Perpetual American standard and lookback options
with event risk and asymmetric information

Pavel V. Gapeev* Libo Lif

We derive closed-form solutions to the perpetual American standard and lookback
put and call options in an extension of the Black-Merton-Scholes model with event risk
and incomplete information. It is assumed that the contracts are terminated with linear
recoveries at the last hitting times for the underlying asset price process of its running
maximum or minimum over the infinite time interval which are not stopping times with
respect to the observable filtration. We show that the optimal exercise times are the
first times at which the asset price reaches some lower or upper stochastic boundaries
depending on the current values of its running maximum or minimum. The proof is based
on the reduction of the original optimal stopping problems to the associated free-boundary
problems and the solution of the latter problems by means of the smooth-fit and normal-
reflection conditions. The optimal exercise boundaries are proven to be the maximal or
minimal solutions of some first-order nonlinear ordinary differential equations.

1. Introduction

Inspired by game options, we study a situation in which financial contracts can be terminated
or cancelled prematurely due to certain (insider) information which is not available to the
holders of the contracts. More precisely, we suppose that the contracts are terminated by
the writers at the last times at which the underlying stock reaches its running maximum
or minimum and the linear and fractional recovery amounts are paid to the holders. These
particular choices of the termination times are motivated by the studies of the so-called optimal
buyback times for short sellers in the face of bubble formations or recall risk from market
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insiders. The framework we use can find interpretation within the recent GameStop saga,
where subreddit users colluded to buy and hold GameStop shares in order to bet against short
sellers from hedge funds. As a consequence of this act of collusion, the price of GameStop shares
was driven up and the timing of the last maximum was effectively when the subreddit users
could no longer collude (Social platform Discord Ban WallStreetBets Server on 27th Jan 2021)
and trading restrictions were placed by TDAmeritrade (on 27th of Jan 2021), Robinhood and
WeBull (on 28th of Jan 2021), both of which were representing not public information. More
specifically, we may assume that a short seller initiates a short sale of a risky asset at time zero
with the aim to close their position at some random time in the future. The cash flow related
to this operation is equal to the difference between the initial market price of the asset and its
price at this random time discounted by the value of a riskless asset with prevailing interest
rate which is assumed to be identical to the asset lending fee. The short seller’s objective is
therefore to search for an optimal time to repurchase the asset before the lender (who might
have some extra insider information) recalls the asset at its historic maximum or the bubble
bursts and the trading is then stopped. For further related studies on the optimal buyback
times in faces of recall risk, we refer to Glover and Hulley [25].

For a precise formulation of the problems, we consider a probability space (2, F, P) with a
standard Brownian motion B = (B;);>0. Assume that the process X = (X;);>¢ describing the
price of a risky asset in a financial market is given by:

X; =z exp <(r—(5—02/2)t+03t> (1.1)
so that it solves the stochastic differential equation:
dXt = (7" — (5) Xt dt + UXt dBt (XO = .CC) (12)

where x > 0 is fixed, and r > 0, § > 0, and o > 0 are some given constants. Here, r is the
riskless interest rate, ¢ is the dividend rate paid to the asset holders, and ¢ is the volatility

rate. Let the processes S = (S;)i>0 and @ = (Q¢)i>0 be the running mazimum and minimum
of X defined by:

Sy =5V ( ma;ctXu> and Q; =qA < min Xu> (1.3)

0<u 0<u<t

for some arbitrary 0 < ¢ < z < s. To model the event horizon, we also introduce the random
times 6 and n by:

0 =sup{t > 0[X; = S;} and n=sup{t=>0[X; =0} (1.4)

which are not stopping times with respect to the natural filtration (F;);>¢ of the process X,
but they are honest times in the sense of Barlow [5] and Nikeghbali and Yor [36].

The main aim of this paper is to compute closed-form expressions for the values of the
discounted optimal stopping problems:

Vi=supEle™ Gi1(X:, S:) I(r < 0)+e " (i + i Xo) I(0 < 7)] (1.5)
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and

U; = S%PE[G_TC Gia(Xe, Q) I(C<m)+e (& +xi Xyy) I(n < C)] (1.6)

with
Gii(x,s) =Ly —x, Goi(z,s)=s— Loz, Gsi(x,s)=s— Ls (1.7)

and
Gia(x,q) =2 — K1, Goo(w,q) = Kox—q, Gsa(x,q) =Ks—¢q (1.8)

for some L;, K; >0, ¢;,& € R, and ¢y, x; € (—1,1), for ¢ = 1,2, 3, fixed, where I(-) denotes
the indicator function. Suppose that the suprema in (1.5) and (1.6) are taken over all stopping
times 7 and ¢ with respect to the filtration (F;);>0, and the expectations there are taken
with respect to the risk-neutral probability measure P. In this view, the values V; and U, for
i =1,2,3,in (1.5) and (1.6) provide the rational (no-arbitrage) prices of the perpetual American
defaultable standard and lookback options in an extension of the Black-Merton-Scholes model
with event risk and asymmetric information, when we formally set s =  and ¢ = x in (1.3)
(see, e.g. [49; Chapter VII, Section 3g]). In particular, the functions Gy1(x,s) and Gi2(z,q)
are the payoffs of standard put and call options, the functions Go(z,s) and Goa(z,q) are the
payoffs of put and call lookback options with floating strikes, while the functions Gs;(z,s) and
Gs2(x,q) are the payoffs of put and call lookback options with fized strikes. Some extensive
overviews of the perpetual American options in diffusion models of financial markets and other
related results in the area are provided in Shiryaev [49; Chapter VIII; Section 2a|, Peskir and
Shiryaev [44; Chapter VII; Section 25], and Detemple [14] among others. Note that, since the
contracts are considered on the infinite time horizon, we may skip imposing the positive parts
on the appropriate payoffs. This property follows from the comparison of the associated results
in the case of complete information presented in Shiryaev [49; Chapter VIII; Sections 2a-2b]
and Oksendal [37; Chapter X, Section 10.2] for the standard options and in Beibel and Lerche
[11] as well as in Pedersen [39] and Guo and Shepp [29] for the lookback options with floating
and fixed strikes, respectively.

From the point of view of financial mathematics and credit risk theory, the models in
which the event or default times happen at the last passage times do not fall into the classical
reduced form framework. More precisely, unlike in the existing models studied in Szimayer [50],
Gapeev and Al Motairi [21], Glover and Hulley [25], Dumitrescu, Quenez, and Sulem [16], and
Grigorova, Quenez, and Sulem [28], neither the immersion hypothesis nor the density hypothesis
is satisfied (see Aksamit and Jeanblanc [1; Remark 5.31]), so that the default intensity process
simply does not exist in our setting (see, e.g. Bielecki and Rutkowski [12; Chapter VIII] and
Jeanblanc and Li [31] for the description of these concepts). We can see from the expressions
of (2.2) and (2.3) below that, in the case of zero recovery, the diversion from the immersion
hypothesis leads to the appearance of modified discounting factors which are no longer functions
of the sum of the interest rate and the event time intensity rate but result in an adjusted
dividend rate. Finally, if we were to study the finite horizon version of the optimal stopping
problem from the point of view of the backward stochastic differential equations (BSDEs), as in
Dumitrescu, Quenez, and Sulem [16] and Grigorova, Quenez, and Sulem [28], then it could be
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shown that the dynamics of the no-arbitrage (pre-default) price will no longer satisfy a reflected
BSDE but rather a reflected generalised BSDE in which the generalised driver is related to the
running maximum or minimum of the underlying asset. For other work in this direction, we
refer to the recent paper by Aksamit, Li, and Rutkowski [2].

We further consider the problems of (1.5) and (1.6) as the associated optimal stopping
problems of (2.17) and (2.18) for the two-dimensional continuous Markov processes having the
underlying risky asset price X and its running maximum S or minimum () as their state
space components. The resulting problems turn out to be necessarily two-dimensional in the
sense that they cannot be reduced to optimal stopping problems for one-dimensional Markov
processes. Note that the integrals in the reward functionals of the optimal stopping problems
in (2.17) and (2.18) contain complicated integrands depending on the asset price as well as its
running maximum and minimum processes. This challenge initiates further developments of
techniques to determine the structure of the associated continuation and stopping regions as well
as appropriate modifications of the normal-reflection conditions in the equivalent free-boundary
problems. In particular, we show that the perpetual American defaultable lookback put and
call options may be exercised when the processes (X,S) or (X, Q) start in certain subsets of
the edges of their state spaces, under specific relations on the parameters of the model. These
properties represent new features of the optimal stopping problems for the running maximum
and minimum processes. Note that, in the paper by Shepp, Shiryaev, and Sulem [48] on the
barrier lookback options as well as in the paper by Ott [38] on the lookback options with upper
and lower caps, the upper bounds for the maxima processes were given endogenously. In this
work, the upper bounds for the maximum process as well as the lower bounds for the minimum
process are given exogenously, by virtue of the presence of the linear recovery amounts in the
appropriate reward functionals. The case of perpetual American defaultable standard options
in models with last passage times of constant levels for the underlying asset prices and zero
recoveries was recently considered in Gapeev, Li, and Wu [20].

Discounted optimal stopping problems for the running maxima and minima of the initial
continuous (diffusion-type) processes were initiated by Shepp and Shiryaev [47] and further
developed by Pedersen [39], Guo and Shepp [29], Shepp, Shiryaev, and Sulem [48], Gapeev [18],
Guo and Zervos [30], Peskir [42]-[43], Glover, Hulley, and Peskir [26], Gapeev and Rodosthenous
[22]-[24], Rodosthenous and Zervos [46], and Gapeev, Kort, and Lavrutich [19] among others.
It was shown, by means of the maximality principle for solutions of optimal stopping stopping
problems established by Peskir [40], which is equivalent to the superharmonic characterisation
of the value functions, that the optimal stopping boundaries are given by the appropriate
extremal solutions of certain (systems of) first-order nonlinear ordinary differential equations.
Other optimal stopping problems in more complicated models with spectrally negative Lévy
processes and their running maxima were studied by Asmussen, Avram, and Pistorius [3],
Avram, Kyprianou, and Pistorius [4], Ott [38], and Kyprianou and Ott [33] among others.

The rest of the paper is organised as follows. In Section 2, we embed the original problems of
(1.5) and (1.6) into the optimal stopping problems of (2.17) and (2.18) for the two-dimensional
continuous Markov processes (X, S) and (X, Q) defined in (1.1) and (1.3). It is shown that the
optimal exercise times 7;° and ( are the first times at which the process X reaches some lower
or upper boundaries a}(S) or b} (@) depending on the current values of the processes S or @,
for + = 1,2, 3, respectively. In Section 3, we derive closed-form expressions for the associated
value functions V;*(z, s) and U} (z, q) as solutions to the equivalent free-boundary problems and



apply the modified normal-reflection conditions at the edges of the two-dimensional state space
for (X,S) or (X,Q) to characterise the optimal stopping boundaries a}(S) and b} (Q), for
1 =1,2,3, as the maximal or minimal solutions to the resulting first-order nonlinear ordinary
differential equations on the appropriate admissible intervals. In Section 4, by using the change-
of-variable formula with local time on surfaces from Peskir [41], we verify that the solutions
of the free-boundary problems provide the solutions of the original optimal stopping problems.
The main results of the paper are stated in Theorems 2.1 and 4.1.

2. Preliminaries

In this section, we introduce the setting and notation of the two-dimensional optimal stop-
ping problems which are related to the pricing of perpetual American standard and lookback
put and call options with linear recoveries and formulate the equivalent free-boundary problems.

2.1 The optimal stopping problems. Let us first transform the rewards in the expressions
of (1.5) and (1.6) with the aim to formulate the associated optimal stopping problems. For
this purpose, we introduce the conditional survival processes or the Azéma supermartingales
Z = (Zy)i>0 and Y = (Y})i>0 of the random times 6 and 7 defined by Z, = P(6 > t|F;) and
Y, = P(n >t|F), for all t > 0, respectively. It is shown that the processes Z and Y have the
form:

&:{@M&ﬂ ﬁa<08m>ﬁ:{@ﬁ&ﬂ if a>0 21

1, if a>0 1, if @ <0

for all ¢ > 0, under s = x and ¢ = x, where we set o = 2(r — §)/o? — 1, respectively. More
precisely, since the process X* = (X*):>0 is a positive martingale which converges to zero as t
tends to infinity, under o # 0, we may conclude from the structure of random times 6 and 7 in
(1.4) and using the result of [35; Example 1.3], which is a consequence of the Doob’s maximal
equality from [35; Lemma 0.1], that the processes Z and Y are given by (2.1), for a« < 0
and a > 0, under s = x and ¢ = x, respectively. Similarly, it can be deduced from the law
of iterated logarithms for standard Brownian motions that the properties limsup, . X; = oo
and liminf, , X; = 0 hold, for a« = 0, implying that § = co and n = oo, and thus, Z; = 1
and Y; = 1, for all t > 0, under s = x and ¢ = =z, respectively. Finally, we observe that the
property lim; .., X; = oo holds, so that Z; = 1, for a > 0, while the property lim; ,,, X; =0
holds, so that Y; =1, for a < 0, under s =2 and ¢ = x, for all t > 0, respectively.

Then, it follows from a direct application of the tower property for conditional expectations
that the first terms in the right-hand sides of the expressions in (1.5) and (1.6) have the form:

E[e™7 Gia(Xs, S:) I(m < 0)] = Ele™ Gia(X, Sr) (S+/X7)°] (22)
when o < 0, under s = z, and
Ele™™ Gia(Xe, Q) I(C < m)] = E[e™ Gia(Xe, Qo) (Qc/ X)) (2:3)

when a > 0, under ¢ = x, for any stopping times 7 and ( of the process X, respectively.
Moreover, it follows from standard applications of It6’s formula (see, e.g. [34; Theorem 4.4] or



[45; Chapter IV, Theorem 3.3]) and the properties that the processes S and () may change
their values only when X; = S; and X; = @y, for t > 0, respectively, that the Azéma
supermartingales Z and Y from (2.1) admit the stochastic differentials:

A o (S\%dS, (S, ds,
dZt——Oé(Xt) UdBt+CYI(Xt—St) (Xt) St = OZ(Xt) UdBt+a St (24)

when «a < 0, and

i\ )" dQ, t t
dY, = —« (%) odB; + al(X; = Q) (%) ?Qt— (%) dB,ﬁ—Oz?Qt (2.5)

when o > 0, respectively. Hence, it follows from Doob-Meyer decompositions for the processes
Z and Y in (2.4) and (2.5) and applications of the dual predictable projection property (see,
e.g. [36; Corollary 2.4]) that the second terms in the right-hand sides of the expressions in (1.5)
and (1.6) admit the representations:

Ele™ (i + i Xo) 1(0 < 7)] = —E[ /0 e (gt X)a ds—ﬂ (2:6)

when « < 0, under s = x, and

¢
E[eim (& +xi Xy) I(n < C)] =-F {/o e " (& + xi Xu) a dgj} (2.7)

when « > 0, under ¢ = z, for any stopping times 7 and (, and every i = 1,2, 3, respectively.

By means of standard applications of It6’s formula to the process e "'G; 1(Xy, S)(S:/ X:)®,
taking into account the facts that 0,,G;1(x,s) = 0.sGii(x,s) = 0ssGia(z,s) = 0 and « is
selected such that the process X ~* = (X, );>0 is a positive continuous martingale, using the

property that the process S may change its value only when X; = S;, for ¢ > 0, we obtain the
representation:

e " Gia (X, Sy) (Si/ X)) = Gia(w, s) (s/z)* (2.8)

t S 67
+/ e <8xGZ~,1(Xu, Su) (r—08") Xy —r Gia (X, Su)> (—“) du
0

X
das,

N’Ll
s, ©

¢
+ / e—ru <85Gi,1(XU7 Su) Su + « Gi,l(Xua Su))
0
when a < 0, for each 0 < 2 < s, and all t > 0, where we set &/ = § + ao? = 2r — 6 — 02,
that can be considered as a default adjusted dividend rate. Here, by virtue of the structure of
the integrands as well as the explicit forms of the densmes of the marginal distributions of the
two-dimensional process (X, S), the processes No' = (N;"');s¢, for i = 1,2,3, defined by:

. t a
Ntl’l = / e (axGi,l(Xua Su) - aGi71(Xu’ SU)) (%) odB, (29)
0

u



are continuous square integrable martingales under the probability measure P, when o < 0.
Then, by means of Doob’s optional sampling theorem (see, e.g. [34; Chapter III, Theorem 3.6
or [45; Chapter II, Theorem 3.2]), we get:

Ele™ Gia(Xs, ) (S+/X,)°] = Gia(a, ) (5/2)° (210
+EU e (@Gi,l(xu,su) (r—5’>Xu—TGm(XwS")) ()Sc_) o
0 u
.\ / e (0.Gi (X, S) S + 0 Gia (X, S0) ﬁ}
0 S

when a < 0, for any stopping time 7 with respect to (F;)i>0. Hence, getting the expressions
in (2.10) together with the ones in (2.6) above, we may conclude that the value of (1.5) is given
by:

E,l (Su)
Sy

T

Vi=Gi(z,x) + supE{/ e " H;1(Xu, Su) du +/ e dSU} (2.11)
0 0

when o < 0, under s = x, where the supremum is taken over all stopping times 7 of the
process (X, S). Here, we set:

Hii(x,s) = ((%Gi’l(x, s)(r—¥8)x—rG;(x, S)) (s/x)* (2.12)
for all 0 < z < s, and
Fi1(s) = 0sG;a(s,8) s+ a (GM(S, s) — @i — ;i s) (2.13)

for all s > 0. Thus, applying the arguments similar to the ones used above together with the
expressions in (2.7), we may conclude that the value of (1.6) is given by:

E72(Qu)
Qu

when o > 0, under ¢ = x, where the supremum is taken over all stopping times ( of the
process (X, Q). Here, we have:

H;s(z,q) = (@;Gm(:c, q) (r—290)z —rG;a(z, q)) (q/z)" (2.15)

for all 0 < ¢ <x, and

F;2(q) = 0,Gi2(q,9) ¢ + a (Giz(g,9) — & — xi q) (2.16)

_ ¢ ¢
Ui =Gia(z,z) + supEl/ e "™ H;o(Xy, Qu) du + / e dQ., (2.14)
¢ 0 0

for all ¢ > 0.

Therefore, we see that the problems in (2.11) and (2.14) can be naturally embedded into
the optimal stopping problems for the (time-homogeneous strong) Markov processes (X, S) =
(X¢, St)i>0 and (X, Q) = (X¢, Qr)>0 with the value functions:

T T E "
Vi) =sw | [Tt s)des [T B as) ean
T 0 0 U
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when «a < 0, and

¢ ¢ E
Ui (z,q) =sup E, 4 {/ e Hio(Xu, Qu) du + / e % dQu (2.18)
¢ 0 0 u

when o > 0, for every @ = 1,2, 3, respectively. Here, F,, and E,, denote the expectations
with respect to the probability measures P, s and P, , under which the two-dimensional Markov
processes (X, S) and (X, Q) defined in (1.1) and (1.3) start at (x,s) € By = {(z,s) € R*|0 <
r < s} and (z,q) € By = {(z,q9) € R?|0 < q < z}, respectively. We further obtain solutions
to the optimal stopping problems in (2.17) and (2.18) and verify below that the value functions
V*(x,s) and U (z,q), for i = 1,2,3, are the solutions of the problems in (2.11) and (2.14),
and thus, give the solutions of the original problems in (1.5) and (1.6), under s =z and ¢ = x,
respectively.

It follows from the arguments of [44; Chapter III, Section 6] that the continuation regions
in the optimal stopping problems of (2.17) and (2.18) have the form:

Ciy={(z,s) € B | Vi*(z,s) >0} and Cy = {(z,q) € Ex | U (z,q) >0} (2.19)
so that the corresponding stopping regions in those problems are given by:
D, = {(:v,s) € F; ‘ Vi (z,s) = 0} and Dj, = {(:E,q) € b, } U (z,q) = O} (2.20)

for every i = 1,2,3, respectively. It is seen from the results of Theorem 4.1 proved below
that the value functions V;*(z,s) and U (x,q) are continuous, so that the sets C7, and C7, in
(2.19) are open, while the sets D;, and Dj, in (2.20) are closed, for every i = 1,2, 3.

2.2 The structure of optimal exercise times. Let us now determine the structure of the
optimal stopping times at which the holders should exercise the contracts.

Theorem 2.1 Let the processes (X,S) and (X,Q) be given by (1.1) and (1.8), with some
r>0,08>0, and o0 > 0 fized, and the inequality &' = 2r — 6 — o > 0 be satisfied. Suppose
that the random times 0 and n are defined by (1.4). Then, the optimal exercise times for the
perpetual American standard and lookback put and call options with the values in (2.17) and
(2.18) have the structure:

r=inf{t >0]|X; <a(S)} and ¢ =inf{t >0|X; >0/(Q:)} (2.21)

under a < 0 and a > 0, for i = 1,2,3, respectively. The optimal ezxercise boundaries al(s)
and b (q) in (2.21) satisfy the inequalities a;(s) < af(s) < a;(s) A's, for s; < s <5, and
b,(q) vV q < b(q) < biq), for q, < q <7, as well as the equalities aj(s) = s, a3(s) =0, for all
0<s<s;, and bi(q) = q, bi(q) = oo, for all ¢ > G, for every i = 1,2,3. Here, under certain
relations between the parameters of the model, the boundary estimates and related numbers are
specified as follows:

(i) in the case i = 1, that is, for G11(x,s) = Ly —x and Gia(x,q) = © — K1, we have:

e when Ly > @1 and 1 > —1 as well as o < 0, we have 0 < s; < a3 As} with ay =1L/
and st = (L1 — ¢1) /(1 +11), as well as 51 = oo and a; = rlia/(8(a— 1)),



o when Ky > —& and x1 <1 as well as o« > 0, we have §; > by, V qf with by = rK;/d
and ¢; = (K1 +&)/(1 —x1), as well as g, = 0 [in addition, when o > 1, we also have
by = rKia/(0'(a — 1)), while when 0 < a < 1, we also have by = o ];

(i1) in the case i = 2, that is, for Goi(x,s) = s — Lex and Gao(z,q) = Kex — q, we have:

o when @y >0 and 1+a(l—Ly—1ps) > 0 as well as o < 0, we have ay(s) = rsa /(8 La(a—
1)) and ax(s) =rs/(d'La) as well as sy =0 and Sy = 00,

e when & >0 and 1+ a1 — Ko+ x2) > 0 as well as a > 0, we have by(q) = rq/(8'Ks) as
well as g, =0 and g, = oo [in addition, when o > 1, we also have by(q) = rqa/(0' Ko(a — 1)),
while when 0 < o < 1, we also have by = 00 J;

(111) in the case i = 3, that is, for Gs1(x,s) = s — L3 and Gss(x,q) = K3 — q, we have:

e when L3 > —p3 and 14+ ol —13) <0 as well as o < 0, we have a5 =0 and a3(s) = s
as well as s3 = L3 \ 83 and 53 = s with s = (Lz + p3)a/(1 + a(l —1)3)),

o when K3 > & and 1+ a(l+ x3) > 0 as well as a > 0, we have by(q) = ¢ and by = oo
as well as q, = ¢ and g3 = K3V ¢; with ¢5 = (K3 — §)o/(1+ a(l + x3))-

Observe that, when either a > 0 or < 0 holds, the perpetual American standard and
lookback option pricing problems of either (2.17) or (2.18) are reduced to the ones with complete
information, respectively. We also note that the assertions stated above may also hold under the
relations between the parameters of the model other than the ones considered above. However,
the solutions to the problems of (2.17) and (2.18) might also be either trivial or non-transparent
under the conditions on the parameters of the model different to the ones mentioned in the
assertions above.

Proof (a) In order to clarify the structure of the continuation and stopping regions in (2.19)-
(2.20), we first note that, by virtue of properties of the running maximum S and minimum @
from (1.3) of the geometric Brownian motion X from (1.1) (see, e.g. [15; Subsection 3.3] for
similar arguments applied to the running maxima of the Bessel processes), it is seen that, for
any s > 0 and ¢ > 0 fixed and an infinitesimally small deterministic time interval A, we have:

SA:s\/oglag(AXu:s\/(s—i-AX)—l—o(A) as ALO (2.22)
and
QA:qugliglAXu:q/\(q—l—AX)—l—o(A) as ALO (2.23)

where we set AX = X —s and AX = X5 — g, respectively. Observe that AS = o(A) when
AX <0, AS =AX+o0(A) when AX >0, AQ = o(A) when AX >0, and AQ = AX +0(A)
when AX < 0, where we set AS = Sa —s and AQ = Qa — ¢, and recall that o(A) denotes a
random function satisfying o(A)/A — 0 as A | 0 (P-a.s.). In this case, using the asymptotic
formulas:

E,[AX; AX > 0] = E,,[AX I(AX > 0)] ~ S\/% as A0 (2.24)
and
Egq[AX; AX < 0] = B [AX I(AX <0)] ~ —q\/% as AL0 (2.25)



as well as taking into account the structure of the rewards in (2.17) and (2.18), we get:

Es s [e’m H;1(s,s) A+ e A F;1(s) AS} (2.26)

[ A
~e ™A Hii(s,8) A4 e A Fyy(s) s 5. 88 ALO
T
and

Eqq [e‘m Hia(q,q) A +e™"% Fia(q) AQ} (2.27)

A
~e ™ Hio(g,9) A —e ™ Fia(g) g \ 5, 2 AlO

for each s > 0 and ¢ > 0 fixed.

(b) Let us first consider the cases of Gy 1(z,s) and Gy(x,q) from (1.7)-(1.8), so that the
functions Fi1(s) and Fj2(q) from (2.13) and (2.16) take the form:

F1,1(S) = (Ll - S01) -« (1 + ¢1) S, F1,2(Q) =« (Kl + 51) + o (1 - Xl) q (2-28)

for s > 0, under a < 0, and for ¢ > 0, under o > 0, respectively. Then, we see that the
resulting coefficients by the terms of order v/A in the expressions of (2.26) and (2.27) are strictly
positive, when s > s with s} = (L; — ¢1)/(1 +¢1), under Ly > ¢; and ¢4 > —1 (or when
s> 0,under L; < 1 and ¢; > —1), as well as when ¢ < ¢ with ¢f = (K14+&1)/(1—x1), under
K; > —¢&; and x; < 1. Hence, taking into account the facts that the process S is positive and
increasing and the process () is positive and decreasing, we may therefore conclude from the
structure of integrands in the second integrals in the expressions of (2.17) and (2.18) with (2.28)
as well as the heuristic arguments presented in (2.26) and (2.27) above that it is not optimal to
exercise the standard put option with event risk when s} < S; = X; with s7 = (L1—¢1)/(14+4¢1),
under L; > ¢; and ¢; > —1 (or when 0 < S; = X;, under either L; < ¢ and 9 > —1),
while it is not optimal to exercise the standard call option with event risk when X; = Q; < ¢}
with ¢f = (K71 +&)/(1 — x1), under K7 > =& and x; < 1, for any ¢ > 0, respectively. In
other words, these facts mean that the set d}, = {(v,s) € By |z = s > 57}, under L; > ¢
and 11 > —1 (which becomes the whole diagonal d; = {(z,s) € Ei |z = s}, under Ly < ¢
and ¢, > —1), surely belongs to the continuation region C7, in (2.19) above, while the set
dio ={(z,q) € Ex|r = q < ¢}, under K; > —& and x; < 1 (which becomes an empty set,
under K; < —& and x; < 1), surely belongs to the continuation region Cf, in (2.19) above.
Here, we recall that B = {(x,s) € R*|0 <z < s} and Ey = {(x,q) € R?|0 < g < x} are the
state spaces of the processes (X,S) and (X, @), respectively. In particular, for the case of a
fractional recovery with ¢; = Ly and ¢y = —f3, as well as &, = —fK; and x; = 3, for some
B € (0,1), the inequalities above hold with s} = Ly and ¢f = K} .

Let us now consider the cases of Go;(z,s) and Gaa(z,q) from (1.7)-(1.8), so that the
functions Fy1(s) and Fho(q) from (2.13) and (2.16) take the form:

Foi(s) = —apa+ (1+a(l— Ly —1n))s, Faa(q)=—-a&—(14+a(l—Ky+x2))q (2.29)

for s > 0, under a < 0, and for ¢ > 0, under a > 0, respectively. Then, we see that the
resulting coefficients by the terms of order v/A in the expressions of (2.26) and (2.27) are
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strictly positive, when either s > s§ with s5 = aps/(1 + a(l — Ly — 1)9)), under ¢, < 0 and
14+ a(l—Ly—13) >0 (or when s > 0, under s >0 and 1+ a1 — Ly —1py) > 0), while when
q > ¢ with ¢5 = —as/(1+a(l—Ky+x2)), under & < 0 and 14+a(1— K34 x2) > 0 (or when
g >0, under & > 0 and 14+ «a(1— K+ x2) > 0). In other words, these facts mean that the set
dy, = {(z,s) € E1|z = s> s3}, under 5 <0 and 1+a(l— Ly —13) > 0 (which becomes the
whole diagonal d; = {(z,s) € Ey|x = s}, under ¢y > 0 and 1+ a(1 — Ly — 1)9) > 0), surely
belongs to the continuation region C3, in (2.19). Also, the set dy, = {(7,q) € Ex| v = ¢ > ¢3},
under & < 0 and 14 a(l — Ky + x2) > 0 (which becomes the whole diagonal dy = {(z,q) €
Ey |z = q}, under & > 0 and 1+a(1—Ky+x2) > 0), surely belongs to the continuation region
Cs, in (2.19) above, and thus, the complement d, \ dj, surely belongs to the stopping region
Dj, in (2.20) above. The latter property occurs, because of the fact that the value F5»(Q)
in the expression of (2.29) remains positive once the decreasing process () passes through the
point ¢;. In particular, for the case of a fractional recovery with ¢s = 0 and 9 = S(1 — Ls),
as well as £ = 0 and y2 = (K3 — 1), the inequalities above hold with s§ =0 and ¢5 = 0.

Let us now consider the cases of Gsi(z,s) and Gsa(z,q) from (1.7)-(1.8), so that the
functions Fj1(s) and Fj35(q) from (2.13) and (2.16) take the form:

F31(s) = —a(Ls+@3) + (1 +a(l—13))s, Fi2(q) = a(Ks— &) — (1+a(l +x3))q(2.30)

for s > 0, under a < 0, and for ¢ > 0, under o > 0, respectively. Then, we see that the
resulting coefficients by the terms of order v/A in the expressions of (2.26) and (2.27) are
strictly positive, when either s > s§ with s§ = a(Ls + ¢3)/(1 + a(1 — 13)), under Ly < —¢3
and 1+a(l—13) > 0 (or when s > 0, under Ly > —p3 and 1+a(l—13) > 0), or s < s}, under
Ly > —¢p3 and 1+ a1l —13) < 0, while when ¢ > ¢§ with ¢ = a(K3 — &) /(1 + a(1 + x3)),
under K3 > &3 and 1+ a(1+x3) > 0 (or when ¢ > 0, under K3 < & and 1+ a1+ x3) > 0).
In other words, these facts mean that the set d3; = {(7,s) € E1|x = s > s3}, under L3 < —¢3
and 1+ a(1 —13) > 0 (which becomes the whole diagonal d; = {(z,s) € E;|x = s}, under
Ly > —p3 and 1+a(l—13) > 0), or theset dy, = {(v,s) € By |z = s < s3}, under Lz > —3
and 1+ a1 —+3) < 0, surely belongs to the continuation region C3, in (2.19) above, and
thus, the complement d; \ dj; surely belongs to the stopping region D3, in (2.20) above. The
latter property occurs, because of the fact that the value F3;(S) in the expression of (2.30)
remains negative once the increasing process S passes through the point sj. Also, the set
d3o = {(x,q) € Ex|z = q > ¢z}, under K3 > & and 1+ a(l + x3) > 0 (which becomes
the whole diagonal dy = {(z,q) € Ey |z = ¢}, under K3 < & and 1+ a(l+ x3) > 0), surely
belongs to the continuation region Cj, in (2.19) above, and thus, the complement dy\d , surely
belongs to the stopping region D3, in (2.20) above. The latter property occurs, because of
the fact that the value F35((Q) in the expression of (2.30) remains positive once the decreasing
process () passes through the point ¢3. it follows In particular, for the case of a fractional
recovery with @3 = —(L3 and 93 = 3, as well as &g = K3 and y3 = —(3, for some ( € (0, 1),
the inequalities above hold with

sy = La(1—B)/(1+a(l-8)), ¢ = Ksa(1—B)/(1+a(l-F).  (231)

(c) We now observe from the structure of the integrands in the first integrals of (2.17)
and (2.18) that it is not optimal to exercise the perpetual American defaultable standard or
lookback put option when H;;(X;, S;) > 0 and X; < S;, while it is not optimal to exercise
the appropriate standard or lookback call option when H;»(X:, @) > 0 and X; > @y, for
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any t > 0 and every i = 1,2,3. In other words, these facts mean that the set {(x,s) €
Ey\ dy| Hii(x,5) > 0} belongs to the continuation region Cj, in (2.19) above, while the set
{(z,q) € Ey\ dy| Hia(w,q) > 0} belongs to the continuation region Cj, in (2.19) above, for
every i = 1,2,3. For simplicity of presentation, we further assume that ¢ =2r —§ — o2 > 0
holds, as well as note that the fact that o = 2(r — d)/0? — 1 > 0 holds obviously implies that
& =2r — 0 — 0% > 0 holds. In this case, the inequalities H;(x,s) = (8'z — rLy)(s/z)* > 0
and z < s are satisfied if and only if @ < < s holds with @; = rL;/J, the inequalities
Hyq(x,s) = (0'Lax — rs)(s/x)* > 0 and x < s are satisfied if and only if @y (s) < z < s
holds with @s(s) = rs/(¢6'Ly), while the inequalities Hs(x,s) = r(Ls — s)(s/x)* > 0 and
x < s are satisfied if and only if 0 < x < s < L3 holds. Furthermore, the inequalities
His(z,q) = (rK; — 0'z)(¢/x)* > 0 and x > ¢ are satisfied if and only if ¢ < x < b, holds
with b, = rK;/d', the inequalities Hos(z,q) = (rq — 0'Kax)(g/z)* > 0 and z > ¢ are
satisfied if and only if ¢ < x < by(¢) holds with b,(q) = rq/(6'K>), while the inequalities
Hss(x,q) =r(qg — K3)(¢/x)* > 0 and = > ¢ are satisfied if and only if > ¢ > K holds.

(d) Let us now specify the structure of the regions in (2.19)-(2.20). For this purpose, we
provide an analysis of the reward functionals of the problems in (2.17)-(2.18). On one hand, we
observe that the function Hi(z,s) = (6'z —rLy)(s/x)* decreases in = on the interval (0,q,),
and then, it increases in z on the interval (a,,s) with a; = rLia/(0'(a — 1)) < rLy/§ =@y,
under o < 0, for each s > s; fixed and some 0 < s5; < @; A s]. In this case, the function
Hi1(z,s) attains its global minimum at z = a4, for any s > s;. According to the comparison
results for strong solutions of (one-dimensional) stochastic differential equations (see, e.g. [17;
Theorem 1]), this fact means that the process (Hy 1(Xt, St))i>o started at the point Hy(ay, s)
has the smallest sample paths than the one started at any other point Hp,(z,s), for any
0 < x < s such that = # a; and s > s;. In this respect, we may conclude that the point
(a;,s) belongs to the stopping region Dj; from (2.20) above, since otherwise, all the points
(z,s) such that 0 <z < s, for any s > s;, would belong to the continuation region C7, from
(2.19) too. The latter fact contradicts the obvious property that it is better to stop the process
(X, S) at time zero than not to stop the process at all during the infinite time interval, under
the assumption that o < 0. Therefore, taking into account the fact that the function Hi ;(z, s)
is negative on the interval (0,a,), we see that all the points (z,s) such that 0 < z < a; A s,
for any s > s;, belong to the stopping region Dj; from (2.20) as well.

Note that similar arguments applied for the function Hy(z,s) = (6’ Loz — rs)(s/x)* show
that all the points (z,s) such that 0 < z < ay(s) A s, with ay(s) = rsa/(d'Ly(a — 1)) <
75/(6'Lay) = @y(s), under a < 0, for each s > 0 fixed, belong to the stopping region Dj, from
(2.20). Moreover, it follows from the property that the function Hs;(x,s) = r(Ls—s)(s/z) is
negative and decreasing in x on the interval (0,s), under «a < 0, that, for each s > L3 fixed,
there exists a sufficiently small « > 0 such that the point (z,s) belongs to the stopping region
D3, from (2.20). According to arguments similar to the ones applied in [15; Subsection 3.3] and
[40; Subsection 3.3], the latter properties can be explained by the fact that the costs of waiting
until the process X comes from such a small z > 0 to the current value of the maximum
S may be too high, due to the presence of the discounting factor in the reward functional of
(2.17), one should stop at this > 0 immediately.

On the other hand, we observe that the function Hys(x,q) = (rK; — §'z)(q/z)* decreases
in 2 on the interval (¢,b;), and then, it increases in z on the interval (by,00) with b, =
rKia/(0'(a—1)) > rK;/0' = b, under a > 1, for each 0 < ¢ < g, fixed and some G, > b, V¢;.
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In this case, the function H;s(z,q) attains its global minimum at z = by, for any 0 < ¢ <
G, - According to the comparison results for strong solutions of (one-dimensional) stochastic
differential equations, this fact means that the process (Hy2(X:, Q1))i>o started at the point
H, 5(b1,q) has the smallest sample paths than the one started at any other point H; s(z,q), for
any = > ¢ such that z # b; and 0 < ¢ < ;. In this respect, we may conclude that the point
(b1, q) belongs to the stopping region Dj, from (2.20) above, since otherwise, all the points
(z,q) such that = > ¢, for any 0 < ¢ < g;, would belong to the continuation region C7, from
(2.19) too. The latter fact contradicts the obvious property that it is better to stop the process
(X, Q) at time zero than not to stop the process at all during the infinite time interval, under
the assumption that o > 1. Therefore, taking into account the fact that the function H; s(z, q)
is negative on the interval (b;,00), we see that all the points (z,q) such that = > b, V ¢, for
any 0 < ¢ <7, belong to the stopping region Dj, from (2.20) as well.

Note that similar arguments applied for the function Hss(z,q) = (rq — ' Kax)(q/z)* show
that all the points (, q) such that x > by(q)V¢q, with by(q) = rqa/(8'Ko(a—1)) > rq/(8'Ky) =
by(q), under o > 1, for each ¢ > 0 fixed, belong to the stopping region D3, from (2.20).
Moreover, it follows from the fact that the function Hso(z,q) = r(q — K3)(g/x)* is negative
and increasing in x on the interval (g, 00), under a > 0, that, for each 0 < g < K3 fixed, there
exists a sufficiently large x > 0 such that the point (x,q) belongs to the stopping region D3,
from (2.20). The same arguments based on the strict increase of the functions H;(x,q), for
i =1,2, in x on the interval (¢,00), under 0 < o < 1, for each 0 < ¢ < g, fixed, for i = 1,2,
with some g, > b, V ¢ and g, = oo, show that, there exists a sufficiently large x > 0 such
that the point (z,q) belongs to the stopping regions D;,, for i = 1,2, from (2.20). The latter
properties can be explained by the fact that the costs of waiting until the process X comes
from such a large = > 0 to the current value of the minimum ) may be too high, due to the
presence of the discounting factor in the reward functional of (2.18), one should stop at this
x > 0 immediately. In this view, we can set by =by =00, under 0 < a < 1.

(e) Now, let us take some (z,s) € D;; from (2.20) such that x > a,(s) with g,(s) specified
above. Then, using the fact that the process (X, S) started at some (z’,s) such that a;(s) <
2’ < x passes through the point (z,s) before hitting the diagonal d; = {(z,s) € E |z = s},
according to the explicit structure of the reward functional in (2.17), we conclude that the
inequality V;*(2',s) < V;*(z,s) = 0 holds, so that (2/,s) € Dj,, for i = 1,2,3. Also, let us
take some (z,q) € D}, from (2.20) such that = < b;(q) with b;(q) specified above. Hence,
using the fact that the process (X, Q) started at some (2/,q) such that b;(¢) > 2’ > = passes
through the point (x,q) before hitting the diagonal dy = {(z,q) € Ey|z = ¢}, taking into
account the explicit structure of the reward functional in (2.18), we conclude that the inequality
Ui (2',q) < Uf(x,q) = 0 holds, so that (2/,q) € Dj,, for i =1,2,3.

Finally, let us take some (z,s) € Cj; from (2.19). Then, using the fact that the process
(X, S) started at (z,s) passes through some point (z”,s) such that z” > x before hitting the
diagonal d;, according to the explicit structure of the reward functional in (2.17), we conclude
that the inequality V;*(z",s) > V;*(x,s) > 0 holds, so that (z”,s) € C},, for i = 1,2,3. Also,
let us take some (z,q) € C}, from (2.19). Hence, using the fact that the process (X, Q) started
at (x,q) passes through some point (x”,¢) such that z” < x before hitting the diagonal ds,
taking into account the explicit structure of the reward functional in (2.18), we conclude that
the inequality U;(z",q) > U;(x,q) > 0 holds, so that (z”,q) € C},, for i =1,2,3.
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Figure 2. A computer drawing of the optimal exercise boundary b3 (q).
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Figure 3. A computer drawing of the optimal exercise boundary a3(s).
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Figure 4. A computer drawing of the optimal exercise boundary b3(q).
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Figure 6. A computer drawing of the optimal exercise boundary b3(q).
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We also recall that one should start with s = x and ¢ = z in the original optimal stopping
problems of (1.5) and (1.6), which are equivalent to the ones of (2.11) and (2.14), in order to
obtain the values of the associated perpetual American defaultable standard and lookback put
and call option pricing problems. In this respect, in the cases in which the complements d; \d;’ j
considered in part (b) above belong to the stopping regions D;; from (2.20), for i = 1,2,3 and
j = 1,2, we may declare that all the points (x,s) € E) or (z,q) € E such that (s,s) € dy\dj,
or (q,q) € da\ dj, belong to the stopping regions D}, for i = 1,2,3 and j = 1,2, respectively.

Summarising all these arguments, we may conclude that there exist functions af(s) and
bi(q) satisfying the inequalities af(s) < a;(s) A's, for all s, < s <5;, and b5(q) > b;(q) V ¢, for
all ¢, < ¢ <7, as well as the equalities aj(s) =s, al(s) =0, forall 0 < s <s,, and bj(q) = q,
b;(q_) = 00, for all ¢ > g;, such that the continuation regions C7;, for j = 1,2, in (2.19) have
the form:

C’;il = {(x,s) € E1|a:~‘(s) <z < s} and CZQ = {(a:,q) € E2|q <z< bf(q)} (2.32)

*
/L’-] ’

Diy ={(z,5) € By |z <ai(s)} and Di,={(z,q) € Ex|z>bi(q)} (2.33)

while the stopping regions Dy ., for j = 1,2, in (2.20) are given by:

for every i = 1,2, 3, respectively (see Figures 1-6 above for computer drawings of the optimal
stopping boundaries a}(s) and b}(q), for i =1,2,3). O

We now summarise the properties proved above for the case of fractional recoveries.

Corollary 2.2 Suppose that the assumptions of Theorem 2.1 are satisfied with ¢, = L, and
v = =0, as well as & = —FK;1 and x1 = 5, w2 =0 and ¥y = B(1 — Ls), as well as & =0
and x2 = B(Ky — 1), and p3 = —fL3 and 3 = [, as well as & = K3 and x3 = —f, for
some 8 € (0,1). In these cases, the boundary estimates in parts (i)-(iii) of Theorem 2.1 are
specified as follows:

(i) for i =1, we have 0 < s; <@y A s} with @, = rLy/d" and s} = Ly, as well as 51 = oo
and a; = rLia/(8'(a — 1)), under o < 0, while we have g, > by V ¢i with by = rK,/d" and
¢ = Ki, as well as ¢, = 0, under o > 0, where, additionally, by = rKya/(8'(a — 1)), for
a>1, and by = o0, for 0 < a < 1;

(i1) for i =2, we have ay(s) = rsa/(d'La(a — 1)) and az(s) = rs/(0'Ls) as well as sy =0
and Sy = oo, under o < 0, while by(q) = rq/(8'Kz) as well as q, = 0 and g, = oo, under
a > 0, where, additionally, by(q) = rqa/(8'Ky(a—1)), for a > 1, and by = oo, for 0 < a < 1;

(i1i) for i =3, we have a5 =0 and a3(s) = s as well as s5 = L3 A s} and 53 = s§ with s}
given by (2.81), under 1+ a(1 — ) < 0 and o < 0, while by(q) = q and by = oo as well as
g, =q3 and g3 = K3V g5 with ¢ given by (2.31), under a > 0.

2.3 The free-boundary problems. By means of standard arguments based on the appli-
cation of Itd’s formula, it is shown that the infinitesimal operator L of the process (X, S) or
(X, Q) from (1.2) and (1.3) has the form:

o?a?

L:(r—é)xﬁx%—Tam in 0<zx<s or 0<g<z (2.34)
Js=0 at O<zx=s or 0,=0 at O0<z=gq (2.35)
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(see, e.g. [40; Subsection 3.1]). In order to find analytic expressions for the unknown value
functions V;*(z,s) and Uj(x,q) from (2.17) and (2.18) and the unknown boundaries a}(s)
and bf(q) from (2.32) and (2.33), for every ¢ = 1,2,3, we apply the results of general theory
for solving optimal stopping problems for Markov processes presented in [44; Chapter IV,
Section 8] among others (see also [44; Chapter V, Sections 15-20] for optimal stopping problems
for maxima processes and other related references). More precisely, for the original optimal
stopping problems in (2.17) and (2.18), we formulate the associated free-boundary problems
(see, e.g. [44; Chapter IV, Section 8]) and then verify in Theorem 4.1 below that the appropriate
candidate solutions of the latter problems coincide with the solutions of the original problems.
In other words, we reduce the optimal stopping problems of (2.17) and (2.18) to the following
equivalent free-boundary problems:

(LV—TV)( s)=—H;i(x,s) for (x,s) € Ci1\{(x,s) € Ey|x=15<5} 2.36
(LU; — rU;)(x,q) = —H;2(x,q) for (z,q) € Cia\ {(x, )€E2]x:q>gi} 2.37
Vi@, 8)] gy =0 and Ui, 9],y =0 2.38
0. Vi(x, )‘x wi(5)+ =0 and 0,U;(x, q)‘x:bi(q)_ =0 239

OsVi(z, s | (

(2.36)

(2.37)

(2.38)

(2.39)
1(s)/s and 8qUi(x,q)‘m:q+ =—F2(q)/q (2.40)
Vi(z,s) =0 for (x, s)e€D;; and U(zr,q) =0 for (x,q) € D;» (2.41)
Vi(z,s) >0 for (x,s)€ C;y and Ui(z,q) >0 for (z,q) € Cis (2.42)
(LV; —rVi)(x,s) < —H;1(z,s) for (z,s) € D;y (2.43)
(LU; —rU;)(z,q) < —H;2(x,q) for (z,q) € D;» (2.44)
where Cj; and D, ; are defined as C7; and Dj;, for j = 1,2, in (2.32) and (2.33) with a,(s) and
b;(q) instead of a;(s) and bf(q), Where the functlons H”(x s) and H;o(z,q) have the form of
(2.12) and (2.15) and the functions Fj;(s) and Fj2(q) are given by (2.13) and (2.16), for every
1 =1,2,3, respectively. Here, the instantaneous-stopping as well as the smooth-fit and normal-
reflection conditions of (2.38) (2.40) are satisfied, for all s; < s <5; and ¢, < ¢ <7;, where the
end points of the admissible intervals (s;,s;) and (g,,q;), for i = 1,2,3, are specified in parts
(a)-(d) of the proof of Theorem 2.1 above, under certain relations between the parameters of
the model. Observe that the superharmonic characterisation of the value function (see, e.g. [44;
Chapter IV, Section 9]) implies that V*(x, s) and U/(z,q) are the smallest functions satisfying
(2.36)-(2.38) and (2.41)-(2.42) with the boundaries af(s) and bf(q), for every i = 1,2,3,
respectively. Note that the inequalities in (2.43) and (2.44) follow directly from the arguments
of parts (c)-(d) of the proof of Theorem 2.1 above.

3. Solutions to the free-boundary problems

In this section, we obtain solutions to the free-boundary problems in (2.36)-(2.44) and
derive first-order nonlinear ordinary differential equations for the candidate optimal stopping
boundaries on the appropriate admissible intervals specified above.
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3.1 The candidate value functions. It is shown that the second-order ordinary differential
equations in (2.36) and (2.37) have the general solutions:

Vi(z,s) = Ci1(s) 2" + Cia(s) 27 + Aj1(s) '™ 5% + Ajo(s) 27 s (3.1)
for 0 < x < s such that s, < s <3;, for e =1,2,3, when a < 0, and
Ui(x,q) = Dix(q) 2™ + Dis(g) 2 + Bia(q) 2~ ¢* + Bis(g) 2™ ¢° (3:2)

for 0 < ¢ < x such that ¢, < ¢ <7, for ¢ = 1,2,3, when o > 0, respectively. Here, we
assume that C;;(s) and D; ]( ), for i =1,2,3 and j = 1,2, are some arbitrary (continuously
differentiable) functions, and ~;, for j = 1,2, are given by:

1 r—9 , 1 r—8\* 2r

L G Y - =
P)/J 2 0_2 ( 1) \/(2 0_2 ) + 0_2 (33)
so that 72 < 0 < 1 <, holds. The functions A, ;(s) and B;;(q), for i =1,2,3 and j = 1,2,
are Speciﬁed by Al,l(s) = 1, ALQ(S) = _Lla AQJ(S) = LQ, Agyg( ) = S, A371< ) s

0
Asp(s) = Ly — s, and Bia(q) = —1, Bia(q) = Ki, Ba2a(q) = — K>, B2,2(Q) =q, Bs1(q) =0,
Bss(q) = ¢ — K3. Then, by applying the conditions of (2.38)-(2.40) to the functions in (3.1),
we obtain the equalities:

Cia(s)a]"(s) + Cia(s) a?(s) + Asi(s) a; (S)SO”FAM(S)%_Q() =0 :
M Cia(s) @] (s) + 72 Cia(s) a?(s) + Aia(s) (1 — a) a;~%(s) s — Aja(s) aa;“(s) s* =0 (3.5)
Cl1(8) 8™ + Cia(s) 87 + Aj1(s) s + Ain(s) a+ Af () + Aia(s )a/s = —Fii(s)/s (3.6)

for all s, < s <'s;, and

D;1(q) b (q) + D;2(q) b7 (q) + Bia(q) b;*(q) ¢* + Bi2(q) b “(q) ¢* =0 :
Y1 Dia(q) b (q) + 72 Di2(q) b (q) + Bia(q) (1 — ) b} “(q)¢* — Bia(q) ab;%(q) ¢* =0 (3.8)
D;1(q) " + Dio(q) " + Bi1(q) ¢ + Bia(q) a + B y(q) + Biaq) a/q = —Fi2(q)/q (3.9)

for all ¢, < ¢ <7, respectively. Hence, by solving the systems of equations in (3.4)-(3.5) and
(3.7)-(3. 8) we obtain that the candidate value functions admit the representations:

Vi(x, 85a:(5)) = Ci1(s;ai(8)) 27 + Cia(s;ai(s)) 27 + Aii(s) 27 s* + Aja(s) 27*s*  (3.10)
for a;(s) < o < s such that s, < s <'3;, with

Aia(s) (13— + a — Dai(s) + Aia(s) (13- + a)

Cij(s;ai(s)) = Ta
sl (35— )7 )

(3.11)

for j =1,2, and

Uiz, q:b:(q)) = Dia(g; bi(q)) ™ + Dia(q; bi(q)) 27 + Bia(q) '~ ¢ + Bia(q) 27 ¢*  (3.12)
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for ¢ <z <b;(g) such that ¢, < ¢ <g;, with

Bi1(q)(y3—j + o= 1)bi(q) + Bi2(q) (73— + a)
(v — 73fj)b?+"‘<q)q*a

for e = 1,2,3 and j = 1, 2, respectively. Moreover, by means of straightforward computations,
it can be deduced from the expressions in (3.10) and (3.12) that the first-order and second-order
partial derivatives 0,V;(z,s; a;(s)) and 0,,V;(x, s;a;(s)) of the function V;(x, s;a;(s)) take the
form:

D;j(q;bi(q)) = (3.13)

0, Vi(w, 50i(5)) = Cia(s;ai(s)) m 2”7 + Cials;ai(s)) pp 277" (3.14)
+ Ai(s) (1 —a)z™s* — Aja(s)ax™ s

and

OnaVi(, 57.0i(s)) = Cin(s;0i(s)) yi(m — 1) 2772 4 Cia(s; ais)) (e — 1) 27277 (3.15)
—Aia(s) (1 —a)az™ 15" + Aj(s) afa + 1) a2 "

on the interval a;(s) < x < s, for each s, < s <3; and every i = 1,2, 3 fixed, while the first-
order and second-order partial derivatives 0,U;(z, ¢; b;(q)) and 0,,U;(x, q;b;i(q)) of the function
Ui(z,q;b;(q)) take the form:

0:Ui(, 4; bi(q)) = Dia(q: bi()) v 2™~ + Dia(q; bi(q)) y2 2™ (3.16)
+ Bia(q) (1 —a)a™¢* = Bia(q) ox™ " ¢

and

OuaUi(, 4:0:(q)) = Din(g;b6(0) vi(m — 1) 2" 72 + Dya(q;bi(q)) 72(n2 — 1) 27272 (3.17)
= Bia(g) (1= a)aa™ ' ¢" + Bia(g) afa+ 1) 2™ 2 ¢"

on the interval ¢ < x < b;(q), for each q, < q<gq; and every i = 1,2,3 fixed.
3.2 The candidate stopping boundaries. By applying the conditions of (3.6) and (3.9)

to the functions in (3.11) and (3.13), we conclude that the candidate boundaries satisfy the
first-order nonlinear ordinary differential equations:

~ Wiaa(s, a;(s))s™ + U, 10(s,a:(s))s"? — Z;1(s)

o 3.18
ai(s) D;11(5,a:(5))5™ + Dy o(s, as(s))s72 (3.18)
for s, < s <3;, and
() = L2 (@bD)q" + Dinalg bi(@) ™ = Zia(q) (3.19)
' D;i21(q,bi(9))g" + Pio2(q,bi(q))q
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for g, < ¢ <7, respectively. Here, the functions @1 ;(s, a;(s)), V1,(s,a:(s)) and ®2;(g,bi(q)),

Uy (g, bi(q)) are defined by:

(v + =Dy +a—=1DA(s)ai(s) + (15 + @) (735 + @) A a(s)

D;1,5(8,a:(s)) = ] 3.20
tals o) (5 — o) (s)se 320

\Ifi,l,j(s, ai(s)) (321)

_ (A4 (8)s + Ain(s)a) (35 + o — Dai(s) + (Aj5(5)s + Aia(s)a) (735 + @)

(v —7s-5)a ()51

Ei,l (8) = FZ'J(S)/S + A;71(8> S+ A@l(S) o+ A2,2<S) -+ Aig(S) Oé/S (322)
for s, < s <3;, and

Bis (g, bilq)) = (v + o= 1)y + & — 1)Bia(q)bi(q) + (v + @) (13-5 + @) Bia(q) (3.23)

j+a+1 —a
(7 — 73-)b7 " g)q

Wi2,5(q,bi(q)) (3.24)
(Bi1(@)q + Bia(q)a)(ys—; +a —1)bi(q) + (Bi»(q)q + Bia(q)a)(y3—; + )
(v — 13- (q) g
Zi2(q) = Fia(q)/q + Biy(q)  + Bia(g) a + Blo(q) + Bia(q) a/q (3.25)

for 7, <q <7, and every ¢ =1,2,3 and j =1,2.

3.3 The maximal and minimal admissible solutions «;(s) and bf(q), i =1,2,3. We
further consider the mazimal and minimal admissible solutions of first-order nonlinear ordinary
differential equations as the largest and smallest possible solutions a}(s) and b(q) of the
equations in (3.18) and (3.19) with (3.20)-(3.21) and (3.23)-(3.24) which satisfy the inequalities
aj(s) < sA@;(s) and b (q) > qVb;(g), forall s; < s <5; and ¢, < ¢ <7¢;, and every i = 1,2, 3.
Here, we recall that the end points of the admissible intervals (s,, 5;) and (¢,,9;), for 1 =1,2,3,
are specified in parts (a)-(c) of the proof of Theorem 2.1 above, under certain relations between
the parameters of the model. By virtue of the classical results on the existence and uniqueness of
solutions for first-order nonlinear ordinary differential equations, we may conclude that these
equations admit (locally) unique solutions, in view of the facts that the right-hand sides in
(3.18) and (3.19) with (3.20)-(3.22) and (3.23)-(3.25) are (locally) continuous in (s, a;(s)) and
(¢, bi(q)) and (locally) Lipschitz in a;(s) and b;(q), for each s; < s <3; and ¢, < ¢ <7; fixed,
and every i = 1,2,3 (see also [40; Subsection 3.9] for similar arguments based on the analysis
of other first-order nonlinear ordinary differential equations). Then, it is shown by means of
technical arguments based on Picard’s method of successive approximations that there exist
unique solutions a;(s) and b;(¢) to the equations in (3.18) and (3.19) with (3.20)-(3.21) and
(3.23)-(3.24), for 5; < s < 3; and ¢, < ¢ < ¢, started at some points (@i(sio), si0) and
(b;(gi0), Gio), for i =1,2,3, such that s, < s;9 <35; and 4, < ip <;, forevery 1 =1,2,3 (see
also [27; Subsection 3.2] and [40; Example 4.4] for similar arguments based on the analysis of
other first-order nonlinear ordinary differential equations).

Hence, in order to construct the appropriate functions a}(s) and b}(¢q) which satisfy the
equations in (3.18) and (3.19) and stays strictly above and below the appropriate diagonal, for
s; < s <35; and q, < q <7, and every ¢ = 1,2, 3, respectively, we can follow the arguments
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from [43; Subsection 3.5] (among others) which are based on the construction of sequences of
the so-called bad-good solutions which intersect the upper or lower bounds or diagonals. For
this purpose, for any sequences (s;;)eny and (gi;)ien such that s; < s;; <'5; and 7, <41 <G
aswell as s;; 15; and ¢;; | q; as [ — oo, we can construct the sequence of solutlons a;;(s) and
bii(q), L € N, to the equatlons (3.18) and (3.19), for all s; < s <3; and ¢, < ¢ <g; such that
au(si’l) = Ei(su) and b;;(gi;) = b;(gi;) holds, for every i = 1,2,3 and cach | € N. Tt follows
from the structure of the equations in (3.18) and (3.19) as well as the functions in (3.20)-(3.21)
and (3.23)-(3.24) that the inequalities af,(s;;) > @j(siy) A1 and b} ,(g:1) < bi(gig) V 1 should
hold for the derivatives of the corresponding functions, for each [ € N (see also [39; pages 979-
982] for the analysis of solutions of another first-order nonlinear differential equation). Observe
that, by virtue of the uniqueness of solutions mentioned above, we know that each two curves
s a;(s) and s — a;,,(s) as well as ¢ — b;;(q) and ¢ — b;,,(q) cannot intersect, for [,m € N
such that [ # m, and thus, we see that the sequence (a;;(s))en is increasing and the sequence
(bi1(q))ien is decreasing, so that the limits a}(s) = limy_,o a;y(s) and b (q) = limy_,o0 b;i(q)
exist, for each s, < s < 5; and g, < q <7, and every ¢ = 1,2,3, respectively. We may
therefore conclude that a’(s) and b*( ) provides the maximal and mlnlmal solutions to the
equations in (3.18) and (3.19) such that af(s) < @;(s) As and b (q) > b;(q) V ¢ holds, for all
5, < 5 <5 andq <q<4q;,and every ¢ = 1,2 3.

Moreover, since the right-hand sides of the first-order nonlinear ordinary differential equa-
tions in (3.18) and (3.19) with (3.20)-(3.21) and (3.23)-(3.24) are (locally) Lipschitz in s and
q, respectively, one can deduce by means of Gronwall’s inequality that the functions a;,(s)
and b;;(q), for each [ € N, are continuous, so that the functions af(s) and b;(¢) are contin-
uous too, for every ¢ = 1,2,3. The corresponding maximal admissible solutions of first-order
nonlinear ordinary differential equations and the associated maximality principle for solutions
of optimal stopping problems which is equivalent to the superharmonic characterisation of the
payoff functions were established in [40] and further developed in [27], [39], [29], [18], [8], [30],
[42]-[43], [26], [38], [33], [22]-[24], [46], and [19] among other subsequent papers (see also [44;
Chapter I; Chapter V, Section 17] for other references).

4. Main results (Verification)

In this section, based on the expressions computed above, we formulate and prove the main
results of the paper.

Theorem 4.1 Let the processes (X,S) and (X,Q) be given by (1.1) and (1.83), with some
r>0,d0>0, and o >0, and the inequality &' = 2r — § — o® > 0 be satisfied. Suppose that
the random times 0 and n are defined by (1.4). Then, the value functions of the perpetual
American standard and lookback put and call options with event risk from (2.17) and (2.18)
admit the expressions:

Vi(z,s;al(s)), if af(s)<azx<s and s <s<§5;
Vi (z,s) =10, if 0<z<al(s) and s, <s<53; (4.1)
, if 0<zx<s<s, or s>5

e}
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whenever a = 2(r —§)/o* —1 <0, and

Ui(z,q;b](q)), if ¢<x<bi(qg) and ¢, <q<g
U (x,q) = <0, if x>0bi(q) and ¢, <q<g (4.2)
0, if ©>q>7q or 0<qg<g,

whenever o > 0. Here, the function Vi(x,s;a;(s)) is given by (3.10) with (3.11), whenever
a < 0, and the optimal exercise boundary a}(s) provides the mazimal solution of the first-order
nonlinear ordinary differential equation in (3.18) with (3.20)-(3.22) satisfying the inequalities
la,(s) <lai(s) < a;(s)As, forall s; < s <§; and every i = 1,2,3, where the boundary estimates
and related numbers are given in the beginnings of parts (i)-(iii) of Theorem 2.1 above, under
the specified relations between the parameters of the model. The function U;(x,q;b;(q)) is given
by (3.12) with (3.18), whenever o > 0, and the optimal exercise boundary bf(q) provides
the minimal solution of the first-order nonlinear ordinary differential equation in (3.19) with
(8.23)-(5.25) satisfying the inequalities b;(q) V q < b(q)[< bi(q)], for all g, <q<79q; and every
i = 1,2,3, where the boundary estimates and related numbers are giwen in the ends of parts
(i)-(17i) of Theorem 2.1 above, under the specified relations between the parameters of the model.

Observe that we can put s = x and ¢ = = to obtain the values of the original perpetual
American standard and lookback put and call option pricing problems of (2.11) and (2.14),
which are equivalent to the ones of (1.5) and (1.6), from the values of the optimal stopping
problems of (2.17) and (2.18). Note that, since both parts of the assertion stated above are
proved using similar arguments, we may only give a proof for the case of the two-dimensional
optimal stopping problem of (2.18) related to the perpetual American standard and lookback
call options with event risk and asymmetric information.

Proof In order to verify the assertion stated above, it remains for us to show that the function
defined in (4.1) coincides with the value function in (2.17) and that the stopping time 7/ in
(2.21) is optimal with the boundary af(s) specified above. For this purpose, let a;(s) be any
solution of the ordinary differential equation in (3.18) satisfying the inequality a;(s) < @;(s)As,
for all s, < s <3; and every i = 1,2,3. Here, a1(s) = a; = rL1/d, as(s) = rs/(0'Ly), and
as(s) = s, with some 0 < s, <a; As}, 53 =00 as well as s, =0, 5o = 00 and s3 = L3 A s3,
S3 = s%, where s and sj are specified in part (b) of the proof of Theorem 2.1 above, under
certain relations between the parameters of the model. Let us also denote by V;*(z,s) the
right-hand side of the expression in (4.1) associated with a;(s), for every i = 1,2,3. Then, it
is shown by means of straightforward calculations from the previous section that the function
V% (x,s) solves the system of (2.36) with the left-hand sides of (2.41)-(2.42) and (2.43) as
well as satisfies the left-hand conditions of (2.38)-(2.40). Recall that the function V% (z,s) is
C?' on the closure Ui,l of C;; and is equal to zero on D;;, which are defined as 6;1, CZ1
and Dj; in (2.32) and (2.33) with a,(s) instead of a;(s), for i = 1,2,3, respectively. Hence,
taking into account the assumption that the boundary a;(s) is continuously differentiable, for
all s, < s < §;, by applying the change-of-variable formula from [41; Theorem 3.1] to the
process e "'V (X, Sy) (see also [44; Chapter II, Section 3.5] for a summary of the related
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results and further references), we obtain the expression:

V(X 8) = V(2 ) (43)
bV (6 S O # (8.0, X £ S
+ /0 e OV (X, 80) I(X, = S.)dS, + M
for all ¢ > 0, for every i = 1,2,3. Here, the process M = (M});> defined by:
Vi = [ O (X ) 10X # 50) o X, 0, (14)

is a continuous local martingale with respect to the probability measure P, ;. Note that, since
the time spent by the process (X, S) at the boundary surface 0C;; = {(z,s) € Ey |z = a;(s)},
for every i = 1,2,3, as well as at the diagonal d; = {(z,s) € Ey |z = s} is of the Lebesgue
measure zero (see, e.g. [13; Chapter II, Section 1]), the indicators in the second line of the
formula in (4.3) as well as in the expression of (4.4) can be ignored. Moreover, since the
component S decreases only when the process (X, 5) is located on the diagonal d; = {(z,s) €
E,|x = s}, the indicator in the third line of (4.3) can also be set equal to one. Observe that
the integral in the third line of (4.3) will actually be compensated accordingly, due to the fact
that the candidate value function V" (z, s) satisfies the modified normal-reflection condition of
the left-hand part of (2.40) at the subset of the diagonal {(z,s) € Ei|x = s < 3;}, for every
i=1,23.

It follows from straightforward calculations and the arguments of the previous section that
the function V% (z,s) satisfies the second-order ordinary differential equation in (2.36), which
together with the left-hand conditions of (2.38)-(2.39) and (2.41) as well as the fact that the
inequality in (2.43) holds imply that the inequality (LV;" —rV,*)(z,s) < —H;1(x, s) is satisfied
with H,1(z, s) given by (2.12), for all 0 < x < s such that = # a;(s) and s; < s < 5;, for every
i =1,2,3. Moreover, we observe directly from the expressions in (3.10) as well as (3.14) and
(3.15) with (3.11) that the function V,*(z, s) is convex and increases from zero, because its first-
order partial derivative 0,V;"(z,s) is positive and increases from zero, while its second-order
partial derivative 0,, V" (z, s) is positive, on the interval a;(s) < x < s, under a < 0, for each
s; < s <75; and every ¢ = 1,2, 3 fixed. Thus, we may conclude that the left-hand inequality
in (2.42) holds, which together with the left-hand conditions of (2.38)-(2.39) and (2.41) imply
that the inequality V" (x,s) > 0 is satisfied, for all 0 < z < s such that s, < s <'S;, and every
i=1,2,3. Let (5¢,)nen be the localising sequence of stopping times for the process M’ from
(4.4) such that s, = inf{t > 0||M]| > n}, for each n € N and every ¢ = 1,2,3. It therefore
follows from the expression in (4.3) that the inequalities:

TN n TN n FZ Su
/ e "™ H;1(Xy, Sy) du + / e " L) ds, (4.5)
0 0 Su
S 677‘(7—/\%’2’”) ‘/’L‘ai (XT/\%’L,TL7 ST/\%i,n)

TN n TN n E Su
+ / e ™ i 1<Xu> Su) du + / e ’1( ) dSu
0 7 0 Su

< Vi(w,8) + M;

TN n
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hold with any stopping time 7 of the process X and for each n € N fixed. Then, taking the
expectation with respect to P, s in (4.5), by means of Doob’s optional sampling theorem, we

get:
7/\741',71 T/\%i,n Fz "
E[ / e Hiy (X, Su) du + / e ,g(s )dSu] (4.6)
0 0 u

S Er,s [er(TA%i’n) ‘/Z‘ai (XT/\%“H ST/\%Z‘,n>

TN n TN n E Su
s e sy s [ e B )dsu}
0 0 Su

<V (z,s)+ Ey s [MZ

T/\%i,n

| =V, s)

for all 0 < = < s such that s, < s <5;, for each n € N and every ¢ = 1,2,3. Hence, letting
n go to infinity and using Fatou’s lemma, we obtain from the expressions in (4.6) that the
inequalities:

T T F
E{ / e Hip(Xy, Sy) du + / e T i.1(Su) dSu} (4.7)
0 0

5,

T T F/L "
<E,, {e Ve (X, S, + / e~ Hyy (X, Su) du + / oo FutlS)
0 0 u

< Vi'(z,s)

as,

are satisfied with any stopping time 7, for all 0 < x < s such that s, < s < 5;, for each
n € N and every i« = 1,2,3. Thus, taking the supremum over all stopping times 7 and then
the infimum over all boundaries a; in the expressions of (4.7), we may therefore conclude that
the inequalities:

T T E "
sup E, ¢ [/ e "™ H;1(Xy,Sy) du +/ e ™ ,15(5 ) ds, (4.8)
T 0 0 u

< inf V¥ (2, 5) = V" (z, 5)

hold, for all 0 < = < s such that s, < s < 5;, where a}(s) is the maximal solution of the
ordinary differential equation in (3.19) as well as satisfying the inequality af(s) < @;(s) A s,
for all s, < s <'5; and every ¢ = 1,2,3. By using the fact that the function V" (z,s) is
(strictly) increasing in the value a;(s), for each s, < s < 3; fixed, we see that the infimum in
(4.8) is attained over any sequence of solutions (a;,,(s))men to (3.18) satisfying the inequality
aim(s) < ai(s) ANs, forall s; <s <7, for each m € N and every i = 1,2,3, and such that
a;m(s) T ai(s) as m — oo, for each s; < s < 3; fixed, and every i = 1,2, 3. It follows from the
(local) uniqueness of the solutions to the first-order (nonlinear) ordinary differential equations
in (3.18) that no distinct solutions intersect, so that the sequence (a;;,(s))men is increasing
and the limit af(s) = lim,,_,o0 a;,,(s) exists, for each s; < s <5; fixed and every i = 1,2, 3.
Since the inequalities in (4.7) hold for a}(s) too, we see that the expression in (4.8) holds,
for al(s) and all 0 < & < s such that s; < s < 3, for every i = 1,2,3, as well. We also
note from the inequality in (4.6) that the function V;*(z,s) is superharmonic for the Markov
process (X,S) on the state space E;. Hence, taking into account the facts that V" (x,s) is
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increasing in a;(s) < @;(s) A s and the inequality V" (z,s) > 0 holds, for all 0 < x < s such
that s; < s < S;, we observe that the selection of the maximal solution a}(s) which stays
strictly below the part of the diagonal {(z,s) € E;|x = s < 5;} and the curve x = g,(s), for
every ¢ = 1,2, 3, is equivalent to the implementation of the superharmonic characterisation of
the value function as the smallest superharmonic function dominating the payoff function (cf.
[40] or [44; Chapter I and Chapter V, Section 17]).

In order to prove the fact that the boundary af(s) is optimal, we consider the sequence of
stopping times 7;,,, m € N, defined as in the left-hand part of (2.21) with a;,,(s) instead of

*

af(s), where a;,,(s) is a solution to the first-order ordinary differential equation in (3.18) and
such that a;,,(s) T af(s) as m — oo, for each s; < s <3; and every ¢ = 1,2, 3 fixed. Then, by
virtue of the fact that the function V""" (z, s) from the right-hand side of the expression in (4.1)
associated with the boundary a;,,(s) satisfies the conditions of (2.36) and the left-hand part
of (2.38), and taking into account the structure of 7 in (2.21), it follows from the expression

which is equivalent to the one in (4.3) that the equalities:

Ti,m/N\#in Ti,m/N\*in E Su
/ e Hy 1 (X0, S,) du + / e %dsu (4.9)
0 0 u

_ = (Ti,m A ) 17 %m
=€ o o ‘/’L (X'ri,m/\%i,n? S'ri,m/\%i,n)
Ti,m/\%i,n Ti,m/\%i,n F (S )
_ — 1,1\ Pu
+/ o T Z-71()(%,5'”)du—f—/ e mS—dSu
0 0 u
_ Aq,m )
=V, " (x,5) + ML,

i,m/N\%in

hold, for all 0 < x < s such that s; < s <5;, for each n,m € N and every ¢ = 1,2,3. Observe
that, by virtue of the arguments from [49; Chapter VIII, Section 2al, the property:

* *

TNE TINE F
E.. [sup ( | e Ha sy dus [ e i1(5) dsu>
0 0

>0 Sy

holds, for all 0 < z < s such that s; < s <5; and every 7 = 1,2,3, under o < 0. Hence, letting
m and n go to infinity and using the condition of (2.38) as well as the property 7; ., | 77 (Pys-
a.s.) as m — oo, we can apply the Lebesgue dominated convergence theorem to the appropriate
(diagonal) subsequence in the expression of (4.9) to obtain the equality:

< 00 (4.10)

E“{/ e i1 (X, Sy) du + / 2 e_mwd&t] = V;.a:(x,s) (4.11)
0 0 U

for all 0 < z < s such that s, < s < '5; and every ¢ = 1,2,3, which together with the
inequalities in (4.8) directly implies the desired assertion. We finally recall that the results of
parts (c) and (d) of the proof of Theorem 2.1 above, which are obtained by standard comparison
arguments applied to the value functions of the appropriate optimal stopping problems, show
that the inequality af(s) > g,;(s), for all s; < s <5; and every ¢ = 1,2,3, should hold for the
optimal exercise boundary, that completes the verification. [J
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