26| 0.05 0 2.81
23 1.24 0.23 0 | 0.03| 0.04| 0.05| 0.04| 0.05| 0.14| 0.18| 0.08| 0.27| 0.33| 1.63 3.08
20 1.31 0.95 0 | 0.07| 0.07| 0.12| 0.22| 0.27| 0.42| 0.99| 0.37| 0.67| 0.48| 2.1 6.73
24 1.9 0.37 0 0.1 | 0.16| 0.21| 0.18| 0.22| 0.44| 1.03| 0.26| 0.49| 0.12| 0.85 4.43
26 2.76 0.11 0 0 0 0 | 0.01| 0.08| 0.15| 0.85| 0.12| 1.06| 0.05| 0.82 3.26
27 4.11 0.05 0 0 0 | 0.01f O 0 | 0.03| 0.19| 0.07| 0.64| 0.1 | 3.92 5.02

Circ Share| 54.73| 0.59| 1.47| 2.38| 3.38| 2.71| 3.03| 4.32| 7.83| 19| 4.77| 2.03| 10.85 100

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Non-Educated, Then the remaining values correspond to Grades from
1 to 12 (or more) . Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. stands for Circumstance Shares.




Table A.5: Father Occupation by ex-post types

Circum 0 1 2 3 4 5 6 7 8 9 10 Type Sh.
Types Mean 1.05| 2.59| 2.37| 2.09| 2.37| 1.17| 0.82| 1.33 0.7 0.86 | 0.59

8 0.39 0.12| 0.14| 0.14| 0.22| 0.03| 1.04| 0.12| 1.27| 2.55| 4.48| 184 28.52
13 0.49 0.04| 0.11| 0.08| 0.11| 0.08| 0.74| 0.16| 1.74| 2.01| 599 | 3.36 14.43
7 0.55 0.12| 0.14| 0.07| 0.15| 0.04| 0.77| 0.11| 0.69| 166 | 2.56| 8.14 14.44
10 0.64 0 | 0.03| 0.04| 0.01f 0 | 0.18] 0.05| 0.78| 0.34| 1.36 1.3 4.09
17 0.65 0.01| 0.03| 0.08| 0.1 | 0.01| 0.33| 0.04| 0.48| 0.51| 0.71| 0.55 2.86
15 0.75 0.03| 0 | 0.01] 0.08 0 0 0 0.69 0 0 0.97 1.79
22 0.77 0.03| 0.1| 0.19| 0.11| 0.08| 0.63| 0 0.7 1.18| 0.77 | 1.47 5.25
9 0.8 0.01| 0.05| 0.01| 0.03| 0.01| 0.16| 0.05| 0.32| 0.53| 042 | 1.69 3.3

16 0.93 0 | 005/ O 0 | 0.03] 0.32| 0.03 0 0.9 1.48 0 2.81
23 1.24 0.04| 0.23| 0.74| 0.1 | 0.1| 0.48| 0.01| 0.19| 0.42| 0.19| 0.58 3.08
20 1.31 0.07| 0.45| 0.88| 0.32| 0.08| 0.89| 0.01] 092 | 096 | 0.74| 1.41 6.73
24 1.9 0.04| 0.19| 0.42| 0.16| 0.14| 0.37| 0.08| 1.15| 0.48| 0.71| 0.67 4.43
26 2.76 0.03| 0.26| 0.08| 0.18| 0.07| 0.27| 0.1 | 0.97 0.4 0.77 | 0.14 3.26
27 411 0.03| 0.86| 1.4 | 0.53| 0.23| 0.25| 0.1 | 0.75| 0.21 0.4 0.26 5.02

Circ Share| 0.58| 2.64| 4.15| 2.10| 09| 6.43| 0.88]| 10.65| 12.16| 20.58| 38.93 100

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Army; 1: Managers; 2: Professionals; 3: Technicians; 4: Clerks; 5:
Service; 6: Skilled; 7: Craft; 8: Operators; 9: Elementary; 10 Others. Circum. Stands for Circumstance Categories, Type Sh. stands for Type
Shares, Circ. Sh. stands for Circumstance Shares.



Table A.6: Mother Occupation by ex-post types

Circum 0 1 2 3 4 5 6 7 8 9 10 Type Sh.
Types Mean 0.24| 2.07| 2.69| 29| 298| 14| 0.68] 1.06| 181 | 0.72| 0.72

8 0.39 0 0 0 0 0 0 | 0.08 0 0 0 28.44 28.52
13 0.49 0 | 0.04/ 0 | 0.18| 0.07| © 0 0 0 14.14 0 14.43
7 0.55 0 0 0 0 0 0 | 0.05 0 0 0 14.39 14.44
10 0.64 0 0 0 0 0 0 | 0.05 0 0 0 4.04 4.09
17 0.65 0 0 | 082 O 0 | 134 © 0.6 0.08 0 0 2.86
15 0.75 0 | 0.01| O | 0.04| 0.04] © 0 0 0 1.69 0 1.79
22 0.77 0 0 | 0.37| 0.07| 0.07| 0.22| © 0.11| 0.04| 151| 2.86 5.25
9 0.8 0.01| 0 0 0 0 0 | 0.01 0 0 0 3.28 3.3
16 0.93 0 0 0 | 0.05| 0.03] O 0 0 0 2.73 0 2.81
23 1.24 0 | 0.07| 0.86| 0.1| 0.11| 0.18] © 0.1 0.01| 0.42]| 1.23 3.08
20 1.31 0 | 0.07| 0.97| 0.11| 0.12| 0.38| 0.01| 0.15| 0.05| 1.73| 3.12 6.73
24 1.9 0 | 0.08| 0.52| 0.14| 0.11| 037 © 0.18 | 0.07| 1.25| 1.71 4.43
26 2.76 0 0.1 | 0.52| 0.18| 0.48| 0.3 0 0.12 0 0.32| 1.25 3.26
27 411 0 | 0.21| 1.73] 0.53| 0.66| 0.3 0 0.08 0 0.29 | 1.22 5.02

Circ Share| 0.01 | 0.58 | 5.8 | 1.4 | 1.69|3.10 | 0.22 | 1.34 | 0.26 | 24.06 | 61.55 100

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Army; 1: Managers; 2: Professionals; 3: Technicians; 4: Clerks; 5:
Service; 6: Skilled; 7: Craft; 8: Operators; 9: Elementary; 10 Do not work. Circum. Stands for Circumstance Categories, Type Sh. stands for
Type Shares, Circ. Sh. stands for Circumstance Shares
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