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Abstract. A graph G is Ramsey for a graph H if every 2-coloring of the edges of G contains
a monochromatic copy of H. We consider the following question: if H has bounded treewidth, is
there a “sparse” graph G that is Ramsey for H? Two notions of sparsity are considered. Firstly, we
show that if the maximum degree and treewidth of H are bounded, then there is a graph G with
O(|V(H)|) edges that is Ramsey for H. This was previously only known for the smaller class of
graphs H with bounded bandwidth. On the other hand, we prove that in general the treewidth of a
graph G that is Ramsey for H cannot be bounded in terms of the treewidth of H alone. In fact, the
latter statement is true even if the treewidth is replaced by the degeneracy and H is a tree.
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1. Introduction. A graph G is Ramsey for a graph H, denoted by G — H, if
every 2-coloring of the edges of G contains a monochromatic copy of H. In this paper
we are interested in how sparse GG can be in terms of H if G — H. The two measures
of sparsity that we consider are the number of edges in G and the treewidth of G.

The size Ramsey number of a graph H, denoted by 7(H), is the minimum number
of edges in a graph G that is Ramsey for H. The notion was introduced by Erdds
et al. [19]. Beck [3] proved 7(P,) < 900n, answering a question of Erdés [18]. The
constant 900 was subsequently improved by Bollobds [7] and by Dudek and Pratat [16].
In these proofs the host graph G is random. Alon and Chung [2] provided an explicit
construction of a graph with O(n) edges that is Ramsey for P,.

Beck [3] also conjectured that the size Ramsey number of bounded-degree trees
is linear in the number of vertices and noticed that there are trees (for instance,
double stars) for which it is quadratic. Friedman and Pippenger [25] proved Beck’s
conjecture. The implicit constant was subsequently improved by Ke [32] and by
Haxell and Kohayakawa [28]. Finally, Dellamonica, Jr. [13] proved that the size
Ramsey number of a tree T' is determined by a simple structural parameter 5(7") up
to a constant factor, thus establishing another conjecture of Beck [4].

In the same paper, Beck asked whether all bounded-degree graphs have a linear
size Ramsey number, but this was disproved by Rédl and Szemerédi [40]. They

*Received by the editors May 4, 2020; accepted for publication (in revised form) September 15,

2020; published electronically March 2, 2021.

https://doi.org/10.1137/20M1335790

Funding: The second author is supported by the Australian Research Council (DE170100789
and DP180103684). The third author’s research is also supported by the Australian Research Coun-
cil. The fourth author is supported by ERC Consolidator grant 647678 and by a Robert Bartnik
Fellowship of the School of Mathematics, Monash University.

fSchool of Mathematics, Monash University, Melbourne, Australia (Nina.Kamcev@monash.edu,
david.wood@monash.edu).

¥School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia (A.Liebenau@
unsw.edu.au).

§Mathematics, London School of Economics, London, WC2A 2AE, UK (L.Yepremyan@lse.ac.uk,
lyepre2@uic.edu).

281

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/20M1335790
mailto:Nina.Kamcev@monash.edu
mailto:david.wood@monash.edu
mailto:A.Liebenau@unsw.edu.au
mailto:A.Liebenau@unsw.edu.au
mailto:L.Yepremyan@lse.ac.uk
mailto:lyepre2@uic.edu

Downloaded 04/26/22 to 82.4.170.47 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

282 N. KAMCEV, A. LIEBENAU, D. WOOD, L. YEPREMYAN

constructed a family of graphs of maximum degree 3 with superlinear size Ramsey
number.

In 1995, Haxell, Kohayakawa, and Luczak showed that cycles have linear size
Ramsey number [29]. Conlon [11] asked whether, more generally, the kth power of
the path P, has size Ramsey number at most cn, where the constant ¢ only depends
on k. Here the kth power of a graph G is obtained by adding an edge between every
pair of vertices at distance at most k in G. Conlon’s question was recently answered
in the affirmative by Clemens et al. [9].

Their result is equivalent to saying that graphs of bounded bandwidth have linear
size Ramsey number. We show that the same conclusion holds in the following more
general setting. The treewidth of a graph G, denoted by tw(G), can be defined to
be the minimum integer w such that G is a subgraph of a chordal graph with no
(w + 2)-clique. While this definition is not particularly illuminating, the intuition
is that the treewidth of G measures how “tree-like” G is. For example, trees have
treewidth 1. Treewidth is of fundamental importance in the graph minor theory of
Robertson and Seymour and in algorithmic graph theory; see [6, 27, 39] for surveys
on treewidth. For the purposes of this paper the only property of treewidth that we
need is Lemma 2.1 below.

THEOREM 1.1. For all integers k,d there exists ¢ = c(k,d) such that if H is a
graph of maximum degree d and treewidth at most k, then

r(H) < c|[V(H)|.

Theorem 1.1 implies the above O(]V(H)|) bounds on the size Ramsey number
from [9], since powers of paths have bounded treewidth and bounded degree. Powers of
complete binary trees are examples of graphs covered by our theorem but not covered
by any previous results in the literature. Note that the assumption of bounded degree
in Theorem 1.1 cannot be dropped in general since, as mentioned above, there are trees
of superlinear size Ramsey number [4]. Furthermore, the lower bound from [40] implies
that an additional assumption on the structure of H, such as bounded treewidth, is
also necessary. We prove Theorem 1.1 in section 3.

We actually prove an off-diagonal strengthening of Theorem 1.1. For graphs H;
and Hs, the size Ramsey number 7(Hy, Hs) is the minimum number of edges in a
graph G such that every red/blue-coloring of the edges of G contains a red copy of
H; or a blue copy of Hy. We prove that if H; and Hs both have n vertices, bounded
degree, and bounded treewidth, then 7(H;, Hy) < cn. Moreover, we show that there
is a host graph that works simultaneously for all such pairs H; and Hs and that has
bounded degree.

THEOREM 1.2. For all integers k,d > 1 there exists ¢ = c(k,d) such that for every
integer n > 1 there is a graph G with cn vertices and mazimum degree ¢, such that
for all graphs Hy and Ho with n vertices, mazimum degree d, and treewidth k, every
red/blue-coloring of the edges of G contains a red copy of Hy or a blue copy of Hs.

The second contribution of this paper fits into the framework of parameter Ramsey
numbers: for any monotone graph parameter p, one may ask whether min{p(G) :
G — H} can be bounded in terms of p(H). This line of research was conceived
in the 1970s by Burr, Erdds, and Lovész [8]. The usual Ramsey number and the
size Ramsey number (where p(G) = |V(G)| and p(G) = |E(G)|, respectively) are
classical topics. Furthermore, the problem has been studied when p is the clique
number [21, 36], chromatic number [8, 44], maximum degree [30, 31], and minimum
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degree [8, 22, 23, 42] (the latter requires the additional assumption that the host graph
G is minimal with respect to subgraph inclusion; otherwise the problem is trivial).

It is therefore interesting to ask whether min{tw(G) : G — H} can be bounded
in terms of tw(H). Our next theorem shows that the answer is negative, even when
replacing treewidth by the weaker notion of degeneracy. For an integer d, a graph G is
d-degenerate if every subgraph of G has minimum degree at most d. The degeneracy
of GG is the minimum integer d such that G is d-degenerate. It is well known and easily
proved that every graph with treewidth w is w-degenerate, but treewidth cannot be
bounded in terms of degeneracy (for example, the 1-subdivision of K,, is 2-degenerate
but has treewidth n — 1).

THEOREM 1.3. For every d > 1 there is a tree T such that if G is d-degenerate,
then G -» T.

A positive restatement of Theorem 1.3 is that the edges of every d-degenerate
graph can be 2-colored with no monochromatic copy of a specific tree T' (depending
on d). This is a significant strengthening of a theorem by Ding et al. [15, Theorem 3.9],
who proved that the edges of every graph with treewidth at most k can be k-colored
with no monochromatic copy of a certain tree T'. We also note that a statement similar
to Theorem 1.3 does not hold in the online Ramsey setting; see section 4 in [12] for
more details.

Furthermore, Theorem 1.3 is tight in the following sense. If G is a monotone graph
class with unbounded degeneracy, then for every tree T', there is a graph G € G such
that G — T'. Indeed, for a given tree T, let G be a graph in G with average degree at
least 4|V (T')|, which exists since G is monotone with unbounded degeneracy. In any
2-coloring of E(G), one color class has average degree at least 2|V (T)|. Thus there is
a monochromatic subgraph of G with minimum degree at least |T'|, which contains T’
as a subgraph by a folklore greedy algorithm.

2. Tools. Our proof of Theorem 1.2 relies on the following characterization of
graphs with bounded treewidth and bounded degree. The strong product of graphs G
and H, denoted by G X H, is the graph with vertex set V(G) x V(H), where (v1,u1)
is adjacent to (ve,us) in GX H if v;1 = vy and wjug € E(H), or vivy € E(G) and
up = ug, or vivy € E(G) and ujus € E(H). Note that T X K}, is obtained from T
by replacing each vertex by a clique and replacing each edge by a complete bipartite
graph.

LEMMA 2.1 ([14, 43]). FEvery graph with treewidth w and mazimum degree d is
a subgraph of T X Kigq for some tree T of mazimum degree at most 18wd?.

Our host graph G in the proof of Theorem 1.2 is obtained from a random D-
regular graph H on O(n) vertices for a suitable constant D. We then take the third
power of H and replace every vertex by a clique of bounded size and every edge by a
complete bipartite graph. To show that G has the desired Ramsey properties we will
exploit certain expansion properties of H.

An (N, D, \)-graph is a D-regular N-vertex graph in which every eigenvalue ex-
cept the largest one is at most A in absolute value. The existence of graphs with
A= O(\/E) is shown, for instance, by considering a random D-regular graph on N
vertices, denoted by G(N, D).

LEMMA 2.2 ([24]). Let D > 3 be an integer, and let ND be even. With probability
tending to 1 as N — oo, every eigenvalue of G(N, D) except the largest one is at most
2D in absolute value.
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For a graph G and sets U, W C V(G), let ¢(U, W) be the number of edges with
one endpoint in U and the other one in W. Each edge with both endpoints in UNW is
counted twice. We will use the following well-known estimate on the edge distribution
of a graph in terms of its eigenvalues; see, e.g., [34] for a proof.

LEMMA 2.3 ([34]). For every (N, D, \)-graph G and for all sets S,T C V(G),

o5:m~ 230 < o s (1~ (1 )

The key tool that we use is the following implicit result of Friedman and Pip-
penger [25], which shows that every (N, D, A)-graph with the appropriate parameters
is “robustly universal” for bounded-degree trees. Let 7, 4 be the set of all trees with
n vertices and maximum degree at most d. The next lemma follows implicitly from
the proofs of Theorems 2 and 3 in [25].

LEMMA 2.4 ([25]). Let e > 0 and d,n be integers. Let D and N be integers
such that D > 100d?/e* and N > 10d*n/e?, and let G be an (N, D, \)-graph with
X = 2VD. Then every induced subgraph of G on at least eN vertices contains every
tree in Tp 4.

We summarize the above results in the following lemma.

LEMMA 2.5. For every integer d, every € > 0, and all even D > 100d?/e* there
exists ¢ such that for all integers n, N with N > cn there exists an N -vertex D-reqular
graph H with the following properties:

(1) For every pair of disjoint sets S, T C V(H) with |S|,|T| = 2N/vD we have

e(S,T) > 0.
(2) Every induced subgraph of H on at least eN wvertices contains every tree in

Tnd-

Proof. Let D > 100d?/e* be an even integer and N > 10d°n/e?. Let H be an
(N, D, \)-graph where A = 2v/D, which exists by Lemma 2.2. Property (2) follows
from Lemma 2.4. Moreover, for all sets S, T C V(H) with |S|,|T| > 2N/+/D we have

M |S|IT| < %, which implies e(S,T) > 0 by Lemma 2.3, as desired. d

We also need the following lemma of Friedman and Pippenger [25]. For a graph
H and X C V(H), let Ty (X) be the set of vertices in V(H) adjacent to some vertex
in X.

LEMMA 2.6 (Theorem 1 of [25]). If H is a nonempty graph such that for each
X CV(H) with1 < |X| < 2n -2,
Tu(X)] = (d+1)|X],

then H contains every tree in Ty, 4.
Finally, we need the following standard tools.

LEMMA 2.7 (Kovari, Sés, and Turdn [33]). Ewvery graph with n vertices and no
K, s subgraph has at most (s — 1)1/*n?71/s 4 (s — 1) edges.

LEMMA 2.8 (Lovasz local lemma [20]). Let £ be a set of events in a probability
space, each with probability at most p, and each mutually independent of all except
at most d other events in €. If dpd < 1, then with positive probability no event in £
occurs.
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3. Proof of Theorem 1.2. We start with the following lemma that states that
if a graph does not contain all trees in 7, 4, then its complement contains a complete
multipartite subgraph where the parts have “large” size. In fact, our proof shows that
if the second assertion does not hold, (i.e. there is no complete multipartite graph
with large parts in the complement), then the graph contains a “large” expander as
a subgraph. The containment of every tree in 7, 4 then follows from Lemma 2.6.
Statements of similar flavor are also proved and utilized in [17, 38, 37].

LEMMA 3.1. Fix integers n,d,q, and let N > 20ndq. In every red/blue-coloring
of E(Ky) there is either a blue copy of every tree in T, q or a red copy of a complete

q-partite graph in which every part has size at least 5—](\1’(1.

Proof. Let G be the spanning subgraph of Ky consisting of all the blue edges.
We may assume that G does not contain every tree in 7, 4. By Lemma 2.6, for
every nonempty set S C V(G), there exists X C S such that 1 < |X]| < 2n —2 and
ITcrs)(X)] < (d + 1)|X]. Note that for such S and X, all the edges of Ky between
X and S\ (X UT'gg(X)) must be red. Let S1,S2,...,m1 and X1, Xo,..., X, be
sets of vertices in G such that S; = V(G) and, for 1 < i < m,

o Sit1 =5\ (XiUTgs,)(Xi)).

We stop when S,,,.1 = 0. Note that X1, X»,..., X, are pairwise disjoint. Since all
the edges of K between X; and S;;1 are red, all the edges between distinct X; and
X; are red. Let X = J;~, X;. Note that

m m
N = |Xi UTgs(Xi) < > _(d+2)|X;] = (d +2)|X].
i=1 i=1

Thus | X| > A

We now combine the parts X; to reach the required size. Let Y7 = X; U X, U
---U X, where j is the minimal index such that |X; UXo U---U X;| > %q. Since
|X;| < 2n—2 < %, we have the upper bound, |V;| < 13071(\1;. Repeating the same
argument, starting at X;;, and noting that |X| > % > q- %, we construct
Y1.Ys,...Y,, satisfying |V;| > 5%1 and such that all edges between any distinct Y; and
Y; are red. 0

Let T be a rooted tree with root r. For each vertex v of T', let pr(v) denote the
parent of v, where for convenience we let pr(r) = r. Let pZ(v) denote the grandparent
of v; that is, p%(v) = pr(pr(v)). We denote the set of children of v by Cr(v), and
define C2(v) = Cr(v) U (Uzecp @) Cr(z)) to be the set of children and grandchildren
of v. Let dr(v) be the distance between r and v, that is, the number of edges on the
path from r to v. For each integer 4, let L;(T") be the set of vertices v with dp(v) = i.
In the above definitions, we may omit the subscript 7" if T is clear from the context.

Given a tree T rooted at r, define another tree T” rooted at r as follows. The
vertex set of 1" is defined to be {r} U ;5o L2i+1(T). A pair vw with v,w € V(1") is
an edge of T” if pZ(v) = w or pZ(w) = v. In particular, Cr(r) = Cr(r). We call T’
the truncation of T. An illustration of 7" and its truncation can be found in Figure
1. Note that if T has maximum degree d, then 7’ has maximum degree at most d2.

Let s and m be integers. Suppose we are given a graph G, a vertex partition
(V1,Va,..., V) of G, and an edge-coloring ¢ : E(G) — {red,blue}. Define an aux-
iliary coloring of the complete graph K, with vertex set [m] as follows. For distinct
i,7 € [m], color the edge ij blue if there is a blue K ; between V; and Vj in G, and red
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Zo

Z1 X2

€7 rs

o

Z1 €2

Fic. 1. (a) Tree T, (b) truncation T’, (c) the corresponding bags, (d) embedding of T K K}
where [x;] means {z;} X K.

otherwise. We call this edge-coloring the (G, v, s)-coloring of K,,. This auxiliary col-
oring also appears in [1] and subsequently in [9]. The lemma below demonstrates the
importance of this auxiliary coloring; for any bounded-degree tree T' and any k there
is some s such that under certain conditions we can effectively “lift” a monochromatic
copy of T" in the (G, 1, s)-coloring of K,, to a monochromatic copy of T X K}, in G,
with respect to the coloring .

LEMMA 3.2. Fiz integers n, d, k, m. Let T be a tree in T, 4 rooted al xo, and
let T' be the truncation of T. Let s = (d + d?)k. Suppose we are given a graph G, a
vertex partition (V1,Va,...,Vin) of G, and an edge-coloring ¢ : E(G) — {red, blue}
such that, for all i € [m], all the edges of G[V;] are present and are blue, and |V;| > s.
If there exists a blue copy of T' in the (G, v, s)-coloring of K,,, then there exists a
blue copy of T X K}, in G.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Proof. Let ¢ be the (G, ), s)-coloring of K,,, and suppose g : V(T') — [m] is an
embedding of T in the blue subgraph of K,,. Let xg,z1,x2,...,Z, be the vertices
of V(T') ordered by their distance from the root xo in T’. We will find a blue copy
of T'X K}, whose vertices are in Vy,,) for i =0, ... ,m’. We warn the reader that in
this proof we often use notation f(S X K}) to denote the image of S X K}, for some
subset S C V(T), under some embedding f into G, without precisely defining how
f acts on each vertex of S X K, but rather claiming that such an embedding exists.
This is done for brevity and to keep the proof intuitive.

We define a collection {B, : z € V(I")} of subsets of V(T) as follows. Let
B, = {x0}, and for each x € V(T") \ {x0}, let B, = {z} U Cr(z). We call B, the
bag of the vertex x. Observe that the bags are pairwise disjoint, and they partition
the entire vertex set V(T'). They will help us keep track of the embedding of T'X K},
in G. Our goal is to find an embedding f of T X K} in G satisfying the properties
(P1)—(P4) below.

(P1) f(TX Ky) C UzGV(T’) V(@)

(P2) f(({zo} UCr(w0)) K Ky) S Vi(ay),

(P3) for every x € V(T") \ {zo}, f(CF(2) W K) C Vy(a),
(P4) every edge of f(T X K}) will be colored blue.

We will proceed iteratively, starting from the root ¢ and following the order of
the vertices x; we fixed earlier. At each step 7, we will have a partial embedding f; of
T;X Ky in G, where T; is the subtree T'[U;<; Bz, ]. Our final embedding will be f = fy./.
At step 0 we will embed B,, X K} in some way; this will define fy. At step i > 1,
fi will be defined as an extension of f;_1, and the extension will be defined only on
B,, X K}, so that the image of the latter “links” back appropriately to the embedding
of T;_1 X K. Note that (P2) implies that at most (d + 1)k vertices are embedded in
V(o) and every other Vy(,) (with @ # ) will contain at most (d 4 d*)k embedded
vertices by (P3). Moreover, (P4) will be satisfied for edges of f(T X K}) embedded
inside one partition class V;. To guarantee that those edges of f(T K K}) that go
between distinct partition classes V; and V}, are blue, we will make use of the properties
of the auxiliary coloring ¢. Finally, we define our iterative embedding scheme from
which properties (P1)—(P4) can be easily read out, thus completing the proof.

Step 0: Let Ty = {x0}, and embed Ty M K}, into Vy(,,) by picking any k vertices
in Vy(z,); this determines fo. Recall that all edges inside V) are blue; hence indeed
this is a valid embedding of Ty X K.

Step ¢ > 1: Having defined f;_1, we now show how to extend it to f;. Recall
that By, = {z;} UCr(z;). Let y be the grandparent of z;. Since there is an edge z;y
in T and since g is a blue embedding of 7" in K,,, there is a blue K ;s between V(s
and Vy(,). Let L be any such copy of K, ;. Define f; on {x;} K K} to be a set of any
k vertices in Vy(,y N V(L) disjoint from the image of f; ;. Define f; on Cr(z;) X Ky
to be any set of k|Cr(x;)| vertices in Vy(,,y N V(L) disjoint from the image of f;_;.
This is possible since |Vy(,,) NV (L)| = s = (d* +d)k, and the total number of vertices
embedded into Vj(,,) during the procedure is at most (d? + d)k. |

The next lemma is a standard application of the Lovasz local lemma. Given
a graph F' let F'(t) denote the blowup of F', where each vertex v is replaced by an
independent set I(v) of size ¢t and each edge uv is replaced by a complete bipartite
graph between I(u) and I(v).

LEMMA 3.3. Fizt > 1. Let F be a graph with mazimum degree A. Let F' be
a spanning subgraph of F(t) such that for every edge vw € E(F) there are at least
(1 — g5)t? edges in F' between I(v) and I(w). Then F C F'.
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Proof. For each vertex v of F, independently choose a random vertex v’ in I(v).
For each edge vw of F, let E,, be the event that v'w’ is not an edge of F’. Since
there are at least (1— gk )t? edges between I(v) and I(w), the probability of Ey,, is at
most i. Each event E,,, is mutually independent of all other events, except for the
at most 2A events corresponding to edges incident to v or w. Since 4(g%)(24) < 1,
by Lemma 2.8, the probability that some event F, ., occurs is strictly less than 1.
Thus, there exist choices for v’ for all v € V(F') such that v'w’ is an edge of F” for
every edge vw of F. This yields a subgraph of F’ isomorphic to F. ]

Both Theorem 1.1 and Theorem 1.2 are implied by Lemma 2.1 and the following
result.

THEOREM 3.4. For all integers k,d there exists ¢ = c(k,d) such that for all n
there is a graph G with cn vertices and mazimum degree ¢, such that for all trees
Ty and Ty with n vertices and mazimum degree d, every red/blue-coloring of E(G)
contains a red copy of T1 X Ky, or a blue copy of To K K.

Proof. Let € = (d?(2k + 1)22¥*4)~1. Let D be the smallest even number larger
than 100d?/e*. Let ¢ be derived from Lemma 2.5 applied with this choice of ¢, d,
and D. Let N = max{cn,40nd?*(2k + 1)}, and let H be any N-vertex D-regular
graph derived from Lemma 2.5. Set s = (d? + d)k and t = (64kd)®. Denote the
Ramsey number of ¢ by r(¢). Recall that H? is a graph on the same vertex set as H
where uv is an edge in H® whenever u and v are at distance at most three in H. Let
G=HRK,q.

Since H is D-regular, H> has maximum degree at most D3, and G has maximum
degree at most D37(t) +r(t) — 1. Let A(v) denote the copy of K, corresponding to
v e V(H). Let ¢ : E(G) — {red,blue} be any edge-coloring of G. We will show that
it must contain either a red copy of 77 X K}, or a blue copy of To X K.

By definition of r(t), for each vertex v € V(H), A(v) contains a monochromatic
copy of K, say, on vertex set B(v). Let W be the set of vertices v € V(H) for
which B(v) induces a blue K;. By symmetry between T and T», we may assume that
\W| > 2|V(H)|. Let N' = [W|> &

Let B(W) = U, e B(v), and let ¢ be the (G[B(W)], 1, s)-coloring of K. Root
T, at an arbitrary vertex. Let T4 be the truncation of Th. If there is a blue copy
of T3 in K+ with respect to the coloring ¢, then Lemma 3.2 implies that G[B(W)]
contains a blue copy of To X K, with respect to 1.

We henceforth assume that there is no blue copy of T3 in Kys. Since Ty has
maximum degree at most d? and N’ > 20nd?(2k + 1) there are sets Vo, Vi, ..., Vo C
V(K n) of size at least #1;—%1) such that all the edges in K between two distinct
parts V; and V; are red, by Lemma 3.1.

For i € [2k], define an i-matching to be a matching of edges in H with one
endpoint in Vj and the other in V;. (Note that we are now considering the original
graph H, not Ky/.) We will find a set S C Vj satisfying |S| > 272%|V{], and a collection
of i-matchings {M;}?%, such that each M; covers S. We proceed by induction on i.
Assume at the end of step j < 2k — 1 we have found a set S; C Vy with [S;] > 279|Vp|
and a collection of i-matchings {Mi}{:l, where each M; covers S;. At step j + 1, let
M; 1 be a maximum matching between S; and V1. If M, consists of fewer than
|S;|/2 edges, then, by Kénig’s theorem, the bipartite graph between S; and Vj41 has a
vertex cover of order at most |S;|/2. But then we can find sets X C S; and Y C Vj4q
with ey (X,Y) = 0 and |X|,|Y| > |S;]/2 = 27%72|Vp| > eN. This contradicts
property (1) from Lemma 2.5. Hence M; ; covers at least |S;|/2 > [Vp| - 270+1)
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vertices of S;. We set Sj11 = V(M;41) N S; and proceed. After 2k steps, we reach
the desired set Syp, which we call S.

For each vertex v € S, for i € [2k], let v; € V; be the unique neighbor of v in M;.
Since |S| > 272k|Vp| > eN, HI[S] contains a copy Ty of T} on some vertex set U by
property (2) from Lemma 2.5. Next we show that there is a red (With respect to )
copy of T1 X K, in K contained in the vertex set of T1 U{M; } ", and use this copy
to find a red (with respect to 1) copy of Ty W K in G[B(W)] via Lemma 3.3.

Root Ty at any vertex 7. For every vertex v € V(T1) let S(v) = {v1,va,...,v3} if
v is at even distance from 7 and S(v) = {vg41, Vk+2, - - -, U2k } otherwise. Note that for
any u,v € V(Ty), the sets S(u) and S(v) are disjoint. Moreover, for every v € V (T1),
S(v) induces a red clique in K because the vertices of S(v) are elements of distinct
partition classes V;. If u and v are adjacent in Tl, then also edges between S(u)
and S(v) are red in K/ since all the vertices of S(u) U S(v) lie in distinct partition

classes V;. So this shows that the vertex set | J,c,; S(v) induces a red copy Ty X K}, of
T XK} in K. It remains to “lift” this copy to the graph G[B(W)] with the coloring

1. First we observe that every edge in 71 X K} is in fact an edge of H 3. Indeed, for
any u € V(T1) and any ¢ # j, u;, u; € S(u) are at distance at most two in H; hence
u;uj is an edge in H3. Now if v and v are adjacent in T;, then for any u; € S(u) and
v; € S(v), the distance between u; and v; in H is at most 3, so u; and v; are also
adjacent in H3.

Recall that if uv is an edge of H® and ¢(uv) is red in Ky, then the complete
bipartite graph G, between B(u) and B(v) in G contains no blue copy of K .
Lemma 2.7 implies that Gw has at most (s — )1/5152*1/5 + (s — 1) < 4t>71/% blue
edges. Note that 4¢>71/* < ;L. Let F =Ty KK K}, and let F’ be the subgraph of G
consisting of all the red edges of G, over all uv € E(F). It is now easy to see that
F and F” satisfy the assumptions of Lemma 3.3. Therefore G contains a red copy of
T1 X K}, which finishes the proof. 0

4. Proof of Theorem 1.3. Let T be the complete d-ary tree of height h with
a root vertex r; that is, every nonleaf vertex has exactly d children, and every leaf
is at distance h from r. Theorem 1.3 is implied by the following. Recall that, for a
rooted tree T, dp(v) denotes the number of edges of the path from the root to v in T'.

THEOREM 4.1. For every integer i > 1, every (2° — 1)-degenerate graph G is not
Ramsey for the tree Thit1 oi.

Proof. We proceed by induction on ¢. For i = 1, G is a tree, so fix an arbitrary
vertex to be the root of G and color the edges of G by their distance to the root modulo
2 (where the distance of an edge uv to the root r is min{dg(u),dg(v)}). There is no
monochromatic path of length 3, and in particular no monochromatic copy of T} o.

Now let 7 > 2, and set d = 2¢ and h = 2¢~! for brevity. Let G be a (d — 1)-
degenerate graph. It follows from the definition of degeneracy that G has a vertex-
ordering vq, v2, ..., Uy, such that each vertex v; has at most d — 1 neighbors v;, with
k < j. Form an oriented graph G by choosing the orientation (vj,vx) for an edge
vjug € E(G) if j < k. Then each vertex has in-degree at most d — 1.

We now partition V(G) into sets V,. and V; such that both G[V;] and G[V}] are
(d/2 — 1)-degenerate. Start by assigning v; to V.. For j = 2,3,...,n, assume that
V1,V2,...,V;—1 have been assigned to V, or V. Add v; to V,. if V;. contains at most
d/2 — 1 of the in-neighbors of v;. Otherwise add it to V;. Note that in the latter
case, V4 contains at most d/2 — 1 of the in-neighbors of v;, since v; has at most d —1
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in-neighbors in G. Clearly, this does not affect the in-degree of vi,v2,...,v;_1 in
G[V,] and G[V;). Thus, this process produces the desired sets V, and V.

By induction, there is a red/blue-coloring ¢’ of the edges in Eq(V;) U Eq(Vs)
not containing a monochromatic copy of Ty . We extend ¢’ to a red/blue-coloring
¥ of E(G) in the following way. For an edge uv € E¢(V,, V;) assume without loss of
generality that it is directed from u to v in G, that is, (u,v) € G. Then color uv red
if w € V., and blue if u € V}. In other words, the edge uv “inherits” the color from
its source vertex in G.

We claim that there is no monochromatic copy of Th4 25, in this coloring of E(G).
Assume the opposite, and let nggh be a monochromatic copy of Ts4,2p in G. For each
vertex v in Thg 2, we denote its copy in j:‘Qd)Qh by v. Without loss of generality we
may assume that j:gd,gh is red.

CrAam 4.2. Ifv is a nonleaf vertex of f2d72h that lies in V3, then there are at least
d children w1, ... ,uq of U in Taqon such that w; € Vi for all j € [d].

Proof. The number of children of the vertex v in ng’gh is 2d. Out of these, the
number of children w such that (w,v) € G is at most d — 1. Furthermore, each edge
(v,w) € G with w € V, is colored blue in 1, by definition and since v € V3. That
implies that none of these edges can be part of ng)gh. It follows that at least d + 1

neighbors of v in TQth are elements of Vj,. At most one of these vertices is the parent
of v, and the claim follows. ]

Recall that 7 is the root of nggh.

CLAIM 4.3. For every vertex v € V(de)Qh) at distance at most h from 1 in ng,gh
we have that v € V..

Proof. Assume that v € V,, and has distance at most h in ngﬁgh from 7. Apply
Claim 4.2 iteratively to v and all of its descendants u that lie in V3. In h iterations
(before reaching the leaves of Thg 25), we construct a red copy of T whose vertices
all lie in V}, that is, a red copy of Ty ;. This contradicts the property of . ]

It follows that all vertices in fgdgh at distance at most A from 7 must lie in V.,
forming a red copy of Ty, in G[V;], which again contradicts the property of ¢'. 0O

After the first preprint of this paper was finished we learned [41] that Maximilian
Geifler, Jonathan Rollin, and Peter Stumpf independently obtained a proof of Theo-
rem 1.3. This proof is unpublished, yet short and nice, so we include their argument
here.

Second proof of Theorem 4.1. Let G be a d-degenerate graph. We show that G is
not Ramsey for Ty1 4+1. Assume without loss of generality that the vertex set of G
is [n] for some n and that every u € V(G) has at most d neighbors v with v < u. Let
¢ : V(G) — [d + 1] denote a proper coloring of the vertices of G using at most d + 1
colors. Define an edge coloring 1 by coloring an edge uv with u < v red if ¢p(u) < ¢(v)
and blue otherwise. A path v;...v, in G is called monotone if its vertices are ordered
v < -+ < v,. Each monochromatic monotone path in ¢ has at most d vertices, since
the colors of its vertices are either increasing or decreasing under ¢. On the other
hand each copy of T; 11,441 in G contains a monotone path on d vertices, since each
inner vertex w has a child v with v < v due to the d-degeneracy of G. Hence there
are no monochromatic copies of Ty 41,441 in G. O
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5. Concluding remarks. We have shown that for a graph H of bounded max-
imum degree and treewidth, there is a graph G with O(]V (H)|) edges that is Ramsey
for H. It is now natural to ask whether the size Ramsey number of a planar graph H
of bounded degree is linear in |V (H)|. A first candidate to consider is the grid graph.
Recently Clemens et al. [10] have shown that the size Ramsey number of the grid
graph on n x n vertices is bounded from above by n3t°(). There are no nontrivial
lower bounds known.

QUESTION 5.1. Is the size Ramsey number of the grid graph on m X n vertices
o(n?)?

Furthermore, we propose a multicolor extension of our result.

QUESTION 5.2. Given positive integers w,d,n,s > 3 and an n-vertex graph H of
mazimum degree d and treewidth w, do there exist C = C(w,d, s) and a graph G with
Cn edges such that every s-coloring of the edges of G contains a monochromatic copy
of H?

When H is a bounded-degree tree, a positive answer (and even a stronger density
analog result) follows from the work of Friedman and Pippinger [25]. Han et al. [26]
have recently shown that the above extension holds for graphs of bounded bandwidth
(or, equivalently, for any fixed power of a path).

Our second result is that the edges of every d-degenerate graph can be 2-colored
without a monochromatic copy of a fixed tree T' = T'(d). The maximum degree of T'
in the proof of Theorem 4.1 is 2d+ 1. It follows from [35, Lemma 5] that T' cannot be
replaced by a tree whose maximum degree is bounded by an absolute constant which
is independent of d.

Ding et al. [15] also showed that for every tree T', there is a graph G of treewidth
two such that every red/blue-coloring of the edges of G contains a red copy of T' or
a blue copy of a subdivision of T. We wonder whether the following generalization is
true.

QUESTION 5.3. Is there a function f(k) with the following property: for every
graph H of treewidth k, there is a graph G of treewidth f(k) such that every red/blue-
coloring of the edges of G contains a red copy of H or a blue copy of a subdivision
of H?

Acknowledgments. We would like to thank Jonathan Rollin for sending us the
alternative proof of Theorem 4.1 and for pointing us to [35]. After completing our
manuscript we learned that Berger et al. [5] answered Question 5.2 positively. In fact,
their proof works also for s = 2.
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