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Abstract: Given a hypergraph H, the size-Ramsey number r̂2(H) is the smallest integer m
such that there exists a hypergraph G with m edges with the property that in any colouring
of the edges of G with two colours there is a monochromatic copy of H. We prove that
the size-Ramsey number of the 3-uniform tight path on n vertices P(3)

n is linear in n, i.e.,
r̂2(P

(3)
n ) = O(n). This answers a question by Dudek, La Fleur, Mubayi, and Rödl for 3-

uniform hypergraphs [On the size-Ramsey number of hypergraphs, J. Graph Theory 86
(2016), 417–434], who proved r̂2(P

(3)
n ) = O(n3/2 log3/2 n).
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1 Introduction

For hypergraphs G and H and an integer s, we denote by G→ (H)s the property that in any s-colouring
of the edges of G there is a monochromatic copy of H. The s-colour size-Ramsey number r̂s(H) is

r̂s(H) := min{|E(G)| : G→ (H)s}.
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For the n-vertex path Pn, Erdős [11] asked if r̂2(Pn) = O(n), which was answered positively by
Beck [3] using the probabilistic method. An explicit construction for the same results was given
by Alon and Chung [1]. Many successive improvements led to the currently best known bounds
3.75n−o(n)≤ r̂2(Pn)≤ 74n (see, e.g., [3, 6, 10, 2] for lower bounds, and [3, 9, 14, 10] for upper bounds).
For s≥ 2 colours, Dudek and Prałat [10] and Krivelevich [13] proved that there are constants c and C
such that cs2n≤ r̂s(Pn)≤Cs2(logs)n.

The systematic investigation of size-Ramsey questions for hypergraphs was initiated by Dudek, La
Fleur, Mubayi, and Rödl [8]. Besides cliques and trees, they studied generalisations of paths.

We say that an r-uniform hypergraph is an `-path if there exists an ordering of its vertices such that
every edge is composed of r consecutive vertices, two (vertex-wise) consecutive edges share exactly `

vertices, and every vertex is contained in an edge. For 1≤ `≤ r−1, let P(r)
n,` denote the r-uniform `-path

on n vertices and for the tight path, where `= r−1, we write P(r)
n . Dudek, La Fleur, Mubayi, and Rödl [8]

deduced from Beck’s result [3] that r̂2(P
(r)
n,` ) = O(n), when 1≤ `≤ r/2. Furthermore, they proved that

r̂2(P
(r)
n ) = Or(nr−1−α log1+α n) with α = (r−2)/(

(r−1
2

)
+1), which gives r̂2(P

(3)
n ) = O(n3/2 log3/2 n).

This was improved and extended to more colours by Lu and Wang [15], who showed that r̂s(P
(r)
n ) =

Or(sr(n logn)r/2) for s≥ 2 colours. Dudek, La Fleur, Mubayi, and Rödl [8] asked if r̂2(P
(r)
n ) = Or(n) for

r ≥ 3. We answer this question for 3-uniform hypergraphs by proving the following result.

Theorem 1. The 2-colour size-Ramsey number of the 3-uniform tight path is

r̂2(P
(3)
n ) = O(n).

Trivially, we need at least n edges, so this is asymptotically optimal. As observed in [8], bounds on
size-Ramsey numbers for some uniformity can be used to obtain bounds for larger uniformities. We
obtain the following corollary.

Corollary 2. For any integer r such that 3 | r, the 2-colour size-Ramsey number of the r-uniform
(2r/3)-path is

r̂2(P
(r)
n,2r/3) = O(n).

To see this, take the graph given by Theorem 1 and replace every vertex by a set of r/3 vertices. Then
each 3-edge naturally gives an r-edge, and every 3-uniform tight path becomes an r-uniform (2r/3)-path.

Our proof combines new ideas and the method developed by Clemens, Jenssen, Kohayakawa,
Morrison, Mota, Reding, and Roberts [7] for estimating the size-Ramsey number of powers of paths (see
also [5, 12]). It is plausible that ideas from [12, 5] may provide a strategy to solve the case with s≥ 3
colours. However, the question whether the size-Ramsey number of a tight path is linear for hypergraphs
with uniformity r ≥ 4 remains open and requires additional ideas.

2 Preliminaries

In this short section, we give a sketch of our proof of Theorem 1 and state two simple lemmas about
random graphs.
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2.1 Sketch of the proof of Theorem 1

We will first sketch a proof for r̂2(Pn) = O(n). It is not hard (cf. Lemmas 3 and 4 below) to obtain a graph
G with O(n) edges such that for any two sufficiently large and disjoint sets of vertices A and B there is a
path of length n alternating between A and B. Given such a graph G, we show that G→ (Pn)2. Consider
an arbitrary 2-colouring of the edges of G with colours blue and red. If there is no blue Pn in G we can
show (cf. Lemma 6 below) that there are two sets A and B of size at least n with no blue edges in between.
By the property of G mentioned above there exists a Pn alternating between A and B, which unequivocally
has to be red.

For the proof of Theorem 1 we follow, in principle, the same strategy. Based on a blow-up of a power
of a similar graph G, we define a 3-uniform hypergraph H and claim that H → (P(3)

n )2. We define an
auxiliary (generalised) graph F on V (G), which has 2- and 3-edges, such that a long path in F gives
a blue P(3)

n in H. If F does not contain a long path, then we find a family of disjoint sets such that no
edge of F lies between these sets (cf. Lemma 6). Then by the properties of G there exists a path in G
alternating through these sets. As there are no edges of F ‘interfering’ with this path, we are able to turn
it into a red P(3)

n in H.
In the next section we provide the lemmas needed to obtain G. Afterwards, in Section 3 we introduce

the notion of (2,3)-graphs, which, as can be seen above, plays a key role in our argument. Finally, we
prove Theorem 1 in Section 4.

2.2 Sparse graphs with many long paths

The following two lemmas are proved in [7]. Basically, together they imply that for every k and n there
exists a graph G with Ok(n) edges such that, for any disjoint sets of vertices A1, . . . ,Ak+1 that are large
enough, there exists a path of length n ‘alternating’ through these sets.

Lemma 3 ([7, Lemma 3.1]). For every pair of positive constants ε and a, there is a constant b such that,
for any large enough n, there is a graph H with v(H) = an and ∆(H)≤ b such that the following holds:

(P1n) For every pair of disjoint sets S,T ⊆V (H) with |S|, |T | ≥ εn, we get eH(S,T )> 0.

Lemma 4 ([7, Lemma 3.5]). For every integer k ≥ 1 and every ε > 0 there exists an integer a such that
the following holds. Let H be a graph on at least am vertices such that for every pair of disjoint sets S,
T ⊆V (H) with |S|, |T | ≥ εm we have eH(S,T )> 0. Then the following holds:

(P2m) For every family A1, . . . ,Ak+1 ⊆V (H) of pairwise disjoint sets each of size at least εam, there is a
path Pm = (x1, . . . ,xm) in H with xi ∈ A j for all 1≤ i≤ m, where j ≡ i (mod k+1).

Note that the hypothesis on H in Lemma 4 is (P1m) from Lemma 3. Therefore, roughly speaking,
Lemma 4 tells us that (P1m) implies (P2m).

3 (2,3)-graphs

In this section we introduce a structure that helps us to transfer some ideas from the graph case to the
hypergraphs setting. A (2,3)-graph F = (V,E) consists of a set of vertices V and a set E of 2-edges of
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the form {u,v} and 3-edges of the form ({u,v},w), for distinct vertices u,v,w ∈V . For simplicity we will
write uv for {u,v} and uv(w) for ({u,v},w). A sequence of vertices P = (x1, . . . ,xm) is a (2,3)-path of
length m in F if for every i= 1, . . . ,m−1 either xixi+1 ∈E or xixi+1(wi)∈E for some wi ∈V \{x1, . . . ,xm},
with all the wi distinct.

Given pairwise disjoint sets V1, . . . ,Vk+1, we say that an edge uv ∈ E(F) (uv(w) ∈ E(F)) is a transver-
sal with respect to V1, . . . ,Vk+1, if u and v (u, v, and w) are in different sets Vi. When the sets V1, . . . ,Vk+1
are clear from the context we say that the edge is a transversal.

We want to prove that if a sufficiently large (2,3)-graph F = (V,E) contains no (2,3)-path with
n vertices, then there exist large disjoint sets V1, . . . ,Vk ⊆ V such that E contains no transversals and
that there is no edge uv(w) with u ∈V1∪ ·· ·∪Vk−1 and v,w ∈Vk. The last property is only required to
support our inductive proof. To prove this we use a Depth First Search (DFS) algorithm. For example,
Ben-Eliezer, Krivelevich, and Sudakov [4] used a DFS algorithm to find long paths in expanding graphs
to obtain bounds on the size-Ramsey number of directed paths. Their algorithm traverses the vertices
of the input graph and maintains a set S of vertices that are fully dealt with, a set U of currently active
vertices, and a set J of vertices that were not considered so far. The set U always spans a path and in
every step, if at all possible, this path is extended by adding a vertex from J. Otherwise, the last vertex of
the path is removed and added to S. It is immediate that there cannot be any edges between S and J and if
U stays small, then at some point during the execution both S and J are large.

We adapt this algorithm to the setting of (2,3)-graphs (see Algorithm 1 below). As in the graph case
we greedily extend a (2,3)-path (preferring 2-edges over 3-edges) and backtrack if it gets stuck. We will
now give the details of our algorithm. The input is a (2,3)-graph F = (V,E), disjoint subsets of vertices
V1, . . . ,Vk, and an ordering of the vertices V = {v1, . . . ,vN}. During the algorithm we maintain sets S, T ,
WS, WU , Ti for i ∈ [k] and a (2,3)-path U as follows:

• S⊆V ′ is the set of vertices that are fully dealt with.

• WS ⊆V is the set of vertices w that were ‘used’ by vertices from S.

• U contains the currently active vertices in a (2,3)-path.

• WU ⊆V is the set of vertices w that are ‘used’ by the path U .

• T1∪·· ·∪Tk are disjoint and Ti ⊂Vi for i ∈ [k].

In every step of the algorithm, either the (2,3)-path U is extended by adding a vertex from Tk to it or this
is not possible, and the last vertex from U is removed and put into S. While the algorithm runs, after each
execution of the while loop, we have the following invariants, where m is the length of the (2,3)-path U :

(A1) U =(u1, . . . ,um) is a (2,3)-path and WU is the set of the vertices w in the edges uiui+1(w) (1≤ i<m)
in the (2,3)-path U .

(A2) S, U ⊆Vk, WU ⊆ T1∪·· ·∪Tk−1, Ti ⊆Vi for i ∈ [k], |WS| ≤ |S|, and |WU | ≤max{0,m−1}.

This process is described in Algorithm 1.

Lemma 5. Algorithm 1 terminates and Properties (A1) and (A2) hold throughout.
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Algorithm 1: DFS algorithm for traversing a (2,3)-graph.
Input :A (2,3)-graph F = (V,E), disjoint subsets of vertices V1, . . . ,Vk, and an ordering of the

vertices V = {v1, . . . ,vN}.
1 Define m← 0, S← /0, WS← /0, WU ← /0, Ti←Vi for 1≤ i≤ k;
2 while Tk 6= /0 do
3 if m = 0 then
4 Let v be the vertex with smallest index from Tk;
5 u1← v, m← 1, Tk← Tk \{v};
6 else
7 Let Text←{v ∈ Tk : umv ∈ E or umv(w) ∈ E with w ∈ T1∪·· ·∪Tk};
8 if Text 6= /0 then
9 Let v be the vertex with the smallest index from Text;

10 um+1← v, Tk← Tk \{v};
11 if umum+1 6∈ E then
12 Let w ∈ T1∪·· ·∪Tk be the vertex of smallest index such that umum+1(w) ∈ E;

// There is one because um+1 ∈ Text.
13 WU ←WU ∪{w} and Ti← Ti \{w}, where w ∈ Ti;

14 m← m+1;
15 else
16 S← S∪{um};
17 if m > 1 then
18 if um−1um 6∈ E then
19 Let um−1um(w) ∈ E with w ∈WU be the edge used by the (2,3)-path;

// This is well defined by (A1).
20 WS←WS∪{w} and WU ←WU \{w} ;

21 m← m−1;
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Proof of Lemma 5. Observe that (A1) and (A2) hold when we initialise the sets and put m = 0 on line 1.
Assume that we are in some step of the algorithm, where (A1) and (A2) hold and we have vertices
U = (u1, . . . ,um) forming a (2,3)-path (this is true because of (A1)).

Now we consider the next execution of the while loop. We know from (A1) that WU contains exactly
the vertices used in the edges uiui+1(w) for i = 1, . . . ,m−1. Either we extend the path by an edge umv
or umv(w) (lines 7 and 10) where w is added to WU if needed (line 13), or we remove an edge um−1um

or um−1um(w) (lines 16 and 20) where w is removed from WU if needed (line 20). Therefore, (A1) still
holds.

For (A2) it is easy to see that Ti⊆Vi for i∈ [k], as in the beginning of the execution we have Ti =Vi and
no vertex is added to Ti. Also, since every w in WU comes from T1∪·· ·∪Tk, we have WU ⊆ T1∪·· ·∪Tk−1
(see lines 7 and 20). Since every vertex of S comes from U (line 16) and every vertex of U comes from
Tk ⊂Vk (lines 5, 7 and 10), which implies that S, U ⊂Vk. To prove that |WS| ≤ |S|, it is enough to observe
that line 20 can only be executed after an execution of line 16. Similarly, we have |WU | ≤ m−1 with
m ≥ 2, because line 13 can only be executed after an execution of line 10, and |WU | = 0 with m = 1,
because on line 5 nothing is added to WU . Thus, (A2) also remains true.

It remains to show that the algorithm terminates. In every execution of the while loop, either one
vertex from Tk ⊆Vk is added to the path U (lines 5 and 10) or moved from U to S (line 16). Therefore,
after at most 2|Vk| steps we have T = /0, and the algorithm terminates.

We are ready to prove the aforementioned result on (2,3)-graphs F with no long (2,3)-paths.

Lemma 6. Let k, c and n be positive integers and let F = (V,E) be a (2,3)-graph on at least 5k−1cn
vertices. If F contains no (2,3)-path with n vertices, then there exist disjoint sets V1, . . . ,Vk ⊆V of size at
least cn such that no edge from E is a transversal and there is no edge uv(w) with u ∈V1∪·· ·∪Vk−1 and
v,w ∈Vk.

Proof. We prove the result by induction on k. For k = 1 the result follows by putting V1 =V (F). Thus
let k ≥ 1 and assume the statement holds for k.

To prove the result for k+ 1, let F be a (2,3)-graph on 5kcn vertices which does not have a path
of length n. In particular, F does not have a path of length 5n, and by the assumption on k, there exist
disjoint sets V1, · · · ,Vk, each of size 5cn, such that no edge is a transversal, and there is no edge uv(w)
with u ∈V1∪·· ·∪Vk−1 and v,w ∈Vk. We run Algorithm 1 with input F , k and V1, . . . ,Vk.

First, we prove that at any point in the execution of the algorithm, no edge is a transversal with respect
to T1∪·· ·∪Tk,S. Suppose for a contradiction that at some point there is an edge which is a transversal.
Note that Tk ⊆ Vk and S ⊆ Vk. If uv is this edge, then by the induction hypothesis and without loss of
generality we have u ∈ S and v ∈ Tk. This implies that when u was moved from U to S (line 16), the
set U could have been extended, which means that Text 6= /0 and line 16 would not have been executed,
a contradiction. Now, assume uv(w) is the transversal. Since Ti ⊆ Vi for i ∈ [k] and S ⊆ Vk, we have
w ∈ T1∪·· ·∪Tk−1. Again, by the induction hypothesis and without loss of generality we have u ∈ S and
v ∈ Tk. Similarly as when we have an edge uv, at the time u was moved from U to S, the set U could have
been extended, a contradiction.

Now we prove that at any point in the execution of the algorithm, there is no edge uv(w) with
u ∈ T1, . . . ,Tk−1,S and v,w ∈ Tk. Suppose for a contradiction that at some point there is such edge uv(w).
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By the induction hypothesis we have u ∈ S and v,w ∈ Tk, which again gives a contradiction as U could
have been extended.

Note that since F has at least 5k−1cn vertices and no (2,3)-path with n vertices, we have |S| = cn
at some point of the execution of Algorithm 1. Let U , WU , S, WS and T1, . . . ,Tk be the sets at that
moment. Note that |WS| ≤ |S|= cn and, since there is no n-vertex (2,3)-path in F , we have |U |, |WU | ≤ n.
Therefore, |Ti| ≥ |Vi|− 2cn ≥ cn for i ∈ [k− 1] and |Tk| ≥ |Vk|− 4cn ≥ cn. Put V ′i = Ti for i ∈ [k− 1],
V ′k = S and V ′k+1 = Tk. The sets V ′1, . . . ,V

′
k+1 satisfies the requirements of the lemma.

4 Proof of Theorem 1

In this section we prove our main theorem. We first define the following constants:

` := 17, k := 2`, ε := 1/(k+1), t := 8k+40k2 +5, and t ′ := r2(K
(3)
t ),

where rs(K
(3)
t ) := min{n : K(3)

n → (K(3)
t )s} is the classical Ramsey-number for hypergraphs. We start by

obtaining a graph G with bounded maximum degree and some nice pseudorandom properties. Let aL.4 be
large enough to apply Lemma 4 with k and ε and set

c := εaL.4`.

Let aL.6 = 5k and note that aL.6 is large enough to apply Lemma 6 with k+1, c and n and set

a := 2aL.6.

Lemma 3 applied with ε and a provides a constant b. Let n be sufficiently large. Then, from Lemma 3
we know that there is a graph G on an vertices with maximum degree b such that (P1n) holds. Fix such a
graph G.

Now let Gk(t ′) be the graph obtained from Gk – the k-th power of G – by replacing every vertex by
a Kt ′ and every edge by a Kt ′,t ′ . Finally, H is the 3-uniform hypergraph with vertex set V (Gk(t ′)) and a
triple of vertices xyz is an edge in H if and only if xyz forms a triangle in Gk(t ′). For every v ∈V (G) we
denote by H(v) the corresponding cluster consisting of a K(3)

t ′ in H. We claim that H→ (P(3)
n )2. Since

|V (H)|= at ′n and ∆(H)≤ b2k+2t ′3, this would prove Theorem 1.
The rest of the proof is devoted to proving that H→ (P(3)

n )2. Fix a 2-colouring of the triples of H. As
t ′ ≥ r2(K

(3)
t ) for every v ∈V (G) the cluster H(v) either contains a red or blue copy of K(3)

t . W.l.o.g. there
is a set of vertices V ⊆V (G) with |V | ≥ an/2 = aL.6n such that for all v ∈V the cluster H(v) contains
a blue copy of K(3)

t , which we denote by H ′(v). We let H ′ ⊆ H be the 3-graph induced by the clusters
H ′(v) for v ∈V .

We will define an auxiliary (2,3)-graph F on the vertex set V , whose edges will indicate that we can
walk between the clusters using blue triples of H ′. Formally, for u,v ∈V a (2,2)-connector between the
clusters H ′(u) and H ′(v) consists of four vertices x1,x2 ∈ H ′(u) and y1,y2 ∈ H ′(v) such that x1x2y1 and
y1y2x1 are triples of H. Similarly, for u,v,w∈V a (2,1,2)-connector between the clusters H ′(u) and H ′(v)
through H ′(w) consists of five vertices x1,x2 ∈H ′(u), z∈H ′(w), and y1,y2 ∈H ′(v) such that x1x2z, x1zy1,
and zy1y2 are triples of H; see Figure 1. We then define a (6,6)-connector ((6,3,6)-connector) between

ADVANCES IN COMBINATORICS, 2021:5, 12pp. 7

http://dx.doi.org/10.19086/aic


J. HAN, Y. KOHAYAKAWA, S. LETZTER, G. O. MOTA AND O. PARCZYK

x1

x2

y1

y2

H ′(u) H ′(v)
x1

x2

y1

y2

z

H ′(u) H ′(v)

H ′(w)

Figure 1: A (2,2)-connector and a (2,1,2)-connector.

H ′(u) and H ′(v) (through H ′(w)) as the disjoint union of three (2,2)-connectors ((2,1,2)-connectors)
between H ′(u) and H ′(v) (through H ′(w)).

Let F be a (2,3)-graph on the vertex set V with the following two types of edges:

(i ) uv ∈ E(F) if and only if there is a (6,6)-connector in blue between the corresponding clusters
H ′(u) and H ′(v);

(ii ) uv(w) ∈ E(F) if and only if there is a (6,3,6)-connector in blue between the corresponding
clusters H ′(u) and H ′(v) through H ′(w).

Suppose that F contains a (2,3)-path on n vertices v1, . . . ,vn with the wi vertices all distinct for the
3-edges. We can turn this (2,3)-path into a blue tight path P(3)

n in H as follows. First, by following the
(2,3)-path for i = 1, . . . ,n−1, we choose a (2,2)-connector between H ′(vi) and H ′(vi+1) if vivi+1 ∈ E(F)
or a (2,1,2)-connector between H ′(vi) and H ′(vi+1) through H ′(wi) if vivi+1(wi) ∈ E(F) in such a way
that they are all pairwise vertex-disjoint. This is possible, because we have (6,6)-connectors and (6,3,6)-
connectors available and two vertices y1 and y2 from the previous connector can occupy at most two out
of the three disjoint copies of connectors that are provided. Then, for each of the clusters with y1, y2 and
x1, x2 the vertices of the connectors within that cluster, we use the edges y1y2x2 and y2x2x1 to connect
both connectors. As the connectors only use blue edges and all edges within the clusters are blue this is a
tight path only using blue edges. Thus, in this case, we are able to obtain a blue P(3)

n in H and we are
done.

We assume that F contains no (2,3)-path on n vertices. From Lemma 6, there exist pairwise disjoint
sets V1, . . . ,Vk+1 ⊆V of size at least cn such that no edge from E(F) is a transversal. We may assume
that all these sets Vj have size exactly cn. Let G′ = G[V1∪·· ·∪Vk+1] and set m := `n.

We now want to find a path Pm alternating through V1, . . . ,Vk+1 with edges in G′ ⊆ G using Lemma 4.
Since c = εaL.4` and ε = 1/(k + 1), we have |V (G′)| = (k + 1)cn = aL.4`n = aL.4m. Also, we have
|Vi|= cn = εaL.4m for 1≤ i≤ k+1. As G′ is an induced subgraph of G and property (P1n) holds in G,
property (P1m) does hold for G′. Therefore, by Lemma 4, we conclude that there is a path Pm = P̀ n with
vertices alternating through V1, . . . ,Vk+1 and with edges in G′ ⊆ G.
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This path P̀ n gives us the kth power Pk
`n in Gk. By the choice of V1, . . . ,Vk+1 no edge of Pk

`n is from
E(F) and also no triangle in Pk

`n induces an edge uv(w) ∈ E(F). It remains to turn this Pk
`n into a red P(3)

n

in H ′.

Claim 7. If there is a Pk
`n in Gk that does not contain any edges from F, then there is a red P(3)

n in H ′.

Let Pk
`n = (v1, . . . ,v`n) and recall H ′(vi) is the cluster in H ′ corresponding to the vertex vi for i =

1, . . . , `n. We want to remove all vertices of H ′ which belong to blue (2,2)-connectors and (2,1,2)-
connectors from clusters along edges and triangles of Pk

`n. In Pk
`n every vertex vi is incident to at most 2k

other vertices in {v1, . . . ,v`n} (2k is the maximum degree of the vi in Pk
`n). Also, every vi is contained in

at most 4k2 triangles of Pk
`n together with two other vertices in {v1, . . . ,v`n}.

Let u and v be neighbours in Pk
`n. Since there is no blue (6,6)-connector between H ′(u) and H ′(v),

there are at most two (2,2)-connectors that do not overlap between H ′(u) and H ′(v), which can both be
deleted by removing at most 4 vertices in each cluster. Let u, v, and w be vertices that form a triangle
in Pk

`n. Since there is no blue (6,3,6)-connector between H ′(u), H ′(v), and H ′(w), there are at most six
(2,1,2)-connectors that do not overlap, two for each possibility to place the single vertex. These can be
deleted by removing at most 10 vertices from each cluster.

By the above argument, we have to delete at most 4(2k)+10(4k2)≤ t−5 vertices from every cluster
to get rid of all (2,2)-connectors and (2,1,2)-connectors. Let H∗(vi)⊆ H ′(vi) be the remainder of the
corresponding cluster in H ′, and note that |H∗(vi)| ≥ 5 for i = 1, . . . , `n.

A tuple (u,v) is an end-tuple of a tight path with at least 4 vertices if u and v are consecutive vertices
in the path and u is contained in exactly two edges and v is contained in exactly one. The two tuples (u,v)
and (v,w) are the end-tuples of the tight path (u,v,w) of length 3. Furthermore, every tuple (u,v) is an
end-tuple of the tight path (u,v) of length 2.

Definition 8. For i = 1, . . . ,n−1 we say that the quadruple (u1,u2,w1,w2) satisfies property Qi if the
following conditions hold:

1. u1,u2,w1,w2 are distinct vertices from H ′ such that the pairs u1,u2 and w1,w2 are in clusters
Hr,Hs ∈ {H∗(v(i−1)`+1), . . . ,H∗(vi`)}, respectively, where r 6= s;

2. each of (u1,u2) and (w1,w2) is an end-tuple of a red tight path of length at least i+1 with vertices
in H∗(v1)∪·· ·∪H∗(vi`).

To prove Claim 7, i.e., construct P(3)
n in red, it is then sufficient to construct a quadruple satisfying

property Qn−1. We will construct this quadruple inductively. The base case Q1 asks for two paths of
length 2 and, therefore, it is enough to choose any pair u1,u2 from H∗(v1) and w1,w2 from H∗(v2).
Therefore, the following is immediate:

There exists a quadruple (u1,u2,w1,w2) for which Q1 holds. (4.1)

We will inductively find a quadruple (u1,u2,w1,w2) satisfying property Qi for every i = 2, . . . ,n−1.
Ultimately, after n steps, this gives us P(3)

n in red in H ′. Suppose (u1,u2,w1,w2) satisfies property Qi−1
for some 1 < i≤ n−1. In the inductive step, we obtain (x1,x2,y1,y2) satisfying property Qi by extending
one of the paths ending in (u1,u2) or (w1,w2) to get two longer paths ending in (x1,x2) and (y1,y2). This
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mainly relies on the absence of (2,2)-connectors and (2,1,2)-connectors in blue and that there are `
clusters H∗(v(i−1)`+1), . . . ,H∗(vi`) to choose x1,x2,y1,y2 from. As k ≥ 2`, all edges are present between
these clusters and the clusters Hr and Hs containing u1,u2 and w1,w2, respectively.

Fact 9. Let 1 < i≤ n−1 and suppose (u1,u2,w1,w2) satisfies property Qi−1. Then there is a quadruple
(x1,x2,y1,y2) that satisfies property Qi.

Proof. We will find (x1,x2,y1,y2) following the strategy sketched above. Since there are no blue (2,2)-
connectors between the clusters corresponding to u1,u2 and w1,w2, and all possible triples between these
clusters are edges in H ′, then either the triple u1u2w2 or the triple w1w2u2 is red, say, w.l.o.g., u1u2w2
is red. We let the red path of length at least i that ends in (u1,u2) be called Pred and note that the triple
u1u2w2 already extends this path. We will show that it is possible to further extend this path to obtain
two longer red tight paths with ends (x1,x2) and (y1,y2), respectively, such that (x1,x2,y1,y2) satisfies
property Qi.

Notice that, as ` ≥ 17, by the pigeonhole principle there are nine sets X1, . . . ,X9 each contained
in a different cluster from H∗(v(i−1)`+1), . . . ,H∗(vi`) and of size |X j| ≥ 3 for j ∈ [9] (here we use that
|H∗(vi)| ≥ 5) such that either

for all j ∈ [9] and every x ∈ X j the triple u2w2x is red (4.2)

or

for all j ∈ [9] and every x ∈ X j the triple u2w2x is blue. (4.3)

We first consider the case where (4.2) holds. It is enough to assume that we have X1, . . . ,X5 and
|X j| ≥ 2 for j ∈ [5]. If there are two sets X ,Y from X1, . . . ,X5 and x1,x2 ∈ X , y1,y2 ∈ Y such that the
triples w2x1x2 and w2y1y2 are red, then the quadruple (x1,x2,y1,y2) satisfies property Qi as we can obtain
two longer red paths by extending Pred following u1u2w2x1x2 and u1u2w2y1y2, respectively. Otherwise,
there are two sets X ,Y and x1,x2 ∈ X , y1,y2 ∈ Y such that the triples w2x1x2 and w2y1y2 are blue. As
there is no blue (2,1,2)-connector, the triple w2x1y1 is red. There is no blue (2,2)-connector between the
corresponding clusters, so either the triple x1y1y2 or y1x1x2 is red, say w.l.o.g. x1y1y2 is red. This extends
Pred by following u1u2w2x1y1y2 and gives the end-tuple (y1,y2). Repeating the same argument, which is
possible, because there were five sets available (sets X1, . . . ,X5), we get an end-tuple (z1,z2) that extends
Pred to a longer red path and, thus, a quadruple (y1,y2,z1,z2) satisfying Qi.

In the case where (4.3) holds we proceed as follows. As for all j ∈ [9] there is no blue (2,1,2)-
connector between the clusters of u1,u2 and w1,w2 and X j, we have for every x ∈ X j that either the triple
w1w2x or the triple u1u2x is red. Then we can assume by the pigeonhole principle w.l.o.g. (we will not
use the triple u1u2w1) that there are sets X ′j ⊆ X j with |X ′j| ≥ 2 for j ∈ [5] (here we use that |X j| ≥ 3) such
that

for all j ∈ [5] and every x ∈ X ′j the triple w1w2x is red.

Now we can continue exactly as in the case where (4.2) holds, with u1u2 replaced by w1w2 throughout and
extending the path with end-tuple (w1,w2). Observing that the red tight paths that we have constructed
have length at least i+1, we see that Fact 9 is proved.

Fact 9 together with (4.1) finishes the proof of Claim 7 and hence the proof of Theorem 1 is complete.
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