

Bayesian analysis of real-world data as evidence for drug approval: remembering Sir Michael Rawlins

Journal:	<i>British Journal of Clinical Pharmacology</i>
Manuscript ID:	ED-00385-23.R1
Manuscript Type:	Editorial
Date Submitted by the Author:	n/a
Complete List of Authors:	Szigeti, Balázs ; Imperial College London Phillips, Lawrence; London School of Economics and Political Science, Management Nutt, David; Imperial College London
Key Words:	Health Policy < Clinical Pharmacology, Biostatistics < Statistics and Study Design, Randomised controlled trial < Drug Development, Public Health
Abstract:	The two pillars of modern medical research are null hypothesis significance testing (NHST) and randomized controlled trials (RCTs), where in most RCTs the active treatment is compared to placebo. A recent expert consensus survey endorsed the statement that "Results from placebo-controlled trials are more reliable than results from any other study design." (Similon et al., 2022), reflecting that placebo controlled RCTs are considered to be the gold standard. In his Harveian Oration, a prestigious annual lecture held at the Royal College of Physicians of London, Sir Michael Rawlins, the ex-head of National Institute for Health and Care Excellence (NICE) and the Medicines and Healthcare products Regulatory Agency (MHRA), pointed out RCTs are not the apex of evidence, but rather a piece of a larger evidence puzzle: "RCTs are often called the 'gold standard' for demonstrating (or refuting) the benefits of a particular intervention. Yet the technique has important limitations of which four are particularly troublesome: the null hypothesis, probability, generalisability and resource implications" (Rawlins, 2008). Here, we follow the footsteps of Sir Michael Rawlins and highlight how the combination of real-world evidence and Bayesian analysis could complement the traditional approach of RCTs and NHST.

SCHOLARONE™
Manuscripts

Bayesian analysis of real-world data as evidence for drug approval: remembering Sir Michael Rawlins

Balázs Szigeti^{1*}, Lawrence D Phillips², David Nutt¹

¹Centre for Psychedelic Research, Division of Psychiatry, Imperial College London, UK

²London School of Economics and Political Science, UK

*Corresponding author: balazs.szigeti07@imperial.ac.uk

This paper is written to commemorate Sir Michael Rawlins' contribution to clinical trial design and analysis – one of the many great contributions he made to the discipline of clinical pharmacology and therapeutics in his long career.

The two pillars of modern medical research are null hypothesis significance testing (NHST) and randomized controlled trials (RCTs), where in most RCTs the active treatment is compared to placebo. A recent expert consensus survey endorsed the statement that “*Results from placebo-controlled trials are more reliable than results from any other study design.*” (Similon et al., 2022), reflecting that placebo controlled RCTs are considered to be the gold standard. In his Harveian Oration, a prestigious annual lecture held at the Royal College of Physicians of London, Sir Michael Rawlins, the ex-head of National Institute for Health and Care Excellence (NICE) and the Medicines and Healthcare products Regulatory Agency (MHRA), pointed out RCTs are not the apex of evidence, but rather a piece of a larger evidence puzzle: “*RCTs are often called the ‘gold standard’ for demonstrating (or refuting) the benefits of a particular intervention. Yet the technique has important limitations of which four are particularly troublesome: the null hypothesis, probability, generalisability and resource implications*” (Rawlins, 2008). Here, we follow the footsteps of Sir Michael Rawlins and highlight how the combination of real-world evidence and Bayesian analysis could complement the traditional approach of RCTs and NHST.

Many medical innovations crash of the rocks “of not having RCT data” with consequent suffering to patients and their families. Here we look at two cases where classic RCT data is lacking, but where real-world data already provides considerable evidence:

- Treatment of treatment-resistant epilepsy in children with medical cannabis (Zafar et al., 2020, 2021), where we define ‘treatment success’ as having fewer seizures.

1
2
3 34 • Treatment of treatment-resistant depression with psilocybin (Carhart-Harris et al.,
4 35 2016), where we define 'treatment success' as a 50% or larger reduction of depression
5 36 scores relative to baseline.
6
7 37
8
9 38 Note, we use binary outcome data here to simplify the analysis, however the arguments
10 39 presented are equally applicable to continuous outcome measures. Assuming a flat prior, i.e.
11 40 prior to administering the treatment equal belief that the treatment will be success / failure, it
12 41 is possible to derive the probability of success when treating the next patients as

13
14 42
$$p(\text{next patient success}) = \frac{\text{number of prior successes} + 1}{\text{number of prior successes} + \text{number of prior failures} + 2}$$

15
16 43 and the credible interval, the Bayesian analogue of the confidence interval, can also be
17 44 calculated from the appropriate beta distribution (Kruschke, 2014).
18
19 45

20
21 46 What does Bayesian analysis reveal about the medical cannabis for childhood
22 47 epilepsy? In the dataset all 20 children experienced a reduction in seizure numbers, so after
23 48 updating the flat prior (all success rates between 0 and 100% are possible), the probability
24 49 that the next patient will improve is 95% with, a 95% credible interval of 87-100%. Even if we
25 50 choose a sceptical prior, a gentle distribution excluding 0 and 100%, with a mean at 25%, the
26 51 probability that the next patient will improve is still 88% with a 95% credible interval of 75%-
27 52 98%.

28
29 53 Similar results are obtained for treating treatment resistant depression with psilocybin.
30 54 In this case results depend on which exact depression measure is used. The worst-case
31 55 scenario is using QIDS-16, where the probability of a favourable response is 62% with a 95%
32 56 credible interval of 42%-82% and the best-case scenario is using the MADRS measure, where
33 57 the probability of a favourable response is 82% with a 95% credible interval of 66%-96%. See
34 58 [Figure 1](#) for the posterior distribution of the treatment success for both datasets, all data and
35 59 code associated can be found at <https://github.com/szb37/Bayesian-RWE>.
36
37 60

38
39 61 Using Bayesian analysis of real-world data, we showed with data from just 20 patients
40 62 that the probability of success treating childhood epilepsy with cannabis is 95%. In
41 63 comparison, a traditional placebo-controlled RCT of a very similar product, Epydiolex that
42 64 contains purified cannabidiol (CBD), in a similar clinical population used a cohort of 170
43 65 patients to reveal a statistically significant between-treatment difference using NHST (Thiele
44 66 et al., 2018). It is worth contrasting the differences between these approaches investigating
45 67 cannabis's efficacy.

1
2
3 68 The most obvious one is the difference in the sample size. Placebo-controlled RCTs
4 69 are 'information inefficient' because half of the patients are not receiving the treatment under
5 70 investigation. This contributes to the high-cost of drug development that is eventually passed
6 71 onto the consumers. Moreover, placebo-controlled RCTs raise ethical concerns when an
7 72 ineffective treatment as in the placebo arm could have severe consequences, e.g. suicide in
8 73 depression. Traditional RCTs generally require a larger sample, because their primary
9 74 outcome is the 'between-treatment difference', i.e. how much better is treatment relative to
10 75 placebo, which requires that about half of the patients are randomized to the placebo group.
11 76 However, this 'between-treatment difference' is not relevant to either patient or doctors when
12 77 choosing a treatment. Patients and doctors experience / observe, and care about, the 'change
13 78 over time', i.e. how much improvement is to be expected from the treatment. Relatedly,
14 79 traditional RCTs report the between-treatment p-value, which is the '*probability of obtaining*
22 80 *the observed or more extreme data assuming that the treatment is no better than placebo*'.
23 81 Note this probability is not related to treatment success. In contrast the Bayesian analysis
24 82 yields the probability of treatment success when treating the next patient, which is what
25 83 doctors and patients care about.

28 84 The main reason why RCTs are held in such high regard is because after blinding non-
29 85 specific treatment effects should equally distributed between treatment arms (Colagiuri, 2010),
30 86 hence, the between-treatment difference should corresponds to the true treatment effect, free
31 87 of subjective biases. This is a compelling reason to favour RCTs over alternatives; however,
32 88 in practice only a small minority of trials measure blinding integrity and thus empirically
33 89 demonstrate that patients were genuinely unaware of their treatment allocation (Baethge et
34 90 al., 2013; Fergusson et al., 2004). In many trials participants unblind due to side effects
35 91 (Colagiuri et al., 2019; Scott et al., 2022), undermining the purpose of blinding and hence the
36 92 objectivity of placebo-controlled RCTs (Szigeti et al., 2022). In particular, psychedelics elicit
37 93 conspicuous subjective effects that make them easy to distinguish from placebo, therefore,
38 94 running truly blinded trials is near impossible (Muthukumaraswamy et al., 2021). In a recent
39 95 trial of psilocybin for the treatment of alcohol use disorder, 94% of participants correctly
40 96 guessed their treatment allocation (50% would be expected in a truly blind trial) with a mean
41 97 confidence of 89% (Bogenschutz et al., 2022). We emphasize that the unblinding is not due
42 98 to incompetence, but rather the nature of the treatment. Similarly, most exercise / meditation
43 99 / diet based therapies are tested in a unblinded manner (Knapen et al., 2015).

54 100 One major criticism of real-world evidence is the lack of a control condition, raising the
55 101 question whether the effects could be driven by placebo response. While this concern cannot
56 102 be entirely eliminated, but there is reason to think there is more at play here. In both of our
57 103 case series patients were treatment resistant, specifically for the depression study, all patients
58 104 had failed on at least two previous antidepressant drugs, some on more than ten, and all failed

1
2
3 105 on psychotherapy. It has been shown that for depression previous failed medication is
4 106 associated with decreased chances of success for the next treatment (Boswell et al., 2012;
5 107 Hunter et al., 2015) and the observed response rate is much higher than what's generally
6 108 observed in the placebo arms of antidepressant trials (~30%) (Walsh et al., 2002), arguing
7 109 that these results are unexplainable by the placebo response alone. However, control
8 110 conditions can be incorporated to real-world evidence (RWE). For example, we previously run
9 111 a 'self-blinding' trial on psychedelic microdosing, where citizen scientists implemented their
10 112 own placebo control without clinical supervision (Szigeti et al., 2021). An other example of an
11 113 RWE control condition is provided by a single case where medical cannabis treatment was
12 114 interrupted due to medicine access problems and seizures rapidly reappeared (Schlag et al.,
13 115 2022). This case can be viewed as an n=1 ABA(B) trial, i.e. a within-subject crossover trial
14 116 (Goyal et al., 2022). Therefore, when ethical considerations allow it, such designs could help
15 117 to establish the causal effect of the treatment even in an RWE context (Barlow & Hersen,
16 118 1973; West et al., 2000).

17 119 Our arguments here should not be read as a call for the abolition of traditional RCTs,
18 120 but rather to consider complementary forms of evidence. For example, Bayesian analysis of
19 121 RWE can be implemented as a hypothesis generating step prior to conducting the more
20 122 resource intensive traditional RCTs. We believe Sir Michael Rawlins would support this
21 123 agenda as he argues that "*randomised controlled trials [...] should be replaced by a diversity*
22 124 *of approaches that involve analysing the totality of the evidence base*" (Rawlins, 2008).

36 125 **Acknowledgements**

37 126 We would like to acknowledge Rayyan Zafar who provided useful feedback.

41 129 **Conflicts of Interest**

42 130 B.Sz. and L.P. declares no conflict. D.N. is an advisory to COMPASS Pathways, Neural
43 131 Therapeutics, and Algernon Pharmaceuticals; received consulting fees from Algernon, H.
44 132 Lundbeck and Beckley Psytech; received lecture fees from Takeda and Otsuka and Janssen
45 133 plus owns stock in Alcarelle, Awakn and Psyched Wellness.

References

B
British Pharmacological Society

141 Baethge, C., Assall, O. P., & Baldessarini, R. J. (2013). Systematic review of blinding
142 assessment in randomized controlled trials in schizophrenia and affective disorders
143 2000-2010. *Psychotherapy and Psychosomatics*, 82(3), 152–160.
144 <https://doi.org/10.1159/000346144>

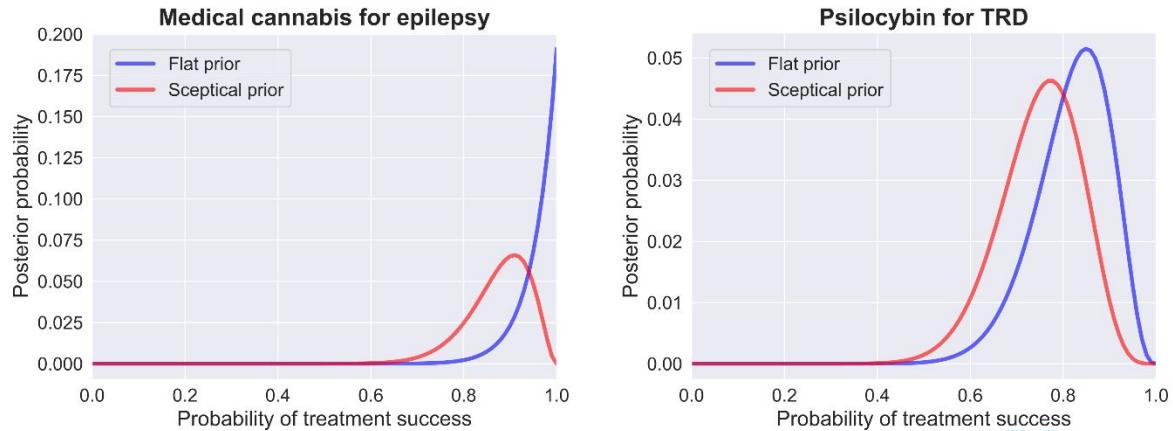
145 Barlow, D. H., & Hersen, M. (1973). Single-case experimental designs. Uses in applied clinical
146 research. *Archives of General Psychiatry*, 29(3), 319–325.
147 <https://doi.org/10.1001/archpsyc.1973.04200030017003>

148 Bogenschutz, M. P., Ross, S., Bhatt, S., Baron, T., Forcehimes, A. A., Laska, E., Mennenga,
149 S. E., O'Donnell, K., Owens, L. T., Podrebarac, S., Rotrosen, J., Tonigan, J. S., &
150 Worth, L. (2022). Percentage of Heavy Drinking Days Following Psilocybin-Assisted
151 Psychotherapy vs Placebo in the Treatment of Adult Patients With Alcohol Use
152 Disorder: A Randomized Clinical Trial. *JAMA Psychiatry*.
153 <https://doi.org/10.1001/jamapsychiatry.2022.2096>

154 Boswell, J. F., McAleavy, A. A., Castonguay, L. G., Hayes, J. A., & Locke, B. D. (2012).
155 Previous mental health service utilization and change in clients' depressive symptoms.
156 *Journal of Counseling Psychology*, 59(3), 368–378. <https://doi.org/10.1037/a0028078>

157 Carhart-Harris, R. L., Bolstridge, M., Rucker, J., Day, C. M. J., Erritzoe, D., Kaelen, M.,
158 Bloomfield, M., Rickard, J. A., Forbes, B., Feilding, A., Taylor, D., Pilling, S., Curran,
159 V. H., & Nutt, D. J. (2016). Psilocybin with psychological support for treatment-resistant
160 depression: An open-label feasibility study. *The Lancet. Psychiatry*, 3(7), 619–627.
161 [https://doi.org/10.1016/S2215-0366\(16\)30065-7](https://doi.org/10.1016/S2215-0366(16)30065-7)

162 Colagiuri, B. (2010). Participant expectancies in double-blind randomized placebo-controlled
163 trials: Potential limitations to trial validity. *Clinical Trials (London, England)*, 7(3), 246–
164 255. <https://doi.org/10.1177/1740774510367916>


165 Colagiuri, B., Sharpe, L., & Scott, A. (2019). The Blind Leading the Not-So-Blind: A Meta-
166 Analysis of Blinding in Pharmacological Trials for Chronic Pain. *The Journal of Pain*,
167 20(5), 489–500. <https://doi.org/10.1016/j.jpain.2018.09.002>

168 Fergusson, D., Glass, K. C., Waring, D., & Shapiro, S. (2004). Turning a blind eye: The
169 success of blinding reported in a random sample of randomised, placebo controlled
170 trials. *BMJ: British Medical Journal*, 328(7437), 432.
171 <https://doi.org/10.1136/bmj.37952.631667.EE>

172 Goyal, P., Safford, M. M., Hilmer, S. N., Steinman, M. A., Matlock, D. D., Maurer, M. S., Lachs,
173 M. S., & Kronish, I. M. (2022). N-of-1 trials to facilitate evidence-based deprescribing:
174 Rationale and case study. *British Journal of Clinical Pharmacology*, 88(10), 4460–
175 4473. <https://doi.org/10.1111/bcp.15442>

1
2
3 178 Hunter, A. M., Cook, I. A., Tartter, M., Sharma, S. K., Disse, G. D., & Leuchter, A. F. (2015).
4 179 Antidepressant treatment history and drug-placebo separation in a placebo-controlled
5 180 trial in major depressive disorder. *Psychopharmacology*, 232(20), 3833–3840.
6 181 <https://doi.org/10.1007/s00213-015-4047-2>
7
8 182 Knapen, J., Vancampfort, D., Moriën, Y., & Marchal, Y. (2015). Exercise therapy improves
9 both mental and physical health in patients with major depression. *Disability and*
10 *Rehabilitation*, 37(16), 1490–1495. <https://doi.org/10.3109/09638288.2014.972579>
11
12 183 Kruschke, J. (2014). *Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan*.
13 Academic Press.
14
15 184 Muthukumaraswamy, S. D., Forsyth, A., & Lumley, T. (2021). Blinding and expectancy
16 confounds in psychedelic randomized controlled trials. *Expert Review of Clinical*
17 *Pharmacology*, 14(9), 1133–1152. <https://doi.org/10.1080/17512433.2021.1933434>
18
19 185 Rawlins, M. (2008). De testimonio: On the evidence for decisions about the use of therapeutic
20 interventions. *The Lancet*, 372(9656), 2152–2161. [https://doi.org/10.1016/S0140-6736\(08\)61930-3](https://doi.org/10.1016/S0140-6736(08)61930-3)
21
22 186 Schlag, A. K., Zafar, R. R., Linsky, M. T., Athanasiou-Fragkouli, A., Phillips, L. D., & Nutt, D.
23 J. (2022). The value of real world evidence: The case of medical cannabis. *Frontiers*
24 *in Psychiatry*, 13. <https://www.frontiersin.org/journals/psychiatry>
25
26 187 Scott, A. J., Sharpe, L., & Colagiuri, B. (2022). A systematic review and meta-analysis of the
27 success of blinding in antidepressant RCTs. *Psychiatry Research*, 307, 114297.
28 <https://doi.org/10.1016/j.psychres.2021.114297>
29
30 188 Similon, M. von M., Paasche, C., Krol, F., Lerer, B., Goodwin, G. M., Berk, M., Meyer-
31 Lindenberg, A., Ketter, T. A., Yatham, L. N., Goldberg, J. F., Malhi, G. S., El-Mallakh,
32 R., Licht, R. W., Young, A. H., Kapczinski, F., Swartz, M., Hagin, M., Torrent, C.,
33 Serretti, A., ... Popovic, D. (2022). Expert consensus recommendations on the use of
34 randomized clinical trials for drug approval in psychiatry- comparing trial designs.
35 *European Neuropsychopharmacology*, 60, 91–99.
36 <https://doi.org/10.1016/j.euroneuro.2022.05.002>
37
38 189 Szigeti, B., Kartner, L., Blemings, A., Rosas, F., Feilding, A., Nutt, D. J., Carhart-Harris, R. L.,
39 & Erritzoe, D. (2021). Self-blinding citizen science to explore psychedelic microdosing.
40 *eLife*, 10, e62878. <https://doi.org/10.7554/eLife.62878>
41
42 190 Szigeti, B., Nutt, D., Carhart-Harris, R., & Erritzoe, D. (2022). *On the fallibility of placebo*
43 *control and how to address it: A case study in psychedelic microdosing*. PsyArXiv.
44 <https://doi.org/10.31234/osf.io/cjfb6>
45
46 191 Thiele, E. A., Marsh, E. D., French, J. A., Mazurkiewicz-Beldzinska, M., Benbadis, S. R., Joshi,
47 C., Lyons, P. D., Taylor, A., Roberts, C., Sommerville, K., Gunning, B., Gawlowicz, J.,
48 Lisewski, P., Beldzinska, M. M., Szewczyk, K. M., Steinborn, B., Zolnowska, M.,
49
50 192 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

1
2
3 215 Hughes, E., McLellan, A., ... Wilfong, A. (2018). Cannabidiol in patients with seizures
4 216 associated with Lennox-Gastaut syndrome (GWPCARE4): A randomised, double-
5 217 blind, placebo-controlled phase 3 trial. *The Lancet*, 391(10125), 1085–1096.
6 218 [https://doi.org/10.1016/S0140-6736\(18\)30136-3](https://doi.org/10.1016/S0140-6736(18)30136-3)
7
8 219 Walsh, B. T., Seidman, S. N., Sysko, R., & Gould, M. (2002). Placebo Response in Studies of
9 220 Major Depression Variable, Substantial, and Growing. *JAMA*, 287(14), 1840–1847.
10 221 <https://doi.org/10.1001/jama.287.14.1840>
11
12 222 West, S. G., Biesanz, J. C., & Pitts, S. C. (2000). Causal inference and generalization in field
13 223 settings: Experimental and quasi-experimental designs. In *Handbook of research*
14 224 *methods in social and personality psychology* (pp. 40–84). Cambridge University
15 225 Press.
16
17 226 Zafar, R., Schlag, A., & Nutt, D. (2020). Ending the pain of children with severe epilepsy? An
18 227 audit of the impact of medical cannabis in 10 patients. *Drug Science, Policy and Law*,
19 228 6, 205032452097448. <https://doi.org/10.1177/2050324520974487>
20
21 229 Zafar, R., Schlag, A., Phillips, L., & Nutt, D. J. (2021). Medical cannabis for severe treatment
22 230 resistant epilepsy in children: A case-series of 10 patients. *BMJ Paediatrics Open*,
23 231 5(1), e001234. <https://doi.org/10.1136/bmjpo-2021-001234>
24
25
26
27
28
29
30
31
32
33 234 **Figures**
34
35

236
237 **Figure 1:** posterior probability of treatment success using the medical cannabis for childhood
238 epilepsy (left) and psilocybin for treatment resistant-depression datasets (right; MADRS
239 outcome measure). Results are shown for priors that are flat (any success rate between and
240 including 0 and 100% is possible) and sceptical (gentle, excluding 0 and 100%, with a mean
241 at 25%).