SIMPLIFIED CALCULUS FOR SEMIMARTINGALES:
MULTIPLICATIVE COMPENSATORS AND CHANGES OF MEASURE

ALES CERNY AND JOHANNES RUF

ABSTRACT. The paper develops multiplicative compensation for complex-valued semimartin-
gales and studies some of its consequences. It is shown that the stochastic exponential of any
complex-valued semimartingale with independent increments becomes a true martingale after
multiplicative compensation when such compensation is meaningful. This generalization of the
Lévy—Khintchin formula fills an existing gap in the literature. It allows, for example, the com-
putation of the Mellin transform of a signed stochastic exponential, which in turn has practical
applications in mean—variance portfolio theory. Girsanov-type results based on multiplicatively
compensated semimartingales simplify treatment of absolutely continuous measure changes. As
an example, we obtain the characteristic function of log returns for a popular class of minimax
measures in a Lévy setting.

1. INTRODUCTION

Multiplicatively compensated semimartingales are an important tool in stochastic modelling.
They appear, among others, in the following contexts.

e Computation of characteristic functions, e.g., Jacod and Shiryaev [18, Section II1.7].

e FEsscher-type measure changes including a variety of minimax martingale measures, e.g.,
Goll and Riischendorf [15], Jeanblanc et al. [19]; martingale measures associated with
ad-hoc numeraire changes, e.g., Eberlein et al. [12]; but also non-martingale mea-
sures, e.g., the opportunity-neutral measure in semimartingale mean-variance theory,
e.g., éerny and Kallsen [5, Section 3.4]. A very general take on Esscher-type measures
is presented in Kallsen and Shiryaev [22].

e Proofs of moment bounds, e.g., to show existence and uniqueness of BSDE solutions,
e.g., Kazi-Tani et al. [25, Lemma A.5]; to estimate variation distance of probability
measures in Kabanov et al. [20, Theorem 2.1]; to prove uniform integrability of local
martingales, e.g., Lépingle and Mémin [28, Théoreme IIL.1], Ruf [32, Corollary 5].

e Filtration extension and/or shrinkage, e.g., Nikeghbali and Yor [30, Section 4], Kardaras
[23], Aksamit and Jeanblanc [1, Chapter 5|; Kardaras and Ruf [24, Section 5.

e Theory of Markov processes, e.g., 1to and Watanabe [16, Chapter 2|; Chen et al. [9,
Theorem 3.1].

This paper examines some of the consequences of multiplicative compensation for signed (and
even complex-valued) semimartingales. The next statement is a special case of Theorem 4.1(2).

Theorem 1.1. Let Y be a special C—valued semimartingale with independent increments. Then
EE(Y)]=¢&(BY),, t>0.

Here &(Y) denotes the stochastic exponential® of a semimartingale Y and BY the predictable
finite-variation part (here also called the drift) in the canonical decomposition of a special
semimartingale Y2 Theorem 1.1 with Y = ("4 — 1) 0 X, X a Lévy process, u € R, and id the

Date: March 23, 2023.

2020 Mathematics Subject Classification. Primary: 60E10; 60G07; 60G44; 60G48; 60G51; 60H05; 60H30;
91G10.

Keywords. Girsanov; Lévy-Khintchin; Mellin transform; Predictable compensator; Process with independent
increments; Semimartingale representation.

1By convention, any stochastic exponential starts at 1, i.e., here &(Y)o = 1.

2We assume that BY =0, which makes the finite variation part BY unique; see [18, 1.4.22].
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identity function recovers the Lévy—Khintchin formula for X (Corollary 4.3). The operation foX
denotes, roughly speaking, the f—variation of X (Definition 2.3). Observe that in Theorem 1.1
the process &(BY) is deterministic.

To illustrate the novelty of Theorem 1.1, consider the task of computing the distribution
of &(X) when the stochastic exponential is signed. Here, one can evaluate |&(X)[*™ and
sgn(&(X))|&(X)|[* for u € R separately to obtain the Mellin transforms of the positive and
negative parts, respectively (Example 4.4),

E[|6(X)]] = &(BIHd™—Dex) | (1.1)
Elsgn(&(X)e)|&(X)|™] = & (Blen+idird™—1ex) (1.2)

The standard Lévy-Khintchin formula is unable to deliver such a result. The Mellin transform
can then be used to solve, at least numerically, previously intractable questions concerning
mean-variance portfolio allocation (Example 4.5).

Next, as a special case of Theorem 3.1(1) below, we have a complex-valued extension of a
classical but perhaps not sufficiently well-known result due to Lépingle and Mémin [28, Propo-
sition II.1].

Theorem 1.2. LetY be a special C-valued semimartingale such that ABY # —1. Then &(BY)

is a multiplicative compensator of &(Y), that is, % is a local martingale.

In the main body of the paper (see Theorem 3.1), we allow Y to explode on approach to a
stopping time, which later allows study of a larger class of non-equivalent measure changes. In
the context of Theorem 1.2, Theorem 1.1 asserts that % is a true martingale whenever Y
has independent increments (Theorem 4.1(3)).

Multiplicative compensation of semimartingales is, of course, not new (see, e.g., Yoeurp and
Meyer [34], Azéma [2], Jacod [17], Mémin [29], Lépingle and Mémin [28], and Kallsen and
Shiryaev [22]). We wish to emphasize the strength and flexibility of Theorem 1.2 when coupled
with semimartingale representations. For example, Theorem 2.19 in [22] follows immediately

from Theorem 1.2 by writing (see Example 3.6)
EY) =N =g (e -1)oX), (eLX),

where ( ¢ X stands for the stochastic integral [;(;dX;. Many computations in [28] follow from
Theorem 1.2 by taking (for A > 0 and a local martingale M),
EY)=ENM) =E(((1+id)* —1) o M), etc.
Theorem 1.2 is a stepping stone to Girsanov-type results for measure changes relying on

non-negative multiplicatively compensated semimartingales.
Theorem 1.3. Let Y be a special R—valued semimartingale such that AY > —1 and M = %
is a uniformly integrable martingale. For the measure Q given by % = My and a semimartin-
gale X, the following are equivalent.

(i) X is Q-special.

(ii) X c(Y)_ s P-special.

&(BY)
(iii) X + [X,Y] is P—special.
If either of these conditions holds, then Bg = ﬁ o BXHXYT gpnd
&(BX+Y+XY])
X
&(BY) = 5BV 7

where Bg stands for the additive Q—compensator of the Q—special semimartingale X. Further-
more, the following are equivalent.

(i") X is a Q-local martingale.

(ii”) X(;Egy)) is a P=local martingale.



(iii") X + [X,Y] is a P-local martingale.
Proof. See Theorem 5.4 and Corollary 5.9 below. U

As a practical application of Theorem 1.3, Example 5.6 in the main body of the paper com-
putes the characteristic function of log returns for a popular class of minimax measures. Ad-
ditionally, Example 5.11 showcases the usefulness of Theorem 1.3 by streamlining an otherwise
fairly involved calculation appearing in [28].

In the rest of the paper we proceed as follows. Section 2 provides the setup of this paper.
Section 3 discusses the construction of multiplicative compensators and provides several exam-
ples. Section 4 considers multiplicative compensation for stochastic exponentials of processes
with independent increments. Section 5 introduces a version of Girsanov’s theorem and con-
siders additive and multiplicative compensation after a change of measure. Finally, Section 6
concludes.

2. SETUP AND NOTATION

The applications in this paper rely on semimartingale representations worked out in éerny
and Ruf [8]. A whittled-down summary of the relevant definitions and results from [8] is provided
in Subsections 2.1-2.5. We suggest skipping the details on the first reading and instead making
use of the following “executive summary.” One can also consult the introductory paper [7] for
further context and examples.

For a function ¢ : [0,00) x R — R that is constant in the first argument and twice continuously
differentiable in the second argument and for an R—valued semimartingale X, the partial sums

Z & (th _ th,l)

neN
converge uniformly on compact time intervals in probability to

EoX = £(0) e X+ 2€"(0)+ [X, X"+ 3 (G(AX) ~ §(0)AX)) (2.1)

0<t<-

as the time partition (£,)nen becomes finer; see Emery [13, Théoréme 2a). In such case, £ o X
can be interpreted as the {—variation of X. Here and below we write X7 for the process X
stopped at some stopping time 7.

Formula (2.1) also makes sense for some predictable functions £. In particular, it makes
sense for all predictable functions in the universal class 4 defined below, including all twice-
continuously differentiable deterministic time-constant functions. For & € 4, £ o X is not nec-
essarily a £—variation. We then speak more broadly of semimartingale representations, saying
that Y is represented in terms of X if there is £ € il such that Y = £ 0 X. The functions in &,
such as log(1 4 id), need not be defined everywhere. For £ o X to exist, it is enough that X is
compatible with & € i, i.e., {(AX) is finite almost surely.

The Emery formula (2.1) has a natural counterpart for complex-valued functions of several
complex variables and the definition of U takes this into account. Semimartingale representa-
tions in i conveniently capture common operations on semimartingales. For example, locally
bounded stochastic integration corresponds to “linear variation”

(e X = (Cid) o X
smooth transformation, too, has a simple representation in LI,
FX) = F(Xo) = (F(X_ +id) - F(X_)) o X.
Furthermore, 4 is closed under composition, with

Yo (§oX)=1(§)oX.
This turns common stochastic operations into algebraic manipulations of predictable functions,
which is both more effective and more compact than the standard calculus. It yields formulae
such as e¢*X = &((e¢ — 1) 0 X) or (0 X) = E((1 +&)* — 1) o X) for A € N. Unlike the
3



canonical decompositions that commonly appear in classical stochastic calculus, semimartingale
representations are measure-invariant.

Semimartingale representations allow a systematic evaluation of the predictable compensator
(drift, B&X) of a represented process in terms of the predictable characteristics of the repre-
senting process X; this follows naturally from the Emery formula (2.1). The drift calculation is
further simplified by uniquely decomposing X — X{ into two components, X9 and X, where
X is quasi-left-continuous and X equals the sum of its jumps at predictable times in the
semimartingale topology. Only the drift of £ o X9° is evaluated via (2.1) since at predictable
stopping times 7 one has the simpler formula

ABSX = ABEXT = E,_[6(AX,)].

In practice, X9° is often an Itd6 semimartingale. One may then rephrase the drift computation
for the qc component in terms of time rates, reverting to drift rates, quadratic variation rates
(squared volatilities), and jump intensities (Lévy measures).

The rules of semimartingale representations together with drift evaluation give rise to the
simplified calculus of the title. In summary, the calculus provides a clear, systematic way to
perform the “o” operations that we have showcased in the introduction and which we shall
encounter again in various applications.

We shall now provide a rigorous setup of the paper. Below, we mostly rely on the notation

of Jacod and Shiryaev [18]. Throughout this section, let m € N denote an integer.

2.1. Preliminaries. We explicitly shall allow quantities to be complex-valued. The reader
interested only in real-valued calculus can easily always replace the general ‘C—valued’ by the
special case ‘R—valued’ in their mind. We write C"" = C™J{NaN} for some ‘non-number’
NaN ¢ Ugen CF. We introduce the functions id : " — C™ and id : C™ — R?™ U {NaN} by
id(x) = x for all z € C™ and by

id(z) = (Rexy,Imzy,...,Rexy, Imz,)", zeC™; id(NaN) = NaN,

respectively. Observe that 121(1‘) € R?" for x € C™ contains the values of Rez and Imz,
interlaced. The introduction of NaN simplifies treatment of functions with undefined values,
such as log(1 + id), that frequently arise in applications.

We fix a probability space (€2,.%,P) with a right-continuous filtration §. We shall assume,
without loss of generality, that all semimartingales are right-continuous, and have left limits
almost surely. For a brief review of standard results without the assumption that the filtration
is augmented by null sets, see Perkowski and Ruf [31, Appendix A].

We denote the left-limit process of a (complex-valued) semimartingale X by X_ and use the
convention Xo_ = Xy. We also set AX = X — X_. We write X = ia(X) and X7 for X stopped
at some stopping time 7.

For C—valued semimartingales X and Y we set

[X,Y] = [ReX,ReY] — [Im X,ImY] 4 i ([Re X,Im Y] + [Im X, Re Y]).

If X is C™—valued, then [X, X] denotes the corresponding C™*™—valued quadratic variation,
formally given by

XX = (In o)X (e | ).

where I,,, denotes the m x m identity matrix and ® the Kronecker product. Furthermore, we
write [X, X]¢ for the continuous part of the quadratic variation [X, X].

As in [18, I1.1.4], we consider the notion of a predictable function on Q" = Q x [0,00) x C™.
Observe that every time-constant deterministic function, such as id or log(l + id), can be
considered a predictable function via the natural embedding of C" into Q x [0,00) x C™.
Let ;X denote the jump measure of a semimartingale X and v% its predictable compensator
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(under a fixed probability measure P). Then for a C—valued bounded predictable function &
with £(0) = 0 we have

Exp =g (i) et = 2 a(ax),
t<-

provided |¢]* uX < oco. If X is special, we let BX denote the predictable finite-variation part in
the canonical decomposition of X, always assumed to start in zero, i.e., B()f = (0. Recall from
[18, I1.2.29a] that

X is special <= (\id]Q A ]id\) * X < oo (2.2)

In this paper we call a time-constant deterministic function h : C" — C™ a truncation
function for X if [id — h| * u* < oo and if

X[h] = X — (id — h) * % (2.3)

is special.

Next, let us briefly discuss stochastic integrals. Consider a T ~alued process ¢ and a C"—
valued semimartingale X. If X is real-valued then we write ( € L(X) if both Re ¢ and Im ¢ are
integrable with respect to X (in the standard sense). We then write (¢X = (Re()eX +i(Im () X.
If X is complex-valued, then we say ¢ € L(X) if (¢ ® [1 i]) € L(X), where ® represents the
Kronecker product. We then write

A

CeX=(Cofi)eX

for the stochastic integral of ¢ with respect to X.

We sometimes shall work on stochastic intervals [0, 7[, where 7 is a foretellable time, i.e.,
a stopping time that is almost surely equal to a predictable time. An example is discussed in
Subsection 2.3, where this setup allows to define the stochastic logarithm of a semimartingale
that hits zero. Let 7 be a foretellable time with announcing sequence (74)ken, i.€., limppoo 7 = 7
and 7, < 7 on {7 > 0}. Then we say a process X is a semimartingale (local martingale, etc.)
on [0, 7] if X" is a semimartingale (local martingale, etc.) for each k € N. We refer to Carr et
al. [4] and Larsson and Ruf [27] for more details.

2.2. Decomposition of a semimartingale into ‘continuous-time’ and ‘discrete-time’
components. Denote by ¥ the set of finite variation semimartingales; by ¥4 the subset of
X € ¥ such that

X = Xo +id* pX;
and by 7 the set of semimartingales that belong sigma-locally to the class of pure-jump finite
variation processes 79,
The following proposition recalls a unique decomposition of a semimartingale X into a semi-

martingale X9 that jumps at predictable times and a quasi-left-continuous semimartingale
X,

Proposition 2.1 ([6], Proposition 3.15). Every semimartingale X has the unique decomposition
X = Xo + X9 4 x4,

where Xg¢ = (()?lp = 0, X% 4s a quasi-left-continuous semimartingale, X jumps only at
predictable times, and X € ¥4, We then have [X9, X9] = 0.

2.3. Stochastic exponentials and logarithms. If X is a C—valued semimartingale, then the
stochastic exponential &(X) of X is given by the formula (see [11, Théoréme 1])

éa(X) — eX—XO_%[va}C He_AXS(l —|— AXS) (24)
s<-
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In order to handle non-equivalent changes of measures, we extend the definition of stochas-
tic logarithm (see [18, II.8.3]) to processes that can hit zero. To this end, for a C—valued
semimartingale X define the stopping times®

TX:inf{tZO:inHXS]:O}; (2.5)
s<t
X = ™ limgprx Xy =0 (2.6)
00, limy, x X3 # 0
Here 75X is the first time the running infimum of |X| reaches zero continuously. Let us now

additionally assume that X is absorbed in zero if it ever hits zero. The stochastic logarithm
L(X) of X is then given by

1
L(X)= Il{x,;éo} «X  on[0,7N
where 1{);7;#0} is defined to be zero on the set {X;_ = 0}, for all ¢ > 0; see also Larsson and
Ruf [26].

2.4. Further details about predictable functions. For this subsection, fix some n € N.
For two predictable functions ¢ : Q™ — C" and v : Q" — C we shall write 1(£) to denote the
function (w,t,z) — ¥P(w,t,&(w,t,x)) with the convention ¥ (w,t,NaN) = NaN. If ¢ and £ are
predictable, then so is 1(§).

For a predictable function ¢ : Q™ — C" we shall write £ = id(¢) and ¢*) for the k-th
component of &, where k € {1,--- ,n}. We also write D¢ and D2¢ for the real derivatives of &,
i.e., D;€® is the composition of the i—th element of the gradient of §(k)(ia_1) and the lift id and
ﬁzjﬁ(’“) is the composition of the (4, j)—th element of the Hessian of §(k)(ia_1) and the lift id, for
i,j€{1,---,2m}. Note that D¢ has dimension n x (2m), D2¢ has dimension n x (2m) x (2m),
and the domains of 155, D2£ equal that of £, i.e., Q™. If € is analytic at a point, say 0, then we
also write DE(0) and D2€(0) for the corresponding derivatives.

We want to allow for predictable functions such as £ = log(1 + id) whose effective domain is
not the entire C. To this end, we say that

“a predictable function £ is compatible with X if £(AX) is finite-valued, P-almost surely.”

2.5. Semimartingale representation. Often it will be useful to rely on representing a semi-
martingale with respect to another one. Such representations are worked out in Cerny and Ruf
[8]. Throughout this subsection let X denote an m-dimensional semimartingale.

The following class 4 of predictable functions enjoys closedness with respect to common op-
erations and a certain universality. A more general definition is possible (see [8, Definition 3.2]),
but for our purposes, this universal class will suffice.

Definition 2.2 ([8], Definition 3.4). Let ™ denote the set of predictable functions ¢ : QT
such that the following properties hold, P—almost surely.

(1) &(0) =0, for all t > 0.

(2) x> &(x) is twice real-differentiable at zero, for all ¢t > 0.

(3) DE(0) and D2¢(0) are locally bounded.

(4) There is a predictable locally bounded process K > 0 such that

qup [6@) = DEO)id()
Klz|<1 ||

1,40 is locally bounded.

3Since we have not assumed the filtration to be complete, the Debut theorem may not be applied. Hence,
7% and 7% themselves might not be stopping times. However, there always exists a stopping time almost surely
equal to 7% and a predictable time almost surely equal to 7.5, respectively. Without loss of generality, we shall
assume to work with such stopping times.
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We write U = J,, ey U". i

Definition 2.3 ([8], Definition 3.8). For a predictable function £ € i compatible with X we
use the notation

€oX = DE(0)+ X + %fﬁg(()) (X X]°+ (€ - De(0)ia) « . 0

The following properties of semimartingale representations are worth pointing out.

o If £ € 81 is analytic or if X is real-valued, then we may omit the hats on top of D, D?,
X, and id in the previous two definitions.
e Using the notation of Proposition 2.1, we always have

A(oX)=£(AX); (oX)T=(oX®  ((oX)P =¢oXP (2.7)

e For sufficiently smooth £ : R — R, the partial sums Y, o & (X — X=1) converge in
ucp to £ o X as the time partition (¢,)nen becomes finer; see Emery [13, Théoréme 2a].

Example 2.4 ([8], Proposition 3.13(3)). We have id;, id;id; € ¢!, for all 4, j € {1,...,m}, with
X0 = x{V +id; o X;

[X@ xU] = (id;id;) o X. O

Proposition 2.5 ([8], Proposition 3.13(6)). Let Y be a predictable semimartingale of finite

variation. Consider some & € 8k compatible with [X Y|" and assume £(0,-) = 0. Then &(-, AY)
is in I and compatible with X. Furthermore,

Eo(X,)Y)=¢(-,AY) o X.
Proposition 2.6 (Adapted from [8], Proposition 3.14). Let ¢ be a locally bounded C**™ —valued
predictable process. Then (id € U and
CoX = (¢id) o X.
Proposition 2.7 ([8], Proposition 3.15). Let U C C™ be an open set such that X_, X € U

and let f : U — C" be twice continuously real-differentiable. Then the predictable function
X Q" - T defined by

X_ — f(X_ X
é-f,X(x): f( +I) f( )a +‘T€u’ $€(Cm,
NaN, X_+zx¢U
belongs to U™ and is compatible with X. Moreover,
F(X) = f(Xo) + €M 0 X. O

Theorem 2.8 ([8], Theorem 3.17). The class i is closed under (dimensionally correct) compo-
sition, i.e., if € € U™ and 1) : Q" — C is another predictable function with 1 € i then ¥(€) € 4.
Furthermore, if £ € 3L is compatible with X and ¢ € $ is compatible with £ o X, then (&) is
compatible with X and

Po(§oX)=1y(£)oX.
Proposition 2.9 ([8], Proposition 4.1). Assume m > 2. If AX(?) # —1 then

) (1)),

& (X®@) 1+id,

Next assume instead that X(,2) £ 0, xX@ £ 0, XD does not go to zero continuously, and xX®
is absorbed in zero if it ever hits zero. Furthermore, let T be the first time X = 0. Then

XM L+idy 1) @)Y
c<m> - <1+id2 —1>o(£(X ), £(X)7).
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Proposition 2.10 ([8], Proposition 4.2). We have
L(eX) = (4 —1)oX; (2.8)
1E(X)| =& ((J]1+id| = 1) 0 X).
If AX # —1, then
£(X) = elosl+id)oX, (2.10)
log|&(X)| =log|l +id| o X,
where log denotes the principal value logarithm.

Proposition 2.11 (Adapted from [8], Proposition 4.3). Consider a C-valued semimartingale
X and a € C. Ifa € C\ (0,00), assume furthermore AX # —1. We then have

|E(X)|* =& (|1 +id]* —1) 0 X). (2.11)
Recall the notion of a truncated process X [h] from (2.3).

Proposition 2.12 ([8], Proposition 5.6). Fiz £ € 8 compatible with X and let h (resp., g) be
a truncation function for X (resp., £ 0 X ). Then the following terms are well defined and the
predictable compensator of (€ 0 X)[g] is given by

BNl = He(0)« BXM 4 %ng(()) o [X, X+ (g(§) - Dg(ow}) « U~
If € is analytic at 0, (P x AX)—almost everywhere, the following terms are well defined and
Bl = Dg(0) « BXW 4 L D2E(0) +[X, X+ (9(€) — DEO)R) # ¥,

Remark 2.13 ([8], Remark 5.7). Fix & € 4 compatible with X. Recall that in the notation of
Proposition 2.1, (2.7) gives

£oX =£o0 X% 4 g0 XIP,
Suppose now £ o X is special. One then has

BéoX _ pggoXa° + BfOXdp.

Since the drift of £ o X9 has a simple form given next, in practice Proposition 2.12 is only used
with X = X9 to obtain B¢°X". Indeed, the drift at predictable jumps times is given by

BEXT = N B [ (AX )| Lo
T€Tx

Here, Tx denotes a countable family of stopping times that exhausts the jumps of X9P. For
each X, there are many ways to choose Tx; it is sufficient to fix an arbitrary such family for
each X. O

Corollary 2.14 ([8], Corollary 5.8). Let Y = Yy + £ o X for some & € i compatible with X .
Then the following holds.

Y

VY is the push-forward measure of v~ under &, that is, 1 x v = P(§) * v

for all non-negative bounded predictable functions ¢ with 1(0) = 0.

Proposition 2.15. If X has independent increments and if € € U is compatible with X and
deterministic, then £ o X, too, has independent increments. Moreover, if X is a Lévy process
and if £ € U is compatible, deterministic, and time-constant, then £ o X is also a Lévy process.

Proof. By [18, 11.4.15-19], X has independent increments (respectively, is a Lévy process) if
and only if its characteristics are deterministic (respectively, the characteristics are absolutely
continuous with respect to time and their Radon-Nikodym derivatives with respect to time are
time-constant) relative to a truncation function for X. The claim now follows from Proposi-

tion 2.12 and Corollary 2.14. O
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3. MULTIPLICATIVE COMPENSATOR

In many applications one seeks, for a given C—valued semimartingale Z, a predictable process

of finite variation K# that starts at 1 and makes % a local martingale. For example, changes
Z
remains in zero. Another application arises when K% happens to be deterministic and % to
be a martingale. Then the multiplicative compensator is a device for computing expectations,

namely,

of measure are frequently of the form where Z is a real-valued process that after hitting zero

El—| =K t>0.
[Zo} b .

We will see in Section 4 that the Lévy-Khintchin formula is but a special case of such setup.

Although we have in mind a situation where Z has further structure, it transpires that one
may express KZ directly in terms of B£(4). This result (Theorem 3.1) is of independent interest
because it simplifies and generalizes existing characterizations of multiplicative compensators;
see Jacod and Shiryaev [18, I1.8.21], Kallsen and Shiryaev [22, Theorem 2.19], and also Lépingle
and Mémin [28, Proposition II.1]. Recall from (2.6) that 77 is the first time Z reaches zero
continuously.

Theorem 3.1 (Multiplicative compensator). Let Z be a C-valued semimartingale absorbed in
zero if it ever hits zero. Assume that L£(Z) is special on [0,77]. Assume next that
ABF2) £ 1 on [0,77]. (3.1)
Then the following statements hold.
(1) We have &(BX?)) £ 0 on [0,77] and the process M = Wlﬂoﬂzﬂ is a local mar-
tingale on [0, 77].
(2) If M is special (e.g., if Z is special and liminfy, 7 |&(BXD),| > 0 on {t7 < o0}), then
M is a local martingale on the whole positive real line.

Example 3.8 below illustrates how M can fail to be a local martingale on the whole positive
real line without the assumptions of (2).

Proof of Theorem 3.1. From (3.1) one obtains £(&(B*%))) = B*(%) on [0, 7Z[. Proposition 2.9
yields

o Z - ldl - ldQ ﬁ(Z) A
L(M)_c<g(B£(Z))> =T o (£(2),B*D)  on[0,77]. (3.2)

Consequently, Proposition 2.12 yields

BEM) — pLZ) _ BE(Z) (idl L R id2) 5 (£(2).B52)
1+ 1ido

Q3 —idiidy (g7 pey _ (ABE(#)? _idABE®) D0 on [0 sl
 14ide B 1+ ABL(Z) B e
which proves M is a local martingale on [0, 7Z].

Assume now that lim inf, » |&(BX2),| > 0on {77 < c0}. As éa(Bc(Z))l[[oﬁcz[[ is predictable,
we may assume by localization that |é"(B£(Z))1[0’TCz[[] > ¢ for some 0 > 0; see [27, Lemma 3.2].
If additionally Z is special, then clearly so is M. Let us now assume that M is special. Then
we may assume that M is uniformly integrable. Let now (7x)ren denote a non-decreasing
sequence of stopping times such that M™ is a uniformly integrable martingale and such that
limppoo 71 = TCZ . With these localizations in place, we now fix s,f > 0 with s < ¢ and some
C € %, and observe that

_ . Tk _ . Tk _ . Tk _ . Tk _
E[M;1¢] =E L?Tlglo M; 10} = %1%10 E[M*1c] = lllTrgloE [M*1c] =E LllTIglo M: 10} = E[M;1¢],

proving the claim. O



Remark 3.2. The previous theorem shows that M = Wlﬂofﬂ is a local martingale pro-

vided (3.1) holds, Z is special, and lim inf,, z &(B*2)), > 0. Conversely Z = Mé"(Bﬁ(Z))l[[O’Tcz[[
yields the multiplicative decomposition of the semimartingale Z; see Jacod [17] and Mémin
[29]. O

When Z is R—valued, condition (3.1) makes sure that the expected percentage change in Z
is never equal to —100%. The next remark deals with the case where Re TZ, is strictly positive.
Note that Z and Z_ themselves may be C—valued.

Remark 3.3. If Z_ # 0 and Rez% > 0, then (3.1) is automatically satisfied. Indeed, for any
predictable time 7 we have

0<E, [Re ZZT } =1+ ReABA?),

Hence, Re AB*) > —1 and (3.1) holds. O

Remark 3.4. When Z can jump to zero, its multiplicative compensator on the interval [7%, 77

is not defined uniquely. One may obtain another multiplicative compensator of Z by replacing
& (BL(Z)) in Theorem 3.1 with another special semimartingale that is indistinguishable from
&(B*%)) on the interval [0,74] and satisfies a condition analogous to (3.1). This insight is
used in the statement of Theorem 4.1 and again in Corollary 5.10. U

The next proposition contains some auxiliary results concerning the drift of the stochastic
logarithm. These results contain sufficient conditions for the statements in Theorem 3.1 to hold.

Proposition 3.5 (Drift of stochastic logarithm). Let Z be a C-valued semimartingale absorbed
in zero if it ever hits zero. If Z is special then L(Z) is special on [0,7Z[. Moreover, if (3.1)
holds then

{liminf 6(BED)| > o} - {liminf <Rer(Z>qC +3 log |1+ AB§<Z>|) > —oo} .

T W <t

As Example 3.8 below shows, £(Z) being special on [0, 7] in conjunction with (3.1) does
not guarantee that Z is special (on the whole positive real line).

Proof of Proposition 3.5. Observe that the process Z%l{Zfﬂ)} is locally bounded on [0, 77].
Hence, if BZ exists, then, with the help of Proposition 2.12, so does

1
B =~y sp+BY o [0.7]]

This yields the first part of the statement.
Assume now that (3.1) holds. Then & = log |1 + id| is in 4l and compatible with B~(%). We
conclude from Proposition 2.10 that

yielding the statement. U

Example 3.6 (Multiplicative compensator of an exponential process). Assume that Z is a
special semimartingale of the form Z = e%°X for some C™ valued semimartingale X and com-
patible & € 4. Assume for simplicity that £ is analytic at 0. Thanks to Proposition 2.10 and
Theorem 2.8 we have £(Z) = (e¢ — 1) o X. Proposition 2.12 now yields for h = id1jjq<; that

BFZ) = B0oX = pe(0) o BXIM % (D%(0) + DE(0) DE(D) ) » [X, X]° 53
+ (ef = 1= DE(O)R) ™. .
10



This also gives

ABED = [ (50 1) X () da) £ -1
Theorem 3.1 now yields & (B (e*=1)X) £ 0 and
efoX

W is a local martingale.

Consider now the special case of the above with & = (id for some locally bounded ¢.* By
Proposition 2.6, we have ({id) o X = { « X while (3.3) simplifies to

BAZ) — B -1eX _ ¢, XTI 4 %CTC o[X, X 4 (59— 1= Ch) 0¥
Hence, by (2.4) and Remark 2.13 the multiplicative compensator of Z equals

& (BH @) = exp (c - BXIT 4 %Hc o[X, X) 4 (59— 1= Ch) + uX“C)

X H E-_ [eCTAXT} 1[[7700[[.
TETx

Kallsen and Shiryaev [22, Theorem 2.19] obtain (3.4) for real-valued ¢ and X. In their work,
the process log (5 (BL(QXP(C'X )))) is called the exponential compensator of ( « X. O

(3.4)

Example 3.7 (Multiplicative compensator of a power of a stochastic exponential). Consider a

C—valued semimartingale X and a € C. Assume ABLa=——1*#" £ 1 If o € C \ (0, 00), assume
furthermore AX # —1. Finally, assume that (|1 +id|* — 1) o X is special. Then,

(g)(B(\1+id|°‘—1)oX) >0
and
€ (X"
&(B1+Hd[*—1)oX)
This follows from Proposition 2.11, Theorem 3.1, and the composition rule in Theorem 2.8.
A special case for o < 0 and a real-valued local martingale X with -1+ < AX < 1/6 for

some 0 € (0,1] appears in Kazi-Tani et al. [25, Lemma A.5]. A further special case, this time
with « > 0, appears in Lépingle and Mémin [28, Proposition 11.3]. O

is a local martingale.

Example 3.8 (£(Z) special on [0, 77 but Z not special on the whole time line). Fix p € (0,e71)
and consider the function

f(t) =—log(p—1t)>1, 0<t<p.

Here p is the explosion time (to c0) of f. Observe that f satisfies f/(t) = e/ for all t € [0, p).

Let now V denote a non-negative continuous local martingale with E[V;] = 1, V; > % for

all t € [0,p), and V; = 0 for all ¢ > p. Such a local martingale can be obtained, for example,
by appropriately time-changing a Brownian motion started at one. Moreover, let N denote an
independent Poisson process with unit intensity. Denote the stochastic process (f(t)):e[o,p) by
f(-) and define next the non-negative process

Z=V& (/1 e N),

which is a semimartingale as the product of a continuous local martingale and a process of finite
variation. Then 77 = 77 = p and £(Z) is special on [0, 7Z[ with

BEZ) — gefOeN _ / ol Dt = f() = f(0) on [0, 7Z].
0

AThe following results also hold for general ¢ € L(X). However, for simplicity, in this paper we only discuss
representations using the universal class 4, which requires the local boundedness of (. For more details on
generalizations, see the concluding Section 6.

11



Hence &(B*?)) = e/()=1(0) on [0, 74 and Theorem 3.1 yields
M = fO-FfOy g (ef(~) . N) 1j0,.7
is a local martingale on [0, 77 [ with jumps
AM =e/OVE (SO eN) ANT 7.
Hence, for each ¢ > 0 one has

2 [P
id? « ! <id? ) <O T (14 /0AN,) / V2dt < oo
0<t<p B

and M is special by (2.2). However,

)
AZ 2 ef(.)VAN]-[[O,TCZ[[ 2 %AN]'[[O,TCZ[[
yields
p of(®) Pf(t) o 1
id? A lid]) x vZ =id s vZ > —dt:/ dt:/ ~du = oo; 3.5
e N O R A O o

thus Z is not special, again by (2.2).

This now shows that requiring M to be special is strictly weaker than requiring Z to be
special. This also gives an example where £(Z) is special on [0,7Z[ but Z is not special (on
the whole positive line).

We now modify this example slightly to illustrate that M in Theorem 3.1 is not always a
local martingale (on the whole positive line) if it is not required to be special a priori. To see
this, take N to be a compound Poisson process with jumps of size £1 with equal intensity, still
independent of V. Now B*(%) = 0 on [0, 7Z[, hence M = Z. However, as in (3.5), the jumps
of M = Z are not locally integrable, hence M cannot be a local martingale. O

4. COMPENSATORS OF PROCESSES WITH INDEPENDENT INCREMENTS

The following generalization of the Lévy-Khintchin formula in Theorem 4.1(2) seems to be
missing in the literature. Kallsen and Muhle-Karbe [21, Proposition 3.12] prove a special case of
Theorem 4.1(3), assuming strict positivity (and real-valuedness) of the stochastic exponential,
which allows an application of a measure change technique in their proof. In the same context,
Cont and Tankov [10, Proposition 8.23] do not require positivity but only treat the special case
of Lévy processes.

Theorem 4.1 (Stochastic exponential of a process with independent increments). Let Y denote
a C—valued semimartingale with independent increments and define the deterministic time

7=min{t >0:P[AY; = -1] =1}.
Then the following statements hold.
(1) For T > 0 with T < 7, YT is special if and only if E[|&(Y)r|] < co. Moreover, in this
case we have
E[6(Y)]=&BY):, 0<t<T. (4.1)

(2) Y is special on [0, 7] if and only if E[|&(Y):|] < oo for allt > 0. Moreover, in this case
we have

E[¢(Y)] = B )ilp-(t),  t>0.
(3) &(Y) is a local martingale if and only if it is a martingale.

The proof of the theorem relies on the following lemma.

Lemma 4.2. Let Y denote a C—valued semimartingale with independent increments such that
PI[AY; = —1] < 1 for allt > 0. Then P[&(Y )¢ # 0] > 0 for all t > 0.
12



Proof. Set U = —1jq—_1 oY . Then U is special with ABY > —1. Theorem 3.1 and Remark 3.4
now yield that M = ;(TPU))
W, we have E[M;] = 1 for all ¢+ > 0. This yields E[&(U);] = E[M;]&(BY); = &(BY); > 0 for

all t > 0. Since {&(Y): # 0} = {&(U): > 0} for all ¢ > 0, this yields the statement. O

is a local martingale. Since M is bounded by the deterministic process

Proof of Theorem 4.1. We first prove the assertion in (1). To this end, fix 7" > 0 with 7" < 7.
Define next the process

V=(14id|-1)o YT, (4.2)

By Proposition 2.11, we have |&(YT)| = &(V) and by Proposition 2.15, V has independent
increments. Moreover, by (2.2) and Corollary 2.14 we have that Y is special if and only if V' is
special. Hence it suffices to argue the equivalence assertion with Y7 replaced by V.

Assume now that V is special. By assumption we also have ABY > —1. Thanks to Theo-
£(V)
Z(BY)

its expectation is bounded by one. By [18, 11.4.15-19], &(B") is deterministic, we thus have
E[€(V)r] < &(BY)r < 0o, concluding the proof of the first implication.

Now assume that E[&(V)r] < oo. First, fix t € [0,7] and note that by Lemma 4.2
EWV)p = V) &(V — VY is the product of two independent random variables, none of
which is identically zero. Thus we get

E[£(V)r] = E[(V)]E[E(V = V)],
which then yields 0 < E[&(V)¢] < co. Next, define the process
E[ga/)u] u>0
Fix now s,t > 0 with s < t and C € .%;. Then again by the independence of increments we
have

rem 3.1 and Remark 3.4, the process is a non-negative local martingale; in particular,

EV =V,
E[&(V —V3)]
hence N is a martingale. Denote by o the first time V' jumps by —1. The process (Wy)u>0,
given by

E[Ni1¢] = E[Ns1¢]E [ } = E[Ns1c],

Wy =E[E(V)ull{uco) + Liuzo) = ggvv)ul{u@} + 1uz0}
u

is a semimartingale uniformly bounded on compacts. In turn, this shows that & (V) = NW is
special as the product of a martingale and a uniformly bounded on compacts semimartingale.
Proposition 3.5 now yields V' is special, proving the reverse implication in (1). We also note that
E[€(V)y] = &(BY), on paths where u < ¢ by Theorem 3.1, hence for all u > 0 by Lemma 4.2.

Let us now consider the final assertion in (1), namely (4.1), provided Y7 is special. We have
already established that then also 0 < E[|&(Y)¢|] < oo for all ¢ € [0,7]. Consider now the time
p=inf{t € [0,T]: AB} = —1}. Then p is deterministic. Independence of increments yields

E[&(Y)] = E[€(Y),-]E[l + AY,JE[E(Y —Y*),] =0 = &(BY),, tep, Tl
therefore we have E[&(Y)] = &(BY); for all t € [p, T]. Thus, without loss of generality, we may

now just assume that p = oo; in particular, that ABY # —1 on [0,7]. Then Theorem 3.1 and

Remark 3.4 yield that ;EgY)) is a local martingale. Its absolute value is bounded by

&) &(BY)
&(BY) |€(BY)]
the product of a non-negative martingale and a deterministic semimartingale. This shows that
EY) . . . o )
£(BY) itself is a martingale, yielding the assertion.

For the statement in (2) note that &(Y) = 0 on [7,00[. Also Y is special on [0, 7[ if and
only if YT is special for all T € [0,7). Then the statement follows from the assertion in (1).
13




Finally, let us argue (3) and let us assume that &(Y) is a local martingale. We may assume
that Y is constant after its first jump by —1, i.e., Y = Y7 with o = inf{t > 0 : AY; = —1}.
Then Y is a local martingale; hence E;,_[AY;] = 0 for all ¢ > 0 by [18, 1.2.31], yielding 7 = oc.

As above, the local martingale &(Y") is again bounded in absolute value by ;Egv))é" (BY), the

product of a non-negative martingale and a deterministic semimartingale. This yields that &(Y")
is a martingale, concluding the proof. U

Corollary 4.3 (Lévy-Khintchin formula). Fiz v € R™? and assume X is an R -valued semi-
martingale with independent increments starting at 0. Then
E[eiuXt] =& (B(ei“id—l)oX) 7 t> 0.
t

Furthermore, if h is a truncation function for X and if X is a Lévy process with drift rate b

(relative to h) and jump measure FX one obtains

, 1 .
E[e™t] = exp (iubx[h]t - 5u (X, X]¢u’ + t/d(ewx —-1- zuh(x))FX(dx)> ) t>0.
R

Proof. Proposition 2.10 yields e*X = & ((ei“id — 1) oX ) Since the jumps of e®*X are bounded,

an application of Theorem 4.1(2) yields the first statement. An application of Proposition 2.12
then concludes. (]

Example 4.4 (Mellin transform of a signed stochastic exponential of an R—valued process with
independent increments). Fix o € C and for j € {1,2} let f;,& : R — C denote the functions
fj = f](l —|- ld) — 1 With

J1 = [id|* Liqz0; fo = [id|* (Lias0 — Lid<o) -
The functions &; and & are now extended to € in the natural way by considering them to
be constant in t, w, and in the imaginary component. Note that &,& € U, Moreover,

from Propositions 2.6 and 2.7, and Theorem 2.8 we obtain, for j € {1,2} and any R-valued
semimartingale Y,

L)) = W CFEY)
- W (5 (E)_(1+id)) — f; (E(Y)_)) oY)
=& lisrvy_ 201 0Y,

(4.3)

yielding
fi(&(Y)) =& oY),
which is a further generalization of (2.9) for real-valued X.°

Next, assume that §; o Y is special for j € {1,2}; for example, this holds when Rea = 0
because the jumps of £; oY are then bounded. Then, for j € {1,2}, Proposition 2.12 yields

BV = oBYIN 4 %(a — DY, Y]+ (& — ah) =7, (4.4)

°In this setting, £ 0Y is defined for any C—valued semimartingale Y but the value of {;0Y is insensitive to the
imaginary part of Y by construction, so Y is real-valued for all practical purposes. Observe that one can extend
the functions f1 and f2 from R to C differently to get some action on the imaginary part of Y. For example, one
could set, on C,

f1 = |id|*1Re 1a0; f2 = [id|* (1Reid>0 — 1Reid<0)
keep the same definition of &; and &2, and then extend to € by making these functions constant in ¢ and w. In
such case, the first two equalities in (4.3) remain valid for arbitrary C—valued Y and the left-hand side is sensitive
to ImY', but the third equality in (4.3) still only works for real-valued Y. Hence, in the context of this example,
it is reasonable to proceed with computations in (4.4) that are specialized to real-valued Y and no longer hold
for arbitrary C—valued Y.
14



where we may take h = id1jq<;. Assume now that Y has independent increments. An appli-
cation of Theorem 4.1(2) together with (2.4) and Remark 2.13 yields for j € {1,2} that

ELf (6] = &(BYY), =exp (B ) [[ELLQ+AY)], 20, (45)

s<t
where from (4.4) one has
C C ]. C
B&oYY = o BYIN 4 §a(a ~ DY, Y]+ (& — ah) s 7™,

From now on we shall fix ¢ > 0 and acknowledge the explicit dependence on « by writing
fi(+;a)and &(-;a) for j € {1,2}. Next define

g+(a) =E [|5(Y)t|a1{£(5/)t>o}] ; g—(a)=E [\5(Y)t|a1{g(3f)t<o}] :
From (4.5) we then have
291 (a) = E[fi(E(Y)5; )] + E[fo (E(Y)i; )] = £(BRIEDY), 4 £(BROGAY) - (4.6)
and similarly,
29-(2) = E[f1 (6(Y)i:0)] — E[f2 (6(Y); )] = £(BUIEIY), — g (Blde)r)
Next, define the following two conditional expectations:

HPEY) >0>0: ¢y (u) =E[|E)"

. @)

EY) > 0} , u € R;
fPEY) <0 >0: ¢ (u) =E[|E)"

<§"(Y)t<0] , ueR.

We can then compute

g+ (i) _9-
o= s = uer
provided ¢4+(0) = P[&(Y): > 0] > 0 and g_(0) = P[&(Y); < 0] > 0. We have now obtained
the Fourier transform of the the random variable log|&(Y);| conditional on &(Y); = 0. One is
thus able to characterize the distribution of &(Y); via Mellin/Fourier inversion methods; see
for example Galambos and Simonelli [14].

Observe also that although the distribution of |&(Y)| conditional on &(Y"); = 0 corresponds
to a strictly positive random variable, it cannot be thought of as a natural exponential of a
process with independent increments (except in the trivial case when &(Y); > 0 or &(Y); < 0,
P—almost surely). Hence the characteristic functions ¢4 and ¢_ cannot be obtained from
the classical Lévy-Khintchin formula or from its generalization for processes with independent
increments in [21, Proposition 3.12]. O

The next example illustrates the novelty of Example 4.4 in a financial context. Throughout,
b% denotes the drift rate of a special Lévy process Z.

Example 4.5. Let X be a Lévy process with characteristics (X0 = p, 02,11 = A®(0,4?)),
where ®(-,-) denotes the cumulative normal distribution with a given mean and variance, re-
spectively. Later we will use the specific numerical values y =0.2, 0 =0.2, A=1, and v = 0.1,
which are broadly consistent with the empirical distribution of the logarithmic returns of a
well-performing stock. For simplicity we will use a zero risk-free rate.

Financial economics is concerned with optimal portfolio allocation over a period of time, e.g.,
T =1 year. Here we will consider optimality in the sense of mean—variance preferences. It is
known that the optimal wealth process in this setting is given by 1 — &(—a(e'd — 1) 0 X) where

X 622 4 A7/ 1)

a = b(eid—l)QoX - o2 + )\(6272 _ 2672/2 + 1)

~ 4.48,;

see, for example, Proposition 3.6, Lemma 3.7, Corollary 3.20, and Proposition 3.28 in éerny
and Kallsen [5]. Note that a is the ratio of first and second moment of the arithmetic return of
the stock.
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FIGURE 4.1. Distribution of a signed stochastic exponential

In practice, it is useful to know the distribution of the optimal terminal wealth
1—&(—a(ed —1) o X)r.

If the stochastic exponential & (—a(e'd—1)oX) is strictly positive, which is true in the empirically
less important case —1 < a < 0, this can be done by applying the Lévy-Khintchin formula to
the Lévy process
log &(—a(e? — 1) 0 X) = log(1 — a(e'd — 1)) 0 X
to obtain the characteristic function of the logarithm. In the commonly encountered situation
with a > 0, the model under investigation (and indeed all named Lévy models used in finance)
leads to a signed stochastic exponential. The Lévy—Khintchin formula is thus of no help but
Example 4.4 offers a way out.
Keeping the definitions of &1, &2, g+, and ¢g_ from Example 4.4, we start by evaluating

péridia)oY _ pér(—a(eld—1)a)oX _ Ii(a)

p2lidie)eY — pa(—a(e=1ie)oX — 1, (0) — 215(a),

where

Y = —a(ed—1)oX;

hla) = —aa (4 51 +a)0?) + ja%(ar + [ (1= ale” = 1) Lyer 1y ~ D)

Be) = [ 11=a(e = D" Ly 1yall(do).
Next we obtain from (4.6) and (4.7)

— ol1(@)T 14 e (7

1—e
g+(a) 2 ) g-(a) = el

Observe that without fixed jump times one has g4 (0) > 0 and with a > 0 also g_(0) > 0. In
our setting we obtain g_(0) + ¢g4(0) = 1 with g_(0) ~ 2.2% representing the probability that
the stochastic exponential is negative in T' = 1 year. The conditional characteristic functions
are clearly integrable, hence the standard density inversion formula can be applied. Figure 4.1
illustrates the subdensities of the logarithm of the negative and the positive part of the signed
stochastic exponential &(—a(e'? — 1) o X)p. Figure 4.2 shows the resulting distribution of the
terminal wealth 1 — &(—a(e!! — 1) o X)7 on the one-year horizon. O

The next example illustrates how, in a general semimartingale model, the drift computation
can be performed separately on predictable jump times.
16



25¢F

05

-25 -2 -15 -1 -05 0 0.5 1 15
Wealth

FIGURE 4.2. Density of the terminal wealth distribution 1—&(—a(e'd —1)0X)7.

Example 4.6 (Multiplicative compensator calculation with predictable times of jumps). Let
V' denote a compound Poisson process with rate # whose jumps have cumulative distribution
function F. Denote the jump times of V' by (px)ren and set pg = 0. Let L denote an independent
special Lévy process with drift rate u, variance rate o2, and jump measure Il and set X = L+V.
Next, let § denote the smallest right-continuous filtration such that X is adapted and py is
F,,_,—measurable, for each ¥ € N. Then X is an §semimartingale and p is §-predictable,
for each k£ € N. Moreover, its ‘continuous-time component’ is precisely the Lévy process; i.e.,
X9 = L. The ‘discrete times’ lie in the set of predictable times of jumps, i.e., Tx = Upen{pr}-

We now interpret X as the logarithmic price of an asset. Maximization of exponential utility
calls for the multiplicative compensator of the utility process Z = e % where R = L(e¥) is
the cumulative yield of 1$ investment in asset with price eX. Due to the presence of jumps at
predictable times, the optimal investment strategy A\ will no longer be a constant dollar amount
at all times, instead we will have one constant amount, say Az, on the ‘continuous’ times, i.e.,
outside Tx, and a different constant amount, say Ay, on the ‘discrete’ time set Tx.

By Proposition 2.10 and Theorem 2.8 we obtain

L(Z) = (e_)‘id — 1) oR= (e_A(eid_l) — 1) o0X.

Observe that L£(Z)9 = (e_)‘(eid_l) - 1) 0 X9 is a Lévy process by Proposition 2.15. For its

drift rate (9™ we obtain by Proposition 2.12 that
o 2\
O = App+ TE (AL - 1) +/
2 R
This yields by (2.4) and Remark 2.13 that
L£(2)9° _ AXy_
§(BED), = T B [ (D] 1y
TETx

c N
R

where N; counts all predictable times of jumps in the interval [0, ¢].
Let us now fix a time horizon 7' > 0. By conditioning on N and applying Theorem 4.1(2) we
observe that E[Z7] = E[&(BX(%))7]. This yields an explicit expression for the expected utility

E[e | = E[Zr] = E [6(BFY)]

(e—AL(ex—l) 14+ Am:) TI(dz). (4.8)

_ T ene (log (fR e**v(exfl)F(dx))T) _ T ee (T N e**v(e’”*l)F(dx)A)

)
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where the drift rate (%)% is given in (4.8) and k’ = f(e!d — 1) is the cumulant function of a
Poisson variable with parameter 6. O

Example 4.7. In the setting of Example 3.6, assume that £ is deterministic. Thanks to
Theorem 4.1(2) and (2.4) we get

€[] = e (59" [TERS5), 020

s<t

where Bf (2] is obtained from (3.3). See also Jacod and Shiryaev [18, I1.4.26] for the special
case when £ is time-constant and zero in a neighborhood of zero and X is real-valued. O

5. CHANGE OF MEASURE AND ITS REPRESENTATION

We now discuss how to compute drifts after an absolutely continuous change of measure.
Since the collection of null sets of the new measure, say Q, may be larger than that of P, one
is compelled to study Q-—drifts of processes that a priori are not P-semimartingales. The next
proposition addresses this issue by offering a specific way to ‘lift’ Q-semimartingales back up
to P. Its proof is provided at the end of this section.

Proposition 5.1. Let M be a real-valued, non-negative uniformly integrable P—martingale with
My =1 and define the probability measure Q by % = M. In line with (2.5) and (2.6), define
the stopping time

M ™ limgyar My # 0
T = .
J 00, hmtTTJ\l My, =0
Let V' be a Q-semimartingale. Then VTthwf = limtTT}w Vi exists on {T}J < o0}, P-almost surely,

and
VT = V1|I07T}tl[[ + VT§{_1[T§I

7m|I
is a P-semimartingale on [0, 7M[ and Q-indistinguishable from V.

Remark 5.2. In view of Proposition 5.1, it entails no loss of generality to assume that a given Q—
semimartingale is also a P-semimartingale, at least on the open interval [0, TCM [, where M is the
uniformly integrable martingale denoting the change of measure. This observation is relevant
for Proposition 5.3, Theorem 5.4, and Corollaries 5.7, 5.9, and 5.10 below. Example 5.12(i)
yields an instance where a Q—semimartingale is explicitly lifted to a P—semimartingale. U

We now proceed to formulate a relevant version of Girsanov’s theorem. For a stopping time p
and a predictable time o, we say that process X is a semimartingale (resp., a local martingale;
special) on [0, p] N[0, o[ if X” is a semimartingale (resp., a local martingale; special) on [0, o.

Proposition 5.3 (Girsanov’s theorem). Let M be a real-valued, non-negative uniformly inte-
grable P-martingale with Mo = 1 and define the probability measure Q by % = My,. For a
P-semimartingale V', the following are equivalent.
(i) V is Q-special.
(i) VM is P-special on [0, 7M].
(iii) V + [V, L(M)] is P-special on [0, 7] N [0, 7M].

If either condition holds then the compensators corresponding to (i) and (iii) satisfy
B = BVHIVEQADL — op [0, 7] N [0, 7M. (5.1)

Furthermore, the following are equivalent.

(i) V is a Q-local martingale.
(i) VM is a P-local martingale on [0, TM].
(iii’) V + [V, L(M)] is a P-local martingale on [0,7M] N[0, 7M].
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Proof. We will first argue the equivalence of (i) and (ii) (and (i’) and (ii’), respectively) and
then the equivalence of (ii) and (iii) (and (ii’) and (iii’), respectively).

Assume first that (i) holds, i.e., V — BY is a local Q-martingale. As in [18, I11.3.8] we then
have (V — BY)M is a local P-martingale on [0,72[. Since By M is P-special on [0, 7], we
get (ii). Assume now that (ii) holds, i.e., VM — BVM is a local P-martingale on [0,7[. Then

ﬁ(VM —-BVM) =V — B;[M is a local Q-martingale. Since B]‘\//[M is Q-special (as the product

of the locally bounded process BYM and the Q-local martingale ﬁ), so is V, which yields (i).
Note that the same arguments also yield the equivalence of (i’) and (ii’).

We now argue the equivalence of (ii) and (iii). Since il{ M_>0} is locally bounded on

[0, 7M1, (ii) is equivalent to (il{M7>o})o(VM) being P-special on [0, 7 [. Using integration
by parts we get

1 V_
<1{M>0}) (VM) = (1{M>0}> M+ 1y sop oV A+ [T sop o Vi L(M)]
V_
- <M1{M>O}> M4V 4+ [V.LOM)]  on [0,7M] A0, 7M.

As (%1{ M_>o0}) * M is a local P-martingale on [0, 7/ [, we obtain the equivalence of (ii) and
(iii), and also of (ii’) and (iii’), respectively.

Assume now that (i)—(iii) hold. Using (i’) and (iii’) with V' replaced by V — BY and noting
that [Bg, £(M)] is a P-local martingale on [0,72[, we now get (5.1). O
Theorem 5.4 (Drift after a change of measure). Let Z be a semimartingale with Zy = 1,
L(Z) special on [0,77], and AB*%) % —1 on [0,77]. Assume that M = Wlﬂoﬂzﬂ is a

real-valued, non-negative uniformly integrable martingale and define the probability measure Q

by % = My,. For a P-semimartingale V, the following are equivalent.

(i) V is Q-special.
(ii) VW is P—special on [0, 7Z].
(iii) V + [V, L(Z)] is P-special on [0,74] N [0, 7Z[.
If one of these conditions holds, then one has
BY = HAlBC(Z) cBYHVED)  on 10, 77] A [0, 72 (5.2)
Furthermore, the following are equivalent.

(i) V is a Q-local martingale.
(i) VW is a P-local martingale on [0, 77].

(iii") V + [V, L(2)] is a P-local martingale on [0,74] N[0, 7Z][.
Proof. Example 2.4, Theorem 2.8, (3.2), Proposition 2.5, and Proposition 2.6 give, in this order,

ldl(l + ldg) o

V + [V, L(M)] = idy (1 +ida) o (V, L(M)) = (v, £(2), BW))

1—|-id3
id; (1+id 1
= T A © 62 = g gV + LD on 077 63

By Proposition 5.3, (i) is equivalent to (ii), which in turn is equivalent to V' + [V, L(M)] being
P-special on [0,7%] N [0,7Z[. By (5.3) and Lemma 4.2 of Shiryaev and Cherny [33], the latter
is equivalent to (iii). Proposition 5.3, identity (5.3), and Lemma 4.2 of Shiryaev and Cherny
[33] also yield (5.2). The equivalence of (i’)—(iii’) is established similarly. O

The following statement is helpful when V and £(Z) are represented in terms of some common
process X because it delivers the same result as Theorem 5.4 without requiring the joint P—
characteristics of V' and £(Z) as an input.
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Corollary 5.5. Consider Z and Q as in Theorem 5.4 and suppose there are £, € U compatible
with a P—semimartingale X such that V. =Vy+&0X on [0,7Z[ and L(Z) = o X on [0,7Z].
Then we have

: : E_[E(AX) (1 + - (AX,)
BYT _ g, gy ! 2] [0, +[.
: | : ; Er_[1+4-(AX;)] oot o 0710107
TCX
Proof. Theorems 5.4 and 2.8 yield
1 1
v_ Y opvivie@) b pe(l+e)eX Z z
BQ_l—l—ABﬁ(Z) B S ABVX B on [0, 77] N[0, 7.
The statement now follows from Remark 2.13. O

The next example illustrates the convenience of Theorem 5.4 in a financial context when
evaluating characteristic functions under a new measure. Throughout, b% denotes the drift rate
of a special Lévy process Z.

Example 5.6. Let S > 0,S_ > 0 be such that £(S) is a Lévy process. It is known from,
e.g., Bender and Niethammer [3] that under suitable conditions on the characteristics of £(S),
the absolutely continuous local martingale measure for S whose density has the smallest LI(P)
norm is obtained by setting

dQ, _ E((((1+Aid) )77 —1) 0 £(S))

dpP g(B(((H,\qid)ﬂﬁ—1)05(5))

; q>1,

T
where A; € R solves

bid((1+,\qid)+)ﬁo£(3) —0.
To price contingent claims on S under Qg, it is helpful to know the characteristic function of

log S under this measure. By Proposition 2.11, Theorem 4.1 applied under Q,, Corollary 5.5,
and Example 4.7 one obtains

Eq, [e*(loe 1o 50)] = Eq, [£(((1 +1d)" — 1) 0 £(8))]

— exp (b1 (A id)ﬂqf“oﬁ(S)T)

= exp (b(eaidfl)((1+)\q(eid*1))+)ﬁOIOgST)7 Rea = 07

where the last equality follows from (2.8) and the composition rule in Theorem 2.8. O

For completeness, we discuss the remaining two Q—characteristics of V. The second charac-
teristic remains trivially unchanged. The third characteristic can be obtained from the following
corollary. Note that [18, II1.3.17] provides an alternative expression to (5.4) below.

Corollary 5.7 (Predictable compensator under the new measure). Consider Z and Q as in
Theorem 5.4. For a P—semimartingale V', we have
142

v§ = A ﬁyv’ﬁ(m(-, dz) on [0,72] N[0, 7Z]. (5.4)
Proof. Let n denote the dimension of V; i.e., assume that V is an C"—valued process. Consider
the set G = G x Go with G7 C [0,77] N [0, 7] predictable and G a closed set in C" not con-
taining a neighbourhood of zero. Then (5.2), Example 2.4, Theorem 2.8, and Proposition 2.12
yield

1 1 N
\% _ plgoV _ o RlGoV+[1GoV,L(Z)] _ o Bl (-id1)(1+id2)o(V,L(2))
Q€)= 8" = A g B PN LG
_ 1 - ‘ V.L(Z)
= T apee * (L6 i) +id) v D)
_ : 1 +idy V.L(Z) _ Ltz v
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on [0,74] N [0,7Z[. This proves the statement. O

Remark 5.8. In the setup of Corollary 5.7, assume V = Vy + £Y o £(Z) on [0,7Z] for some
¢V € Y compatible with £(Z). Then (5.4) can be written as follows.

1+id
vy i} v _ tTld L2 Z z
vq is the push-forward measure, under {", of [+ ABED v on [0, 7] N[0, 7 .
To see this, consider first the formula (5.4) with V' = £(Z) and then apply Corollary 2.14 under
the measure Q. 0

Corollary 5.9 (Multiplicative compensator after a change of measure). Consider Z and Q as
in Theorem 5.4. Assume W is a C—valued P—semimartingale and Q—almost surely absorbed in
zero if it eve hits zero. Moreover, suppose that L(W) is special under Q on [0,7V] and

ABé(W) # —1, on [0, 7V, Q-almost surely.
Then L(W) + [L(W), L(Z)] is P-special on [0,74] N [0,7Y A 7Z[ and the multiplicative com-
pensator of W under Q is given by
&(BEZ) 4 BEW)HILW).L(Z)])

& (Bé(W)) — £ (57 on [0, 7] N[0, 7V A2

Proof. The first assertion follows from Theorem 5.4. Theorem 3.1(1) yields that & (Bé(W))

is the Q-multiplicative compensator of W on [0,7/V[. Thanks to (5.2), Proposition 2.6, and
Proposition 2.5, we have

£ (BEW)) = éa( d Bc<w>+[£<w>,£<zn)

1+ AB~Z)
idy LW)H[LW),L c
— & 2L o (BEWMHILW).L(Z)] gL(Z)
(1 +idy ( B49)
_ e ((Hldﬁldl _ 1) o (BEWHEW)£(2) BaZ)))
1+ ldQ
on [0,74] N[0, 7V A 7Z[, which yields the claim by the generalized Yor formula in Proposi-
tion 2.9. O

Corollary 5.10 (Independent increments and change of measure). Consider Z and Q as in
Theorem 5.4. Assume Z = &(Y) for some P-semimartingale Y (hence 77 = o0). Consider a

C—valued P-semimartingale V' and write
7=min{t > 0: Q[AV, = —-1] =1}.
Assume that V' and Y have jointly independent increments under P. Then Y is P—special, V'
has independent increments under Q, and the following are equivalent for any time T € [0, 7).
(i) Eqll&(V)r|] < oc.
(i) V + [V,Y] is P-special on [0,T].
Furthermore, if one of these conditions holds, then

Y V+[V)Y]
R

t€10,T).

Proof. By Proposition 3.5, YT = L(Z) is P—special. Therefore by (2.2),
(lidf? A fid]) « 2 < o0

on paths where u < =3 , hence for all 4 > 0 by Lemma 4.2 since Y has independent increments.
By (2.2) again, Y is P-special. Thanks to Theorem 5.4 and Corollary 5.7, the Q-characteristics
of V are deterministic if V' and Y have jointly independent increments under P, hence V' indeed
has independent increments under Q by [18, 11.4.15-19].
By Theorem 4.1(1), (i) is equivalent to
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(i) V is Q-special on [0, 7],
which by Theorem 5.4 is equivalent to
(ii") V + [V, L(Z)] is P-special on [0,7% A T].
Next, we shall establish equivalence of (ii’) and (ii). Note that V + [V, £(Z)] =V +[V,Y] on
[0,7% A T]. Hence, by (2.2),
(lidf? A fid]) vy Y < oo

on paths where v < 7% AT, hence for all v > 0 by Lemma 4.2 since V 4 [V, Y] has independent
increments under P.

Since L(Z) = YTZ, we have M = é"(B%(Z)) = ;O(gy)) by Remark 3.4 and hence
EV)E(Y ) [zﬁ(V—l-Y—l- V,Y]):
E =E M =E|—F——| = T].
(V)] = EL6(V)b] = B[ ZLEE s vep
Since both Y and V + [V, Y] are P-special, Theorem 4.1 completes the proof. O

Example 5.11. Theorem 1.3 in the introduction combines Theorem 5.4 and Corollary 5.9 in
a simplified setting. We shall now illustrate the usefulness of Theorem 1.3 on a calculation
appearing in [28]. Take Y as in Theorem 1.3. In addition, assume Y is a local P-martingale,
ie., BY =0, and (1 +id)log(1 +id) o Y is P-special. The implication from (iii) to (i) in
Theorem 1.3 with X = log(l + id) o Y now yields that log(l + id) o Y is Q-special with
compensator ng(lJﬂd)OY = pU+id)log(l+id)oY = Next, fix some A € (0,1) and observe that
EMY) = &(((1 +1id)* — 1) oY) is P-special, hence £&271(Y) is Q-special by the implication
from (ii) to (i) in Theorem 1.3. Now (2.10) yields

o~ (1=A)(log(1+id)oy — B Hid) logliFid)ex)y éo)\—l(y)e(l—/\)B(lJrid) log(1+id)oY

I

which by Jensen’s inequality is a local Q—submartingale; hence its Q-multiplicative compensator
is non-decreasing. By the implication from (i’) to (ii’) in Theorem 1.3, this Q-multiplicative
compensator coincides with the P-multiplicative compensator of

éDA (Y)e(l_)‘)B<1+ld) log(1+id)oY

9
hence by Theorem 1.2 the Q—multiplicative compensator equals

g’(B((lJﬂd))\*1)°Y)e(1*/\)3(1+1d> log(1+id)oY '

The non-decreasing property deduced earlier now yields

éo(B((l—i_id)/\_l)oy) > e()\_l)B(l-Hd) log(14+id)oY

)

which is the statement of a key inequality in [28, Lemma II1.4, Equation (3.4)]. O

We conclude with an explicit example of drift calculation after a non-equivalent change of
measure where Z is allowed to attain zero continuously.

Example 5.12. Let Z and Q be as in Theorem 5.4. We shall compute the Q-drift of two
Q-semimartingales, V and U.

(i) We first consider the Q-semimartingale V' = £( %) Proposition 2.9 yields the represen-

tation
1 1 Q
(Z) (1+id 1)0 (2),

where we use g to emphasize that this representation only holds under Q. The lifted
version of V' from Proposition 5.1 reads

1
— (1) laza0L(Z 2.
Vi <1+id ) id#—1 0 L(Z) on [0, 77
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Then Corollary 5.5 with £ = (ﬁ —1)1iq+—1 and ¢ = id yields

E- [Liacz),=—13] + ABF?

L(%) (—Lig—_1—id)oL(Z)%e
By 7’ = Btia=—1 - > 1
Q [r,00[>
T€Tz L+ ABTL(Z)
Q-almost surely. In particular, if Z is a uniformly integrable martingale, then B£(%) = (
and
1
Bé(z) = —1ig=_1 * I/['(Z), Q-almost surely.

(ii) Let us now consider a second example in this setup. Assume that id? * v% < oo and
consider the process

_ 1 1 L 112 2 .12 _ :
U= (22-1-12.2) =3 ((Z-+id)* = 22 —id?) 0 Z = (Z_id) o Z.
id
Note that U is a P—semimartingale. Corollary 5.5 with £ = Z_id and ¢ = %
yields
. c E. [(AZ)Y] + Z,_ABZ
Bg = B(Z,1d+1d2)qu + Z Sk - [7,00[> Q-almost surely,

ABZ
TET 1+ T

where we have used id21{ 7z_—0y © Z = 0. In particular, if Z is a uniformly integrable
martingale, then B = 0 and

Bg =B [Z’Z], Q-almost surely. O
We conclude this section with a proof of Proposition 5.1.

Proof of Proposition 5.1. By localization, we may and shall assume, without loss of generality,
that 7M = co.
Consider the process

W = V].[[077_§M[[ + (hg} SA}I,lp ‘/t) 1[[7’}”,00[['
77
Note that W is a Q-semimartingale, Q-indistinguishable from V, since Q[7} = oc] = 1. Define
the two processes W = (Wy)i>0 and W = (Wy)>0 by Wo = Wy = Wo, Wy = liminfgy W,
and Wy = limsupg, W, for all t > 0. Then W and W are predictable. Hence, the first time p
that W fails to be left-continuous, namely the first time when W does not equal W or is not
real-valued, is a predictable time. Note that

1 1 !
Plp < TM] —E [1{p<r”f}%MP] = Eq [1{p<7M}%] = Eq [1{P<m}%] =0

since W is a Q-semimartingale and hence Q[p < co] = 0. Moreover, since W is constant on the
interval [T}, 0o[, we have p = 7} on {p < oo}, P-almost surely. Since p is predictable, by [18,
1.2.31] we have

0=E,_[AM,| =E,_ [AMpl{p:Ty}] on {p < oo}.

Since AM, < 0 on {p = 7}}, this yields P[p = 7}] = 0; hence we have P[p = oo] = 1. This
shows that W is P—almost surely left-continuous; in particular, limtTT}f V; exists on {7 < oo}
and W = V.

We also note that V; has right-continuous paths. Indeed, we use p again, but now to denote
the first time that V fails to be right-continuous. Then p is a stopping time. As above, since
V is a Q-semimartingale we have p > 7M. Since V4 is constant after time ™™ we indeed have

p = oo, yielding that V; has right-continuous paths with left limits, P-almost surely.
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The Q-semimartingale V' can be written as the sum of a Q-local martingale Vimoand a Q-
semimartingale VT that is Q-almost surely of finite variation. To show the proposition, it now
suffices to argue that their corresponding lifts V#m and VTfV are P—semimartingales.

Let us first consider VTf". Denote by p the first time that VTf" is of infinite variation. Then p

is a predictable time. Using the same arguments as above we can argue that p > 7™ P-almost
surely, then that p = 7™ on {p < oo}, P-almost surely, and then that indeed p = co, P-almost
surely. Thus, VTfV is right-continuous with left limits, and P—almost surely of finite variation,
hence is a P—semimartingale.

Finally, let us consider VTlm, which is Q-indistinguishable from V™. Let (p,)nen denote a

localization sequence so that (VTlm)T” is a Q-martingale and lim,j pp = 00, Q-almost surely.
Without loss of generality, we may assume that p, < n, P-almost surely. Next, let us define
the stopping times

Pt = pnl{pn<7.1v1} + (pn + n)l{anTM}, n € N.

Then Q[pnt = pn] = 1 for all n € Nsince Q[7M = oo] = 1. Hence (ppt)nen is again a localization

sequence for the Q—local martingale VTlm Moreover, the limit p = lim,1o ppr exists and satisfies

p=1"on {p < oo}, P-almost surely; hence P[p,+ < p| = 1 for each n € N. Therefore p is

P-almost surely equal to a predictable time and as above we have again P[p = oo] = 1. Now
[18, TI1.3.8¢] yields that M VTlm is a P-local martingale. Dividing this process by the strictly

positive P-semimartingale M + 1. o and adding the finite-variation process V‘:ﬁil[[TM’oo[[
J

yields that V#m is a P-semimartingale as claimed. ([

6. CONCLUDING REMARKS

We have presented the computation of (i) multiplicative compensators; and (ii) additive and
multiplicative compensators under a new measure obtained by the multiplicative compensation
of a given non-negative semimartingale. In Theorems 3.1 and 5.4 we have treated these tasks
as problems in their own right.

In practice, the inputs to these computations are likely to come with more structure than
indicated in the two theorems, i.e., the input processes Z and V in Theorems 3.1 and 5.4
will typically be represented with respect to some common underlying, possibly multivariate,
process, say X. This is illustrated in Examples 3.6, 3.7, 4.5, and 5.6, and Corollary 5.5,
respectively.

One should observe that here one may use the more general class of representing functions
J(X) that are specific to X; see [8, Definition 3.2]. This is possible because a composition of a
function in  with a compatible element of J(X) remains in J(X); see [8, Corollary 3.20]. For
instance, this observation allows the use of general integrands ¢ in Example 3.6.
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