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We derive closed-form solutions to the perpetual American standard and lookback
put and call options in an extension of the Black-Merton-Scholes model with event risk
and incomplete information. It is assumed that the contracts are terminated with linear
recoveries at the last hitting times for the underlying asset price process of its running
maximum or minimum over the infinite time interval which are not stopping times with
respect to the observable filtration. We show that the optimal exercise times are the
first times at which the asset price reaches some lower or upper stochastic boundaries
depending on the current values of its running maximum or minimum. The proof is based
on the reduction of the original optimal stopping problems to the associated free-boundary
problems and the solution of the latter problems by means of the smooth-fit and normal-
reflection conditions. The optimal exercise boundaries are proven to be the maximal or
minimal solutions of some first-order nonlinear ordinary differential equations.

1. Introduction

Inspired by game options, we study a situation in which financial contracts can be terminated
or cancelled prematurely due to certain (insider) information which is not available to the
holders of the contracts. More precisely, we suppose that the contracts are terminated by
the writers at the last times at which the underlying stock reaches its running maximum
or minimum and the linear and fractional recovery amounts are paid to the holders. These
particular choices of the termination times are motivated by the studies of the so-called optimal
buyback times for short sellers in the face of bubble formations or recall risk from market
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insiders. The framework we use can find interpretation within the recent GameStop saga,
where subreddit users colluded to buy and hold GameStop shares in order to bet against short
sellers from hedge funds. As a consequence of this act of collusion, the price of GameStop shares
was driven up and the timing of the last maximum was effectively when the subreddit users
could no longer collude (Social platform Discord Ban WallStreetBets Server on 27th Jan 2021)
and trading restrictions were placed by TDAmeritrade (on 27th of Jan 2021), Robinhood and
WeBull (on 28th of Jan 2021), both of which were representing not public information. More
specifically, we may assume that a short seller initiates a short sale of a risky asset at time zero
with the aim to close their position at some random time in the future. The cash flow related
to this operation is equal to the difference between the initial market price of the asset and its
price at this random time discounted by the value of a riskless asset with prevailing interest
rate which is assumed to be identical to the asset lending fee. The short seller’s objective is
therefore to search for an optimal time to repurchase the asset before the lender (who might
have some extra insider information) recalls the asset at its historic maximum or the bubble
bursts and the trading is then stopped. For further related studies on the optimal buyback
times in faces of recall risk, we refer to Glover and Hulley [25].

For a precise formulation of the problems, we consider a probability space (Ω,F , P ) with a
standard Brownian motion B = (Bt)t≥0 . Assume that the process X = (Xt)t≥0 describing the
price of a risky asset in a financial market is given by:

Xt = x exp
((
r − δ − σ2/2

)
t+ σ Bt

)
(1.1)

so that it solves the stochastic differential equation:

dXt = (r − δ)Xt dt+ σXt dBt (X0 = x) (1.2)

where x > 0 is fixed, and r > 0, δ > 0, and σ > 0 are some given constants. Here, r is the
riskless interest rate, δ is the dividend rate paid to the asset holders, and σ is the volatility
rate. Let the processes S = (St)t≥0 and Q = (Qt)t≥0 be the running maximum and minimum
of X defined by:

St = s ∨
(

max
0≤u≤t

Xu

)
and Qt = q ∧

(
min

0≤u≤t
Xu

)
(1.3)

for some arbitrary 0 < q ≤ x ≤ s . To model the event horizon, we also introduce the random
times θ and η by:

θ = sup{t ≥ 0 |Xt = St} and η = sup{t ≥ 0 |Xt = Qt} (1.4)

which are not stopping times with respect to the natural filtration (Ft)t≥0 of the process X ,
but they are honest times in the sense of Barlow [5] and Nikeghbali and Yor [36].

The main aim of this paper is to compute closed-form expressions for the values of the
discounted optimal stopping problems:

V i = sup
τ
E
[
e−rτ Gi,1(Xτ , Sτ ) I(τ < θ) + e−rθ (ϕi + ψiXθ) I(θ ≤ τ)

]
(1.5)

https://en.wikipedia.org/wiki/GameStop short squeeze
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and

U i = sup
ζ
E
[
e−rζ Gi,2(Xζ , Qζ) I(ζ < η) + e−rη (ξi + χiXη) I(η ≤ ζ)

]
(1.6)

with

G1,1(x, s) = L1 − x, G2,1(x, s) = s− L2 x, G3,1(x, s) = s− L3 (1.7)

and

G1,2(x, q) = x−K1, G2,2(x, q) = K2 x− q, G3,2(x, q) = K3 − q (1.8)

for some Li, Ki > 0, ϕi, ξi ∈ R , and ψi, χi ∈ (−1, 1), for i = 1, 2, 3, fixed, where I(·) denotes
the indicator function. Suppose that the suprema in (1.5) and (1.6) are taken over all stopping
times τ and ζ with respect to the filtration (Ft)t≥0 , and the expectations there are taken
with respect to the risk-neutral probability measure P . In this view, the values V i and U i , for
i = 1, 2, 3, in (1.5) and (1.6) provide the rational (no-arbitrage) prices of the perpetual American
defaultable standard and lookback options in an extension of the Black-Merton-Scholes model
with event risk and asymmetric information, when we formally set s = x and q = x in (1.3)
(see, e.g. [49; Chapter VII, Section 3g]). In particular, the functions G1,1(x, s) and G1,2(x, q)
are the payoffs of standard put and call options, the functions G2,1(x, s) and G2,2(x, q) are the
payoffs of put and call lookback options with floating strikes, while the functions G3,1(x, s) and
G3,2(x, q) are the payoffs of put and call lookback options with fixed strikes. Some extensive
overviews of the perpetual American options in diffusion models of financial markets and other
related results in the area are provided in Shiryaev [49; Chapter VIII; Section 2a], Peskir and
Shiryaev [44; Chapter VII; Section 25], and Detemple [14] among others. Note that, since the
contracts are considered on the infinite time horizon, we may skip imposing the positive parts
on the appropriate payoffs. This property follows from the comparison of the associated results
in the case of complete information presented in Shiryaev [49; Chapter VIII; Sections 2a-2b]
and Øksendal [37; Chapter X, Section 10.2] for the standard options and in Beibel and Lerche
[11] as well as in Pedersen [39] and Guo and Shepp [29] for the lookback options with floating
and fixed strikes, respectively.

From the point of view of financial mathematics and credit risk theory, the models in
which the event or default times happen at the last passage times do not fall into the classical
reduced form framework. More precisely, unlike in the existing models studied in Szimayer [50],
Gapeev and Al Motairi [21], Glover and Hulley [25], Dumitrescu, Quenez, and Sulem [16], and
Grigorova, Quenez, and Sulem [28], neither the immersion hypothesis nor the density hypothesis
is satisfied (see Aksamit and Jeanblanc [1; Remark 5.31]), so that the default intensity process
simply does not exist in our setting (see, e.g. Bielecki and Rutkowski [12; Chapter VIII] and
Jeanblanc and Li [31] for the description of these concepts). We can see from the expressions
of (2.2) and (2.3) below that, in the case of zero recovery, the diversion from the immersion
hypothesis leads to the appearance of modified discounting factors which are no longer functions
of the sum of the interest rate and the event time intensity rate but result in an adjusted
dividend rate. Finally, if we were to study the finite horizon version of the optimal stopping
problem from the point of view of the backward stochastic differential equations (BSDEs), as in
Dumitrescu, Quenez, and Sulem [16] and Grigorova, Quenez, and Sulem [28], then it could be
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shown that the dynamics of the no-arbitrage (pre-default) price will no longer satisfy a reflected
BSDE but rather a reflected generalised BSDE in which the generalised driver is related to the
running maximum or minimum of the underlying asset. For other work in this direction, we
refer to the recent paper by Aksamit, Li, and Rutkowski [2].

We further consider the problems of (1.5) and (1.6) as the associated optimal stopping
problems of (2.17) and (2.18) for the two-dimensional continuous Markov processes having the
underlying risky asset price X and its running maximum S or minimum Q as their state
space components. The resulting problems turn out to be necessarily two-dimensional in the
sense that they cannot be reduced to optimal stopping problems for one-dimensional Markov
processes. Note that the integrals in the reward functionals of the optimal stopping problems
in (2.17) and (2.18) contain complicated integrands depending on the asset price as well as its
running maximum and minimum processes. This challenge initiates further developments of
techniques to determine the structure of the associated continuation and stopping regions as well
as appropriate modifications of the normal-reflection conditions in the equivalent free-boundary
problems. In particular, we show that the perpetual American defaultable lookback put and
call options may be exercised when the processes (X,S) or (X,Q) start in certain subsets of
the edges of their state spaces, under specific relations on the parameters of the model. These
properties represent new features of the optimal stopping problems for the running maximum
and minimum processes. Note that, in the paper by Shepp, Shiryaev, and Sulem [48] on the
barrier lookback options as well as in the paper by Ott [38] on the lookback options with upper
and lower caps, the upper bounds for the maxima processes were given endogenously. In this
work, the upper bounds for the maximum process as well as the lower bounds for the minimum
process are given exogenously, by virtue of the presence of the linear recovery amounts in the
appropriate reward functionals. The case of perpetual American defaultable standard options
in models with last passage times of constant levels for the underlying asset prices and zero
recoveries was recently considered in Gapeev, Li, and Wu [20].

Discounted optimal stopping problems for the running maxima and minima of the initial
continuous (diffusion-type) processes were initiated by Shepp and Shiryaev [47] and further
developed by Pedersen [39], Guo and Shepp [29], Shepp, Shiryaev, and Sulem [48], Gapeev [18],
Guo and Zervos [30], Peskir [42]-[43], Glover, Hulley, and Peskir [26], Gapeev and Rodosthenous
[22]-[24], Rodosthenous and Zervos [46], and Gapeev, Kort, and Lavrutich [19] among others.
It was shown, by means of the maximality principle for solutions of optimal stopping stopping
problems established by Peskir [40], which is equivalent to the superharmonic characterisation
of the value functions, that the optimal stopping boundaries are given by the appropriate
extremal solutions of certain (systems of) first-order nonlinear ordinary differential equations.
Other optimal stopping problems in more complicated models with spectrally negative Lévy
processes and their running maxima were studied by Asmussen, Avram, and Pistorius [3],
Avram, Kyprianou, and Pistorius [4], Ott [38], and Kyprianou and Ott [33] among others.

The rest of the paper is organised as follows. In Section 2, we embed the original problems of
(1.5) and (1.6) into the optimal stopping problems of (2.17) and (2.18) for the two-dimensional
continuous Markov processes (X,S) and (X,Q) defined in (1.1) and (1.3). It is shown that the
optimal exercise times τ ∗i and ζ∗i are the first times at which the process X reaches some lower
or upper boundaries a∗i (S) or b∗i (Q) depending on the current values of the processes S or Q ,
for i = 1, 2, 3, respectively. In Section 3, we derive closed-form expressions for the associated
value functions V ∗i (x, s) and U∗i (x, q) as solutions to the equivalent free-boundary problems and
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apply the modified normal-reflection conditions at the edges of the two-dimensional state space
for (X,S) or (X,Q) to characterise the optimal stopping boundaries a∗i (S) and b∗i (Q), for
i = 1, 2, 3, as the maximal or minimal solutions to the resulting first-order nonlinear ordinary
differential equations on the appropriate admissible intervals. In Section 4, by using the change-
of-variable formula with local time on surfaces from Peskir [41], we verify that the solutions
of the free-boundary problems provide the solutions of the original optimal stopping problems.
The main results of the paper are stated in Theorems 2.1 and 4.1.

2. Preliminaries

In this section, we introduce the setting and notation of the two-dimensional optimal stop-
ping problems which are related to the pricing of perpetual American standard and lookback
put and call options with linear recoveries and formulate the equivalent free-boundary problems.

2.1 The optimal stopping problems. Let us first transform the rewards in the expressions
of (1.5) and (1.6) with the aim to formulate the associated optimal stopping problems. For
this purpose, we introduce the conditional survival processes or the Azéma supermartingales
Z = (Zt)t≥0 and Y = (Yt)t≥0 of the random times θ and η defined by Zt = P (θ > t | Ft) and
Yt = P (η > t | Ft), for all t ≥ 0, respectively. It is shown that the processes Z and Y have the
form:

Zt =

{
(St/Xt)

α, if α < 0

1, if α ≥ 0
and Yt =

{
(Qt/Xt)

α, if α > 0

1, if α ≤ 0
(2.1)

for all t ≥ 0, under s = x and q = x , where we set α = 2(r − δ)/σ2 − 1, respectively. More
precisely, since the process Xα = (Xα

t )t≥0 is a positive martingale which converges to zero as t
tends to infinity, under α 6= 0, we may conclude from the structure of random times θ and η in
(1.4) and using the result of [35; Example 1.3], which is a consequence of the Doob’s maximal
equality from [35; Lemma 0.1], that the processes Z and Y are given by (2.1), for α < 0
and α > 0, under s = x and q = x , respectively. Similarly, it can be deduced from the law
of iterated logarithms for standard Brownian motions that the properties lim supt→∞Xt = ∞
and lim inft→∞Xt = 0 hold, for α = 0, implying that θ = ∞ and η = ∞ , and thus, Zt = 1
and Yt = 1, for all t ≥ 0, under s = x and q = x , respectively. Finally, we observe that the
property limt→∞Xt =∞ holds, so that Zt = 1, for α > 0, while the property limt→∞Xt = 0
holds, so that Yt = 1, for α < 0, under s = x and q = x , for all t ≥ 0, respectively.

Then, it follows from a direct application of the tower property for conditional expectations
that the first terms in the right-hand sides of the expressions in (1.5) and (1.6) have the form:

E
[
e−rτ Gi,1(Xτ , Sτ ) I(τ < θ)

]
= E

[
e−rτ Gi,1(Xτ , Sτ ) (Sτ/Xτ )

α
]

(2.2)

when α < 0, under s = x , and

E
[
e−rζ Gi,2(Xζ , Qζ) I(ζ < η)

]
= E

[
e−rζ Gi,2(Xζ , Qζ) (Qζ/Xζ)

α
]

(2.3)

when α > 0, under q = x , for any stopping times τ and ζ of the process X , respectively.
Moreover, it follows from standard applications of Itô’s formula (see, e.g. [34; Theorem 4.4] or

5



[45; Chapter IV, Theorem 3.3]) and the properties that the processes S and Q may change
their values only when Xt = St and Xt = Qt , for t ≥ 0, respectively, that the Azéma
supermartingales Z and Y from (2.1) admit the stochastic differentials:

dZt = −α
(
St
Xt

)α
σ dBt + α I(Xt = St)

(
St
Xt

)α
dSt
St

= −α
(
St
Xt

)α
σ dBt + α

dSt
St

(2.4)

when α < 0, and

dYt = −α
(
Qt

Xt

)α
σ dBt + α I(Xt = Qt)

(
Qt

Xt

)α
dQt

Qt

= −α
(
Qt

Xt

)α
σ dBt + α

dQt

Qt

(2.5)

when α > 0, respectively. Hence, it follows from Doob-Meyer decompositions for the processes
Z and Y in (2.4) and (2.5) and applications of the dual predictable projection property (see,
e.g. [36; Corollary 2.4]) that the second terms in the right-hand sides of the expressions in (1.5)
and (1.6) admit the representations:

E
[
e−rθ (ϕi + ψiXθ) I(θ ≤ τ)

]
= −E

[ ∫ τ

0

e−ru (ϕi + ψiXu)α
dSu
Su

]
(2.6)

when α < 0, under s = x , and

E
[
e−rη (ξi + χiXη) I(η ≤ ζ)

]
= −E

[ ∫ ζ

0

e−ru (ξi + χiXu)α
dQu

Qu

]
(2.7)

when α > 0, under q = x , for any stopping times τ and ζ , and every i = 1, 2, 3, respectively.
By means of standard applications of Itô’s formula to the process e−rtGi,1(Xt, St)(St/Xt)

α ,
taking into account the facts that ∂xxGi,1(x, s) = ∂xsGi,1(x, s) = ∂ssGi,1(x, s) = 0 and α is
selected such that the process X−α = (X−αt )t≥0 is a positive continuous martingale, using the
property that the process S may change its value only when Xt = St , for t ≥ 0, we obtain the
representation:

e−rtGi,1(Xt, St) (St/Xt)
α = Gi,1(x, s) (s/x)α (2.8)

+

∫ t

0

e−ru
(
∂xGi,1(Xu, Su) (r − δ′)Xu − r Gi,1(Xu, Su)

)( Su
Xu

)α
du

+

∫ t

0

e−ru
(
∂sGi,1(Xu, Su)Su + αGi,1(Xu, Su)

) dSu
Su

+N i,1
t

when α < 0, for each 0 < x ≤ s , and all t ≥ 0, where we set δ′ = δ + ασ2 ≡ 2r − δ − σ2 ,
that can be considered as a default adjusted dividend rate. Here, by virtue of the structure of
the integrands as well as the explicit forms of the densities of the marginal distributions of the
two-dimensional process (X,S), the processes N i,1 = (N i,1

t )t≥0 , for i = 1, 2, 3, defined by:

N i,1
t =

∫ t

0

e−ru
(
∂xGi,1(Xu, Su)− αGi,1(Xu, Su)

)( Su
Xu

)α
σ dBu (2.9)
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are continuous square integrable martingales under the probability measure P , when α < 0.
Then, by means of Doob’s optional sampling theorem (see, e.g. [34; Chapter III, Theorem 3.6]
or [45; Chapter II, Theorem 3.2]), we get:

E
[
e−rτ Gi,1(Xτ , Sτ ) (Sτ/Xτ )

α
]

= Gi,1(x, s) (s/x)α (2.10)

+ E

[ ∫ τ

0

e−ru
(
∂xGi,1(Xu, Su) (r − δ′)Xu − r Gi,1(Xu, Su)

)( Su
Xu

)α
du

+

∫ τ

0

e−ru
(
∂sGi,1(Xu, Su)Su + αGi,1(Xu, Su)

) dSu
Su

]
when α < 0, for any stopping time τ with respect to (Ft)t≥0 . Hence, getting the expressions
in (2.10) together with the ones in (2.6) above, we may conclude that the value of (1.5) is given
by:

V i = Gi,1(x, x) + sup
τ
E

[ ∫ τ

0

e−ruHi,1(Xu, Su) du+

∫ τ

0

e−ru
Fi,1(Su)

Su
dSu

]
(2.11)

when α < 0, under s = x , where the supremum is taken over all stopping times τ of the
process (X,S). Here, we set:

Hi,1(x, s) =
(
∂xGi,1(x, s) (r − δ′)x− r Gi,1(x, s)

)
(s/x)α (2.12)

for all 0 < x ≤ s , and

Fi,1(s) = ∂sGi,1(s, s) s+ α
(
Gi,1(s, s)− ϕi − ψi s

)
(2.13)

for all s > 0. Thus, applying the arguments similar to the ones used above together with the
expressions in (2.7), we may conclude that the value of (1.6) is given by:

U i = Gi,2(x, x) + sup
ζ
E

[ ∫ ζ

0

e−ruHi,2(Xu, Qu) du+

∫ ζ

0

e−ru
Fi,2(Qu)

Qu

dQu

]
(2.14)

when α > 0, under q = x , where the supremum is taken over all stopping times ζ of the
process (X,Q). Here, we have:

Hi,2(x, q) =
(
∂xGi,2(x, q) (r − δ′)x− r Gi,2(x, q)

)
(q/x)α (2.15)

for all 0 < q ≤ x , and

Fi,2(q) = ∂qGi,2(q, q) q + α
(
Gi,2(q, q)− ξi − χi q

)
(2.16)

for all q > 0.
Therefore, we see that the problems in (2.11) and (2.14) can be naturally embedded into

the optimal stopping problems for the (time-homogeneous strong) Markov processes (X,S) =
(Xt, St)t≥0 and (X,Q) = (Xt, Qt)t≥0 with the value functions:

V ∗i (x, s) = sup
τ
Ex,s

[ ∫ τ

0

e−ruHi,1(Xu, Su) du+

∫ τ

0

e−ru
Fi,1(Su)

Su
dSu

]
(2.17)
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when α < 0, and

U∗i (x, q) = sup
ζ
Ex,q

[ ∫ ζ

0

e−ruHi,2(Xu, Qu) du+

∫ ζ

0

e−ru
Fi,2(Qu)

Qu

dQu

]
(2.18)

when α > 0, for every i = 1, 2, 3, respectively. Here, Ex,s and Ex,q denote the expectations
with respect to the probability measures Px,s and Px,q under which the two-dimensional Markov
processes (X,S) and (X,Q) defined in (1.1) and (1.3) start at (x, s) ∈ E1 = {(x, s) ∈ R2 | 0 <
x ≤ s} and (x, q) ∈ E2 = {(x, q) ∈ R2 | 0 < q ≤ x} , respectively. We further obtain solutions
to the optimal stopping problems in (2.17) and (2.18) and verify below that the value functions
V ∗i (x, s) and U∗i (x, q), for i = 1, 2, 3, are the solutions of the problems in (2.11) and (2.14),
and thus, give the solutions of the original problems in (1.5) and (1.6), under s = x and q = x ,
respectively.

It follows from the arguments of [44; Chapter III, Section 6] that the continuation regions
in the optimal stopping problems of (2.17) and (2.18) have the form:

C∗i,1 =
{

(x, s) ∈ E1

∣∣V ∗i (x, s) > 0
}

and C∗i,2 =
{

(x, q) ∈ E2

∣∣U∗i (x, q) > 0
}

(2.19)

so that the corresponding stopping regions in those problems are given by:

D∗i,1 =
{

(x, s) ∈ E1

∣∣V ∗i (x, s) = 0
}

and D∗i,2 =
{

(x, q) ∈ E2

∣∣U∗i (x, q) = 0
}

(2.20)

for every i = 1, 2, 3, respectively. It is seen from the results of Theorem 4.1 proved below
that the value functions V ∗i (x, s) and U∗i (x, q) are continuous, so that the sets C∗i,1 and C∗i,2 in
(2.19) are open, while the sets D∗i,1 and D∗i,2 in (2.20) are closed, for every i = 1, 2, 3.

2.2 The structure of optimal exercise times. Let us now determine the structure of the
optimal stopping times at which the holders should exercise the contracts.

Theorem 2.1 Let the processes (X,S) and (X,Q) be given by (1.1) and (1.3), with some
r > 0, δ > 0, and σ > 0 fixed, and the inequality δ′ ≡ 2r − δ − σ2 > 0 be satisfied. Suppose
that the random times θ and η are defined by (1.4). Then, the optimal exercise times for the
perpetual American standard and lookback put and call options with the values in (2.17) and
(2.18) have the structure:

τ ∗i = inf{t ≥ 0 |Xt ≤ a∗i (St)} and ζ∗i = inf{t ≥ 0 |Xt ≥ b∗i (Qt)} (2.21)

under α < 0 and α > 0, for i = 1, 2, 3, respectively. The optimal exercise boundaries a∗i (s)
and b∗i (q) in (2.21) satisfy the inequalities ai(s) < a∗i (s) < ai(s) ∧ s, for si < s < si , and
bi(q) ∨ q < b∗i (q) < bi(q), for q

i
< q < qi , as well as the equalities a∗1(s) = s, a∗3(s) = 0, for all

0 < s ≤ si , and b∗1(q) = q , b∗3(q) =∞, for all q ≥ qi , for every i = 1, 2, 3. Here, under certain
relations between the parameters of the model, the boundary estimates and related numbers are
specified as follows:

(i) in the case i = 1, that is, for G1,1(x, s) = L1 − x and G1,2(x, q) = x−K1 , we have:
• when L1 > ϕ1 and ψ1 > −1 as well as α < 0, we have 0 ≤ s1 ≤ a1∧s∗1 with a1 = rL1/δ

′

and s∗1 = (L1 − ϕ1)/(1 + ψ1), as well as s1 =∞ and a1 = rL1α/(δ
′(α− 1)),
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• when K1 > −ξ1 and χ1 < 1 as well as α > 0, we have q1 ≥ b1 ∨ q∗1 with b1 = rK1/δ
′

and q∗1 = (K1 + ξ1)/(1 − χ1), as well as q
1

= 0 [in addition, when α > 1, we also have

b1 = rK1α/(δ
′(α− 1)), while when 0 < α ≤ 1, we also have b1 =∞];

(ii) in the case i = 2, that is, for G2,1(x, s) = s− L2x and G2,2(x, q) = K2x− q , we have:
• when ϕ2 ≥ 0 and 1+α(1−L2−ψ2) > 0 as well as α < 0, we have a2(s) = rsα/(δ′L2(α−

1)) and a2(s) = rs/(δ′L2) as well as s2 = 0 and s2 =∞,
• when ξ2 ≥ 0 and 1 +α(1−K2 +χ2) > 0 as well as α > 0, we have b2(q) = rq/(δ′K2) as

well as q
2

= 0 and q2 =∞ [in addition, when α > 1, we also have b2(q) = rqα/(δ′K2(α− 1)),

while when 0 < α ≤ 1, we also have b2 =∞];
(iii) in the case i = 3, that is, for G3,1(x, s) = s− L3 and G3,2(x, q) = K3 − q , we have:
• when L3 > −ϕ3 and 1 + α(1− ψ3) < 0 as well as α < 0, we have a3 = 0 and a3(s) = s

as well as s3 = L3 ∧ s∗3 and s3 = s∗3 with s∗3 = (L3 + ϕ3)α/(1 + α(1− ψ3)),
• when K3 > ξ3 and 1 + α(1 + χ3) > 0 as well as α > 0, we have b3(q) = q and b3 = ∞

as well as q
3

= q∗3 and q3 = K3 ∨ q∗3 with q∗3 = (K3 − ξ3)α/(1 + α(1 + χ3)).

Observe that, when either α ≥ 0 or α ≤ 0 holds, the perpetual American standard and
lookback option pricing problems of either (2.17) or (2.18) are reduced to the ones with complete
information, respectively. We also note that the assertions stated above may also hold under the
relations between the parameters of the model other than the ones considered above. However,
the solutions to the problems of (2.17) and (2.18) might also be either trivial or non-transparent
under the conditions on the parameters of the model different to the ones mentioned in the
assertions above.

Proof (a) In order to clarify the structure of the continuation and stopping regions in (2.19)-
(2.20), we first note that, by virtue of properties of the running maximum S and minimum Q
from (1.3) of the geometric Brownian motion X from (1.1) (see, e.g. [15; Subsection 3.3] for
similar arguments applied to the running maxima of the Bessel processes), it is seen that, for
any s > 0 and q > 0 fixed and an infinitesimally small deterministic time interval ∆, we have:

S∆ = s ∨ max
0≤u≤∆

Xu = s ∨ (s+ ∆X) + o(∆) as ∆ ↓ 0 (2.22)

and

Q∆ = q ∧ min
0≤u≤∆

Xu = q ∧ (q + ∆X) + o(∆) as ∆ ↓ 0 (2.23)

where we set ∆X = X∆ − s and ∆X = X∆ − q , respectively. Observe that ∆S = o(∆) when
∆X ≤ 0, ∆S = ∆X+o(∆) when ∆X > 0, ∆Q = o(∆) when ∆X ≥ 0, and ∆Q = ∆X+o(∆)
when ∆X < 0, where we set ∆S = S∆− s and ∆Q = Q∆− q , and recall that o(∆) denotes a
random function satisfying o(∆)/∆→ 0 as ∆ ↓ 0 (P -a.s.). In this case, using the asymptotic
formulas:

Es,s
[
∆X ; ∆X > 0

]
≡ Es,s

[
∆X I(∆X > 0)

]
∼ s

√
∆

2π
as ∆ ↓ 0 (2.24)

and

Eq,q
[
∆X ; ∆X < 0

]
≡ Eq,q

[
∆X I(∆X < 0)

]
∼ −q

√
∆

2π
as ∆ ↓ 0 (2.25)
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as well as taking into account the structure of the rewards in (2.17) and (2.18), we get:

Es,s

[
e−r∆Hi,1(s, s) ∆ + e−r∆ Fi,1(s) ∆S

]
(2.26)

∼ e−r∆Hi,1(s, s) ∆ + e−r∆ Fi,1(s) s

√
∆

2π
as ∆ ↓ 0

and

Eq,q

[
e−r∆ Hi,2(q, q) ∆ + e−r∆ Fi,2(q) ∆Q

]
(2.27)

∼ e−r∆ Hi,2(q, q) ∆− e−r∆ Fi,2(q) q

√
∆

2π
as ∆ ↓ 0

for each s > 0 and q > 0 fixed.

(b) Let us first consider the cases of G1,1(x, s) and G1,2(x, q) from (1.7)-(1.8), so that the
functions F1,1(s) and F1,2(q) from (2.13) and (2.16) take the form:

F1,1(s) = α (L1 − ϕ1)− α (1 + ψ1) s, F1,2(q) = −α (K1 + ξ1) + α (1− χ1) q (2.28)

for s > 0, under α < 0, and for q > 0, under α > 0, respectively. Then, we see that the
resulting coefficients by the terms of order

√
∆ in the expressions of (2.26) and (2.27) are strictly

positive, when s > s∗1 with s∗1 = (L1 − ϕ1)/(1 + ψ1), under L1 > ϕ1 and ψ1 > −1 (or when
s > 0, under L1 ≤ ϕ1 and ψ1 > −1), as well as when q < q∗1 with q∗1 = (K1+ξ1)/(1−χ1), under
K1 > −ξ1 and χ1 < 1. Hence, taking into account the facts that the process S is positive and
increasing and the process Q is positive and decreasing, we may therefore conclude from the
structure of integrands in the second integrals in the expressions of (2.17) and (2.18) with (2.28)
as well as the heuristic arguments presented in (2.26) and (2.27) above that it is not optimal to
exercise the standard put option with event risk when s∗1 < St = Xt with s∗1 = (L1−ϕ1)/(1+ψ1),
under L1 > ϕ1 and ψ1 > −1 (or when 0 < St = Xt , under either L1 ≤ ϕ1 and ψ1 > −1),
while it is not optimal to exercise the standard call option with event risk when Xt = Qt < q∗1
with q∗1 = (K1 + ξ1)/(1 − χ1), under K1 > −ξ1 and χ1 < 1, for any t ≥ 0, respectively. In
other words, these facts mean that the set d′1,1 = {(x, s) ∈ E1 |x = s > s∗1} , under L1 > ϕ1

and ψ1 > −1 (which becomes the whole diagonal d1 = {(x, s) ∈ E1 |x = s} , under L1 ≤ ϕ1

and ψ1 > −1), surely belongs to the continuation region C∗1,1 in (2.19) above, while the set
d′1,2 = {(x, q) ∈ E2 |x = q < q∗1} , under K1 > −ξ1 and χ1 < 1 (which becomes an empty set,
under K1 ≤ −ξ1 and χ1 < 1), surely belongs to the continuation region C∗1,2 in (2.19) above.
Here, we recall that E1 = {(x, s) ∈ R2 | 0 < x ≤ s} and E2 = {(x, q) ∈ R2 | 0 < q ≤ x} are the
state spaces of the processes (X,S) and (X,Q), respectively. In particular, for the case of a
fractional recovery with ϕ1 = βL1 and ψ1 = −β , as well as ξ1 = −βK1 and χ1 = β , for some
β ∈ (0, 1), the inequalities above hold with s∗1 = L1 and q∗1 = K1 .

Let us now consider the cases of G2,1(x, s) and G2,2(x, q) from (1.7)-(1.8), so that the
functions F2,1(s) and F2,2(q) from (2.13) and (2.16) take the form:

F2,1(s) = −αϕ2 + (1 + α (1− L2 − ψ2)) s, F2,2(q) = −α ξ2 − (1 + α (1−K2 + χ2)) q (2.29)

for s > 0, under α < 0, and for q > 0, under α > 0, respectively. Then, we see that the
resulting coefficients by the terms of order

√
∆ in the expressions of (2.26) and (2.27) are
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strictly positive, when either s > s∗2 with s∗2 = αϕ2/(1 + α(1 − L2 − ψ2)), under ϕ2 ≤ 0 and
1 +α(1−L2−ψ2) > 0 (or when s > 0, under ϕ2 > 0 and 1 +α(1−L2−ψ2) > 0), while when
q > q∗2 with q∗2 = −αξ2/(1+α(1−K2 +χ2)), under ξ2 ≤ 0 and 1+α(1−K2 +χ2) > 0 (or when
q > 0, under ξ2 > 0 and 1+α(1−K2 +χ2) > 0). In other words, these facts mean that the set
d′2,1 = {(x, s) ∈ E1 |x = s > s∗2} , under ϕ2 ≤ 0 and 1 +α(1−L2−ψ2) > 0 (which becomes the
whole diagonal d1 = {(x, s) ∈ E1 |x = s} , under ϕ2 > 0 and 1 + α(1 − L2 − ψ2) > 0), surely
belongs to the continuation region C∗2,1 in (2.19). Also, the set d′′2,2 = {(x, q) ∈ E2 |x = q > q∗2} ,
under ξ2 ≤ 0 and 1 + α(1 −K2 + χ2) > 0 (which becomes the whole diagonal d2 = {(x, q) ∈
E2 |x = q} , under ξ2 > 0 and 1+α(1−K2 +χ2) > 0), surely belongs to the continuation region
C∗2,2 in (2.19) above, and thus, the complement d2 \ d′′2,2 surely belongs to the stopping region
D∗2,2 in (2.20) above. The latter property occurs, because of the fact that the value F2,2(Q)
in the expression of (2.29) remains positive once the decreasing process Q passes through the
point q∗2 . In particular, for the case of a fractional recovery with ϕ2 = 0 and ψ2 = β(1− L2),
as well as ξ2 = 0 and χ2 = β(K2 − 1), the inequalities above hold with s∗2 = 0 and q∗2 = 0.

Let us now consider the cases of G3,1(x, s) and G3,2(x, q) from (1.7)-(1.8), so that the
functions F3,1(s) and F3,2(q) from (2.13) and (2.16) take the form:

F3,1(s) = −α (L3 + ϕ3) + (1 + α (1− ψ3)) s, F3,2(q) = α(K3 − ξ1)− (1 + α(1 + χ3))q (2.30)

for s > 0, under α < 0, and for q > 0, under α > 0, respectively. Then, we see that the
resulting coefficients by the terms of order

√
∆ in the expressions of (2.26) and (2.27) are

strictly positive, when either s > s∗3 with s∗3 = α(L3 + ϕ3)/(1 + α(1 − ψ3)), under L3 ≤ −ϕ3

and 1+α(1−ψ3) > 0 (or when s > 0, under L3 > −ϕ3 and 1+α(1−ψ3) > 0), or s < s∗3 , under
L3 ≥ −ϕ3 and 1 + α(1 − ψ3) < 0, while when q > q∗3 with q∗3 = α(K3 − ξ3)/(1 + α(1 + χ3)),
under K3 ≥ ξ3 and 1 +α(1 + χ3) > 0 (or when q > 0, under K3 < ξ3 and 1 +α(1 + χ3) > 0).
In other words, these facts mean that the set d′3,1 = {(x, s) ∈ E1 |x = s > s∗3} , under L3 ≤ −ϕ3

and 1 + α(1 − ψ3) > 0 (which becomes the whole diagonal d1 = {(x, s) ∈ E1 |x = s} , under
L3 > −ϕ3 and 1+α(1−ψ3) > 0), or the set d′′3,1 = {(x, s) ∈ E1 |x = s < s∗3} , under L3 ≥ −ϕ3

and 1 + α(1 − ψ3) < 0, surely belongs to the continuation region C∗3,1 in (2.19) above, and
thus, the complement d1 \ d′′3,1 surely belongs to the stopping region D∗3,1 in (2.20) above. The
latter property occurs, because of the fact that the value F3,1(S) in the expression of (2.30)
remains negative once the increasing process S passes through the point s∗3 . Also, the set
d′′3,2 = {(x, q) ∈ E2 |x = q > q∗3} , under K3 ≥ ξ3 and 1 + α(1 + χ3) > 0 (which becomes
the whole diagonal d2 = {(x, q) ∈ E2 |x = q} , under K3 < ξ3 and 1 + α(1 + χ3) > 0), surely
belongs to the continuation region C∗3,2 in (2.19) above, and thus, the complement d2\d′′3,2 surely
belongs to the stopping region D∗3,2 in (2.20) above. The latter property occurs, because of
the fact that the value F3,2(Q) in the expression of (2.30) remains positive once the decreasing
process Q passes through the point q∗3 . it follows In particular, for the case of a fractional
recovery with ϕ3 = −βL3 and ψ3 = β , as well as ξ3 = βK3 and χ3 = −β , for some β ∈ (0, 1),
the inequalities above hold with

s∗3 = L3α(1− β)/(1 + α(1− β)), q∗3 = K3α(1− β)/(1 + α(1− β)). (2.31)

(c) We now observe from the structure of the integrands in the first integrals of (2.17)
and (2.18) that it is not optimal to exercise the perpetual American defaultable standard or
lookback put option when Hi,1(Xt, St) ≥ 0 and Xt < St , while it is not optimal to exercise
the appropriate standard or lookback call option when Hi,2(Xt, Qt) ≥ 0 and Xt > Qt , for
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any t ≥ 0 and every i = 1, 2, 3. In other words, these facts mean that the set {(x, s) ∈
E1 \ d1 |Hi,1(x, s) ≥ 0} belongs to the continuation region C∗i,1 in (2.19) above, while the set
{(x, q) ∈ E2 \ d2 |Hi,2(x, q) ≥ 0} belongs to the continuation region C∗i,2 in (2.19) above, for
every i = 1, 2, 3. For simplicity of presentation, we further assume that δ′ ≡ 2r − δ − σ2 > 0
holds, as well as note that the fact that α ≡ 2(r − δ)/σ2 − 1 > 0 holds obviously implies that
δ′ ≡ 2r − δ − σ2 > 0 holds. In this case, the inequalities H1,1(x, s) = (δ′x − rL1)(s/x)α ≥ 0
and x < s are satisfied if and only if a1 ≤ x < s holds with a1 = rL1/δ

′ , the inequalities
H2,1(x, s) = (δ′L2x − rs)(s/x)α ≥ 0 and x < s are satisfied if and only if a2(s) ≤ x < s
holds with a2(s) = rs/(δ′L2), while the inequalities H3,1(x, s) = r(L3 − s)(s/x)α ≥ 0 and
x < s are satisfied if and only if 0 < x < s ≤ L3 holds. Furthermore, the inequalities
H1,2(x, q) = (rK1 − δ′x)(q/x)α ≥ 0 and x > q are satisfied if and only if q < x ≤ b1 holds
with b1 = rK1/δ

′ , the inequalities H2,2(x, q) = (rq − δ′K2x)(q/x)α ≥ 0 and x > q are
satisfied if and only if q < x ≤ b2(q) holds with b2(q) = rq/(δ′K2), while the inequalities
H3,2(x, q) = r(q −K3)(q/x)α ≥ 0 and x > q are satisfied if and only if x > q ≥ K3 holds.

(d) Let us now specify the structure of the regions in (2.19)-(2.20). For this purpose, we
provide an analysis of the reward functionals of the problems in (2.17)-(2.18). On one hand, we
observe that the function H1,1(x, s) = (δ′x− rL1)(s/x)α decreases in x on the interval (0, a1),
and then, it increases in x on the interval (a1, s) with a1 = rL1α/(δ

′(α − 1)) < rL1/δ
′ = a1 ,

under α < 0, for each s > s1 fixed and some 0 ≤ s1 ≤ a1 ∧ s∗1 . In this case, the function
H1,1(x, s) attains its global minimum at x = a1 , for any s > s1 . According to the comparison
results for strong solutions of (one-dimensional) stochastic differential equations (see, e.g. [17;
Theorem 1]), this fact means that the process (H1,1(Xt, St))t≥0 started at the point H1,1(a1, s)
has the smallest sample paths than the one started at any other point H1,1(x, s), for any
0 < x < s such that x 6= a1 and s > s1 . In this respect, we may conclude that the point
(a1, s) belongs to the stopping region D∗1,1 from (2.20) above, since otherwise, all the points
(x, s) such that 0 < x < s , for any s > s1 , would belong to the continuation region C∗1,1 from
(2.19) too. The latter fact contradicts the obvious property that it is better to stop the process
(X,S) at time zero than not to stop the process at all during the infinite time interval, under
the assumption that α < 0. Therefore, taking into account the fact that the function H1,1(x, s)
is negative on the interval (0, a1), we see that all the points (x, s) such that 0 < x ≤ a1 ∧ s ,
for any s > s1 , belong to the stopping region D∗1,1 from (2.20) as well.

Note that similar arguments applied for the function H2,1(x, s) = (δ′L2x− rs)(s/x)α show
that all the points (x, s) such that 0 < x ≤ a2(s) ∧ s , with a2(s) = rsα/(δ′L2(α − 1)) <
rs/(δ′L2) = a2(s), under α < 0, for each s > 0 fixed, belong to the stopping region D∗2,1 from
(2.20). Moreover, it follows from the property that the function H3,1(x, s) = r(L3− s)(s/x)α is
negative and decreasing in x on the interval (0, s), under α < 0, that, for each s > L3 fixed,
there exists a sufficiently small x > 0 such that the point (x, s) belongs to the stopping region
D∗3,1 from (2.20). According to arguments similar to the ones applied in [15; Subsection 3.3] and
[40; Subsection 3.3], the latter properties can be explained by the fact that the costs of waiting
until the process X comes from such a small x > 0 to the current value of the maximum
S may be too high, due to the presence of the discounting factor in the reward functional of
(2.17), one should stop at this x > 0 immediately.

On the other hand, we observe that the function H1,2(x, q) = (rK1 − δ′x)(q/x)α decreases
in x on the interval (q, b1), and then, it increases in x on the interval (b1,∞) with b1 =
rK1α/(δ

′(α−1)) > rK1/δ
′ = b1 , under α > 1, for each 0 < q < q1 fixed and some q1 ≥ b1∨q∗1 .
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In this case, the function H1,2(x, q) attains its global minimum at x = b1 , for any 0 < q <
q1 . According to the comparison results for strong solutions of (one-dimensional) stochastic
differential equations, this fact means that the process (H1,2(Xt, Qt))t≥0 started at the point
H1,2(b1, q) has the smallest sample paths than the one started at any other point H1,2(x, q), for
any x > q such that x 6= b1 and 0 < q < q1 . In this respect, we may conclude that the point
(b1, q) belongs to the stopping region D∗1,2 from (2.20) above, since otherwise, all the points
(x, q) such that x > q , for any 0 < q < q1 , would belong to the continuation region C∗1,2 from
(2.19) too. The latter fact contradicts the obvious property that it is better to stop the process
(X,Q) at time zero than not to stop the process at all during the infinite time interval, under
the assumption that α > 1. Therefore, taking into account the fact that the function H1,2(x, q)
is negative on the interval (b1,∞), we see that all the points (x, q) such that x ≥ b1 ∨ q , for
any 0 < q < q1 , belong to the stopping region D∗1,2 from (2.20) as well.

Note that similar arguments applied for the function H2,2(x, q) = (rq − δ′K2x)(q/x)α show
that all the points (x, q) such that x ≥ b2(q)∨q , with b2(q) = rqα/(δ′K2(α−1)) > rq/(δ′K2) =
b2(q), under α > 1, for each q > 0 fixed, belong to the stopping region D∗2,2 from (2.20).
Moreover, it follows from the fact that the function H3,2(x, q) = r(q − K3)(q/x)α is negative
and increasing in x on the interval (q,∞), under α > 0, that, for each 0 < q < K3 fixed, there
exists a sufficiently large x > 0 such that the point (x, q) belongs to the stopping region D∗3,2
from (2.20). The same arguments based on the strict increase of the functions Hi,2(x, q), for
i = 1, 2, in x on the interval (q,∞), under 0 < α ≤ 1, for each 0 < q < qi fixed, for i = 1, 2,
with some q1 ≥ b1 ∨ q∗1 and q2 = ∞ , show that, there exists a sufficiently large x > 0 such
that the point (x, q) belongs to the stopping regions D∗i,2 , for i = 1, 2, from (2.20). The latter
properties can be explained by the fact that the costs of waiting until the process X comes
from such a large x > 0 to the current value of the minimum Q may be too high, due to the
presence of the discounting factor in the reward functional of (2.18), one should stop at this
x > 0 immediately. In this view, we can set b1 = b2 =∞ , under 0 < α ≤ 1.

(e) Now, let us take some (x, s) ∈ D∗i,1 from (2.20) such that x > ai(s) with ai(s) specified
above. Then, using the fact that the process (X,S) started at some (x′, s) such that ai(s) ≤
x′ < x passes through the point (x, s) before hitting the diagonal d1 = {(x, s) ∈ E1 |x = s} ,
according to the explicit structure of the reward functional in (2.17), we conclude that the
inequality V ∗i (x′, s) ≤ V ∗i (x, s) = 0 holds, so that (x′, s) ∈ D∗i,1 , for i = 1, 2, 3. Also, let us

take some (x, q) ∈ D∗i,2 from (2.20) such that x < bi(q) with bi(q) specified above. Hence,

using the fact that the process (X,Q) started at some (x′, q) such that bi(q) ≥ x′ > x passes
through the point (x, q) before hitting the diagonal d2 = {(x, q) ∈ E2 |x = q} , taking into
account the explicit structure of the reward functional in (2.18), we conclude that the inequality
U∗i (x′, q) ≤ U∗i (x, q) = 0 holds, so that (x′, q) ∈ D∗i,2 , for i = 1, 2, 3.

Finally, let us take some (x, s) ∈ C∗i,1 from (2.19). Then, using the fact that the process
(X,S) started at (x, s) passes through some point (x′′, s) such that x′′ > x before hitting the
diagonal d1 , according to the explicit structure of the reward functional in (2.17), we conclude
that the inequality V ∗i (x′′, s) ≥ V ∗i (x, s) > 0 holds, so that (x′′, s) ∈ C∗i,1 , for i = 1, 2, 3. Also,
let us take some (x, q) ∈ C∗i,2 from (2.19). Hence, using the fact that the process (X,Q) started
at (x, q) passes through some point (x′′, q) such that x′′ < x before hitting the diagonal d2 ,
taking into account the explicit structure of the reward functional in (2.18), we conclude that
the inequality U∗i (x′′, q) ≥ U∗i (x, q) > 0 holds, so that (x′′, q) ∈ C∗i,2 , for i = 1, 2, 3.
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Figure 1. A computer drawing of the optimal exercise boundary a∗1(s).
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Figure 2. A computer drawing of the optimal exercise boundary b∗1(q).
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Figure 3. A computer drawing of the optimal exercise boundary a∗2(s).
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We also recall that one should start with s = x and q = x in the original optimal stopping
problems of (1.5) and (1.6), which are equivalent to the ones of (2.11) and (2.14), in order to
obtain the values of the associated perpetual American defaultable standard and lookback put
and call option pricing problems. In this respect, in the cases in which the complements dj \d′′i,j
considered in part (b) above belong to the stopping regions D∗i,j from (2.20), for i = 1, 2, 3 and
j = 1, 2, we may declare that all the points (x, s) ∈ E1 or (x, q) ∈ E2 such that (s, s) ∈ d1 \d′′i,1
or (q, q) ∈ d2 \d′′i,2 belong to the stopping regions D∗i,j , for i = 1, 2, 3 and j = 1, 2, respectively.

Summarising all these arguments, we may conclude that there exist functions a∗i (s) and
b∗i (q) satisfying the inequalities a∗i (s) < ai(s) ∧ s , for all si < s < si , and b∗i (q) > bi(q) ∨ q , for
all q

i
< q < qi , as well as the equalities a∗1(s) = s , a∗3(s) = 0, for all 0 < s ≤ si , and b∗1(q) = q ,

b∗3(q) = ∞ , for all q ≥ qi , such that the continuation regions C∗i,j , for j = 1, 2, in (2.19) have
the form:

C∗i,1 =
{

(x, s) ∈ E1

∣∣ a∗i (s) < x ≤ s
}

and C∗i,2 =
{

(x, q) ∈ E2

∣∣ q ≤ x < b∗i (q)
}

(2.32)

while the stopping regions D∗i,j , for j = 1, 2, in (2.20) are given by:

D∗i,1 =
{

(x, s) ∈ E1

∣∣x ≤ a∗i (s)
}

and D∗i,2 =
{

(x, q) ∈ E2

∣∣x ≥ b∗i (q)
}

(2.33)

for every i = 1, 2, 3, respectively (see Figures 1-6 above for computer drawings of the optimal
stopping boundaries a∗i (s) and b∗i (q), for i = 1, 2, 3). �

We now summarise the properties proved above for the case of fractional recoveries.

Corollary 2.2 Suppose that the assumptions of Theorem 2.1 are satisfied with ϕ1 = βL1 and
ψ1 = −β , as well as ξ1 = −βK1 and χ1 = β , ϕ2 = 0 and ψ2 = β(1 − L2), as well as ξ2 = 0
and χ2 = β(K2 − 1), and ϕ3 = −βL3 and ψ3 = β , as well as ξ3 = βK3 and χ3 = −β , for
some β ∈ (0, 1). In these cases, the boundary estimates in parts (i)-(iii) of Theorem 2.1 are
specified as follows:

(i) for i = 1, we have 0 ≤ s1 ≤ a1 ∧ s∗1 with a1 = rL1/δ
′ and s∗1 = L1 , as well as s1 = ∞

and a1 = rL1α/(δ
′(α − 1)), under α < 0, while we have q1 ≥ b1 ∨ q∗1 with b1 = rK1/δ

′ and
q∗1 = K1 , as well as q

1
= 0, under α > 0, where, additionally, b1 = rK1α/(δ

′(α − 1)), for

α > 1, and b1 =∞, for 0 < α ≤ 1;
(ii) for i = 2, we have a2(s) = rsα/(δ′L2(α− 1)) and a2(s) = rs/(δ′L2) as well as s2 = 0

and s2 = ∞, under α < 0, while b2(q) = rq/(δ′K2) as well as q
2

= 0 and q2 = ∞, under

α > 0, where, additionally, b2(q) = rqα/(δ′K2(α−1)), for α > 1, and b2 =∞, for 0 < α ≤ 1;
(iii) for i = 3, we have a3 = 0 and a3(s) = s as well as s3 = L3 ∧ s∗3 and s3 = s∗3 with s∗3

given by (2.31), under 1 + α(1 − β) < 0 and α < 0, while b3(q) = q and b3 = ∞ as well as
q

3
= q∗3 and q3 = K3 ∨ q∗3 with q∗3 given by (2.31), under α > 0.

2.3 The free-boundary problems. By means of standard arguments based on the appli-
cation of Itô’s formula, it is shown that the infinitesimal operator L of the process (X,S) or
(X,Q) from (1.2) and (1.3) has the form:

L = (r − δ)x ∂x +
σ2x2

2
∂xx in 0 < x < s or 0 < q < x (2.34)

∂s = 0 at 0 < x = s or ∂q = 0 at 0 < x = q (2.35)
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(see, e.g. [40; Subsection 3.1]). In order to find analytic expressions for the unknown value
functions V ∗i (x, s) and U∗i (x, q) from (2.17) and (2.18) and the unknown boundaries a∗i (s)
and b∗i (q) from (2.32) and (2.33), for every i = 1, 2, 3, we apply the results of general theory
for solving optimal stopping problems for Markov processes presented in [44; Chapter IV,
Section 8] among others (see also [44; Chapter V, Sections 15-20] for optimal stopping problems
for maxima processes and other related references). More precisely, for the original optimal
stopping problems in (2.17) and (2.18), we formulate the associated free-boundary problems
(see, e.g. [44; Chapter IV, Section 8]) and then verify in Theorem 4.1 below that the appropriate
candidate solutions of the latter problems coincide with the solutions of the original problems.
In other words, we reduce the optimal stopping problems of (2.17) and (2.18) to the following
equivalent free-boundary problems:

(LVi − rVi)(x, s) = −Hi,1(x, s) for (x, s) ∈ Ci,1 \ {(x, s) ∈ E1 |x = s < si} (2.36)

(LUi − rUi)(x, q) = −Hi,2(x, q) for (x, q) ∈ Ci,2 \ {(x, q) ∈ E2 |x = q > q
i
} (2.37)

Vi(x, s)
∣∣
x=ai(s)+

= 0 and Ui(x, q)
∣∣
x=bi(q)−

= 0 (2.38)

∂xVi(x, s)
∣∣
x=ai(s)+

= 0 and ∂xUi(x, q)
∣∣
x=bi(q)−

= 0 (2.39)

∂sVi(x, s)
∣∣
x=s− = −Fi,1(s)/s and ∂qUi(x, q)

∣∣
x=q+

= −Fi,2(q)/q (2.40)

Vi(x, s) = 0 for (x, s) ∈ Di,1 and Ui(x, q) = 0 for (x, q) ∈ Di,2 (2.41)

Vi(x, s) > 0 for (x, s) ∈ Ci,1 and Ui(x, q) > 0 for (x, q) ∈ Ci,2 (2.42)

(LVi − rVi)(x, s) < −Hi,1(x, s) for (x, s) ∈ Di,1 (2.43)

(LUi − rUi)(x, q) < −Hi,2(x, q) for (x, q) ∈ Di,2 (2.44)

where Ci,j and Di,j are defined as C∗i,j and D∗i,j , for j = 1, 2, in (2.32) and (2.33) with ai(s) and
bi(q) instead of a∗i (s) and b∗i (q), where the functions Hi,1(x, s) and Hi,2(x, q) have the form of
(2.12) and (2.15) and the functions Fi,1(s) and Fi,2(q) are given by (2.13) and (2.16), for every
i = 1, 2, 3, respectively. Here, the instantaneous-stopping as well as the smooth-fit and normal-
reflection conditions of (2.38)-(2.40) are satisfied, for all si < s < si and q

i
< q < qi , where the

end points of the admissible intervals (si, si) and (q
i
, qi), for i = 1, 2, 3, are specified in parts

(a)-(d) of the proof of Theorem 2.1 above, under certain relations between the parameters of
the model. Observe that the superharmonic characterisation of the value function (see, e.g. [44;
Chapter IV, Section 9]) implies that V ∗i (x, s) and U∗i (x, q) are the smallest functions satisfying
(2.36)-(2.38) and (2.41)-(2.42) with the boundaries a∗i (s) and b∗i (q), for every i = 1, 2, 3,
respectively. Note that the inequalities in (2.43) and (2.44) follow directly from the arguments
of parts (c)-(d) of the proof of Theorem 2.1 above.

3. Solutions to the free-boundary problems

In this section, we obtain solutions to the free-boundary problems in (2.36)-(2.44) and
derive first-order nonlinear ordinary differential equations for the candidate optimal stopping
boundaries on the appropriate admissible intervals specified above.
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3.1 The candidate value functions. It is shown that the second-order ordinary differential
equations in (2.36) and (2.37) have the general solutions:

Vi(x, s) = Ci,1(s)xγ1 + Ci,2(s)xγ2 + Ai,1(s)x1−α sα + Ai,2(s)x−α sα (3.1)

for 0 < x ≤ s such that si < s < si , for i = 1, 2, 3, when α < 0, and

Ui(x, q) = Di,1(q)xγ1 +Di,2(q)xγ2 +Bi,1(q)x1−α qα +Bi,2(q)x−α qα (3.2)

for 0 < q ≤ x such that q
i
< q < qi , for i = 1, 2, 3, when α > 0, respectively. Here, we

assume that Ci,j(s) and Di,j(q), for i = 1, 2, 3 and j = 1, 2, are some arbitrary (continuously
differentiable) functions, and γj , for j = 1, 2, are given by:

γj =
1

2
− r − δ

σ2
− (−1)j

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
(3.3)

so that γ2 < 0 < 1 < γ1 holds. The functions Ai,j(s) and Bi,j(q), for i = 1, 2, 3 and j = 1, 2,
are specified by A1,1(s) = 1, A1,2(s) = −L1 , A2,1(s) = L2 , A2,2(s) = −s , A3,1(s) = 0,
A3,2(s) = L3 − s , and B1,1(q) = −1, B1,2(q) = K1 , B2,1(q) = −K2 , B2,2(q) = q , B3,1(q) = 0,
B3,2(q) = q −K3 . Then, by applying the conditions of (2.38)-(2.40) to the functions in (3.1),
we obtain the equalities:

Ci,1(s) aγ1i (s) + Ci,2(s) aγ2i (s) + Ai,1(s) a1−α
i (s) sα + Ai,2(s) a−αi (s) sα = 0 (3.4)

γ1Ci,1(s) aγ1i (s) + γ2Ci,2(s) aγ2i (s) + Ai,1(s) (1− α) a1−α
i (s) sα − Ai,2(s)α a−αi (s) sα = 0 (3.5)

C ′i,1(s) sγ1 + C ′i,2(s) sγ2 + A′i,1(s) s+ Ai,1(s)α + A′i,2(s) + Ai,2(s)α/s = −Fi,1(s)/s (3.6)

for all si < s < si , and

Di,1(q) bγ1i (q) +Di,2(q) bγ2i (q) +Bi,1(q) b1−α
i (q) qα +Bi,2(q) b−αi (q) qα = 0 (3.7)

γ1Di,1(q) bγ1i (q) + γ2Di,2(q) bγ2i (q) +Bi,1(q) (1− α) b1−α
i (q) qα −Bi,2(q)α b−αi (q) qα = 0 (3.8)

D′i,1(q) qγ1 +D′i,2(q) qγ2 +B′i,1(q) q +Bi,1(q)α +B′i,2(q) +Bi,2(q)α/q = −Fi,2(q)/q (3.9)

for all q
i
< q < qi , respectively. Hence, by solving the systems of equations in (3.4)-(3.5) and

(3.7)-(3.8), we obtain that the candidate value functions admit the representations:

Vi(x, s; ai(s)) = Ci,1(s; ai(s))x
γ1 + Ci,2(s; ai(s))x

γ2 + Ai,1(s)x1−α sα + Ai,2(s)x−α sα (3.10)

for ai(s) < x ≤ s such that si < s < si , with

Ci,j(s; ai(s)) =
Ai,1(s)(γ3−j + α− 1)ai(s) + Ai,2(s)(γ3−j + α)

(γj − γ3−j)a
γj+α
i (s)s−α

(3.11)

for j = 1, 2, and

Ui(x, q; bi(q)) = Di,1(q; bi(q))x
γ1 +Di,2(q; bi(q))x

γ2 +Bi,1(q)x1−α qα +Bi,2(q)x−α qα (3.12)
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for q ≤ x < bi(q) such that q
i
< q < qi , with

Di,j(q; bi(q)) =
Bi,1(q)(γ3−j + α− 1)bi(q) +Bi,2(q)(γ3−j + α)

(γj − γ3−j)b
γj+α
i (q)q−α

(3.13)

for i = 1, 2, 3 and j = 1, 2, respectively. Moreover, by means of straightforward computations,
it can be deduced from the expressions in (3.10) and (3.12) that the first-order and second-order
partial derivatives ∂xVi(x, s; ai(s)) and ∂xxVi(x, s; ai(s)) of the function Vi(x, s; ai(s)) take the
form:

∂xVi(x, s; ai(s)) = Ci,1(s; ai(s)) γ1 x
γ1−1 + Ci,2(s; ai(s)) γ2 x

γ2−1 (3.14)

+ Ai,1(s) (1− α)x−α sα − Ai,2(s)αx−α−1 sα

and

∂xxVi(x, s; ai(s)) = Ci,1(s; ai(s)) γ1(γ1 − 1)xγ1−2 + Ci,2(s; ai(s)) γ2(γ2 − 1)xγ2−2 (3.15)

− Ai,1(s) (1− α)αx−α−1 sα + Ai,2(s)α(α + 1)x−α−2 sα

on the interval ai(s) < x ≤ s , for each si < s < si and every i = 1, 2, 3 fixed, while the first-
order and second-order partial derivatives ∂xUi(x, q; bi(q)) and ∂xxUi(x, q; bi(q)) of the function
Ui(x, q; bi(q)) take the form:

∂xUi(x, q; bi(q)) = Di,1(q; bi(q)) γ1 x
γ1−1 +Di,2(q; bi(q)) γ2 x

γ2−1 (3.16)

+Bi,1(q) (1− α)x−α qα −Bi,2(q)αx−α−1 qα

and

∂xxUi(x, q; bi(q)) = Di,1(q; bi(q)) γ1(γ1 − 1)xγ1−2 +Di,2(q; bi(q)) γ2(γ2 − 1)xγ2−2 (3.17)

−Bi,1(q) (1− α)αx−α−1 qα +Bi,2(q)α(α + 1)x−α−2 qα

on the interval q ≤ x < bi(q), for each q
i
< q < qi and every i = 1, 2, 3 fixed.

3.2 The candidate stopping boundaries. By applying the conditions of (3.6) and (3.9)
to the functions in (3.11) and (3.13), we conclude that the candidate boundaries satisfy the
first-order nonlinear ordinary differential equations:

a′i(s) =
Ψi,1,1(s, ai(s))s

γ1 + Ψi,1,2(s, ai(s))s
γ2 − Ξi,1(s)

Φi,1,1(s, ai(s))sγ1 + Φi,1,2(s, ai(s))sγ2
(3.18)

for si < s < si , and

b′i(q) =
Ψi,2,1(q, bi(q))q

γ1 + Ψi,2,2(q, bi(q))q
γ2 − Ξi,2(q)

Φi,2,1(q, bi(q))qγ1 + Φi,2,2(q, bi(q))qγ2
(3.19)
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for q
i
< q < qi , respectively. Here, the functions Φ1,j(s, ai(s)), Ψ1,j(s, ai(s)) and Φ2,j(q, bi(q)),

Ψ2,j(q, bi(q)) are defined by:

Φi,1,j(s, ai(s)) =
(γj + α− 1)(γ3−j + α− 1)Ai,1(s)ai(s) + (γj + α)(γ3−j + α)Ai,2(s)

(γj − γ3−j)a
γj+α+1
i (s)s−α

(3.20)

Ψi,1,j(s, ai(s)) (3.21)

=
(A′i,1(s)s+ Ai,1(s)α)(γ3−j + α− 1)ai(s) + (A′i,2(s)s+ Ai,2(s)α)(γ3−j + α)

(γj − γ3−j)a
γj+α
i (s)s1−α

Ξi,1(s) = Fi,1(s)/s+ A′i,1(s) s+ Ai,1(s)α + A′i,2(s) + Ai,2(s)α/s (3.22)

for si < s < si , and

Φi,2,j(q, bi(q)) =
(γj + α− 1)(γ3−j + α− 1)Bi,1(q)bi(q) + (γj + α)(γ3−j + α)Bi,2(q)

(γj − γ3−j)b
γj+α+1
i (q)q−α

(3.23)

Ψi,2,j(q, bi(q)) (3.24)

=
(B′i,1(q)q +Bi,1(q)α)(γ3−j + α− 1)bi(q) + (B′i,2(q)q +Bi,2(q)α)(γ3−j + α)

(γj − γ3−j)b
γj+α
i (q)q1−α

Ξi,2(q) = Fi,2(q)/q +B′i,1(q) q +Bi,1(q)α +B′i,2(q) +Bi,2(q)α/q (3.25)

for q
i
< q < qi , and every i = 1, 2, 3 and j = 1, 2.

3.3 The maximal and minimal admissible solutions a∗i (s) and b∗i (q), i = 1, 2, 3. We
further consider the maximal and minimal admissible solutions of first-order nonlinear ordinary
differential equations as the largest and smallest possible solutions a∗i (s) and b∗i (q) of the
equations in (3.18) and (3.19) with (3.20)-(3.21) and (3.23)-(3.24) which satisfy the inequalities
a∗i (s) < s∧ai(s) and b∗i (q) > q∨ bi(q), for all si < s < si and q

i
< q < qi , and every i = 1, 2, 3.

Here, we recall that the end points of the admissible intervals (si, si) and (q
i
, qi), for i = 1, 2, 3,

are specified in parts (a)-(c) of the proof of Theorem 2.1 above, under certain relations between
the parameters of the model. By virtue of the classical results on the existence and uniqueness of
solutions for first-order nonlinear ordinary differential equations, we may conclude that these
equations admit (locally) unique solutions, in view of the facts that the right-hand sides in
(3.18) and (3.19) with (3.20)-(3.22) and (3.23)-(3.25) are (locally) continuous in (s, ai(s)) and
(q, bi(q)) and (locally) Lipschitz in ai(s) and bi(q), for each si < s < si and q

i
< q < qi fixed,

and every i = 1, 2, 3 (see also [40; Subsection 3.9] for similar arguments based on the analysis
of other first-order nonlinear ordinary differential equations). Then, it is shown by means of
technical arguments based on Picard’s method of successive approximations that there exist
unique solutions ai(s) and bi(q) to the equations in (3.18) and (3.19) with (3.20)-(3.21) and
(3.23)-(3.24), for si < s < si and q

i
< q < qi , started at some points (ai(si,0), si,0) and

(bi(qi,0), qi,0), for i = 1, 2, 3, such that si < si,0 < si and q
i
< qi,0 < qi , for every i = 1, 2, 3 (see

also [27; Subsection 3.2] and [40; Example 4.4] for similar arguments based on the analysis of
other first-order nonlinear ordinary differential equations).

Hence, in order to construct the appropriate functions a∗i (s) and b∗i (q) which satisfy the
equations in (3.18) and (3.19) and stays strictly above and below the appropriate diagonal, for
si < s < si and q

i
< q < qi , and every i = 1, 2, 3, respectively, we can follow the arguments

21



from [43; Subsection 3.5] (among others) which are based on the construction of sequences of
the so-called bad-good solutions which intersect the upper or lower bounds or diagonals. For
this purpose, for any sequences (si,l)l∈N and (qi,l)l∈N such that si < si,l < si and q

i
< qi,l < qi

as well as si,l ↑ si and qi,l ↓ qi as l→∞ , we can construct the sequence of solutions ai,l(s) and
bi,l(q), l ∈ N , to the equations (3.18) and (3.19), for all si < s < si and q

i
< q < qi such that

ai,l(si,l) = ai(si,l) and bi,l(qi,l) = bi(qi,l) holds, for every i = 1, 2, 3 and each l ∈ N . It follows
from the structure of the equations in (3.18) and (3.19) as well as the functions in (3.20)-(3.21)
and (3.23)-(3.24) that the inequalities a′i,l(si,l) > a′i(si,l) ∧ 1 and b′i,l(qi,l) < b′i(qi,l) ∨ 1 should
hold for the derivatives of the corresponding functions, for each l ∈ N (see also [39; pages 979-
982] for the analysis of solutions of another first-order nonlinear differential equation). Observe
that, by virtue of the uniqueness of solutions mentioned above, we know that each two curves
s 7→ ai,l(s) and s 7→ ai,m(s) as well as q 7→ bi,l(q) and q 7→ bi,m(q) cannot intersect, for l,m ∈ N
such that l 6= m , and thus, we see that the sequence (ai,l(s))l∈N is increasing and the sequence
(bi,l(q))l∈N is decreasing, so that the limits a∗i (s) = liml→∞ ai,l(s) and b∗i (q) = liml→∞ bi,l(q)
exist, for each si < s < si and q

i
< q < qi , and every i = 1, 2, 3, respectively. We may

therefore conclude that a∗i (s) and b∗i (q) provides the maximal and minimal solutions to the
equations in (3.18) and (3.19) such that a∗i (s) < ai(s) ∧ s and b∗i (q) > bi(q) ∨ q holds, for all
si < s < si and q

i
< q < qi , and every i = 1, 2, 3.

Moreover, since the right-hand sides of the first-order nonlinear ordinary differential equa-
tions in (3.18) and (3.19) with (3.20)-(3.21) and (3.23)-(3.24) are (locally) Lipschitz in s and
q , respectively, one can deduce by means of Gronwall’s inequality that the functions ai,l(s)
and bi,l(q), for each l ∈ N , are continuous, so that the functions a∗i (s) and b∗i (q) are contin-
uous too, for every i = 1, 2, 3. The corresponding maximal admissible solutions of first-order
nonlinear ordinary differential equations and the associated maximality principle for solutions
of optimal stopping problems which is equivalent to the superharmonic characterisation of the
payoff functions were established in [40] and further developed in [27], [39], [29], [18], [8], [30],
[42]-[43], [26], [38], [33], [22]-[24], [46], and [19] among other subsequent papers (see also [44;
Chapter I; Chapter V, Section 17] for other references).

4. Main results (Verification)

In this section, based on the expressions computed above, we formulate and prove the main
results of the paper.

Theorem 4.1 Let the processes (X,S) and (X,Q) be given by (1.1) and (1.3), with some
r > 0, δ > 0, and σ > 0, and the inequality δ′ ≡ 2r − δ − σ2 > 0 be satisfied. Suppose that
the random times θ and η are defined by (1.4). Then, the value functions of the perpetual
American standard and lookback put and call options with event risk from (2.17) and (2.18)
admit the expressions:

V ∗i (x, s) =


Vi(x, s; a

∗
i (s)), if a∗i (s) < x ≤ s and si < s < si

0, if 0 < x ≤ a∗i (s) and si < s < si

0, if 0 < x ≤ s ≤ si or s ≥ si

(4.1)

22



whenever α ≡ 2(r − δ)/σ2 − 1 < 0, and

U∗i (x, q) =


Ui(x, q; b

∗
i (q)), if q ≤ x < b∗i (q) and q

i
< q < qi

0, if x ≥ b∗i (q) and q
i
< q < qi

0, if x ≥ q ≥ qi or 0 < q ≤ q
i

(4.2)

whenever α > 0. Here, the function Vi(x, s; ai(s)) is given by (3.10) with (3.11), whenever
α < 0, and the optimal exercise boundary a∗i (s) provides the maximal solution of the first-order
nonlinear ordinary differential equation in (3.18) with (3.20)-(3.22) satisfying the inequalities
[ai(s) <]a∗i (s) < ai(s)∧s, for all si < s < si and every i = 1, 2, 3, where the boundary estimates
and related numbers are given in the beginnings of parts (i)-(iii) of Theorem 2.1 above, under
the specified relations between the parameters of the model. The function Ui(x, q; bi(q)) is given
by (3.12) with (3.13), whenever α > 0, and the optimal exercise boundary b∗i (q) provides
the minimal solution of the first-order nonlinear ordinary differential equation in (3.19) with
(3.23)-(3.25) satisfying the inequalities bi(q) ∨ q < b∗i (q)[< bi(q)], for all q

i
< q < qi and every

i = 1, 2, 3, where the boundary estimates and related numbers are given in the ends of parts
(i)-(iii) of Theorem 2.1 above, under the specified relations between the parameters of the model.

Observe that we can put s = x and q = x to obtain the values of the original perpetual
American standard and lookback put and call option pricing problems of (2.11) and (2.14),
which are equivalent to the ones of (1.5) and (1.6), from the values of the optimal stopping
problems of (2.17) and (2.18). Note that, since both parts of the assertion stated above are
proved using similar arguments, we may only give a proof for the case of the two-dimensional
optimal stopping problem of (2.18) related to the perpetual American standard and lookback
call options with event risk and asymmetric information.

Proof In order to verify the assertion stated above, it remains for us to show that the function
defined in (4.1) coincides with the value function in (2.17) and that the stopping time τ ∗i in
(2.21) is optimal with the boundary a∗i (s) specified above. For this purpose, let ai(s) be any
solution of the ordinary differential equation in (3.18) satisfying the inequality ai(s) < ai(s)∧s ,
for all si < s < si and every i = 1, 2, 3. Here, a1(s) ≡ a1 = rL1/δ

′ , a2(s) = rs/(δ′L2), and
a3(s) = s , with some 0 ≤ s1 ≤ a1 ∧ s∗1 , s1 = ∞ as well as s2 = 0, s2 = ∞ and s3 = L3 ∧ s∗3 ,
s3 = s∗3 , where s∗1 and s∗3 are specified in part (b) of the proof of Theorem 2.1 above, under
certain relations between the parameters of the model. Let us also denote by V ai

i (x, s) the
right-hand side of the expression in (4.1) associated with ai(s), for every i = 1, 2, 3. Then, it
is shown by means of straightforward calculations from the previous section that the function
V ai
i (x, s) solves the system of (2.36) with the left-hand sides of (2.41)-(2.42) and (2.43) as

well as satisfies the left-hand conditions of (2.38)-(2.40). Recall that the function V ai
i (x, s) is

C2,1 on the closure Ci,1 of Ci,1 and is equal to zero on Di,1 , which are defined as C
∗
i,1 , C∗i,1

and D∗i,1 in (2.32) and (2.33) with ai(s) instead of a∗i (s), for i = 1, 2, 3, respectively. Hence,
taking into account the assumption that the boundary ai(s) is continuously differentiable, for
all si < s < si , by applying the change-of-variable formula from [41; Theorem 3.1] to the
process e−rtV ai

i (Xt, St) (see also [44; Chapter II, Section 3.5] for a summary of the related
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results and further references), we obtain the expression:

e−rt V ai
i (Xt, St) = V ai

i (x, s) (4.3)

+

∫ t

0

e−ru (LV ai
i − rV

ai
i )(Xu, Su) I(Xu 6= ai(Su), Xu 6= Su) du

+

∫ t

0

e−ru ∂sV
ai
i (Xu, Su) I(Xu = Su) dSu +M i

t

for all t ≥ 0, for every i = 1, 2, 3. Here, the process M i = (M i
t )t≥0 defined by:

M i
t =

∫ t

0

e−ru ∂xV
ai
i (Xu, Su) I(Xu 6= Su)σXu dBu (4.4)

is a continuous local martingale with respect to the probability measure Px,s . Note that, since
the time spent by the process (X,S) at the boundary surface ∂Ci,1 = {(x, s) ∈ E1 |x = ai(s)} ,
for every i = 1, 2, 3, as well as at the diagonal d1 = {(x, s) ∈ E1 |x = s} is of the Lebesgue
measure zero (see, e.g. [13; Chapter II, Section 1]), the indicators in the second line of the
formula in (4.3) as well as in the expression of (4.4) can be ignored. Moreover, since the
component S decreases only when the process (X,S) is located on the diagonal d1 = {(x, s) ∈
E1 |x = s} , the indicator in the third line of (4.3) can also be set equal to one. Observe that
the integral in the third line of (4.3) will actually be compensated accordingly, due to the fact
that the candidate value function V ai

i (x, s) satisfies the modified normal-reflection condition of
the left-hand part of (2.40) at the subset of the diagonal {(x, s) ∈ E1 |x = s < si} , for every
i = 1, 2, 3.

It follows from straightforward calculations and the arguments of the previous section that
the function V ai

i (x, s) satisfies the second-order ordinary differential equation in (2.36), which
together with the left-hand conditions of (2.38)-(2.39) and (2.41) as well as the fact that the
inequality in (2.43) holds imply that the inequality (LV ai

i −rV
ai
i )(x, s) ≤ −Hi,1(x, s) is satisfied

with Hi,1(x, s) given by (2.12), for all 0 < x < s such that x 6= ai(s) and si < s < si , for every
i = 1, 2, 3. Moreover, we observe directly from the expressions in (3.10) as well as (3.14) and
(3.15) with (3.11) that the function V ai

i (x, s) is convex and increases from zero, because its first-
order partial derivative ∂xV

ai
i (x, s) is positive and increases from zero, while its second-order

partial derivative ∂xxV
ai
i (x, s) is positive, on the interval ai(s) < x ≤ s , under α < 0, for each

si < s < si and every i = 1, 2, 3 fixed. Thus, we may conclude that the left-hand inequality
in (2.42) holds, which together with the left-hand conditions of (2.38)-(2.39) and (2.41) imply
that the inequality V ai

i (x, s) ≥ 0 is satisfied, for all 0 < x ≤ s such that si < s < si , and every
i = 1, 2, 3. Let (κi,n)n∈N be the localising sequence of stopping times for the process M i from
(4.4) such that κi,n = inf{t ≥ 0 | |M i

t | ≥ n} , for each n ∈ N and every i = 1, 2, 3. It therefore
follows from the expression in (4.3) that the inequalities:∫ τ∧κi,n

0

e−ruHi,1(Xu, Su) du+

∫ τ∧κi,n

0

e−ru
Fi,1(Su)

Su
dSu (4.5)

≤ e−r(τ∧κi,n) V ai
i (Xτ∧κi,n

, Sτ∧κi,n
)

+

∫ τ∧κi,n

0

e−ruHi,1(Xu, Su) du+

∫ τ∧κi,n

0

e−ru
Fi,1(Su)

Su
dSu

≤ V ai
i (x, s) +M i

τ∧κi,n
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hold with any stopping time τ of the process X and for each n ∈ N fixed. Then, taking the
expectation with respect to Px,s in (4.5), by means of Doob’s optional sampling theorem, we
get:

Ex,s

[ ∫ τ∧κi,n

0

e−ruHi,1(Xu, Su) du+

∫ τ∧κi,n

0

e−ru
Fi,1(Su)

Su
dSu

]
(4.6)

≤ Ex,s

[
e−r(τ∧κi,n) V ai

i (Xτ∧κi,n
, Sτ∧κi,n

)

+

∫ τ∧κi,n

0

e−ruHi,1(Xu, Su) du+

∫ τ∧κi,n

0

e−ru
Fi,1(Su)

Su
dSu

]
≤ V ai

i (x, s) + Ex,s
[
M i

τ∧κi,n

]
= V ai

i (x, s)

for all 0 < x ≤ s such that si < s < si , for each n ∈ N and every i = 1, 2, 3. Hence, letting
n go to infinity and using Fatou’s lemma, we obtain from the expressions in (4.6) that the
inequalities:

Ex,s

[ ∫ τ

0

e−ruHi,1(Xu, Su) du+

∫ τ

0

e−ru
Fi,1(Su)

Su
dSu

]
(4.7)

≤ Ex,s

[
e−rτ V ai

i (Xτ , Sτ ) +

∫ τ

0

e−ruHi,1(Xu, Su) du+

∫ τ

0

e−ru
Fi,1(Su)

Su
dSu

]
≤ V ai

i (x, s)

are satisfied with any stopping time τ , for all 0 < x ≤ s such that si < s < si , for each
n ∈ N and every i = 1, 2, 3. Thus, taking the supremum over all stopping times τ and then
the infimum over all boundaries ai in the expressions of (4.7), we may therefore conclude that
the inequalities:

sup
τ
Ex,s

[ ∫ τ

0

e−ruHi,1(Xu, Su) du+

∫ τ

0

e−ru
Fi,1(Su)

Su
dSu

]
(4.8)

≤ inf
ai
V ai
i (x, s) = V

a∗i
i (x, s)

hold, for all 0 < x ≤ s such that si < s < si , where a∗i (s) is the maximal solution of the
ordinary differential equation in (3.19) as well as satisfying the inequality a∗i (s) < ai(s) ∧ s ,
for all si < s < si and every i = 1, 2, 3. By using the fact that the function V ai

i (x, s) is
(strictly) increasing in the value ai(s), for each si < s < si fixed, we see that the infimum in
(4.8) is attained over any sequence of solutions (ai,m(s))m∈N to (3.18) satisfying the inequality
ai,m(s) < ai(s) ∧ s , for all si < s < si , for each m ∈ N and every i = 1, 2, 3, and such that
ai,m(s) ↑ a∗i (s) as m→∞ , for each si < s < si fixed, and every i = 1, 2, 3. It follows from the
(local) uniqueness of the solutions to the first-order (nonlinear) ordinary differential equations
in (3.18) that no distinct solutions intersect, so that the sequence (ai,m(s))m∈N is increasing
and the limit a∗i (s) = limm→∞ ai,m(s) exists, for each si < s < si fixed and every i = 1, 2, 3.
Since the inequalities in (4.7) hold for a∗i (s) too, we see that the expression in (4.8) holds,
for a∗i (s) and all 0 < x ≤ s such that si < s < si , for every i = 1, 2, 3, as well. We also
note from the inequality in (4.6) that the function V ai

i (x, s) is superharmonic for the Markov
process (X,S) on the state space E1 . Hence, taking into account the facts that V ai

i (x, s) is
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increasing in ai(s) < ai(s) ∧ s and the inequality V ai
i (x, s) ≥ 0 holds, for all 0 < x ≤ s such

that si < s < si , we observe that the selection of the maximal solution a∗i (s) which stays
strictly below the part of the diagonal {(x, s) ∈ E1 |x = s < si} and the curve x = ai(s), for
every i = 1, 2, 3, is equivalent to the implementation of the superharmonic characterisation of
the value function as the smallest superharmonic function dominating the payoff function (cf.
[40] or [44; Chapter I and Chapter V, Section 17]).

In order to prove the fact that the boundary a∗i (s) is optimal, we consider the sequence of
stopping times τi,m , m ∈ N , defined as in the left-hand part of (2.21) with ai,m(s) instead of
a∗i (s), where ai,m(s) is a solution to the first-order ordinary differential equation in (3.18) and
such that ai,m(s) ↑ a∗i (s) as m→∞ , for each si < s < si and every i = 1, 2, 3 fixed. Then, by
virtue of the fact that the function V

ai,m
i (x, s) from the right-hand side of the expression in (4.1)

associated with the boundary ai,m(s) satisfies the conditions of (2.36) and the left-hand part
of (2.38), and taking into account the structure of τ ∗i in (2.21), it follows from the expression
which is equivalent to the one in (4.3) that the equalities:∫ τi,m∧κi,n

0

e−ruHi,1(Xu, Su) du+

∫ τi,m∧κi,n

0

e−ru
Fi,1(Su)

Su
dSu (4.9)

= e−r(τi,m∧κi,n) V
ai,m
i (Xτi,m∧κi,n

, Sτi,m∧κi,n
)

+

∫ τi,m∧κi,n

0

e−ruHi,1(Xu, Su) du+

∫ τi,m∧κi,n

0

e−ru
Fi,1(Su)

Su
dSu

= V
ai,m
i (x, s) +M i

τi,m∧κi,n

hold, for all 0 < x ≤ s such that si < s < si , for each n,m ∈ N and every i = 1, 2, 3. Observe
that, by virtue of the arguments from [49; Chapter VIII, Section 2a], the property:

Ex,s

[
sup
t≥0

(∫ τ∗i ∧t

0

e−ruHi,1(Xu, Su) du+

∫ τ∗i ∧t

0

e−ru
Fi,1(Su)

Su
dSu

)]
<∞ (4.10)

holds, for all 0 < x ≤ s such that si < s < si and every i = 1, 2, 3, under α < 0. Hence, letting
m and n go to infinity and using the condition of (2.38) as well as the property τi,m ↓ τ ∗i (Px,s -
a.s.) as m→∞ , we can apply the Lebesgue dominated convergence theorem to the appropriate
(diagonal) subsequence in the expression of (4.9) to obtain the equality:

Ex,s

[ ∫ τ∗i

0

e−ruHi,1(Xu, Su) du+

∫ τ∗i

0

e−ru
Fi,1(Su)

Su
dSu

]
= V

a∗i
i (x, s) (4.11)

for all 0 < x ≤ s such that si < s < si and every i = 1, 2, 3, which together with the
inequalities in (4.8) directly implies the desired assertion. We finally recall that the results of
parts (c) and (d) of the proof of Theorem 2.1 above, which are obtained by standard comparison
arguments applied to the value functions of the appropriate optimal stopping problems, show
that the inequality a∗i (s) > ai(s), for all si < s < si and every i = 1, 2, 3, should hold for the
optimal exercise boundary, that completes the verification. �
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