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Abstract. We propose two novel bandwidth selection procedures for the nonparametric re-

gression model with classical measurement error in the regressors. Each method evaluates the

prediction errors of the regression using a second (density) deconvolution. The first approach

uses a typical leave-one-out cross-validation criterion, while the second applies a bootstrap ap-

proach and the concept of out-of-bag prediction. We show the asymptotic validity of both

procedures and compare them to the SIMEX method of Delaigle and Hall (2008) in a Monte

Carlo study. As well as dramatically reducing computational cost, the methods proposed in this

paper lead to lower mean integrated squared error compared to the current state-of-the-art.

1. Introduction

Measurement error is rife in the social sciences due to the frequent use of survey data and
imprecise measurement instruments (see, for example, Blattman et al., 2016). As well as being
ubiquitous, if measurement error is not accounted for, estimation bias can be introduced, masking
the true relationship between variables and rendering testing procedures invalid. Moreover,
measurement error can be particularly troublesome when using nonparametric methods, which
are now commonplace in applied work thanks to increased computing power and data availability.

A vital concern when using any nonparametric technique is the choice of bandwidth, which
has led to great demand for robust, data-driven methods to select this parameter. To this end,
we consider bandwidth selection in the nonparametric estimation of a regression model with
errors-in-variables:

Y = m(X) + U, E[U |X] = 0, (1)

where Y ∈ R is a response variable, X ∈ R is an error-free but unobservable covariate, U ∈ R
is an error term, and m(·) = E[Y |X = ·]. We wish to estimate m using an independent and
identically distributed (i.i.d.) sample {Yj ,Wj}nj=1 of (Y,W ), where W is a noisy measurement
of X generated by

W = X + ε, (2)

where ε ∈ R is a classical measurement error that is independent of (Y,X) with known density
fε.

Let gft(t) =
´
eitxg(x)dx denote the Fourier transform of a function g with i =

√
−1 and

{Yj ,Wj}nj=1 be an i.i.d. sample of (Y,W ). One of the most popular estimators of the regression
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function m is the deconvolution kernel estimator (Fan and Truong, 1993)

m̂(x;h) =

∑n
j=1 Kh

(
x−Wj

h

)
Yj∑n

j=1 Kh

(
x−Wj

h

) ,

where Kh is the deconvolution kernel defined as

Kh(u) =
1

2π

ˆ
e−itu K ft(t)

f ft
ε (t/h)

dt,

with an (ordinary) kernel function K : R→ R and bandwidth parameter h. Even for this simple
estimator in this standard model, only one method currently exists to select the bandwidth
parameter: a SIMEX approach due to Delaigle and Hall (2008).1

This paper provides two alternative bandwidth selection procedures for the deconvolution
regression estimator. Each method evaluates the regression prediction errors using a second
(density) deconvolution. The first procedure uses a typical leave-one-out cross-validation crite-
rion, while the second applies a bootstrap approach and the concept of out-of-bag prediction
(Breiman, 2001). Both methods enjoy reduced computational cost relative to the SIMEX ap-
proach of Delaigle and Hall (2008). In particular, the SIMEX approach requires more than twice
the computation time of our out-of-bag method and more than 40 times the computation time
of our leave-one-out approach. These savings are particularly pertinent for nonparametric de-
convolution estimators, which are computationally expensive. Moreover, our simulation results
show that while neither the out-of-bag nor leave-one-out method dominates the other, they both
lead to reduced mean integrated squared error (MISE) in comparison to the SIMEX approach.

Deconvolution methods within statistics have predominantly focused on density and regression
estimation in the presence of measurement errors. Carroll and Hall (1988) and Stefanski and
Carroll (1990) introduced the deconvolution kernel density estimator, which has been extended
in many directions in the last three decades. Their approach was adapted to the problem of
regression estimation with mismeasured regressors by Fan and Truong (1993), which has subse-
quently also been extended in several directions, most notably to the heteroskedastic error case
(for example, Delaigle and Meister, 2007) and to settings where the distribution of the measure-
ment error is unknown (for example, Delaigle, Hall and Meister, 2008). For a detailed review on
this ever-growing subject, see, for example, Schennach (2016).

Throughout this literature, it has been widely acknowledged that the performance of kernel
deconvolution estimators depends sensitively on the choice of bandwidth. In response to this,
several papers have studied procedures to choose this tuning parameter. For example, for den-
sity deconvolution, Fan (1991) suggested a simple rule-of-thumb method, Stefanski and Carroll
(1990) proposed a plug-in approach based on minimising the asymptotic MISE, and Delaigle and
Gijbels (2004a) developed a bootstrap method. However, there has been far less work on the
notoriously difficult problem of bandwidth selection in nonparametric regression in the presence
of measurement error. Delaigle and Hall (2008) is one of the few exceptions to this, proposing a

1Delaigle, Hall and Jamshidi (2015) and Kato and Sasaki (2019) also provide methods (closely related to Delaigle
and Hall, 2008) for bandwidth selection in this model; however, these methods are designed to ensure the validity
of confidence bands rather than optimising the estimation of m.
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SIMEX-type approach to this issue; we compare their method to those developed in this paper in
Section 4. Finally, Chichignoud et al. (2017) developed an adaptive data-driven selector for the
wavelet resolution in the wavelet deconvolution regression. However, their method assumes that
the distribution of the regression error U is normal with known variance and that the support of
the error-free covariate X is known.

The classical measurement error assumption, i.e. the full independence between X and ε, is
commonly required in the deconvolution literature but can be relaxed to subindependence be-
tween X and ε as argued in Schennach (2019). In particular, for the validity of the deconvolution
based estimator m̂(x;h), we only require f ft

W (t) = f ft
X(t)f ft

ε (t) for all t ∈ R. In situations where
subindependence betweenX and ε is violated, m̂(x;h) is biased in general, and identification ofm
requires alternative strategies typically based on completeness conditions; see Hu and Schennach
(2008) and Hu, Schennach and Shiu (2022) among others.

This paper proceeds as follows. In Section 2, we give details of the bandwidth selection
mechanisms proposed for m̂(x;h) and outline their theoretical properties. Section 3 extends the
procedures to two important cases: (1) when the measurement error distribution is unknown;
and (2) when there is more than one covariate. Section 4 provides results for the small sample
properties of our procedures and compares them to the SIMEX approach of Delaigle and Hall
(2008). Finally, in Section 5, we apply our method to real data to describe the relationship
between blood pressure and cognitive ability. All mathematical proofs and auxiliary lemmas are
relegated to the Appendix.

2. Methodology

In this section, we present our bandwidth selection procedures. As a population criterion
for determining the optimal bandwidth, we consider the mean squared prediction error for the
(n+ 1)th observation

R(h) = E[{Yn+1 − m̂(Xn+1;h)}2]. (3)

Our aim is to estimate this function and select the bandwidth h that minimises this.2 In the
absence of measurement error (i.e., X is observable), R(h) could be estimated by the leave-one-
out cross-validation estimator

R̂infeasible(h) =
1

n

n∑
j=1

{Yj − m̂j(Xj ;h)}2,

where m̂j(·;h) is the leave-j-out counterpart of m̂(·;h). However, when X is mismeasured, this
approach is infeasible, and an alternative strategy must be found that allows for the estimation
of R(h) based only on the observables (Y,W ) generated by (1) and (2).

Below, we present two approaches to estimate the mean squared prediction error R(h): the
leave-one-out approach (Section 2.1) and the out-of-bag approach (Section 2.2).

2Note that we only consider global bandwidth selection; the choice of a local bandwidth which changes over
the range of the regressor is beyond the scope of this paper. For local bandwidth choice, one may extend the
conventional approach to minimise an estimate of the (approximate) MSE E[{m̂(x;h)−m(x)}2] for a given x. It
would also be interesting to see if recent developments in coverage-error optimal bandwidths (Calonico, Cattaneo
and Farrell, 2018, 2020) could be extended to the nonparametric deconvolution context.
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2.1. Leave-One-Out Approach. Note that the mean squared prediction error can be expressed
as

R(h) = E

[¨
{y − m̂(x;h)}2fY X(y, x)dydx

]
, (4)

where fY X is the joint density function of (Y,X), and the expectation is taken with respect
to the observables used to compute m̂(·;h). The joint density fY X can be estimated by the
deconvolution kernel density estimator

f̂Y X(y, x) =
1

nhyh1,x

n∑
j=1

Ky

(
y − Yj
hy

)
Kh1,x

(
x−Wj

h1,x

)
,

where Ky is an ordinary kernel function and (hy, h1,x) are bandwidth parameters for this density
estimation. Since Y is error-free, we apply the deconvolution kernel Kh1,x only for W . If Ky is
a higher-order kernel satisfying

´
Ky(a) = 1 and

´
alKy(a) = 0 for l = 1, 2, then the integral in

(4) can be estimated by3

¨
{y − m̂(x;h)}2f̂Y X(y, x)dydx =

1

nh1,x

n∑
j=1

ˆ
{Yj − m̂(x;h)}2Kh1,x

(
x−Wj

h1,x

)
dx.

Motivated by this expression, we can estimate R(h) using the leave-one-out approach as

R̂LOO(h) =
1

nh1,x

n∑
j=1

ˆ
{Yj − m̂j(x;h)}2Kh1,x

(
x−Wj

h1,x

)
dx. (5)

In practice, the integration with respect to x in (5) is commonly conducted over a compact set
X instead of R. To this end, instead of R̂LOO(h), we focus on the following truncated estimator

R̃LOO(h) =
1

nh1,x

n∑
j=1

ˆ
X
{Yj − m̂j(x;h)}2Kh1,x

(
x−Wj

h1,x

)
dx, (6)

and the optimal bandwidth, denoted as h∗LOO, is chosen as the minimiser of R̃LOO(h), i.e.,

h∗LOO = argmin
h∈[L1,n,H1,n]

R̃LOO(h),

where L1,n and H1,n are deterministic sequences characterising the upper and lower bounds of
the region to search for h∗LOO, respectively.

In order to implement R̃LOO(h), an auxiliary bandwidth h1,x for estimation of fY X must be
chosen. This is typical in bandwidth selection procedures in the presence of measurement error.
For example, Delaigle and Gijbels (2004a) require an initial bandwidth to estimate a criterion
function for a density estimator bandwidth choice procedure, as do Delaigle and Hall (2008) for
their SIMEX approach. Both Delaigle and Gijbels (2004a) and Delaigle and Hall (2008) suggest
using the normal reference bandwidth of Stefanski and Carroll (1990). In Sections 4 and 5,

3It is interesting to note that our deconvolution approach to estimate R(h) in (4) may be applied to other
estimation methods to construct m̂(x;h), where the meaning of the tuning parameter h changes. For example,
Davezies and Barbanchon (2017) and Bartalotti, Brummet and Dieterle (2020) proposed nonparametric regression
estimators in the context of regression discontinuity designs, where auxiliary data are available. Although they
allow non-classical measurement errors, it would be interesting to see if our approach could be adapted to suggest
bandwidth selectors for their estimators under the classical measurement error setting.
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we use the bandwidth selection procedure of Delaigle and Gijbels (2004a), which itself uses a
normal reference pilot bandwidth. In Section 4, we also provide results on the sensitivity of our
procedure to this initial bandwidth choice.

To establish the asymptotic validity of R̃LOO(h), based on Wong (1983), we focus on the
following integrated squared error loss4

Rn(h) =

ˆ
X
{m̂(x;h)−m(x)}2f(x)dx, (7)

where f is the marginal density of X. In particular, we shall prove consistency of the form
Rn(h∗LOO)

p→ 0 as n → ∞, i.e., the integrated squared error loss converges to zero with
the optimal bandwidth. To this end, we impose the following assumptions. Let rε(a) ={

inf |t|≤a−1 |f ft
ε (t)|

}−1.

Assumption.

(1): {Yj ,Wj}nj=1 is an i.i.d. sample of (Y,W ) generated by (1) and (2), E[Y 8] < ∞, ε is
independent of (Y,X) with zero mean, and f ft

ε does not vanish anywhere.
(2): E[Y 2|X = ·], the regression function m, and the density f of X are p-times continu-

ously differentiable with bounded and integrable derivatives, f is bounded away from zero
over X , and E[Y 4|X = ·] is bounded.

(3): K is symmetric around zero and satisfies
´
K(u)du = 1,

´
K(u)updu 6= 0, and´

K(u)uqdu = 0 for all positive integers q < p. Also, K ft(t) is supported on [−1, 1]

and bounded.
(4): n−1/2h−1

1,x log(1/
√
h1,x) max{n−1/2r2

ε (h1,x), 1} → 0 as n→∞.
(5): n−1/2L−1

1,n max{n−1/2r2
ε (L1,n) log(1/

√
L1,n), n−1/4h−1

1,xrε(h1,x)rε(L1,n), log(1/
√
L1,n)} →

0, H1,n → 0, and L1,n ≤ h1,x ≤ H1,n as n→∞.

Assumption (1) requires random sampling, some regularity conditions, and a classical mea-
surement error with known distribution. In particular, E[Y 8] < ∞ is used in Lemma 3 in the
Appendix to control the order of max1≤j≤n |Yj |4. The non-vanishing condition for f ft

ε is com-
monly employed in kernel-based deconvolution methods and is satisfied for many distributions.
Our method may be extended to the case where f ft

ε is allowed to take zeros by introducing an
additional ridge parameter (see, for example, Hall and Meister, 2007, and Meister, 2009). As-
sumption (2) imposes smoothness restrictions on the first and second conditional moments of Y
and the density of X, bounded fourth conditional moments of Y , and that the density of X is
non-vanishing over X . Assumption (3) is a higher-order kernel assumption, which, together with
the smoothness restrictions imposed in Assumption (2), are used to reduce the estimation bias.
Due to the regularisation used in deconvolution problems, the Fourier transform of K is further
required to be compactly supported. Assumptions (4) and (5) concern the auxiliary bandwidth
h1,x, and the upper and lower bounds of the region to search for h∗LOO. In particular, to estab-
lish the uniform rate of convergence for the estimands based on h1,x, we need Lemma 6 in the

4For the error-free case, Wong (1983) considered the average squared error loss n−1 ∑n
j=1{m̂(Xj ;h)−m(Xj)}2 as

the criterion to select the bandwidth. Since X is unobservable in our contaminated case, it is natural to consider
the integrated squared error loss Rn(h).
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Appendix, which requires n−1/2h−1
1,x log(1/

√
h1,x) → 0. The other condition on h1,x is used to

ensure the derived rate converges to zero as n→∞. The upper bound H1,n is only required to
be no smaller than the auxiliary bandwidth h1,x and to go to zero as n→∞. The condition on
the lower bound L1,n is more complicated; it must be no greater than h1,x and also depends on
the smoothness of the error distribution, reflected by rε(·).

It is worth noting at this stage that we do not split our discussion based on the decay rate of
the tail of the error characteristic function f ft

ε , as is typical in the nonparametric measurement
error literature. By maintaining generality, our results can be applied to both ordinary smooth
and supersmooth error distributions. These assumptions lead to the following consistency result.

Theorem 1. Under Assumptions (1)-(4),

Rn(h∗LOO)
p→ 0.

Theorem 1 establishes the consistency of h∗LOO with respect to the integrated squared error
loss Rn (in an analogous way to Wong, 1983). Since Rn is defined by integrating x over X rather
than R, h∗LOO could be inconsistent; thus, integrating x over a truncated region does carry a
cost. However, this cost will be small when working with a large enough X (so that X is close
to the support of X).

It is also worth noting that the consistency result presented here is derived from Rn(h∗LOO) ≤
Rn(h1,x) +O

(
suph∈[L1,n,H1,n] |∆n(h)|

)
(see eq. (12) in Appendix A.1), where ∆n(·) depends on

the auxiliary bandwidth, h1,x, the smoothness of the conditional moments and densities reflected
by p, and the smoothness of the measurement error distribution reflected by rε(·). By Lemma 6

in the Appendix, Rn(h1,x) = Op(r
2
n(h1,x)), where rn(h1,x) = n−1/2h

−1/2
1,x rε(h1,x)

√
log(1/

√
h1,x).

Thus, if we further impose suph∈[L1,n,H1,n] |∆n(h)|r−2
n (h1,x)→ 0, then Rn(h∗LOO) ≤ Rn(h1,x)(1 +

o(1)), which shows that h∗LOO asymptotically leads to a value for Rn no greater than that achieved
by the auxiliary bandwidth h1,x, so h∗LOO is at least as good as the auxiliary bandwidth.

2.2. Out-Of-Bag Approach. In this section, we present an alternative bootstrap-based proce-
dure. Take a bootstrap sample of size n (with replacement) from the original data and estimate
m using this bootstrap sample (denoted by m̂b(·;h) for b = 1, . . . , B). Let Ib be the set of indices
of observations in the bootstrap sample b, Icb be the complement of this set, i.e. the out-of-bag
observations, and ncb be the cardinality of the set Icb . On average, these out-of-bag observations
include 36.8% of the total observations, irrespective of sample size (Breiman, 2001). For each
b = 1, . . . , B, the out-of-bag bootstrap counterpart of (5) can be obtained as

R̃b(h) =
1

ncbh2,x

∑
j∈Icb

ˆ
X
{Yj − m̂b(x;h)}2Kh2,x

(
x−Wj

h2,x

)
dx,

where h2,x is an auxiliary bandwidth.
The out-of-bag bootstrap estimator for the mean squared prediction error R(h) is then ob-

tained by taking an average over the bootstrap samples:

R̃OOB(h) =
1

B

B∑
b=1

R̃b(h), (8)
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and the optimal bandwidth, denoted h∗OOB, is chosen as the minimiser of R̃OOB(h), i.e.,

h∗OOB = argmin
h∈[L2,n,H2,n]

R̃OOB(h),

where L2,n and H2,n are deterministic sequences characterizing the upper and lower bounds of
the region to search for h∗OOB.

It is worth noting that an alternative approach of sample splitting is undesirable in this
context. Such an approach proceeds by estimating m on some fraction of the data and using
the remaining data to evaluate the estimator. This would result in an estimator of m using a
sample size of less than n; hence, the bandwidth chosen is optimal for an estimator which does
not use all observations. Of course, if the order of the optimal bandwidth is known, the selected
bandwidth can be scaled down by the appropriate factor. However, the order of the optimal
bandwidth typically depends on features of the underlying data, such as the smoothness of the
measurement error, that are unlikely to be known in practice. Our out-of-bag approach avoids
this issue, resulting in a bandwidth applicable for samples of size n.

To show the asymptotic validity of R̃OOB(h), we introduce the following conditions on the
auxiliary bandwidth and the bounds of the search region that represent a slight relaxation of
Assumptions (4) and (5).

Assumption.

(4’): (nh2,x)−1r2
ε (h2,x) log(1/

√
h2,x)→ 0 as n→∞.

(5’): (nL2,n)−1r2
ε (L2,n) log(1/

√
L2,n)→ 0, H2,n → 0, and L2,n ≤ h2,x ≤ H2,n as n→∞.

Theorem 2. Under Assumptions (1)-(3), (4’) and (5’), it holds

Rn(h∗OOB)
p→ 0.

It would be interesting to investigate whether our bandwidth selection procedures achieve
asymptotic optimality in an analogous sense to Härdle and Marron (1985) or Härdle, Hall and
Marron (1988) for the error-free case. However, we leave this extension for future research.

3. Generalizations

3.1. Unknown Measurement Error. Throughout the preceding discussion, we have assumed
that the characteristic function of the measurement error f ft

ε is known to the researcher. However,
this is neither realistic in practice nor necessary for our bandwidth selection procedures. Given
additional auxiliary data, there are several potential methods to estimate this characteristic
function. For example, suppose we have a pair of noisy measurements of X , denoted W (1) and
W (2), generated by

W (1) = X + ε(1), W (2) = X + ε(2),

where X and (ε(1), ε(2)) are independent, but ε(1) and ε(2) need neither be independent nor
identically distributed. Consider

W =
W (1) +W (2)

2
= X +

ε(1) + ε(2)

2︸ ︷︷ ︸
ε

, εr =
W (1) −W (2)

2
.
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If the conditional distribution of ε(2) given ε(1) is symmetric around zero, εr has the same distri-
bution as ε (Carroll et al., 2006, p.298). If fε is symmetric around zero, based on an i.i.d. sample
{εrj}nj=1 of εrj , we can estimate f ft

ε by

f̂ ft
ε (t) =

∣∣∣∣∣∣ 1n
n∑
j=1

cos(tεrj)

∣∣∣∣∣∣ .
Given f̂ ft

ε , the regression function m can be estimated by

m̌(x;h) =

∑n
j=1 K̂h

(
x−Wj

h

)
Yj∑n

j=1 K̂h

(
x−Wj

h

) ,

where K̂h is the deconvolution kernel based on f̂ ft
ε and is defined as

K̂h(x) =
1

2π

ˆ
e−itx K ft(t)

f̂ ft
ε (t/h)

dt.

Then, the leave-one-out and out-of-bag criterion functions can be constructed as

R̃LOO,r(h) =
1

nh1,x

n∑
j=1

ˆ
X
{Yj − m̌j(x;h)}2K̂h1,x

(
x−Wj

h1,x

)
dx,

R̃OOB,r(h) =
1

B

B∑
b=1

1

ncbh2,x

∑
j∈Icb

ˆ
X
{Yj − m̌b(x;h)}2K̂h2,x

(
x−Wj

h2,x

)
dx,

where m̌j(x;h) and m̌b(x;h) are the leave-j-out counterpart and the out-of-bag counterpart of
m̌(x;h), respectively, and are defined as

m̌j(x;h) =

∑
l 6=j K̂h

(
x−Wl
h

)
Yl∑

l 6=j K̂h

(
x−Wl
h

) , m̌b(x;h) =

∑
l∈Ib K̂h

(
x−Wl
h

)
Yl∑

l∈Ib K̂h

(
x−Wl
h

) .

Note that we do not need leave-one-out or out-of-bag estimates of f̂ ft
ε in R̃LOO,r(h) or R̃OOB,r(h).

The selected bandwidth is then defined as the minimizer of the corresponding criterion function,
i.e.,

h∗LOO,r = argmin
h∈[L1,n,H1,n]

R̃LOO,r(h), h∗OOB,r = argmin
h∈[L2,n,H2,n]

R̃OOB,r(h).

Since the arguments are similar, to show the asymptotic validity of the criterion functions, we
focus on R̃LOO,r(h), for which we introduce the following conditions.

Assumption.

(4”): n−1/2h−1
1,xr

2
ε (h1,x) log(1/h1,x)→ 0 as n→∞.

(5”): n−1/2L−1
1,nrε(L1,n) max{rε(L1,n) log(1/L1,n), n−1/4h−1

1,xrε(h1,x)} → 0, H1,n → 0, and
L1,n ≤ h1,x ≤ H1,n as n→∞.

(6): f ft
ε is real-valued, E[|ε|2+η] < ∞ for some η > 0, εr has the same distribution as ε,

and {εrj}nj=1 is an i.i.d. sample of εr.

Assumptions (4”) and (5”) impose conditions on the auxiliary bandwidth h1,x, and the upper
and lower bounds of the region to search for h∗LOO,r. The upper bound H1,n, as in the case
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when fε was known, is simply required to be no smaller than the auxiliary bandwidth h1,x and
to go to zero as n → ∞. The condition on the lower bound L1,n changes to adapt to the extra
estimation error brought by using f̂ ft

ε . Assumption (6) is imposed for the identification of fε
based on W (1) and W (2). The moment condition on ε is mild and is needed to characterize the
uniform convergence rate of f̂ ft

ε over an expanding region. Replacing Assumptions (4) and (5)
with Assumptions (4”) and (5”), under Assumption (6), we have the consistency result for the
case when the measurement error distribution is unknown but estimated using repeated noisy
measurements as follows.

Theorem 3. Under Assumptions (1)-(3), (4”), (5”), and (6),

Rn,r(h
∗
LOO,r)

p→ 0,

where Rn,r(h) =
´
X {m̌(x;h)−m(x)}2f(x)dx is the integrated squared error loss for m̌.

3.2. Multivariate Regression. For ease of exposition, thus far we have restricted attention
to a single mismeasured regressor; however, the methods proposed in this paper can easily be
extended to multivariate settings. In particular, instead of (1), we now consider the model

Y = M(X) + U, E[U |X] = 0, (9)

where X = (X1, . . . , XD) is a D-dimensional vector of error-free but unobservable covariates.
Again, we denote W = (W1, . . . ,WD) as the vector of noisy measurements of X contaminated
with classical measurement errors ε = (ε1, . . . , εD), i.e.

Wd = Xd + εd, (10)

for d = 1, . . . , D. Here, we focus on the case when all covariates are contaminated. If one wanted
to control for correctly measured variables, residuals from an initial regression of Y on all of the
correctly measured variables could be used as the dependent variable.

The criterion functions for the selection of the optimal set of bandwidths take analogous forms
to their univariate counterparts:

R̃LOO,m(h) =
1

n
(∏D

d=1 h1,x,d

) n∑
j=1

ˆ
X
{Yj − M̂j(x;h)}2

{
D∏
d=1

Kεd,h1,x,d

(
xd −Wd,j

h1,x,d

)}
dx,

R̃OOB,m(h) =
1

B

B∑
b=1

1

ncb

(∏D
d=1 h2,x,d

) ∑
j∈Icb

ˆ
X
{Yj − M̂b(x;h)}2

{
D∏
d=1

Kεd,h2,x,d

(
xd −Wd,j

h2,x,d

)}
dx,

where Kεd,a(u) = 1
2π

´
e−itu Kft(t)

f ftεd
(t/a)

dt denotes the deconvolution kernel associated with measure-

ment error εd, x = (x1, . . . , xD), h = (h1, . . . , hD) is a vector of the bandwidths to be optimised,
and hι,x = (hι,x,1, . . . , hι,x,D) is a vector of auxiliary bandwidths to estimate the density of fY X
for ι = 1, 2. X now denotes a compact set in RD, and M̂j(x;h) is the leave-j-out counterpart of
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the multivariate deconvolution kernel estimator

M̂(x;h) =

∑n
j=1

∏D
d=1 Kεd,hd

(
xd−Wd,j

hx,d

)
Yj∑n

j=1

∏D
d=1 Kεd,hd

(
xd−Wd,j

hx,d

) ,

and M̂b is the out-of-bag counterpart, which is defined analogously to M̂j .
The selected bandwidth is then defined as the minimizer of the corresponding criterion func-

tion, i.e.

h∗LOO,m = argmin
h∈
∏D
d=1[L1,n,d,H1,n,d]

R̃LOO,m(h), h∗OOB,m = argmin
h∈
∏D
d=1[L2,n,d,H2,n,d]

R̃OOB,m(h),

where Lι,n,1, . . . , Lι,n,x,D and Hι,n,1, . . . ,Hι,n,D are deterministic sequences characterising the
upper and lower bounds of the search region, and

∏D
d=1[Lι,n,d, Hι,n,d] denotes the Cartesian

product [Lι,n,1, Hι,n,1]× . . .× [Lι,n,D, Hι,n,D] for ι = 1, 2.
As the arguments are similar, to show the asymptotic validity of the criterion functions, we

again focus on R̃LOO,m(h), for which we introduce the following conditions.

Assumption.

(1” ’): {Yj ,Wj}nj=1 is an i.i.d. sample of (Y,W ) generated by (9) and (10), E[Y 8] < ∞,
elements of ε are mutually independent and are independent of (Y,X) with zero means,
and f ft

εd
does not vanish anywhere for d = 1, . . . , D.

(2” ’): E[Y 2|X = ·], the regression function M , and the joint density F of X are p-times
continuously differentiable with bounded and integrable derivatives, F is bounded away
from zero over X , and E[Y 4|X = ·] is bounded.

(4” ’): n−1/2
{∏D

d=1 h
−1
1,x,d

}
log
(∏D

d=1 h
−1/2
1,x,d

)
max

{
n−1/2

∏D
d=1 r

2
εd

(h1,x,d), 1
}
→ 0 as n →

∞.

(5” ’): n−1/2
{∏D

d=1 L
−1
1,n,d

}
max


n−1/2

{∏D
d=1 r

2
εd

(L1,n,d)
}

log
(∏D

d=1 L
−1/2
1,n,d

)
,

n−1/4
{∏D

d=1 h
−1
1,x,drεd(h1,x,d)rεd(L1,n,d)

}
,

log
(∏D

d=1 L
−1/2
1,n,d

)
→ 0,

max1≤d≤DH1,n,d → 0, and h1,x ∈
∏D
d=1[L1,n,d, H1,n,d] as n→∞.

Assumptions (1” ’), (2” ’), (4” ’) and (5” ’) are natural extensions of Assumptions (1), (2), (4)
and (5) to the case where X is a vector. In particular, when D = 1, Assumptions (1” ’), (2” ’),
(4” ”) and (5” ’) coincide with Assumptions (1), (2), (4) and (5). Replacing Assumptions (1), (2),
(4) and (5) with these assumptions, we obtain the consistency result for the general multivariate
case as follows.

Theorem 4. Under Assumptions (1”’), (2”’), (3), (4”’) and (5”’),

Rn,m(h∗LOO,m)
p→ 0,

where Rn,m(h) =
´
X {M̂(x;h)−M(x)}2F (x)dx is the integrated squared error loss for M̂ .

Similar comments to Theorem 1 apply here. To obtain the optimal bandwidth parameters in
the general multivariate case, a grid search across all combinations of h1, . . . , hD is required; note
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that this will be computationally demanding even if D is small. Given the lower computational
cost of the leave-one-out procedure, we suggest practitioners to use this approach rather than
the out-of-bag method in this case.

4. Simulation

In this section, we evaluate the finite sample performance of the proposed bandwidth selection
procedures using Monte Carlo simulation. The following data generating process is considered

Y = m(X) + U,

where U andX are drawn independently fromN(0, 1) and four specifications ofm are considered:

DGP1 :m(x) = x,

DGP2 :m(x) = x− x2,

DGP3 :m(x) = cos(x),

DGP4 :m(x) = sin(x).

Note that each function is further standardised by its respective standard deviation, SD[m(X)],
so that each regression function has the same explanatory power.

Although X is assumed unobservable, we observeW = X+ε, where ε is independent of (X,U)

and has a known distribution. We consider two cases for this distribution based on smoothness:
an ordinary smooth setting where ε has a zero mean Laplace distribution, and a supersmooth
setting where ε has a normal distribution with zero mean. We provide results for two levels of
noise, σε = 1/3 and σε = 1/2, and two sample sizes, n = 250 and n = 500. All results are based
on 1000 Monte Carlo replications.

Throughout the simulation study, we use the infinite-order flat-top kernel proposed by Mc-
Murry and Politis (2004), which is defined by its Fourier transform

K ft(t) =


1 if |t| ≤ 0.05,

exp
{
− exp(−(|t|−0.05)2)

(|t|−1)2

}
if 0.05 < |t| < 1,

0 if |t| ≥ 1.

We compare three methods of bandwidth selection. The out-of-bag method, the leave-one-out
approach, and the SIMEX procedure of Delaigle and Hall (2008). The SIMEX procedure is based
on a leave-one-out criterion. It involves estimating the optimal bandwidth for two simulated
datasets with varying degrees of measurement error and deducing the implied optimal bandwidth
for the original dataset based on these results. This is typically repeated B times, with the results
averaged to get a final estimate for the optimal bandwidth. From a computational standpoint,
this involves approximately 2B times more function evaluations than the leave-one-out approach
of this paper. Following Delaigle and Hall (2008) we choose B = 20 and use the same number of
bootstrap replications for the out-of-bag method. Benchmarking the computational cost of the
three methods, we found the leave-one-out approach to be 16.6 times faster than the out-of-bag
method and 41.5 (approximately 2B) times faster than the SIMEX procedure.
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All three methods require choosing a range of integration χ; we keep this fixed throughout
Monte Carlo replications at [−1.96, 1.96], which captures approximately 95% of the observations
of X. Furthermore, all three methods use an initial bandwidth hx. To choose this, we use the
approach of Delaigle and Gijbels (2004b), and investigate the sensitivity of our results to this
choice below.

Finally, it is necessary to choose a grid of potential bandwidths to search over. From prelimi-
nary investigations, results appear insensitive to this choice, providing that the choice-set is large
enough to include the optimally chosen bandwidth; we used [0.16, 0.44] for all three methods.
While the assumptions in Section 2 suggest different search ranges for the leave-one-out and
out-of-bag methods, we found that both methods selected very similar bandwidths irrespective
of the size of these bounds. In practice, we recommend plotting the estimated mean squared
prediction error over a wide range of bandwidths to visually inspect that a global minimum has
been found in each case.

In Table 1, we give results for the MISE of m̂ between the 2.5th and 97.5th percentile of X.
To ease comparison, all results are multiplied by 10 and we highlight in bold the optimal method
for each DGP, sample size, error distribution, and error variance combination. We also give the
optimal bandwidth size (averaged over Monte Carlo simulations) for each setting.

Table 1: MISE Results - Known Error Density

DGP 1 (Linear)

Error Standard Deviation σε = 1/3 σε = 1/2

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Optimal Bandwidth Size 0.28 0.24 0.28 0.25 0.31 0.27 0.32 0.29

SIMEX 0.65 0.33 0.78 0.33 0.84 0.54 1.14 0.61

OOB 0.50 0.29 0.54 0.30 0.65 0.52 0.68 0.54

LOO 0.55 0.30 0.58 0.31 0.75 0.46 0.80 0.55

DGP 2 (Quadratic)

Optimal Bandwidth Size 0.25 0.23 0.25 0.23 0.27 0.25 0.28 0.26

SIMEX 1.04 0.47 1.07 0.53 1.37 0.86 1.58 1.24

OOB 0.72 0.41 0.78 0.41 1.10 0.61 1.43 0.70

LOO 0.74 0.42 0.84 0.42 1.05 0.65 1.20 0.74

DGP 3 (Cos)

Optimal Bandwidth Size 0.21 0.20 0.23 0.21 0.25 0.23 0.28 0.25

SIMEX 1.47 0.71 1.51 0.74 2.60 1.36 2.70 1.79

OOB 1.07 0.62 1.21 0.64 1.61 1.02 1.89 1.11

LOO 1.06 0.63 1.22 0.64 1.66 1.04 1.84 1.18

DGP 4 (Sin)
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Optimal Bandwidth Size 0.21 0.20 0.22 0.20 0.25 0.21 0.28 0.24

SIMEX 0.97 0.36 1.19 0.38 2.89 0.68 2.99 1.02

OOB 0.83 0.34 0.88 0.37 1.27 0.68 1.36 0.89

LOO 0.69 0.34 0.77 0.36 1.15 0.62 1.42 0.77

While neither the out-of-bag nor leave-one-out method dominates the other, both are prefer-
able to the SIMEX approach in all parameter settings; although, the gap between SIMEX and
our methods narrows with a larger sample size. As expected, the results for all three approaches
improve as the sample size increases and as the measurement error noise decreases. Furthermore,
each method shows better performance under ordinary smooth error relative to supersmooth.
This stands in agreement with the theoretical literature which shows that the convergence rate of
deconvolution based estimators deteriorates in the face of supersmooth error relative to ordinary
smooth.

In Table 2, we give analogous results when the measurement error density is unknown. For
this setting, a second noisy measure of X is generated as W r = X + εr, where εr is distributed
identically to and independently of ε. The leave-one-out and out-of-bag methods proceed as out-
lined in Section 3.1, with the characteristic function of ε estimated using the approach discussed
in that section. The SIMEX approach is constructed as discussed in Section 3.4 of Delaigle and
Hall (2008).

Table 2: MISE Results - Estimated Error Density

DGP 1 (Linear)

Error Standard Deviation σε = 1/3 σε = 1/2

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Optimal Bandwidth Size 0.27 0.24 0.29 0.25 0.30 0.28 0.32 0.29

SIMEX 0.76 0.36 1.12 0.40 0.85 0.60 1.59 0.71
OOB 0.50 0.28 0.51 0.31 0.63 0.47 0.66 0.49
LOO 0.54 0.29 0.56 0.32 0.72 0.51 0.76 0.55

DGP 2 (Quadratic)

Optimal Bandwidth Size 0.25 0.23 0.25 0.23 0.27 0.26 0.29 0.26

SIMEX 0.87 0.50 1.02 0.56 1.40 0.90 1.47 1.26
OOB 0.70 0.38 0.74 0.43 1.04 0.59 1.17 0.72
LOO 0.73 0.39 0.78 0.44 1.04 0.62 1.12 0.80

DGP 3 (Cos)

Optimal Bandwidth Size 0.22 0.20 0.23 0.21 0.26 0.23 0.27 0.25

SIMEX 1.91 0.74 1.89 0.76 2.68 1.34 2.72 1.84
OOB 1.28 0.57 1.31 0.66 1.62 1.01 1.91 1.18
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LOO 1.07 0.58 1.33 0.67 1.57 1.01 1.73 1.27

DGP 4 (Sin)

Optimal Bandwidth Size 0.22 0.20 0.23 0.21 0.25 0.22 0.28 0.24

SIMEX 1.15 0.36 1.67 0.39 3.05 0.70 3.09 1.29
OOB 0.78 0.34 0.80 0.36 1.36 0.65 1.50 0.97
LOO 0.67 0.34 0.71 0.36 1.14 0.61 1.30 0.86

It is encouraging to see that when the measurement error density must be estimated, the
MISE is virtually unaffected. Indeed, in several cases, the MISE is, in fact, lower when the
density is estimated in comparison to the known density setting. Consequently, the findings are
very similar to those found in the known density case: the out-of-bag and leave-one-out methods
generally provide comparable results, and both dominate the SIMEX approach.

Finally, in Table 3, results are given for the unknown error density case (as in Table 2) but
here X is drawn from an ordinary smooth distribution; in particular, a Laplace distribution with
a standard deviation of 1. All other settings are identical to those used to produce Table 2. As
in the previous two simulation settings the results are qualitatively similar, as are the optimal
bandwidth sizes.

Table 3: MISE Results - Estimated Error Density (Ordinary
Smooth X)

DGP 1 (Linear)

Error Standard Deviation σε = 1/3 σε = 1/2

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Optimal Bandwidth Size 0.28 0.24 0.28 0.25 0.31 0.28 0.33 0.29

SIMEX 0.68 0.36 1.51 0.38 1.17 0.53 1.64 0.64
OOB 0.48 0.28 0.67 0.31 0.78 0.40 0.66 0.48
LOO 0.53 0.28 0.56 0.32 0.72 0.42 0.77 0.55

DGP 2 (Quadratic)

Optimal Bandwidth Size 0.25 0.24 0.25 0.24 0.28 0.26 0.29 0.27

SIMEX 0.99 0.52 1.25 0.60 2.14 1.03 2.62 1.17
OOB 0.76 0.37 0.77 0.42 1.17 0.56 1.16 0.71
LOO 0.71 0.38 0.80 0.43 1.05 0.59 1.15 0.80

DGP 3 (Cos)

Optimal Bandwidth Size 0.24 0.22 0.24 0.22 0.27 0.24 0.29 0.26

SIMEX 2.13 0.81 2.52 0.88 3.30 2.24 3.81 2.86
OOB 1.57 0.58 1.16 0.66 1.60 0.91 1.86 1.16
LOO 1.07 0.58 1.17 0.65 1.57 0.92 1.77 1.27
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DGP 4 (Sin)

Optimal Bandwidth Size 0.24 0.22 0.23 0.22 0.27 0.23 0.29 0.25

SIMEX 0.93 0.43 1.31 0.48 3.29 2.19 3.99 1.89
OOB 0.76 0.33 0.84 0.39 1.28 0.63 1.47 1.00
LOO 0.66 0.33 0.73 0.40 1.15 0.59 1.32 0.87

To determine the sensitivity of the results to the pilot bandwidth, we proceed as follows.
Denote by hx,r the pilot bandwidth selected using Delaigle and Gijbels (2004b) in the rth Monte
Carlo replication, and h∗r(hx,r) the optimal bandwidth selected using the pilot bandwidth hx,r

in the rth Monte Carlo replication. For each of the three considered methods, we calculate the
sensitivity of the bandwidth choice to a smaller pilot bandwidth as 1

r

∑r
j=1 |MISE(h∗r(hx)) −

MISE(h∗(0.5hx))|. To measure the sensitivity to a larger pilot bandwidth, we calculate
1
r

∑r
j=1MISE(h∗r(hx))−MISE(h∗(1.5hx))|. The results of this experiment are given in Tables

4 and 5 for the case when the measurement error density is estimated and X is drawn from
N(0, 1) (where all results are again multiplied by 10 for ease of comparison).5

Table 4: Pilot Bandwidth Sensitivity (Smaller)

DGP 1 (Linear)

Error Standard Deviation σε = 1/3 σε = 1/2

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

SIMEX 0.31 0.24 0.62 0.51 0.24 0.25 0.39 0.31
OOB 0.11 0.07 0.19 0.15 0.21 0.13 0.30 0.21
LOO 0.31 0.19 0.41 0.32 0.50 0.31 0.60 0.51

DGP 2 (Quadratic)

SIMEX 0.51 0.34 0.72 0.58 0.78 0.43 0.49 0.46
OOB 0.21 0.15 0.39 0.27 0.38 0.26 0.58 0.49
LOO 0.53 0.26 0.77 0.57 1.04 0.58 1.13 1.00

DGP 3 (Cos)

SIMEX 1.53 0.44 0.71 0.55 1.58 0.46 0.75 0.75
OOB 0.30 0.19 0.55 0.39 0.57 0.37 0.83 0.69
LOO 0.81 0.45 1.20 0.61 1.46 0.94 1.69 1.41

DGP 4 (Sin)

SIMEX 0.35 0.26 0.33 0.25 0.23 0.29 0.29 0.18
OOB 0.18 0.13 0.28 0.22 0.25 0.22 0.31 0.23
LOO 0.39 0.24 0.55 0.31 0.61 0.45 0.69 0.53

5Results for the known measurement error case and the unknown case with X from a Laplace distribution were
qualitatively similar.
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Table 5: Pilot Bandwidth Sensitivity (Larger)

DGP 1 (Linear)

Error Standard Deviation σε = 1/3 σε = 1/2

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

SIMEX 0.19 0.11 0.57 0.15 0.28 0.20 0.28 0.22
OOB 0.11 0.08 0.12 0.10 0.14 0.10 0.21 0.15
LOO 0.17 0.07 0.18 0.11 0.25 0.14 0.28 0.22

DGP 2 (Quadratic)

SIMEX 0.30 0.16 0.36 0.18 0.43 0.30 0.63 0.50
OOB 0.33 0.18 0.36 0.19 0.54 0.33 0.74 0.57
LOO 0.28 0.13 0.34 0.15 0.46 0.28 0.67 0.49

DGP 3 (Cos)

SIMEX 0.44 0.27 0.61 0.50 0.96 0.48 1.01 1.04
OOB 0.68 0.39 0.77 0.53 1.06 0.67 1.36 1.17
LOO 0.50 0.26 0.65 0.48 0.87 0.52 1.13 0.94

DGP 4 (Sin)

SIMEX 0.37 0.21 0.55 0.40 0.30 0.25 0.45 0.30
OOB 0.44 0.40 0.45 0.42 0.48 0.51 0.29 0.45
LOO 0.36 0.19 0.48 0.40 0.30 0.29 0.47 0.31

In general, the out-of-bag approach shows less sensitivity to a smaller pilot bandwidth than
either of the other two methods, with the leave-one-out approach showing the most sensitivity,
particularly when the error variance is high. For a larger pilot bandwidth choice and a linear
model, the out-of-bag method again shows the lowest sensitivity. However, in each of the other
models, the out-of-bag approach shows slightly greater sensitivity for a larger pilot bandwidth,
while the SIMEX and leave-one-out methods display a similar level of sensitivity. Overall, it is
encouraging to see that the methods proposed in this paper show a similar level of sensitivity to
the initial bandwidth choice compared to the current state-of-the-art, while generally providing
lower MISE.

5. Empirical Application

In this section, we apply our bandwidth selection procedures to data from the 2012-2013
and 2013-2014 waves of the National Health and Nutrition Examination Survey (NHANES). In
particular, we estimate the relationship between systolic blood pressure (SBP) and cognitive
ability. Recent studies (see, for example, Peters et al., 2008, and Novak and Hajjar, 2010)
have shown that a reduction in cognitive performance is not just a consequence of ageing but
is also linked to hypertension (excessively high blood pressure) - a condition which generally
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increases with age. Hypertension is a widespread illness, affecting more than a third of the
world’s population (Pereira et al., 2009) and is particularly prevalent in older individuals.

Previous research has also found a link between hypotension (excessively low blood pressure)
and cognitive function (see, for example, Sabayan and Westendorp, 2015). These findings sug-
gest that the effect of SBP on cognitive ability is nonlinear; hence, nonparametric regression
estimation is likely to be appropriate. Furthermore, it is well-known that SBP measurements are
prone to noise. This variation is due to, among other things, the time of day when the test is
taken, the food recently eaten by the individual, and the individual’s recent activity. As such, it
is routine for measurements of SBP to be repeated. We use this repeated measure to estimate the
measurement error characteristic function using the method outlined in Section 3.1 and proceed
with the bandwidth selection procedures given in that section.

The NHANES also has information on three measures of cognitive ability. The CERAD
Word Learning Test is a standard tool to measure the ability to memorise verbal information.
The Animal Fluency Test is used to examine verbal fluency and is commonly used to distinguish
between those with normal cognitive function and those with mild or severe cognitive impairment.
Finally, the Digit Symbol Substitution Test requires speed of thought, sustained concentration,
and numerical fluency. Each test is designed to be culture-free and is administered in the language
of the subject. We restrict attention to males between the ages of 60 and 80, giving a sample
size of 1324, and standardise all variables to have unit variance.

To estimate the regression functions for each of the three test score outcomes, we use the
deconvolution kernel estimator from Delaigle, Hall and Meister (2008). The bandwidth is chosen
using the two methods of this paper and the SIMEX approach of Delaigle and Hall (2008) to
provide a comparison. All parameter settings are the same as those used in Section 4. In Figure
1, we plot the estimated regression functions for the Memory Test, the Numerical Fluency Test,
and the Verbal Fluency Test as a function of SBP.

In each case, the bandwidths chosen by each method are very close. The largest discrepancy
is seen in the Memory Test regression, with the leave-one-out method choosing 0.64, the out-of-
bag method choosing 0.71, and the SIMEX approach selecting 0.61. However, these bandwidth
appear to make little difference in the function estimation, with each producing a relatively flat
linear relationship. In the other two regressions, a more nonlinear shape is found, and all three
methods give very similar bandwidth choices. Interestingly, the inverted “U” shape suggested by
the previous literature is not apparent. Finally, in terms of computational cost, the leave-one-
out approach was 17.6 times faster than the out-of-bag method and 38.7 times faster than the
SIMEX procedure.
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Figure 1. Estimated Regression Functions
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Notes: The left pane plots the estimated regression functions from a regression of the Memory Test score
(measured as a percentile in the sample) on SBP using the three different bandwidth selection mechanisms.

Leave-one-out selected 0.64, out-of-bag selected 0.71, and SIMEX selected 0.61. The middle pane plots
analogous regression functions for the Numerical Fluency Test. Leave-one-out selected 0.35, out-of-bag selected
0.36, and SIMEX selected 0.37. The right pane plots analogous regression functions for the Verbal Fluency Test.

Leave-one-out selected 0.35, out-of-bag selected 0.34, and SIMEX selected 0.39.
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Appendix A. Mathematical proofs

A.1. Proof of Theorem 1 . Define rn(a) = n−1/2a−1/2rε(a)
√

log(1/
√
a) + ap and

f̂(x; a) =
1

na

n∑
l=1

Ka

(
x−Wl

a

)
, f̂j(·; a) =

1

(n− 1)a

∑
l 6=j

Ka

(
x−Wl

a

)
,

ĝk0,k1,k2(x; a1, a2) =
1

nk1(n− 1)k2ak11 a
k2
2

n∑
j=1

{Yj −m(x)}k0Kk1
a1

(
x−Wj

a1

)
Kk2
a2

(
x−Wj

a2

)
.

Note h∗LOO = arg minh∈[L1,n,H1,n] R̄LOO(h), where

R̄LOO(h) =
1

nh1,x

n∑
j=1

ˆ
X

{
{m̂j(x;h)−m(x)}2

−2{Yj −m(x)}{m̂j(x;h)−m(x)}

}
Kh1,x

(
x−Wj

h1,x

)
dx. (11)

Then, the optimality of h∗LOO implies

Rn(h∗LOO) = R̄LOO(h∗LOO) +

∆n(h∗LOO)︷ ︸︸ ︷
Rn(h∗LOO)− R̄LOO(h∗LOO)

≤ R̄LOO(h1,x) + ∆n(h∗LOO) = Rn(h1,x)−∆n(h1,x) + ∆n(h∗LOO), (12)

The conclusion then would follow if

Rn(h1,x)
p→ 0, (13)

sup
h∈[L1,n,H1,n]

|∆n(h)| p→ 0. (14)

For (13), as we can write

Rn(h1,x) =

ˆ
X

{m(x)f̂(x;h1,x)− m̂(x;h1,x)f̂(x;h1,x)}2f(x)

{f̂(x;h1,x)}2
dx, (15)

under Assumption (2) (f is bounded away from zero over X ), it is sufficient to show

sup
x
|m̂(x;h1,x)f̂(x;h1,x)−m(x)f(x)| = op(1), sup

x
|f̂(x;h1,x)− f(x)| = op(1),

which follow by Lemma 6 (when D = 1), Assumption (2) (m is bounded), and Assumption (4)
(rn(h1,x)→ 0).

For (14), first note that

m̂(x;h)−m(x) =
{m̂(x;h)−m(x)}f̂(x;h)

f(x)
+
{m̂(x;h)−m(x)}{f(x)− f̂(x;h)}

f(x)
, (16)

m̂j(x;h)−m(x) =
{m̂j(x;h)−m(x)}f̂j(x;h)

f(x)
+
{m̂j(x;h)−m(x)}{f(x)− f̂j(x;h)}

f(x)
,(17)

and Lemma 6 (when D = 1) and Assumption (5) guarantee that, in each case, the second term is
negligible compared to the first term uniformly over h ∈ [L1,n, H1,n]. Thus, (16) and (17) imply
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that it is sufficient for (14) to show that suph∈[L1,n,H1,n] |∆∗n(h)| p→ 0, where

∆∗n(h) =

ˆ
X

1

f2(x)


f(x){m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}2

− 1
nh1,x

∑n
j=1{m̂j(x;h)f̂j(x;h)−m(x)f̂j(x;h)}2Kh1,x

(
x−Wj

h1,x

)
+2f(x)
nh1,x

∑n
j=1{Yj −m(x)}{m̂j(x;h)f̂j(x;h)−m(x)f̂j(x;h)}Kh1,x

(
x−Wj

h1,x

)
dx

 .

Observe that

m̂j(x;h)f̂j(x;h) =
n

n− 1
m̂(x;h)f̂(x;h)− 1

(n− 1)h
YjKh

(
x−Wj

h

)
,

f̂j(x;h) =
n

n− 1
f̂(x;h)− 1

(n− 1)h
Kh

(
x−Wj

h

)
,

which imply

m̂j(x;h)f̂j(x;h)−m(x)f̂j(x;h) =
n

n− 1
{m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}

− 1

(n− 1)h
{Yj −m(x)}Kh

(
x−Wj

h

)
. (18)

By using (18), we can decompose ∆∗n(h) =
∑5

ι=1 ∆∗n,ι(h), where

∆∗n,1(h) =
1− 2n

(n− 1)2

ˆ
X

{m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}2

f(x)
dx,

∆∗n,2(h) = − n2

(n− 1)2

ˆ
X

{m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}2{f̂(x;h1,x)− f(x)}
f2(x)

dx,

∆∗n,3(h) =
2n

(n− 1)

ˆ
X

{m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}{m̂(x;h1,x)f̂(x;h1,x)−m(x)f̂(x;h1,x)}
f(x)

dx,

∆∗n,4(h) =
2n

(n− 1)

ˆ
X

{m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}ĝ1,1,1(x;h1,x, h)

f2(x)
dx,

∆∗n,5(h) = −
ˆ
X

{
ĝ2,1,2(x;h1,x, h)

f2(x)
+

2ĝ2,1,1(x;h1,x, h)

f(x)

}
dx.

For ∆∗n,1(h), by Lemma 6 (when D = 1) and Assumption (2) (f is bounded away from zero
over X ), we have

∆∗n,1(h) = Op(n
−1r2

n(h)), (19)

uniformly over h ∈ [L1,n, H1,n]. By similar arguments, we can show

∆∗n,2(h) = Op(r
2
n(h)rn(h1,x)), (20)

∆∗n,3(h) = Op(rn(h)rn(h1,x)), (21)

uniformly over h ∈ [L1,n, H1,n].
For ∆∗n,4(h), note that

sup
x
|ĝ1,1,1(x;h1,x, h)| = Op

(
1

n7/8h1,xh

ˆ
|K ft(t)|
|f ft
ε (t/h1,x)|

dt

ˆ
|K ft(t)|
|f ft
ε (t/h)|

dt

)
= Op

(
n−7/8h−1

1,xh
−1rε(h1,x)rε(h)

)
,
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uniformly over h ∈ [L1,n, H1,n], where the first equality follows by Assumption (2) (m is bounded)
and max1≤j≤n |Yj | = Op(n

1/8) (by Lemma 3 and E[Y 8] <∞ in Assumption (1)), and the second
equality follows by Assumption (3) (K ft(t) is supported on [−1, 1]). Thus, by Assumption (2)
(f is bounded away from zero over X ), Lemma 6 (when D = 1) implies

∆∗n,4(h) = Op

(
n−7/8h−1

1,xh
−1rε(h1,x)rε(h)rn(h)

)
, (22)

uniformly over h ∈ [L1,n, H1,n].
By similar arguments, using max1≤j≤n |Yj |2 = Op(n

1/4) under Assumption (2) (E[Y 8] <∞),
we can show

∆∗n,5(h) = Op

(
n−7/4h−1

1,xh
−2rε(h1,x)r2

ε (h) + n−3/4h−1
1,xh

−1rε(h1,x)rε(h)
)
, (23)

uniformly over h ∈ [L1,n, H1,n].
The statement in (14) then follows by (19)-(23), Assumptions (4) and (5), suph∈[L1,n,H1,n] rε(h) =

rε(L1,n), and

sup
h∈[L1,n,H1,n]

|rn(h)| ≤ n−1/2L
−1/2
1,n rε(L1,n)

√
log
(

1/
√
L1,n

)
+Hp

1,n.

A.2. Proof of Theorem 2. Let f̂−b(x; a) = 1
ncba

∑
l∈Icb

Ka

(
x−Wl
a

)
denote the deconvolution ker-

nel density estimator of f(x) by leaving the bootstrap sample b out, m̂−b(x; a) =

∑
l∈Ic

b
YlKa

(
x−Wl
a

)
∑
l∈Ic

b
Ka
(
x−Wl
a

)
denote the deconvolution kernel regression estimator of m(x) by leaving the bootstrap sample b
out, and E∗ and V ar∗ denote the conditional expectation and conditional variance, respectively,
for the bootstrap resample given the original sample {Yj ,Wj}nj=1. Define

R̄OOB(h) = E∗

 1

ncbh2,x

∑
j∈Icb

ˆ
X

{
{m̂b(x;h)−m(x)}2

−2{Yj −m(x)}{m̂b(x;h)−m(x)}

}
Kh2,x

(
x−Wj

h2,x

)
dx

 .
Then h∗OOB = arg minh∈[L2,n,H2,n] R̄LOO(h). Letting Ξn(a) = Rn(a)−R̄OOB(a), following similar
arguments as in (12), the optimality of h∗OOB implies

Rn(h∗OOB) ≤ Rn(h2,x)− Ξn(h2,x) + Ξn(h∗OOB). (24)

The conclusion would then follow by (24) and (13) if

sup
h∈[L2,n,H2,n]

|Ξn(h)| p→ 0. (25)

First note that

m̂b(x;h)−m(x) =
{m̂b(x;h)−m(x)}f̂b(x;h)

f(x)
+
{m̂b(x;h)−m(x)}{f(x)− f̂b(x;h)}

f(x)
, (26)
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where the second term is dominated by the first. Thus, (16) and (26) imply that it is sufficient
for (25) to show that suph∈[L2,n,H2,n] |Ξ∗n(h)| p→ 0, where

Ξ∗n(h) = E∗


ˆ
X

1

f2(x)


f(x){m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}2

−{m̂b(x;h)f̂b(x;h)−m(x)f̂b(x;h)}2f̂−b(x;h2,x)

+2f(x)

{
{m̂b(x;h)f̂b(x;h)−m(x)f̂b(x;h)}

×{m̂−b(x;h2,x)f̂−b(x;h2,x)−m(x)f̂−b(x;h2,x)}

}
 dx

 .
Also note that E∗[f̂b(x;h)] = f̂(x;h) and E∗[m̂b(x;h)f̂b(x;h)] = m̂(x;h)f̂(x;h), which allows

us to decompose Ξ∗n(h) =
∑5

ι=1 Ξ∗n,ι(h), where

Ξ∗n,1(h) = E∗

[ˆ
X

{m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}2{f(x)− f̂−b(x;h2,x)}
f2(x)

dx

]
,

Ξ∗n,2(h) = −E∗
[ˆ
X

{m̂b(x;h)f̂b(x;h)− m̂(x;h)f̂(x;h)}2f̂−b(x;h2,x)

f2(x)
dx

]
,

Ξ∗n,3(h) = −E∗
[ˆ
X

{m(x)f̂(x;h)−m(x)f̂b(x;h)}2f̂−b(x;h2,x)

f2(x)
dx

]

Ξ∗n,4(h) = −2E∗

[ˆ
X

{
{m̂b(x;h)f̂b(x;h)− m̂(x;h)f̂(x;h)}
×{m(x)f̂(x;h)−m(x)f̂b(x;h)}

}
f̂−b(x;h2,x)

f2(x)
dx

]
,

Ξ∗n,5(h) = 2E∗

[ˆ
X

{
{m̂b(x;h)f̂b(x;h)−m(x)f̂b(x;h)}

×{m̂−b(x;h2,x)f̂−b(x;h2,x)−m(x)f̂−b(x;h2,x)}

}
1

f(x)
dx

]
.

Let f̂ñ(x;h) denote the deconvolution density kernel estimator using sample size ñ = exp(−1)n

(this represents the average number of observations in the out-of-bag sample, as shown in
Breiman, 2001), then for Ξ∗n,4(h), uniformly over h ∈ [L2,n, H2,n], we have

∣∣Ξ∗n,4(h)
∣∣ =

∣∣∣∣∣2
ˆ
X

f̂ñ(x;h2,x)

f2(x)
m(x)E∗

[(
m̂b(x;h)f̂b(x;h)− m̂(x;h)f̂(x;h)

)(
f̂(x;h)− f̂b(x;h)

)]
dx

∣∣∣∣∣
≤

∣∣∣∣∣2
ˆ
X

f̂ñ(x;h2,x)

f2(x)
m(x)

√
V ar∗(m̂b(x;h)f̂b(x;h))

√
V ar∗(f̂b(x;h))dx

∣∣∣∣∣
= Op

(
(nh)−1r2

ε (h)
)
, (27)

where the second step uses the Cauchy-Schwartz inequality, and the third follows from Lemma
6, Lemma 8, and Assumption (2) (f is bounded away from zero over X ).

For Ξ∗n,1(h), we write

∣∣Ξ∗n,1(h)
∣∣ =

∣∣∣∣∣
ˆ
X
{m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}2 {f(x)− f̂ñ(x;h2,x)}

f2(x)
dx

∣∣∣∣∣
= Op

(
r2
n(h)rñ(h2,x)

)
= Op

(
r2
n(h)rn(h2,x)

)
, (28)

uniformly over h ∈ [L2,n, H2,n], where the second step follows from Lemma 6 and Assumption
(2), and the final step follows from ñ being a constant multiple of n.
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Turning to Ξ∗n,3(h), we have

∣∣Ξ∗n,3(h)
∣∣ =

∣∣∣∣∣
ˆ
X

f̂ñ(x;h2,x)

f2(x)
m2(x)E∗

[(
f̂b(x;h)− E∗

[
f̂b(x;h)

])2
]
dx

∣∣∣∣∣
=

ˆ
X

f̂ñ(x;h2,x)

f2(x)
m2(x)V ar∗(f̂b(x;h))dx = Op

(
(nh)−1r2

ε (h)
)
, (29)

uniformly over h ∈ [L2,n, H2,n], where the final equality follows from Lemma 6, Lemma 8, and
Assumption (2). In a similar manner, we can write

∣∣Ξ∗n,2(h)
∣∣ =

∣∣∣∣∣
ˆ
X

f̂ñ(x;h2,x)

f2(x)
V ar∗(m̂b(x;h)f̂b(x;h))dx

∣∣∣∣∣ = Op
(
(nh)−1r2

ε (h)
)
, (30)

uniformly over h ∈ [L2,n, H2,n].
Finally, we characterise the bound for Ξ∗n,5(h). Using similar arguments to those before, we

can write∣∣Ξ∗n,5(h)
∣∣ =

∣∣∣∣2 ˆ
X

1

f(x)
{m̂ñ(x;h2,x)f̂ñ(x;h2,x)−m(x)f̂ñ(x;h2,x)}{m̂(x;h)f̂(x;h)−m(x)f̂(x;h)}dx

∣∣∣∣
= Op (rñ(h2,x)rn(h)) = Op (rn(h2,x)rn(h)) , (31)

uniformly over h ∈ [L2,n, H2,n].
In summary, combining (27)-(31), the conclusion of the theorem follows by Assumptions (4’)

and (5’).

A.3. Proof of Theorem 3 . Define ρn(a) = n−1/2a−1r2
ε (a) log(1/a)+ap, ρε(a) = n−1/2r2

ε (a) log(1/a),
and

f̌(x; a) =
1

na

n∑
l=1

K̂a

(
x−Wl

a

)
, f̌j(x; a) =

1

(n− 1)a

∑
l 6=j

K̂a

(
x−Wl

a

)
,

ǧk0,k1,k2(x; a1, a2) =
1

nk1(n− 1)k2ak11 a
k2
2

n∑
j=1

{Yj −m(x)}k0K̂k1
a1

(
x−Wj

a1

)
K̂k2
a2

(
x−Wj

a2

)
.

By similar arguments as in (12), the conclusion follows if

Rn,r(h1,x)
p→ 0, (32)

sup
h∈[L1,n,H1,n]

|∆n,r(h)| p→ 0, (33)

where ∆n,r(h) = Rn,r(h)− R̄LOO,r(h) and

R̄LOO,r(h) =
1

nh1,x

n∑
j=1

ˆ
X

{
{m̌j(x;h)−m(x)}2

−2{Yj −m(x)}{m̌j(x;h)−m(x)}

}
K̂h1,x

(
x−Wj

h1,x

)
dx. (34)

For (32), by similar arguments as in (15), it is sufficient to show

sup
x
|m̌(x;h1,x)f̌(x;h1,x)−m(x)f(x)| = op(1), sup

x
|f̌(x;h1,x)− f(x)| = op(1),

which follow by Lemma 7, Assumption (2) (m is bounded), and Assumption (4”) (ρn(h1,x)→ 0).
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To show (33), by similar arguments as in (16), (17), and (18), using Lemma 7 and Assumption
(5”), it is sufficient to show

max
1≤ι≤5

sup
h∈[L1,n,H1,n]

|∆∗n,r,ι(h)| p→ 0,

where

∆∗n,r,1(h) =
1− 2n

(n− 1)2

ˆ
X

{m̌(x;h)f̌(x;h)−m(x)f̌(x;h)}2

f(x)
dx,

∆∗n,r,2(h) = − n2

(n− 1)2

ˆ
X

{m̌(x;h)f̌(x;h)−m(x)f̌(x;h)}2{f̌(x;h1,x)− f(x)}
f2(x)

dx,

∆∗n,r,3(h) =
2n

(n− 1)

ˆ
X

{m̌(x;h)f̌(x;h)−m(x)f̌(x;h)}{m̌(x;h1,x)f̌(x;h1,x)−m(x)f̌(x;h1,x)}
f(x)

dx,

∆∗n,r,4(h) =
2n

(n− 1)

ˆ
X

{m̌(x;h)f̌(x;h)−m(x)f̌(x;h)}ǧ1,1,1(x;h1,x, h)

f2(x)
dx,

∆∗n,r,5(h) = −
ˆ
X

{
ǧ2,1,2(x;h1,x, h)

f2(x)
+

2ǧ2,1,1(x;h1,x, h)

f(x)

}
dx.

For ∆∗n,r,1(h), by Lemma 7 and Assumption (2) (f is bounded away from zero over X ), we
have

∆∗n,1(h) = Op(n
−1ρ2

n(h)), (35)

uniformly over h ∈ [L1,n, H1,n]. By similar arguments, we can show

∆∗n,2(h) = Op(ρ
2
n(h)ρn(h1,x)), (36)

∆∗n,3(h) = Op(ρn(h)ρn(h1,x)), (37)

uniformly over h ∈ [L1,n, H1,n].
For ∆∗n,r,4(h), note that

sup
x
|ǧ1,1,1(x;h1,x, h)| = Op

(
1

n7/8h1,xh

ˆ
|K ft(t)|
|f̂ ft
ε (t/h1,x)|

dt

ˆ
|K ft(t)|
|f̂ ft
ε (t/h)|

dt

)

= Op



1

n7/8h1,xh



O(rε(h1,x))︷ ︸︸ ︷ˆ
|K ft(t)|
|f ft
ε (t/h1,x)|

dt

O(rε(h))︷ ︸︸ ︷ˆ
|K ft(t)|
|f ft
ε (t/h)|

dt

+

ˆ {
1

|f̂ ft
ε (t/h1,x)|

− 1

|f ft
ε (t/h1,x)|

}
|K ft(t)|dt︸ ︷︷ ︸

Op(ρε(h1,x))

´ |Kft(t)|
|f̂ ftε (t/h)|

dt

+
´ |Kft(t)|
|f ftε (t/h1,x)|dt

ˆ {
1

|f̂ ft
ε (t/h)|

− 1

|f ft
ε (t/h)|

}
|K ft(t)|dt︸ ︷︷ ︸

Op(ρε(h))

+
´ {

1
|f̂ ftε (t/h1,x)|

− 1
|f ftε (t/h1,x)|

}
|K ft(t)|dt

´ {
1

|f̂ ftε (t/h)|
− 1
|f ftε (t/h)|

}
|K ft(t)|dt




= Op

(
n−7/8h−1

1,xh
−1rε(h1,x)rε(h)

)
,

uniformly over h ∈ [L1,n, H1,n], where the last equality follows from ρε(h1,x) = o(rε(h1,x)) and
ρε(h) = o(rε(h)) uniformly over h ∈ [L1,n, H1,n], which are guaranteed by Assumptions (4”) and
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(5”). Thus, by Assumption (2) (f is bounded away from zero over X ), Lemma 7 implies

∆∗n,r,4(h) = Op

(
n−7/8h−1

1,xh
−1rε(h1,x)rε(h)ρn(h)

)
, (38)

uniformly over h ∈ [L1,n, H1,n]. By similar arguments, using max1≤j≤n |Yj |2 = Op(n
1/4) under

Assumption (2) (E[Y 8] <∞), we can show

∆∗n,r,5(h) = Op

(
n−7/4h−1

1,xh
−2rε(h1,x)r2

ε (h) + n−3/4h−1
1,xh

−1rε(h1,x)rε(h)
)
, (39)

uniformly over h ∈ [L1,n, H1,n].
The statement in (33) then follows by (35)-(39), Assumptions (4”) and (5”), suph∈[L1,n,H1,n] rε(h) =

rε(L1,n), and

sup
h∈[L1,n,H1,n]

|ρn(h)| ≤ n−1/2L−1
1,nr

2
ε (L1,n) log(1/L1,n) +Hp

1,n.

A.4. Proof of Theorem 3.2 . Define rn,m(a) = n−1/2
{∏D

d=1 a
−1/2
d rεd(ad)

}√
log
(∏D

d=1 a
−1/2
d

)
+

max1≤d≤D a
p
d with a = (a1, . . . , aD) and

F̂ (x; a) =
1

n
∏D
d=1 ad

n∑
l=1

D∏
d=1

Kεd,ad

(
xd −Wd,l

ad

)
,

F̂j(x; a) =
1

(n− 1)
∏D
d=1 ad

∑
l 6=j

D∏
d=1

Kεd,ad

(
xd −Wd,l

ad

)
,

Ĝk0,k1,k2(x; a1, a2) =
1

nk1(n− 1)k2
(∏D

d=1 a1,d

)k1 (∏D
d=1 a2,d

)k2 n∑
j=1


{Yj −m(x)}k0

×
{∏D

d=1 Kεd,a1,d

(
xd−Wd,j

a1,d

)}k1
×
{∏D

d=1 Kεd,a2,d

(
xd−Wd,j

a2,d

)}k2
 .

By similar arguments as in (12), the conclusion follows if

Rn,m(h1,x)
p→ 0, (40)

sup
h∈
∏D
d=1[L1,n,d,H1,n,d]

|∆n,m(h)| p→ 0, (41)

where ∆n,m(h∗OOB,m) = Rn,m(h∗OOB,m)− R̄LOO,m(h∗OOB,m) and

R̄LOO,m(h) =
1

n
(∏D

d=1 h1,x,d

) n∑
j=1

ˆ
χ


{

{M̂j(x;h)−M(x)}2

−2{Yj −M(x)}{M̂j(x;h)−M(x)}

}
×
{∏D

d=1 Kεd,h1,x,d

(
xd−Wd,j

h1,x,d

)}
 dx. (42)

For (40), by similar arguments as in (15), it is sufficient to show

sup
x
|M̂(x;h1,x)F̂ (x;h1,x)−M(x)F (x)| = op(1), sup

x
|F̂ (x;h1,x)− F (x)| = op(1),

which follow by Lemma 6, Assumption (2” ’) (M is bounded), and Assumption (4” ’) (rn,m(h1,x)→
0).
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To show (41), by similar arguments as in (16), (17), and (18), using Lemma 6 and Assumption
(5” ’),

max
1≤ι≤5

sup
h∈
∏D
d=1[L1,n,d,H1,n,d]

|∆∗n,m,ι(h)| p→ 0,

where

∆∗n,m,1(h) =
1− 2n

(n− 1)2

ˆ
X

{M̂(x;h)F̂ (x;h)−M(x)F̂ (x;h)}2

F (x)
dx,

∆∗n,m,2(h) = − n2

(n− 1)2

ˆ
X

{M̂(x;h)F̂ (x;h)−M(x)F̂ (x;h)}2{F̂ (x;h1,x)− F (x)}
F 2(x)

dx,

∆∗n,m,3(h) =
2n

(n− 1)

ˆ
X

{M̂(x;h)F̂ (x;h)−M(x)F̂ (x;h)}{M̂(x;h1,x)F̂ (x;h1,x)−M(x)F̂ (x;h1,x)}
F (x)

dx,

∆∗n,m,4(h) =
2n

(n− 1)

ˆ
X

{M̂(x;h)F̂ (x;h)−M(x)F̂ (x;h)}Ĝ1,1,1(x;h1,x, h)

F 2(x)
dx,

∆∗n,m,5(h) = −
ˆ
X

{
Ĝ2,1,2(x;h1,x, h)

F 2(x)
+

2Ĝ2,1,1(x;h1,x, h)

F (x)

}
dx.

For ∆∗n,m,1(h), by Lemma 6 and Assumption (2” ’) (F is bounded away from zero over X ), we
have

∆∗n,m,1(h) = Op(n
−1r2

n,m(h)), (43)

uniformly over h ∈
∏D
d=1[L1,n,d, H1,n,d]. By similar arguments, we can show

∆∗n,m,2(h) = Op(r
2
n,m(h)rn,m(h1,x)), (44)

∆∗n,m,3(h) = Op(rn,m(h)rn,m(h1,x)), (45)

uniformly over h ∈
∏D
d=1[L1,n,d, H1,n,d].

For ∆∗n,m,4(h), note that

sup
x
|Ĝ1,1,1(x;h1,x, h)| = Op

 1

n7/8
(∏D

d=1 h1,x,dhd

) { D∏
d=1

ˆ
|K ft(t)|

|f ft
εd

(t/h1,x,d)|
dt

ˆ
|K ft(t)|
|f ft
εd

(t/hd)|
dt

}
= Op

n−7/8

(
D∏
d=1

h1,x,dhd

)−1 D∏
d=1

rεd(h1,x,d)rεd(hd)

 ,

uniformly over h ∈
∏D
d=1[L1,n,d, H1,n,d], where the first equality follows by Assumption (2” ’) (M

is bounded) and max1≤j≤n |Yj | = Op(n
1/8) (by Lemma 3 and E[Y 8] <∞ in Assumption (1” ’)),

and the second equality follows by Assumption (3) (K ft(t) is supported on [−1, 1]). Thus, by
Assumption (2” ’) (F is bounded away from zero over X ), Lemma 6 implies

∆∗n,m,4(h) = Op

n−7/8

(
D∏
d=1

h1,x,dhd

)−1{ D∏
d=1

rεd(h1,x,d)rεd(hd)

}
rn,m(h)

 , (46)

uniformly over h ∈
∏D
d=1[L1,n,d, H1,n,d].
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By similar arguments, using max1≤j≤n |Yj |2 = Op(n
1/4) under Assumption (2” ’) (E[Y 8] <∞),

we can show

∆∗n,m,5(h) = Op

 n−7/4
(∏D

d=1 h1,x,dh
2
d

)−1 {∏D
d=1 rεd(h1,x,d)r

2
εd

(hd)
}

+n−3/4
(∏D

d=1 h1,x,dhd

)−1 {∏D
d=1 rεd(h1,x,d)rεd(hd)

}
rn,m(h)

 , (47)

uniformly over h ∈
∏D
d=1[L1,n,d, H1,n,d].

The statement in (41) then follows by (43)-(47), Assumptions (4” ’) and (5” ’), supad∈[L1,n,d,H1,n,d] rεd(ad) =

rεd(L1,n,d), and

sup
h∈
∏D
d=1[L1,n,d,H1,n,d]

|rn,m(h)| ≤ n−1/2

{
D∏
d=1

L
−1/2
1,n,drεd(L1,n,d)

}√√√√log

(
D∏
d=1

L
−1/2
1,n,d

)
+ max

1≤d≤D
Hp

1,n,d.

A.5. Lemmas. For a probability measure Q on a measurable space (S,S), let L2(Q) denote
the space of all measurable functions f : S → R such that ‖f‖Q,2 =

√´
|f |2dQ < ∞. For

a class of measurable functions F on S such that F ⊂ L2(Q), let N(F , ‖ · ‖Q,2, δ) denote the
δ-covering number for F with respect to ‖ · ‖Q,2. The class F is said to be pointwise measurable
if there exists a countable subclass G ⊂ F such that for every f ∈ F there exists a sequence
gm ∈ G with gm → f pointwise. A function F : S → [0,∞) is said to be an envelope for F if
F (x) ≥ supf∈F |f(x)| for all x ∈ S.

Lemma 1. [Chernozhukov et al., 2014, Corollary 5.1] Let X,X1, . . . , Xn be i.i.d. random vari-
ables taking values in a measurable space (S,S), and let F be a pointwise measurable class of
(measurable) real-valued functions on S with measurable envelope F . Suppose that there exist
constants A ≥ e and ν ≥ 1 such that

sup
Q
N(F , ‖ · ‖Q,2, δ‖F‖Q,2) ≤ (A/δ)ν ,

for all δ ∈ (0, 1], where supQ is taken over all finitely discrete distributions on S. Further-
more, suppose that 0 < E[F 2(X)] < ∞, and let σ2 > 0 be any positive constant such that
supf∈F E[f2(X)] ≤ σ2 ≤ E[F 2(X)]. Then, it holds

E

sup
f∈F

∣∣∣∣∣∣ 1√
n

n∑
j=1

{f(Xj)− E[f(X)]}

∣∣∣∣∣∣


≤ C


√√√√νσ2 log

(
A
√
E[F 2(X)]

σ

)
+
νBn√
n

log

(
A
√
E[F 2(X)]

σ

) ,

where Bn =
√
E[max1≤j≤n F 2(Xj)] and C > 0 is a universal constant.

Let � denote the Hadamard product of matrices and Fε be the joint density of ε.

Lemma 2. Under Assumptions (1”’) , (2”’), and (3), for s = 0, 1, 2, it holds

sup
x
E

∣∣∣∣∣Y s
D∏
d=1

Kεd,ad

(
x−Wd

ad

)∣∣∣∣∣
2
 = O

(
D∏
d=1

adr
2
εd

(ad)

)
.
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Proof. Note that

E

∣∣∣∣∣Y s
D∏
d=1

Kεd,ad

(
x−Wd

ad

)∣∣∣∣∣
2
 =

¨ {
D∏
d=1

∣∣∣∣Kεd,ad

(
xd − ud − vd

ad

)∣∣∣∣2
}
{E[Y 2s|X]F}(u)Fε(v)dudv

=

¨ {
D∏
d=1

ad|Kεd,ad(ũd)|
2

}
{E[Y 2s|X]F}(x− v − a� ũ)Fε(v)dũdv

= O

(
D∏
d=1

ad

ˆ
|Kεd,ad(ũd)|

2dũd

)
,

where the first equality follows by Assumption (1” ’) (ε and (Y,X) are independent), the second
equality follows by the change of variables ũd = (xd − ud − vd)/ad, and the last equality follows
by Assumption (2” ’) (E[Y 2s|X] and F are bounded). The conclusion then follows by Parseval’s
identity and Assumption (3) (K ft is supported on [−1, 1]). �

Lemma 3. [Kato and Sasaki, 2019, Lemma A.2] Let ζ1, . . . , ζn be random variables such that
E[|ζj |r] <∞ for all j = 1, · · · , n and some r ≥ 1. Then

E

[
max

1≤j≤n
|ζj |
]
≤ n1/r max

1≤j≤n
(E[|ζj |r])1/r.

Consider the class of functions

F (s)
n =

{
(y, w1, . . . , wD) 7→ ys

D∏
d=1

Kεd,ad

(
xd − wd
ad

)
: x ∈ RD

}
,

for s = 0, 1, 2. Let F (s)
n (y, w1, . . . , wD) = κ|y|s

∏D
d=1 rεd(ad). Then F (s)

n is an envelope function
for F (s)

n for each s = 0, 1, 2 and some κ > 0.

Lemma 4. If K ft is supported on [−1, 1] and f ft
εd

does not vanish on R for d = 1, . . . , D, there
exist constants A, ν ≥ e independent of n such that

sup
Q
N
(
F (s)
n , ‖ · ‖Q,2, δ‖F (s)

n ‖Q,2
)
≤ (A/δ)ν ,

for all δ ∈ (0, 1] and s = 0, 1, 2, where supQ is taken over all finitely discrete distributions on
RD+1.

Proof. Consider the following classes of functions

Kn,d =

{
(y, w1, . . . , wD) 7→ Kεd,ad

(
xd − wd
ad

)
: xd ∈ R

}
, Y(s) = {(y, w1, . . . , wD) 7→ ys} .

LetKn,d(y, w1, . . . , wD) = κdrεd(ad) for some positive constant κd and Y (s)(y, w1, . . . , wD) = |y|s.
Kn,d and Y (s) are envelope functions of Kn,d and Y(s) respectively, if κd is large enough. Observe
that F (s)

n = Y(s)
∏D
d=1Kn,d, where Y(s)

∏D
d=1Kn,d denotes the class of functions that are the

pointwise product of Y(s) and Kn,1, . . . ,Kn,D. Then, F (s)
n = Y (s)

∏D
d=1Kn,d with κ =

∏D
d=1 κd.

Since supQN(Y(s), ‖·‖Q,2, c) = 1 for all c > 0, by Corollary A.1 of Chernozhukov et al. (2014),
it is sufficient to show that there exist Ad, νd ≥ e such that

sup
Q
N (Kn,d, ‖ · ‖Q,2, δ‖Kn,d‖Q,2) ≤ (Ad/δ)

νd ,
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for all δ ∈ (0, 1], which follows by Lemma 1 of Kato and Sasaki (2018). �

Lemma 5. Under Assumption (1”’), (2”’), and (3), for s = 0, 1, 2, it holds

sup
x

∣∣∣∣∣∣
(

D∏
d=1

ad

)−1

E

[
Y s

D∏
d=1

Kεd,ad

(
xd −Wd

ad

)]
− E[Y s|X = x]F (x)

∣∣∣∣∣∣ = O

(
max

1≤d≤D
apd

)
.

Proof. Note that

E

[
Y s

D∏
d=1

Kεd,ad

(
xd −Wd

ad

)]

=
1

(2π)D

ˆ
· · ·
ˆ
e−i

∑D
d=1 tdxd/ad{E[Y s|X]F}ft(t1/a1, . . . , tD/aD)

{
D∏
d=1

K ft(td)

}
dt1 · · · dtD

=
1

(2π)D

ˆ
· · ·
ˆ
e−i

∑D
d=1 t̃dxd{E[Y s|X]F}ft(t̃1, . . . , t̃D)

{
D∏
d=1

adK
ft(adt̃d)

}
dt̃1 · · · dt̃D

= E

[
Y s

D∏
d=1

K

(
xd −Xd

ad

)]
,

where the first equality follows by the definition of K and Assumption (1” ’) (ε and (Y,X) are
independent, and elements of ε are mutually independent), the second equality follows by the
change of variables t̃d = td/ad, and the last equality follows by the convolution theorem and
aK ft(ta) = {K(·/a)}ft(t).

Also note that(
D∏
d=1

ad

)−1

E

[
Y s

D∏
d=1

K

(
xd −Xd

ad

)]

=

(
D∏
d=1

ad

)−1 ˆ
· · ·
ˆ
{E[Y s|X]F}(u)

{
D∏
d=1

K

(
ud − xd
ad

)}
du1 · · · duD

=

ˆ
· · ·
ˆ
{E[Y s|X]F}(x+ a� ũ)

{
D∏
d=1

K(ũd)

}
dũ1 · · · dũD

= {E[Y s|X]F}(x) +
∑

l1+···+lD=p

ˆ
· · ·
ˆ
{E[Y s|X]F}(l1,...,lD)(x̄)

{
D∏
d=1

aldd
ld!
ũldd K(ũd)

}
dũ1 · · · dũD,

for some x̄ such that ‖x̄ − x‖ ≤ ‖a � u‖, where the first equality follows by Assumption (3)
(K is symmetric around zero), the second equality follows using the change of variables ũd =

(ud − xd)/ad, and the last equality follows by Assumption (2” ’) (E[Y s|X] and F are p-times
continuously differentiable) and Assumption (3) (

´
uqK(u)du = 0 for q = 1, 2, . . . , p − 1). So,

the conclusion follows by Assumption (2” ’) ({E[Y s|X] and F have bounded derivatives up to
p-th order) and Assumption (3) (

´
upK(u)du 6= 0). �
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Lemma 6. Suppose that Assumptions (1”’), (2”’), and (3) hold true, ad → 0 for d = 1, . . . , D

and n−1/2
∏D
d=1 a

−1
d log

(∏D
d=1 a

−1/2
d

)
→ 0 as n→∞. Then, for s = 0, 1, 2, it holds

sup
x

∣∣∣∣∣∣ 1

n
(∏D

d=1 ad

) n∑
j=1

Y s
j

{
D∏
d=1

Kεd,ad

(
xd −Wd,j

ad

)}
− E[Y s|X = x]F (x)

∣∣∣∣∣∣ = Op(rn,m(a)).

Proof. First, we apply Lemma 1 to the class of functions F (s)
n for s = 0, 1, 2. In partic-

ular, note that Lemma 2 implies sup
f∈F(s)

n
E[f2(Y,W1, . . . ,WD)] = O

(∏D
d=1 adr

2
εd

(ad)
)

and

Lemma 3 and Assumption (1” ’) (E[Y 8] < ∞) implies max1≤j≤n Y
2s
j = Op(n

s/4), which gives√
E[max1≤j≤n{F (s)

n (Yj ,W1,j , . . . ,WD,j)}2] = O
(
ns/8

∏D
d=1 rεd(ad)

)
. Thus, Lemma 4 and

n−1/2
∏D
d=1 a

−1
d log

(∏D
d=1 a

−1/2
d

)
→ 0 implies

sup
x

∣∣∣∣∣∣ 1

na

n∑
j=1

Y s
j Ka

(
x−Wj

a

)
− a−1E

[
Y sKa

(
x−W
a

)]∣∣∣∣∣∣
=Op

n−1/2

{
D∏
d=1

a
−1/2
d rεd(ad)

}√√√√log

(
D∏
d=1

a
−1/2
d

) .

Hence, the conclusion follows by Lemma 5. �

Lemma 7. In the case of D = 1, assume the same conditions as in Lemma 6. If Assumption
(6) also holds and n−1/2rε(a) log(1/a)→ 0 as n→∞, we have

sup
x∈R

∣∣∣∣∣∣ 1

na

n∑
j=1

Y s
j K̂a

(
x−Wj

a

)
− E[Y s|X = x]f(x)

∣∣∣∣∣∣ = Op(ρn(a)).

Proof. Observe that

sup
u∈R
|K̂a(u)−Ka(u)| ≤ 1

2π

ˆ ∣∣∣∣∣ 1

f̂ ft
ε (t/a)

− 1

f ft
ε (t/a)

∣∣∣∣∣ |K ft(t)|dt

= Op

(
r2
ε (a) sup

|t|≤a−1

|f̂ ft
ε (t)− f ft

ε (t)|

)
,

and under Assumption (6) (E[|ε|2+η] <∞ for some η > 0), Lemma 1 of Kurisu and Otsu (2021)
implies

sup
|t|≤a−1

|f̂ ft
ε (t)− f ft

ε (t)| ≤ sup
|t|≤a−1

| 1
n

n∑
j=1

eitεrj − E[eitε]| = Op

(
n−1/2 log(1/a)

)
.

Then, the conclusion follows from Lemma 6 and

sup
x∈R

∣∣∣∣∣∣ 1

na

n∑
j=1

Y s
j K̂a

(
x−Wj

a

)
− a−1E

[
Y sKa

(
x−W
a

)]∣∣∣∣∣∣
≤ 1

n

n∑
j=1

|Yj |sa−1 sup
u∈R
|K̂a(u)−Ka(u)|+Op

(
n−1/2a−1/2rε(a)

√
log(1/

√
a)

)
.

�
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Lemma 8. [Delaigle and Gijbels, 2004b, Proposition 4.2] Suppose that Assumptions (1)-(3) hold.
Then ˆ

X
V ar∗(f̂b(x;h))dx = Op((nh)−1r2

ε (h)),

ˆ
X
V ar∗(m̂b(x;h)f̂b(x;h))dx = Op((nh)−1r2

ε (h)).
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