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ABSTRACT

Initial margin is typically calculated by applying a risk-sensitive model to a portfolio
of derivatives with a counterparty. This paper presents an approach to testing initial
margin models based on their predictions of the whole future distribution of returns
of the relevant portfolio. This testing methodology is substantially more powerful
than the usual “backtesting” approach based on returns in excess of margin esti-
mates. The approach presented also provides a methodology for calibrating margin
models via the examination of how test results vary as the model parameters change.
We present the results of testing some popular classes of initial margin models for
various calibrations. These give some insight into what it is reasonable to expect from
an initial margin model. In particular, we find that margin models meet regulators’
expectations that they are accurate around the 99th and 99.5th percentile of returns,
but that they do not, for the examples studied, accurately model the far tails. More-
over, different models, all of which meet regulatory expectations, are shown to pro-
vide substantially different margin estimates in the far tails. The policy implications
of these findings are discussed.
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2 D. Murphy

1 INTRODUCTION

The margining of derivatives portfolios is a key element of the regulatory reforms
that followed the 2007–9 global financial crisis. Many market participants are now
required to post initial and variation margin on bilateral derivatives positions,1 while
central counterparties (CCPs), whose use is often mandated,2 require margin on
cleared positions.

Initial margin requirements for portfolios of derivatives are often estimated using a
risk-based margin model. Due to the importance of margin as the first line of defense
against counterparty credit risk, the behavior and prudence of margin models have
come under increasing scrutiny.3 This paper contributes to this growing body of
literature.

The design of a modern initial margin model for derivatives portfolios typically
relies on the assumption that portfolios can be liquidated over some fixed time period,
known as the margin period of risk (MPOR). The model is designed to estimate how
much a portfolio could change in value over this period.4 This estimate is usually
either a quantile of the distribution of portfolio value changes, such as the 99th, or a
quantity closely related to this.5

There are a number of properties that are significant for margin models. For our
purposes, the following three are important.

Portfolio risk sensitivity. This is a desirable property: initial margin should be sen-
sitive to the return distribution of the portfolio, accurately calculating the target
quantile.

Market conditions sensitivity. Some margin models are also sensitive to changes in
market conditions, requiring more margin for the same portfolio as its underly-
ing risk factors become more volatile. In particular, the margin models used by
most CCPs are risk sensitive in this sense. Other margin models, notably the most
common model for bilateral derivatives (see International Swaps and Derivatives
Association 2021), calculate margin under the assumption that market conditions

1 See Basel Committee on Banking Supervision (2013) for details of the regulatory requirements
for bilateral margin.
2 The regulatory requirement to clear certain over-the-counter (OTC) derivatives and for CCP initial
margin models in Europe can be found in, for example, European Union (2012, 2013, 2015).
3 See Basel Committee on Banking Supervision (2021) for a recent authoritative review of
margining practices.
4 Portfolios so big or risky that they cannot plausibly be liquidated over the MPOR are often subject
to an additional margin charge known as concentration margin. This is often calculated outside the
model.
5 Some initial margin models estimate expected shortfall above a quantile rather than the quantile
itself.
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What can we expect from a good margin model? 3

are experiencing (a fixed degree of) stress. This substantially reduces the variabil-
ity of margin due to changes in market conditions, but produces higher margin
requirements in placid markets.

Excess procyclicality. Margin estimates should not overreact to changes in market
conditions, as this creates extra costs for market participants and increases funding
liquidity risk.6

The accuracy of margin models is often tested by examining their exceedances;
that is, the occasions when portfolio losses exceed margin estimates. Backtests, as
these tests are known, are typically relatively low power, simply because exceedances
are rare. Most days do not generate one, so new information on model performance
only arrives occasionally.

Therefore, it is helpful to carry out tests of margin model performance in addition
to backtesting. Many margin models, including the most popular ones, provide esti-
mates of the whole distribution of portfolio returns one or more days hence. Tests
based on comparing these estimates with the observed returns are often more power-
ful than backtesting, and they can give significant insights into model performance.
This paper presents a whole-distribution approach to testing initial margin models.
The approach is also useful for calibrating margin models, as test results across a
range of calibration parameters can be examined.

The next two subsections give a short introduction to the approach presented here
and its contribution to the literature, while the third discusses related work.

1.1 Whole-distribution tests of initial margin models

One way to describe an initial margin model is to begin with a portfolio and its
returns over time. Suppose rt , 1 6 t 6 T , is a time series of these log returns
up to now (time t D T ). The next return, rTC1, is uncertain. The margin model
predicts its distribution, say �TC1.r/ (Section 2 discusses exactly how to extract
these distribution predictions from a number of popular initial margin models). If the
margin model targets a particular quantile of the return distribution, say ˛, then the
margin is estimated as the ˛ quantile of this distribution, Q˛.�TC1.r//.

Backtests examine situations in which there is a loss bigger than the margin
�rTC1 > Q˛.�TC1.r//, or perhaps where there is also a sufficiently large profit
(ie, abs.rTC1/ > Q˛.�TC1.r//).7 However, as already noted, this approach, based
on exceedances, discards a lot of information: since ˛ � 0:99, most of the time
abs.rTC1/ < Q˛.�TC1.r//.

6 See Murphy et al (2014), Maruyama and Cerezetti (2019) and Murphy and Vause (2022) for
further discussions of initial margin model procyclicality.
7 These are known, respectively, as one-sided or two-sided backtests.

www.risk.net/journals Journal of Risk Model Validation



4 D. Murphy

The extra information available from knowing the realization rTC1 can be used by
observing that the margin prediction �TC1.r/ tells us how probable rTC1 is:

Pr.r < rTC1 j �TC1/:

If the margin model makes good predictions, the time series of these cumulative
probabilities of seeing r contingent on � should be uniformly distributed on Œ0; 1�.
Testing this allows us to determine how good the predictions �TC1.r/ are.

1.2 Our contribution

This paper presents a methodology for testing initial margin models based on their
prediction of the future return distribution of margined portfolios and shows how to
apply it to a number of popular classes of initial margin models, and for a range of
portfolios whose return distributions have different characteristics (of, for instance,
skewness, kurtosis and fatness of tails). The results give some insights into how accu-
rately these models capture the return distribution, and hence what it is reasonable
to expect from them. Our aim is not to advocate for or against a particular class of
models, but rather to illustrate how to use the whole distribution of returns to test the
performance of an initial margin model.8

Our approach allows us to examine how initial margin model performance varies
with calibration. This is an important question, as margin takers regularly test and,
if necessary, recalibrate initial margin models. Indeed, European regulation requires
that CCPs conduct this “sensitivity analysis” regularly and submit their results to the
CCP’s risk committee (see European Union 2013, Article 50).

For some popular models, we find that there is a range of calibration such that the
model provides a good estimate of nearly all of the return distribution �TC1, and
in particular from the center out to the biggest regulatory minimum margin quantile
˛ D 99:5%.9

However, we find that for no calibration none of the models studied is a good fit for
the entire distribution.10 This means in particular that the currently popular margin
models do not give good estimates of far tail quantiles such as Q99:9%, and it should
not be a surprise to see occasional returns substantially in excess of margin. This
has policy implications: it means that resources beyond margin, such as the default
funds currently required for CCPs, are likely necessary if robust protection against
counterparty credit risk beyond 99.5%, or thereabouts, is desired.

8 See Buczyński and Chlebus (2020), Hansen and Lunde (2005) and Stărică (2003) for a discussion
of the accuracy of a wider range of risk models.
9 Technically, the hypothesis that the estimate of the distribution within the quantiles Œ0:2%; 99:8%�
is correct, using our chosen test, cannot be rejected at 95% confidence.
10 The hypothesis that the estimate is correct, using our chosen test, is rejected at 95% confidence.
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What can we expect from a good margin model? 5

The far tails of the portfolio return distribution pose difficulties, so it is natural to
examine how different margin models address them. A very stressful period associ-
ated with the onset of Covid-19 in March 2020 is chosen to explore this. The levels of
margin estimated by different margin models are examined and found to vary signif-
icantly. This suggests that there is substantial uncertainty about the margin require-
ments in these conditions, and hence about how reactive a margin model should be.
Criteria other than reactiveness, such as procyclicality, can therefore sometimes be
used to choose between otherwise acceptable models.

1.3 Related work

The framework for backtesting margin models compares realized ex-post returns and
assesses whether the number of times the observed returns exceeded or breached
the forecast is consistent with the predicted percentile. The formalization of this
approach through the use of a statistical test is discussed by Christoffersen (1998)
and Kupiec (1995), while Campbell (2005) gives the regulatory perspective on the
use of these tests. More sophisticated approaches to backtesting that consider prop-
erties of the exceedances, such as their size and correlation, are discussed in Escan-
ciano and Pei (2012) and Haas (2001), while Gurrola-Perez (2018) discusses the
particular question of testing an important class of initial margin models: filtered
historical simulation (FHS) value-at-risk (VaR) models.

There is relatively little literature on other approaches to testing initial margin
models. Diebold et al (1998) present a methodology for testing density forecasts that
uses similar information to our whole-distribution tests. More recently, Houllier and
Murphy (2017) discussed whole-distribution margin model testing using a similar
approach to the one presented here. That paper was based on the properties of the
worst loss experienced by the portfolio over the MPOR. The test it discusses does not
rely on any assumptions about how the return distribution scales as the MPOR grows,
so it is particularly suitable for settings with longer MPORs.11 However, the test
used is lower power than the one presented here, so our current approach scrutinizes
models more closely.

2 METHODOLOGY AND EXAMPLE

This section outlines the initial margin models studied and the methodology for the
tests performed on them.

11 In particular, it does not assume
p
t scaling, an important consideration, as Danı́elsson and

Zigrand (2006) discuss.
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6 D. Murphy

2.1 Notation and margin models

Let rt , 1 6 t 6 T , be a time series of portfolio returns and let � be a set of ini-
tial margin model calibration parameters. For a target margin quantile ˛, a margin
model m with calibration � is a function that estimates the distribution of rTC1. We
write �TC1.r/ for this estimate.

A historical simulation VaR model with window sizeM estimates �TC1.r/ as the
empirical distribution of

frT�MC1; rT�MC2; : : : ; rT g:

The margin estimate is the ˛ quantile of this distribution, as it is for all the models
discussed here.

A parametric VaR model with window size M estimates �TC1.r/ as the normal
distribution N.�; �/, where � is the average of

frT�MC1; rT�MC2; : : : ; rT g

(or sometimes zero in practice), and � is a volatility estimate for

frT�MC1; rT�MC2; : : : ; rT g:

An FHS VaR model with window size M estimates �TC1.r/ as the scaled
empirical distribution

�T

�
rT�MC1

�T�MC1
;
rT�MC2

�T�MC2
; : : : ;

rT

�T

�
;

where �t is a volatility estimate at t .12 This is usually determined using an expo-
nentially weighted moving average (EWMA) volatility estimator with decay param-
eter �, so this margin model has two calibration parameters: M and �.

2.2 Empirical distributions

From the above, it is clear that some margin models use finite series of returns
r1; : : : ; rM to model the distribution of future returns. It will be necessary to estimate
the cumulative probability of seeing a given return r contingent on this discrete dis-
tribution. To do this, a continuous cumulative distribution function (CDF) is derived
from r1; : : : ; rM as follows.

(1) The empirical series is sorted, producing r.1/; : : : ; r.M/ with r.i/ 6 r.iC1/ for
all i .

12 See Barone-Adesi and Giannopoulos (2001), Barone-Adesi et al (1999), Gurrola-Perez and
Murphy (2015), Hull and White (1998) and Jorion (2006) for more details on the various VaR
models.
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What can we expect from a good margin model? 7

(2) The cumulative probability of r D r.i/ is set to .1=M/.i � 1=2/.

(3) For returns r.i/ < r <.iC1/ between the observed ones, straight line interpola-
tion is used, setting the cumulative probability as

1

M

��
i �

1

2

�
C

r � r.i/

r.iC1/ � r.i/

�
:

(4) For returns r < r.1/ or r > r.M/ beyond the empirical ones, the fact that the
cumulative probability at r.1/ is 1=.2M/ is used, and the � is found such that
the CDF of the normal distribution of N.�; �/ at r.1/ is 1=.2M/, where � is
the mean of r.1/; : : : ; r.M/. Then the CDF of this normal distribution is used
in the left tail, following a symmetrical procedure in the right tail.

2.3 The probability of a return contingent on an estimated
distribution

Suppose a margin model produces an estimate of the distribution of returns at T C1,
�TC1.r/, based on returns r1; : : : ; rT and calibration �. If � is continuous, then
Pr.r < rTC1 j �TC1/ is written for the cumulative probability of observing a given
return rTC1 at T C 1 given �TC1, that is, forZ rT C1

�1

�TC1.r/ dr:

If �TC1 is discrete, it is necessary to first smooth it as in Section 2.2; the defini-
tion immediately above can then be used. Each rolling window Œt D 1; : : : ; t D T �;

Œt D 2; : : : ; t D T C 1�; : : : gives a prediction of the return distribution the day after
its end, �TCn.r/, n D 1; 2; : : : . Using the return observed at T C n, rTCn, we cal-
culate the cumulative probability of observing it given this predicted distribution:
Pr.r < rTCn j �TCn/.

A single probability tells us very little, but the time series of cumulative proba-
bilities is more informative. One criterion for the accuracy of the estimates �TCn
is that the time series of cumulative probabilities fPr.r < rTCn j �TCn/g, n D
1; 2; : : : , is uniformly distributed: the rTCn should randomly sample their respective
distributions.

To see what happens when �TCn is biased, suppose first that it is systematically
too wide. Then the cumulative probability Pr.r < rTCn/ will be too low for returns
close to zero, and too high for returns with higher absolute values. This will result in
a somewhat _-shaped distribution of fPr.r < rTCn j �TCn/g rather than a uniform
one. Similarly, if �TCn is too narrow, it will assign too low a probability to returns
with a large absolute value, and hence a somewhat ^-shaped distribution will be
obtained.

www.risk.net/journals Journal of Risk Model Validation



8 D. Murphy

2.4 Testing uniformity

Unfortunately, direct tests of the uniformity of a time series are typically relatively
low power. One promising approach is to transform the series being tested using the
inverse cumulative normal distribution, then test the normality of the transformed
series using the (typically high power) Shapiro–Wilk test.13 If this test produces a
p-value in excess of 0.05, the hypothesis that the original time series is uniform
cannot be rejected at 95%. This is the principal test used in this paper.

2.5 Calibration

Let � be a set of calibration parameters for a margin model. Then, a margin
model is a function from .rt ; �/ to the space of distributions of �TC1.r/. Accept-
able calibrations � can be studied by examining how the p-value of the test of
Pr.r < rTCn j �TCn/, n D 1; 2; : : : , varies with �.

2.6 Margin model testing and calibration

In summary, the approach to testing and calibrating a margin model m taken in this
paper is as follows.

(1) Select a portfolio with time series of returns ri .

(2) Select a series of possible model calibrations �j .

(3) For some test period, T C 1 6 t 6 T C N , calculate the model estimates of
�t for each calibration.

(4) Calculate Pr.r < rt j �t .r// for each t in the test period and each calibration.

(5) For each calibration, test the uniformity of each time series of probabilities.

(6) Plot the p-value of the test as a function of the calibration parameter(s) �j
and compare it with the critical value to determine the range of acceptable
parameters, if any.

Testing a margin model is a special case of this where there is only one calibration.

2.7 Example and discussion

In order to illustrate this approach, consider a margin model based on historical simu-
lation VaR with a 50-day window. An outright position in the Standard & Poor’s 500

13 See Razali and Yap (2011) and Shapiro and Wilk (1965) for discussions of the power of the
Shapiro–Wilk test.
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What can we expect from a good margin model? 9

(S&P 500) index will be taken, and its log returns using index levels from 2020 will
be calculated.

The last window’s 50 sorted log returns begin f�3:59%;�1:88%; : : : ; g. The raw
empirical distribution would thus assign a cumulative probability of zero to any
return less than �3.59%, and of 1=50 to any return between �3.59% and �1.88%.
This step function in probabilities is undesirable and produces noise in the results.

Three design choices in the smoothing of empirical probabilities help to eliminate
this noise.

(1) A probability of .i � 1=2/=50 is assigned to r.i/ rather than i=50. This means
that the total probability mass of the observed returns is 49=50, giving us 1=50
to assign to the tails beyond the observed returns.

(2) A straight line in cumulative probabilities is used between the observations.
Thus, a return of �2.5%, which is 36% of the way between �3.59% (a cumu-
lative probability of 1=100) and �1.88% (a cumulative probability of 3=100),
is assigned a cumulative probability of .1=100/C .36% � 2=100/ or 0:0172.

(3) The 1=100 available for each tail beyond the observed returns is used by
assuming that the tails are cumulative normal with the same mean as the sam-
ple and a standard deviation that gives the right probability mass. For this
sample, the mean is 0.17%, and the value of � such that the cumulative nor-
mal of N.� D 0:17%; �/ evaluated at �3.59% is 1=100 is � D 1:62%. This
means that, instead of assigning a cumulative probability of zero to a return of
�4%, the cumulative normal of N.0:17%; 1:62%/ evaluated at �4% is used,
or roughly 0.005.

The first window of 2020 illustrates the issue with the tails beyond the empirical
distribution. The first return after it (that is, the 51st log return in 2020) is �12.8%
(this return is from March 2020, at the height of the Covid-19-induced market tur-
moil). Based on the smoothed CDF of the first window, it has a cumulative prob-
ability of 0.14%, rather than zero. The second is 5.8%, and this has a cumulative
probability of 97.5%.

The Shapiro–Wilk test used examines the hypothesis that the next return is from
the same distribution as the prior window’s data (after smoothing of the CDF). In this
case, the hypothesis is just rejected at 95% for this (very short) test period: historical
simulation VaR with a 50-day window fails with a p-value of 0.055 for the S&P 500
index in 2020.

www.risk.net/journals Journal of Risk Model Validation
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3 TEST RESULTS FOR SOME INITIAL MARGIN MODELS

In this section, we present the results for a long position in the S&P 500 index using
a data series of 5488 returns from January 2000 to November 2021. The online
appendix provides robustness checks by examining other portfolios.

Three classes of margin model are considered: historical simulation VaR, paramet-
ric VaR and FHS VaR. Each class of model is tested and the results presented. These
results suggest tentative observations about the performance of the class of models,
and of initial margin models more generally. These are given in boxes at the end of
each relevant subsection.

3.1 Historical simulation VaR

Consider a historical simulation VaR model with window lengthM . Such a model is
based on the idea that the distribution of the prior M returns provide an acceptable
model of this distribution of the current return. In order to examine this claim, a
reasonable choice of window, M D 300, is used. The Q–Q plot of the next return
versus the smoothed CDF of the prior M returns is presented in Figure 1.

Visual inspection of Figure 1 hints at a good fit over most of the distribution (from
roughly 0.3% to 99.7%, or ˙2:75� ) but also suggests that the probability of large
positive or negative returns is not well estimated by the prior window. This is con-
firmed by the p-values. Figure 2 shows the results (red diamonds) of the Shapiro–
Wilk test for the hypothesis that the next return comes from the same distribution as
the returns in a prior window, as a function of window length. The critical value is
shown as a dashed line. It can be seen that the hypothesis is rejected for all window
lengths.

In order to probe the hypothesis that the issue arises in the tails, the far tails outside
.0:2%; 99:8%/ were removed and the test rerun. The results (blue triangles) support
the intuition that it is the far tails that are causing the prior failures. For the truncated
distribution, window lengths from 300 to 400 observations pass. Since the typical
quantiles for margin, 99% and 99.5%, are well within .0:2%; 99:8%/, this implies
that the hypothesis that historical simulation VaR can estimate margin accurately
cannot be rejected, at least for some calibrations. The results presented in the online
appendix confirm that this is not an idiosyncratic feature of this portfolio or risk
factor. Therefore, the following observation is suggested.

OBSERVATION 3.1 Historical simulation VaR can, for some calibrations, produce
accurate estimates of initial margin at 99% and 99.5%. It does not provide good
estimates of the far tails of the one-day forward return distribution, and hence it does
not estimate expected shortfall accurately.

Journal of Risk Model Validation www.risk.net/journals



What can we expect from a good margin model? 11

FIGURE 1 Q–Q plot of the next return versus the empirical distribution of the prior 300
returns.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Prior window

−5

−4

−3

−2

−1

0

1

2

3

4

5

E
m

p
ir
ic

a
l
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12 D. Murphy

FIGURE 3 Test results for parametric VaR using an unweighted volatility estimate.
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3.2 Parametric VaR

Figure 3 presents the test results for parametric VaR using an unweighted volatility
estimate. This model of the whole return distribution is, unsurprisingly, worse than
the prior window empirical distribution. Truncation helps, but not enough to allow it
to pass the test: the hypothesis that the next return comes from the normal distribution
with the mean and standard deviation of the prior window is rejected at 95% for all
window lengths studied.

3.3 Parametric VaR using conditional volatility

It would be reasonable to conjecture that the problem with the parametric VaR stud-
ied in the previous section is that the volatility estimator is too primitive. In order to
investigate this, two more sophisticated volatility estimators are considered: EWMA
volatility and the conditional volatility from a type of generalized autoregressive
conditional heteroscedasticity (GARCH) model.

EWMA volatility estimators start with some long-term volatility estimate, then
estimate conditional volatility recursively via

�2T D .1 � �/r
2
T�1 C ��

2
T�1:

Journal of Risk Model Validation www.risk.net/journals



What can we expect from a good margin model? 13

The decay parameter � controls how quickly data falls off: if it is close to one,
the estimator has a long memory, while smaller lambdas, such as 0.96, forget the
volatility contribution of older returns more quickly.

GARCH models, as described by Bollerslev (1986), are a popular class of stochas-
tic volatility model. In the simplest version of these models, GARCH.1; 1/, volatility
evolves as

�2T D ! C ˛r
2
T�1 C ˇ�

2
T�1:

Thus, today’s conditional volatility, �2T , depends on yesterday’s conditional volatil-
ity, �2T�1, and yesterday’s return, r2T�1. Typically, ˛; ˇ > 0 while ˛ C ˇ < 1

is required, so large returns yesterday produce increases in volatility today. The
parameters of these models (˛, ˇ and !) are fitted using quasi-maximum likelihood
estimation.

The extension of GARCH.1; 1/ proposed by Glosten et al (1993) allows a differ-
ential (and in practice usually larger) impact on volatility from negative returns than
from positive ones. An extra parameter, 
 , is introduced and volatility evolves as

�2T D ! C .˛ C 1T�1
/r
2
T�1 C ˇ�

2
T�1; where 1T�1 D

(
0 if rT�1 > 0;

1 otherwise:

We calculated EWMA and Glosten–Jagannathan–Runkle-GARCH (GJR-GARCH)
conditional volatilities for our data.14 Figure 4 illustrates the conditional volatilities
calculated by an EWMA volatility estimator with � D 0:97 and by a GJR-GARCH
volatility estimator using rolling 2000-day windows.

It can be seen that the GJR-GARCH estimator is somewhat more reactive than the
EWMA one: it goes higher in stressed markets, such as those of March 2020, and
falls lower during placid ones, such as those in mid-2017.

The parameter for the EWMA volatility estimator is �, the decay parameter; for
GJR-GARCH, it is the window length. Therefore, it makes sense to study the perfor-
mance of these two volatility estimators as these parameters vary. Figure 5 presents
the results for both the full distribution of returns and the one with the far tails
truncated. It can be seen that EWMA performance is flat for a range of lambdas,
but then declines as reactiveness decreases. For GJR-GARCH, performance is not
strongly determined by window length.15 However, parametric VaR derived from

14 This is not a trivial procedure, in that GJR-GARCH fitting, like many forms of GARCH model
fitting, requires care, as Hill and McCullough (2019) discuss. Following their recommendation,
the rugarch package in R with the hybrid solver and control of the numerical differentiation
parameters is used to manage convergence.
15 GJR-GARCH, in common with many GARCH approaches, requires substantial amounts of data
for good fitting (see Stărică (2003) for a discussion). However, the extent of this might be surpris-
ing: even moving from 8 years of data (a 2000-return window) to 12 years increases performance.
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14 D. Murphy

FIGURE 4 EWMA and GARCH conditional volatility estimates.
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neither volatility estimate passes the test for any parameter setting: all the points are
well above the critical value.

Both volatility estimators improve for the truncated distribution. However, neither
of them are close to the critical value for any calibration. This suggests the following
observation.

OBSERVATION 3.2 Parametric VaR using unweighted EWMA and GJR-GARCH
volatility estimates with normal innovations does not provide accurate estimates of
initial margin at 99% and 99.5%, nor does it provide good estimates of the far tails
of the one-day forward return distribution.

3.4 FHS VaR

The results for FHS VaR are presented in Figure 6 as a function of the EWMA
decay parameter, �, with the window length, M , fixed at 300. The p-values are

This might perhaps be seen in the light of the results of Danı́elsson and Zhou (2015), Reghen-
zani et al (2019) and Stărică (2003), which showed that very long data series are needed to fit the
far tails accurately in various distributional situations relevant to financial risk modeling. This of
course means that there are rather few financial data series for which these fits are possible.
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FIGURE 5 Test results for parametric VaR with conditional volatility estimators.
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(a) EWMA volatility estimates. (b) GJR-GARCH volatility estimates.

FIGURE 6 Test results for FHS VaR using the Shapiro–Wilk test.
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better than those for the unscaled distribution in both the whole and truncated cases.
For the truncated case, a wide range of lambdas cannot be rejected, meaning that
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FIGURE 7 Test results for FHS VaR using the Berkowitz test on truncated returns.
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FHS is correctly estimating margin for these calibrations and is least based on the
Shapiro–Wilk test.

Of course, margin backtesting would be needed in addition to this. This process is
relatively well understood, so we present another aspect of whole-distribution test-
ing: the autocorrelation of returns. It would be expected not only that the time series
of probabilities Pr.r < rt j �FHS

t / is uniform, but also that it does not display excess
autocorrelation. An ARCH process can be fitted to the transformed probabilities, and
the significance of the variation of its coefficients from Markovian normality can be
tested.

This approach is known as the Berkowitz test.16 It is less sensitive than the
Shapiro–Wilk test to the shape of the distribution, so it should not be used alone,
but it is a useful adjunct to our principal test due to its sensitivity to autocorrela-
tion. Figure 7 presents the results, which imply that higher � FHS VaR models fail
due to excess autocorrelation, even though they match most of the distribution well.
Together, these two tests suggest the following.

OBSERVATION 3.3 FHS VaR can, for some calibrations, produce accurate esti-
mates of initial margin at 99% and 99.5%. It does not always provide good estimates

16 See Berkowitz (2001), Berkowitz et al (2011) and Hamerle and Plank (2009) for a discussion of
this test and its application.
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FIGURE 8 Margin estimates at 99% for the S&P 500 index for a number of selected
margin models from February 27, 2020 to March 17, 2020 (the period of Covid-19 stress).
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of the far tails of the one-day forward return distribution, and hence does not estimate
expected shortfall accurately.

4 INITIAL MARGIN ESTIMATES IN HIGH STRESS

In this section, the variability of margin estimates in high stress is examined. Fol-
lowing Gurrola-Perez (2021), the Covid-19-related market events of March 2020 are
used as a natural test. Figure 8 presents the margin estimates from a number of the
models discussed above for the last two days of February and the stressed period of
early March, and Table 1 summarizes some key properties of the margins estimated.

These returns are among the largest absolute size ones in the whole series:�12.8%
is the worst, and so lies at 99.98%, while �7.9%, which occurred on March 9, is
the seventh worst, and hence lies at roughly 99.86%. The figures show that differ-
ent models whose quantile estimates are acceptable for nearly all of the distribution
produce quite different risk estimates for this period.
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TABLE 1 Properties of S&P 500 returns and margin estimates at 99% for selected
models from February 27 to March 17, 2020.

(a) Properties of S&P 500 log returns

Max On Min On Max draw-
(%) date (%) date down (%)

SPX log returns 8.9 Mar 13 �12.8 Mar 16 21.8

(b) Properties of margin estimates

Max On Min On Max draw-
Model (%) date (%) date down (%)

Historic simulation VaR, M D 300 3.0 Feb 27 7.9 Mar 17 4.9
Unweighted parametric VaR 2.1 Feb 27 3.6 Mar 17 1.5
EWMA parametric VaR, � D 0.97 2.4 Feb 28 7.7 Mar 17 5.3
GJR parametric VaR 5.5 Feb 28 17.6 Mar 16 12.1
FHS VaR, � D 0.96 4.1 Feb 27 15.3 Mar 17 11.2
FHS VaR, � D 0.97 3.5 Feb 27 14.9 Mar 17 11.3
FHS VaR, � D 0.98 3.4 Feb 27 13.5 Mar 17 10.0

Even if the parametric VaR estimates are discarded as unreliable based on the
results above, the historic VaR estimates still suggest that parametric VaR with GJR
volatility and FHS at � D 0:98 and below may be overreacting. It cannot be deter-
mined with certainty from this evidence: all that is certain is that there are substantial
differences between the conditional distribution estimates from different models over
this period.17 All models start the period with lower estimates and end it with higher
ones, but the degree of reactiveness to the market turmoil varies considerably. This
suggests the following.

OBSERVATION 4.1 In periods of high stress, margin is quite uncertain, even
among models whose performance cannot be rejected on the basis of statistical
tests. A margin model cannot be expected to unambiguously tell us the right level
of margin in these periods; nor is there a correct degree of margin reactiveness to
them.

Table 1 also presents the maximum drawdown associated with the margin model
over the period (ie, the difference between the highest and lowest levels of margin).

17 This is consistent with the results of Danı́elsson et al (2016), which showed that, while the model
risk of risk models “is typically quite moderate, it sharply increases during crisis periods”.
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Clearly, some models impose much more liquidity stress on margin posters than
others.

5 POLICY DISCUSSION

The minimum quantile that margin models are required by European regulation to
target is 99% for exchange-traded derivatives or 99.5% for OTC derivatives. Our
analysis suggests that those are sensible choices, as it is certainly possible to produce
a margin model that performs well at those quantiles. At least for many economi-
cally important portfolios, these models can be relatively simple, reducing the risk of
overfitting and increasing transparency for margin posters and the wider market.18

Margin estimates at substantially higher confidence intervals and in periods of
high stress are uncertain. It is difficult to be sure that a model is performing well
in the far tails of the return distribution. This suggests that if regulators desire a
greater overall level of safety than 99.5%, it should be achieved by means other
than setting a higher confidence interval for a risk-based margin model. The current
regulatory design does that, using default fund and bank capital as an additional pro-
tection above margin for cleared and bilateral portfolios, respectively. Our analysis
validates the regulation approach to sizing CCP default funds using “extreme but
plausible” stresses (see Committee on Payment and Settlement Systems and Tech-
nical Committee of the International Organization of Securities Commissions 2012,
Principle 4; European Union 2012, Article 42) rather than targeting a far tail quantile
of the portfolio return distribution.

The results shown suggest that tests of initial margin models should assess their
performance for most of the portfolio return distribution; that is, out to, and a little
past, the target quantile.19 The far tails remain terra incognita.20 Given that different,
but equally acceptable, models perform differently under, and have different degrees
of reactiveness to, high stress, other criteria can be used to select between them. One

18 This point is important: increasing model complexity can often increase in-sample model perfor-
mance. GJR-GARCH with Student t innovations, for instance, often performs better than the GJR
with normal innovations studied here. However, the complexity of the fitting process is somewhat
increased and it can be more unstable for some asset classes/product types, while working well for
others. Also, the resulting margin may be less predictable and more opaque to less sophisticated
market participants.
19 Indeed, the approach proposed could be used to estimate how far out into the tails a margin
model could be robustly used, at least for linear products.
20 One interesting approach to this issue, discussed by Danı́elsson and Zhou (2015), is to use a mul-
tiple of a lower confidence interval as a regulatory standard: if the 99th percentile can be reliably
estimated but the 99.5th cannot, then perhaps setting margin at, say, 1.5� the 99th percentile (with
an add-on for far out of the money options) might be sensible. Figure 1 suggests that for this return
series, quantiles out to about 2:75� are relatively safe, but model risk rises significantly after that.
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possibility would be to use measures of procyclicality, so that models that impose
less liquidity stress in turbulent markets are preferred.

The test proposed in this paper based on most or all of the conditional return dis-
tribution is an aid to model calibration. While the job of a margin model is to predict
a quantile, not the whole distribution of returns, its predictions of the whole distri-
bution can be insightful. In particular, given the relatively low power of backtesting,
if a model cannot be rejected based on its prediction at the margin confidence inter-
val, but it is problematic based on the whole distribution, then the question arises
as to whether sufficient information is available to see the problem at the margin
quantile. Whole-distribution tests therefore have a role as indicators of problems that
might appear later with margin calculations, while also providing useful insights into
calibration and the issues with estimating return distributions in the far tails.
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