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We present a framework that can be used to assess the equilibrium
impact of regulation on endogenous innovation with heterogeneous
firms. We implement this model using French firm-level panel data
where there is a sharp increase in the burden of labor regulations
on companies with 50 or more employees. Consistent with the
model’s qualitative predictions, we find a sharp fall in the frac-
tion of innovating firms just to the left of the regulatory threshold.
Furthermore, we find a sharp reduction in the positive innovation
response of firms to exogenous demand shocks just below the regula-
tory threshold. Using the structure of our model we quantitatively
estimate parameters and find that the regulation reduces aggregate
equilibrium innovation (and growth) by 5.7% which translates into
a consumption equivalent welfare loss of at least 2.2%, approxi-
mately doubling the static losses in the existing literature.
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I. Introduction

There is considerable literature on the economic impacts of regulations, but
relatively few studies on their impact on technological innovation. Most analyses
focus on the static costs (and benefits) of regulation rather than on its dynamic
effects. Yet these potential growth effects are likely to be much more important
in the long run. Harberger triangles may be small, but rectangles can be very
large. Many scholars have been concerned that slower growth in countries with
heavy labor regulation, could be due to firms being reluctant to innovate due to
the burden of red tape. For example, the slower growth of Southern European
countries and parts of Latin America have often been blamed on onerous labor
laws.1
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Identifying the innovation effects of labor regulation is challenging. The OECD,
World Bank, IMF and other agencies have developed various indices of the impor-
tance of these regulations, based on examination of laws and surveys of managers.
These indices are then often included in econometric models and are sometimes
found to be significant. Unfortunately, these macro indices of labor law are corre-
lated with many other unobservable factors that are hard to convincingly control
for.2 To address this issue, we exploit the fact that many regulations are size
contingent and only apply when a firm gets sufficiently large. In particular, the
burden of French labor legislation substantially increases when firms employ 50
or more workers. For example, such firms must create a works council with a min-
imum budget of 0.3% of total payroll, establish a health and safety committee,
appoint a union representative and so on (see Appendix A for more institutional
details). Several authors have found that these regulations have an important ef-
fect on the size of firms. Indeed, unlike the US firm size distribution, for example,
in France, there is a clear bulge in the number of firms that are just below this
regulatory threshold.3

Existing models that seek to rationalize these patterns have not usually consid-
ered how this regulation could affect innovation, as technology has been assumed
exogenous. But when firms are choosing whether or not to invest in innovation,
regulations are also likely to matter. Intuitively, firms may invest less in R&D as
there is a very high cost of growing if the firm crosses the regulatory threshold.
In the first part of the paper we formalize this intuition using a simple version of
the Klette and Kortum (2004) model of growth and firm dynamics, with discrete
time and two-period lived individuals (but potentially infinitely lived firms). Our
model delivers a number of predictions regarding the shape of the equilibrium re-
lationship between innovation and firm size and the overall firm size distribution.
In particular we obtain the intuitive prediction that the regulatory threshold dis-
courages innovation most strongly for firms just below the threshold, although it
also discourages and shallows the innovation-size gradient for all firms larger than
the threshold. This is because the growth benefits of innovation are lower due to
the implicit regulatory tax.

We use the discontinuous increase in cost at the regulatory threshold to test
the theory in two ways when taking it to our rich panel data on the population
of French firms. First, we investigate non-parametrically how innovation changes
with firm size. As expected there is a sharp fall in the fraction of innovative firms
just to the left of the regulatory threshold, an “innovation valley” that is sugges-
tive of a chilling effect of the regulation on the desire to grow. Moreover, there

2Furthermore, it may be that the more innovative countries are less likely to adopt such regulations
(e.g. Saint-Paul, 2002).

3See Garicano, Lelarge and Van Reenen (2016); Gourio and Roys (2014); Ceci-Renaud and Chevalier
(2011); and Smagghue (2020). Often, it is hard to see such discontinuities in the size distribution at
regulation thresholds (e.g. Hsieh and Olken, 2014 and Amirapu and Gechter, 2020). A reason for the
greater visibility in France is because the laws are more strictly enforced through large numbers of
bureaucratic enforcers and strong trade unions.
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is a flattening of the innovation-size relationship to the right of the threshold,
consistent with a greater tax on growth. Although the cross-sectional evidence is
suggestive, there could be many other reasons why firms are heterogeneous near
the regulatory threshold, so we turn to a second and stronger test by exploiting
the panel dimension of our data. Specifically, based on a wide class of models
that predict that an increase in market size should have a positive effect on in-
novation (e.g. Acemoglu and Linn, 2004), we analyze the heterogeneous response
of firms with different sizes to exogenous demand shocks. We use a shock based
measure based on changes in growth in export product markets (disaggregated
HS6 products by country destination) interacted with a firm’s initial distribution
of exports across these export markets (see Hummels et al., 2014 or Mayer, Melitz
and Ottaviano, 2016). We first show that these positive market size shocks sig-
nificantly raise innovative activity. We then examine the heterogeneity in firm
responsiveness to these demand shocks depending on (lagged) firm size. We find a
sharp reduction in firms’ innovation response to the shock for firms with size just
below the regulatory threshold. Consistent with intuition and our simple model,
firms appear reluctant to take advantage of exogenous market growth through
innovating when they will be subject to a wave of labor regulation.
Having established that the qualitative implications of the model are consis-

tent with the data, we use the structure of our model (and empirical moments
of the data) to quantitatively estimate the impact of the regulation on aggregate
innovation and welfare. Our baseline estimates suggest that the regulation is
equivalent to a tax on profit of about 2.6% that reduces aggregate innovation by
around 5.7% (equivalent to cutting the annual growth rate from 1.7% to 1.6%)
and reduces welfare by at least 2.2% in consumption equivalent terms. This is
partly through misallocation from lowering entry and shifting the size distribu-
tion downwards, but the vast majority of this aggregate impact is through lower
innovation per firm once they reach a certain size. This implies that the existing
structural static analyses of the output loss have significantly underestimated the
cost of the regulation.
A caveat to our welfare conclusions arises when we generalize our model to

allow firms to invest in a mixture of radical and incremental innovation. We find
that the regulation deters incremental R&D, but if a firm is going to innovate it
will try to “swing for the fence” to avoid being only slightly to the right of the
threshold. Measuring radical innovation by either future citations or a machine
learning approach based on novelty in the patent text, we find that the negative
effects of regulations are confined to incremental patents. Similarly, we find that
regulation biases innovation towards automative labor-saving patents.

Related literature

Our paper relates to several strands of literature. More closely related to our
analysis are papers that look at the effects of labor laws regulations on innovation.
In Acharya, Baghai and Subramanian (2013a) higher firing costs reduce the risk
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that firms would use the threat of dismissal to hold their employees’ innovative
investments up. They find evidence in favor of this using macro time series vari-
ation on Employment Protection Law (EPL) for four OECD countries. Acharya,
Baghai and Subramanian (2013b) also finds positive effects using staggered roll
out of employment protection across US states.4 Griffith and Macartney (2014)
use multinational firms patenting activity across subsidiaries located in different
countries with various levels of EPL.5 Using this cross-sectional identification,
they find that radical innovation was negatively affected by EPL, but incremen-
tal innovations were not.6 By contrast, Alesina, Battisti and Zeira (2018) find
that less regulated countries have larger high-tech sectors. All of these papers use
macro (or at best, state-level) variation whereas we focus on cross-firm variation.
Garcia-Vega, Kneller and Stiebale (2019) analyze a reform that relaxed a size
contingent labor regulation in Spain and find an increase in innovation. Our em-
pirical results are consistent with this, but we go beyond the analysis in this paper
by developing a model of labor regulation and innovation with endogenous firm
size distribution, that is matched with the data to obtain structural parameters,
enabling us to perform aggregate counterfactuals.

Second, several structural papers look at the effects of labor regulations on em-
ployment and welfare, in particular Braguinsky, Branstetter and Regateiro (2011)
on Portugal, Gourio and Roys (2014) and Garicano, Lelarge and Van Reenen
(2016) on France. However, these papers do not allow for endogenous innovation,
nor try to quantify the welfare changes arising form such dynamic considerations.
More generally, there is a large literature focusing on how various kinds of dis-
tortions can affect aggregate productivity through the resulting misallocation of
resources away from more productive firms and towards less productive firms. As
Restuccia and Rogerson (2008) and Parente and Prescott (2000) have argued,
these distortions imply that more efficient firms produce too little and employ
too few workers. Hsieh and Klenow (2009) show that the resulting misalloca-
tion accounts for a significant fraction of the differences in aggregate productivity
between the US, China and India and Bartelsman, Haltiwanger and Scarpetta
(2013) confirm this finding using micro data from OECD countries.7 Boedo and
Mukoyama (2012) and Da-Rocha, Restuccia and Tavares (2019) have shown fir-
ing costs hinder job reallocation and reduce allocative efficiency and aggregate

4This is the same empirical variation used by Autor, Kerr and Kugler (2007) who actually found falls
in TFP and employment from EPL. Bena, Ortiz-Molina and Simintzi (2020) finds a positive impact on
process innovation using the same design.

5See also Cette, Lopez and Mairesse (2016) who document a negative effect of EPL on capital intensity,
R&D expenditures and hiring of high skill workers. More generally, Porter and Van der Linde (1995)
argue that some regulations, such as those to protect the environment, can have positive effects on
innovation.

6Note that this is the opposite of what we find using our within-country identification. Labor regu-
lation discourages low-value innovation, but has no impact on high-value innovation.

7In development economics many scholars have pointed to the “missing middle” , i.e. a preponderance
of very small firms in poorer countries compared to richer countries (see Banerjee and Duflo, 2005, or
Jones, 2011). Besley and Burgess (2000) suggest that heavy labor regulation in India is a reason why
the formal manufacturing sector is much smaller in some Indian states compared to others.
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productivity. The additional effect of barriers to reallocation when productiv-
ity is endogenous is also the focus of Gabler and Poschke (2013), Da-Rocha,
Restuccia and Tavares (2019), and Bento and Restuccia (2017).8 Mukoyama and
Osotimehin (2019) is perhaps the most closely related paper to ours and finds
a negative growth effect of the firing tax equivalent to a 5% labor tax (in the
entrant-innovation model in the US) in a calibrated aggregate model with en-
dogenous innovation. Unlike our approach, their paper does not have closed form
solutions for the policy rules with taxes so has to rely on simulation methods.
We contribute to this part of the literature by introducing an explicit source of
distortion, namely the regulatory firm size threshold that goes beyond just firing
costs, and by looking at how this regulation interacts with exogenous market size
shocks using firm-level micro-econometric analysis.
Third, a body of work looks at the effects of EPL on the adoption of new

technologies (e.g. Manera and Uccioli, 2020), especially information and com-
munication technology. For example, Bartelsman, Gautier and De Wind (2016)
argue that risky technologies require frequent adjustments of the workforce. By
increasing the costs of such adjustments, EPL will deter technology adoption.
Similarly Samaniego (2006) finds that EPL slows diffusion and Saint-Paul (2002)
finds a smaller share of the economy in risky sectors when EPL are strong. Our
approach is different as it focuses on technological innovation at the frontier rather
than the adoption of existing technologies. Unlike emerging economies, advanced
countries such as the US or France cannot rely solely on catch-up diffusion for
long-run sustainable growth.
Fourth, our paper is related to public finance as we model regulation as an

implicit tax, and a number of papers have examined how personal and business
taxes affect innovation (see Akcigit and Stantcheva, 2020, for a recent survey).
Like us, other tax papers use nonlinearities to identify behavioral parameters
(e.g. Saez, 2010; Chetty et al., 2011; Kleven and Waseem, 2013; Kaplow, 2013
and Aghion et al., 2019b) and we contribute to this literature by bringing labor
regulations, innovation and patenting into the picture.9

Fifth, there is an older literature looking at one form of labor regulation -
union power - on innovation.10 These papers found ambiguous theoretical and
empirical effects . Finally, the heterogeneous effects of demand shocks on types
of innovation is also a theme in the literature of the effects of the business cycle
on innovation (Schumpeter, 1939; Shleifer, 1986; Barlevy, 2007). Recent work by

8Samaniego (2006) highlights the effects of firing costs in a model with productivity growth. He
considers, however, only exogenous productivity growth and studies how the effects of firing costs differ
across industries. Poschke (2009) is one of the few papers that study the effects of firing costs on aggregate
productivity growth.

9This is important as Hopenhayn (2014) has argued that tax-driven reallocation distortions typically
have only second order welfare effects unless there is rank reversal. Changing innovation is potentially a
way of generating larger negative welfare effects that goes beyond static models.

10See Menezes-Filho, Ulph and Van Reenen (1998) for a survey and evidence. The common view is
that the risk of ex post hold-up by unions reduces innovation incentives (Grout, 1984). But if employees
need to make sunk investments there could be hold up by firms (this is the intuition of the Acharya,
Baghai and Subramanian, 2013a,b papers).
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Manso, Balsmeier and Fleming (2019) suggests that large positive demand shocks
(booms) generate more R&D, but this tends to ”exploitative” (incremental) rather
than “exploratory” (radical) innovation. We find that the impact of regulation
following a demand shock discourages incremental (but not radical) innovation.
The structure of the paper is as follows. Section II develops a simple model of

how innovation can be affected by size-contingent regulation. Section III confronts
the main qualitative predictions of the model to the data, using both a non-
parametric cross-sectional analysis and a dynamic econometric analysis of the
response to exogenous shocks. Section IV uses the theory and empirical moments
(from both the static and dynamic analysis) to estimate the equilibrium effect
of regulation on aggregate innovation and welfare. Section V presents a number
of theoretical and empirical extensions and robustness tests, most importantly
allowing for radical and incremental innovation. Section VI concludes. In Online
Appendices, we present institutional details of the labor regulations (A), data
details (B), further theoretical results (C) and additional empirical exercises (D).

II. Theory

In this section, we present our basic theory built around a discrete time version
of the Schumpeterian growth model with firm dynamics by Klette and Kortum
(2004) where we introduce size contingent regulations. This enables us to ana-
lytically characterize firms’ innovation decisions depending on their size and the
regulation. We next solve for the steady state firm size distribution incorporating
both incumbent growth and entry/exit dynamics. Finally, we put both elements
together to characterize how economy wide innovation changes with the strin-
gency of the regulation. Throughout, we explore what the model implies for the
steady state joint distributions of innovation and employment as well as how firms
should respond to the exogenous demand shocks we will exploit in the empirical
section.

A. A simplified Klette-Kortum model

We consider a simplified version of the two-period specification of Aghion et al.
(2018b). We show that all results are theoretically and empirically robust to the
longer lived owner model in the extension of subsection V.C. In the first period of
her life, a firm owner decides how much to invest in R&D. In the second period,
she chooses labor inputs, produces and realizes profits. At the end of the period,
her offspring inherits the firm at its current size and a new cycle begins again.11

We assume that individuals have intertemporal log preferences:

(1) U =
∑
t>0

βt log(Ct),

11We do not consider bequest motives, but the extension to longer living owners which we present in
Section V.C implicitly encompasses this incentive.
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associated with a budget constraint:

wt + (1 + rt)at = at+1 + Ct,

where wt is the wage at time t, Ct is consumption, and at is an asset that yields
an interest rate rt. This immediately gives the Euler equation: β(1+ rt) = 1+gt.
We consider the economy on a balanced growth path where final output y and
consumption grow at a constant rate which we denote by g, so that the Euler
equation can be expressed as β = (1 + g)/(1 + r), where β is the discount factor
and r is the steady-state level of interest rate. There is a continuous measure L
of production workers, and a mass 1 of intermediate firm owners every period.
Each period the final good is produced competitively using a combination of
intermediate goods according to the production function:

ln y =

∫ 1

0
ln(yj)dj,

where yj is the quantity produced of intermediate j. Intermediates are produced
monopolistically by the firm who innovated last within that product line j, ac-
cording to the linear technology yj = Ajlj where Aj is the product-line-specific
labor productivity and lj is the labor employed for production. This implies that
the marginal cost of production in j is simply w/Aj . A firm is defined as a col-
lection of production units (or product lines/varieties) and expands in product
space through successful innovation.

To innovate, an intermediate firm i combines its existing knowledge stock that
it accumulated over time (ni, the number of varieties it operates in) with its
amount of R&D spending (Ri) according to the following Cobb-Douglas knowl-
edge production function:

(2) Zi =

(
Ri

ζy

) 1
η

n
1− 1

η

i ,

where Zi is the Poisson innovation flow rate, η is a concavity parameter and ζ is a
scale parameter. This generates the R&D cost of innovation: C(zi, ni) = ζniz

η
i y,

where zi ≡ Zi/ni is simply defined as the innovation intensity of the firm.

When a firm is successful in its current R&D investment, it innovates over a
randomly drawn product line j′ ∈ [0, 1]. Then, the productivity in line j′ increases
from Aj′ to Aj′γ and the firm becomes the new monopoly producer in line j′ and
thereby increases the number of its production lines to ni +1. At the same time,
each of its ni current production lines is subject to the risk of being replaced by
new entrants and other incumbents (a creative destruction probability that we
denote x). Thus the number of production units of a firm of size ni increases to
ni + 1 with probability Zi = nizi and decreases to n− 1 with probability nix. A
firm that loses all of its product lines exits the economy.
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Because of the Cobb-Douglas aggregator, the final good producer spends the
same amount y on each variety j. As a result, final good production function gen-
erates a unit elastic demand with respect to each variety: yj = y/pj . Combined
with the fact that firms in a single product line compete a la Bertrand, this implies
that a monopolist with marginal cost w/Aj will follow limit pricing by setting its
price equal to the marginal cost of the previous innovator pj = γw/Aj .

12

The resulting equilibrium quantity and profit in product line j are:

yj =
Ajy

γw
and Πj =

(
1− 1

γ

)
y,

and the demand for production workers in each line is given by y/(γw). Firm i’s
employment is then equal to its total manufacturing labor, aggregating over all
ni lines where i is active, Ni. Namely:

(3) li =

∫
j∈Ni

y

wγ
dj =

yni
wγ

=
ni
ωγ

,

where ω = w/y is the output-adjusted wage rate, which is invariant on a steady
state growth path. Importantly for us, a firm’s employment is strictly propor-
tional to its number of lines ni.

B. Regulatory threshold and innovation

We model the regulation by assuming that a tax on profit must be incurred
by firms with a labor force that is greater than a given threshold l̄ (50 in our
application in France).13 We suppose that l̄ is sufficiently large that entrants do
not incur this tax upon entry. There corresponds a cutoff number of varieties
n̄ = l̄ωγ to the employment threshold l̄, such that if ni ≥ n̄ profit is taxed at
some additional positive marginal rate τ whereas the firm avoids this additional
tax if ni < n̄.14 Because firm owners live only for two periods, they can only
expand the number of varieties of the firm by one extra unit during their lifetime.
Hence, all the firms that start out with size ni < n̄− 1 or ni ≥ n̄ act exactly as if
the regulatory threshold did not exist. For firms that start with n = n̄− 1, there
is an additional cost to expanding by one extra variety.

12We implicitly assume a competitive fringe of firms with access to the previous technology in each
sector; and that entering the market involves an ε entry cost. Then, as long as the new innovator sets a
price which is less than the limit price equal to the marginal cost of fringe firms, no fringe firm will pay
the entry cost. On the other hand, if the new innovator sets a price which is higher than the limit price,
then she risks losing the market to a fringe firm.

13See Appendix A.3 for a discussion of alternative ways of modelling the regulation, such as including
a fixed as well as a variable cost.

14Unlike in Aghion, Akcigit and Howitt (2014) where the innovation cost is modelled as a labor cost,
here innovation uses the final good y as an input. With labor as R&D input, total employment is
li =

ni
ωγ

+ ζniz
η
i , and thus varies with innovation rather than being proportional to ni. We consider this

extension in subsection V.E where R&D is labor. Increased R&D will then affect the equilibrium wage.
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The owner of a n-size firm therefore maximizes their expected net present value
over its innovation intensity z ≥ 0:15

max
z≥0

{
nπ(n)y − ζnzηy +

1

1 + r
E
[
n′π(n′)y′

]}
,

where y′ and n′ denotes period 2’s values for y and n and r is the interest rate. Di-
viding by y/n and using the fact that β = (1+g)/(1+r), the above maximization
problem can be re-expressed as:

max
z≥0

{
π(n)(1 + β)− ζzη + βz[(n+ 1)π(n+ 1)− nπ(n)]

+ βx[(n− 1)π(n− 1)− nπ(n)]

}
,

where π(n) =
(
1− 1

γ

)
if n < n̄ and π(n) =

(
1− 1

γ

)
(1− τ) if n ≥ n̄.

The intuition behind this equation is straightforward. The first term, π(n)(1+
β) represents the gross flow profits per line today and the second term is the cost
of research, ζzη. The third term, βz[(n+1)π(n+1)−nπ(n)], is the (discounted)
incremental profit gain tomorrow multiplied by the probability the firm innovates
and thereby operates one more product line. The final term, βx[(n−1)π(n−1)−
nπ(n)] is the (discounted) incremental profits loss per line tomorrow if the firm
gets replaced in one of its product lines by a rival firm.
Whenever positive, the optimal innovation intensity is therefore given by:

(4) z(n) =



(
β(γ − 1)

γζη

) 1
η−1

if n < n̄− 1(
β(γ − 1)(1− τ n̄)

γζη

) 1
η−1

if n = n̄− 1(
β(γ − 1)(1− τ)

γζη

) 1
η−1

if n ≥ n̄

Much of the core economics of the paper can be seen in equation (4). Innovation
intensity, z(n), is highest for small firms a long way below the threshold (first row
on right hand side of (4)), second highest for large firms over the threshold (third
row) and lowest for middle sized firms just to the left of the threshold (middle
row).

15Since we have shown that innovation per line is the same for firms of a given size, we drop the firm
i subscripts from here onwards for notational simplicity unless needed.



10 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

What we observe in the data is the firm’s total innovation (measured using
patents) which is Z(n) = nz(n). Since employment is directly proportional to
the number of product lines, this implies that the slope of the innovation-size
relationship will depend upon whether the firm lies above or below the regulatory
threshold. Typically, the upward sloping relationship between innovation and
firm size should be steeper for small firms than for large firms and should fall and
flatten discontinuously at the threshold. Furthermore, the ratio of the slopes of
the innovation-size relationship for large versus small firms, relates directly to the
underlying parameters of the model, and in particular upon the regulatory tax.16

We will use this fact to empirically identify the magnitude of the regulatory tax,
which we then use in our estimates of the aggregate impact of the regulation on
innovation.

C. Regulatory threshold and firm size distribution

We now characterize the steady state distribution of firm size and look at how
this distribution is affected by the regulatory tax. Let µ(n) be the share of firms
with n lines. We first have a steady state condition saying that the number of
exiting firms equals the number of entering firms in steady-state, namely: µ(1)x =
ze, where ze is the innovation intensity of entrants, which is the same as the
probability of entry. Since x is the rate of creative destruction for any line, the
number of exiting firms is therefore given by µ(1)x.
For all n > 1, the steady state condition is that outflows from being a size n

firm is equal to the inflows into becoming a size n firm. This can be expressed as:

(5) nµ(n) (z(n) + x) = µ(n− 1)z(n− 1)(n− 1) + µ(n+ 1)x(n+ 1)

We know z(n) for each n from equation (4) but we need to find the two remain-
ing endogenous objects ze and x. We close the model by considering the following
two equations. First, the definition of µ gives

∑∞
n=1 µ(n) = 1. Second, the rate

of creative destruction on each line is equal to the rate of creative destruction by
an entrant plus the weighted sum of the flow probabilities z(n) of being displaced
by an incumbent of size n, namely:

x = ze +
∞∑
n=1

µ(n)nz(n)

D. Solving the model

In Appendix C we detail how we solve the model numerically. The unknowns
are µ(n) and z(n) for all values of n as well as x and ze, and the equations are

16The ratio of the innovation intensity of the first to third row in (4) is (1 − τ)1/(1−η). This can be
empirically recovered from the relative slopes of the patents to size relationship before and after the
regulatory threshold (see Section IV).
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those derived above. To illustrate the effects, we first show firm-level innovation
Z(n) = z(n)n as a function of the firm’s employment size l = n/(ωγ) in Figure
1. We see that firm-level innovation increases linearly with firm size until the
firm nears the regulatory threshold, at which point there is a sharp innovation
valley. After this, innovation again increases with firm size once the firm passes
the threshold.

Figure 1. Total Innovation by firms of different employment sizes
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10 20 30 40 50 60 70 80 90 100
Employment

Innovation

Note: This is the total amount of innovation (Z(n)) by firms of different sizes (employment, l = n/(γω))
by aggregating innovation intensities z(n) across all its product lines (n) according to our baseline
theoretical model. The y-axis is the corresponding value of total innovation Z. We use our baseline
calibration values of τ = 0.026, γ = 1.3, η = 1.5, β/ζ = 1.70 and ω = 0.22 for illustrative purposes (see
section IV for a discussion).

In Figure 2 we plot the equilibrium firm size distribution, i.e. the value of the
density µ(n) for each level of firm employment. Panel (a) uses a linear scale,
but because the distribution is nonlinear we plot it on a log-log scale in Panel
(b) where it is broadly log-linear (the well-know power law as documented by
Axtell, 2001 and many others). Note the departure from the power law around
the regulatory threshold. The distribution bulges a bit as firms approach 50 and
then discontinuously drops before falling again once firms pass the threshold.
Unlike the innovation-size discontinuity, this “broken power law” in the French
size distribution has been noted before in the literature (e.g. Ceci-Renaud and
Chevalier, 2011), but the shape has proven difficult to fully rationalize in a model
without endogenous innovation.17

17In particular, although a purely static model like Lucas (1978) with regulation can rationalize a
discontinuity at 50 and a downwards shift of the line, there should be no firms of size 50 and no bulge
at 48 (firms just fully shift to avoid the regulation and spike at 49). Garicano, Lelarge and Van Reenen
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Figure 2. Distribution of firm size (µ(n))
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Note: These figures plot the density of firm employment, µ(n) according to our baseline theoretical
model. Panel (a) uses a linear scale and Panel (b) uses a log-log scale. The calibration values are the
same as Figure 1.

Although we took particular values of the parameters for illustrative purposes
in Figures 1 and 2, these patterns are the same for any value of the regulatory tax
(τ).18 To see how τ qualitatively impacts the innovation-firm size relationship and
the firm size distribution, we compare our results (solid blue) to an unregulated
economy (i.e. τ = 0, dashed red) in Figures 4(a) and 4(b). Four points are
worth emphasizing. First, as expected, we observe no innovation valley when we
remove the regulation Figures 4(a). Second, the level of innovation when τ > 0
is lower than when τ = 0 even for large firms to the right of the threshold. This
stems from the fact that the tax reduces innovation intensity even for these firms.
Third, the total innovation gap between the regulated and unregulated economy
gets larger as firm size increases because bigger firms have more product lines and
the innovation intensity of each line is lower than that of small firms. This can be
seen from (4), which showed that the slope of the line after the threshold is flatter
than that for small firms with n < n̄−1. Fourth, in terms of the size distribution
in Figure 4(b), we see that moving from τ = 0 to τ > 0 increases the share of
firms that are below 50 employees and decreases the fraction of large firms. The
regulation also generates a larger mass of firms just below the threshold as these
firms choose not to grow in order to avoid getting hit by the regulatory tax.

We now put together all the effects of regulation together to compute the overall
impact of regulation on the economy-wide innovation, Z(τ) =

∑∞
i=1 µ(i)z(i)i+ze.

Figure 4 shows the fall in total innovation in the regulated economy compared
to the counterfactual unregulated economy (where we normalize aggregate inno-
vation at 1). The magnitude of the fall in innovation is clearly increasing in the

(2016) had to introduce ad hoc measurement error to rationalize the smoother bulge we see in the data
around 45-50. This bulge (and the positive mass at 50) emerges more naturally with our dynamic
endogenous innovation model.

18From equation (4), we know that we can take τ to lie anywhere between 0 and 1/n̄ in order to have
an interior solution for z(n̄).



VOL. VOL NO. ISSUE THE IMPACT OF REGULATION ON INNOVATION 13

Figure 3. Innovation and firm size distribution, with and without regulations
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Note: The blue solid line in this Figure reproduces Figure 1 in Panel (a) and Figure 3(b) in Panel (b).
The orange dashed line is for an unregulated economy with all the same parameters in the regulated
economy except τ = 0.

intensity of the regulatory tax, τ . For example, there is a reduction in total inno-
vation of 4% if τ = 0.02 instead of zero. This fall in aggregate innovation comes
from three sources. First, for a given firm size, the tax increase has a strong neg-
ative effect on innovation for firms just to the left of the threshold, and a smaller
negative effect on innovation for all firms to the right of the threshold. Second,
the tax increase reduces the mass of large firms, which are also the firms that do
more innovation. Third, since lower incumbent innovation means less exit, this
will mean there is less entry in steady state. When we use our data to quantify
the model, we will decompose the fall of aggregate innovation into these different
elements and show that the first element (incumbent innovation) dominates.

E. Effect of a demand shock

In the dynamic analysis below, we will examine the impact of market size shocks
on innovation. In the theory, this can be seen as an exogenous idiosyncratic shock
on the demand for one given product j.19 Let us denote this shock by ε̃j which
shifts the value of yj for a given product j to yj(1 + ε̃j). The firm producing j
anticipates that a shock will occur in next period but does not know in which
product. As a result, the firm i expects a shock of magnitude εi = ε̃j/ni in the
demand for each of its products.
Given the expected demand shock, future expected profit is shifted by (1+ εi).

Hence, holding innovation fixed, there will be a positive impact of εi on firm size
in the short run, and this impact will be smaller for firms just to the left of the
threshold as these firms will not want to cross the threshold and bear the extra
regulatory cost.

19A common shock to all firms can be modeled as an increase in y. This will not have a differential
effect on innovation in firms of different size, as all variables in our model are expressed in units of final
output.
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Figure 4. Aggregate economy-wide innovation as a function of the intensity of regulation
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Note: We simulate the amount of aggregate innovation in different economies relative to an unregulated
benchmark economy as the intensity of regulation changes as indicated by the magnitude of the implicit
tax (τ). For example, if τ = 2%, aggregate innovation is about 0.96 relative to the benchmark, i.e. 4%
lower. Parameter values are the same in regulated and regulated economies (as in notes to Figure 1)
except we vary the value of τ . The vertical line corresponds to our baseline estimate of τ (see Table 3).

What is the effect of the impact of the shock on firm-level innovation? Equation

(4) is modified by having the shock factor (1 + εi)
1

η−1 pre-multiplying each term
of the equation. Formally, the value of Z becomes (for n ̸= n̄− 1):

Z(n, ε) =

(
βπ(n)

ζη

) 1
η−1

ωγl(n)(1 + ε)
1

η−1

where l(n) = n/(ωγ) is the level of employment without a shock. Hence, a
shock ε implies a change in Z such that:

(6) ∆Z(n, ε) ≡ Z(n, ε)− Z(n, 0) =

(
βπ(n)

ζη

) 1
η−1

ωγl(n)
[
(1 + ε)

1
η−1 − 1

]
The impact of the shock on innovation intensity will be largest for small firms

far below the regulatory threshold. The second biggest effect will be on innovation
in large firms well to the right of the threshold. And the smallest effect of the
demand shock will be on firms just below the threshold. The overall increase in a
firm’s innovation (number of lines multiplied by the innovation intensity per line)
in response to the shock will be greater for large firms as they have more product
lines. However, even controlling for firm size (as we will do in the empirical work),
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and so concentrating on the marginal effect of the shock on innovation intensity,
the model predicts that the effect of a market size shock on innovation should be
significantly lower for firms just to the left of the threshold because:

∂2∆Z

∂ε∂l
=

(
βπ(n)

ζη

) 1
η−1 ωγ

η − 1
(1 + ε)

2−η
η−1 ,

which continues to depend upon π(n), the profit per line of a firm of size n.

Finally, the shock will affect the firm size distribution. If the shock is transitory,
a shocked firm will grow larger for a short period of time before the economy will
return to the initial steady state distribution. A permanent idiosyncratic shock
will translate into a permanent change to the overall steady state size distribution.
The dynamic empirical design is not well suited to analyzing the impact on the
steady state firm size distribution as the Bartik-style shock is defined only for
incumbents. Hence, we focus on entry effects only in the equilibrium calibration.

III. Empirics

We have combined multiple administrative datasets on firm employment size,
innovation and trade. This will enable us to examine the predictions from the
theory both statically (e.g. cross sectional distribution of firm innovation by firm
size) and dynamically - i.e. how firm innovation responds heterogeneously across
the size distribution to the same market size shock due to the regulation.

A. Data

Our main data comes from the French tax authorities, which consistently collect
information on the balance sheets of all French firms on a yearly basis from
1994 to 2007 (“FICUS”, Insee & DGFiP, 1994). We restrict attention to non-
government businesses and take patenting information from Lequien et al. (2017).
This matches the PATSTAT (Spring 2016 version, EPO, 2016) database to FICUS
using an algorithm, which matches the name of the assignee - the holder of the
IP rights - on the patent front page to the firm whose name and address is closest
to that of the patent holder. The accuracy of the algorithm is worse for firms
that are below 10 employees so we focus on firms with more than 10 employees.
Since we are interested in the effects of a regulation that affects firms as they pass
the 50 employees threshold, we further restrict attention to firms with between
10 and 100 workers in 1994 (or the first year those firms appear in the data).20

Other data sources are used to calculate the demand shocks, in particular BACI
(Gaulier and Zignago, 2010) and the custom data (French customs and indirect
taxation authorities (DGDDI), 2023). More details about the data source are

20We show robustness of the results to changing this bandwidth (see in particular Table D2 in Appendix
D).
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given in Appendix B.21

Our main sample consists of 182,347 distinct firms and 1.66 million observations.
We report some basic descriptive statistics in Table 1 for all firms in all parts of
the market economy in Panel A (25% are in manufacturing) and for the sub-
sample of firms who filed at least patent between 1994-2007 in Panel B. We can
see that on average, firms file 0.009 patents per year and, conditional on being
an innovator, 0.28 per year. As is well known, the distribution of innovation is
highly skewed, with a small number of firms owning a large share of the patents
in our sample. However, since we do not include the largest French firms in our
data, the skewness is less pronounced.

Table 1—Descriptive statistics

Panel A: All firms
Mean p25 p50 p75 p90 p99

Employment 29 12 20 35 56 151
Sales 5,434 958 2,032 4,756 10,632 45,224
Patents 0.0090 0 0 0 0 0
Innovative 0.031 0 0 0 0 1
Manufacturing 0.25 0 0 1 1 1

Panel B: Subset of innovative firms
Mean p25 p50 p75 p90 p99

Employment 52 21 37 62 98 307
Sales 11,795 2,500 5,208 10,492 21,326 115,145
Patents 0.283 0 0 0 1 4
Manufacturing 0.68 0 1 1 1 1

Note: These are descriptive statistics on our data. Panel A is all firms and Panel B conditions on firms
who filed for at least one patent between 1994 and 2007 (“Innovative” firms). We restrict to firms who
have between 10 to 100 employees in 1994 (or the first year they enter the sample). There are 182,347
firms and 1,658,760 observations in Panel A and 4084 firms and 51,192 observations in Panel B.

B. Nonparametric evidence: Static Analysis

Figure 5 shows, for each employment size bin, the fraction of firms within that
bin with at least one patent (see also Panel A of Table 1). We see an almost linear
relationship between firm size and the fraction of innovative firms. That larger

21Access to the data and guidelines to replicate our results is given in the replication package. The
matching between patents and firms from Lequien et al. (2017) is available upon request.
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firms are more likely to patent is in line with the analysis in Akcigit and Kerr
(2018). The prediction of a linear relationship between firm size and innovation
is consistent with our equation (4).

For firms just below the 50 employee threshold, the share of innovative firms
suddenly decreases in an innovation valley. This is what the model predicts. It
is also noteworthy that the slope of the innovation-size relationship is flatter for
larger firms to the right of the threshold than for smaller firms below the threshold.
This again is consistent with our theoretical predictions. Note that in the theory,
the ratio between the slopes of the innovation-size relationship between a large
and a small firm, varies with the tax (τ) and with the concavity of the R&D cost
function (η). We will exploit this variation to help recover the tax parameter
later in this section.22

The innovation outcome measure is taken over the whole sample period from
1994 to 2007, but the same patterns emerge if we consider alternative definitions
of an innovative firm (see Appendix Figure D2). The predictions over the size
distribution also broadly match up to the data, but since these are relatively well
known we relegate discussion to Appendix D.

C. Dynamic analysis

Estimation equation

Recall that the theoretical response of innovation to demand shock in the model
is given by (6). As discussed in Section II.E, the first derivative of ∆Z with
respect to the shock will depends upon the value of l, and this value will depend on
whether the firm is close to the threshold, far below it, or far above it. The second
derivative of ∆Z with respect to employment and the shock will be significantly
lower for firms located in the innovation valley.

We take this into account in our empirical exploration of the effect of a demand
shock and turn to a parametric investigation of how firms respond to market size
shocks by considering the following regression:

∆̃Yi,t = b1l
⋆
i,t−2 + b2[∆Si,t−2 × P(log(li,t−2))]

+ b3[∆Si,t−2 × l⋆i,t−2] + ϕP(log(li,t−2))

+ ψs(i,t),t + ϵerri,t

(7)

22A concern with this approach is that the flattening of the innovation-size gradient could occur for
non-regulatory reasons. For example, Akcigit and Kerr (2018) argue that larger firms invest in more
‘internal’ R&D to protect their market share that generates less knowledge than the ‘external’ R&D of
smaller firms. We tackle this issue in two ways. First, we will look at the aggregate innovation losses using
the dynamic moments derived in the next section that analyzes the responsiveness to shocks rather than
just the cross sectional moment looking at levels in Figure 5. Second, we confirmed that the flattening of
the gradient in Figure 5 does not seem to occur in micro-datasets from the UK and US (countries which
do not have the large increase in labor regulations for firms with 50 or more employees).
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Figure 5. Share of innovative firms at different levels of employment
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Note: Share of innovative firms (i.e. with at least one priority patent) plotted against their employment.
All observations are pooled together. Employment bins have been aggregated so as to include at least
10,000 firms. The sample is based on all firms with initial employment between 10 and 100 (182,347
firms and 1,658,760 observations, see Panel A of Table 1).
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where Yi,t is a measure of innovation (based on patents) that is related to Z in
the theory and li,t a measure of employment. ∆Si,t−2 is an exogenous demand
shock to market size that should trigger an increase of innovation in a wide class
of models (and in our own, is related to the demand shock ε) and ψs(i,t),t is a set
of industry-year dummies where s(i, t) denotes the main sector of activity of firm
i at time t.

Our main focus is to see whether there is a discouraging effect of the regulation
on innovation. For this reason, we include l⋆i,t in the model, a binary variable that
takes value 1 if firm i is close to, but below, the regulatory threshold at time t.
Our baseline measure of l⋆i,t is a dummy for a firm having employment between
45 and 49 employees. In this specification, in order to capture the heterogeneous
response across the different values of employment predicted by the model, we
use a flexible functional form and include P(log(li,t−2)) a polynomial in log(li,t−2).
Finally, ϵerri,t is an error term. We use a two year lag of the shock since there is
likely to be some delay between the demand shock, the increase in research effort
and the filing of a patent application.

Finally, for the dependent variable, we need a data equivalent to ∆Z. We proxy
Z as the log of the number of patents, and measure its growth by:23

∆̃Yi,t =

{
Yt−Yt−1

Yt+Yt−1
if Yt + Yt−1 > 0

0 otherwise

The key coefficient capturing the discouragement effect of the threshold in equa-
tion (7) is b3, which we expect to be negative. Larger firms will likely respond
more to a given shock, but this relationship should break down for the firms just
to the left of the threshold as firms are reluctant to cross the threshold in response
to an expansion in market size.

Market Size Shocks

To construct the innovation shifters ∆Si,t−2, we rely on international trade
data to build export demand shocks following Hummels et al. (2014) and Mayer,
Melitz and Ottaviano (2016). In short, we look at how foreign demand in a given
product by destination cell changes over time by measuring the change in imports
from all countries (except France) into that product-country cell. We then build
a product-destination portfolio for each French firm i, and weight the foreign
demands for each product by the relative importance of that product for firm i.

23This is essentially the same as in Davis and Haltiwanger (1992) for employment dynamics except
that we set the variable equal to zero when a firm does not patent for two periods. The results are robust
to considering other types of growth rates such as using the Inverse Hyperbolic Sine (see columns 7-9 of
Table D2 in Appendix D).
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More specifically, firm i’s export demand shock at date t is defined as:

(8) ∆Si,t = σi,t0
∑

s,c∈Ω(i,t0)

ωi,s,c,t0∆̃Is,c,t,

where Ω(i, t0) is the set of products and destinations associated with positive
export quantities by firm i in the first year t0 in which we observe that firm in the
customs data24 and ωi,s,c,t0 is the relative importance of product s and country
destination c for firm i at t0, defined as firm i’s exports of product s to country
c divided by total exports of firm i in that year. Is,c,t is country c’s demand
for product s, defined as the sum of its imports of product s from all countries
except France and σi,t0 is the initial export intensity (export divided by sales)
of firm i. The basic idea behind the shock design is simply that a firm that
was exporting, for example, many cars to China in 2000, would have benefited
disproportionately from the boom in Chinese consumption of cars at the start of
the twenty-first century.25

We fix the weights at the firm level taking initial period t0 as the reference. This
is done in order to exclude any variation in the portfolio of products and countries
that could be endogenous. Our shock is therefore similar to a “Bartik”-type
shift-share instrument. There is an important recent literature (e.g. Goldsmith-
Pinkham, Sorkin and Swift, 2020 and Adao, Kolesár and Morales, 2019) which
discusses inference and estimations with these designs. In particular, the sum of
exposure weights across (s, j)’s is not 1 (because of σi,t0 , except in the rare case of
firms that do not sale domestically) and varies across-firms. We follow Borusyak,
Hull and Jaravel (2018) who argue that in such an “incomplete shift-share” case
with panel data, it is important to control for this sum and allow the coefficient
to change with time.26

24French customs data are available from 1994. So we use 1994 as the initial year, except for firms
who enter after 1994 for which we use the initial year they enter the sample.

25We clean Is,c,t to remove extreme values due to trade disruption because of wars, for example. To
do so, we follow Aghion et al. (2018b) and look at the within product-country standard deviation of

∆̃Is,c,t, winsorizing values of ∆̃Is,c,t that are above the 90% percentile. This mostly concerns pairs of
country-product where French firms do not export and this impacts less than 0.15% of total observations.
We then trim the shock ∆Si,t at the 0.5 level. This procedure has has no material impact on our results
(for example, see Table D2, column 10 in the Appendix).

26We have conducted many more extensive diagnostic tests showing the validity of this source of exoge-
nous variation to market size. Borusyak, Hull and Jaravel (2018) underline two assumptions underlying
the validity of a shift-share instrument: quasi-randomness of shock assignment and a high number of
uncorrelated shocks. The first assumption is likely to hold in our setting due to the inclusion of narrow
industry by year dummies in our regressions. The assumption is essentially that within industry, the
expected value of ∆̃I is the same for all firms conditional on the country-product-level unobservables.
The second assumption is warranted by the fact that we consider a very large number of shocks across
many countries and products. In one robustness test, we follow the recommendations of Borusyak, Hull
and Jaravel (2018) and check that our main results are robust to using alternative shocks in which ∆̃I has
been residualized on different combinations of year, country, product fixed effects. Moreover, note that
our panel data structure allows us to include a firm fixed effect as an additional robustness check which
further controls for potential correlations between permanent firm characteristics and future realizations
of the shocks. See Aghion et al. (2018a) for more diagnostics.
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Testing the main prediction

To estimate equation (7), we need to make some further restrictions in our use
of the dataset. First, note that the market size shock ∆S is only defined for
exporting firms, that is, firms that appear at least once in the customs data from
1994 to 2007. Second, in order to increase the accuracy of our shock measure,
we restrict attention to the manufacturing sector. Not only is a large fraction of
patenting activity located in manufacturing, but these firms are also more likely
to take part in the production of the goods they export (see Mayer, Melitz and
Ottaviano, 2016). Our main regression sample is therefore composed of 20,640
firms and 142,560 observations.

Table 2—Main regression results

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Shockt−2 × L⋆
t−2 -5.103** -6.159*** -5.661** -6.682** -3.716** -6.158**

(2.185) (2.178) (2.221) (2.710) (1.769) (2.304)
L⋆
t−2 0.052 0.078 0.078 0.003 0.086 0.078

(0.109) (0.132) (0.111) (0.193) (0.056) (0.113)

Shockt−2 1.082** -4.743** 7.219 1.401** -5.268** 5.931 -5.635** -3.309** -5.291**
(0.488) (2.018) (6.380) (0.509) (2.512) (6.275) (2.368) (1.249) (2.040)

log(L)t−2 -0.048 -0.015 -0.053 -0.026 -0.114 -0.037 -0.057
(0.038) (0.162) (0.035) (0.162) (0.188) (0.024) (0.034)

Shockt−2 × log(L)t−2 1.738** -5.984 2.009** -5.214 2.146** 1.213*** 2.014***
(0.637) (4.608) (0.819) (4.532) (0.798) (0.441) (0.660)

log(L)2t−2 -0.006 -0.005
(0.029) (0.029)

Shockt−2 × log(L)2t−2 1.166 1.088
(0.760) (0.749)

∆log(L)t−2 0.046
(0.224)

Fixed Effects
Sector× Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm ✓

Number Obs. 142,560 142,560 142,560 142,560 142,560 142,560 141,071 330,423 142,479

Note: This contains OLS estimates of equation (7) on the manufacturing firms in Panel A of Table 1
who have exported at some point 1994-2007. Dependent variable is the Davis and Haltiwanger (1992)
growth rate in the number of priority patent applications between t− 1 and t. Column 1 only considers
the direct effect of the shock, taken at t− 2, column 2 uses a linear interaction with log(L) taken at t− 2
and column 3 considers a quadratic interaction. Columns 4, 5 and 6 do the same as columns 1, 2 and 3
respectively but also includes an interaction with L⋆, a dummy variable for having an employment size
between 45 and 49 employees at t−2. Column 7 replicates column 5 but adds firm fixed effects. Column
8 includes non-manufacturing firms and column 9 also controls for the growth in log(employment) at
t−2. All models include a 2-digit NACE sector interacted with a year fixed effect and a time fixed effect
interacted with the initial level of export intensity. Estimation period: 1998-2007 . Standard errors
are clustered at the 2-digit NACE sector level. ∗∗∗, ∗∗ and ∗ indicate p-value below 0.01, 0.05 and 0.1
respectively.

Table 2 presents the results from estimating equation (7), i.e. from regressing
the growth rate of firm patents on the lagged market size shock. Column (1)
shows that firms facing a positive exogenous export shock are significantly more
likely to increase their innovative activity. The coefficient implies that a 10%
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increase in market size increases patents by about 1.1%. Column (2) includes a
control for the lagged level of log(employment) and also its interaction with the
shock. The interaction coefficient is positive and significant, indicating that there
is a general tendency for larger firms to respond more to the shock than smaller
firms. Although it is not of direct interest, this is what we should expect given
our discussion in II.E. Column (3) generalizes this specification by adding in a
quadratic term in lagged employment and its interaction with the shock.
Column (4) of Table 2 returns to the simpler specification of column (1) and

includes a dummy for whether the firm’s employment is just below the regulatory
threshold in the 45-49 employees range (defined as l⋆) at t−2, and the interaction
of this dummy with the shock. Our key coefficient is on this interaction term,
and it is clearly negative and significant as our model implies. This is one of our
key results: innovation in firms just below the regulatory threshold is significantly
less likely to respond to positive demand opportunities than in firms further away
from the threshold. Our interpretation is that when a firm gets close to the
employment threshold, it faces a large “growth tax” due to the regulatory cost
of becoming larger than 50 employees. Consequently, such a firm will be more
reluctant to invest in innovation in response to this new demand opportunity.
The firm might even simply cut its innovative activities altogether to avoid the
risk of crossing the threshold. We depict the relationship between innovation
and the shock in Figure 6. The figure plots the implied marginal effect of the
market size shock on innovation (at t− 2) for different firm sizes (at t) using the
coefficients in column (5) of Table 2. We see that innovation in larger firms tends
to respond more positively to the market size shock than in smaller firms, but at
the regulatory threshold there is a sharp fall in the marginal effect of the demand
shock, consistent with our model (e.g. see subsection II.E).
It might be the case that the negative interaction between the threshold and

the shock could be due to some omitted non-linearities. Hence in column (5) we
also include lagged employment and its interaction with the shock (as in column
(2)). These do have explanatory power, but our key interaction coefficient remains
significant and negative and we treat this as our preferred specification. Column
(6) adds a quadratic employment term and its interaction following column (3).
Our key interaction remains significant and these additional non-linearities are
insignificant.

Robustness of the dynamic empirical model

We have subjected our results to a large number of robustness tests, many of
which are detailed in Appendix D. Column (7) of Table 2 shows the results from a
tough robustness test where we include a full set of firm dummies. Given that the
regression equation is already specified in first differences, this amounts to allow-
ing firm-specific time trends. The key interaction between the market size shock
and the threshold dummy remains significant. The data sample underlying Table
2 is limited to manufacturing firms, so column (8) also adds in non-manufacturing
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Figure 6. Marginal effect of a market size shock on innovation
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Note: marginal effect of a shock at t − 2 at different level of employment at t, based on the model in
column 5 of Table 2.

firms. The relationship remains negative, though with a smaller coefficient. This
is likely to be due to the fact that patents are a much more noisy measure of
innovation in non-manufacturing firms. We also experimented with including
manufacturing firms who do not export by using the industry-level equivalent
of our market size shock in equation (8). The coefficient on the key interaction
remained negative and significant in column (6) of Table D2.
Does the number of patents grow more slowly for firms to the left of the thresh-

old who experience a demand shock simply because their employment grows by
less? Column (9) of Table 2 provides a crude test of this hypothesis by including
the growth of employment on the right hand side of the regression. This variable
is endogenous, of course, yet it is interesting to observe from a purely descriptive
viewpoint that the interaction between the market size shock and the threshold
remains significant. This suggests that it is patenting per worker, which is react-
ing negatively to the interaction between the shock and the threshold: our effect
on patenting is not simply reflecting differential changes in firm size.

IV. The aggregate effects of regulation on Innovation

So far, we have established that many of the qualitative predictions of our simple
model are consistent with the data both from a cross-sectional analysis and a more
challenging dynamic analysis of the response to shocks. In this section, we use
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the data, the structure of our theoretical model and some external calibration
values to estimate the general equilibrium effects of the regulation on aggregate
innovation and welfare. This clearly requires stronger assumptions as we are
extrapolating well away from the threshold.27 Our baseline approach uses static
moments from the non-parametric analysis covering the whole private sector.
But in an extension we consider using the dynamic estimates from the exporting
manufacturing sub-sample to calibrate the implicit cost of the regulatory tax.

A. Quantitative Strategy

We sketch some of the important elements here. The threshold number of prod-
uct lines, n̄, can be calculated from the known regulatory employment threshold
of 50, i.e. n̄ = 50ωγ (see equation (3)), so we have six unknown parameters:
(η, ω, γ, β, ζ, τ). Since we only need the ratio β/ζ to calculate the aggregate in-
novation loss, we only need to quantify five parameters (η, ω, γ, β/ζ, τ). We use
the existing literature to obtain two of them (η and γ) and the remaining three
are chosen to match moments from the data as detailed in Table 3.

Table 3—Calibration values and moments

Parameter Value Name Source
From the literature

η 1.5 Concavity of Innovation cost function Dechezlepretre et al. (2016)
γ 1.3 Productivity step size Aghion et al. (2019a)

Using our data

τ 0.0259 Regulatory tax Innovation-Firm size relationship (β̂1, β̂2)
β/ζ 1.70 Discount factor/scale parameter Long-term growth of GDP
ω 0.22 Output adjusted wage Gap in the firm size distribution

Note: Long-term growth of GDP is taken from the national accounts and corresponds to the average
growth between 1990 and 2019 (1.63%). The gap in the first size distribution is estimated by dividing
the number of firms at 40-45 employees by the number of firms of size 50-55 in 2000 and is equal to 3.05.
See Figure D1.

Concavity of the R&D cost function η

In order to calibrate the concavity of the R&D cost function, η, we draw upon
existing work that has estimated the innovation production function (the relation-
ship between patents and R&D). Acemoglu et al. (2018) use a value of η = 2 based
on Blundell, Griffith and Windmeijer (2002). However, these estimates typically
come from very large US firms (publicly listed companies from Compustat), so

27A conservative approach would be to say we calculate aggregate losses for the sub-sector of the
economy with firms under 100 employees (about 50% of all jobs are in such firms in France). However,
Appendix D shows that our findings are robust to extending the sample to firms of up to 250, 500 or even
1,000 employees. Given this, the labelling of our estimates as “macro-economic” appears reasonable.
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may exaggerate η, which is likely to be lower for the small and medium sized en-
terprises that are the vast bulk of our sample.28 The estimates of Dechezlepretre
et al. (2016) look at firms of similar sizes to the ones we use here, suggest a value
of η = 1.5, using their Regression Discontinuity Design, which should produce
cleaner causal estimates of the impact of R&D on innovation. This value is also
consistent with some of the estimates in Crépon and Duguet (1997) on French
firm panel data.

Regulatory tax τ

To quantify the regulatory tax (τ), we estimate empirically the changing slope of
the relationship between innovation and firm size from equation (4). Our theory
implies that the ratio of the innovation-size slope for small firms (before the
innovation valley) to large firms (to the right of the regulatory threshold) should

be equal to (1− τ)
1

η−1 . In other words, for any given value of η, a larger tax
will mean a greater flattening of the positive relationship between innovation and
firm size. Figure 5 shows this flattening very clearly and we recover this through
a simple regression of patents on lagged size for firms under 45 employees and
firms firms over 50 employees (to abstract from the innovation valley), allowing the
coefficient on size to be different for these two size groups. Empirically, we average
the number of patent applications filed by a firm over a five-year window for each
possible value of employment l between 10 and 100. Our baseline estimation
uses the same mapping between Z and patents as in Section III, i.e. we measure
Z using the logarithm of the number of patents. We then jointly estimate two
slopes for L ∈ [10; 45) and L ∈ [50; 100]. We respectively denote β̂1 and β̂2 the

OLS estimate of these two slopes. We find β̂1/1000 = 1.801 with a standard

error (σ̂1/1000) of 0.105 and β̂2/1000 = 1.709 with a standard error (σ̂2/1000) of
0.0381. Hence, according to our model we have:

(9)
β̂2

β̂1
= (1− τ)

1
η−1 = 0.949

Given the calibrated value of η = 1.5 this yields an estimate of τ = 0.0259, a
regulatory tax of 2.59 percent. There are several ways to estimate this slope and
we discuss the sensitivity to the choice of alternative empirical models extensively
in Appendix D.4. Alternative models generate implicit taxes in the range of 1%
to 5%, so we are effectively choosing a calibration value just below the midpoint
of this range.

28Labelling the estimated elasticity between patents and R&D as θ, η =1/θ. Since θ is likely larger
for small firms (e.g. due to financial constraints) or in countries with less developed risk capital markets
(e.g. France vs. the US) this implies a smaller η.
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Step size γ

The productivity step size γ following innovation is set to 1.3 using based on
estimates in Aghion et al. (2019a). This is derived from various estimates of the
average markup, which in our model is the reward from innovation.

Productivity adjusted wage rate ω

A larger ω means a higher cost of labor and therefore a smaller mass of large
firms. Therefore to set the value of ω, we use the empirical firm size distribution.
In particular, we match the fall in the density of employment of smaller vs. larger
firms to the left and right of the innovation valley. In our data there are about
three times as many firms between 40 and 45 employees than between 50 and 55
and the value of ω that reproduces this gap is 0.22.

Scale parameter and discount factor β/ζ

We calibrate β/ζ in order to match the measured value of g in the data that
we take to be equal to the average growth of GDP in France over the period
1990-2019 (1.63%). In our model, growth g is defined as follow:

g = exp

([
ze +

N∑
i=1

µ(i)z(i)i

]
log(γ)

)
− 1.

This yields a value of β/ζ of 1.70.

B. Results

Measuring and Decomposing Innovation Losses: Baseline Estimates

Plugging in these quantitative estimates of the key parameters implies a loss
of aggregate innovation of about 5.7% percent compared to the no regulation
benchmark (see the first row of Table 3). The implied regulatory tax of τ =
0.0259, is the key parameter as can be seen from Figure 4. Since this maps back
into growth rates, it means that the steady state growth rate in France would
rise from its current average annual rate of 1.62% to 1.72%, a nontrivial change.
As discussed in the modeling section, the aggregate innovation loss is driven by
three major elements:

1) The decline in the incumbent innovation rate (z(n)) for a given firm size.
For any given size distribution of firms, the regulation reduces innovation
rates for firms above the threshold and just to the left of the threshold.

2) The change in the size distribution µ. Since the regulation pushes the size
distribution to the left and smaller firms do less innovation, this reduces
aggregate innovation.
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3) The decline in the innovation rate by entrants ze.

Recall that we have denoted Z(τ) =
∑∞

i=1 µ(i)z(i)i+ ze total innovation in the
economy when the regulation tax is set to τ and the value of other variables are
taken from Table 3. Analogously to a shift-share decomposition analysis we have:

Z(τ)−Z(0) =
∑
n>0

(Z(n, τ)− Z(n, 0))µ(n, 0)(10)

+
∑
n>0

(µ(n, τ)− µ(n, 0))Z(n, 0)

+
∑
n>0

(µ(n, τ)− µ(n, 0)) (Z(n, τ)− Z(n, 0))

+ ze(τ)− ze(0),

where µ(n, τ) and Z(n, τ) are the share of firm of size n where the economy has a
regulation tax of τ and their total innovation respectively. The first term in the
right hand side of equation (10) is the innovation intensity (evaluated at the size
distribution in the unregulated economy) and the second term is the effect on size
(evaluated at a firm’s innovation intensity rate in the unregulated economy). The
third term is the interaction effect between the first two terms and the final term
is the effect on entrants (since an entrant must innovate by definition to displace
an incumbent).
Dividing equation (10) by Z(0), we can have an approximation of where the

5.7%% loss of aggregate innovation comes from. We find that most (80%) of the
effect comes from the change in the innovation intensity (the first term in the right
hand side of the previous equation). The covariance and entry terms (third and
last terms) account for roughly 10% each (9.6% and 10.3% respectively), while
the change in the size distribution has almost no effect. The virtual absence of
any effect of the size distribution is due to the relatively small value of the tax.

Robustness of the Baseline Aggregate Calculations

We now explore how the 5.7% loss in innovation is affected when we consider
variations in the parameters from Table 3. In Table 4, we consider the effect of
changes in η, γ, ω, τ and β/ζ. With respect to η, we consider the range interval
η ∈ [1.3, 2] to reflect the variety of values found in the literature (see above).
With respect to γ, we explore values from 1.2 to 1.5. A value of 1.5 corresponds
to a labor share of 66% in our model.29 Regarding ω, and β/ζ, we consider a
relative change of 15% (upward and downward) .

29In a wide class of models the ratio of price to marginal cost (the markup) is equal to the output
elasticity with respect to a variable factor of production divided by the variables factor’s share of revenue
(e.g. De Loecker, Eeckhout and Unger, 2020; Hall, 1988). Since labor is the only factor in our model,
the markup is simply the reciprocal of the labor share. Aghion et al. (2019a) use a a US labor share
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Table 4—Sensitivity analysis

Robustness Loss in total innovation
Panel A: Baseline (full sample) 5.66%

1. γ = 1.20 5.64%
2. γ = 1.50 5.71%
3. η = 1.3 9.20%
4. η = 2 2.88%
5. ω = 0.19 5.63%
6. ω = 0.25 5.69%
7. β/ζ = 1.44 5.66%
8. β/ζ = 1.95 5.66%
9. τ
Percentile 25th (τ = 0.005) 1.04%
Percentile 75th (τ = 0.046) 10.46%

Panel B: Sub-sample of Exporting manufacturing firms

10. Static estimation (τ = 0.064) 15.22%
11. Using dynamic model (τ = 0.061) 14.38%

Note: Baseline uses parameter values: (η = 1.5, γ = 1.3, τ = 0.0259, β/ζ = 1.70 and ω = 0.22), see
Table 3. In the robustness where γ, η, ω or β/ζ are changed, we keep τ as in the baseline. Line 9 reports
the 25th and 75th percentile for the loss of innovation in a sample computed from 100,000 independent
draws of τ from two normal distribution. The corresponding value of τ and β/ζ are computed as an
average for each percentile. Lines 10-11 report the loss in total innovation when the sample is restricted
to exporting manufacturing firms and Line 11 assumes a value of τ as computed using the alternative
calibration presented in Section IV.B

Given that τ has been calculated using estimates of the slopes of the cross-
sectional innovation-size relationship, we use our estimates of β1 and β2 to derive
confidence intervals for τ . Specifically, we draw 100,000 values of β1 and β2 from
two independent normal distribution N (β̂1, σ̂1) and N (β̂2, σ̂2), where β̂i and σ̂i
respectively designate the point estimates and corresponding standard errors. For
each of these 100,000 draws, we compute a value for τ and infer the loss in total
innovation by running the model.
The results from this exercise can be found in Panel A of Table 4. As we would

expect, the most important parameter is the regulatory tax, τ . From the values of
β1 and β2, the loss is 10.5m% for the 75th percentile of the distribution and 1.2%
for at the 25th percentile. Interestingly, η also matters: as the parameter moves
from 1.3 to 2, the aggregate innovation losses falls from 9.2% to 2.9%. This is
because changing η determines the elasticity of innovation with respect to R&D:
as η increases, the impact of R&D on innovation decreases. Since the impact of

of GDP of 77% to obtain γ = 1.3. The French labor share after 1995 is more like 65% (see e.g. Cette,
Koehl and Philippon, 2019), suggesting γ = 1.5. These values encompass most of the other estimates of
the aggregate markup using other methods.
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the tax comes from reducing the incentive to do R&D to grow, if R&D has little
effect on growth there will be little impact of the tax. Hence, increasing η makes
total innovation less sensitive to changes in τ .

By contrast, the loss in total innovation is only modestly affected by changes
in γ, ω and β/ζ. This is because the tax elasticity of z only depends upon η,
not on ω, γ or β/ζ. From equation (4), we see that the elasticity of innovation
with respect to the regulatory tax is 1/(η − 1) for large firms. Hence, changing
the values of ω, γ and β/ζ only affects total innovation loss through their effects
on the firm size distribution and on entry, which we know from the previous
subsection plays a relatively minor quantitative role.30

Alternative calibration using the dynamic econometric analysis to

estimate the implicit regulatory tax

Given the importance of the implicit tax for the overall impact of the regulation,
we also considered estimating τ using the dynamic moments from the responsive-
ness to shocks rather than the static moments of the innovation-size relationship.
An advantage of this approach is that it uses a better identified estimate using
exogenous variation. A disadvantage is that whereas the static moment is across
the whole economy, this dynamic moment is solely from the sub-sample of man-
ufacturing firms who export (where we could construct the exogenous shifter).
Re-estimating the regulatory tax in this sub-sample using the static method from
our baseline in row 1 of Table 4 implies a value of τ = 0.064 which is associated
with a 15.2% fall in innovation (see row 10 of Panel B of Table 4). This is much
larger than in the whole economy because trading manufacturing firms have a
much higher level of innovation, so the cost of the regulation will be much more
important.

The dynamic estimation of τ relies on the fact that after a shock ε, innovation
of a firm of size n ̸= n̄− 1 will be:

∆Z(n, ε) =

(
βπ(n)

ζη

) 1
η−1

ωγl(n)
(
(1 + ε)

1
η−1 − 1

)
,

This implies that we can calculate the cross partial of the demand shock for
firms of size n < n̄ as:

∂2∆Z(n, ε)

∂ε∂l
∝ (1 + ε)

2−η
η−1

1

η − 1

30For example, as already noted a higher ω reduces the relative numbers of large firms. Since there
are more firms just to the left of the regulatory threshold (whose innovation is most affected by the
regulation), this makes the marginal impact of the tax slightly larger.
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Similarly the cross partial for for firms of size n ≥ n̄ is:

∂2∆Z(n, ε)

∂ε∂l
∝ (1 + ε)

2−η
η−1

1

η − 1
(1− τ)

1
η−1

We estimate the value of ∂2∆Z(n,ε)
∂ε∂l using the procedure in Section III.C. Specif-

ically, we estimate:

(11)

∆Z(n, ε)i,t = c1li,t−2 + c2[1
(
li,t−2 ≥ l̄

)
× li,t−2]

+ c31
(
li,t−2 ≥ l̄

)
+ c4[1

(
li,t−2 ≥ l̄

)
× li,t−2 ×∆Si,t−2]

+ c5[1
(
li,t−2 < l̄

)
× li,t−2 ×∆Si,t−2] + c6∆Si,t−2 + ϵi,t.

where 1(li,t−2 ≥ l̄) is an indicator function for employment being larger than
the threshold value 50. As in our baseline dynamic estimation in Section III.C,
we measure Zi,t with log(patents), approximate the change by ∆̃Yi,t and use
employment and the shock at t− 2. Details are given in Appendix D.4. Finally,
we assume that ∆S is equal to the demand shock ε.31 We then have:

c =
c5
c4

=
E
[
(1 + ε)

2−η
η−1 |l ≥ l̄

]
(1− τ)

1
η−1

E
[
(1 + ε)

2−η
η−1 |l < l̄

](12)

where E is the expectations operator and is estimated using the unweighted
mean from firm-year observation in the data.

We can recover τ using equation (12). Note that equation (12) is similar in form
to (9) as both equations indicate how the responsiveness of large firms relative to
small firms falls when the cost of regulation is higher. The expectations terms on
the right hand side of equation (12) are simply adjusting the ratio to reflect the
possibility that the average demand shocks hitting large firms could be different
than those hitting smaller firms.

We retrieve c from c4 and c5 through an OLS estimation of equation (11). We
add sector-year fixed effects and remove observations corresponding to firms that
have a value of li,t−2 between 45 and 49 (as we did in the static version). We
replace the expectations by their empirical counterparts and use the value of η
from Table 3. This yields a value of τ = 0.061 shown in row 11 of Table 4. This
is extremely close to the static estimation of τ on the same sample shown in the
previous row (0.064). Again, this implies a large decline of innovation in this sub-
sector, but confirms a very similar estimate whether we use a static or dynamic

31We also considered an alternative approach using the fact that the theoretical elasticity of a demand
shock to employment is 1. Consequently, the coefficient of a regression of ∆l on ∆S, gives the link
between ε and ∆S. In practice, this made no material difference to our estimate of τ .
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moment.
In Appendix D.4, we also discuss several alternative dynamic estimations of

τ . For example, we look at (1) restricting the sample to firms that are closer
to the threshold to have a set of more comparable observations and (2) use the
observations in the innovation valley and their theoretical innovation response to
a shock to infer a value of τ . In all our cases, we estimate very similar estimates
of the regulatory implicit tax to our dynamic baseline.

C. Welfare

Innovation increases growth which is a benefit to welfare, but it must also be
paid for by diverting current consumption into R&D investments. In Schum-
peterian growth models, the impact of a reduction in innovation on welfare is
theoretically ambiguous. Although positive knowledge externalities generate the
traditional under-investment in R&D, the business stealing effect can generate
too much investment. Which dominates in our setting? Using the utility of the
representative agent in equation (1), Ct is determined by the final good mar-
ket clearing condition which states that each unit of final good that is produced
should be used either for consumption Ct or R&D. Recall that to produce an
innovation intensity of Z = nz, a firm must spend ζnzη units of final good. We
therefore have the following identity:

Yt = Ct +
∑
i≥1

ζµ(i)iz(i)ηYt,

i.e. we take away R&D expenditures (there are µ(i) firms of size i) from the final
good Yt, and the residual is consumed. Denoting aggregate R&D R and plugging
this into the utility function yields:

U =
∑
t>0

βt log
[
Y0(1 + g)t(1−R)

]
where R ≡

∑
i≥1

ζµ(i)iz(i)η

which can be rewritten:

U =
log(Y0)

1− β
+

log(1 + g)β

(1− β)2
+

log(1−R)

1− β
.

Since growth is defined by

g =

ze +∑
i≥1

iz(i)µ(i)

 log(γ),

and using the definition of R, we can compute total utility for any value of Y0
using vectors z and µ and the value of ze.
We define g(τ), R(τ) and Y0(τ) the values of g, R and Y0 in an economy with
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a regulation level equal to τ . Let ∆U ≡ U(τ)− U(0), so

∆U = log

(
1 + g(τ)

1 + g(0)

)
β

(1− β)2
+ log

(
1−R(τ)

1−R(0)

)
1

1− β
+ log

(
Y0(τ)

Y0(0)

)
1

1− β
,

denotes the difference in utility between an economy with regulation τ and an
economy without regulation at the steady-state. The corresponding difference in
terms of consumption equivalent is given by exp ((1− β)∆U). Initial production
Y0 is equal to initial quality times the amount of labor used in production. In our
baseline model, the whole labor force is employed in production with and without
the regulation, as R&D does not require labor.32 Hence, abstracting from initial
quality, the effect of the regulation on welfare is governed by the first two terms
in the above equation.

The first term is negative since g(τ) < g(0) due to lower innovation, hence a
welfare loss from introducing the regulation. The second term is positive (R(τ) <
R(0)): the corresponding welfare gain stems from the fact that spending less on
R&D leaves more output for consumption. The third term, although complex to
quantify without stronger assumptions, can clearly be signed as negative as it is
the static (non-innovation related) welfare loss that has been the focus of previous
work. Hence if the sum of the first two ‘dynamic’ terms are negative, this will be
a lower bound to the welfare loss from regulation.

With our parameter values from Table 3 and a standard value of β = 0.96, we
can compute the difference in welfare in terms of the consumption equivalent. In
our baseline regulated economy, welfare is 2.2% lower than in the unregulated
economy. This must be added to the static efficiency losses which Garicano,
Lelarge and Van Reenen (2016) estimated to be between 1.3% to 3.4%. Hence
the dynamic losses from lower innovation approximately double the conventional
static losses.

Table D4 in Appendix D.4 shows the welfare losses under the various alternative
assumptions on the calibration values.33

D. Summary on the Aggregate innovation effects of regulation

The effects of regulation on aggregate innovation appear non-trivial. The losses
are around 5.7% in our baseline estimates and even more in traded manufacturing.
Four-fifths of the losses come from a lower amount of innovation across all affected
firms, with the residual fifth accounted for by lower entry and a leftwards shift of

32This is no longer true if labor is used in production and in R&D (see section V.E). Then the tax
regulation will affect Y0 even controlling for initial quality as it will affect the fraction of labor used in
production.

33Measuring welfare requires a separate estimation of β and ζ. The measure of welfare is obviously
sensitive to the choice of β. Specifically, the welfare loss will increase as β is closer to 1 as agent gives
more weight to future consumption and therefore care more about growth. When β = 0.94, welfare losses
are 1.4% while when β = 0.98, welfare loss is 4.7% (see Table D4 in Appendix D.4).
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the firm size distribution. Our baseline results find a (lower bound) fall in welfare
of 2.2% from these dynamic losses, approximately doubling the conventional static
losses. This conclusion is consistent with the important findings of Konig et al.
(2022) who also emphasise that losses from skewing innovation incentives may be
much greater than the conventional static misallocation losses.

V. The Nature of Innovation and Other Extensions

Our baseline model focuses on the impact of regulation on the rate of inno-
vation. But there are various ways in which regulations may affect the nature
of innovation. In subsection V.A, we consider an extension of our model which
allows firms to invest simultaneously in two types of innovation: incremental or
radical. After developing the theory we implement this empirically using two
proxies for how radical a patent is: (i) a traditional future citations measure and
(ii) a more novel machine learning algorithm based on the full text of the patent.
Secondly, we also use textual patent analysis to measure automation as one re-
sponse to the regulation may be to invest in labor saving innovations. Finally,
we extend our analysis to allow for longer-lived owners and to consider R&D as
scientists.

A. Radical versus incremental innovation

Although regulation seems to discourage overall innovation, it may also alter
the type of innovation. A firm just below the threshold has a reduced incentive to
innovate, but it might be that if she does innovate she will “swing for the fence”
by investing in radical innovation. Minor, incremental innovations that just push
the firm over the threshold will be strongly discouraged by the regulation. We
now formalize this intuition and then test whether it has any relevance in the
data.

Theory

In our baseline model, firms could only increase their number of product lines
by one line in each period. In this extension, we assume that firms can now choose
between: (i) Investing in an incremental innovation which augments the firm’s
size by one additional product line and (ii) Investing in more radical innovation
which is more costly but augments the firm’s size by k > 1 product lines. We
now have four cases depending on the value for n:

1) n < n̄− k in which case the firm is never taxed in period 2.

2) n < n̄ and n ≥ n̄ − k in which case the firm is taxed in period 2 only if it
successfully innovated with a radical innovation.

3) n = n̄−1 in which case the firm is taxed in period 2 if it innovates, regardless
of the type of innovation.
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4) n ≥ n̄ in which case the firm is taxed in period 1 and 2 (except if the firm
is at n̄+ 1 but this will not affect the firm’s decision)

The firm therefore chooses z and u so as to maximize:

nπ(n) + βnz(n) ((n+ 1)π(n+ 1)− nπ(n)) + βnu(n) ((n+ k)π(n+ k)− nπ(n))

+βnx ((n− 1)π(n− 1)− nπ(n))− nζ (z(n) + u(n))η − nαu(n)η,(13)

where α denotes the additional cost of radical innovation. In Appendix C, we
solve formally for u and z and in particular derive the ratio of radical over total
innovation that will be use to calibrate this model.
The steady-state firm size distribution is computed in exactly the same way

as in the baseline model, except that the flow equation needs to be adjusted to
account for radical innovation:

nµ(n) (u(n) + z(n) + x) = µ(n−1)z(n−1)(n−1)+µ(n+1)x(n+1)+µ(n−k)(n−k)u(n−k),

with u(n− k) implicitly set to 0 if n < k.

Calibration and Solving the model

The calibration in the model extension with two types of innovation can be
done in a very similar way as in the baseline. For the additional parameters,
we draw on the seminal work of Akcigit and Kerr (2018). Taking the first order
condition implies:

u(n) =

(
β

αη
[(n+ k)π(n+ k)− (n+ 1)π(n+ 1)]

) 1
η−1

and

z(n) =

(
β

ζη
[(n+ 1)π(n+ 1)− nπ(n)]

) 1
η−1

−
(

β

αη
[(n+ k)π(n+ k)− (n+ 1)π(n+ 1)]

) 1
η−1

In this model, the ratio of total innovation u(n)+z(n) of small firms (producing

less than n̄− k goods) over large firms is still equal to (1− τ)
1

η−1 (see Table C1).
The calibration strategy to estimate τ remains identical in this model, and its
value will be the same.
Additionally for small firms , the share of radical innovation over total inno-

vation u(n)/(z(n) + u(n)) is equal to ζ/α(k − 1). In the data this ratio depends
on our definition of a radical innovation. Our baseline approach is to proxy for
radical innovation by selecting the top 10% patents in each technology in terms
of future citations. This is consistent with Akcigit and Kerr (2018) who estimate
the probability of “major advance” to be equal to 10.3%.34 We continue to tar-

34This is also consistent with Acemoglu, Akcigit and Celik (2020) who also find a value between 7.8%
and 13.9% (see their Table 6)
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get the gap in the size distribution for ω and the long-run growth rate for β/ζ.
In theory, we could estimate k using estimates of the differential step size of a
radical vs incremental innovation (in our setting: γ and γk). Drawing again on
Akcigit and Kerr (2018) finding that “External innovations that open up a new
technology cluster are estimated to have more than twice the potency of inter-
nal innovations.” suggests a value of k of around 4 (3.6 = (1 + log2/logγ)): a
successful radical innovation corresponds to a jump of 4 lines.
We solve the model numerically using these calibration values and plot the new

firm size distribution compared to the unregulated economy (τ = 0) in Figure
C1 (Appendix C.2). This is qualitatively similar to the model without radical
innovation.
In Figure 8(a) we look at how the levels of incremental and radical innovation

varies with firm employment size and also plot the share of radical innovation
over total innovation in Figure 8(b). This figure suggests that the discouraging
effect of regulation is substantial for incremental innovation, but close to zero for
radical innovations.

Figure 7. Innovation for incremental and radical innovations

0

.5

1

10 20 30 40 50 60 70 80 90 100
Employment

Incremental Innovation
Radical Innovation

Innovation

(a) Level

.1

.2

.3

.4

.5

10 20 30 40 50 60 70 80 90 100
Employment

Share of radical innovation

(b) Share

Note: Left-hand side panel plots total incremental innovation z(n)n (blue solid line) and total radical
innovation u(n)n (orange dashed line) for firms of n lines against employment in the extension where
firms can choose between two types of innovations. Right-hand side panel plots the ratio of radical over
total innovation u(n)/(z(n) + u(n)). Parameters are chosen following the calibration strategy described
in Section V.A, see Table C2 in Appendix C.2.

Evidence I: Citations

We first repeat the static analysis in Figure 8 using the quality of patents as
the measure of innovation output. Measuring quality using the number of future
citations. For each patent within a technology class by cohort-year we determine
whether the patent was in the top 10% most cited patents or in the bottom 90%
(using future cites through to 2016). The two curves in Figure 8 correspond to
the fractions of firms in each employment size bin respectively with patents in the
top 10% cited and with patents in the bottom 90% cited. We clearly see that the
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Figure 8. Share of innovative firms at each employment level and quality of innovation
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Note: Share of firms with at least one priority patent in the top 10% most cited (dashed line) and the
share of firms with at least one priority patent among the bottom 90% most cited in the year (solid line).
All observations are pooled together. Employment bins have been aggregated so as to include at least
10,000 firms. The sample is based on all firms with initial employment between 10 and 100 (182,347
firms and 1,658,760 observations, see Panel A of Table 1) .

drop in patenting just below the regulatory threshold is barely visible for radical
innovations. This is consistent with the idea that the regulation discourages low-
value innovation but not higher value innovation.35 It is also clear from the figure
that the innovation-size relationship is steeper for incremental innovation than
for high-value innovation. This is consistent with smaller firms accounting for a
higher share of more radical innovation (e.g. Akcigit and Kerr, 2018, on US data
and Manso, Balsmeier and Fleming, 2019).
Next, we repeat our preferred dynamic specification of column (5) of Table 2,

but now distinguish patents of different value using their future citations. Table 5
does this for patents in the top 10%, 15% and 25% of the citation distribution in
the first three columns and the patents in the complementary sets in the last three
columns (i.e. the bottom 75%, 85% and 90% of the citation distribution). We
clearly see that the negative effect of regulation on innovation is only statistically
and economically significant for low quality patents in columns (4), (5) and (6).
There are no such significant effects for patents in the top decile or quartile of
the patent quality distribution (the coefficient on the interaction is even positive

35As for Figure 5, Figure 8 considers the innovation outcome over the whole period of observations.
Variants around this can be found in Figure D3 in the Online Appendix D.
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in column (2)).36

Table 5—Regression results for different levels of the quality of innovation

Quality Top 10% Top 15% Top 25% Bottom 75% Bottom 85% Bottom 90%
(1) (2) (3) (4) (5) (6)

Shockt−2 × L⋆
t−2 -0.209 0.688 -0.826 -4.850* -6.115** -6.259**

(0.847) (0.842) (0.936) (2.746) (2.635) (2.501)
L⋆
t−2 -0.043 -0.019 -0.046 0.171 0.102 0.080

(0.040) (0.068) (0.075) (0.124) (0.107) (0.113)

Shockt−2 -1.579 -2.287 -5.618** -1.821 -3.884 -3.730
(1.084) (1.527) (2.098) (2.907) (2.498) (2.300)

log(L)t−2 0.017 -0.010 -0.042 -0.018 -0.044 -0.060*
(0.015) (0.024) (0.031) (0.023) (0.034) (0.034)

Shockt−2 × log(L)t−2 0.530 0.738 1.799** 0.917 1.530* 1.492*
(0.338) (0.473) (0.666) (1.020) (0.855) (0.796)

Fixed Effects
Sector×Year ✓ ✓ ✓ ✓ ✓ ✓

Number Obs. 142,560 142,560 142,560 142,560 142,560 142,560

Note: Estimation results of the same model as in column 5 of Table 2. The dependent variable is the
Davis and Haltiwanger (1992) growth rate in the number of priority patent applications between t − 1
and t, restricting to the top 10% most cited in the year (column 1), the top 15% most cited in the year
(column 2), the top 25% most cited in the year (column 3), the bottom 85% most cited in the year
(column 4), the bottom 75% most cited in the year (column 5) and the bottom 90% most cited in the
year (column 6). All models include a 2-digit NACE sector interacted with a year fixed effect and a time
fixed effect interacted with the initial level of export intensity. Estimation period: 1998-2007 . Standard
errors are clustered at the 2-digit NACE sector level. ∗∗∗, ∗∗ and ∗ indicate p-value below 0.01, 0.05 and
0.1 respectively.

To visualize these results, we plot the marginal effect of the demand shock
on innovation by the level of firm employment in Figure 9. The blue line is
the marginal effect of the shock on patents in the bottom 90% of the quality
distribution based on column (6) of Table 5. Overall, the impact of the shock is
positive and larger for bigger firms. However, when we approach the regulatory
threshold at 50, this relationship breaks down and the marginal effect of the
shock falls precipitously (and actually becomes negative). The orange line plots
the marginal effect of the demand shock on high quality patents in the top decile
of the citation distribution from column (1) of Table 5. This line is also positive
for almost all firms and rises with firm size. By contrast, with low-value patents,
there is no evidence of any sharp downturn just below the regulatory threshold.37

In short, there seems to be evidence that the chilling effect of regulation on
innovation is not an issue for radical innovation and is instead confined to incre-

36We show the diminishing effect of the shock around the threshold for many other quantiles of the
patent value distribution in five percentile intervals in Figure D4. This shows a clearly declining pattern.

37The stronger relationship between demand growth and incremental (rather than radical) innovation
is consistent with the earlier cross-sectional Figure 8 and also Manso, Balsmeier and Fleming (2019).
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Figure 9. Total marginal effect of a shock
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Note: Marginal effect of a shock at different level of employment, based on the model in column 1 and
6 of Table 5. Marginal effect is calculated on top 10% and bottom 90% most cited patents.

mental patents, which is broadly consistent with the generalization of the model
we developed for two types of R&D.

Evidence II: Patent text measures of novelty

We construct an alternative measure of radical innovation that is made to re-
flect the level of novelty of a patent using the text describing the patent (in the
abstract and main body). We follow Kelly et al. (2018) who build an index of
novelty by looking at how much the text of a given patent differs from the current
state of knowledge in the technological classes using machine learning text-to-data
techniques. This measure has been shown to capture features missed by citation-
based indicators (see Bergeaud, Potiron and Raimbault, 2017 for a review). For
example, using many detailed industry case studies, the novelty measure has
been shown to better reflect breakthrough technologies than citations (or other
originality measures).
To implement this method we exploit the work of Google Patent (GP) who

recently released a quantitative description of every patent (or embedding repre-
sentation see Srebrovic, 2019 for details). GP embeddings use artificial intelligence
analysis of text to summarize the most important features of the patent text into
a vector of 64 numbers bounded between -1 and 1. We can then calculate the
“distance” between any pair of patents by simply taking the dot product between
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the two vectors. Full details are provided in Appendix D.5, but the basic idea
is that we calculate novelty by computing the distance between a patent and a
reference point from past patents in the same technological field. A more novel
patent will use words that are further away from the current state of the art as
indexed by the typical descriptions of patents.
We replicate all the analyses of the previous subsection on citations using this

new measure in Appendix D and find broadly similar results.38 First, in Figure
D6, we show that the cross-sectional patterns show no innovation valley or a
falling the innovation-size gradient at 50 employees for novel patents (in fact the
gradient, if anything, is steeper after 50), whereas the usual patterns emerge for
non-novel patents. Second, we replicate Table 5 and split patents between the top
10% , 15% and 25% and bottom 90% , 85% and 75% based on their novelty score.
Table D6 shows that the least novel (bottom 90%) patents have a significantly
lower response rate to the exogenous demand shock whereas there is a small and
insignificant response of the top 10% most novel.

Calculation of aggregate effects in the two types of innovation model

The finding that the main effects of regulations are on incremental innovation
would seem to imply some reduction in the magnitude of the losses. A reduced
form approach is given in Appendix D.5 containing firm-level employment growth
regressions (Table D5) that show how although both types of innovations have a
significant and positive effect on firm growth, the effect of a radical innovation
is two to three times larger than that of an incremental innovation. Since most
patents are incremental, this implies that innovation might only fall by about
4.4% instead of the baseline 5.7% (see Appendix D.5).
A more rigorous approach is in Appendix C.2 that re-calibrates all parameters

to the new model. The new losses in welfare and total innovation are in Figure
C2 and are indeed lower than those in the baseline model. The differences are
less pronounced that what the reduced form approach would predict (loss of 5.3%
in total innovation and 2.1% for welfare) which is mainly because the full model
takes into account that although radical innovation creates more growth, it also
uses more resources.

Summary on radical versus incremental innovation

Broadly, both citation and novelty based measures of radical patents are con-
sistent with the extension to the model to allow for endogenous types of R&D. In
both the theory and the data, the main effect of the regulation is to discourage
only incremental innovation. This reduces the negative impact of the regulation
to some degree, but far from eliminates it as even incremental innovations have
social value.

38Note that this is not because the two measures are almost identical: the correlation between the two
measures (cites vs. novelty) is only 0.1.
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B. Labor-Saving Technology

There are many ways in which firms can respond to the regulation other than by
reducing the pace of innovation. In addition to cutting back employment growth,
Garicano, Lelarge and Van Reenen (2016) document how firms approaching the
threshold also increase over time, capital investment, outsourcing and the skill
mix. These might mitigate some of the costs, but will not eliminate the regulatory
tax, as these are imperfect substitutes for job growth. Yet another strategy may
be to develop labor saving automation technologies, that will enable the firm to
increase output with less labor inputs.
To address the challenge of determining the degree to which a patent is about

automation we again use textual analysis. In particular, we draw on Mann and
Püttmann (2018) who used a supervised machine learning technique to classify
automation and non-automation patents. Since their work was on the USPTO
which is only a subsample of our data, we train an algorithm based on their
classification using the GP embedding vector discussed in the previous subsection
and then extrapolate this predicted measure of automation for all our sample.
With this measure in hand, we again replicate all the analyses of the previous
subsections. Consistent with our expectations, we find that the regulation only
affected non-automation patenting (full results are presented in Appendix D.5).
For example, Table D7 shows that faced with a positive demand shock, firms were
significantly less likely to innovate in non-automation patents (bottom quartile),
but were more likely to respond with automation patents (top quartile). Finally,
we draw on a measure of process innovation developed by Arora et al. (2020),
which are more likely to be labor saving (see Appendix D.5 for more details).
This generates similar qualitative results to automation patents.

C. Longer lived owners

In our baseline model, although firms can live forever we simplified the analyt-
ical problem by assuming the owners of firms only live for two periods. We now
show that the qualitative and quantitative predictions of the model carry over to
a more complex environment where owners live longer. Appendix C.3 gives the
details, but our strategy is to consider extending the lifetime of the owner by one
extra period, solve for the new equilibrium, examine the qualitative predictions
and then re-calibrate the quantitative model to look at aggregate innovation and
welfare. Finally, we show that these findings extend naturally when adding an
arbitrary number of additional time periods.39

Consider extending our baseline model to allow the firm owner to live for three
periods instead of the two period baseline. In the first period, the owner inherits
a firm of size n1. She then chooses her level of innovation Z1(n1) = n1z1(n1) and

39In the working paper version, we show that qualitatively similar results are also found when consid-
ering another approach to modelling infinitely lived owners (Aghion, Bergeaud and Van Reenen, 2021).
Unfortunately, this model does not lend itself to quantitative calibration in any straightforward manner.
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enters period 2 with a size n2 (which can be either equal to n1, n1 +1 or n1 − 1).
She chooses the level of innovation for period 2, Z2(n2) = nz2(n2). Finally, the
owner collects profits, exits and ownership passes on to a new agent. Because the
firm’s owner only produces for two periods, we refer to this model as “the two
period model” while the baseline model is denoted the “one period model”.
It is thus possible to solve for equilibrium innovation given the number of lines

in each period. Compared to the baseline case, the regulation will not only impact
firms with a size n̄−1 but also firms with a size n̄−2 in period 1. Figure 11(a) plots
the value of (z1 + z2)/2, the average value of innovation per period, along with
the value of z in the baseline model against employment. The main differences
between the two is that in the extended model, the “innovation valley” is wider
immediately before the 50-employee threshold, as firms anticipate the costs of
being closer to the threshold at lower sizes. However, for the same reason, it
makes the magnitude of the innovation drop at around 49 shallower as firms begin
responding earlier in the size distribution to the threat of crossing the threshold.
The fall of innovation to the right of the threshold is broadly unaltered. As the
number of periods extends, the valley becomes increasingly wider and shallower
(see Appendix Figure C3).

Figure 10. Innovation and firm size distribution: Comparing baseline model with longer-lived

owner model
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Note: The left-hand side panel plots total innovation per line (compared to firm employment) in our
baseline model (blue solid line) compared to a model with two production periods (orange dashed line).
In the latter case the average innovation over the two periods is plotted. The right-hand side panel plots
the corresponding size distribution. Parameters are chosen following the calibration strategy described
in Section V.C, see Table C3 in Appendix C.3.

To solve for the size distribution, we look for solution where the distribution of
firms in their period 2 is the same as the distribution of firms in their first period.
The flow equation that determines the equilibrium size distribution is the same
as in the baseline case. Figure 11(b) plots this distribution against the value of
employment in the baseline case and in the two period model.
In the baseline model, the calibration of τ , which governed the aggregate inno-

vation loss followed directly from the comparison of the slopes of the innovation
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- firm size cross-sectional relationship in large vs. small firms. In our extended
multi-period model, the calibration is slightly more involved and all parameters
need to be estimated simultaneously. The resulting parameter values are pre-
sented in Table C3 and are very similar to those in the baseline model in Table
3.
The loss in total innovation and total welfare are shown in Figures 12(a) and

12(b) along with the corresponding loss in the baseline model. The figures show
that the loss in total innovation and welfare remains very similar in the new multi-
period model compared to the baseline, especially since the value of the implicit
regulatory tax remains at 2.6%.

Figure 11. Aggregate Innovation and Welfare in a model with two period lived owners
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Note: The left-hand side panel plots total innovation loss against the value of the regulation threshold
τ in our baseline model (blue solid line) and in a model with two production periods (orange dashed
line). The right-hand side panel plots the loss in consumption equivalent welfare. Parameters are chosen
following the calibration strategy described in Appendix Section C.3, except for τ , see Table C3 in
Appendix C.3.

The model can be naturally extended to adding more periods to the firm owner’s
life through induction and Appendix C.3 shows how the results carry over.
In summary, adding extra periods to a firm owner’s life extends the “shadow”

of the regulation further down the firm size distribution: the innovation valley
becomes wider and flatter. A model calibration shows very similar aggregate
innovation and welfare losses to our baseline case, however, suggesting that our
simpler, more analytically tractable approach does not mislead us. Moreover, the
theoretical findings on the shape of the innovation-size relationship generalize to
having many more periods. Hence, we think our simple approach delivers losses
in the right order of magnitude and would not be changed from moving to more
complex dynamic models.

D. Under-reporting of employment

Given the cost of regulation firms have incentives to under-report employment.
In Appendix A.2 we discuss these issues in detail. There is a lot of scrutiny
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of the employment numbers by unions, government and other agents as well as
significant fines for non-compliance. This makes non-compliance costly.
An alternative dataset to FICUS is DADS, which are social security declara-

tions. Garicano, Lelarge and Van Reenen (2016) show that the same breaks in
the firm size distribution are visible in DADS as FICUS (see their Figure 4), in
particular there is a clear downward shift in the power law (in log-log space) at
the threshold.
The bunching of firm density at 49 employees is less visible in DADS than

FICUS. Askenazy, Breda and Pecheu (2022) argue that this is because DADS is
harder to manipulate than FICUS. But the blunting of the spike is particularly
strong when using DADS hours data as this has much measurement error, which
could cause the impression of less bunching.
Rather than viewing any employment measure from FICUS or DADS as the

single “correct” one for regulatory purposes, we should regard the employment
data as a signal with measurement error. Fortunately, the methods in our paper
do not require to obtain the precise value of the cut-off in the empirical data. In
particular, our approach utilizes differences away from the discontinuity at 50. In
our baseline calibration we use the change in the gradient of the innovation-size
relationship for firms in the 10 to 45 range vs. the 50-100 range to help identify
the implicit tax of regulation. Similarly, in the extension where we calibrate the
implicit tax using the dynamic analysis of the responses to export market size
shocks, we use the data away from the threshold, again comparing responsiveness
of smaller to larger firms. Hence, the identification of the aggregate costs of the
regulation does not rely closely on the firms to the left of the threshold, and is
therefore robust to possible under-reporting.
In summary, although there is no perfect measure of employment, the use of

FICUS appears adequate for our purposes.

E. R&D as Scientists: Endogenizing Equilibrium Wages

In the baseline model, R&D is a “lab equipment” model where the equipment
is bought on the world market, labor supply is fixed and the labor force is all
employed as production workers. This means the labor share, ω, is constant and
unaffected by the regulation. In this extension, we consider the case where R&D
uses scientists as an input, which means that the labor share can change with
regulation. Full details are in Appendix C.4, but we sketch the main results here.
Workers can choose to supply labor to the R&D sector or to the production

sector. In this case the total employment of firm i is given by:

li =
ni
ωγ

+ ζniz
η
i ≡ L(ni, zi),

where ζ is now a labor cost. Therefore li depends directly upon current innovation,
instead of only through past innovation as reflected in its size (ni/(ωγ)). The
employment threshold l̄ no longer corresponds to a single number of products,
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but rather to a set of pairs (z, n) such that:

z =
1

ζn

(
l̄ − n

γω

) 1
η

,

whenever n ≤ n̄.
As employment directly depends upon the level of z, so does the profit per line

which is now equal to:

π(n, z) =
γ − 1

γ

(
1− 1

[
L(n, z) ≥ l̄

]
τ
)

The firm’s problem is otherwise the same, but again the model needs to be
solved numerically. Appendix C.4 shows that the qualitative effects again go
through in terms of the size distribution and the firm innovation-size relation-
ships. However, an important additional result is that the regulation reduces the
equilibrium wage: the greater the tax, the greater the fall in the wage. This will
mitigate the shift to the left in the size distribution.

VI. Conclusion

In this paper, we have developed a framework to analyze the impact of reg-
ulation on innovation. We applied this to France, where strong labor regula-
tions affect firms who employ 50 or more workers. We showed both theoretically
and empirically that the prospect of these regulatory costs discourages firms just
below the threshold from innovating, where innovation is measured by the vol-
ume of patent applications. This relationship emerges both when looking non-
parametrically at patent density around the threshold and in a parametric exercise
where we examine the heterogeneous response of firms to exogenous market size
shocks (from export markets). On average, firms innovate more when they expe-
rience a positive shock, but this relationship significantly weakens when a firm is
just below the regulatory threshold. We then use moments from our data and the
literature to calibrate the structural parameters in the model. For example, using
estimates of the R&D cost function, we can back out the magnitude of the regu-
latory tax from the ratio between the slopes of the innovation-size relationship for
large firms compared to small firms. Our baseline estimates imply an aggregate
innovation (and therefore growth) loss of about 5.7% and a lower bound on the
loss of welfare of about 2.2%.
This suggests larger welfare losses than existing analyses that take technology

as exogenous. A caveat to this conclusion is that when we use information on
citations we find that the labor regulation deters incremental innovation, but has
little effect on more radical innovation. This is consistent with a generalization
of the model which allows for simultaneous investment in two types of R&D, and
slightly mitigates the welfare loss of the regulation.
The analysis in this paper can be extended in several directions. First, our
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focus in this paper was on the long-run steady state, but it is perhaps equally
important to analyze the transitional dynamics triggered by policy changes, and
to factor in adjustment costs. Second, the framework can be applied to many
other countries and regulatory settings. Third, our analysis remained focused
on the costs of the labor regulation. However, such a regulation may also bring
benefits in the form of better insurance and deeper involvement of employees in
the management of the firm, which in turn fosters trust between employers and
employees. Future work should take such benefits into account to see if they are
sufficient to overcome the costs we have identified here.
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