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Abstract

This paper analyzes a bilateral trade model in which the buyer’s valuation for the
object is uncertain and she can privately purchase any signal about her valuation.
The seller makes a take-it-or-leave-it offer to the buyer. The cost of a signal is smooth
and increasing in informativeness. We characterize the set of equilibria when learning
is free, and show they are strongly Pareto ranked. Our main result is that when
learning is costly but the cost of information goes to zero, equilibria converge to the

worst free-learning equilibrium.

1 Introduction

Recent developments in information technology have given consumers access to new in-

formation sources that allow them to learn about products prior to trading. For example,
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online resources enable buyers to learn about a mechanic’s reputation, a contractor’s re-
liability, or an over-the-counter (OTC) asset’s value. This information acquisition often
takes place before the buyers learn the terms of trade. Indeed, to get a price quote,
customers may need to bring their cars to the mechanic, have a contractor over, or waste
their first contact with an OTC dealer.! Because the buyer’s willingness-to-pay depends
on her information about the product, the seller’s price depends on what he expects the
buyer to learn. Conversely, the seller’s pricing strategy determines what information is
worth learning for the buyer. For example, there may be no point in knowing more about
the value of an asset if the buyer is already sure it is below its price. Therefore, the
buyer’s information acquisition depends on the seller’s expected prices. The goal of this
paper is to study this mutual dependency between the buyer’s learning strategy and the
seller’s pricing policy.

We consider a stylized model in which the seller has a single object for sale and full
bargaining power. Initially, the buyer does not know anything about the value of the
object except its prior distribution, which is assumed to be regular.? We model the
buyer’s learning as flexible information acquisition; that is, she can purchase any signal
about her valuation privately. Then, the seller, without observing the buyer’s learning
strategy and her signal realization, sets a price. Signals are costly and we assume this
cost is a smooth and strongly increasing function of the signal’s informativeness. Below,
we explain these assumptions in detail. Our aim is to characterize the set of equilibria
of this game. We are especially interested in the limit where the buyer’s cost vanishes.
This limit appears to be particularly relevant in a world where information is becoming
cheaper and more accessible to consumers. To this end, we parameterize the cost by a
multiplicative constant and consider the limit when this parameter converges to zero.

We now describe the buyer’s action space and the cost of information. The demand of
the buyer, which is the probability of trade occurring at a given price, is fully determined
by the distribution of her posterior value estimate. In turn, the seller’s profit from any
given price is pinned down by the buyer’s demand. As a consequence, trade outcomes
are fully determined by the distribution of the buyer’s posterior estimate. The prior

distribution is a mean-preserving spread of any such distribution because each signal

LA stylized feature of OTC markets is that prices quoted on a second call can be dramatically higher

than the first one; see Bessembinder and Maxwell (2008) or Zhu (2012).
2A distribution is said to be regular if the corresponding virtual valuation is well-defined and strictly

increasing.



contains less information than the valuation itself. Since the buyer can choose any signal,
we identify her action space with the set of these distributions and define the cost of
information acquisition on this set. To require this function to be smooth, we appeal
to a generalized notion of differentiability, because the domain is a set of cumulative
distribution functions (CDFs). In particular, we postulate that the cost function is Fréchet
differentiable.

We now turn to our main assumption on the cost of information. A signal is more
informative than another if its induced distribution over posterior-value estimates is a
mean-preserving spread of that of the other. Thus, a cost function is said to be monotonic
in the signal’s informativeness if mean-preserving spreads cost more. As we argue, a
cost function is monotonic whenever its Fréchet derivative, which is a function itself, is
convex. Our main assumption is somewhat stronger than monotonicity: in addition to
requiring the Fréchet derivative to be convex, we assume this derivative at a given CDF
is strictly convex on the convex hull of the CDF’s support. Imposing this assumption in
addition to monotonicity resembles stipulating that a differentiable increasing function has
a strictly positive derivative. Therefore, one can interpret our assumption as supposing
that acquiring more information has a strictly positive cost at the margin.

Monotonicity of the learning cost implies the seller randomizes in every equilibrium
in which the buyer learns. To see why, suppose an equilibrium exists in which the seller
sets a fixed price and the buyer receives an informative signal about her valuation. Then,
this signal must be binary, indicating whether the buyer should trade or not. The reason
is that any other signal can be made less informative, and hence cheaper, while still
leading to the same trading decisions. The seller’s best response to such a binary signal
is to charge the expected valuation of the buyer conditional on one of the two signal
realizations. To get a contradiction, notice the buyer is strictly better off by not learning,
irrespective of which of these prices is set. If the price is the lower signal realization,
the buyer always trades, so learning yields no benefit. If the price is the higher signal
realization, the buyer’s surplus from trade is zero, so she could again profitably deviate
by saving the cost of learning and not trading.

Our aforementioned strong monotonicity assumption also has important implications
for the buyer’s equilibrium learning strategy. We show the support of the buyer’s equi-
librium signal is an interval and the buyer’s demand generated by this signal makes the
seller indifferent between setting any price on its support. This indifference condition

implies the buyer’s equilibrium CDF is a truncated Pareto distribution, and hence her
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Figure 1: An Illustration of the best and worst equilibria in the uniform case.

equilibrium demand is unit elastic.

As mentioned above, our main objective is to characterize equilibrium outcomes as
the buyer’s cost vanishes. To this end, we first consider the case in which learning is
free. We show this case admits multiple equilibria, all of which can be Pareto ranked.
In the Pareto-best equilibrium, which maximizes both players’ payoffs across all free-
learning equilibria, the buyer learns her valuation perfectly. The equilibrium price in
this equilibrium is smaller than in any other free-learning equilibrium. The Pareto-worst
equilibrium turns out to be the unique equilibrium in which the buyer’s posterior estimate
is distributed according to a truncated Pareto distribution.

Figure 1 illustrates the best and worst free-learning equilibria when the prior is uniform
on [0,1]. In the Pareto-best equilibrium, the buyer learns her valuation perfectly; thus,
the distribution of her value estimate is also uniform and therefore is represented by the
45-degree line. In this case, the seller’s equilibrium price is .5, his profit is .25, and the
buyer’s payoff is .125. The buyer’s CDF in the Pareto-worst equilibrium is depicted as a
gray curve in Figure 1. In this worst equilibrium, the seller’s profit, m, is approximately
.2, the price is p (= .715), and the buyer’s payoff is only slightly above .04. Therefore, the
buyer’s payoff is less than one-third of her payoff in the perfect-learning equilibrium.

At first, it may appear counter-intuitive that there are equilibria in which the buyer
does not learn perfectly although information is free. In the Pareto-worst equilibrium
described above, the seller’s price, p, is defined by the highest intersection of the Pareto

curve and the prior-value distribution. At this point, the mean-preserving spread con-



straint binds; that is, the integral of the Pareto curve and the prior CDF on [0, p] coincide.
We call such a price separating. The important property of a separating price is that the
buyer never confuses a value below such a price with a value above it. That is, a value
below p never generates the same signal realization as a value above p. Hence, the buyer
would not gain anything by learning more, because this Pareto signal already reveals if
her valuation is above or below p, which is the only information she needs to know in
order to trade ex-post efficiently.

Our main result is that as the buyer’s learning cost vanishes, equilibria converge to a
Pareto-worst free-learning equilibrium. For an explanation, recall that when learning is
costly, the buyer’s equilibrium CDF is a truncated Pareto. The limit of truncated Pareto
distributions is also a truncated Pareto, so the same must hold for the costless limit,
which is a free-learning equilibrium. Hence, as costs shrink, we obtain a free-learning
equilibrium in which the buyer’s demand is unit elastic. All that remains is to recall the
fact mentioned above, namely, that the unique such equilibrium yields the Pareto-worst
free-learning equilibrium outcome.

The main takeaway from our paper is that possessing information might be signifi-
cantly better than having cheap access to it. When information is costly, buyers must
have incentives to acquire it. In equilibrium, prices fail to provide these incentives, so
buyers choose to ignore large amounts of information even when costs are minuscule. In
turn, this ignorance triggers prices that are too high relative to those in a full-information
environment, leading to considerable welfare losses.

More broadly, our analysis warns about the danger of approximating environments
with freely available data by models in which learning is costless. The reason is that,
even with easy-to-access information, learning may not be literally free, because decision
makers might still need to incur attention or cognitive-processing costs when presented
with new information. Hence, assuming learning has tiny but positive costs may be more
accurate than assuming learning is free. Our results show that the difference between
these two assumptions is not merely a manner of minutiae: equilibria of the free-learning
model may be significantly better for both contracting parties than the equilibrium of
the costly learning model even if learning costs are minuscule. In fact, since obtaining
full information is a weakly dominant strategy, one might even assume that, under free
learning, traders will coordinate on the Pareto-dominant, full-information equilibrium,
whereas the Pareto-worst equilibrium is selected when costs are vanishingly small. As

such, our work suggests that reasoning about scenarios in which information is cheap



using a free-learning model may result in misleading conclusions.

In terms of applications, our model may offer a different angle for looking at markets
where there is heterogeneity in traders’ information. A large literature documents that the
performance of traders depends on how knowledgeable they are; see, for example, Grubb
(2015) and Handel and Schwartzstein (2018) for extensive surveys. Our theory might
speak to those environments where such a knowledge differential is due to heterogeneity
of the traders’ information acquisition. To be more specific, consider an asset market
that is populated by two kinds of buyers: experienced traders and novices. Experienced
traders may already possess a significant amount of information related to the asset while
novices are yet to learn about it. Our theory then suggests that, even if the relevant
information is easy to obtain, veteran traders can get significantly better terms of trade

than novices.?

This paper contributes to the large and growing literature on information design (e.g.,
Kamenica and Gentzkow (2011), Bergemann and Morris (2013)). In particular, our results
serve as a cautionary tale about interpreting recent papers characterizing consumer and
producer surplus pairs that can arise as an equilibrium outcome for some information
structure.* Of particular relevance is Roesler and Szentes (2017), who consider a setting
similar to ours in which the seller observes the buyer’s signal before setting a price. Their
key result identifies the signal-equilibrium pair that maximizes the buyer’s payoff. The
buyer-optimal signal turns out to be the same Pareto signal as in our worst free-learning
equilibrium. At first glance, their result might seem surprising given that the worst free-
information equilibrium minimizes the buyer’s payoff. However, because the seller in
Roesler and Szentes’s (2017) model sets a price only after observing the buyer’s signal,
he can set any profit-maximizing price, and in the buyer-optimal equilibrium, he chooses
the lowest such price. By contrast, in our model, the seller’s price must also justify the
buyer’s signal choice, forcing the seller to choose a separating point. Thus, our analysis
suggests the same information structure can lead to two drastically different outcomes.
Which outcome is selected depends on the mechanism through which trade occurs.

Costly consumer learning is extensively studied in the context of rational inattention.

This literature was initiated by Sims (1998, 2003, 2006); for more recent contributions,

3Consistent with this implication, O’Hara et al. (2018) report that traders get a better price for the

same bond on the same day if they traded more frequently in the past.
“See for example, Bergemann et al. (2015), Roesler and Szentes (2017), Kartik and Zhong (2019) and

Yang (2019).



see, for example, Matéjka (2015) and Ravid (2019). In these models, information cost is
proportional to the resulting expected reduction in entropy. In contrast to this literature,
we treat the cost of information in an abstract way and do not assume such a particular
form. Still, one can show our results go through even when the buyer’s information costs
are given by expected entropy reduction.’

In the context of auctions, many papers conclude that the buyers’ incentives for acquir-
ing costly information about their valuations depend on the selling mechanism. Persico
(2000) shows buyers acquire more information in a first-price auction than in a second-
price one, provided that their signals are affiliated. Compte and Jehiel (2007) argue
dynamic auctions generate higher revenue than simultaneous ones. Shi (2012) charac-
terizes the revenue-maximizing auction in private-value settings. In all of these models,
the seller commits to a mechanism before the buyers decide how much information to
acquire. By contrast, we consider environments where the monopolist cannot commit
and best responds to the buyer’s signal structure.b

Yang (2020) studies a security-design problem related to our model. In his model,
a seller offers an asset-backed security to a buyer who can then flexibly learn about the
asset’s returns. Unlike in our model, the buyer observes the seller’s offer before deciding
how much to learn. The author shows the optimal security is a debt contract.

Finally, our work also adds to the recent literature on the relationship between free-
learning equilibria and the vanishing-cost limits of equilibria, see, for example, Yang
(2015), Hoshino (2018), Morris and Yang (2019), and Denti (2019). This literature pri-
marily focuses on static flexible-learning models in which all players have access to the
same information. In these models, free information always yields a perfect-learning out-
come, and the vanishing-cost limit can be viewed as an equilibrium-selection device in a
symmetric-information game. By contrast, learning is asymmetric in our model because
the seller cannot acquire information about the buyer’s valuation. Consequently, perfect-
learning corresponds to an asymmetric-information game with a substantially smaller
equilibrium set than our free-learning game. And, indeed, our vanishing-cost limit selects

a free-learning outcome that is simply not an equilibrium under full information.

5We note entropy reduction costs are not Fréchet differentiable. Thus, to show our results hold for
entropy reduction, we generalize our strong monotonicity assumption to non-differentiable costs, see the

Online Appendix.
6 Another strand of the literature analyzes the seller’s incentives to reveal information about the buyers’

valuations prior to participating in an auction; see, for example, Milgrom and Weber (1982), Ganuza
(2004), Bergemann and Pesendorfer (2007), Ganuza and Penalva (2010), and Li and Shi (2017).



2 The Model

A seller, S (he), has an object to sell to a single buyer, B (she). B’s valuation, v, takes
values in [0,1] according to the CDF F;, whose expected value is o = [v dFp(v) > 0.
We assume Fj is regular, meaning it has a strictly positive density, fp, on [0, 1] and
that v — (1 — Fy(v))/ fo(v) is strictly increasing in v. B does not see v but can choose to
observe any signal, s, at a cost that depends on the signal’s informativeness. Below, we
describe the set of signals available to the buyer and the associated cost in detail. Then
S, without observing B’s information-acquisition strategy and signal realization, makes a
take-it-or-leave-it price offer, p € [0,1]. S wants to maximize revenue, whereas B’s utility
from trade when her valuation is v and the price is p is v —p if she accepts, and 0 if she does
not. We assume B purchases the good if and only if her expected valuation conditional
on her signal weakly exceeds p, which is without loss.” Both players are risk-neutral

expected-payoff maximizers.

Signal structures and B’s action space. We allow B to choose any signal, s, to learn
about v. Now, B’s expected payoff from trade at any given price depends only on her
posterior mean, E[v|s]. Therefore, the marginal distribution of E[v|s] determines both
B’s trade surplus and the probability she purchases the good at any given price, which,
in turn, is sufficient for calculating S’s profits and optimal prices. In other words, the
game’s trade outcome depends only on the marginal distribution of B’s posterior mean
valuation, and so we identify each signal with the CDF of this marginal.® More precisely,
taking F to be the space of all CDF's over [0, 1], we let B choose any element of F that
can arise as the marginal CDF of E[v|s] for some s. We denote this set by A and describe
it formally below.

As observed by Gentzkow and Kamenica (2016), F' is the CDF of the marginal dis-
tribution of B’s posterior mean for some signal if and only if it is a mean-preserving
contraction of the prior, Fy. Recall that F' € F is a mean-preserving spread of F' € F
(denoted by F »= F’) if and only if

/ (F — F') ds > 0 for all z with equality for z = 1. (1)
0

"Standard arguments deliver that, in equilibrium, B must trade if indifferent. This assumption therefore

has no effect on our results but makes the analysis simpler.
8This method of modeling flexible information is common in the information-design literature—see, for

example, Gentzkow and Kamenica (2016), Roesler and Szentes (2017), and Dworczak and Martini (2019).



The CDF F is a strict mean-preserving spread of F’ (denoted by F = F’) if both
F > F and F' # F.9 Letting

Ip(x) = /OI(FO — F) ds,

B’s actions space, A, can be defined as the set {F' € F : Ip(z) > 0 for all z and I (1) = 0}.

In what follows, we refer to CDF's in A as signals.

The cost of information acquisition. Information acquisition is costly. In general,
different information structures generating the same distribution of posterior expectations
might come at different costs. However, because B’s expected payoff from trading depends
only on the distribution of this posterior expectation, F', she would always use the least
expensive signal structure that leads to F'. In fact, B may even randomize to get F. Thus,
we can evaluate the cost of F' by the expected cost of the cheapest randomization that

generates it, resulting in a convex cost function,
C: A — ]R+.

We require the function C to be sufficiently smooth. More precisely, we endow F with
the £1-norm (denoted by ||-]|)! and assume C is Fréchet differentiable; that is, each
F € A admits a Lipschitz function,!! ¢z : [0,1] — R, such that for every F’ € A,

C(F") - C(F) :/cF d(F' = F)+o(|F - F|), (2)

where o is a function that equals 0 at zero and lim,\ g [o(z)/x] = 0. We refer to cr as
C’s derivative at F.!?

To discuss our next assumption, ranking signals in terms of their informativeness is
useful. We say that s is more informative than s’ if observing s is the same as observing s’
and another informative variable, t. One can easy verify that, if ' and F’ are the CDFs

of E[v|s] and E[v|s], respectively, then F is a mean-preserving spread of F’ whenever s

9Notice - is reflexive and anti-symmetric, meaning F' = F' and F’ > F if and only if F = F’.
"That is, the norm that maps any Borel measurable ¢ : [0,1] — R to |6 = fol |¢(x)|dz. Restricted to

the set of CDFs over [0, 1], this norm metrizes weak* convergence; see, for example, Machina (1982).
HThe standard definition of Fréchet differentiability requires ¢z to define a continuous linear function

from £1]0, 1] to R. This requirement is equivalent to ¢y having an almost-everywhere derivative in L*°[0, 1];
that is, ¢p must be Lipschitz. Our results still hold, however, if we require cr to be continuous (rather

than Lipschitz).
12 Although irrelevant to our analysis, we note ¢ is unique only up to the addition of an affine function.



is more informative than s’.'> Conversely, every mean-preserving contraction of F' can be
attained as the marginal distribution of E[v|s”] for some s” that is less informative than
g 14

The above implies mean-preserving spreads have higher costs whenever learning more
information is more expensive. For an explanation, note that if F' is a mean-preserving
spread of F’, then every s that induces F' admits a less-informative, and therefore cheaper,
s’ that yields F’ as the distribution of B’s posterior valuation. Therefore, the cheapest s’
generating F’ cannot cost more than the least expensive information structure attaining
F.

Given the above, we say F is (strictly) more informative than F’ if and only if
F is a (strict) mean-preserving spread of F’, and that C' is monotone if C(F) > C(F’)
whenever F' is more informative than F’. Next, we show that C' is monotone if and only

if its Fréchet derivative is convex.!®

Claim 1 Let C be Fréchet differentiable. Then, C is monotone if and only if cr is convex
for each F € A.

For the intuition behind the claim and for better understanding the concept of Fréchet
differentiability, we restrict attention to signals whose support lies in a finite set, say,
{s1,...,sn}. Then, each F' € F can be represented by a vector in the n-dimensional
simplex (aq,...,ay) € A" for which F' = 25:1 anl[sml].lﬁ In this case, the function C
is a mapping from A™ to R, and the Fréchet derivative at F' evaluated at s,, cp (sy), is
C’s partial derivative with respect to the probability of s,; that is, 0C (F') /0o, = cp(sy).
Thus, the marginal cost of a small shift from F to F” is the sum of the marginal cost at each
signal realization times the change in each realization’s probability, that is, [ cp d(F'—F).

Of course, if F’ = F, this quantity is positive whenever cp is convex.

13To see why, let x = E[v|s’] and y = E[v|s]. Showing y is a mean-preserving spread of x is
equivalent to proving E[y|x] = x. Towards this goal, observe x is s’-measurable, and so E[v|x] =
E[E[v|x,s']|x] = E[E[v]|s']|x] = x by the Law of Iterated Expectations. Therefore, E[y|x] = E [E[v]|s]|x] =
E [E[v|s’, t,x]|x] = E[v|x] = x,where the second equality follows from s being more informative than s’

and x being s’-measurable, and the third equality from the Law of Iterated Expectations.
! This claim follows from Proposition 1 of Gentzkow and Kamenica (2016).
15See Machina (1982), Hong et al. (1987), Chatterjee and Krishna (2011), and Cerreia-Vioglio et al.

(2017) for related results for functions whose domain is F rather than A.
For any A C [0,1], 14 is the indicator function that is equal to 1 on A, and 0 otherwise. So, 1z, is

the CDF corresponding to a unit atom at x.
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Our main assumption requires cg to be not only convex but also strictly convex on

the support of F.
Assumption 1 For each F € A, cp is conver and strictly convex on co(supp F).

Next, we explain the restriction that Assumption 1 imposes on the cost function
C in addition to strict monotonicity, which requires that C(F) > C(F') if F = F'.
Assumption 1 requires that, whenever F' = F’, the marginal cost of a small shift from F
to F’ to be strictly positive. By contrast, strict monotonicity only requires that these shifts
have a strictly positive marginal cost almost everywhere.!” Thus, imposing Assumption 1
in addition to smoothness and strict monotonicity resembles stipulating that a smooth,

strictly increasing function has a strictly positive derivative everywhere.!®

Strategies and payoffs. A mixed strategy for S is a random price, represented by a
CDF over prices, H € F, whereas a strategy for B is a signal, F' € A.'? If B’s signal is
F, S’s expected payoff from the random price H is given by

M(H, F) = / p(1— F(p—)) dH(p),

where F'(p—) denotes sup,,, F'(s). We denote S’s maximal profit by 7 p := max,¢po 1) [(p, F)
and the set of profit-maximizing prices by P(F) = arg max,co,1) [I(p, F).2% In Appendix
B, we establish continuity of S’s maximal profit and upper hemicontinuity of the profit-
maximizing prices, P(-).%!

If S’s randomization over prices is H, B’s expected payoff from the signal F' is

Ut F) = [ [ =p) aH () aPG) - sC(p),

!"Formally, Assumption 1 requires [ cp» d(F—F") > 0 whenever F”' = F+a(F'—F) for some « € [0, 1),
whereas strict monotonicity allows this quantity to be zero over a zero-Lebesgue measure set of a’s. For
an example of a strictly monotone function violating Assumption 1, consider C(F) =1—0.5 [ F?(x) de.
One can show C'is strictly monotone, and Fréchet differentiable with c¢x(z) = [ F(s) ds. Observe that
dep/dxz = F(z), meaning cp is convex, but not strictly convex over co(supp F) if supp F' is not convex.

We note this C' is concave and we do not know whether a convex counterexample exists.
8For example, the function z* is smooth and strictly increasing but has a zero derivative z = 0.
9Gince B’s objective is concave (due to the convexity of C'), S’s objective is affine, and A is convex,

any mixed strategy of B can be replaced by its its average marginal without influencing payoffs and trade

outcomes. Hence, without loss off generality, we assume B uses a pure strategy.
20We slightly abuse notation and let II(p, F) denote (1,1, F).
21 Notice S’s profit is only upper semicontinuous; thus, said properties do not follow from Berge’s Max-

imum Theorem.
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where k € R, is a constant parameterizing B’s cost of information.

Equilibrium Definition and Existence. An equilibrium is a pair, (H, F) € F x A, such
that

1. H maximizes II(-, F') over F;

2. F maximizes U, (H,-) over A.

Because B’s best response and S’s (mixed) best response are upper hemicontinuous,
and non-empty-convex-compact valued, an equilibrium exists by Kakutani’s Fixed-Point

Theorem.?2

Truncated Pareto Distributions. As mentioned in the introduction, the set of truncated
Pareto distributions plays an important role in our analysis. To formally define this set,

for each 7 € [0,1] and ¢ € [r, 1], let

Grt(5) = i1y (5) (1 - g) +1y(s)- 3)

We refer to the set {Gr} as the set of truncated Pareto distributions and an element of

{Gr+} N A as a Pareto signal.

2.1 Examples of Cost of Learning

This section provides three examples of cost functions that satisfy our assumptions and
describes their Fréchet derivatives.
Example 1. (Constant Marginal Cost) Fix some strictly convex Lipschitz function
¢:10,1] — Ry. Define
C(F)= / ¢ dF.

22Convexity (compactness) of the best response follows from concavity and linearity (continuity and
upper semicontinuity) of B’s and S’s objectives, respectively. Upper hemicontinuity of B’s best response
follows from Berge’s Maximum Theorem. To see S’s mixed best response, F' +— argmaxmer II(H, F),
viewed as a correspondence, is upper hemicontinuous, consider a convergent sequence of signals, F;, — Fwo,
and suppose H, € argmaxper I[I(H, F,) converges to Hs. Because F is compact, it is enough to show
H is an S best response to Fi, that is, supp He C P(Fo). Now, on the one hand, supp(:) is lower
hemicontinuous, and so p., € supp Ho only if a sequence p,, € supp H,, exists that attains po as its limit.
On the other hand, P(-) is upper hemicontinuous (see Appendix B), and so the limit of any convergent
sequence p, € supp H, C P(Fy) is in P(Fs). Therefore, pos € supp Hoo, only if pos € P(Fu), that is,
supp Heo C P(Fx).

12



Then, C’s Fréchet derivative equals ¢ for all F.23 When c(s) = s — 92, this example
assigns each F a cost equal to its variance. We explain how our results specialize to this

cost function when B’s value is uniformly distributed throughout our analysis.

Example 2. (Increasing Marginal Cost) Fix some strictly Lipschitz convex

¢:[0,1] — R, and a strictly increasing, convex, Lipschitz and differentiable ¢ : R — R.

Then, the function
C(F):¢</ch)

satisfies our assumptions. Indeed, by the chain rule, the above cost function is Fréchet

differentiable, with the derivative being given by

r() = ([ ear) )

which is strictly convex for all F.

Example 3. (Quadratic Costs) Let ¢ : [0,1] x [0,1] — Ry be some strictly convex,
Lipschitz, symmetric function; that is, c¢(s1,s2) = ¢(s2,s1) for all s1,s9 € [0,1]. Assume
further that ¢ is positive semidefinite, that is, [ [¢ d(F — F')d(F — F') > 0 for all
F,F" € F. Then, the cost function®*

C(F) = % / / ¢(s1,52) dF (s1)dF(s5)

is convex and Fréchet differentiable, with the derivative being given by the strictly convex

Lipschitz function,

cr() = [ cls2) dF(so).

3 Costless Learning

In this section, we analyze the set of equilibria when learning is free, that is, when
k = 0. We first provide geometric characterizations of the best responses of S and B,
respectively. Then, we use these characterizations to identify the set of payoff profiles
that arise in equilibrium. We also show the free-learning equilibrium set can be strongly
Pareto ranked, with the best equilibrium being the one given by perfect learning, that is,

F=F,

Z3Example 1 describes the set of posterior separable costs (see Gentzkow and Kamenica, 2014, and
Caplin et al., 2017) that are also mean-measurable; that is, that depend only on a signal’s induced

posterior-mean distribution.
Z4Example 3 belongs to the Fréchet differentiable subset of the quadratic functional form introduced by

Machina (1982) and studied in Chew et al. (1991).
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Figure 2: The seller’s best response against the uniform distribution.

3.1 The Seller’s Best Responses

We begin by characterizing the set of profit-maximizing prices. To this end, we first
describe S’s iso-profit curves on the price-cumulative probability space. Note that if the
price is p and the probability that B’s valuation is strictly less than p is y, S’s profit is
p (1 —y). Hence, the iso-profit curve in this space corresponding to a given profit, say,
7 (> 0), is defined by

{p,y) :y€l0,1], p(1—y) =7}.

Of course, if p < 7, the profit cannot exceed p and no y € [0, 1] exists that generates .
Otherwise, for each p € [m, 1], the cumulative probability, y, that guarantees profit 7 is
1—m/p. Observe that 1—m/p is the CDF corresponding to the Pareto distribution param-
eterized by 7. Because p < 1, we conclude the iso-profit curve of the seller corresponding
to profit 7 is essentially identical to the truncated Pareto distribution, G 1.

These iso-profit curves can be used to analyze S’s best response against B’s signal
distribution as illustrated in Figure 2 for the case of a uniform F. Note that lower iso-
profit curves correspond to larger profits. In addition, the set of feasible outcomes is
{(p, F (p—)) : p € [0,1]}. Therefore, S’s profit is defined by the smallest 7 such that the
curve G 1 (s) is weakly below that of F'(s—). In Figure 2, three iso-profit curves are
depicted as the gray dashed contours, and the middle one, Gy /41, is the highest iso-profit
curve below F, so the profit of S is 1/4. Furthermore, the set of optimal prices, P (F),

are those values at which F’ is tangent to the largest iso-profit curve below it. In Figure 2,
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p = 1/2 is the only point of tangency. Since iso-profit curves are strictly increasing, the
signal F must also be strictly increasing at any point of tangency, and hence any such

points must lie in the support of F'. The following lemma summarizes these observations.
Lemma 1 Fix any F € A. Then,

(i) for all s € [0,1], F (s—) > Grp1(s—); and

(ii) P(F)={p>mp: F(p—) = Grp1(p—)} S supp F.

Part (i) states that B’s CDF is first-order stochastically dominated by the Pareto distri-
bution parameterized by S’s profit, mp. Part (ii) says the set of profit-maximizing prices

are those signals at which B’s CDF essentially coincides with this Pareto distribution.

3.2 The Buyer’s Best Responses

If S sets price p and B learns her valuation perfectly, she makes an ex-post efficient trading
decision. To make such decisions, B’s signal must reveal whether the true valuation is
above or below p. In what follows, we characterize the set of such signal distributions.

Note that if B chooses F' and the price is p, her expected payoff from trade is

/pl<s—p> dp<s):(1_p>_/plF(S> s,

where the equality follows from integration by parts. Of course, when information is free,
perfect learning is a best response to any pricing strategy of S. In fact, using the previous
equation, the increase in B’s payoff from switching from F' to perfect learning can be

expressed as

1 1 P
/ (F — Fp)(s) ds = / (F — Fo)(s) ds — / (F — Fo)(s) ds = Ir(p) > 0, (4)
p 0 0

where the inequality follows from (1). Thus, the slackness in the signal’s information
constraint at p, Ir(p), is the benefit of obtaining all remaining information. Whenever
this benefit is zero, B cannot gain from learning more. Because B can only lose from
learning less, F' is optimal for B if and only if Ir(p) = 0. Intuitively, /r(p) = 0 means p
separates F’s realizations: Either B’s true valuation and the signal realization generated
by F are smaller or both of them are larger than p. In what follows, we refer to such a

price as F-separating and we denote the collection of such prices by S (F'), that is,

S(F)={p€0,1]: Ir(p) = 0}.
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In summary, if S sets price p, the signal F' is B’s best response if and only if p € S (F).
The next lemma extends this argument to the case where S randomizes over prices: the
signal F' generates the same payoff to B as perfect learning if and only if S only charges

F'-separating prices.
Lemma 2 The signal F is a best response against H if and only if supp H C S(F).

Next, we show two geometric properties of separating prices. First, the graph of F
and Fp must intersect at every F-separating price. Second, given an F-separating p, one

can find a larger price arbitrarily close to p at which F' lies below Fj.
Lemma 3 Suppose F' € A and p € S(F). Then,

(i) F is continuous at p and F(p) = Fo(p).

(i1) For everyp' >p, ap’ € (p,p') exists such that F(p") < Fy(p").

Let us describe the intuition behind the lemma. To see why part (i) holds, recall
that p is F-separating if the signal reveals whether the valuation is above or below p.
Hence, the probability that B observes a signal realization below p must be the same as
the probability that her valuation is below p; that is, the CDFs F' and Fy must coincide
at p. To explain part (ii), note it is enough to show no p’ > p exists such that for each
p" € (p,p), F(p") > Fy(p"). Since the valuation is larger than p if and only if the signal
is larger than p, the mean-preserving spread relationship between the valuation and the
signal remains even when conditioning on them being larger than p. It follows that the
conditional value distribution has more mass closer to the boundaries of its support, p and
1, than the conditional signal distribution does. Therefore, the CDF of the conditional
signal cannot be above that of the conditional valuation just to the right of p. In other

words, no p’ > p exists such that for each p” € (p, ),

(F(")=F(p)/Q=F@®)>(F (") -F®)/(1-Fp).

By part (i), F (p) = Fo (p), so the desired conclusion follows.

3.3 Free-Learning Equilibrium Characterization

We now turn to characterizing the set of free-learning equilibrium payoffs. We begin by

showing that an equilibrium price is never below the full-information monopoly price.
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Before stating this result, note that because Fj is regular, the function II(-, F) is strictly
quasiconcave; see Figure 3 below for an illustration. Therefore, a unique profit-maximizing
price exists under Fp, denoted by pfj. The next lemma states that pf) is below the support

of S’s randomization in every free-learning equilibrium.
Lemma 4 Let (H,F) be a free-learning equilibrium. Then, supp H C [pj, 1].

For an explanation, consider a free-learning equilibrium in which B learns signal F
and S charges price p. We need to demonstrate that p is weakly higher than the full-
information monopoly price, pj. Since II(-, Fp) is strictly quasiconcave, this function is
increasing below pf; and decreasing above it; see Figure 3 below. So, to conclude that
D > Dpg, it is enough to argue S’s marginal profit at p is weakly negative under Fp. To
make this argument, observe first that the marginal profit at p is weakly negative under F’
because p is profit-maximizing when B acquires signal F'. Further observe that Lemma 2
and part (i) of Lemma 3 imply B’s demand as well as S’s profit from setting price p are
the same under full information and under F'. In addition, part (ii) of Lemma 3 implies
a small increase in p results in a larger reduction in B’s demand under perfect learning
than under F'. Consequently, the decrease in profit due to a small increase in p under full
information is even larger than under F'. Thus, it follows that the profit at p is locally
decreasing under full information, as required.

Next, we show S never randomizes in equilibrium. More specifically, we prove that
if (H,F) is a free-learning equilibrium, H specifies an atom of size one at a price that
would generate profit mg even if B learns perfectly instead of getting signal F'. To state
this result precisely, for each 7, let X, be the set of prices that yield profit = under Fy,
namely,

Xpi={p: 1 (p,Fv) =}.

The next lemma states that S’s equilibrium price is the largest element of X, . Before
we state this result, note that because the function II(-, Fp) is strictly quasiconcave, X,
contains at most two such prices for every w. Moreover, II(-, Fyy) attains any value between
0 and 7, because it is continuous.?® Therefore, for each 7 € [0, 7 Fy)s X is non-empty and
contains at most two prices. Let p, be the higher of those prices, that is, p, = max X.
The following lemma says that if B’s free-learning equilibrium signal is F', then S charges

Drp for sure.

25This claim follows from the Intermediate Value Theorem and that charging zero generates zero profit.
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Figure 3: The seller’s profit under perfect learning when Fp is uniform on [0, 1], along
with the seller’s profit maximizing price, pjj, and the set X, = {p, pr, } when 7p = 4/25.
In this case, py = 0.5, p = 0.2, and pr, = 0.8.

Lemma 5 Let (H, F) be a free-learning equilibrium. Then, supp H = {pr,}.

Let us explain the argument of this lemma’s proof. Consider any price, p, in the
support of H. Since p is profit-maximizing under F, II(p, F) = mp. By Lemma 2 and
part (i) of Lemma 3, the demand as well as the profit at p are the same under F' and
under perfect learning. Thus, charging p under perfect learning also generates profit mp;
that is, p € Xr.. Recall that X, has at most two elements, with p., defined as the
larger one. To complete the proof, it is enough to show that if X, has two elements, p
cannot be the smaller one, say, p. To see why, note p < pg, as illustrated by Figure 3,
and pj < p, by Lemma 4, so

p<pp<p

We now turn to the main result of this section, which characterizes the set of payoff
profiles that can arise in equilibrium. Before stating this result, we introduce an additional
piece of notation. Let m denote S’s minmax profit, that is, the smallest possible profit
that can be generated by some learning strategy when S responds optimally. Formally,?%

m = min max Il (p, F) = min7p.
= FeApeo,1] (p, F) FeA

26Roesler and Szentes (2017) attain the minmax profit with a Pareto signal, so r is well defined. Alter-
natively, one can show = is well defined by observing that A is compact, I1(+, F') is upper semicontinuous,

and F — 7p is continuous (see Appendix B for a proof of the last fact).

18



Theorem 1 shows S’s minimal and maximal equilibrium profits are 7w and 7 ), respectively,
and that S can attain any profit in between.?” If S’s equilibrium profit is 7, B’s equilibrium

payoff is given by her expected utility under full information when S’s price is py.

Theorem 1 A free-learning equilibrium (H, F) exists such that tp = m and Uy(H, F) = u

if and only if m € [w, 7R, and u = Uy(px, Fo) = fﬁl (s —pr)dFp (s).

The “only if” part of this theorem implies that in a free-learning equilibrium, S can
never attain a profit above his maximal profit when B collects full information. This
result is a straightforward consequence of Lemma 5. Recall that this lemma states that
if B’s signal is F', the equilibrium price is the largest price that generates profit mr under
perfect learning, p,,.. But if learning is perfect, S can achieve 7p, by setting the optimal
price instead of p, , showing mp < 7p,. The theorem also states that if B’s signal is
F', her equilibrium payoff is the same as if she learns perfectly and S charges a price of
Prp- This conclusion follows from the facts that S sets a price of p,; . in every equilibrium
where his profit is 7p (see Lemma 5) and that perfect learning is always a best response
when information is free.

The “if” part of the theorem’s proof is constructive. Specifically, we find an equilib-
rium for each m € (m, mp,) such that S’s profit is 7. Existence of an equilibrium with profit
x follows from the equilibrium payoff set being closed.?® Figure 4 illustrates our construc-
tion, which obtains an equilibrium by applying two modifications to the m-iso profit curve,
Gr,1. The first modification creates a CDF with separating and profit-maximizing price
p that gives S a profit of m. To get this CDF, we replace the realizations in the lowest ¢
quantiles of G 1 with realizations from the same quantiles of F. The resulting CDF is

equal to Fy at any x such that Fy(z) < ¢, to Gr1 when G 1(x) > ¢, and to ¢ otherwise.

*"Note < 7r,. This inequality follows from two facts. First, each of the two profits is associated with a
unique Pareto signal, G ¢ and Gr, ¢ (see Roesler and Szentes, 2017). And second, S(Gy,¢) Nsupp G #

@ (by Theorem 2), whereas regularity of Fy delivers S(Gry .t) Nsupp Gry ¢ = 2.
28To see why the equilibrium payoff set is closed, note first that upper hemicontinuity of the players’

best-response correspondences implies closedness of the set of equilibrium strategy profiles. Because both
players’ strategies live in a compact set, the set of equilibrium strategy profiles is closed only if it is
compact. As such, every convergent sequence of equilibrium payoffs is associated with a convergent
sequence of equilibria. Because both players’ maximal value is continuous in the other player’s strategy,
the payoffs generated by the limit equilibrium equal the limit of the equilibrium payoff sequence. Hence,
the limit of every converging sequence of equilibrium payoffs is itself an equilibrium payoff; that is, the

equilibrium payoff set is closed.
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Figure 4: A constructed free-learning equilibrium, (1p, ), G?nt).

The value of g is determined so that the maximal profit 7 is attained by setting a sepa-
rating price, p; that is, the two shaded areas to the left from p in Figure 4 have the same
size. The Intermediate Value Theorem guarantees the existence of such a ¢q. This CDF,
however, fails to be a signal, due to having too large a mean. To change this CDF into a
signal, we reduce the mean through the second modification: the distribution is truncated

at some value t € (p, 1), resulting in the CDF G7 ;. To see that a ¢ exists for which G}

q
m,t

is a signal, note first that the integral of Fy — G, on the interval [0,p] is zero for all

t € (p,1) because p was a separating price. Thus, to guarantee Fj is a mean-preserving

q
it

spread of G ,, the truncation value, ¢, must be chosen so that the integral of Fy— Gfr’t on
[p, 1] is also zero. To obtain such a ¢, one can again use the Intermediate Value Theorem,
and hence, the CDF ngt is indeed a signal; see Figure 4. Since t € (p,1), the price p
still yields profit m, and remains separating and profit-maximizing. Thus, having S offer
p and B use Gfr’t gives a free-learning equilibrium.

Using Theorem 1, we can deduce that free-learning equilibria are strongly Pareto
ranked; that is, B prefers one free-learning equilibrium to another if and only if S does as

well.

Corollary 1 All free-learning equilibria are strongly Pareto ranked. That is, for any two
free-learning equilibria, (H, F) and (H', F"),

U(H,F) >1I(H', F') if and only if Uy(H, F) > Uy(H', F").

For an explanation, consider two equilibria with corresponding profits m; and 7o such
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that w1 < my. To conclude that these equilibria are Pareto ranked, we need to demonstrate
that the consumer surplus is also larger in the second one. To this end, we first argue the
price is smaller in the second equilibrium. Recall that, in any equilibrium featuring profit
7, S charges the higher price attaining m under perfect learning, p,. Further recall that the
function II (-, Fp) is strictly quasi-concave, maximized at p§, and p§ < pr, as illustrated in
Figure 3. So, when 7 increases, the price p, decreases and moves toward pj. Therefore,
since m; < wg, the equilibrium price in the second equilibrium is indeed smaller, that
is, Pry < Dr,- It remains to argue that B’s payoff is decreasing in the equilibrium price.
As explained above, B’s surplus from trade remains unchanged if she were to choose to
observe her value, that is, B’s payoffs in the two equilibria are U (px,, Fo) and U (pr,, Fo),
respectively. Since pr, < pr, it immediately follows that U (pr,, Fo) < U (Pry, Fo)-

To conclude this section, we characterize the set of free-learning equilibrium payoffs
in an example. We then carry this example through the paper and use it to illustrate our

results even when learning is costly.

Example. Suppose the value distribution, Fp, is uniform on the interval [0, 1]. By
Theorem 1, S can attain any payoff between his perfect-learning profit, 7p, = 0.25,
and his minmax-profit, = ~ 0.2 (see Roesler and Szentes, 2017). Next, we compute S’s
equilibrium price corresponding to any equilibrium profit level 7 € [m, 7 ]. Since the
value distribution is uniform, B’s demand is 1 — p if the price is p. Therefore, the set X
consists of the solutions to

p(1—p) =

This quadratic equation admits at most two roots, p = 0.5 (1 +v1 - 471) . By Lemma 5,
S charges the larger of these roots, p, = 0.5 (1 + 1 - 47T), in any equilibrium in which

his profit is 7. B’s utility in such an equilibrium is
1
u = / (s —pr) ds = 0.25 — 0.5m — 0.25v/1 — 4.
p

To summarize, if the value distribution is uniform, the set of free-learning equilibrium

payoff profiles is given by

{(7,0.25-0.5m — 0251 —4n) : m € [m, 7} -
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4 Costly Learning

This section accomplishes two goals. First, we provide an equilibrium characterization in
our model of costly learning. In particular, B’s equilibrium signal is shown to belong to
the family of Pareto signals. Second, we prove the main result of this paper: as the cost

of learning vanishes, equilibria converge to the worst free-learning equilibrium.

4.1 Equilibrium Characterization

The next result provides a partial characterization of the equilibrium when B’s learning

cost satisfies Assumption 1.

Proposition 1 Suppose (H, F) is an equilibrium in the k > 0 game. Then,
(i) supp H = supp F = co(supp F'), and

(ii) F is a Pareto signal.

Part (i) of this proposition states that the supports of B’s signal and S’s randomization
coincide. Furthermore, this support is an interval. From these two observations, it is
straightforward to conclude part (ii). The reason is that S must be indifferent on supp H,
so each price in supp H must generate the same profit. Therefore, part (i) implies B’s
equilibrium signal, F', must coincide with an iso-profit curve over its support. Because
the iso-profit curve is a Pareto distribution truncated at 1, F must be a Pareto signal.?”
Next, we explain how to establish part (i). The key step is to show S charges every

price between any two possible signal realizations; that is,
co(supp F') C supp H. (5)

To prove this inclusion, it is enough to show that S offers a price between any two possible
realizations of B’s signal; that is, supp H N (z,y) # @ if x,y € supp F.3* Suppose first
that F' places atoms at both z and y. Then, B can profitably deviate by bunching together

the signals z and y; that is, instead of observing these signals, she only learns that the

2The seller’s randomization is also behind the emergence of Pareto distributions in the context of

robust pricing, see Bergemann and Schlag (2008), Carrasco et al. (2018), and Du (2018).
30T see why this claim is sufficient, note that if (5) does not hold, co(supp F) includes a non-empty

interval (x,y) that never contains S’s price, that is, supp H N (z,y) = @. In the Appendix, we show that

if (z,y) is maximal among such intervals, z,y must both lie in supp F.
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signal is in {z,y}. By Assumption 1, this bunching strictly reduces B’s learning cost.
Moreover, because S never sets a price in (x,y), such a bunching leaves B’s trade surplus
unchanged. To understand why, note that conditional on the original signal being =,
the buyer trades if and only if the price is weakly less than x, irrespective of whether
the signals are bunched together. The only difference in trading decisions is that if the
original signal is y, B trades if the price is y but rejects this price after the bunching.
Because the buyer breaks even in both cases, this difference does not change her payoff.
We conclude that when F' has atoms at both = and y, it cannot be a best response against
H if supp HN(z,y) = O. If either x or y have zero mass according to F, one can construct
a profitable deviation in a similar fashion by pooling together small neighborhoods of x

and y. Finally, notice that
co(supp F) C supp H C supp F C co(supp F),

where the first inclusion is just (5), the second follows from the observation that S never
sets a price that is not a possible signal realization (see part (ii) of Lemma 1). This chain

of inclusion implies part (i) of the proposition.

Next, we introduce costly information acquisition in the example of Section 3 and

illustrate how to characterize an equilibrium in this example.

Example (continued). Recall that the value distribution, Fp, is uniform on [0, 1].
Suppose now that the cost of each signal, F, is given by its variance, C(F) = [(s*—v?) dF

and k = 1.

An important feature of this example is that B’s problem of finding a best response
can be reduced to maximizing the value of an integral with respect to a measure. Indeed,
given a randomization of S over prices, H, B chooses F' € A to maximize [ug(s)dF(s),

where

up(s) = / (s )~ (2 - )

A useful consequence of this observation is that if the integrand uy is concave, applying
a mean-preserving contraction to B’s signal, F', increases her payoff. Moreover, if ug is
affine on the convex hull of F’s support, B is indifferent between choosing F' and the
uninformative signal, 1[5 1), which specifies an atom of size one at the prior expectation,
v=0.5.3!

#Since [s dF (s) = [v dFy (v) = v for each F' € F, v € co(supp F).
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Figure 5: The function ug~ for the example’s unique equilibrium.

In the unique equilibrium of this example, B chooses the Pareto signal, G+ 1+ with
™ &~ 0.23 and t* =~ 0.73, and S’s randomization, H*, is uniform over the support of
Gr+¢=. We now confirm this strategy profile is indeed an equilibrium. First note the
uniform randomization of S is profit maximizing because each price in the support of
G+ ¢+ generates revenue 7, and prices outside of the support generate smaller revenues.
It remains to argue that G« ;+ is a best response against H*. Figure 5 plots the integrand,
ugr+. As illustrated in the figure, the function ug- is globally concave and affine on [7*, ¢*].
As mentioned above, since ug+ is concave, B’s objective increases in mean-preserving
contractions, so acquiring the uninformative signal, 1951, is a best response to H*.
Since uy~ is affine on supp Gr+ = = [1*,t*], G+ 4= generates the same utility for B as

1j0.5,1), and hence, it is also a best response.

4.2 Vanishing Learning Cost

We are now ready to state and prove the main result of the paper: As the cost of learning
vanishes, equilibria converge to a free-learning equilibrium that minimizes both players’
payoffs. In this equilibrium, S achieves only his minmax profit, # = minpec g 7, and B

uses the Pareto signal associated with this profit, Gﬂ,g.?ﬁ

Theorem 2 For k > 0, let (Hy, Fy;) be any equilibrium of the k-game. Then,

flﬂig%(H’i’ Fl‘i) = (1[1_’@1]’ GLE)'

32Roesler and Szentes (2017) establish the existence and uniqueness of such a Pareto signal.

24



Recall that p, is the largest price that generates profit 7 when B learns perfectly.
Therefore, this theorem says that in the limit as learning becomes free, B uses a Pareto
signal that generates S’s minmax profit, and S charges the higher of the two prices yielding
this profit when B collects full information. By Corollary 1, this limit is the worst free-
learning equilibrium for both players.

Let us explain the argument of the proof. The main idea is to connect our analysis
of costly learning with our observations regarding free-learning equilibria. When costs
are positive, B uses a Pareto signal (see Proposition 1). Since the set of Pareto signals is
closed, she must also be using a Pareto signal in the limit, say, G ;. In turn, equilibrium
dictates that S sets a price in the support of G (see part (ii) of Lemma 1). The key step
in the proof, which we explain in detail in the next paragraph, is to show that against
such a price, the Pareto signal associated with the minmax profit is strictly better for B
than any other Pareto signal. Therefore, B cannot possibly use a Pareto signal other than
G ¢ in a free-learning equilibrium. To conclude the theorem, we note that if S’s profit is
m, he must charge p, by Lemma 5.

We now return to the key step of the proof, and explain why G,y is a profitable
deviation from any other Pareto signal whose support contains S’s price. Thus, fix any
Gt that differs from G 7, and consider any price p in supp G ;. By equation (4), G 7 is
strictly better for B against p than G if and only if I¢_,(p) < I, ,(p). This inequality
is equivalent to féj (Gri — Gry) ds being strictly positi:/e. In other words, we need to
show that the area to the left of any p € [r,t] between G ; and G is strictly positive.
As can be seen in Figure 6, the integral f[f(GEg — Gryt) ds is zero for p < m and strictly
increasing over [mr,t]. Since m > 7, it follows that the integral is strictly positive for any
p € [m,t] and so against any such price, G ; generates a strictly higher surplus for B than
Gt

Theorem 2 characterizes the unique equilibrium in the limit as x converges to zero but
it provides little information regarding the equilibrium strategies along such sequences.
In what follows, we explain how the randomization of S and the signal of B changes as x

becomes smaller and smaller in the context of our example.

Example (continued). Recall that the prior, Fj, is uniform on [0, 1] and that the cost
of each signal, F, is given by its variance, KC(F) = & [(s* — v?) dF.
By Proposition 1, for each &, the equilibrium signal of B is a Pareto one, G« ¢+, and

the support of S’s equilibrium randomization, H*, is [7*,¢*]. One can show that, in this
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Figure 6: The minmax Pareto signal, G 7, and another Pareto signal, G ¢, with m > 7.

example, the equilibrium strategies are unique for each .33 Next, we describe Gr+ ¢+ and
H* as a function of x and illustrate them in Figure 7.

It turns out that there is a threshold value of x, kK = 0.75, above which H* is uniform
on [7*,t*]. Moreover, when k > &, a decrease in k results in an increase of the support of
B’s signal, that is, a smaller 7* and a larger ¢*. Panel A depicts the equilibrium strategies
for the case when x = 1, discussed at the end of section 4.1. At the threshold, &, the
equilibrium profit is the minmax profit, # ~ 0.2. As illustrated in Panel B, if kK = &,
B’s signal is Gy and H™ is still uniform on [r,t]. When £ is below the threshold, &,
B’s signal remains G ;, but the randomization of S, H*, is a combination of the uniform
distribution on [r,¢] (with probability /&) and an atom at pr ~ 0.71 (with probability
1 —k/R). Such an equilibrium is plotted on Panel C for k = 0.37. As k converges to zero,

the probability of S offering pr goes to one, and equilibria converge to the Pareto-worst

33To sketch the argument for uniqueness, suppose (H,Gx ) is a s-equilibrium. Since G () # Fo(z)
for any = € {m,t}, Lemma 3 implies 7,t ¢ S(Gx¢). Using Dworczak and Martini’s (2019) Theorem 2,
one can show Gy, is optimal for B only if ug(s) = fpgs(s —p) dH(p) — s(s® — v?) is locally concave at 7
and t, which implies H is continuous at both points. The same theorem also implies ug must be affine on
any interval [z,y] C [r,t] over which Ig, , is strictly positive. A simple derivation reveals uy is affine on
[z,y] only if H admits h(z) = 2kz as a density on (z,y). Since P(Gr¢) = [m,t], Lemmas 2 and 5 imply
S(Gry)Nm,t] C{p=}, and so 1 = H(t) — H(m) > H(t) — (H(Pr) — H(p=—)) — H(w) = 2k(t — ), where
the inequality holds with equality whenever S(Gx ) N[, t] = @—which is true for all 7 > & (see proof of
Theorem 2). One can then prove at most one k-equilibrium exists for any « > 0 by using the fact that

GTA’/,t/7 Gﬂ-”,t” € Afor o <n” only ift' >t
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free-learning equilibrium, (1[,3171], G 1), depicted in Figure 7’s Panel D.

5 Discussion

To conclude, we discuss some of our assumptions and how they can be relaxed.

Production costs. We assumed S’s production cost is zero. We now discuss how our
results generalize to the case in which S has to incur a positive production cost upon
trade. Thus, suppose S’s payoff when trading is p — m, where m € (0,1). For m € (0,9),

our analysis goes through with the m-shifted truncated Pareto signal,

Aﬂm,t(s) = 1[7r+m t) (1 - Fm> + 1[,5,1] t>m+m, >0,

replacing the truncated Pareto, G ;. Other than this replacement, all results hold as
stated.

For m > v, our analysis implies trade breaks down: in the costless limit, B collects no
information and no trade occurs. To see why, note that even when m > 0, Proposition
1’s part (i) continues to hold for any costly learning equilibrium in which B acquires
information. In other words, in any costly learning equilibrium in which B learns, the
support of S’s price and of B’s signal must equal the same interval. As such, if B’s
signal is non-degenerate, its CDF is an m-shifted truncated Pareto. But when m > o,
no informative signal can have an m-shifted truncated Pareto distribution.>® Hence, B
acquires no information when learning is costly, and so the same must hold in the costless
limit. However, if p < 1 and learning is free, full information strictly benefits B over no

information. Thus, the vanishing-cost limit is autarky with no learning.

Robustness and purification: random production costs. Our main result appears to
rely on the observation that if information is free, B learns whether her valuation is above
or below the equilibrium price but chooses to ignore large amounts of information. If many
equilibrium prices were possible, B may need to learn more and compare her valuation
with any of these prices. Therefore, one may wonder whether our results extend to
environments where the price is stochastic. Another concern is that when learning is
costly, S randomizes in equilibrium, and it is not obvious that S’s strategy can be purified

without affecting our main conclusion. To address these issues, we now describe what

34For an explanation, suppose F = G’Z’,t for some signal F' € A. Then, supp F = supp C;“T,t Cm,1] C
[0,1]. Therefore, [ s dF > v, with equality only if supp F = {v}, that is, if F' is uninformative.
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Figure 7: The example’s equilibrium (Gy« ¢+, H*) for £ = 1 (Panel A), & =~ 0.75 (Panel
B), k ~ 0.37 (Panel C) and k ~ 0 (Panel D).
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happens if S has a random production cost with full support in [0, 1] that is independent

of B’s valuation®®

—see the online appendix for the formal details. S privately observes
the cost realization, m, before setting a price. Then, his utility from trade at price p is
p — m, where m is the production-cost realization. In this case, free-learning equilibria
are still strongly Pareto ranked and are indexed by the price S charges when m = 0.
This price is offered for all values of m for which S would set a lower price under perfect
learning, and B’s signal distribution above this price agrees with the CDF of her prior.
For higher values of m, S sets the same price as he would under perfect learning. Both
players turn out to strictly prefer equilibria in which the price is lower conditional on
m = 0. Because this price must be separating in equilibrium, its maximum across all B
signals is pr, whereas its minimum is attained when B learns perfectly. As such, perfect
learning is still a Pareto-best equilibrium. In the Pareto-worst equilibrium, the CDF of
B’s signal coincides with the truncated Pareto, G ¢, for all values below p;. One can show
this free-learning equilibrium is the only one in which B uses this CDF, and that the same
CDF is attained at the vanishing-cost limit.>® Hence, even when the production cost is
stochastic, our main result is valid and the costless limit still selects the Pareto-worst

free-learning equilibrium.

Random prices as general mechanisms. We argue that it is without loss of generality
for S to set a price instead of a more general mechanism. Consider a more general model,
where S and B simultaneously choose a mechanism and a signal, respectively. Then, B
observes her signal’s realization and decides whether to participate in S’s mechanism. A
mechanism constitutes a set of messages for B, and each message is associated with a
transfer and a probability of trade. Note B’s interim expected payoff from any of the
messages is fully determined by her posterior-value estimate. Hence, by the Revelation
Principle, restricting attention to individually rational and incentive-compatible mecha-
nisms in which B truthfully reports her posterior-value estimate is without loss. Then,

standard arguments imply any mechanism is equivalent to setting a random price; see,

35 A related extension is one in which S’s production costs are correlated with B’s valuation. In this case,
S’s price may provide B with information about her own value. Such signaling complicates the analysis
in two ways. First, it introduces a large equilibrium multiplicity due to the indeterminacy of off-path
beliefs. And second, B’s inference from S’s price will generally depend on other moments of her posterior
in addition to the mean, and so the marginal distribution of B’s posterior mean is no longer sufficient for

characterizing trade outcomes. Hence, our analysis is not applicable to such extensions.
36In the vanishing cost limit, prices have a full support distribution over the interval [px, 1], with an

atom on pr.
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for example, Borgers (2015), Proposition 2.5.

Non-reqular prior. Most of our results generalize to the case in which B’s prior-
value distribution is not regular (including the possibility that Fy has atoms).>” When
learning is free, equilibrium requires S’s price to be separating, and the full-information
outcome remains profit maximizing regardless of the prior. Our construction of free-
learning equilibrium for each profit level between 7 and 7 r, is also valid for non-regular
priors. Regularity of the prior also plays no role in showing B uses a Pareto signal when
learning is costly, and the same holds in the costless limit. Because the costless limit is a
free-learning equilibrium, the Pareto signal in the limiting case still has a separating price
in its support, so this signal is still profit minimizing. Therefore, even without regularity,
the costless limit still minimizes S’s profits across all signal structures and generates the
lowest profit across all free-learning equilibria.

However, a non-regular prior does affect the conclusion that the costless limit min-
imizes B’s payoff, for two reasons. First, a non-regular prior can result in Pareto-
incomparable free-learning equilibria, and so the profit-minimizing equilibrium may not
minimize B’s payoff. Second, when the prior is non-regular, the profit-minimizing Pareto
signal may have more than one separating price in its support, so many free-learning
equilibria may exist in which B uses the profit-minimizing Pareto signal. In fact, one
can show that under Assumption 1, each such equilibrium is a limit of some equilibrium
sequence with vanishing costs. As a consequence, without regularity, B may obtain dif-
ferent outcomes in the vanishing-cost limit depending on the fine details of the prior and

the converging equilibrium sequence.

Non-smooth learning costs. To simplify exposition, we assumed B’s cost is a Fréchet
differentiable function satisfying Assumption 1. These assumptions, however, are stronger
than necessary. Specifically, we show in the online appendix that our results extend to
any convex cost function as long as it satisfies three properties. First, the function is lower
semicontinuous. Second, full information can be approximated at finite cost. Finally, one
can approximate the pooling of any two signal realizations in a way that strictly reduces

costs at the margin.?® We verify these properties for any continuous posterior-separable

370ur results hold without change when the buyer’s prior is absolutely continuous and supported on a
subinterval, [z, Z] C [0, 1], over which fy is strictly positive and v — (1 — Fy(v))/ fo(v) is strictly increasing.
Whenever z > 0, it is possible, however, that # = 7r,, meaning a unique free-learning equilibrium exists.
Such uniqueness arises if and only if 7r, = z, which is impossible when z = 0.

38The described property corresponds to Condition 1 stated in the online appendix. The appendix also
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cost function (Caplin et al., 2017) in the Appendix. Thus, our results apply to a much

wider class of information-cost functions than might appear at first.
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Appendix

A  Proof of Claim 1

We begin by proving the following useful lemma, which shows that for every F', w,z €
int (co(supp F)), and « € (0,1), two distributions, F’, F”, exist such that F' = F' = F”
and

F —F" =~ (Ozl[w,l] + (1 - O‘)l[z,l} - 1[aw+(1—a)z,1])
for some v > 0.
Lemma 6 Fiz some F € F\ {1}y : = € [0,1]}, let [,2'] = co(supp F), and take

w= [sdF. Take any w,y,z € (z,2'), and o € (0,1) such that y = aw + (1 — a)z. For
A B €10,1), define xy = ai:ﬁ\y, and

Faxp =1 =M1+ A1 = B)1y + A8 ol + (1 — o)1) .
Then, 5, A € (0,1) exists such that F' = Fy g > F) .

Proof. Suppose without loss that z > w. Note Fyg = 1) for all A > 0 because
Ay + (1 = XN)zy = w. We now show F) g = F) for every 8 > 0. For this purpose, notice
that

Fyxp—Faxo= Ao, + (1 — )1 ] = ABLy .

Therefore, for all 5 € [0, 1],

/ (Frg—F\p) ds = )\5/ (@l + (1 —a)l ) —1p,) ds >0,
0 0

in view of (al[wyl] +(1- a)l[zﬂ) = 1p,1)- Because s was arbitrary, we have F) g = F) .

Let us introduce some helpful definitions, which rely on z) being continuous in A
and x9 = w. Fixing some ¢ > 0 for which (0 — e,w + ¢) C (x,2'), choose a A to be
such that {zx}yepx € (0 — €@ +¢€) C (7,2'). Let 2" = max ({z} U {xx\}Ae[o,XO and

Ty = min ({w} U {a:,\})\e[oy;\]), and define the function
@ : [T, 2] X [0, = R

(§, )\,ﬂ) — /(;?F — F>\75) ds.
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Taking ()4 := max{-,0}, we can write
5

25,7 5) =/ Fds— (1- N —22)s A1 B)(5—y)s

0
= ABa(s — w)4 = AB(L = a)(5 — 2)4,

and so ¢ is continuous in the product topology. Therefore,
©* :[0,\]? > R
(A, B) = min (s, A, B)

SE[Tx,z*]

is also continuous by Berge’s Maximum Theorem.

We now show ¢(5,0,0) > 0 for all § € [z,,2*]. To do so, notice zg = w, and
therefore, Foo = 1z1] = ljp,1)- Because w > x, > x (by choice of F'), we also have
F(s) > 0= 1p; () for all s € [z, ). As such, if 5 € [z,, @] then [;(F — 1jz1)(s) ds =
ff F(s) ds > 0. Similarly, for all s € [w,2), F(s) <1 = 13 1(s). As such, if 5 € [w, 2],
f;(l — F(s)) ds > 0 = f;(l — 1p1(s)) ds, and so f;(F — 1[z7)(s) ds < 0. Since
fol(F — 15.1)(s) ds = 0, we obtain [ (F — 14)(s) ds > 0 for all 5 € [, z*] as well.

We are now in a position to complete the proof; that is, we show F' = F) g for all
small A\, > 0. By the previous paragraph, ¢(5,0,0) > 0 for all § € [z,,2*]. As such,
©*(0,0) = mingey, o+ ¢(s,0,0) > 0, and so by continuity of ¢, one must then have
©*(\,8) > 0 for all A\, > 0 small enough. Fixing any such A and f, we now show
fog(F — F 3) ds > 0 for all 5 by considering three cases. First, if 5 € [z, 2*],

/OS(F — Fy ) ds = ¢*(A, 8) > 0.

Second, if 5 € [x,z,), F(xz) > 0= F) g(z), and so ng(F —F\g) ds = fogF ds > 0. Third,
if 5 € (2%, 1],

*

/:(F—FA,B) ds:/om (F = Fyp) ds+/j(p_1) ds

*

z* 1 1
2/ (F—F)\,ﬁ) d8+/ (F—l) dS:/ (F—F)\ﬁ) ds =0,
0 T 0

*

in view of supp Fi 3 C [z, z*] and Fy 5 = 1ip,1]- We have therefore shown that for all
sufficiently small A and £, fog(F — Fy3) ds > 0 for all 5 € [0,1], with equality holding at
5 =1 (because F) g = 1j3,1)). Therefore, F' = F) g, thereby completing the proof. m

We are now ready to prove Claim 1.
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Proof of Claim 1. Suppose first that cp is convex for all F. Fix some F’ = F. Define

the function

¥ :[0,1] - R
a— C(F +a(F —F)).

Because C'is Fréchet differentiable, v is a differentiable function whose derivative is given
by
Y'(a) = /CF—f—a(F’—F) d(F' = F) >0,

where the inequality follows from convexity of cpy o —F) and F' = F. Applying the

fundamental theorem of calculus then gives

1
C(F) = 0(1) = O(F) + [ /() as > C(P),

Hence, C' is monotone.

Suppose now that C' is monotone. Fix any w,y,z € co(supp Fp) such that
y = aw + (1 — a)z for some a € (0,1). By continuity of cp, it is sufficient to show
cr(y) < acp(w) + (1 — a)ep(z) whenever w,y, z € int (co(supp Fp)).

By Lemma 6, an I’ and F” exist such that Fy = F' = F" and

F'— F" = (0l + (1= )10 = Lowt(1-a)21]) »
for some v > 0. Because > respects convex combinations,
F+ e’ —F)=F+¢eF"—F)

must hold for all e € [0,1]. Appealing to monotonicity of C' then yields that, for all
e€(0,1),

0<C(F+el —F)—C(F+eF"-F))
= [C(F+e(F' —F)—C(F)] = [C(F+e(F" = F)) - C(F)].
Dividing by € > 0, taking € \, 0 and substituting for F’ and F” then yields
0< % [C(F+e(F' —F))—C(F)] - % [C(F +e(F" — F)) — C(F)]
o /cF d(F' — F) — /cF A(F" — F) = acp(w) + (1 — a)er(2) — er(y),

thereby concluding the proof. m
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B Upper Hemicontinuity of S’s Best Response

In this section, we prove the following lemma about S’s best-response correspondence and

maximal value.
Lemma 7 S’s mazimal profit, F +— 7, is continuous, and P(-) is upper hemicontinuous.

Proof. Let {F,}n,>0 be some sequence attaining F,, as its limit. @~ We show
lim,, oo 7F, = mr,,. Because II is upper semicontinuous, I’ — 7F is also upper semicon-
tinuous.?® As such, it suffices to show that liminf, ;. TF, > Teo. 10 do so, take any
p € P(Fx). Then, for all € > 0,

mp, 2 (p—€F,) > (p—€)(1 — Fu(p —€)).
Thus,
limninf TR, > limninf(p —e)1=F,(p—¢)>(p—€)(l—Fx(p—e€) >p(l—Fx(p—)) —¢,

where the second inequality follows from the Portmanteau theorem. Because € above is
arbitrary, the result follows.
To see that P(-) is upper hemicontinuous, take any convergent sequence p,, € P(F},)

attaining po, as its limit. Because II is upper semicontinuous and F' — 7 is continuous,
mr, =lim7r, = limsup (p,, F) < (poo, Fo) < Tp. -
n

Thus, II(peo, Fixo) = T ; that is, poo € P(Fx). ®

C Proof of Lemma 1

To prove part (i), note S’s profit from setting a certain price cannot exceed 7p; that is,
for all s € [0,1], s (1 — F (s—)) < mp. Rearranging this inequality yields

Grpa (s=) = 1= =2 < F(s-),

which proves part (i).
To see part (ii), note s € P (F) if and only if the inequality in the previous displayed
chain is an equality. Hence, P (F) = {p > np : F(p—) = Gr.(p—)}. It remains to show

39Gee Aliprantis and Border (2006), Lemma 17.30, for example.
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that P (F) C supp F. Suppose, by contradiction, a p exists such that p € P (F) \supp F.
Then, p’ > p exists such that F(p'—) = F(p—). Therefore,

I(p,F)=p(l—F(p-))<p' 1—-F(p=)=p (1-F@p'-)) =L (p, F),

where the inequality follows from p’ > p and the second equality follows from F(p'—) =
F(p—). This inequality chain implies S is strictly better off setting price p’ than price p,
a contradiction to p € P (F).

D Proof of Lemma 2

If S uses H and B chooses F', the difference between B’s payoff generated by Fy and that

of F' can be written as

Uy (H, Fo) — Up (H.F) = /[/pl@—p) dFo<s>—/pl<s—p> ar (s) att o)

— /[/plF(S)ds—/plFo(S) dS} dH(p)—/IF(p) dH (p),

where the first equality follows from (4) and the third one from fpl (F — Fp) ds =
JJ(Fo—F) ds = I (p). Because F € A and I(-) is continuous, we conclude F' generates
the same payoff as perfect learning if and only if I (p) = 0 for all p € supp H; that is, if
and only if supp H C S(F).

E Proof of Lemma 3

Suppose p € S(F). We begin by proving (i). By the definition of S (F'), Ir (p) = 0. Recall
that I (z) > 0 for all z € [0, 1], so

c in Ip(z). 6
p€arg min Ir(c) (6)

Because Ir(z) = [ (Fo — F) ds, it can be differentiated from both sides at p. Therefore,
(6) implies

v

0 I (p) = Folp—) — F(p—),
0 < Ip.(p)=Fo(p)—F(p).

From these two inequalities, it follows that Fy(p—) < F(p—) < F(p) < Fy(p). Because Fj
is regular, it does not have an atom at p, so Fy(p—) = F(p). Hence, all the inequalities

in the previous inequality chain are equalities. The lemma’s part (i) follows.
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Now, we prove part (ii). Suppose, by contradiction, that a p’ > p exists such that
F(p") > Fy(p") for all p” € (p,p’). Then,

/

Oglp(p'):/op(Fo—F)(s) dSZIF(p)+/p(F0—F)(5) ds:/p(Fo—F)(S) ds <0,
P P

where the first inequality follows from F' € A, the third equality from p € S(F), and the
last inequality from F(p”) > Fy(p”) for all p” € (p,p).

F Proof of Lemma 4

We show P(F) N S(F) C [pg, 1] for every F' € A. To see why this inclusion is sufficient,
recall that S is optimizing against B only if all his prices are profit maximizing, whereas
F is a best reply for B only if all of S’s prices are F-separating (Lemma 2). In other
words, supp H C P(F) N S(F) for every free-learning equilibrium (H, F).

Suppose for a contradiction that a p € P(F) N S(F) exists such that p < p§. By part
(ii) of Lemma 3, a p" € (p, pj) exists such that F(p’) < Fy(p'). To obtain a contradiction,
observe that

(p, F) > (p', F) > T(p', Fy) > (p, Fy) = Il(p, F),

where the first inequality follows from p being profit maximizing under F', the second
inequality from F(p'—) < Fy(p'), the third inequality from strict quasiconcavity of II(+, Fp)
and p’ € (p,p), and the equality from p being F-separating and part (i) of Lemma 3.

G Proof of Lemma 5

Recall that (H, F) is a free-learning equilibrium only if all of S’s prices are profit max-
imizing and F-separating, supp H C P(F) N S(F). Therefore, arguing that P(F) N
S(F) = {pr,} whenever P(F) N S(F) is non-empty is sufficient. To see why, take any
p € P(F)NS(F). Observe first that

(p, Fo) = p(1 — Fo(p—)) = p(1 — F(p—)) =(p, F) = 7F,

where the second equality follows from p € S(F) and part (i) of Lemma 3, and the last
equality from p € P(F). It follows that p € Xr,..

To complete the proof, arguing that p > p for any p € X, such that p < pr, is
sufficient. Since II(-, Fp) is strictly quasiconcave, such a p exists only if Xy, = {p, pr,.}

where p < pgj < pr,. Lemma 4 then delivers p > p§ > p, as required.
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H Proof of Theorem 1: Free-learning equilibrium payoffs

We begin by noting that if (H, F) is a free-learning equilibrium and Fy is regular, B’s
expected utility is fﬁlw(v — Prp) dFp(v), which is a consequence of two facts. First,
Lemma 5 implies H puts a unit mass on pr,; that is, H = 1[17771:’1}' Second, full infor-
mation is always optimal for B when learning is costless, meaning her expected utility

in equilibrium must be the same as her expected utility under full information; that is,
1 _
Uo(l[z_)ﬂ'pal}’ F) = Uo(l[ﬁﬂ'pal}’ FO) = f7 (S - pﬂ'F) dFO(S)

Given the above, it remains to ng shown that a free-learning equilibrium, (H, F),
exists such that 7 = 7p if and only if 7 € [x,7g]. To do so, we first establish that
n <II(H, F) < g, whenever (H, F) is a free-learning equilibrium. Because & < II(H, F')
by definition of m, it remains to be shown that II(H, F) < mg,. To do so, notice that
because supp H C S(F'), we have by Lemma 3 that F/(p—) > Fy(p—) for every p € supp H.
Because H maximizes S’s profit, S’s profit must be the same from all prices in supp H.

We therefore have that for any p € supp H,
I(H, F) =1(p, F) = p(1 = F(p—)) < p(1 — Fo(p—)) =1lp, Fo) < 7R,

as required.

We now show that, for every m € [r,7g,], a free-learning equilibrium, (H, F'), exists
such that II(H, F') = w. Because the equilibrium payoff set is closed,*0 it is sufficient to
show every profit € (m,7,) can be generated by some equilibrium.*! Fix such a 7, and
define for ¢ € [0, 1] and ¢ € [m, 1] the following CDF":

G1,:00,1] = [0,1]
x — max{Gr¢(x), min{q, Fo(x)}}.

Our proof allows for non-regular priors. As such, we let [z, Z] = co(supp Fp). Below, we

prove the following lemma:

Lemma 8 A g* exists such that IGq*l > 0, with equality holding for some & € [r,Z] such
that GL (&) = Gr1(2) > ¢".

408ee footnote 28.

41 Alternatively, notice the vanishing-cost limit of Theorem 2 is a free-learning equilibrium that gives S
a profit of 7, whereas having B collect full information and S best respond is an equilibrium yielding S a

profit of 7F,.
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Before providing the lemma’s proof, we show how to use the lemma to obtain an
equilibrium. Take ¢* and Z to be as in the lemma. We explain how to find a t > & such
that G?:t is a signal. Let y = max{z € [z,7] : IG?:I () = 0}. Because IG?SI () =0
and Z € [7,z] C [z,Z], y > &. As such, z € [y, 1] implies G 1(x) > ¢*, and therefore,
GZ () = Gra(x). Thus,

IG?rTy(l) = A (Fo(S) - 1) ds S 0 S [G?:l(l).

Because z = [ ¢+ (1) is continuous, we have that a ¢t € [y, 1] exists such that IGq*t (1) =0.

It remains to be verified that G?:t is a signal. For x < t, G?:t(x—) = G?:l (z—), and so
IG?:t(x) = IGZT1 () > 0. For x > t,

x 1
g (0) = T (6) + / (Folts) = 1)ds > I (6) + / (Fo(s) = s = Ly (1) = 0.

Thus, G?:t is a signal. We now argue that (1[9%’1},61?;) is a free-learning equilibrium
yielding S a profit of 7. To do so, notice first that Gfrtt(ac—) > Gr1(x—) for all z, with
equality holding for x = & > w. Therefore, & € P(Gf:t), and

- =11(&,G ) = (&, CGry) = .

T e

Moreover, I g+ (¥) = I+ (£) = 0 by choice of & and in view of t > y > 2. Hence,
,t 1

ze S(IG?:t (2)), and so G , is optimal for B given 1j; ).

Hence, all that remains is to prove Lemma 8, which we do now.

H.1 Proof of Lemma 8
We first show that mean-preserving spreads increase the convex hull of a CDF’s support.
Lemma 9 Suppose F' = G. Then, co (supp F') 2O co (supp G).

Proof. Let [z,y] = co(supp F) and [w,z] = co(supp G), and suppose w < z for a
contradiction (the proof for z > y is analogous). Take € > 0 to be such that w + € < x.
Because w must be in G’s support, G(w + €) > 0. By contrast, F(w+¢€) =0 as w + € is
below F’s support. Because these observations are true for every e € (0,2 — w), we have
fogg Fds=0< fox G ds, contradicting that ' > G. =

Because the support of every signal is contained in [z, Z] = co(supp Fp) (by Lemma 9),
and a truncated Pareto signal exists that is associated with = (which follows from Theo-

rem 2), 7 > 7 > x. We now prove a useful lemma about G .
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Lemma 10 Ig, ,(x) > 0 for all x, with a strict inequality whenever x > x.

Proof. Note 7 > m implies G 1(s) < Ggi(s) for all s, with a strict inequality for

s > m > x. As such, for every = > z,
Ie. (x) = / (Fo— Gry) ds > / (Fo— Gps) ds > / (Fo - Gp) ds = I, (2) > 0,
0 0 0 - -

where the first inequality is strict whenever > . Because I¢, , (-) is continuous, we also
have that Ig, ,(z) > 0. =
Let
A={z e mz]: Gri(x) > Fy(z—)}.

Note A is closed in view of upper semicontinuity of G i(-) and lower semicontinuity
of z — Fy(x—). We now show A is non-empty. In particular, we show A D P(Fp),
which is non-empty due to upper semicontinuity of II(-, Fy). By Lemma 1 and 7 < 7,

P(Fy) C [mRy, 7| C [m, Z]. Moreover, for any x € P(Fp), m < mp, implies
Fo(:E*) = Gﬂ-Foyl(a?*) < Gﬂ-’l(a?*) < Gﬂ-’l(x).

That P(Fp) C A follows.
In view of the above, z* := min A is well defined. We now prove a ¢* exists such that

the minimal value of I qo* over A is zero.
7,1

Lemma 11 A ¢* < Fy(z*—) exists such that min I

*
q
G"‘rr,l

(A) = 0.

Proof. The proof is based on the Intermediate Value Theorem. To use this theorem, we

note that the mapping
T
(¢,2) = Iga (x) = / (Fo —G%,) ds
: 0

is continuous, being the difference between two continuous functions of (¢, z). As such,
g > min IGZJ(A) is continuous in view of the maximum theorem. Moreover,
min IG%I(A) = minlg, ,(A) > 0. In light of the Intermediate Value Theorem, it is
sufficient to find a ¢ > 0 for which min IG%I(A) < 0. To do so, note that because
Gri1(s) < Fy(s—) for all s < z*, we have that

IGf?l(’L)(x*) = /Om (Fo — max{Gpr 1(s), min{Fy(z*—), Fo(s)}}) ds

*

/Oz (Fop — max{Gr 1(s), Fo(s)}) ds = 0.
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Because 2™ € A, min I 5y (A) < I ry@=—) (2%) = 0. Thus, we have shown min I @) (4) <
,1 1 1

0 =min 0 1(A), as required. The proof is now complete. m

The next lemma assures us that Ggﬂ is not a signal only if it has too high a mean.

Lemma 12 For all x € [0,1], I

a*
C:7'r,l

(z) > 0.

Proof. Divide [0, 1] into three subintervals, [0, 7), [7,2z*], and (z*, 1], showing the desired
inequality holds for each at a time. We first show inf I 4+ ([0,7)) > 0. To see why, recall
,1

that 7 > z, meaning x < 7 only if G ;(z) =0. As such,’whenever x <,
Gg:l(:c) = max{0, min{¢", Fo(x)}} = min{q*, Fo(z)} < Fy(z).

Thus, IGfrfl (z) > [y (Fo—Fp) ds = 0 for all z € [0, 7). We now show min IGgr*l ([m,z*]) > 0.

Let x € [m,z*], and recall that G 1(s—) < Fo(s—) < Fop(s) must hold for all s < x by

choice of x*. As a consequence,
T (0) = /O Fo(s) — max{Gr1(s), min{q", Fo(s)}} ds
> / Fo(s) — max{Gr1(s), Fo(s)} ds
0513
= / Fy(s) — Fo(s) ds = 0.
0

We thus have that min I .+ ([0,2*]) > 0. To complete the proof that min I .+ ([0,1]) >0,
,1 ,1
suppose for a contradiction that x € (2%, 1] exists such that I o (z) < 0. Take
,1

ro € arg min I, (x) =arg min [ g, (o).
g:cE[O,l] G?r,l( ) gxe(z*,l] Gi,l( )

Because [+ () is right differentiable, we have that
7,1
0< I/Gq* (wo) = Fo(zo—) — Gr1(w0—),
m,1

in view of ¢* < Fy(z*) < Gri(z*). Therefore, Fy(zg) > F(zo); that is, zg € A, in
contradiction to min I 4+ (4) = 0. Thus, I o+ (z) >0 for all z. =
1 ,1
To conclude the proof of Lemma 8, notice that x € A only if G 1(z) > Fy(z—) >

Fy(x*—) > ¢*. Taking z1 € arg mingec 4 IGq*l (), we therefore have

Gf:l(xl) = max{Gr1(z1), min{q", Fo(z1)}} = max{Gr1(z1),¢"} = Gr1(z1).

Thus, 21 is in A C [r, 2], has I o+ (z) = 0, and satisfies Gf:l (x) = Gr1(x) > ¢*; that is,
,1 ’

our proof is complete.
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I Proof of Corollary 1: Pareto Payoff Ranking

We prove the corollary by showing p; is strictly decreasing in 7 over the interval |7, 7 g, ].
To see why this monotonicity is sufficient, recall that B’s free-learning equilibrium payoff
is equal to fﬁlﬂ(s — pr) dFp, where 7 is S’s profit. Hence, B’s utility decreases in S’s
price. If S’s price decreases with her profit, we find that higher profits correspond to
lower prices and therefore higher B utility. We now show p, decreases over the range of
feasible free-learning equilibrium profits. For this purpose, take any n < 7’ in [7, 7g,].
We prove p < pr by showing X, contains a price strictly larger than p,.. To find such

a price, we make two observations. First, because m < 7/, we have that

Fo(ﬁﬂ'/):Gﬂ'/,l(pT(,_):l_?/l <1- :Gﬂ,l(ﬁﬂ'/_)'

Second, because Fj is regular, Gr1(1—) =1—1/7 < 1 = Fy(1—). Combining the two
observations, we have that G 1(pr) — Fo(Pr) > 0 > Gr1(1 — €) — Fy(1 — €) for any
small positive e. Because the difference G — Fj is continuous on [0,1), we can apply
the Intermediate Value Theorem to find some p € (p,/, 1) for which Gr1(p) — Fo(p) = 0.
Therefore, p € X, meaning p, > p. We have thus concluded that p, > p > p,/, meaning

the higher profit level corresponds to a lower price, thereby proving the corollary.

J Proof of Proposition 1: Costly Learning Equilibria

We show supp H = supp F' = co(supp F'), meaning supp F' is a convex set over which S
is indifferent; that is, F' is a truncated Pareto. Because supp H C supp F' C co(supp F)
by Lemma 1, our task is to show co(supp F') C supp H.

Letting [w, z] := co(supp F'), we wish to show [w, z] C supp H. Suppose otherwise for
a contradiction; that is, [w,z] Nsupp H # |[w,z]. We show = < y in supp F exist such
that (z,y) Nsupp H = . To do so, we note supp H N [w, 2] is a closed set, meaning
[w, z] \supp H is open (in R), and so must contain a non-empty open subinterval of [w, z].
Let (x,y) be a maximal such subinterval with respect to set containment; that is, (z,y)
is such that (2/,7') Nsupp H # O for all (z',%') 2 (z,y).*? Because supp H is closed,
if © # w, then = € supp H; otherwise, (x — €,z 4+ €) C [w,z] \ supp H for all small

€ > 0, meaning (z,y) C (v — €,y) C [w, 2] \ supp H, a contradiction to maximality of

“20ne can find the subinterval (z,y) by fixing some (2’,y) C [w, 2] \ supp H, and taking the union of
all (z”,y") C [w, 2] \ supp H that contain (z',y").
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(z,y). An analogous argument gives y # z only if y € supp H. Hence, we have shown
x,y € {w,z} Usupp H. Because supp H C supp F' (Lemma 1) and {w, z} C supp F, we
thus have that x,y € supp F.

We now construct a family of deviations indexed by € > 0, F, and obtain a con-
tradiction by showing these deviations must be strictly profitable for B when € > 0 is
sufficiently small.

Fix a small € > 0, and note the following are all well defined due to x,y € supp F:

Fie=F(|s€lr—ex+¢€),
Fye=F([s€ly—ey+e),
Bre=Flx+e)—F((x—e)—) >0,
Bac=Fly+e)—F(ly—e—)>0

Moreover, take

F(|s¢[r—ey+e) if By >0,
FO,E =
arbitrary F' € A otherwise.
Clearly, F = Z?:O B eFie. Moreover, because x,y € supp F, both §; . and 3, are
strictly positive for all € > 0. Define

1

Se = 2/8 d(F17E+F276>,

Ne = min{/Bl,mBQ,ev 6} >0,
F: — BO,€F01€ + 7761[85,1] + (ﬁ176 - 0.5776)F17€ + (ﬁ276 - 0.5776)F27€.

In words, F; takes 0.57, mass from the e-ball around = and 0.57, mass from the e-ball
around y and pools them to create an n, > 0 mass on s.. Because 0.5(F ¢+ Fa¢) > 1[8671],
F? is less informative than F', which, in turn, is less informative than Fy. By transitivity
of the information ordering, Fp is more informative than F; that is, F* € A.

Let Tx(s) = [y (s —p) dH(p) denote B’s expected trade surplus conditional on signal

realization s. Below, we prove

. Ty

1 — d(F - F*) =0, 7
o ( ) (7)
lim <C(F€)_C(F)> <0, (8)
eNo Ne
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and so obtain the following contradiction to F' maximizing U, (H, F'),

C(Ee) - C(F)

€

W(H, F)—Ug(H, F} . T N
OSIimU( ) = Ul ):hm[/Hd(F—Fe)—FH

] <0, (9)
e\0 Ne e\ Ne Ne

hence completing the proof.
We now explain why (7) and (8) both hold. Because (x,y) Nsupp H = @, B’s trading

surplus from receiving a signal s € [x,y] is given by

Ta() = [ (=) dti) = [ (s=p) ) = H@)s— [ pane. 0

As such, Ty is affine over [z, y], and so (7) obtains as follows:

T
/H d(F — F*) = 0.5 (/ Ty dFi.+ /TH dF%) — Tr(se)

e
— 0.5Ty(x) 4+ 0.5Tx (y) — T (0.5z + 0.5y) = 0,

where convergence follows from continuity of Ty (:), se = 0.5(z +y), F1,e = 1[5}, and
Fye — 1p,1). We now use the latter three convergences to obtain (8). To do so, notice
these convergences imply

|FE — F

o = s = 05 (Fre+ Bog)l| = [[Losteryay = 05 (Lo + L) || = M.
€

As such, Fréchet differentiability of C' and strict convexity of cg over co(supp F) 2 [z, y]
yield

1wmm%ww=1Uwaw—m+ww—ﬂﬂ

Ne Ne
HFE*_FH |:O(HF€*—FH):|
Ne HFE* - FH

— ¢p(0.52 + 0.5y) — (0.5¢p(z) + 0.5¢p(y)) + M -0 < 0.

= /CF d [1[5571] —0.5 (Fl,e + FQ’E)] +

Thus, we have (7) and (8), which together yield the contradiction (9). The proof is now
complete.
K Proof of Theorem 2: Vanishing-Cost Equilibrium

Let {kn }n>0 be a strictly positive sequence that converges to zero, and take {(Hp, F},) }n>0
to be a corresponding sequence of equilibria. Because F and A are both compact,

{(Hy, Fy,)}n>0 can be seen as a union of convergent subsequences. Without loss, let
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one of these subsequences be the sequence itself, and let (Hs, Fio) € F X A be its limit.
To prove the theorem, it is sufficient to show (Hoo, Foo) = (1[p,.1], Gr)-

To this end, we first note that because B’s objective is a continuous function of
(k,H, F), B’s best-response correspondence is upper hemicontinuous in (x, H). There-
fore, Fro € argmaxpe 4 Up(Hwo, F'), meaning supp Ho, C S(F) by Lemma 2. That Hoo
is optimal for S against Fy, follows from upper hemicontinuity of S’s mixed-best-response
correspondence, F' + arg maxyer II(H, F).*3 Thus, the limit (Hy, Fio) is a free-learning
equilibrium. Because the Pareto signal set is closed and Fy is the limit of Pareto signals
(Proposition 1), we have that F, is itself a Pareto signal; that is, Fi,x = G for some 7
and t. Below, we argue 7 = m, and so t = . Clearly, maxII(-, G ;) = m. Therefore, the
free-learning equilibrium (Hy, Fio) = (Hoo, G 7) gives S a profit of 7. That Hoo = 15, 1
then follows from Lemma 5.

It remains to show that m = . Suppose otherwise; that is, 7 > 7. Because (Hoo, G t)
is a free-learning equilibrium, H is profit maximizing against G, and so supp Hs, C
supp Gr ¢ (by Lemma 1). We show below that B is strictly better off using G 7 against any
p € supp Gr;. It follows that Gr; cannot be optimal for B against H,, a contradiction
to (Hoo, Grt) being a free-learning equilibrium.

To show G 7 is a strictly profitable deviation for B, we first claim ¢ > ¢. Suppose
t <t for a contradiction. Then, G 7(s) > Gr(s) for all s € (z,t), and G, 7(s) = Gr ()
for all s € [0, 7] U [t, 1]. We therefore get the following contradiction,

o=/olsd(Gw,t—Gﬂ,o(s):/Ol(G ;
= [[(GuiGe0ts) as >,

where the first equality follows from both Gr; and G ; being signals, and the second
equality from integration by parts.

We now conclude the proof by establishing that Up(p, Grz7) > Up(p,Gr,y) for all

43See footnote 22.
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p € supp G+ = [, ], as shown below:

Uo(p, Grp) — Uo(p, Grt) = / ) 1](3 —p) A(Grz— Gryt)(s)
1
= / (Grt — Gri)(s) ds

-/ (Gt~ Gr)(s) ds - / (Gt~ G )(s) ds

4 - » B
:/ (GTrt__Gﬂ',t)(S) dS:/ 1_g d8+/ <7T 77) ds
o ™ s . s
p _
>/ <M> ds ZO,
T S

where the fourth equality follows from both G ; and G ; being signals. The proof is now

complete.
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Online Appendix

L Non-smooth Cost Functions

L.1 General Results

In this section, we prove our results go through for more general cost functions than
specified in the main text. For this purpose, let Lip denote the set of all Lipschitz
continuous functions from [0, 1] to R, and take C' : A — R, := R, U {oo} to be a proper

convex function. Given an F' € A, define the subdifferential of C at F' as
OC(F) := {(;5 € Lip: /gb d(F' = F)<C(F')-C(F)VF' ¢ .A}.

The goal of this section is to show our results hold as long as C satisfies the following

properties:
(i) C is lower semicontinuous.
(ii) Full information can be approximated at finite cost, Fy € cl C~1(Ry).

(iii) ¢ € OC(F) only if, for every z,y € supp F, and every a € (0, 1),
plaz + (1 - a)y) < ag(z) + (1 —a)d(y). (11)

Properties (i) and (ii) are required for replacing the continuity assumption implied
by Fréchet differentiability, whereas Property (iii) provides the appropriate relaxation of
Assumption 1 for non-differentiable cost functions. In particular, Fréchet differentiability
implies that the subdifferential is non-empty for all signals.** In general, a lower semi-
continuous and convex C' is guaranteed to have a non-empty subdifferential only over a
dense subset of its effective domain (Brgndsted and Rockafellar, 1965). By allowing the
subdifferential to be empty, Property (iii) can hold for cost functions that are not Fréchet
differentiable.

Below, we show Property (i) ensures an equilibrium exists, Property (ii) guarantees

the vanishing-cost limit of costly learning equilibria is a free-learning equilibrium, and

“For convex functions with an open domain, Fréchet differentiability also implies the subdifferential
is a singleton. Because 4 has an empty interior, OC(F') contains many functions, even under Fréchet
differentiability. For illustration, observe that if ¢ is in dC(F), so is s — ¢(s) + as for any a € R, because
[ s d(F" — F") =0 whenever F',F" € A.
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Property (iii) delivers Proposition 1. It follows that Theorem 2 holds as well. For an
explanation, recall that Theorem 2’s proof can be broken into three steps. First, as costs
vanish, the game’s equilibria converge to a free-learning equilibrium. Second, B’s signal
belongs to the closed class of truncated Pareto distributions, because this class contains
her signal when learning is costly. And third, a unique free-learning equilibrium exists
in which B uses a Pareto signal. As explained above, Property (ii) delivers the first fact,
whereas the second fact is implied by Property (iii). Finally, note the last fact does not
depend on B’s learning cost. It follows that Theorem 2 continues to hold as long as the
above-mentioned conditions are satisfied.

Before proving the above, we show Property (iii) follows from Assumption 1 when-
ever costs are Fréchet differentiable. To do so, we show the latter assumptions imply a
condition that is sufficient for Property (iii). This condition states that one can strictly
reduce the cost of any signal by approximating the slight pooling of any two distinct signal
realizations. Despite being less elegant than Property (iii), this condition is often easier

to verify. We now state the condition formally and show it implies Property (iii).

Condition 1 For any F € A, a € (0,1), and x,y € supp F such that © # y, a sequence
{Fy, My }n>0 exists such that M, € (0,00), F,, € A, F,, — F,

L
Mn (F — Fn) —1> (Ot].[LU + (1 - a)l[y,l] - 1[ax+(1fa)y,1}) ) (12)
and
lim inf M,, [C(F},) — C(F)] < 0. (13)

Lemma 13 Condition 1 holds for C' only if C' satisfies Property (iii).

Proof. Suppose ¢ € OC(F) for some F' € A. Since ¢ is Lipschitz, its derivative, ¢', is
well-defined up to a set of zero Lebesgue measure. Fix some distinct x,y € supp F and

some « € (0,1). Our goal is to show ¢ satisfies (11) if Condition 1 holds. To do so, let
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{Fy, My, }n>0 be a sequence delivered by the condition. Then,
0 > liminf M, [C(F,) — C(F)]

> lim inf Mn/ o d(F, — F)
z€[0,1]

= lim inf M, [F(z) — F(x)] do(z)
z€[0,1]

1
= lim inf/o &' (x)My[F(x) — Fy(z)] do

1
= /0 ¢ (x)[edpa) — (1 — @)Ly 1) — Ljags(1—a)y,1) de
= ¢(az + (1 — a)y) — ag(z) — (1 — a)d(y),

where the second inequality follows from ¢ € OC(F'), the first and last equalities from
integration by parts, the second equality from ¢ being Lipschitz (and therefore absolutely
continuous), and the penultimate equality from (12) and ¢’ being bounded (due to ¢ €
Lip). The proof is now complete. m

We now show Property (iii) is a relaxation of Assumption 1. To do so, we use As-
sumption 1 to show C satisfies Condition 1 by constructing a sequence similar to that

constructed in the proof of Proposition 1.

Claim 2 Let C' : A — Ry be a Fréchet differentiable function satisfying Assumption 1.
Then, C satisfies Condition 1.

Proof. Take any F' € A, a € (0,1), and two distinct x,y € supp F. We show C satisfies
Condition 1 by using an argument similar to that of Proposition 1. Specifically, we obtain
the sequence required for verifying Condition 1 by pooling neighborhoods of x and y.

Fix any small € > 0, define {Fi,eaﬁi7g}12:0 and 7, as in Proposition 1’s proof. Recall
from the proposition’s proof that ' = Z?:o Biekie Let

Seq = a/s dFic+ (1 - a) /s dFy.,

and define

Fea = BO,eFO,G + 7761[Se,a,1] + (ﬁl,e - ane)FLE + (62,6 - (1 - a)ne)FZf' (14)

Thus, F* takes an, mass from the e-ball around = and (1 — «)n, mass from the e-ball

around y and pools them to create an 1, > 0 mass on s, . Let us see that F™ is a signal.
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By construction, aFy ¢ + (1 — a)Fy) = 1j5 1. Noting that > is a transitive relation
that respects convex combinations delivers Fy = F > F&; that is, F* € A.

-1
Letting ng be such that F: 1/ is well defined, let F;, 1/( +n) and M,, = (771/(n0+n)> .

By construction,

M (Fn = F) =1, 1] = @F 1 ngn) = (1= @) Fo 1))
= Ljoot(1—ayy,1] — @l — (1 —a)lpyq.

Thus, (12) holds for {F,,, My, }n>0. It remains to show this sequence satisfies (13). Follow-
ing the argument that establishes (8) in Proposition 1’s proof with 0.5z + 0.5y replaced
by ax 4+ (1 — o)y and F1) (ng+n) TePlacing FZ delivers the equality

M, (C(F, — C(F)) = cr(az + (1 — a)y) — acp(xz) — (1 — a)er(y) <0,

where the inequality follows from Assumption 1. Thus, {F,,, M, } satisfies (13), meaning
C satisfies Condition 1, as required. m
We now proceed to showing Property (iii) delivers the conclusions of Proposition 1.

To show this result, we first prove the following trivial lemma.
Lemma 14 Let ¢ € C. Then, ¢ € OC(F) if and only if
FEargmaX/gb dF' — C(F"). (15)
F'eA
Proof. By definition, ¢ € C(F) if and only if the following holds for all F’ € A,

C’(F')—C’(F)z/gbd(F’— <:>/gz5dF C(F /gbdF' F.
We now use Lemma 14 to show Property (iii) implies the conclusions of Proposition

Proposition 2 Suppose C satisfies Property (iii) and let (H, F') be an equilibrium in the
Kk > 0 game. Then,

(i) supp H = supp F = co(supp F'), and

(ii) F is a Pareto signal.
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Proof. Suppose (H, F') is an equilibrium of the x > 0 game. As explained in the proof
of Proposition 1, it is sufficient to prove every x < y in supp F' admits some price in
between; that is, supp H N (z,y) # O whenever z,y € supp F. To prove this claim,

observe B’s objective can be written as
U.(H,F') = /TH dF’ — kC(F"),

where T (s) = [ max{s—p,0} dH is B’s expected trade surplus conditional on her signal

realization being s. Because F' maximizes U (H, ), it also maximizes
-1 N -1 / /
K UH(H,F)—//i Ty dF' — C(F"),

meaning, by Lemma 14, that x 1Ty € AC(F). Tt follows by Property (iii) that Ty
satisfies (11) for z, y and every a € (0,1). To conclude the proof, observe that if
supp H N (z,y) = O, then Ty is affine over [z,y] by (10), and so could not possibly
satisfy (11) for every o € (0,1). m

Knowing Property (iii) implies Proposition 1, we need to establish two facts to en-
sure our results continue to hold when C' satisfies Properties (i) through (iii). The first
fact is that a costly learning equilibrium always exists. The second is that every conver-
gent sequence of vanishing-cost equilibria attains a free-learning equilibrium as its limit.

Theorem 3 below proves the former.

Theorem 3 Suppose C satisfies Properties (i) and (i) (and so is lower semicontinuous

convex function differing from oo). Then, a k-equilibrium exists for all k > 0.

Proof. Because the x = 0 case is identical to the main paper, it remains to show existence
for the case in which x > 0. By Property (ii), without loss of generality, we can assume
inf C(A) = 0.

Let UM(H, F) := max {U,(H, F), M} for some M < 0. Note UM is upper semicontin-
uous and quasiconcave because it is a composition of a continuous and increasing function
on a concave and upper-semicontinuous function. Consider the game in which S’s action
set equals F, B’s action set is A, and the player’s payoffs are given by II and UM. We
prove the modified game has an equilibrium, after which we show that this equilibrium
corresponds to an equilibrium of the original game.

We prove the modified game has an equilibrium by using Corollary 3.3 of Reny (1999).

Both UM and II are quasiconcave, lie in [M, 1], and are upper semicontinuous over F x A,
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which is a compact subset of a topological vector space. Thus, this game is compact,
quasiconcave, and reciprocally upper semicontinuous. To show existence, it is therefore
sufficient to show the game is payoff secure.

Fix any (H,F) and € > 0. Since Uy is continuous in H, F' secures a payoff of
Ui (H,F) — € from Ug(H, F) (otherwise, one can find a sequence H, — H such that
Uy (Hy, F) does not converge to Uy, (H, F')), and so B can secure max{U, (H, F))—e, M'} >
UM(H,F) — ¢ from UM(H, F) using F. To show S can secure II (H, F), take H, to be
the distribution of max {p — ¢,0}, where p is drawn according to H. Note that for any

sequence {F),},>0 that converges to F,

liminf II(H, F,,) > liminf [ (p—€)[l — F,(p — €)]dH(p)

n—oo n—oo
> lirginf /p[l — Fo,(p—e¢)]dH(p) — ¢
> / liminf {1 — Fy(p — e)]dH (p) — ¢

> / Pl — F(p— e)dH(p) — ¢

> [ bt~ F)IdHEp) - e =11(HF) -

where the first inequality follows from max {p — ¢,0} > p — ¢, the second inequality from
{s >p—¢€} C {s>p— e} and probabilities being less than 1, the third inequality from
Fatou’s lemma, and the fourth inequality from the Portmanteau theorem. Thus, the
modified game is payoff secure and therefore has an equilibrium.

We now show any equilibrium of the modified game must be an equilibrium of the
original game. To do so, let (H, F') be an equilibrium of the modified game. Clearly S
is best responding, because his objective is the same in both games. To see that B best
responds, let F' be such that C(F) = 0 = inf C(A) (observe F exists because C is lower
semincontinuous), and note UM (H,F) = U,(H,F) > 0, and so M < 0 < U.(H,F) <
UM(H,F) = U.(H, F) due to F being optimal in the modified game. Combined with
UM > U,, F being optimal in the modified game also implies U, (H, F) = UM(H,F) >
UM(H,F') > U.(H,F") for all I’ € A. In other words, F' maximizes U, (H,-) over A.
Thus, (H, F) is an equilibrium of the original game. m

To conclude this section, we show the limit of every convergent sequence of
k-equilibria with £ — 0 is a free-learning equilibrium. In doing so, we complete the

task of showing our results hold for all cost functions satisfying properties (i) through

(iii).
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Lemma 15 Suppose C satisfies Property (ii). Let {kp}n>0 be such that k, 0, and
take {(Hpy, Fy) }n>0 to be a convergent sequence of ky-equilibria attaining (Hso, Foo) as its

limit. Then, (Hso, Fxo) is a free-learning equilibrium.

Proof. Because S’s best-response correspondence is upper hemicontinuous (Lemma 7),
H,, maximizes S’s profits when B’s signal is Fi,. To prove F,, maximizes Uy(Hco, ),
we show below that every ¢ > 0 admits an F, such that C(F,) < oo and Uy(p, Fe) >
Uo(p, Fo) — € for all p € [0,1]. Therefore,

Uk, (Hyp, ) > Uy, (Hy, Fe)
= Uo(H,, F.) — nC(F)

> /Uo(p, FO) —edH, — HnC(Fe)
= U()(Hn, FQ) — € — HnC(FE) — UQ(HOO, FQ) — €,

where the second equality follows from Uy(H,F) = [ [ max{s — p,0} dH(p) dF(s) and

Fubini’s (or Tonelli’s) Theorem. Recalling that Up is continuous then delivers
UO(HOO) Foo) = lim UO(Hna Fn) > UO(HOO) FO) — €
n—oo

for all € > 0. Therefore, Uy(Hco, Foo) = Up(Hoo, Fp), meaning Fi, is optimal for B against
H, when learning is free.

Hence, all that remains to show is existence of F, as above. Fix any € > 0. Because Uy
(viewed as a function over [0, 1] x \A) is a continuous function with a compact domain, it
is also uniformly continuous. Therefore, a § > 0 exists such that |Uy(p, F') —Up(p, Fo)| < €
holds for all p € [0, 1] whenever ||F'— Fy|| < ¢. Existence of F, then follows from Property
(ii), which asserts that a sequence { Fy,, } ;>0 converging to Fy exists such that C'(F,;,) < oo

for all m. The proof is now complete.

L.2 Posterior Separable Costs

This section shows our results hold when B’s learning costs are posterior separable (Caplin
et al., 2017). Whereas in our model we formalized B’s signal choice using the distribution
of her posterior mean, to describe posterior separable costs one must model information
acquisition using the distribution of B’s posterior belief. After introducing the posterior-

belief framework, we present the definition of posterior separable costs, and show these
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costs satisfy Properties (i), (ii), and (iii) from the previous section. Because these prop-
erties are sufficient for our results, our conclusions hold for posterior separable costs as
well.

A few preliminary definitions are in order. Given a compact metrizable set X, let AX
be the set of all Borel probability measures over it equipped with the weak* topology.
When X is also subset of a locally convex space, one can define the barycenter of any
¢ € AX as the unique element z € ¢o6(X), such that f(z) = [ f d¢ for every continuous
linear functional on X. We denote this barycenter by F£. As this notation suggests,
F¢ = [ 2 d¢ whenever X C R.

We now proceed with describing the posterior-based approach for modeling B’s in-
formation acquisition. Our presentation is terse. For a more complete and extensive
presentation, see a standard reference (e.g., Kamenica and Gentzkow, 2011). Taking
V =10,1] to be the set of possible valuations B may have, a belief for B is member u of
AV. Tt is well known that AV is isomorphic to F, with each F' having a unique pup € AV
such that F'(x) = p[0, ] for all z. We denote B’s prior by 5 = p1g,. B updates this prior
upon observing a signal realization to obtain her posterior. Thus, every signal structure
induces a distribution for B’s posterior belief, p € AAV. As noted by the literature, (e.g.,
Aumann and Maschler, 1966; Benoit and Dubra, 2011; Kamenica and Gentzkow, 2011) p
describes the distribution of B’s posterior following some information structure if and only
if it attains B’s prior as its mean; that is, Ep = ug. We let R = {p € AAV : Ep = py}
be the set of all such distributions over posteriors, and refer to elements of R as random
posteriors. Thus, letting B choose a random posterior is equivalent to letting B use any
signal structure to learn about her valuation.

To understand the connection between the random posterior framework and our mod-
eling approach, recall only the mean of B’s belief matters for her trade outcomes. In other
words, B’s purchasing decision and resulting surplus is the same for all beliefs that share
the same expectations. As such, without loss, we can replace every belief y with its

expectation, Fu, and replace p with its induced distribution over means,

Fy(z) =p{p: Ep < a}.

As explained in the main text, it is well-known (e.g., Gentzkow and Kamenica, 2016)
that F' = F), for some p € R if and only if ' € A.
Next, we define posterior separable costs, and explain how such costs can be mapped to

our way of modeling costly learning. A cost function C : R — R is posterior separable
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if a continuous, strictly convex function ¢ : AV — R, exists such that C(p) = [¢(u) dp.
Given a v, one can obtain the cost of a particular posterior mean distribution F' by finding

the cheapest random posterior that induces it. Specifically, let
R(F)={peR:F,=F}

be the set of random posteriors inducing F' € A as its mean distribution. Then the cost

of each F' € A is given by the cheapest random posterior generating it,

Cy(F) = min /1/) dp.

PER(F)

Note the above minimization problem is well-defined because R(F') is compact valued. In
fact, one can show R(-) is a Kakutani correspondence over A, that is, an upper hemicon-
tinuous correspondence whose values are non-empty, compact, and convex.

In what follows, we argue Cy, satisfies properties (i) through (iii). Two of the three
properties are immediate: Property (i) follows from Berge’s theorem (e.g., Lemma 17.3
in Aliprantis and Border, 2006), whereas Property (ii) follows from 1 being continuous
and therefore bounded on AV. Thus, showing Property (iii) is all that remains.

To show Property (iii), we prove Cy satisfies Condition 1. Thus, fix some F' € A,
a € (0,1), and distinct =,y € supp F. Consider the sequence {F,,, M,,} constructed in
the proof of Claim 2. Given the claim’s proof, we only need to show (13). To do so, we

fix some p € arg min,cg(r) and construct a sequence p, € R(Fy) such that

liminan/w d(pn, —p) <0.
It follows that
lim inf M,, [Cy(Fy,) — Cy(F)] < liminf Mn/w d(pn, — p) <0,

meaning {F,,, M, }, satisfies the desired inequality.
We now construct the sequence {py, }n>0. Recall that I, = F¢, where ¢, = 1/(no+n)
for some sufficiently large ng so that {f; ., }n>0,=0,1,2 and 7, are strictly positive, and

{Fi e, }n>0,i=0,1,2 are all well defined. For every n > 0, partition AV into three sets:

Dy, ={necAO:Epn¢r—en,r+e]Uy—en,y+enll,
Di,={neAO:Epcr—enx+e,)}, and
D2,n:{M€A@:El~L€ [y_€n7y+€n]}'
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By choice of ng, p(D;n) = Bie, > 0 for all i and n. One can therefore decompose p into

three probability measures, p = Z?:1 P(Din)pin, where p; ,, are defined via

1Di,n
p(Di,n)

Notice Fj,,, = Fie,. Moreover, passing to a subsequence if necessary, we may assume

dpi,n = dp-

each p; , converges to some p;, where p; # p; for any ¢ # j. Letting n,, := 7, , we can use

the above decomposition to define p,, as

Pn =D = Np(ap1n + (1 = a)p2n) + 100 E(apr pt+(1—a)pan)s

where 0, € AAV denotes the probability measure putting mass 1 on p. It is straight-
forward to show F), = F}; that is, p, € R(F,). Finally, recall n, = 7., = 1/M,,

meaning

lim inf M / ¥ d(pn —p) = / % A(OB(aprn+(1-a)pan) — @PLn — (1 = @)p2n)
— lim nf [w(E(aan +(1-a)pen)) —a / ¥ dpin — (1 - a) / ¥ dpg,n]
— p(E(aps + (1 — a)ps)) — 04/1/1 dpr — (1 - a)/w dps < 0,

where the inequality follows from strict convexity of ). The proof is now complete.

M Random Production Costs

This section extends our model to the case in which S’s production cost is random. Thus,
suppose S’s production cost is given by a random variable, m, distributed according to a
full-support CDF, H™ € F. Given production cost m, a price p, and a B signal F, S’s

profit is now given by
I1:0,1] x [0,1] x F - R
(p,m, F) = (p —m)(1 - F(p—)).
For analytical convenience, we describe S’s strategy space via distributional strategies
(Milgrom and Weber, 1985). Recall that a behavioral strategy for S maps every cost
realization to a distribution over prices. Each such strategy generates a joint distribution

for S’s price, p, and S’s cost, m, whose marginal CDF over the cost coordinate is H™.

The set of all such joint distributions, which we denote by H, is the set of S’s distributional
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strategies. As noted by Milgrom and Weber (1985), using distributional strategies rather
than mixed strategies neither increases nor reduces the model’s generality. Indeed, we can
see every H € H is generated by some behavioral S-strategy, meaning that the mapping
from behavioral strategies to H is surjective. This mapping is also injective, at least up
to an H™-almost sure equality*®: two behavioral strategies generate the same H € H if
and only if they are H™-almost surely equal. We therefore use H as S’s strategy space.
Given an S strategy H € ‘H, we use HP to denote its marginal distribution over prices,
HP™ . R — F to denote a version of H’s conditional price distribution given S’s cost
realization, and write HP™(p|m) := HPI™(p)(m). Given a m € (0, 1], we also write

HPI™(|m < 1) := [H™ (m—)] " / HPI™ (|m) dH™(m)

m<m

to denote the price distribution conditional on m being strictly below m.

We abuse notation and let
W(HF) = [ 11, F) dH(pm)

denote S’s expected profits given a strategy profile, (H, F'). B’s utility given x > 0 is as
before,
Uc.(H,F) = /max{s —p,0} dHP(p) dF (s) — C(F).

A k-equilibrium is a profile, (H, F') € H x A such that

1. H maximizes II(-, F') over H;

2. F maximizes U, (H,-) over A.

As before, we let £, denote the set of all k-equilibrium profiles. In addition, let U, be
the set of k-equilibrium payoffs.

When B uses a signal whose support lies below S’s cost, the best S can do is obtain zero
profits. In such cases, prices below S’s cost may be optimal, because they lead to no trade.
The possibility of S using such weakly dominated prices creates technical difficulties. In
particular, such prices can result in S’s best-response correspondence violating upper
hemicontinuity. To circumvent this difficulty, we often concentrate on the set of equilibria

in which S’s strategy is not dominated. Specifically, we focus on the set £}, which is all

45We occasionally abuse terminology and identify CDFs over [0,1]™ for any n with their induced Borel

probability measures.
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r-equilibria such that S’s price is above his production cost almost surely; that is, &
consists of all (H, F') € & such that supp H C {(m,p) : p > m}. Similarly, let U be the
set of all payoffs attainable via an equilibrium in which S’s price is always above his cost,
that is, all equilibria in &£;.

The next section proves & is non-empty, and so an equilibrium exists. Moreover, we
establish that £ is sufficient for discussing the player’s possible equilibrium payoffs. In

other words, we show U} = U,.

M.1 Equilibrium Existence

In this section, we prove an equilibrium always exists, and that the equilibrium corre-

spondence taking x to equilibrium strategy profiles and expected values is closed.
Observe that B’s objective is still continuous in (H, x, F') and concave in F', and so B’s

value function remains continuous, and her best-response correspondence is Kakutani.
We now turn to proving a Berge-like maximum theorem for S. To do so, we first

observe a certain semicontinuity of S’s expected profit.
Lemma 16 II is upper semincontinuous for all (p,m, F') such that p > m.

Proof. Take {(pn, mn, Fy)}n>0 to be a convergent sequence whose limit (poo, Moo, Foo)

satisfies poo = Moo. We show
lim sup H(Pm Mn, Fn) < H(poo’ Moo, Foo)
by separately considering two cases. Suppose first poo = Moo. Then,

H(pn, M, Fr) = (Pn — mp)(1 = Fo(pn—)) < [(pn — mn)| = 0 = I(poc, Moo, Foo)-

Suppose now that po > me. In this case, p, > m,, for all sufficiently large n. Moreover,
fixing any continuity point pj € (Poc — 1/k, poc) of Fis (which exists because Fy, can have
at most countably many discontinuities), one has p, > pj for all n large. Hence, for all

sufficiently large n,
H(pnymna Fn) = (pn - mn)(l - Fn(pn_)) < (pn - mn)(l - Fn(p;g_))
— (poo - moo)(l - Foo(p;c))
< (Poo — Moo) (1 = Foo(Poo — 1/K)),

where the convergence follows from pj being a continuity point of Fi. Observing that

Foo(Poo — 1/k) = Foo(pso—) as k — oo completes the proof. m
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Using the previous lemma, we now show S’s maximal profit,

7 [0,1]x F—=R

(m, F) — sup II(m,p, F),
p€(0,1]

can be attained by some price p > m. Observe II < 1, and so 7* is finite.
Lemma 17 Every (m, F) admits a p € [m, 1] such that II(p,m, F) = 7*(m, F).

Proof. Observe first that 7*(m, F) > 0, because II(m,m, F') = 0 for all (m, F'). More-
over, p = m attains 7*(m, F') whenever 7*(m,F) = 0. Thus, only the case in which
m*(m,F) > 0 remains. Because [0,1] is compact, a sequence {p,},>0 exists attaining
some ps € [0,1] as its limit such that H(p,,m,F) — 7*(m,F). That #*(m,F) > 0
implies II(p,, m, F') = (p, — m)(1 — F(p,—)) > 0 for all large n, meaning po, > m. To
complete the proof, apply Lemma 16 to obtain

7*(m, F) = limI(p,, m, F) < (pso,m, F) < 7*(m, F),
n

where the last equality comes from the definition of 7*. m
The above lemma implies 7*(m, F') = max,¢(o,1) [l(p, m, ') = max,¢)y, 1) [L(p, m, F).

Moreover, the correspondence

P*:0,1]x F=R

(m, F) — arg max II(p,m, F),
pE[m,1]

taking (m, F) pairs to the corresponding profit-maximizing prices above m is non-empty.
By Lemma 16, P*(m, F') is closed valued, and so is compact valued by virtue of being

bounded. Next, we show some continuity properties of 7* and P*.
Lemma 18 7* is continuous and P* is upper hemicontinuous.

Proof. Let {(my, F,,) }n>0 be some sequence in [0, 1] x F attaining (meo, Foo) as its limit.

We begin by showing 7* is continuous. Recall 7*(my, [},) = maxye(m,, 1 LD, mn, ),
and that II is upper semicontinuous over the graph of the correspondence m +— [m, 1]
(by Lemma 16). Because this correspondence is continuous (and so upper hemicontin-

*

uous), 7* is upper semicontinuous (Aliprantis and Border, 2006, Lemma 17.30). As

such, it suffices to show 7* is lower semincontinuous; that is, liminf, o 7" (mpy, Fy,) >
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(Moo, Fixo). Observing 7*(my,, ) > I(my,, my,, F,) = 0 delivers this inequality when-
ever ™" (Moo, Foo) = 0. Therefore, suppose 7 (Mmoo, Fiso) > 0, and take any p € P(mo, Fixo).
Then, for all small € > 0,

7T*(Wlna Fn) > H(p — €,Mp, Fn) > (p —€— mn)(l - Fn(p - E))
In particular, the above holds for € € (0,p — mo). Therefore,
liminf 7% (¢, Fy) > liminf(p — € — my, ) (1 — F,(p — €))

n

= (p—€—mu)liminf(1 — F,(p —¢€))
n

> (p—€—moo)(1 = Foo(p—€)) = (p — moo)(1 — Fos(p—)) — €,
where the second inequality follows from the Portmanteau theorem. Taking € > 0 above
to be arbitrarily small delivers the desired inequality.

We now show P* is upper hemicontinuous. To do so, we take any convergent sequence

Pn € P*(my, F,,) attaining ps as its limit. Observe p,, > m,,, and $0 poo > M. Moreover,
because II is upper semicontinuous over the graph of m +— [m, 1] and 7* is continuous,

7r*(n‘bomFoo) = hmﬂ'*(man) = limsupH(pn,mn,Fn) < H(pommomFoo) < 7"'>|<(77”Lc>o;F1oo)
n

n
Thus, II(Poos Moo, Fio) = T (Moo, Foo) and poy > Moo, that is, peo € P* (Moo, Foo). B
Next, we use upper hemicontinuity of P* to show S’s undominated best-response

correspondence,

H* F=2H
F— {H € H :supp H C graph P*(-, F)},

is upper hemicontinuous, too. Since H is compact, it is enough to take any sequence
{F,}n attaining some F, as its limit, and any H,, € H*(F,,) such that H,, — H, and
show supp Hs C graph P*(-, F). Now, on the one hand, supp(-) is lower hemicontin-
uous, and o (Poo, M) € supp Heo only if we can pass to a subsequence that admits a
(pn, my) € supp H, for every n such that (pn,m,) = (Poo, Moo). On the other hand, P*
is upper hemicontinuous, and so p, € P(my,, F,) implies po € P(m, Fo). Therefore,
(Poos Moo) € supp Heo, only if poy € P(Mmuo, Fio); that is, Hy € H*(Fx), as required.

We are now ready to show an equilibrium exists.

Theorem 4 & is non-empty for all K > 0.
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Proof. The result follows from Kakutani’s fixed-point theorem. To see how to apply the
theorem, observe that, because B’s object is continuous and concave, her best-response
correspondence, A*(H) := argmaxpe 4 Ug(H, F'), is non-empty, compact valued, convex
valued, and upper hemicontinuous. As for S, we have already shown #*(-) is non-empty
and upper hemicontinuous. It is also convex valued (because S’s objective is affine in
H) and compact valued (because II(-,-, F') is upper semicontinuous over the relevant
range). Thus, Kakutani’s fixed-point theorem applies to the correspondence (H,F) =
H*(F) x A*(H), delivering an equilibrium. =

The above also delivers that the graphs of both x — & and k — U} are closed. Next,

we show & is sufficient for analyzing the player’s equilibrium payoffs.

Lemma 19 Let (H,F) € &;. Then, a H* € H exists such that (H*, F) € £%. Moreover,
(H,F) and (H*, F) yield the same payoffs to both players, and so U} = U,.

Proof. Take any (H,F) € &\ &:. We find a H* € H such that (H*,F) € &,
U.(H*,F) = Uy(H,F) and II(H*,F) = II(H,F). To construct H*, we replace every
losing price with a price of 1. Clearly, this replacement can only increase S’s profits.
Because H was optimal against F', H* must be optimal against F' as well. As for B,
note this replacement results in a first-order dominance increase in S’s price distribution,
and so weakly reduces B’s utility across all signals. B’s utility from F', however, remains
unchanged: because H was optimal against F', B must never accept any losing prices
under F', and so replacing these prices with 1 does not change B’s trade surplus from F'.
In other words, we have U, (H*,F) =U,(H,F) > U.(H,F') > U,(H*, F') for all F’ € A.
It follows that (H*,F) is a k-equilibrium attaining the same value to both players as
(H, F), and such that S’s prices are always above his costs, namely (H*, F) € £:. The
proof is now complete. m

An implication of the above results is that the correspondence k — U, is closed, a

fact that we use when analyzing the case of vanishing learning costs.

M.2 S’s Best Response

This section develops several lemmas regarding the set of profit maximizing prices. Whereas
many of these results are known, we record them here for completeness. We begin by

noting S’s objective exhibits increasing differences in costs.
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Lemma 20 If m >m' andp > p/,
(p,m, F) —1I(p',m, F) > (p,m’, F) — TI(p',m/, F).
Moreover, if F(p—) > F(p'—), the inequality is strict.

Proof. Consider m > m/ and p > p’ as above. Then,

I(p,m, F) =1(p',m, F) = (p—m)(1 = F(p—)) = (o' =m)(1 = F(p'~))
=p(1—F(p—-)) —p'(1 = F(p')) + m(F(p—) — F(p'-))
>p(l = F(p—)) —p' (1 = F(p')) +m/(F(p—) = F(p'-))
= (p,m’, F) = 1(p/, m/, ),

where the inequality is strict whenever F(p'—) > F(p—), as required. ®

We now use the above lemma to show S’s best response is increasing in its costs.

Lemma 21 Suppose p € P(m,F) and p' € P(m/,F). Then, pVp € P(mV m/ F)
and p ANp' € P(m Am',F). Moreover, if F(p—) # F(p'—) and m # m’', then either
pVp ¢ PlmAm' F)orpAp ¢ P(mVm' F).

Proof. Without loss, assume m > m/. Clearly, the lemma holds if m = m/. Suppose

m > m’. By Lemma 20,
H(p\/p/,m, F) - H(p/\plava) > H(p\/p/,m’,F) - H(p/\p/’m/’F), (16)

where the inequality is strict whenever F(p—) # F(p'—). Suppose now that p vV p’ ¢
P(m,F). Then pV p' € P(m/,F) and p Ap' € P(m,F). In this case, (16) delivers
M(pVvyp',m,F)>T(pAp',m,F), and so pVp' € P(m, F), a contradiction. An analogous
argument establishes p A p’ € P(m/, F).

Finally, note that if F(p—) # F(p'—), Lemma 20 says that the inequality in (16)
is strict. Hence, if pV p' € P(m/,F), then II(p V p',m, F) > TI(p A p’,m, F); that is,
pVyp € P(m/',F) only if pAp' ¢ P(m, F). Taking the contra-positive then delivers that
pAp € P(m,F)onlyifpvyp ¢ P(m',F). m

We now point out an unrelated fact: dominated prices are never optimal for S when

the maximum of F’s support lies above his costs m.

Lemma 22 If maxsupp F' > m, then P(m,F) = P*(m,F) and 7*(m, F) > 0.
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Proof. Let z = maxsupp F. If £ > m, then a p € (m, Z) exists such that F(p—) < 1,
and so II(p,m, F) > 0 > II(p/,m, F') for all p’ < m. It follows that P(m, F') C (m,1], and
so equals P*(m, F'), as required. m

Next, we generalize the result from Lemma 1: for production costs that attain a

strictly positive profit, a price p is optimal only if it is in the support of B’s signal.
Lemma 23 Ifp € P*(m, F) and 7*(m, F) > 0, then p € supp F.

Proof. Together, p € P*(m, F) and 7*(m, F') > 0 imply p > m. Moreover, p € P*(m, F)
implies that, for all p/,

(p—m)(1—F(p—)) =I(p,m,F) > I(p',m,F) = (o —m)(1 — F(p'-)).

Therefore, since p > m, it follows that if p’ > p, then 1 — F(p'—) < 1 — F(p—). In other
words, F'(p'—) > F(p'—). Because p’ was an arbitrary price above p, p € supp F follows.
[

We conclude this section by showing that, for F' € A, the bottom of HP’s support is

always a best response for S when he faces zero costs.
Lemma 24 Suppose F' € A and that H € H mazximizes I1(-, F') over H. Then,
minsupp HP € P*(0, F).

Proof. Let p, = minsupp HP. Then p, € P(m, F) for some m € [0,1]. If m = 0, we are
done. Suppose then that m > 0. Take any m’ € (0, m) strictly smaller than . We argue
below that p, € P*(m/,F). Because m’ is arbitrary, p. € P*(0, F) follows from upper
hemicontinuity.

To show p. € P*(m/,F), we show p, € P(m/,F). This inclusion is sufficient be-
cause m’ < ¥ < maxsupp F (where the latter inequality follows from F € A), and so
7*(m/,F) > 0 and P*(m/, F) = P(m/, F) by Lemma 22.

For a contradiction, suppose p. ¢ P(m/, F)). We claim that P(m”, F') C [0, p,) for all
m” < m’, and so HP(p.—) > H™(m'—) > 0, delivering the contradiction minsupp HP <
ps« = minsupp HP. Towards this goal, note Lemma 21 implies P(m/, F) C [0,p,): ifap €
P(m/,F) N [ps,1] exists, then Lemma 21 would imply p. A p =
psx € P(m/,F), because m’ < m. Recalling that P(m/, F) is non-empty, one can then
find a p € P(m/, F) N[0, ps«). Using this p, one can apply Lemma 21 again to obtain that
P(m",F)N|[ps,1] € P(m/, F) N [ps, 1] = & for any m” < m/, concluding the proof. m
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M.3 Free Learning

The goal of the current section is to characterize the set of free-learning equilibrium pay-
offs when S faces random production costs. The section has three main results. Propo-
sition 3 describes the players’ strategies in a free-learning equilibrium, showing they can
be parameterized by the price that S charges under free-production. S charges this price
whenever m is such that he would have charged a lower price under perfect learning, and
the CDF of B’s signal above this price agrees with the value distribution. For higher
values of m, S sets the same price as he would under full information. Our second main
result is Theorem 5, which notes S’s free-production price in this equilibrium determines
S’s payoff conditional on production being free, which in turn is sufficient for determin-
ing both players’ equilibrium payoffs. Finally, Corollary 2 points out that both players’
ex-ante payoffs are increasing functions of S’s profit under costless production, implying
all free-learning equilibria are strongly Pareto ranked.

We begin by noting that, because of regularity, S has a unique profit-maximizing
price for every cost when B learns perfectly. Moreover, this price is an increasing and

continuous function of S’s costs.

Lemma 25 For every m € [0,1], a po(m) > m ezists such that P(m, Fy) = {po(m)}.

Moreover, viewed as a function, pg is increasing and continuous.

Proof. Define

- LR
po(m) :=sup{p € [0,1] : p o) < mj},

which is obviously increasing. Because Fj is regular, p < (>)po(m) if and only if

m>(<)p—7l_F0(p).

fo(p)

Note, however, that

Therefore, II(-,m,Fp) is strictly increasing on [0, po(m)
(po(m), 1]. Tt follows that P(m, F) 1 (0, po(m)) U (po(m),
{po(m)} because P(m, Fp) is non-empty.

) and strictly decreasing on
1]) = @, meaning P(m, Fj) =

Finally, note maxsupp Fyp = 1 > m, and so P(m, Fy) = P*(m, Fp) for all m < 1.
Because P* is upper hemicontinuous and upper hemicontinuity reduces to continuity for
singleton-valued correspondences, po(-) is continuous on [0,1). Continuity at 1 follows

from noting po(m) € [m, 1] for all m, and so m,, — 1 implies po(my) — 1 =po(1l). m
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The following lemma generalizes a conclusion mentioned in the main text to the
random-production-cost case. Specifically, the lemma points out that in a free-learning
equilibrium, S’s profits are below his profits under full information for H™-almost all

costs.
Lemma 26 If (H,F) € &, then m*(m, F) < ©*(m, Fy).

Proof. By Lemma 2, supp HP C S(F), and so F(p) = F(p—) = Fo(p) for all p € supp HP
by Lemma 3. Because supp H C graph P(-, F') by optimality, it follows that for H™-every
m, the following holds for every p € suppHPI™(-|m):

7 (m, F) =(p,m, F) = (p—m)(1-F(p—)) = (p—m)(1-Fo(p)) = Il(p, m, Fy) < 7" (m, Fp),

as required. m
Next we note that if a CDF lies above (below) B’s CDF at some point, it must do the
same for a small neighborhood above it. The result follows rather directly from continuity

of Fy and CDF's being right continuous.

Lemma 27 If F € F is such that F(x) > Fy(z)(F(x) < Fy(z)) at some x € [0,1], then

ay > x exists such that the same holds for every x’ € [x,y].

Proof. We prove the lemma for F(x) > Fy(x). The proof for the other inequality is
analogous. For a contradiction, suppose no such y exists. Then, one can find a decreasing
sequence z, \, x such that F(z,) — Fy(zy,) < 0 for all ,,. By continuity of Fy and right
continuity of F, it follows that 0 > lim,, F'(z,,) — Fy(zy) = F(x) — Fo(x), a contradiction.
]

Using the above lemma and preceding results, we now show B’s signal in a free-learning
equilibrium equals her value distribution for all values above S’s minimal price. Before we
state the lemma, recall that given a 7 € [0, 7*(0, Fp)], pr denotes the highest price yielding

a zero-cost S a profit of T when B learns perfectly,

Pr = max{p : I(p,0, Fy) = 7}.

Lemma 28 Let (H,F) € &. Let p, = minsuppHP. Then px = pre(o,p) and F(x—) =
F(z) = Fy(x) for all x > p.
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Proof. Suppose (H,F) € &. By Lemma 24, p, € P*(0, F). Because p. € supp HP, it
follows from Lemma 2 that p, is F-separating. Lemma 5 then implies p. = pr« (o, F).46
Appealing to Lemma 3 then delivers that F(p.—) = F(p«) = Fo(p«).

We now establish that F'(z) > Fy(z) for all z > p.. Suppose, for a contradiction,
that an = > p, exists such that F(x) < Fy(x). By Lemma 27, a y > x exists such that
F(p') < Fo(p') for all p' € [2,y]. Now, observe that & > p« = pre(o,r) > po(0), and so
o 7, y] is a non-trivial interval, [min py*(z), max py*(y)], by Lemma 25. In particular,
Do Yz, y] is a set of positive H™-measure. Observe, however, that every m € Do Uz, ]

satisfies

I(po(m), m, F') = (po(m) —m)(1 — F(po(m)—))
> (po(m) —m)(1 — Fo(po(m)))
= Il(po(m),0, Fy) = 7*(m, Fy),

a contradiction to Lemma 26. It follows that F'(z) > Fy(z) for all x > p,.
To conclude the proof, suppose F(z) > Fy(x) for some =z > p,. Then Lemma 27
delivers a y > x such that F(s) > Fy(s) for all s € [z,y]. Evaluating the mean-preserving-

spread constraint at y then gives

)
Ir(y) = Ir(p) + / (Fo — F)(s) ds
= /y(Fo — F)(s) ds

< /y(FO _ F)(s) ds < 0,

where the second equality follows from p, being F-separating, the first inequality from
Fy(s) < F(s) holding for all s > p,, and the last inequality from choice of y. Thus,
Ir(y) <0, a contradiction to F' € A. Thus, F(z) = Fy(z) for all z > p,. All that remains
is to show F(z—) = Fy(x) for all such x, which follows from continuity of Fj. m

Next, we characterize S’s optimal prices when B’s strategy satisfies the structure given
by the previous lemma. This characterization is useful both for characterizing and for

constructing free-learning equilibria.

Lemma 29 Suppose F € A is such that a p, € P(0,F)NS(F) exists for which F(x) =
F(x—) = Fy(zx) for all x > px. Then, P(m,F) = {p. V po(m)} for all m > 0.

46Whereas Lemma 5 takes as given a free-learning equilibrium, its proof actually establishes that
P(0, F) N S(F) S A{Pr+(0,m}-
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Proof. We begin by showing P(m,F) N [0,p.) = & for all m > 0. To do so, suppose
ap € P(m,F)NI0,p.) exists for a contradiction. By Lemma 21, p € P(0,F). To get
a contradiction, we argue next F(p—) < F(p.—), and so p ¢ P(m,F) by Lemma 21
(because p, € P(0,F)). To obtain the desired inequality, observe F(p.—) < 1, because
7*(0, F) > 0 for all F' € A. Therefore, if F(p.—) = F(p—), S’s profits under p, would be
strictly larger than under p for all production costs, meaning p cannot be in P(m, F), as
required.

Next, we establish that P(m, F') = {po(m)} whenever po(m) > p.. Because P(m, F')N
[0,ps) = @, it is sufficient to show po(m) strictly maximizes II(-,m, F') over [ps,1]. But
this maximization is obvious: pg(m) strictly maximizes II(-,m, Fy) (Lemma 25), which
equals II(-,m, F') over [ps, 1] (because F(z—) = Fy(z) for all x > p,).

To complete the proof, we prove P(m,F) = {p.} whenever po(m) < p.. Again,
because no price strictly below p, is optimal, and because II(-,m, F) coincides with
II(-, m, Fy), showing p, maximizes I1(-,m, Fy) over [py, 1] is enough. Recalling that II(-, m, Fy)
is a strictly quasiconcave function (because of regularity) that attains its maximum at
po(m) < psx completes the proof. m

Using the above lemmas, we now provide a characterization of a free-learning equi-
librium when S’s production cost is random. Given some price p, let ﬁp € H be the S
strategy satisfying

~

B = [ Ly 9) dH™ ()

In words, I:Ip is the strategy obtained by having S charge po(m’) V p whenever his pro-
duction cost is m/. That is, S either charges her optimal perfect-learning price, or p,
whichever is higher. The following proposition shows free-learning equilibria are charac-
terized by three properties. First, S uses flp for some p. Second, p is a separating price
that maximizes S’s profits when costs are zero. And third, B’s signal coincides with the

value distribution above p.

Proposition 3 Fix some strategy profile (H,F) € H x A, and let p, = minsupp HP.
Then, (H,F) is a free-learning equilibrium if and only if

(i) p« € S(F)NP(0, F).
(ii) F(x) = F(x—) = Fy(x) for all x > p.

(iii) H = H,, .
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Proof. To see the above three conditions are necessary for a free-learning equilibrium,
take any free-learning equilibrium, (H, F'). Condition (i) then follows from Lemma 24
and Lemma 2. Lemma 28 then delivers (ii), whereas (iii) is implied from Lemma 29.
For sufficiency, suppose (H, F') satisfy the above conditions. That H is profit maxi-
mizing follows from Lemma 29. For F to be optimal for B, we need to show S only charges
separating prices, that is, that Ir(p) = 0 for all p € supp HP. To see this equality holds,

observe that for any such p,

P
Ir(p) = Ir(p«) +/ Fy—Fds=0,

where the last equality comes from p, being F-separating and condition (ii). m

Using the above characterization, we now describe the set of feasible free-learning
equilibrium payoffs. For this purpose, recall that = = minpe 4 maxpe(o 1] (p,0, F) is S’s
minmax profit, and that given a 7w € [0, 7%(0, Fp)], we use

Pr = max{p : H(pv 0, FO) = 7T}

to denote the highest price yielding S a profit of # when his production cost is zero and B
learns her value. Using these definitions, we now provide the random-production-cost gen-
eralization of Theorem 1. The generalization shows that, just like the free-production case
studied in the main text, the set of free-learning equilibrium payoffs can be parameterized

by S’s profit when his costs are zero. Specifically, define the following mappings:
0 : [z, 7*(0, Fy)] — R,
70— /H(pwo V po(m), m, Fy) dH™(m),
Uo . [, 7*(0, Fu)] — R,

SN / Uo(Br0 V po(m), Fo) dH™ ().

The theorem below proves the image of (IIY, U?) gives the set of free-learning equilibrium
payoffs. Moreover, given a free-learning equilibrium (H, F'), players’ payoffs are given by
(Y, U evaluated at 7*(0, F').

Theorem 5 The following hold:

(i) A profile (H, F) is a free-learning equilibrium only if Il(H, F) = TI°(7*(0, F)) and
Uo(H,F) =U"7*(0, F)), and 7* € [z, 7*(0, Fp)].
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(ii) If (m,u) = (TI°, U%)(70) for some 7° € [m, 7*(0, Fv)], then (m,u) € Up.

Proof. Suppose first (H, F) € &. By Proposition 3, p, = minsupp HP is in S(F) N
P(0, F), meaning p. = pr+(o,r) by Lemma 5. Let mo := 7*(0,F). Clearly, 7o > & by
definition of . Moreover, we have by Lemma 26 that mo < 7*(0, Fy). Proposition 3 and
direct computation then delivers that (m,u) = (II°, U%) (7o), as required.

Suppose now (m,u) = (1%, U%) (7% for some 7° € [r, 7*(0, Fy)]. We construct an
equilibrium that delivers (m,u) as its payoff profile. If 7% = 7*(0, Fy), then (7, u) is
the player’s payoffs under perfect learning, and so can be attained by having B use Fj
and S best respond. Suppose then that 7° < 7%(0, Fp). Let p := pro and p = min{p :
I(p,0, Fp) = w°}. Observe that p < p because 1 < 7*(0, Fy), meaning X0 = {p :
(p, 0, Fy) = 7°} has two distinct prices. For any y € [0,p], define the function

Gy :[0,1] = Ry
Fo(z)  ifz€y,plulp, 1]

Gﬂo,l('r) ifz e [Ovy) U [27]3]

X —

Observe that éy is well-defined because Fjy and G 1 coincide on {Bv p}. Moreover, because
Fy > Gr1on [0,p] U [p, 1], we have that éy is right continuous and increasing. Since éy
is positive and éy(l) = 1, it constitutes a CDF over [0, 1], that is, éy € F. In addition,
these properties deliver 5 € P(0,G,) for all y € [0,p]. Figure 8 below illustrates Gy for
the case in which Fy is uniform.

Below we show a y* € [0, p] exists for which C:’y* € Aand pis éy*—separating. Propo-
sition 3 then establishes that (ﬁﬁ, éy*) is a free-learning equilibrium. Direct computation
reveals the players’ payoffs in this equilibrium equal (7, u).

We now find a y* such that Iéy* (p) = 0. To do so, observe that, because II(-, 0, Fp) is
strictly quasiconcave (due to regularity of Fp), II(p,0, Fy) > 7° for all p € (p,p), and so

Fo(p) < Gro1(p) for all p € (p,p). Hence,
D
Iéo(ﬁ) = / Fy — G7r0,1 ds < 0.
P

Moreover, notice that GN»'p coincides with G0 1 over [0, p]. Therefore,

Iéﬁ(ﬁ) = IGﬂ_o’l(p) >0,
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where the inequality follows from Lemma 10 for 7° > =, and Ig , (p) = Ig () =0
when 7% = 7.47 Because y > I, é, (p) is continuous, a y* € [0, p] existé for which 1, G, (p) =
0.

All that remains is to show éy* € A, that is, I@y* (z) > 0 for all z, with equality at

x = 1. To prove this claim, suppose first that = > p. In this case,
£ ~
g (2) =1g . (D) +[ Fo— Gy~ ds =0,
p

where the last equality follows from Gy« (s) = Fy(s) for all s > p. Suppose now that
x < y*. Then,

x xT
Iéy* (.’E) = /0 FO — Gy* dS = /0 FO — Gﬂ.071 dS = IGWOJ (l‘) Z 0’

where éy* (s) = Gr(s) for all s < y* implies the first equality, and the inequality follows
from Lemma 10 when 7° > 7 and from Ig,_,(s) > Ig,,(p) > Ig, (p) > 0 for 7 = 1.

Finally, consider the remaining case in which z € (y*,p). Then,

Yy Yy

p . P
Ié*(x)—lé*(p)—/ Fo—Gy* ds—/ Gy*—F()dSZO,

where the last equality follows from G« (s) > Fy(s) for all s € (y*,5).*® Thus, we have
established éy* € A, completing the proof. m

Next, we make two observations. First, the functions II° and UY are strictly increasing.
And, second, equilibrium payoffs are strongly Pareto ranked. Combined with Theorem 5,
the corollary below implies players’ free-learning utilities are strictly increasing functions

of S’s profits under costless production.
Corollary 2 The following hold:

(i) Both TI' and U° are strictly increasing.
(it) For any (mw,u), (7' ,u') € Uy, m > 7' if and only if u > u'.

(iii) If (H, F) € &y, then TI(H, F) = 1°(7*(0, F)) and Uy(H, F) = U%(7*(0, F)).
4"Recall (1p,,Gx 7) is a free-learning equilibrium in the original game. It follows that p, € supp G 7 C

[0,1], and that pr € S(Gy7)-
480 see this last inequality, observe Gy« (s) = Fy(s) for all s € (y*, p], and Gy (s) = G o 1(s) > Fo(s)

for all s € (p,p) (because II(s, 0, Fy) > m° for all such s due to strict quasiconcavity).
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Figure 8: The CDF éy constructed in the proof of Theorem 5.

Proof. Note (ii) follows immediately from (i) and Theorem 5. Therefore, showing
(i) is sufficient. Towards this goal, fix some m < #’. Observe p, > p (see proof
of Corollary 1). Because pr > pp > po(0) and pg is continuous, strictly increasing,
and satisfies po(1) = 1, it follows that the set pg 1(1%/,1%) has a strictly positive H™-
probability. Direct computation then shows U°(7) < U%(7’). To see I1°(xr) < IY(7'), re-
call TI(-, m, Fp) is a strictly quasiconcave function attaining its maximum at po(m). Hence,
II(po(m) V pr,m, Fo) < I(po(m) V pr,m, Fy), where the inequality is strict for any
m < minp, Y(5;). The desired inequality then follows from noting [0, min Do Y(5,)] has
positive H™-probability. =

Thus, we have established that free-learning equilibria are strongly Pareto ranked.
Moreover, both players’ payoffs in such an equilibrium are a strictly increasing function

of S’s profits conditional on production being costless.

M.4 Costly Learning

In this section, we provide a partial characterization of equilibria under costly learning.
In particular, we show an analogue of Proposition 1 holds when one conditions on S’s

costs being below the top of the support of B’s signal.

Proposition 4 Suppose (H,F) is an equilibrium of the k-learning game. Letting

T = maxsupp F, we have that

supp F = co(supp F) = supp HP™(:|m < z).
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Proof. In the next paragraph we that if z < y are both in supp F', then Hp|m(‘\m < )
contains some prices strictly in between; that is, (z,y) N supp HP™(|m < Z) # @.
Lemmas 22 and 23 then deliver supp HP™(:|m < Z) C supp F. It follows that supp F is
convex, because supports are closed. Once we know supp F' is convex, the claim proven
below implies supp H plm(-\m < Z) contains a dense subset of supp F', and so contains
supp F', again due to closedness of supports. The proposition then follows.

We now show that if z,y € supp F are such that x < vy, then (z,y) N
supp HP™(./m < z) is non-empty. To do so, observe first that the argument in Proposi-
tion 1 establishes that (z,y) Nsupp HP # @. Because supp HP = supp Hp‘m(-|m >z)U
supp HPM™(.|m < z), supp HPI™(:|m > Z) C [z,1] (because H maximizes S’s profits),
and y < Z, it follows that (z,y) Nsupp HP C supp HP™(|m < Z), as required. The

proof is now complete. m

M.5 Vanishing Costs

In this section, we study what happens when learning costs vanish when S’s production
cost is random. We show these equilibria converge to the worst free-learning equilibrium.
This result shows our conclusions are robust to random perturbations in S’s production
cost.

We begin by showing that the vanishing-cost limit of every sequence of costly-learning
equilibria is a free-learning equilibrium. A proof is needed for this result because S’s
best-response correspondence is not upper hemicontinuous when S’s production costs are
non-zero. To establish this convergence, we therefore rely on Lemma 19, which shows

replacing dominated prices with non-dominated ones preserves equilibrium and payoffs.

Lemma 30 Let {(Hy, Fy)}n>0 be a sequence of ky-equilibria with k, > 0 that attains

(Heo, Fo) as a limit, where k, — 0. Then, (Hx, Fro) is a free-learning equilibrium.

Proof. To prove the lemma, we begin with a sequence as in the lemma’s premise.
We then replace S’s strategy in each of the sequence’s elements with a strategy in non-
dominated prices that preserves equilibrium and payoffs. Whereas the new sequence
need not converge, it attains a subsequence that does. In the subsequence’s limit, B’s
strategy is given by F,,. Because a limit of equilibria in non-dominated S strategies is
an equilibrium itself, one obtains that F,, satisfies the conditions of Proposition 3. Using

these conditions, we establish that, eventually, every S-cost type other than 1 can earn
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strictly positive payoffs in all but finitely many elements of the original sequence. Using
upper hemicontinuity of S’s non-dominated best-response correspondence then delivers
that the original sequence’s limit is indeed a free-learning equilibrium.

We now proceed with the detailed arguments. Let {(Hy, F,,)}n>0 be as required by
the Lemma. By Lemma 19, every n admits a H; € H such that (H;,F;,) € £; and
delivers the same payoffs to both players (under x,) as (Hp, F},). Because {(H,;, F},) }n>0
lives in a compact set, it has a convergent subsequence in which {H}; }x>o converges to
some limit H3,, and so (Hy, , Fy, ) — (H3,, Fixo). Because the correspondence k +— £ has
a closed graph, we have (HX , Fix) € &, and so satisfies the conditions of Proposition 3.

Letting p, = minsupp H*P, Proposition 3 implies p, € S(F) NP (0, Fy), and so p, <
D < 1 (see proof of Corollary 1). Because Proposition 3 also implies Fio(z) = Fo(z) < 1
for all z € [ps, 1), it follows that max supp Fio = 1.

Fix any (p, m) € suppHo. We show p € P(m, Fi), meaning H is profit maximizing
against Fi,. To show this inclusion, recall that supports are lower hemicontinuous, and
so, passing to a subsequence if necessary, we can find a (p,,m,) € suppH,, that attains
(p,m) as its limit. Suppose first m < 1. Then, given any m’ € (m,1), an N exists
such that m,, < m/ for all n > N. Appealing again to lower hemicontinuity of supports
and max supp Fo = 1, we have (passing to a further subsequence if necessary) that
max supp F;, > m’ for all n larger than some finite N’. Therefore, an N” exists for which
m, < maxsupp F, for alln > N”. Lemma 22 implies that P(m,,, F,,) = P*(m, F},,) holds
for such n. Upper hemicontinuity of P* (see Lemma 18) then gives that p € P*(m, Fw).
Suppose now m = 1. Appealing to Lemma 22, we then have that either m,, > maxsupp F,
for all large n, or a subsequence {(pn, , My, ) x>0 exists such that p,, € P*(my,, Fy,) for
all k. Either way, p, — 1: in the first case, p, > maxsupp F;,, — 1 due to optimality of
S’s strategy, whereas in the second case, (pp,,mn,) — (p,1), and so p € P*(1, F) due
to upper hemicontinuity of P*. Hence, we have shown suppH., C graph P, meaning H,
is optimal for S against Fi.

To conclude the proof, observe that B’s best response is upper hemicontinuous due to
Berge’s theorem, and so F is optimal against Hy, at £ = 0. It follows that (Hs, Foo) is
a free-learning equilibrium. m

Our next task is to prove the main result of this appendix section. To describe this
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result, define the following function,
F;:10,1] = R,
Gri(s) ifs<pg
Fy(s) if s > py,
which is well defined because p, is Gr-separating, and so G 7(px) = Fo(px). The latter

fact also implies Fy is a CDF. Moreover, F; € A. To see this inclusion, observe that for

every x € [0,1],

TADx
Ir.(2) = / (Fo— Gp)(s) ds = Ia_,(x A pg) >0,
0

where the inequality follows from G ; € A. Furthermore, at z = 1 the inequality holds
with equality because pr € S(Gy 7).

We now prove Theorem 6, which establishes that every sequence of costly learning
equilibria converges to a Pareto worst free-learning equilibrium as learning becomes cheap.

In this equilibrium, S’s strategy is ﬁﬁy and B’s signal is F.
Theorem 6 For k > 0, let (Hy, F,) be any equilibrium in ;. Then,

lim (H,, Fy) = (Hp_ . Fy) € &.

k—0

Moreover, 7 (0, Fy) = m, and so (ﬁﬁl,f’ Fy) is a Pareto-worst free-learning equilibrium.

Proof. Take any sequence {(Hy, Fy,)}n>0 of kp-equilibria with &, > 0 where k, — 0.
Fr) as its limit. It follows that this

Below, we show the equilibria sequence attains (Hp_,
limit is a free-learning equilibrium, by Lemma 30. Moreover, because p, = min supp fIgﬂ,
Lemma 18 delivers p, € P*(0, F;). Since F; is B-optimal under free learning, it also

follows that p, € S(Fy). Hence, Fx(p—) = Fo(p—) = Fo(p), and so
7(0, Fr) = I(pp, 0, Fix) = I(pg, 0, Fo) = m.

Thus, all that remains is to establish that {(Hy, F,)}n>0 converges to the desired
limit. Because this sequence lives in a compact set, it is the union of convergent sub-
sequences. Therefore, to show the desired convergence, it suffices to show that if the
Fr).

Towards showing the desired equality, observe (Huo, Fo) € & by Lemma 30. Hence,

sequence converges to some (Hoo, Fix), then (Hoo, Fio) = (I:IZ;M,

Hy = ﬁp* for p, = minsupp HY, by Proposition 3. The same proposition also implies

"



px € supp F' (because Fj is strictly increasing). Let £ = minsupp F. We now establish
[z,p«] € P(0,Fx). Note p. € P(0,Fy) follows from Lemma 24. To show [z,p.) C
P(0, Fw), recall that supports are lower hemicontinuous, and so (passing to a subsequence
if necessary), every n admits some x,, and p,, both in supp F,,, such that p, — p. and
xn, — z. Proposition 4 then delivers that, for every o € (0,1], y, = az,, + (1 — a)p,
lies in supp HY Im(-\m < Zp), where Z,, = maxsupp F,. Therefore, an m,, exists such
that y, € P*(my, F),). Passing to a subsequence if necessary, one can also attain that
m,, converges to some limit ms,. Because P* is upper hemicontinuous (Lemma 18), it
follows that limy, = yo := az + (1 — a)px € P*(Meo, Fio). Because y, < ps, Lemma 21
gives that y, € P(0, F). Thus, we have shown [z,p.] C P(0, Fy). As such, it follows
that Fio(7—) = Gre(0,),1(z—) for all z € [z,p.] (and z > 7(0, Fiv)). Because p, < 1,
G+ (0,Fs),1 18 continuous on [z, pi], and so Fio(7) = Gre(0,p.)1(7) for all z € [z,ps).
Recalling that F is a best response against H . gives that p, is Fio-separating, and so
Fy is continuous at p,. It follows that Fo = Gre(0 )1 0N [2,ps], and z = 7(0, Fix).

Combined with p, being Fo.-separating, this delivers

IGW*(O,FOO),l(p*) = IFOO (p*) = 0.

Appealing to Lemma 10 then gives that 7*(0, Foo) = w. It follows that p, = p, and

Gri(x) = Gpi(x) for all x < pr < t. To summarize, we have shown that Ho, = Hp,_,

Foo(z) = Gri(x) = Ggg for all x < pr, and Fio(z) = Fo(z) for all # > p;. In other

words, we have shown (Heo, o) = (Hp,

F), which completes the proof. m
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