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Abstract. A graph G is Ramsey for a graph H if every 2-coloring of the edges of G contains
a monochromatic copy of H. We consider the following question: if H has bounded treewidth, is
there a ``sparse"" graph G that is Ramsey for H? Two notions of sparsity are considered. Firstly, we
show that if the maximum degree and treewidth of H are bounded, then there is a graph G with
O(| V (H)| ) edges that is Ramsey for H. This was previously only known for the smaller class of
graphs H with bounded bandwidth. On the other hand, we prove that in general the treewidth of a
graph G that is Ramsey for H cannot be bounded in terms of the treewidth of H alone. In fact, the
latter statement is true even if the treewidth is replaced by the degeneracy and H is a tree.
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1. Introduction. A graph G is Ramsey for a graph H, denoted by G \rightarrow H, if
every 2-coloring of the edges of G contains a monochromatic copy of H. In this paper
we are interested in how sparse G can be in terms of H if G\rightarrow H. The two measures
of sparsity that we consider are the number of edges in G and the treewidth of G.

The size Ramsey number of a graph H, denoted by \widehat r(H), is the minimum number
of edges in a graph G that is Ramsey for H. The notion was introduced by Erd\H os
et al. [19]. Beck [3] proved \widehat r(Pn) \leqslant 900n, answering a question of Erd\H os [18]. The
constant 900 was subsequently improved by Bollob\'as [7] and by Dudek and Pra\lat [16].
In these proofs the host graph G is random. Alon and Chung [2] provided an explicit
construction of a graph with O(n) edges that is Ramsey for Pn.

Beck [3] also conjectured that the size Ramsey number of bounded-degree trees
is linear in the number of vertices and noticed that there are trees (for instance,
double stars) for which it is quadratic. Friedman and Pippenger [25] proved Beck's
conjecture. The implicit constant was subsequently improved by Ke [32] and by
Haxell and Kohayakawa [28]. Finally, Dellamonica, Jr. [13] proved that the size
Ramsey number of a tree T is determined by a simple structural parameter \beta (T ) up
to a constant factor, thus establishing another conjecture of Beck [4].

In the same paper, Beck asked whether all bounded-degree graphs have a linear
size Ramsey number, but this was disproved by R\"odl and Szemer\'edi [40]. They
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constructed a family of graphs of maximum degree 3 with superlinear size Ramsey
number.

In 1995, Haxell, Kohayakawa, and \Luczak showed that cycles have linear size
Ramsey number [29]. Conlon [11] asked whether, more generally, the kth power of
the path Pn has size Ramsey number at most cn, where the constant c only depends
on k. Here the kth power of a graph G is obtained by adding an edge between every
pair of vertices at distance at most k in G. Conlon's question was recently answered
in the affirmative by Clemens et al. [9].

Their result is equivalent to saying that graphs of bounded bandwidth have linear
size Ramsey number. We show that the same conclusion holds in the following more
general setting. The treewidth of a graph G, denoted by tw(G), can be defined to
be the minimum integer w such that G is a subgraph of a chordal graph with no
(w + 2)-clique. While this definition is not particularly illuminating, the intuition
is that the treewidth of G measures how ``tree-like"" G is. For example, trees have
treewidth 1. Treewidth is of fundamental importance in the graph minor theory of
Robertson and Seymour and in algorithmic graph theory; see [6, 27, 39] for surveys
on treewidth. For the purposes of this paper the only property of treewidth that we
need is Lemma 2.1 below.

Theorem 1.1. For all integers k, d there exists c = c(k, d) such that if H is a
graph of maximum degree d and treewidth at most k, then

\widehat r(H) \leqslant c| V (H)| .

Theorem 1.1 implies the above O(| V (H)| ) bounds on the size Ramsey number
from [9], since powers of paths have bounded treewidth and bounded degree. Powers of
complete binary trees are examples of graphs covered by our theorem but not covered
by any previous results in the literature. Note that the assumption of bounded degree
in Theorem 1.1 cannot be dropped in general since, as mentioned above, there are trees
of superlinear size Ramsey number [4]. Furthermore, the lower bound from [40] implies
that an additional assumption on the structure of H, such as bounded treewidth, is
also necessary. We prove Theorem 1.1 in section 3.

We actually prove an off-diagonal strengthening of Theorem 1.1. For graphs H1

and H2, the size Ramsey number \widehat r(H1, H2) is the minimum number of edges in a
graph G such that every red/blue-coloring of the edges of G contains a red copy of
H1 or a blue copy of H2. We prove that if H1 and H2 both have n vertices, bounded
degree, and bounded treewidth, then \widehat r(H1, H2) \leqslant cn. Moreover, we show that there
is a host graph that works simultaneously for all such pairs H1 and H2 and that has
bounded degree.

Theorem 1.2. For all integers k, d \geqslant 1 there exists c = c(k, d) such that for every
integer n \geqslant 1 there is a graph G with cn vertices and maximum degree c, such that
for all graphs H1 and H2 with n vertices, maximum degree d, and treewidth k, every
red/blue-coloring of the edges of G contains a red copy of H1 or a blue copy of H2.

The second contribution of this paper fits into the framework of parameter Ramsey
numbers: for any monotone graph parameter \rho , one may ask whether min\{ \rho (G) :
G \rightarrow H\} can be bounded in terms of \rho (H). This line of research was conceived
in the 1970s by Burr, Erd\H os, and Lov\'asz [8]. The usual Ramsey number and the
size Ramsey number (where \rho (G) = | V (G)| and \rho (G) = | E(G)| , respectively) are
classical topics. Furthermore, the problem has been studied when \rho is the clique
number [21, 36], chromatic number [8, 44], maximum degree [30, 31], and minimum
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degree [8, 22, 23, 42] (the latter requires the additional assumption that the host graph
G is minimal with respect to subgraph inclusion; otherwise the problem is trivial).

It is therefore interesting to ask whether min\{ tw(G) : G \rightarrow H\} can be bounded
in terms of tw(H). Our next theorem shows that the answer is negative, even when
replacing treewidth by the weaker notion of degeneracy. For an integer d, a graph G is
d-degenerate if every subgraph of G has minimum degree at most d. The degeneracy
of G is the minimum integer d such that G is d-degenerate. It is well known and easily
proved that every graph with treewidth w is w-degenerate, but treewidth cannot be
bounded in terms of degeneracy (for example, the 1-subdivision of Kn is 2-degenerate
but has treewidth n - 1).

Theorem 1.3. For every d \geqslant 1 there is a tree T such that if G is d-degenerate,
then G\nrightarrow T .

A positive restatement of Theorem 1.3 is that the edges of every d-degenerate
graph can be 2-colored with no monochromatic copy of a specific tree T (depending
on d). This is a significant strengthening of a theorem by Ding et al. [15, Theorem 3.9],
who proved that the edges of every graph with treewidth at most k can be k-colored
with no monochromatic copy of a certain tree T . We also note that a statement similar
to Theorem 1.3 does not hold in the online Ramsey setting; see section 4 in [12] for
more details.

Furthermore, Theorem 1.3 is tight in the following sense. If \scrG is a monotone graph
class with unbounded degeneracy, then for every tree T , there is a graph G \in \scrG such
that G\rightarrow T . Indeed, for a given tree T , let G be a graph in \scrG with average degree at
least 4| V (T )| , which exists since \scrG is monotone with unbounded degeneracy. In any
2-coloring of E(G), one color class has average degree at least 2| V (T )| . Thus there is
a monochromatic subgraph of G with minimum degree at least | T | , which contains T
as a subgraph by a folklore greedy algorithm.

2. Tools. Our proof of Theorem 1.2 relies on the following characterization of
graphs with bounded treewidth and bounded degree. The strong product of graphs G
and H, denoted by G\boxtimes H, is the graph with vertex set V (G)\times V (H), where (v1, u1)
is adjacent to (v2, u2) in G \boxtimes H if v1 = v2 and u1u2 \in E(H), or v1v2 \in E(G) and
u1 = u2, or v1v2 \in E(G) and u1u2 \in E(H). Note that T \boxtimes Kk is obtained from T
by replacing each vertex by a clique and replacing each edge by a complete bipartite
graph.

Lemma 2.1 ([14, 43]). Every graph with treewidth w and maximum degree d is
a subgraph of T \boxtimes K18wd for some tree T of maximum degree at most 18wd2.

Our host graph G in the proof of Theorem 1.2 is obtained from a random D-
regular graph H on O(n) vertices for a suitable constant D. We then take the third
power of H and replace every vertex by a clique of bounded size and every edge by a
complete bipartite graph. To show that G has the desired Ramsey properties we will
exploit certain expansion properties of H.

An (N,D, \lambda )-graph is a D-regular N -vertex graph in which every eigenvalue ex-
cept the largest one is at most \lambda in absolute value. The existence of graphs with
\lambda = O(

\surd 
D) is shown, for instance, by considering a random D-regular graph on N

vertices, denoted by G(N,D).

Lemma 2.2 ([24]). Let D \geqslant 3 be an integer, and let ND be even. With probability
tending to 1 as N \rightarrow \infty , every eigenvalue of G(N,D) except the largest one is at most
2
\surd 
D in absolute value.
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For a graph G and sets U,W \subseteq V (G), let e(U,W ) be the number of edges with
one endpoint in U and the other one in W . Each edge with both endpoints in U\cap W is
counted twice. We will use the following well-known estimate on the edge distribution
of a graph in terms of its eigenvalues; see, e.g., [34] for a proof.

Lemma 2.3 ([34]). For every (N,D, \lambda )-graph G and for all sets S, T \subseteq V (G),\bigm| \bigm| \bigm| \bigm| e(S, T )  - D| S| | T | 
N

\bigm| \bigm| \bigm| \bigm| \leqslant \lambda 

\sqrt{} 
| S| | T | 

\biggl( 
1  - | S| 

N

\biggr) \biggl( 
1  - | T | 

N

\biggr) 
.

The key tool that we use is the following implicit result of Friedman and Pip-
penger [25], which shows that every (N,D, \lambda )-graph with the appropriate parameters
is ``robustly universal"" for bounded-degree trees. Let \scrT n,d be the set of all trees with
n vertices and maximum degree at most d. The next lemma follows implicitly from
the proofs of Theorems 2 and 3 in [25].

Lemma 2.4 ([25]). Let \varepsilon > 0 and d, n be integers. Let D and N be integers
such that D > 100d2/\varepsilon 4 and N > 10d2n/\varepsilon 2, and let G be an (N,D, \lambda )-graph with
\lambda = 2

\surd 
D. Then every induced subgraph of G on at least \varepsilon N vertices contains every

tree in \scrT n,d.
We summarize the above results in the following lemma.

Lemma 2.5. For every integer d, every \varepsilon > 0, and all even D > 100d2/\varepsilon 4 there
exists c such that for all integers n,N with N \geqslant cn there exists an N -vertex D-regular
graph H with the following properties:

(1) For every pair of disjoint sets S, T \subseteq V (H) with | S| , | T | \geqslant 2N/
\surd 
D we have

e(S, T ) > 0.
(2) Every induced subgraph of H on at least \varepsilon N vertices contains every tree in

\scrT n,d.
Proof. Let D > 100d2/\varepsilon 4 be an even integer and N > 10d2n/\varepsilon 2. Let H be an

(N,D, \lambda )-graph where \lambda = 2
\surd 
D, which exists by Lemma 2.2. Property (2) follows

from Lemma 2.4. Moreover, for all sets S, T \subseteq V (H) with | S| , | T | \geqslant 2N/
\surd 
D we have

\lambda 
\sqrt{} 
| S| | T | < D| S| | T | 

N , which implies e(S, T ) > 0 by Lemma 2.3, as desired.

We also need the following lemma of Friedman and Pippenger [25]. For a graph
H and X \subseteq V (H), let \Gamma H(X) be the set of vertices in V (H) adjacent to some vertex
in X.

Lemma 2.6 (Theorem 1 of [25]). If H is a nonempty graph such that for each
X \subseteq V (H) with 1 \leqslant | X| \leqslant 2n - 2,

| \Gamma H(X)| \geqslant (d+ 1)| X| ,

then H contains every tree in \scrT n,d.
Finally, we need the following standard tools.

Lemma 2.7 (K\"ovari, S\'os, and Tur\'an [33]). Every graph with n vertices and no
Ks,s subgraph has at most (s - 1)1/sn2 - 1/s + (s - 1) edges.

Lemma 2.8 (Lov\`asz local lemma [20]). Let \scrE be a set of events in a probability
space, each with probability at most p, and each mutually independent of all except
at most d other events in \scrE . If 4pd \leqslant 1, then with positive probability no event in \scrE 
occurs.
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3. Proof of Theorem 1.2. We start with the following lemma that states that
if a graph does not contain all trees in \scrT n,d, then its complement contains a complete
multipartite subgraph where the parts have ``large"" size. In fact, our proof shows that
if the second assertion does not hold, (i.e. there is no complete multipartite graph
with large parts in the complement), then the graph contains a ``large"" expander as
a subgraph. The containment of every tree in \scrT n,d then follows from Lemma 2.6.
Statements of similar flavor are also proved and utilized in [17, 38, 37].

Lemma 3.1. Fix integers n, d, q, and let N \geqslant 20ndq. In every red/blue-coloring
of E(KN ) there is either a blue copy of every tree in \scrT n,d or a red copy of a complete
q-partite graph in which every part has size at least N

5dq .

Proof. Let G be the spanning subgraph of KN consisting of all the blue edges.
We may assume that G does not contain every tree in \scrT n,d. By Lemma 2.6, for
every nonempty set S \subseteq V (G), there exists X \subseteq S such that 1 \leqslant | X| \leqslant 2n  - 2 and
| \Gamma G[S](X)| < (d + 1)| X| . Note that for such S and X, all the edges of KN between
X and S \setminus (X \cup \Gamma G[S](X)) must be red. Let S1, S2, . . . , Sm+1 and X1, X2, . . . , Xm be
sets of vertices in G such that S1 = V (G) and, for 1 \leqslant i \leqslant m,

\bullet Xi \subseteq Si with 1 \leqslant | Xi| \leqslant 2n - 2 and | \Gamma G[Si](Xi)| < (d+ 1)| Xi| and
\bullet Si+1 = Si \setminus (Xi \cup \Gamma G[Si](Xi)).

We stop when Sm+1 = \emptyset . Note that X1, X2, . . . , Xm are pairwise disjoint. Since all
the edges of KN between Xi and Si+1 are red, all the edges between distinct Xi and
Xj are red. Let X =

\bigcup m
i=1Xi. Note that

N =

m\sum 
i=1

| Xi \cup \Gamma G[Si](Xi)| <
m\sum 
i=1

(d+ 2)| Xi| = (d+ 2)| X| .

Thus | X| > N
d+2 .

We now combine the parts Xi to reach the required size. Let Y1 = X1 \cup X2 \cup 
\cdot \cdot \cdot \cup Xj , where j is the minimal index such that | X1 \cup X2 \cup \cdot \cdot \cdot \cup Xj | \geqslant N

5dq . Since

| Xi| \leqslant 2n  - 2 < N
10dq , we have the upper bound, | Y1| < 3N

10dq . Repeating the same

argument, starting at Xj+1 and noting that | X| > N
d+2 \geqslant q \cdot 3N

10dq , we construct

Y1, Y2, . . . Yq, satisfying | Yi| \geqslant N
5dq and such that all edges between any distinct Yi and

Yj are red.

Let T be a rooted tree with root r. For each vertex v of T , let pT (v) denote the
parent of v, where for convenience we let pT (r) = r. Let p2T (v) denote the grandparent
of v; that is, p2T (v) = pT (pT (v)). We denote the set of children of v by CT (v), and
define C2

T (v) = CT (v)\cup (
\bigcup 

x\in CT (v) CT (x)) to be the set of children and grandchildren

of v. Let dT (v) be the distance between r and v, that is, the number of edges on the
path from r to v. For each integer i, let Li(T ) be the set of vertices v with dT (v) = i.
In the above definitions, we may omit the subscript T if T is clear from the context.

Given a tree T rooted at r, define another tree T \prime rooted at r as follows. The
vertex set of T \prime is defined to be \{ r\} \cup 

\bigcup 
i\geqslant 0 L2i+1(T ). A pair vw with v, w \in V (T \prime ) is

an edge of T \prime if p2T (v) = w or p2T (w) = v. In particular, CT \prime (r) = CT (r). We call T \prime 

the truncation of T . An illustration of T and its truncation can be found in Figure
1. Note that if T has maximum degree d, then T \prime has maximum degree at most d2.

Let s and m be integers. Suppose we are given a graph G, a vertex partition
(V1, V2, . . . , Vm) of G, and an edge-coloring \psi : E(G) \rightarrow \{ red,blue\} . Define an aux-
iliary coloring of the complete graph Km with vertex set [m] as follows. For distinct
i, j \in [m], color the edge ij blue if there is a blue Ks,s between Vi and Vj in G, and red
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x0

x1 x2

x3 x4 x5 x6

x7 x8

x9 x10(a)

x0

x1 x2

x7 x8

(b)

x0

x1 x2

x7 x8

x3 x4 x5 x6

x9 x10

(c)

[x0]

[x1] [x2]

[x5] [x6]

[x3] [x4]

[x7]

[x8]

[x9] [x10]

(d)

Fig. 1. (a) Tree T , (b) truncation T \prime , (c) the corresponding bags, (d) embedding of T \boxtimes Kk

where [xi] means \{ xi\} \times Kk.

otherwise. We call this edge-coloring the (G,\psi , s)-coloring of Km. This auxiliary col-
oring also appears in [1] and subsequently in [9]. The lemma below demonstrates the
importance of this auxiliary coloring; for any bounded-degree tree T and any k there
is some s such that under certain conditions we can effectively ``lift"" a monochromatic
copy of T \prime in the (G,\psi , s)-coloring of Km to a monochromatic copy of T \boxtimes Kk in G,
with respect to the coloring \psi .

Lemma 3.2. Fix integers n, d, k, m. Let T be a tree in \scrT n,d rooted at x0, and
let T \prime be the truncation of T . Let s = (d + d2)k. Suppose we are given a graph G, a
vertex partition (V1, V2, . . . , Vm) of G, and an edge-coloring \psi : E(G) \rightarrow \{ red,blue\} 
such that, for all i \in [m], all the edges of G[Vi] are present and are blue, and | Vi| \geqslant s.
If there exists a blue copy of T \prime in the (G,\psi , s)-coloring of Km, then there exists a
blue copy of T \boxtimes Kk in G.
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Proof. Let \varphi be the (G,\psi , s)-coloring of Km, and suppose g : V (T \prime ) \rightarrow [m] is an
embedding of T \prime in the blue subgraph of Km. Let x0, x1, x2, . . . , xm\prime be the vertices
of V (T \prime ) ordered by their distance from the root x0 in T \prime . We will find a blue copy
of T \boxtimes Kk whose vertices are in Vg(xi) for i = 0, . . . ,m\prime . We warn the reader that in
this proof we often use notation f(S \boxtimes Kk) to denote the image of S \boxtimes Kk for some
subset S \subseteq V (T ), under some embedding f into G, without precisely defining how
f acts on each vertex of S \boxtimes Kk but rather claiming that such an embedding exists.
This is done for brevity and to keep the proof intuitive.

We define a collection \{ Bx : x \in V (T \prime )\} of subsets of V (T ) as follows. Let
Bx0 = \{ x0\} , and for each x \in V (T \prime ) \setminus \{ x0\} , let Bx = \{ x\} \cup CT (x). We call Bx the
bag of the vertex x. Observe that the bags are pairwise disjoint, and they partition
the entire vertex set V (T ). They will help us keep track of the embedding of T \boxtimes Kk

in G. Our goal is to find an embedding f of T \boxtimes Kk in G satisfying the properties
(P1)--(P4) below.

(P1) f(T \boxtimes Kk) \subseteq 
\bigcup 

x\in V (T \prime ) Vg(x),

(P2) f((\{ x0\} \cup CT (x0)) \boxtimes Kk) \subseteq Vg(x0),
(P3) for every x \in V (T \prime ) \setminus \{ x0\} , f(C2

T (x) \boxtimes Kk) \subseteq Vg(x),
(P4) every edge of f(T \boxtimes Kk) will be colored blue.

We will proceed iteratively, starting from the root x0 and following the order of
the vertices xi we fixed earlier. At each step i, we will have a partial embedding fi of
Ti\boxtimes Kk in G, where Ti is the subtree T [\cup j\leqslant iBxj

]. Our final embedding will be f = fm\prime .
At step 0 we will embed Bx0

\boxtimes Kk in some way; this will define f0. At step i \geqslant 1,
fi will be defined as an extension of fi - 1, and the extension will be defined only on
Bxi

\boxtimes Kk so that the image of the latter ``links"" back appropriately to the embedding
of Ti - 1 \boxtimes Kk. Note that (P2) implies that at most (d+ 1)k vertices are embedded in
Vg(x0), and every other Vg(x) (with x \not = x0) will contain at most (d+ d2)k embedded
vertices by (P3). Moreover, (P4) will be satisfied for edges of f(T \boxtimes Kk) embedded
inside one partition class Vj . To guarantee that those edges of f(T \boxtimes Kk) that go
between distinct partition classes Vj and Vk are blue, we will make use of the properties
of the auxiliary coloring \varphi . Finally, we define our iterative embedding scheme from
which properties (P1)--(P4) can be easily read out, thus completing the proof.

Step 0: Let T0 = \{ x0\} , and embed T0 \boxtimes Kk into Vg(x0) by picking any k vertices
in Vg(x0); this determines f0. Recall that all edges inside Vg(x0) are blue; hence indeed
this is a valid embedding of T0 \boxtimes Kk.

Step \bfiti \geqslant 1: Having defined fi - 1, we now show how to extend it to fi. Recall
that Bxi = \{ xi\} \cup CT (xi). Let y be the grandparent of xi. Since there is an edge xiy
in T \prime and since g is a blue embedding of T \prime in Km, there is a blue Ks,s between Vg(xi)

and Vg(y). Let L be any such copy of Ks,s. Define fi on \{ xi\} \boxtimes Kk to be a set of any
k vertices in Vg(y) \cap V (L) disjoint from the image of fi - 1. Define fi on CT (xi) \boxtimes Kk

to be any set of k| CT (xi)| vertices in Vg(xi) \cap V (L) disjoint from the image of fi - 1.
This is possible since | Vg(xi)\cap V (L)| \geqslant s = (d2 +d)k, and the total number of vertices
embedded into Vg(xi) during the procedure is at most (d2 + d)k.

The next lemma is a standard application of the Lov\`asz local lemma. Given
a graph F let F (t) denote the blowup of F , where each vertex v is replaced by an
independent set I(v) of size t and each edge uv is replaced by a complete bipartite
graph between I(u) and I(v).

Lemma 3.3. Fix t \geqslant 1. Let F be a graph with maximum degree \Delta . Let F \prime be
a spanning subgraph of F (t) such that for every edge vw \in E(F ) there are at least
(1  - 1

8\Delta )t2 edges in F \prime between I(v) and I(w). Then F \subseteq F \prime .
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Proof. For each vertex v of F , independently choose a random vertex v\prime in I(v).
For each edge vw of F , let Evw be the event that v\prime w\prime is not an edge of F \prime . Since
there are at least (1 - 1

8\Delta )t2 edges between I(v) and I(w), the probability of Evw is at
most 1

8\Delta . Each event Evw is mutually independent of all other events, except for the
at most 2\Delta events corresponding to edges incident to v or w. Since 4( 1

8\Delta )(2\Delta ) \leqslant 1,
by Lemma 2.8, the probability that some event Ev,w occurs is strictly less than 1.
Thus, there exist choices for v\prime for all v \in V (F ) such that v\prime w\prime is an edge of F \prime for
every edge vw of F . This yields a subgraph of F \prime isomorphic to F .

Both Theorem 1.1 and Theorem 1.2 are implied by Lemma 2.1 and the following
result.

Theorem 3.4. For all integers k, d there exists c = c(k, d) such that for all n
there is a graph G with cn vertices and maximum degree c, such that for all trees
T1 and T2 with n vertices and maximum degree d, every red/blue-coloring of E(G)
contains a red copy of T1 \boxtimes Kk or a blue copy of T2 \boxtimes Kk.

Proof. Let \varepsilon = (d2(2k + 1)22k+4) - 1. Let D be the smallest even number larger
than 100d2/\varepsilon 4. Let c be derived from Lemma 2.5 applied with this choice of \varepsilon , d,
and D. Let N = max\{ cn, 40nd2(2k + 1)\} , and let H be any N -vertex D-regular
graph derived from Lemma 2.5. Set s = (d2 + d)k and t = (64kd)s. Denote the
Ramsey number of t by r(t). Recall that H3 is a graph on the same vertex set as H
where uv is an edge in H3 whenever u and v are at distance at most three in H. Let
G = H3 \boxtimes Kr(t).

Since H is D-regular, H3 has maximum degree at most D3, and G has maximum
degree at most D3r(t) + r(t) - 1. Let A(v) denote the copy of Kr(t) corresponding to
v \in V (H). Let \psi : E(G) \rightarrow \{ red,blue\} be any edge-coloring of G. We will show that
it must contain either a red copy of T1 \boxtimes Kk or a blue copy of T2 \boxtimes Kk.

By definition of r(t), for each vertex v \in V (H), A(v) contains a monochromatic
copy of Kt, say, on vertex set B(v). Let W be the set of vertices v \in V (H) for
which B(v) induces a blue Kt. By symmetry between T1 and T2, we may assume that
| W | \geqslant 1

2 | V (H)| . Let N \prime = | W | \geqslant N
2 .

Let B(W ) =
\bigcup 

v\in W B(v), and let \varphi be the (G[B(W )], \psi , s)-coloring of KN \prime . Root
T2 at an arbitrary vertex. Let T \prime 

2 be the truncation of T2. If there is a blue copy
of T \prime 

2 in KN \prime with respect to the coloring \varphi , then Lemma 3.2 implies that G[B(W )]
contains a blue copy of T2 \boxtimes Kk with respect to \psi .

We henceforth assume that there is no blue copy of T \prime 
2 in KN \prime . Since T \prime 

2 has
maximum degree at most d2 and N \prime \geqslant 20nd2(2k + 1) there are sets V0, V1, . . . , V2k \subseteq 
V (KN \prime ) of size at least N \prime 

5d2(2k+1) such that all the edges in KN \prime between two distinct

parts Vi and Vj are red, by Lemma 3.1.
For i \in [2k], define an i-matching to be a matching of edges in H with one

endpoint in V0 and the other in Vi. (Note that we are now considering the original
graphH, notKN \prime .) We will find a set S \subseteq V0 satisfying | S| > 2 - 2k| V0| , and a collection
of i-matchings \{ Mi\} 2ki=1 such that each Mi covers S. We proceed by induction on i.
Assume at the end of step j \leqslant 2k - 1 we have found a set Sj \subseteq V0 with | Sj | > 2 - j | V0| 
and a collection of i-matchings \{ Mi\} ji=1, where each Mi covers Sj . At step j + 1, let
Mj+1 be a maximum matching between Sj and Vj+1. If Mj+1 consists of fewer than
| Sj | /2 edges, then, by K\H onig's theorem, the bipartite graph between Sj and Vj+1 has a
vertex cover of order at most | Sj | /2. But then we can find sets X \subset Sj and Y \subset Vj+1

with eH(X,Y ) = 0 and | X| , | Y | \geqslant | Sj | /2 \geqslant 2 - 2k - 2| V0| > \varepsilon N . This contradicts
property (1) from Lemma 2.5. Hence Mj+1 covers at least | Sj | /2 \geqslant | V0| \cdot 2 - (j+1)
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vertices of Sj . We set Sj+1 = V (Mj+1) \cap Sj and proceed. After 2k steps, we reach
the desired set S2k, which we call S.

For each vertex v \in S, for i \in [2k], let vi \in Vi be the unique neighbor of v in Mi.

Since | S| > 2 - 2k| V0| > \varepsilon N , H[S] contains a copy \widetilde T1 of T1 on some vertex set U by
property (2) from Lemma 2.5. Next we show that there is a red (with respect to \varphi )

copy of T1 \boxtimes Kk in KN \prime contained in the vertex set of \widetilde T1 \cup \{ Mi\} 2ki=1 and use this copy
to find a red (with respect to \psi ) copy of T1 \boxtimes Kk in G[B(W )] via Lemma 3.3.

Root \widetilde T1 at any vertex \widetilde r. For every vertex v \in V ( \widetilde T1) let S(v) = \{ v1, v2, . . . , vk\} if
v is at even distance from \widetilde r and S(v) = \{ vk+1, vk+2, . . . , v2k\} otherwise. Note that for

any u, v \in V ( \widetilde T1), the sets S(u) and S(v) are disjoint. Moreover, for every v \in V ( \widetilde T1),
S(v) induces a red clique in KN \prime because the vertices of S(v) are elements of distinct

partition classes Vi. If u and v are adjacent in \widetilde T1, then also edges between S(u)
and S(v) are red in KN \prime since all the vertices of S(u) \cup S(v) lie in distinct partition

classes Vi. So this shows that the vertex set
\bigcup 

v\in U S(v) induces a red copy \widetilde T1 \boxtimes Kk of
T1\boxtimes Kk in KN \prime . It remains to ``lift"" this copy to the graph G[B(W )] with the coloring

\psi . First we observe that every edge in \widetilde T1 \boxtimes Kk is in fact an edge of H3. Indeed, for
any u \in V ( \widetilde T1) and any i \not = j, ui, uj \in S(u) are at distance at most two in H; hence

uiuj is an edge in H3. Now if u and v are adjacent in \widetilde T1, then for any ui \in S(u) and
vj \in S(v), the distance between ui and vj in H is at most 3, so ui and vj are also
adjacent in H3.

Recall that if uv is an edge of H3 and \varphi (uv) is red in KN \prime , then the complete
bipartite graph Guv between B(u) and B(v) in G contains no blue copy of Ks,s.
Lemma 2.7 implies that Guv has at most (s  - 1)1/st2 - 1/s + (s  - 1) \leqslant 4t2 - 1/s blue

edges. Note that 4t2 - 1/s \leqslant t2

16dk . Let F = \widetilde T1 \boxtimes Kk, and let F \prime be the subgraph of G
consisting of all the red edges of Guv over all uv \in E(F ). It is now easy to see that
F and F \prime satisfy the assumptions of Lemma 3.3. Therefore G contains a red copy of
T1 \boxtimes Kk which finishes the proof.

4. Proof of Theorem 1.3. Let Td,h be the complete d-ary tree of height h with
a root vertex r; that is, every nonleaf vertex has exactly d children, and every leaf
is at distance h from r. Theorem 1.3 is implied by the following. Recall that, for a
rooted tree T , dT (v) denotes the number of edges of the path from the root to v in T .

Theorem 4.1. For every integer i \geqslant 1, every (2i  - 1)-degenerate graph G is not
Ramsey for the tree T2i+1,2i .

Proof. We proceed by induction on i. For i = 1, G is a tree, so fix an arbitrary
vertex to be the root of G and color the edges of G by their distance to the root modulo
2 (where the distance of an edge uv to the root r is min\{ dG(u), dG(v)\} ). There is no
monochromatic path of length 3, and in particular no monochromatic copy of T4,2.

Now let i \geqslant 2, and set d = 2i and h = 2i - 1 for brevity. Let G be a (d  - 1)-
degenerate graph. It follows from the definition of degeneracy that G has a vertex-
ordering v1, v2, . . . , vn, such that each vertex vj has at most d - 1 neighbors vk with

k < j. Form an oriented graph \vec{}G by choosing the orientation (vj , vk) for an edge
vjvk \in E(G) if j < k. Then each vertex has in-degree at most d - 1.

We now partition V (G) into sets Vr and Vb such that both G[Vr] and G[Vb] are
(d/2  - 1)-degenerate. Start by assigning v1 to Vr. For j = 2, 3, . . . , n, assume that
v1, v2, . . . , vj - 1 have been assigned to Vr or Vb. Add vj to Vr if Vr contains at most
d/2  - 1 of the in-neighbors of vj . Otherwise add it to Vb. Note that in the latter
case, Vb contains at most d/2 - 1 of the in-neighbors of vj , since vj has at most d - 1
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in-neighbors in \vec{}G. Clearly, this does not affect the in-degree of v1, v2, . . . , vj - 1 in
\vec{}G[Vr] and \vec{}G[Vb]. Thus, this process produces the desired sets Vr and Vb.

By induction, there is a red/blue-coloring \psi \prime of the edges in EG(Vr) \cup EG(Vb)
not containing a monochromatic copy of Td,h. We extend \psi \prime to a red/blue-coloring
\psi of E(G) in the following way. For an edge uv \in EG(Vr, Vb) assume without loss of

generality that it is directed from u to v in \vec{}G, that is, (u, v) \in \vec{}G. Then color uv red
if u \in Vr, and blue if u \in Vb. In other words, the edge uv ``inherits"" the color from
its source vertex in \vec{}G.

We claim that there is no monochromatic copy of T2d,2h in this coloring of E(G).

Assume the opposite, and let \widetilde T2d,2h be a monochromatic copy of T2d,2h in G. For each

vertex v in T2d,2h, we denote its copy in \widetilde T2d,2h by \widetilde v. Without loss of generality we

may assume that \widetilde T2d,2h is red.

Claim 4.2. If \widetilde v is a nonleaf vertex of \widetilde T2d,2h that lies in Vb, then there are at least

d children \widetilde u1, . . . , \widetilde ud of \widetilde v in \widetilde T2d,2h such that \widetilde uj \in Vb for all j \in [d].

Proof. The number of children of the vertex \widetilde v in \widetilde T2d,2h is 2d. Out of these, the

number of children w such that (w, \widetilde v) \in \vec{}G is at most d - 1. Furthermore, each edge

(\widetilde v, w) \in \vec{}G with w \in Vr is colored blue in \psi , by definition and since \widetilde v \in Vb. That

implies that none of these edges can be part of \widetilde T2d,2h. It follows that at least d + 1

neighbors of \widetilde v in \widetilde T2d,2h are elements of Vb. At most one of these vertices is the parent
of \widetilde v, and the claim follows.

Recall that \widetilde r is the root of \widetilde T2d,2h.

Claim 4.3. For every vertex \widetilde v \in V ( \widetilde T2d,2h) at distance at most h from \widetilde r in \widetilde T2d,2h
we have that \widetilde v \in Vr.

Proof. Assume that \widetilde v \in Vb and has distance at most h in \widetilde T2d,2h from \widetilde r. Apply
Claim 4.2 iteratively to \widetilde v and all of its descendants \widetilde u that lie in Vb. In h iterations
(before reaching the leaves of \widetilde T2d,2h), we construct a red copy of Td,h whose vertices
all lie in Vb, that is, a red copy of Td,h. This contradicts the property of \psi \prime .

It follows that all vertices in \widetilde T2d,2h at distance at most h from \widetilde r must lie in Vr,
forming a red copy of Td,h in G[Vr], which again contradicts the property of \psi \prime .

After the first preprint of this paper was finished we learned [41] that Maximilian
Gei{\ss}er, Jonathan Rollin, and Peter Stumpf independently obtained a proof of Theo-
rem 1.3. This proof is unpublished, yet short and nice, so we include their argument
here.

Second proof of Theorem 4.1. Let G be a d-degenerate graph. We show that G is
not Ramsey for Td+1,d+1. Assume without loss of generality that the vertex set of G
is [n] for some n and that every u \in V (G) has at most d neighbors v with v < u. Let
\phi : V (G) \rightarrow [d+ 1] denote a proper coloring of the vertices of G using at most d+ 1
colors. Define an edge coloring \psi by coloring an edge uv with u < v red if \phi (u) < \phi (v)
and blue otherwise. A path v1 . . . vn in G is called monotone if its vertices are ordered
v1 < \cdot \cdot \cdot < vn. Each monochromatic monotone path in \psi has at most d vertices, since
the colors of its vertices are either increasing or decreasing under \phi . On the other
hand each copy of Td+1,d+1 in G contains a monotone path on d vertices, since each
inner vertex u has a child v with u < v due to the d-degeneracy of G. Hence there
are no monochromatic copies of Td+1,d+1 in G.
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5. Concluding remarks. We have shown that for a graph H of bounded max-
imum degree and treewidth, there is a graph G with O(| V (H)| ) edges that is Ramsey
for H. It is now natural to ask whether the size Ramsey number of a planar graph H
of bounded degree is linear in | V (H)| . A first candidate to consider is the grid graph.
Recently Clemens et al. [10] have shown that the size Ramsey number of the grid
graph on n \times n vertices is bounded from above by n3+o(1). There are no nontrivial
lower bounds known.

Question 5.1. Is the size Ramsey number of the grid graph on n \times n vertices
O(n2)?

Furthermore, we propose a multicolor extension of our result.

Question 5.2. Given positive integers w, d, n, s \geqslant 3 and an n-vertex graph H of
maximum degree d and treewidth w, do there exist C = C(w, d, s) and a graph G with
Cn edges such that every s-coloring of the edges of G contains a monochromatic copy
of H?

When H is a bounded-degree tree, a positive answer (and even a stronger density
analog result) follows from the work of Friedman and Pippinger [25]. Han et al. [26]
have recently shown that the above extension holds for graphs of bounded bandwidth
(or, equivalently, for any fixed power of a path).

Our second result is that the edges of every d-degenerate graph can be 2-colored
without a monochromatic copy of a fixed tree T = T (d). The maximum degree of T
in the proof of Theorem 4.1 is 2d+ 1. It follows from [35, Lemma 5] that T cannot be
replaced by a tree whose maximum degree is bounded by an absolute constant which
is independent of d.

Ding et al. [15] also showed that for every tree T , there is a graph G of treewidth
two such that every red/blue-coloring of the edges of G contains a red copy of T or
a blue copy of a subdivision of T . We wonder whether the following generalization is
true.

Question 5.3. Is there a function f(k) with the following property: for every
graph H of treewidth k, there is a graph G of treewidth f(k) such that every red/blue-
coloring of the edges of G contains a red copy of H or a blue copy of a subdivision
of H?

Acknowledgments. We would like to thank Jonathan Rollin for sending us the
alternative proof of Theorem 4.1 and for pointing us to [35]. After completing our
manuscript we learned that Berger et al. [5] answered Question 5.2 positively. In fact,
their proof works also for s = 2.
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