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Abstract. The AVAS (Additivity And Variance Stabilization) algorithm of Tib-
shirani provides a non-parametric transformation of the response in a linear model
to approximately constant variance. It is thus a generalization of the much used
Box-Cox transformation. However, AVAS is not robust. Outliers can have a ma-
jor effect on the estimated transformations both of the response and of the trans-
formed explanatory variables in the Generalized Additive Model (GAM). We de-
scribe and illustrate robust methods for the non-parametric transformation of the
response and for estimation of the terms in the model and report the results of a
simulation study comparing our robust procedure with AVAS. We illustrate the
efficacy of our procedure through a simulation study and the analysis of real data.
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1 Introduction

The nonlinear parametric transformations of response variables is a common practice in
regression problems, for example logarithms of survival times. Tibshirani (1988) used
smoothing techniques to provide non-parametric transformations of the response to-
gether with transformations of the explanatory variables, a procedure he called AVAS
(additivity and variance stabilization). The resulting model is a generalized additive
model (GAM) with a response transformed to approximate constant variance. Tibshi-
rani’s work can be seen as a non-parametric extension of the power transformation
family of Box and Cox (1964) in which the goals are the stabilization of error vari-
ance and the approximate normalization of the error distribution, hopefully combined
with an additive model. It also extends the parametric transformation of explanatory
variables of Box and Tidwell (1962). A discussion of the relationship of AVAS to the
Box-Cox transformation is in Hastie and Tibshirani (1990, Cap.7).
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Tibshirani’s AVAS is not robust with respect to outliers. Our main purpose is to
provide a robust version of his work, which, for obvious reasons, we call RAVAS. In
developing our procedure we made four important improvements to the original AVAS.
Like robustness, these are available as options. Thus, RAVAS can be used for fitting
a response transformed GAM when robustness is not an issue, or for fitting a GAM
without response transformation.

Section 2 introduces the generalized additive model and the associated backfitting
algorithm for estimation of the transformations of the explanatory variables, which uses
a smoothing algorithm. The AVAS procedure and the associated numerical variance sta-
bilization transformation are described in §§2.3 and 2.4. Section 3 outlines the various
forms of robust regression that are available in our algorithm and describes the resulting
outlier detection procedures. The purpose is to provide an outlier free subset of the data
for transformation and smoothing. An outline of our improvements to AVAS is in §4.
Appreciably more detail of these is provided in Riani ez al. (2023) as well as further data
analyses. Section 5 presents the results of a simulation study comparing some properties
of AVAS and RAVAS in the presence of outliers: the mean squared error of parameter
estimates, the power of detection of outliers, (just for RAVAS) and the number of nu-
merical iterations of the two algorithms required for convergence. The performance of
AVAS is severely degraded by the presence of outliers. The last two sections present
a data analysis, which makes use of the augmented star plot as a guide to the choice
of options in the estimation process and includes a comparison of the choices using a
heatmap of correlations. The purpose of the paper is both to introduce the MATLAB
program we have written for this form of robust data analysis and to illustrate some of
its properties.

2 Generalized Additive Models and the Structure of AVAS

2.1 Introduction

The generalized additive model (GAM) has the form
P
g(Yi) =Bo+ > fi(Xij) +e. (1)
j=1

The functions f; are unknown and are, in general, found by the use of smoothing tech-
niques. A monotonicity constraint can be applied. If the response transformation or link
function g is unknown, it is restricted to be monotonic, but scaled to satisfy the techni-
cally necessary constraint that var{g(Y")} = 1. In the fitting algorithm the transformed
responses are scaled to have mean zero; the constant 3y can therefore be ignored. The
observational errors are assumed to be independent and additive with constant variance.
The performance of fitted models is compared by use of the coefficient of determination
R?. Since the f; are estimated from the data, the traditional assumption of linearity in
the explanatory variables is avoided. However, the GAM retains the assumption that ex-
planatory variable effects are additive. Buja et al. (1989) describe the background and
early development of this model.
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2.2 Backfitting

For the moment we assume that the response transformation g(Y") is known. The back-
fitting algorithm, described in Hastie and Tibshirani (1990, p.91), is used to fit a GAM.
The algorithm proceeds iteratively using residuals when one explanatory variable in
turn is dropped from the model.

With g(y) the n x 1 vector of transformed responses, let e;) be the vector of resid-
uals when f;(x;) is removed from the model without any refitting. Then

ey =9W) = Y fular). )

k#j=1

The new value of f;(.) depends on ordered values of e(;) and ;. Let the ordered values

of z; be xs ;. The residuals e(; are sorted in the same way to give the new order e, (jy.

Within each iteration each explanatory variable is dropped in turn; j = 1,...,p. The

iterations continue until the change in the value of R? is less than a specified tolerance.

For iteration [ the vector of sorted residuals for x; is el(j). The new estimate of
f;l“) s
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The function S depends on the constraint imposed on the transformation of variable j.
If the transformation can be non-monotonic, S denotes a smoothing procedure. As does
Tibshirani (1988), we use the supersmoother (Friedman and Stuetzle, 1982), a nonpara-
metric estimator based on local linear regression with adaptive bandwidths. Monotonic
transformations using isotonic regression are also an optional possibility (Barlow et al.,
1972).

The backfitting algorithm is not invariant to the permutation of order of the variables
inside matrix X, with high collinearity between the explanatory variables causing slow
convergence of the algorithm: the residual sum of squares can change very little between
iterations. Our option orderR2, §4.1, attempts a solution to this problem by reordering
the variables in order of importance.

2.3 The AVAS Algorithm

In this section we present the structure of the AVAS algorithm of Tibshirani (1988).
The variance stabilising transformation used to estimate the response transformation is
outlined in §2.4

Our RAVAS algorithm has a similar structure to that given here, made more elabo-
rate by the requirements of robustness and the presence of options. In this description
of the algorithm ¢y and ¢t X are transformed values of y and X.

1. Inifialise Data. Standardize response y so that ty = 0 and var(ty) = 1, where var
is the maximum l@lihood biased estimator of variance. Centre each column of the
X matrix sothat tX,; =0,j =1,....,p).
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2. Initial call to ‘Inner Loop’ to find initial GAM using ty and ¢.X; calculates ini-
tial value of the coefficient of determination, R2. Set convergence conditions on
number of iterations and value of R?.

3. Main (Outer) Loop. Given values of ty and t X at each iteration the outer loop finds
numerically updated values of the transformed response. Given the newly trans-
formed response, updated transformed explanatory variables are found through the
call to the backfitting algorithm (inner loop). In our version iterations continue until
a stopping condition on R? is verified or until a maximum number of iterations has
been reached.

2.4 The Numerical Variance Stabilizing Transformation

We first consider the case of a random variable Y with known distribution for which
E(Y) = p and var(Y) = V(). We seek a transformation ty = h(y) for which the
variance is, at least approximately, independent of the mean. Then Taylor series ex-
pansion of h(y) leads to var(Y) ~ V(u){h/(1)}?. For a general distribution h(y) is
then a solution of the differential equation dg/du = C'/+/V (u). For random variables
standardized, as are the values ty, to have unit variance, C' = 1 the variance stabilizing
transformation is

h(t):/ 1/4/V (u)du. 4

In the AVAS algorithm for data, 1/1/V () is estimated by the vector of the reciprocals
of the absolute values of the smoothed residuals sorted using the ordering based on
fitted values of the model. There are n integrals, one for each observation. The range of
integration for observation ¢ goes from the smallest fitted value, to the old transformed
value tAyi,i = 1,...,n. The computation of the n integrals uses the trapezoidal rule
and is outlined in subsection 4.2. Since the transformation is the sum of an increasing
number of non-negative elements, monotonicity is assured. The logged residuals in the
estimation of the variance function are smoothed using the running line smoother of
Hastie and Tibshirani (1986).

3 Robustness and Outlier Detection

3.1 Robust Regression

We robustify our transformation method through the use of robust regression to replace
least squares. The examples in this paper have been calculated using Adaptive Hard
Trimming. In the Forward Search (FS), the observations are hard trimmed, the amount
of trimming being determined by the choice of the trimming parameter h, the value of
which is found adaptively by the search. Atkinson et al., 2010 provide a general survey
of the FS, with discussion. We have also implemented Least Trimmed Squares, Ham-
pel, 1975, Rousseeuw, 1984 as well as Soft trimming (downweighting). Specifically we
include S and MM estimation.
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3.2 Robust Outlier Detection

Our algorithm works with & observations treated as outliers, providing the subset .S,
of m = n — k observations used in model fitting and parameter estimation. This section
describes our outlier detection methods.

The default setting of the forward search uses the multivariate procedure of Riani
et al. (2009) adapted for regression (Torti et al., 2021) to detect outliers at a simulta-
neous level of approximately 1% for samples of size up to around 1,000. Optionally, a
different level can be selected. For the other two methods of robust regression we apply
a Bonferroni inequality to robust residuals to give a simultaneous test for outliers.

Since different response transformations can indicate different observations as out-
liers, the identification of outliers occurs repeatedly during our robust algorithm, once
per iteration of the outer loop.

4 Improvements and Options

Our RAVAS procedure introduces five improvements to AVAS, programmed as options.
These do not have a hierarchical structure, so that there are 2° possible choices of the
options. The augmented star plot of §6 provides a method for assessing these choices.
We discuss the motivation and implementation for each. The order in §4.1 is that in
which the options are applied to the data when all five are used. We also give the names
of the options, which are used as labels in the augmented star plot.

4.1 [Initial Calculations

The structure of our algorithm is an elaboration of that of AVAS outlined in §2.3. Four
of the five options can be invoked before the start of the outer loop.

Initialisation of Data: Option tyinitial Our numerical experience is that it is often
beneficial to start from a parametric transformation of the response. This is optionally
found using the automatic robust procedure for power transformations described by Ri-
ani et al. (2022). For min(y) > 0 we use the Box-Cox transformation. For min(y) < 0
the extended Yeo-Johnson transformation is used (Atkinson ef al., 2020). This family
of transformations has separate Box and Cox transformations for positive and nega-
tive observations. In both cases the initial parametric transformations are only useful
approximations, found by searching over a coarse grid of parameter values. The final
non-parametric transformations sometimes suggest a generalization of the parametric
ones.

Ordering Explanatory Variables in Backfitting: Option scail To avoid dependence
of the fitted model on the order of the explanatory variables, one approach is to use
an initial regression to remove the effect through scaling (Breiman, 1988). With b; the
coefficient of f;(«) in the multiple regression of g(y) on all f;(z), the option scail

—

provides new transformed values for the explanatory variables: tX; = b;f;(x), j =
1,...,p. Option scail is used only in the initialisation of the data.
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Robust Regression and Robust Outlier Detection: Option rob We robustify our
method through the use of robust regression as described in §3. The subset S;,, chang-
ing at each iteration, defines the observations used in backfitting and in the calculation
of the variance stabilising transformation.

Ordering Predictor Variables: Option orderR2 For complete elimination of depen-
dence on the order of the variables, we include an option that, at each iteration, provides
an ordering which is based on the variable which produces the highest increment of R2.
With this option the most relevant features are immediately transformed and those that
are perhaps irrelevant will be transformed in the final positions. For robust estimation,
this procedure is applied solely to the observations in the subset S,,,. Option orderR?2 is
available at each call to the backfitting function.

4.2 Outer Loop

Numerical Variance Stabilising Transformation: Option trapezoid Plots of residu-
als against fitted values are widely used in regression analysis to check the assumption
of constant variance. Here the observations have been transformed, so the fitted val-
ues are @L To estimate the variance stabilizing transformation, the fitted values have
to be sorted, giving a vector of ordered values @S. The residuals are ordered in the
same way and, following the procedure of §2.4, provide estimates v; of the integrand
V=95(y) in (4). The v; provide estimates at the ordered points @S. Calculation of the
variance transformation (4) is however for sorted observed responses ty;, rather than
fitted, transformed responses tAys. As did Tibshirani, we use the trapezoidal rule to ap-
proximate the integral. Linear interpolation and extrapolation are used in calculation of
the v; at the ty;. We provide an option ‘trapezoid’ for the choice between two methods
for the extrapolation of the variance function estimate, the interpolation method re-
maining unchanged. Our approach leads to trapezoidal summands in the approximation
to the integral for the extrapolated elements, whereas Tibshirani’s leads to rectangu-
lar elements. When we are concerned with robust inference, there are only m = n — k
members of @S whereas there are n values of ty;, so that robustness increases the effect
of the difference between the two rules. The option trapezoid = false uses rectangular
elements in extrapolation.

5 Simulations

We now use simulations to compare overall properties of AVAS with our robust version.
The model was linear regression with data generated to have an average value of R? of
0.8. The responses were standardized to have zero mean and unit variance; 10% of
the observations were contaminated by a shift § and the responses were exponentiated.
There were 1,000 simulations for n = 200 and n = 1, 000 and 200 for n = 10, 000. We
encountered no numerical problems in the simulations. The figures compares the per-
formances of RAVAS (with all options) and standard AVAS (with no options). Results
for RAVAS use a dashed line.
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Fig. 1. Mean squared error (MSE) and average power. Top panels n = 200, p = 5, mid panels
n = 1,000, p = 10, bottom panels n = 10, 000, p = 20

The left-hand panels of Figure 1 show the mean squared error of the parameter
estimates in the linear models. For RAVAS, those for n = 200 and 1,000 exhibit a
slight increase for moderately small values of § which then decreases to be close to
zero as ¢ increases and the outliers become easier to detect. That for n = 10,000 is
virtually constant. The results for AVAS rapidly become much larger. The right-hand
column shows the average power, that is the proportion of generated outliers that are
detected by RAVAS. This climbs, in all cases, steadily to one. Of course, AVAS does
not detect outliers.

We also compared the number of iterations to convergence of the algorithms; the
default maximum is 20. Figure 2 shows results for the same simulations as above. The
three panels show that RAVAS converges in around 3 iterations, except for n = 200
when there is a peak around § = 2, that is when the outliers are large enough to have
an effect, but are still difficult to detect. This behaviour is distinct from that of AVAS,
where the number of iterations increases steadily both with § and with the sample size.

6 The Generalized Star Plot

We have added five options to the original AVAS. There are therefore 32 combina-
tions of options that could be chosen. It is not obvious that all will be necessary when
analysing any particular set of data. Our program provides flexibility in the assessment
of these options. One possibility is a list of options ordered by, for example, the value
of R? or of the significance of the Durbin-Watson test. In this section we describe the
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Fig. 2. Average number of iterations to convergence. Left-hand panel n = 200, p = 5, central
panel n = 1,000, p = 10, right-hand panel n = 10, 000, p = 20

augmented star plot, one graphical method for visualizing interesting combinations of
options in a particular data analysis. An example is Figure 3.

We remove all analyses for which the residuals fail the Durbin-Watson test of inde-
pendence and the Jarque-Bera normality test (Jarque and Bera, 1987), at the 10 per cent
level (two-sided for Durbin-Watson). The threshold of 10% can be optionally changed.
We order the remaining, admissible, solutions by the Durbin-Watson significance level
multiplied by the value of R? and by the number of units not declared as outliers. Other
options are available. The lengths of rays in individual panels of the plot are of equal
length for those features used in an analysis. All rays are in identical places in each
panel of the plot; the length of the rays for each analysis are proportional to ppyy, the
significance level of the Durbin-Watson test.

The ordering in which the five options are displayed in the plot depends on the
frequency of their presence in the set of admissible solutions. For example, if robustness
is the one which has the highest frequency, its ray is shown on the right. The remaining
options are displayed counterclockwise, in order of frequency.

7 Prediction of the Weight of Fish

Two websites, https://www.kaggle.com/aungpyaeap/fish-market and http://jse.amstat.

org/datasets/fishcatch.txt present data on the weight of 159 fish caught in a lake near
Tampere, Finland. Interest is in the relationship between weight and five measurements
of dimensions of the fish. There are 7 species of fish including pike. These behave
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rather differently from the other six species so we ignore them. We use the first three
lengths for which the remaining fish seem homogenous. This assumption will be tested
by our robust analysis if one or more species are identified as outliers. The variables are:

y  Weight of the fish (in grams)

x1 Length from the nose to the beginning of the tail (in cm)

29 Length from the nose to the notch of the tail (in cm)

x3 Length from the nose to the end of the tail (in cm).

After the deletion of the data on pike, 142 observations remain. Scatter plots of the
response against the three explanatory variables reveal that all three lengths are highly
correlated with the response, as they are with each other. It is reasonable to assume
that weight increases with each of the explanatory variables. We therefore impose a
monotonicity constraint on the transformations of the x ;. However, multiple regression
with highly correlated explanatory variables can lead to problems in interpretation, such
as estimated effects having a physically incorrect sign.

The augmented star plot for these data is in Figure 3. There are six combinations
of options that satisfy the constraints on the distribution of residuals. The first solution,
with an R? of 0.991 uses all five options except trapezoid. Robustness is used in all,
succeeding selections giving R? values of 0.988 or 0.983.

cail cail

I cail
r —r0b ® rob L rob
@

| R2-0.991 n=139 R2-0.983 fARRFOd  Ro_0.983 n=140
dw=0.95 jb=0.18 dw=0.86 jb=0.48 dw=0.74 jb= 0.5

cail
/s s;(i.lﬁﬁéi' e

r o rob =rob
/ \trapezoid
+ rderR2
I R2=0.983 n=138 R2=0.988 n=140 R2=0.988 n=140
dw=0.74 jb=0.16 dw=0.26 jb=0.19 dw= 0.2 jb=0.25

1 1 1 1 1 ]

Fig. 3. Weight of fish. Augmented star plot of six options. Option 1 excludes trapezoid
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Heatmap of the correlation matrix among the best solutions
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Fig. 4. Weight of fish. Heatmap of pairwise response correlations among the six solutions

The heatmap of the response correlations between the pairs of solutions is in Fig-
ure 4. This shows that the first three solutions are strongly correlated with each other,
as they are with the fifth and sixth solutions, the fifth and sixth solutions themselves
having a very high correlation of 0.998. The heatmap emphasizes that solution four is
appreciably different from the other five.

We now consider the adaptive identification of outliers using the FS. The first solu-
tion identifies three outliers. The left-hand panel of Figure 5 shows that the response has
been smoothly transformed. The plot of residuals against fitted values in the right-hand
panel shows that there is only one remote outlier and that there is no remaining structure
in the residuals. The plots of transformed explanatory variables (not given here) show
that f(x1) is decreasing and slightly curved. The other two functions are increasing but
only that for x5 is almost straight, with slight curvature for the lowest values of the
variable.

The interpretation of the results from fitting three explanatory variables is that the
variables are too highly correlated to give individually meaningful results. In our fi-
nal analysis of the data we used only x;. The star plot showed that the best selection
included all options, except orderR2, which option is not possible with a single explana-
tory variable. The value of R? for this fit is 0.980 with the deletion of a single outlier.
The three acceptable solutions had mutual fitted response correlations of 0.9994 or 1 -
the fitted model was stable to the choice of options.
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Fig.5. Weight of fish. Left-hand panel, transformed y against y; right-hand panel, residuals
against fitted values. Three outliers in red in the online version

In regressing volume on measurements of length, arguments from dimensional anal-
ysis suggest that volume should have a one third transformation. Our final plot, Figure 6,
compares the transformed responses from the fits with three and one explanatory vari-
ables to y'/3, for which transformation the value of R? = 0.968. The figure shows that
both non-parametric transformations are indeed close to y'/3 with a small systematic
departure for the largest values of x. The fitted values from the single explanatory vari-
able follow the power transformation slightly more closely than that when three vari-
ables are used. The transformation of x; is virtually straight with some curvature for
large values. The flexibility of the non-parametric transformation provides an improved
simple model compared with regression on untransformed x .
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Fig. 6. Weight of fish. Non-parametric transformation of response y compared to y*/3. Left-hand
panel, three explanatory variables: right-hand panel, only x1. Three and one outliers in black and
red in the online version
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