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Abstract

It is shown that by realizing the isomorphism features of the frequency and geometric
interpretations of probability, Reichenbach comes very close to the idea of identifying
mathematical probability theory with measure theory in his 1949 work on foundations
of probability. Some general features of Reichenbach’s axiomatization of probability
theory are pointed out as likely obstacles that prevented him making this conceptual
move. The role of isomorphisms of Kolmogorovian probability measure spaces is
specified in what we call the “Maxim of Probabilism”, which states that a necessary
condition for a concept to be probabilistic is its invariance with respect to measure-
theoretic isomorphisms. The functioning of the Maxim of Probabilism is illustrated
by the example of conditioning via conditional expectations.

1 Introductory comments

Probability theory featured prominently in Reichenbach’s thinking and work through-
out his whole career, both as a conceptual tool and as a subject of philosophical
investigation: Already in his doctoral thesis (1915) (published in English translation
in 2008 Reichenbach (1915), see Padovani (2011) for a compact review of this trans-
lation) probability takes center stage in the form of a “principle of lawful distribution”.
This principle states, roughly, that the empirical relative frequencies of occurrences
of events converge to a true limit to be understood as probability. This principle has
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a transcendental status in Reichenbach’s theory of knowledge, similar to Kant’s prin-
ciple of causality in Kant’s epistemology. The principle is transcendental because it
is not empirically testable — rather it forms the basis of empirical science (Glymour
and Eberhardt (2016)).

In his subsequent works, Reichenbach both applied probability theory in the analy-
sis of specific philosophical problems and investigated the foundations of probability
theory itself. An example of the former is Reichenbach’s concept of common cause
used in his The Direction of Time Reichenbach (1956). This notion has had a lasting
impact on the analysis of causality and has been the conceptual predecessor of the
Causal Markov Condition in the modern theory of Bayes nets (see Hitchcock and
Rédei (2020) for a review, and Hofer-Szabé et al. (2013), Wronski (2014) for detailed
analyses of Reichenbach’s notion and the related principle of the common cause).

Reichenbach’s foundational work on probability theory culminated in the substan-
tial, almost 500 page long monograph published in 1949 Reichenbach (1949), which
is are-worked version of the one published in German in 1935 Reichenbach (1935). In
his 1949 work, Reichenbach gave both a formal axiomatization of probability theory
and attempted to provide a foundation for it in the sense of the frequency view of
probabilities. Both ideas rely on his earlier work; in particular the axiomatization in
Reichenbach (1949) is based on the paper published in 1932 Reichenbach (1932).

The general assessment (Glymour and Eberhardt (2016), Eberhardt and Glymour
(2009)) of Reichenbach’s axiomatization is that now it only has historical signifi-
cance because Kolmogorov’s axiomatization published in 1933 Kolmogorov (1956)
overshadowed it and became the mainstream. This verdict is based in Eberhardt and
Glymour (2009) on a detailed critical analysis of Reichenbach’s axiomatization and of
his related concept of probability logic. We agree with this assessment. In Sect. 2 we
recall some general features of Reichenbach’s axiomatization and provide some more
critical comments. On the positive side, in Sect. 2, we also show that Reichenbach’s
analysis contains an important idea that in principle opens up the road to an axiomati-
zation in the sense of Kolmogorov: The idea is to regard as mathematical probability
theory what is isomorphic in different interpretations. But this avenue remains unex-
plored in Reichenbach’s work, which we claim is mainly due to ambiguities in the
Reichenbachian axiomatic system. In Sects. 3 and 4 we explore the role of isomor-
phism from the perspective of foundations of probability theory. While it is not clear
what the notion of isomorphism in the Reichenbachian axiomatization would be, there
are very natural notions of isomorphism in the Kolmogorovian axiomatization. Kol-
mogorov himself did not make use of them in his foundational book, but they became
standard. In Sect. 3 we recall these notions of isomorphisms and formulate what we
call the Maxim of Probabilism: The idea that a concept, reasoning, argument is prob-
abilistic only if it is invariant with respect to the isomorphisms of the mathematical
structures that are models of the axioms. In Sects. 4 and 5 we illustrate the usefulness of
the Maxim of Probabilism by using it to clarify some neuralgic points in connection
with conditioning with respect to probability zero events, in particular in the context
of the Borel-Kolmogorov Paradox.
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2 Comments on Reichenbach’s axiomatization of probability theory

Reichenbach distinguished three approaches to axiomatization of probability theory:
One that aims at an

[...] interpreted form of axiomatic construction [...] which regards probability,
from the very beginning, as a frequency, and derives from this interpreta-
tion, by the possible inclusion of additional postulates, the rules of the theory.
Reichenbach (1949)[p. 121]

The second

[...] formal conception introduces the concept of probability by the method
of implicit definitions, and uses no properties of the concept other than those
expressed in a set of formal relations placed as axioms in the beginning of
the theory, leaving open various possibilities for its interpretation. Reichenbach
(1949)[p. 121]

The third approach

[...] connects the treatment of probability with the methods of symbolic logic.
[...] constructing probability as a relation between statements, which includes
logical implication as a special case. Reichenbach (1949)[p. 122]

Reichenbach classifies both Kolmogorov’s approach and his 1932 axiomatization
as belonging to the second group. While this is certainly true for the Kolmogorov
approach, it is not unambiguously true for his 1932 axiomatization: While a formal
axiomatization in the sense of the second approach is given in his 1932 axiomatiza-
tion, Reichenbach also introduces a “coordinating definition «” [p. 591] that relates
the formal probabilistic formula to limits of relative frequencies. On this basis he
distinguishes two notions of mathematical probability:

We call the resulting notion of probability, i.e. the concept that is determined by
the axiom system including the coordinating definition «, the contentual mathe-
matical concept of probability, in contrast to the formal mathematical concept of
probability determined exclusively by the axioms, i.e. without assigning content
to it.! Reichenbach (1932)[p. 592] (emphasis in original)

Thus, although a purely formal axiomatization describing the formal mathematical
concept of probability is part of Reichenbach’s treatment indeed, Reichenbach’s anal-
ysis is coupled to a frequency view even when it comes to a mathematical specification
of the concept. There is thus no sharp separation in the mathematical sphere of the con-
cept of probability from the frequency view in his 1932 axiomatization—in contrast to
what he claims about his own axiomatization. This ambiguity prohibits Reichenbach,

! Qur translation. Original German: “Wir nennen den dabei entstehenden Wahrscheinlichkeitsbegriff,
also den durch das Axiomensystem einschlieflich der Zuordnungsdefinition @ bestimmten Begriff, den
inhaltlichen mathematischen Wahrscheinlichkeitsbegriff, im Gegensatz zu dem formalen mathematischen
Wahrscheinlichkeitsbegriff, der durch das Axiomensystem allein definiert wird, also ohne eine inhaltliche
Belegung.
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we claim below, to develop an idea that potentially leads to an axiomatization based
on measure theory.

Furthermore, in his Reichenbach (1932), Reichenbach sees the need for a fur-
ther axiom to be added to the mathematical axioms: This is the Axiom of Induction
Reichenbach (1932)[p. 614]. This axiom is precisely the principle of lawful distribu-
tion that appeared in his 1915 dissertation — as Reichenbach explicitly acknowledges,
citing his PhD dissertation (Reichenbach (1932)[p. 614], especially footnote 24 in
Reichenbach (1949)). This axiom has a status that is conceptually different from those
that specify the mathematical probability because it is not part of mathematics: it
postulates the applicability of probability theory in the sense of the frequency view.

Coupling probability theory to the frequency interpretation, Reichenbach follows
a well-established tradition, of which he is fully aware:

In order to develop the frequency interpretation, we define probability as the
limit of a frequency within an infinite sequence. The definition follows a path
that was pointed out by S.D. Poisson in 1837. In 1854 it was used by George
Boole, and in recent times it was brought to fore by Richard von Mises, who
defended it successfully against critical objections. Reichenbach (1949)[p. 68]
(emphasis in original)

The key difference between Reichenbach’s frequentism and von Mises’ concept of
probability as limit of relative frequency is that Reichenbach abandons von Mises’
requirement of randomness of the infinite sequence in which relative frequencies are
supposed to be calculated. For von Mises it is not enough that the limits of frequencies
in the infinite sequence exist: The infinite sequence, the “ensemble”(von Mises calls it
“Kollektiv’) must also be disorderly, “random” (Mises (1919), Mises (1928)[p. 23]).
Von Mises specified the content of randomness of an ensemble by requiring invariance
of the limits of relative frequencies in the ensemble with respect to place selections:
Selecting an infinite sub-ensemble of the original ensemble by a rule, the limits of
relative frequencies in the sub-ensemble should be equal to the limits of the relative
frequencies in the original ensemble Mises (1928)[p. 23]. According to von Mises,
this invariance should hold for any place selection determined by a rule that does
not involve the random event whose frequency one calculates. Given this concept of
randomness, the problem of its consistency arises: Do random ensembles exist at all?
Mises (1928)[pp. 88—89] recalls the reasoning that consistency cannot be proved in
the strict sense of mathematical proof: An infinite sequence can only be specified by
a mathematical rule, which can in principle be used to select a sub-ensemble in which
the frequencies differ from the one in the original sequence. But he rejects the position
that one should restrict the class of place selections to a class for which consistency
of the corresponding restricted randomness concept is provable, saying that for any
conceivable sub-class “... it will be possible to indicate place selections” that are not
in the class, and, consequently

It is not possible to build a theory of probability on the assumption that the
limiting values of the relative frequencies should remain unchanged only for a
certain group of place selections, predetermined once and for all. Mises (1928)[p.
90]
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Ultimately, in the chapter “Consistency of the randomness axiom” in Mises (1928),
von Mises seems to be content with what one could call “pragmatic consistency” of
randomness, and which is based on results (due to Copeland and Wald) stating that
for any countable set of place selections there exist random ensembles:

[...] from what we know so far, it is certain that the probability calculus, founded
on the notion of the collective, will not lead to logical inconsistencies, in any
application of the theory known today. Mises (1928)[p. 91] (our emphasis)

In §31 of Reichenbach (1949) Reichenbach reviews the main results on the consis-
tency of randomness (especially the works by Copeland, Wald and Ville), but draws a
conclusion from them that is different from von Mises’ pragmatic consistency:

The significance of the problem of the definition of random sequence should not
be overestimated, however. Within the general calculus of probability, random
sequences merely represent a special type [...] In actual applications, all kinds
of probability sequences are encountered. Some show the features of random-
ness; others represent intermediate types between strictly ordered and random
sequences. [...] It would constitute a rather narrow conception of probability if
the name of probability sequences would be reserved for random sequences.
Reichenbach (1949)[pp. 150-151]

Reichenbach intends to have his theory to be flexible enough to accommodate such
“intermediate types” of infinite sequences, i.e. sequences which embody different
degrees of order, not just the random ones:

An essential feature of my theory of order is that it deals with all possible forms
of probability sequences and is not restricted to sequences of one type of order
[...]. In this respect my probability theory differs from others—in particular
from that developed by R. von Mises. Such theories regard randomness as an
essential characteristic of the very concept of probability; and they contend that
the meaning of probability cannot be exhaustively formulated without reference
to randomness. Reichenbach (1949)[p. 132]

Concerning the classification of his 1949 attempt, Reichenbach writes: “My own
presentation undertakes to unite the axiomatic method with the construction of
logico-mathematical calculus. . .” Reichenbach (1949)[p. 122]. Indeed Reichenbach’s
axiomatization is a mixture of formal axiomatization in the sense of symbolic logic
and of informal axiomatization in the sense of semi-formal mathematics — as axiom-
atization is done e.g. when groups are defined by the group axioms. The problem is
that in Reichenbach’s treatment the syntax is not completely specified and no formal
semantics is given (Eberhardt and Glymour (2009)[pp. 371-373]); and, viewed as
axiomatization in the semi-formal sense of mathematics

[...] these axioms are not sufficient to provide an axiomatization of probability,
since they do not ensure that the space the probabilities are applied to is closed
under complementation and countable union, i.e. that it forms a sigma-field.
Eberhardt and Glymour (2009)[p. 371].
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Hence, because of the lack of an explicit semantics and its clear separation from syntax,
for a logician, Reichenbach’s axiomatization was too much informal mathematics; for
a practicing mathematician, the formal logic involved in the axiomatization separated
it too much from mainstream mathematics to be useful; and for a physicist interested
in applying probability theory, Reichenbach’s axiomatization was too much logic,
mathematics and philosophy altogether. For philosophers the axiomatization offered a
target for philosophical criticism, which it received indeed (see section 5 in Eberhardt
and Glymour’s paper Eberhardt and Glymour (2009) for a review of the main philo-
sophical criticisms, and Peijnenburg and Atkinson (2011) for a defense of Reichenbach
against a specific objection raised by C.I. Lewis).

But at a certain point Reichenbach comes very close to the idea of identifying
mathematical probability theory with measure theory in the spirit of Kolmogorov: In
Chapter 6 of Reichenbach (1949), Reichenbach discusses an “admissible interpreta-
tion” Reichenbach (1949)[p. 203] of the purely mathematical part of the axioms that
is different from the frequency view: The geometrical interpretation. Reichenbach
demonstrates in this chapter that (with one exception ! — see below) his axioms are
satisfied by subsets of the two dimensional plane with probability identified with the
normalized area measure. This idea is present already in the 1932 paper Reichenbach
(1932)[§ 5], but it is more systematically developed and more explicitly stated in
Reichenbach (1949):

The possibility of a geometrical representation of probabilities results from the
considerations given in § 40. By showing that both the frequency interpretation
and the geometrical interpretation satisfy the axioms of the formal system of
probability, that is, are interpretations of this system, we have demonstrated the
isomorphism, or structural identity, of the two interpretations. Every operation
carried out in terms of probability formulas entails analogous operations in the
frequency interpretation and the geometrical interpretation. Any derived proba-
bility relation is, therefore symbolized in the geometrical interpretation by those
geometrical relations that have been specified above for the geometrical interpre-
tation of the probability concept. Reichenbach (1949)[pp. 207-208] (emphasis
in original)

Reichenbach even sees that the isomorphism holds if the two dimensional plane is
replaced by a higher dimensional Euclidean space with its Lebesgue measure: “The
foregoing considerations can easily be generalized for an attribute space of more than
two dimensions.” Reichenbach (1949)[p. 208]

So in his 1949 monograph Reichenbach is just one intellectual step away from
saying that what is common in the frequency and geometrical interpretations is the
measure-theoretic structure and the axioms should express exactly this. But this step
is not taken and we see several reasons for this. One is that, as Reichenbach himself
emphasizes (Reichenbach (1949)[p. 205]), one group of axioms (called “group v”,
the “Axioms of the theory of order” Reichenbach (1949)[p. 137]), are not satisfied by
the two-dimensional Lebesgue measure. This group is precisely the one that connects
probability to the frequency view: “... the axioms v, like the previous axioms, are
valid for all probability sequences, for they could be derived from the frequency inter-
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pretation” Reichenbach (1949)[p. 139]. The two axioms that form this group express
that if probabilities are limits of relative frequencies in infinite sequences then the
sequences possess randomness in a limited sense of place selection. Reichenbach is
aware that the presence of these axioms distinguishes his axiomatization from those —
including Kolmogorov’s — that ... omit the development of the theory of the order of
the probability sequences.” Reichenbach (1949)[p. 121] Reichenbach clearly regards
this as a virtue of his axiomatization. But the conceptually not entirely sharp separa-
tion in Reichenbach’s axiomatization of the frequency interpretation from the purely
formal axiomatization becomes a conceptual obstacle to draw the consequences of the
isomorphism he recognized.

Another difficulty standing in the way of drawing the consequence of the described
isomorphism concerns the unavoidable measure (hence probability) zero sets in the
geometrical interpretation: Reichenbach thinks that this would need an additional
axiom in probability theory Reichenbach (1949)[p. 207].

More generally, taking the step of isolating measure theory as the isomorphism-
invariant structure presupposes being aware of the development of abstract measure
theory, especially of the possibility of moving from the theory of Lebesgue’s measure
towards abstract measures. Kolmogorov explicitly mentions in the introduction of his
book this as a prerequisite for the conceptual move:

[...] if probability theory was to be based on the above analogies [involving
Lebesgue measure and integral] it still was necessary to make the theories of
measure and integration independent of the geometric elements which were in
the foreground with Lebesgue. Kolmogorov (1956)[p. v]

Doob (1996) mentions the following crucial steps in the creation of abstract measure
theory that were needed for the Kolmogorovian axiomatization:

e Lebesgue’s extension of volume in IR” to the Borel sets in R” (1902).

e Radon’s definition of a general measure on the Borel sets in R"” (1913).

e Fréchet’s realization that one needs only a o-algebra of subsets of a set for a
meaningful measure theory with a o -additive measure (1915).

It is perhaps understandable that a mathematician like Kolmogorov was more
familiar with these developments in measure theory than the physicist-philosopher
Reichenbach. Thus the full ramifications of the isomorphism seen by Reichenbach
remain unexplored by him. But the idea of relating what is probability theory to what
is isomorphism-invariant is a deep thought. The next section makes this idea explicit
in the context of the Kolmogorovian axiomatization.

3 Isomorphism of probability measure spaces and the Maxim of
Probabilism

In the Kolmogorovian specification, mathematical probability theory is a probability
measure space (X, S, p), where S is a Boolean o-algebra of subsets of the set X
(with respect to the standard set theoretical operations N, U and complement A1),
and the probability p is a countably additive map from S into [0, 1]. Accepting this
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measure-theoretic specification of probability theory leads naturally to both the notion
of isomorphism of probability measure spaces and the methodological ramification
we call below the Maxim of Probabilism.

Since a probability measure space consists of three components, the set of ele-
mentary events, a Boolean algebra of general events and a probability measure, the
notion of isomorphism is supposed to respect all these three components. Moreover,
when it comes to defining isomorphism of probability measure spaces, the possible
presence of probability zero events has to be taken into account; accordingly, there are
two (inequivalent) notions of isomorphism: (i) strict isomorphism (also called point
isomorphism) and (ii) isomorphism up to probability zero (also called isomorphism
mod0 Bogachev (2007); the terminology almost isomorphism also is used). We define
first the isomorphism of measurable spaces:

Definition 3.1 Given two measurable spaces (X, S) and (Y, Z), a bijection f: X —
Y is called an isomorphism between (X, S) and (Y, Z), if both f and its inverse f -1
are measurable (establishing a Boolean-algebra isomorphism between S and Z). In
this case (X, S) and (Y, 2) are called isomorphic via f.

Definition 3.2 Two probability measure spaces (X, S, p) and (Y, Z, g) are called
measure-theoretically strictly isomorphic Bogachev (2007)[p. 275], if the measurable
spaces (X, S) and (Y, Z) are isomorphic via some bijection f: X — Y, and the
isomorphism between the Boolean o -algebras S and Z determined by f preserves
the probability measures p and g:

g(B) = p(f~'[B]) forall BeZ (1)
p(A) = q(f[A]) forall AeS )

For the definition of isomorphism mod0 of probability spaces, we need the following
simple notion of reduction of probability spaces (X, S, p): Let M € S be such that
p(M) = 1. Let Sy be defined by

Sy={ANM:AcS) 3)

then Sy is a Boolean o-algebra, and one can define p on Sy to obtain a probability
measure py:

pmu(ANM)=p(ANM) AeS @)

(M, Sm, pum) is then a probability measure space.

Definition 3.3 Two probability measure spaces (X, S, p) and (Y, Z, g) are called
measure-theoretically isomorphic mod0, if there are sets M € S and N € Z with
p(M) = q(N) = 1 such that (M, Sy, py) and (N, 2y, gn) are strictly isomor-
phic. We call the strict isomorphism between (M, Syy, py) and (N, Zx, gn) a modO
isomorphism between (X, S, p) and (Y, Z, g).
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Embracing the Kolmogorovian specification of probability theory as a triplet
(X, S, p) leads naturally to what we call: Maxim of Probabilism: A concept/claim/
property/reasoning/argument is probabilistic only if it is invariant with respect to
measure-theoretic isomorphisms between probability measure spaces.

To be more precise, one can distinguish two senses of the adjective “probabilistic”
in connection with the Maxim of Probabilism: A weak and a strong, depending on
the notion of isomorphism involved: A concept/claim/property/reasoning/argument is

e weakly probabilistic only if it is invariant with respect to strict measure-theoretic
isomorphisms between probability measure spaces;
e strongly probabilistic only if it is invariant with respect to mod0 isomorphisms.

The Maxim of Probabilism provides a necessary condition for what probability is. In
applications of probability theory the set of elementary random events are frequently
modeled by a set X in which structures are defined in addition to the o-field S (for
instance: metric, topological, or order structures). As a consequence, reasonings in
the context of (X, S, p) might involve features of these—from a measure-theoretic
viewpoint “surplus” —structures and thus the probabilistic reasonings get intertwined
with considerations that are not in fact probabilistic. This molding of probabilistic and
non-probabilistic elements in reasonings is potentially misleading because it might
make invisible where precisely the probabilistic content lies. This can, in turn, lead to
misguided questions and puzzles. The Maxim of Probabilism can in such situations be
used to disambiguate the probabilistic and non-probabilistic components of reasonings
and concepts: This Maxim tells us that an argument or a concept that is formulated
in the context of a probability measure space (X, S, p) cannot be regarded even as
weakly probabilistic if it is such that it cannot be formulated also in a probability
measure space with which (X, S, p) is isomorphic via a strict isomorphism.

We will illustrate the usefulness of the Maxim of Probabilism in the next two
sections on the example of clarifying certain conceptual perplexities concerning con-
ditioning involving probability zero events; the illustration involves violation of the
Maxim of Probabilism. Below we give two examples of concepts that are invariant
with respect to isomorphisms; hence these examples illustrate how concepts can sat-
isfy the Maxim of Probabilism. The two notions are: the correlation function and the
feature of pure measure-theoretic non-atomicity of probability spaces. In both exam-
ples below it is assumed that (X, S, p) and (Y, Z, g) are probability spaces and f is
a mod0Q isomorphism between (X, S, p) and (Y, Z, gq), i.e. f is a strict isomorphism
between (M, Sy, pym) and (N, Zn, gn).-

Example: correlation function Each probability space (X, S, p) determines a real-
valued function Corr(x s ) : S X § — R defined by

Corr(xs,p)(A. B) = p(ANB) — p(A)- p(B) A, BeS
So we also have

Corry,z,4)(A,B) =q(ANB) —q(A)-q(B) A,BeZ
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Let (Cx, Cy) be a pair of events with Cxy € S and Cy € Z. Call this pair f-related if
flCxNM)]=CyNN (5)

Then, since M and N are p-measure (respectively g-measure) zero sets and f is a
strict isomorphism between (M, Sys, py) and (N, Zy, gn), we have

p(Cx) = p(Cx N M) (6)
= pu(Cx N M) =gn(fICx "M]) =gn(Cy N N) N
=q(Cy) ®)

If (Ax, Ay) and (By, By) are both f-related, then applying (6)—-(8) to Cx =
Ax, Bx, (Ax N Bx) and Cy = Ay, By, (Ay N By) we obtain

Corr(x s.p)(Ax, Bx) = Corry z 4)(Ay, By) 9

Equation (9) means that the notion of a correlation function is invariant under modQ
isomorphisms; hence it satisfies the necessary condition to be strongly probabilistic in
the spirit of the Maxim of Probabilism. Note thatif f: X — Y isastrict isomorphism
between (X, S, p) and (Y, Z, q), then (9) is simply

Corrx s,p)(A, B) = Corr(y, z 4)(f[A], f[B]) (10)

forall A, B € S. The content of (10) is that taking the same definition of a correlation
function in strictly isomorphic spaces yields the same function, and this means in par-
ticular that the notion of a correlation function is invariant under strict isomorphisms.

Example: measure-theoretic non-atomicity By definition, (X, S, p) is measure-
theoretically purely non-atomic if for any A € S with p(A) > O thereis B C A
such that p(A) > p(B) > 0. We show that if (X, S, p) is measure-theoretically
purely non-atomic, and (X, S, p) and (Y, Z, ¢g) are isomorphic mod0, then (Y, Z, q)
is also measure-theoretically purely non-atomic. The proof relies on the fact that for
any event A € S, p(A) = p(ANM) = py (AN M) and similarly, for B € Z we
have ¢(B) = gy (B N N). It follows that (X, S, p) is purely non-atomic if and only
if (M, Sy, pyr) is purely non-atomic. Suppose (X, S, p) (and thus (M, Sy, pm))
is purely non-atomic. The calculation below shows that the isomorphism f between
(M, Sy, pm) and (N, 2y, gn) preserves non-atomicity, and therefore (Y, Z, g) is
purely non-atomic as well: Takean A € Z withq(A) > 0. Thengy (ANN) > 0, hence
pu(f~HA N N]) > 0. Using non-atomicity of (M, Sy, pu) there is BN M € Sy
suchthat BN M C f~'[ANN]and py(f~'[ANN]) > pp (BN M) > 0. Now, f
being an isomorphism ensures f[BNM] C ANN andgy(ANN) > gy (f[BNM]) >
0, which completes the proof.

Measure theoretically purely non-atomic spaces are notrare: The Lebesgue measure
on [0, 1] defines a purely non-atomic probability measure space. Moreover, we have
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Proposition 3.4 (Walters (1982)[p. 55]) Every probability measure space (X, S, p),
where X is a complete metric space and S is the Borel o -algebra, is isomorphic mod0
to the probability space [0, 1] with the Lebesque measure — if (X, S, p) is purely
non-atomic.

It is noteworthy that purely non-atomic probability spaces also have philosophically
relevant features: they are common cause complete in the sense that they contain a
common cause of every correlation Corr(x s 5)(A, B) > 0, see Gyenis and Rédei
(2011), Marczyk and Wronski (2015), Gyenis and Rédei (2014), Hofer-Szabé et al.
(2013). Thus common cause completeness also satisfies the strong necessary condition
to be probabilistic.

4 Conditioning and the Maxim of Probabilism

The general concept of conditioning in the measure-theoretic formalism is based on
the notion of conditional expectation, which was introduced into probability theory by
Kolmogorov in Kolmogorov (1956) together with his axiomatization. Given (X, S, p),
and a o-subalgebra A of S, a map

EC1A: LY(X,S, p)— L'(X,S, p) (11)

is an A-conditional expectation on the set of integrable real-valued random variables
LY(X,S, p)if () forall f e £L1(X,S, p), the function &(f | A) is A-measurable;
and (ii) it preserves the integral: [, &(f | A)dp = [, f dp forall Z € A.Itis impor-
tant that the conditional expectation exists as a consequence of the Radon—Nikodym
theorem but it is unique only up to p-probability zero. Conditional expectations that
differ only on a p-probability zero set are called versions. (- | A) denotes the
restriction of & (- | \A) to (the characteristic functions of) S. Conditional probabilities
of random events B € S as real numbers are defined in this framework of conditioning
in the following manner:

Let g 4 be a probability measure on the Boolean sub-o-algebra A that is absolutely
continuous with respect to the restriction of p to .A. Then ¢ 4 yields a density function
g (the Radon—Nikodym derivative), and the conditional probability g(B | A)of B € S
on condition that the probabilities of events in A are given by the probability measure
q A 1s, by definition

g(B | A) = fxg P | A) dp (12)

where yx p is the characteristic (indicator) function of B. It can be shown (seee.g. Gyenis
and Rédei (2017)) that formula (12) reduces to the Jeffrey rule, if A is generated by
a countable (measurable) partition of X, and that the formula (12) yields Bayes’ rule,
if A is generated by one single event A on which g 4 takes value 1, provided g 4 is
absolutely continuous with respect to p. Thus conditionalization using the notion of
conditional expectation is a general form of Bayesian conditionalization.
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One also finds in the literature a somewhat controversial interpretation of this kind
of conditioning however: the value of the function & (xp | A) on x € X is sometimes
viewed as the “conditional probability of B on condition {x}”:

P (x| A)(x) BeS (13)
N— —

conditional probability of B on condition {x}

Since it can happen that the p-probability of {x} is zero, p({x}) = 0, the formula
(13) would yield then a conditional probability of B on the probability zero event {x};
which is regarded as a major virtue of this “Kolmogorovian conditioning”.

It has been recognized in the mainstream literature on probability theory that this
concept of conditional probability with respect to probability zero conditioning events
is not unproblematic (Rao (2005)[p. 62]; Rosenthal (2006)[p. 153, 156]; “Difficulties
and Curiosities” in Billingsley (1995)[pp. 437—439]). All the problems are related
to the fact that, since (- | A) is the restriction of a version of the .A-conditional
expectation, Z(- | A) also is only a version: Different versions yield different values
for Z(xp | A)(x);in fact, if p({x}) = 0, then for any real number r (in particular any
real number r in [0, 1]) there is a version such that this version yields r as the value of
the “conditional probability of A on condition {x}”. Which values are then the “real”
conditional probabilities on condition {x}?

Another problem is that for a fixed x € X the map

S35A- P(xal Alx) eR (14)

is not a countably additive map on S in general (Rao (2005)[p. 47], Billingsley
(1995)[pp. 438—439]). So for a fixed x the map (14) is not a probability measure
on S; hence the values given by equation (13) are not probabilities—if one takes seri-
ously the Kolmogorovian specification of what probabilities are: They are given by a
probability measure (which is countably additive). Saying that . .. conditional prob-
abilities behave ‘essentially’ like ordinary probabilities” Rosenthal (2006)[p. 156] is
just acknowledging that they are not probabilities.

One might want to say: The “real” conditional probabilities are the ones that are
given by a version for which the map in Eq. (14) is countably additive. A conditional
probability Z(- | A) is called regular if the map in (14) is countably additive for
p-almost all x Rao (2005)[p. 46]. The problem is that such a version might not exist:
there exist probability spaces for which this happens Billingsley (1995)[pp. 438—439;

443].
These difficulties are well known. The reactions to the difficulties are mixed.
Billingsley disregards the difficulty, saying “... it does not matter that conditional

probabilities may not, in fact, be measures.” Billingsley (1995)[p.439]. One reason
why he sees this dismissal as being justified is that one can show that Z(- | A)(x) is
additive for an x that has positive p-measure Billingsley (1995)[p. 439]. But this is
not helpful if one wishes to maintain that

The whole point of this Sect. [on conditional expectations] is the systematic
development of a notion of conditional probability that covers conditioning with
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respect to events of probability 0. This is accomplished by conditioning with
respect to collections of events — that is, with respect to o-fields. . . Billingsley
(1995)[p. 432]

Rosenthal’s assessment Rosenthal (2006)[p. 153] of this “accomplishment”
amounts to acknowledging that the goal has not been achieved.
Rao’s reaction:

All these studies show that conditioning in the general case is not simple, and the
occasional counterexamples served only to deepen the mystery of the subject.
Rao (2005)[p. 62]

The alleged mystery involved in conditioning via conditional expectations disappears
naturally however if one keeps in mind the Maxim of Probabilism: That a concept
is genuinely probabilistic only if it is invariant with respect to measure-theoretic iso-
morphisms:

Assume that (X, S, p) and (Y, Z, q) are strictly isomorphic via a strict isomor-
phism f: X — Y.Let. Abeasub-o-field of S. Then A is taken by f into a sub-o-field
fLA] = {f[A] : A € A}. Consider versions &(- | A) and &(- | f[A]) of the condi-
tional expectations

ECLA: LY(X,S, p) > LY(X,S, p) (15)
ECIfIAD » LYY, 2,q) — LYY, Z,9) (16)

Assume that there is xo € X such that p({xo} = g({f(x0)} = 0. Then fora g €
£ix, s, p) either

&g | Axo) # E(fog | fLAD(x0)
or, if

&g A)xo) =&(fog | fIAD o)
then we can take another version &’ (- | A) such that

&' (g | Axo) =E(g | Axo) +r  forr #0

and then

&'(g | Axo) # E(f og | FLAD(x0)
This means that the concept of a particular version of the conditional expectation (or
rather the value of a version at a given point) is not invariant with respect to strict
isomorphisms.

But definition (12) does yield a unique probability value: whichever version of (- |
A) one takes in (12), since the p-integral is insensitive to p-measure zero differences,
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the conditional probability defined by (12) is the same. This can be expressed formally
by stating that the conditional expectation is unique if considered as a map on the space
of equivalence classes of integrable random variables, where the equivalence relation
is “equal except on p-probability zero set”. Consequently, the conditional probability
values provided by the (unique) conditional expectation lacks the ambiguity involved
in versions. And this can also be expressed in terms of the Maxim of Probabilism:
Using the fact that a mod0 isomorphism generates an isomorphism of the spaces of
equivalence classes of integrable random variables, one can show (Gyenis and Rédei
(2020)) that the conditional expectation is invariant with respect to modO isomorphisms
— and so are the conditional probabilities defined by it in the manner of (12).
So the situation is the following:

(i) The concept of conditional expectation viewed on the space of equivalence classes
of functions satisfies the necessary condition for a concept to be strongly proba-
bilistic.

(i1) The notion of version of a conditional expectation does not satisfy the necessary
condition for a concept to be even weakly probabilistic.

So the “mystery” Rao mentions is explained by the fact that specific versions of
conditional expectations are not determined probabilistically, they are not purely prob-
abilistic. There is no “canonical version” of a conditional expectation in general,
choosing a particular version can only be motivated by considerations that involve
non-probabilistic elements. This consequence of the Maxim of Probabilism also
helps in understanding certain features of the Borel-Kolmogorov Paradox. We discuss
this in the next section on the basis of Gyenis et al. (2017).

5 The Maxim of Probabilism and the Borel-Kolmogorov Paradox

The Borel-Kolmogorov Paradox arises from the question “What is the conditional
probability on a great circle on a sphere in 3 dimension if on the sphere one assumes
the uniform probability measure?” One might have the intuition that the conditional
probability in question is determined and is the uniform probability. But the usual
definition of conditional probability by the ratio formula (on which Bayes’ rule is
based) does not yield any conditional distribution on the great circle because any
great circle has probability zero in the uniform measure on the sphere. This tension
between the intuition and the definition of conditional probability by the ratio formula
is the Borel-Kolmogorov Paradox. It has been extensively discussed both in probability
theory proper (see Kolmogorov (1956)[pp. 50-51], Billingsley (1995)[p. 441], Bungert
and Wacker (2020), de Finetti (1972)[p. 203], Proschan and Presnell (1998), Rao
(1988), Rao (2005)[p. 65], Seidenfeld et al. (2001)), and in the literature on philosophy
of probability (see Borel (1909)[pp. 100-104], Easwaran (2008), Hjek (2003), Jaynes
(2003)[p. 470], Howson (2014), Myrvold (2015), Gyenis et al. (2017)2, Rescorla
(2015), Seidenfeld (2001)).

Kolmogorov (1956)[pp. 50-51] argued that the paradox is resolved if one condi-
tionalizes using the concept of conditional expectation: He specified a o-field A on

2 The paper Wacker (2019) points out an important technical error in Gyenis et al. (2017).
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the sphere containing the great circle and calculated a version of the corresponding
A-conditional expectation determined by the o -field A and by the uniform probability
on the sphere. This version yields a conditional probability on the great circle, but this
conditional probability is not the uniform probability on the great circle. Although this
is counterintuitive, it is a consequence of how Kolmogorov chose the o-field .A; and
one can show (Gyenis et al. (2017)) that choosing a different o-field B one obtains
a version of the corresponding 3-conditional expectation that does yield the uniform
conditional probability on the great circle. It was argued in Gyenis et al. (2017) that
obtaining both a non-uniform and the uniform conditional probability on the great
circle is not a contradiction because the respective two o -fields A and B are not iso-
morphic, hence they represent different conditioning conditions. More importantly:
both the uniform and the non-uniform conditional probability on the great circle are
given by specific versions of the respective .A- and B-conditional expectations. And
since versions of the conditional expectations are not determined probabilistically (as
shown in Sect. 4), neither the Kolmogorovian non-uniform conditional probability, nor
the uniform conditional probability on the great circle are determined probabilistically
by the facts that (i) one has the uniform probability on the sphere and (ii) one fixes as
conditioning o -fields A or B.

This undeterminateness of the conditional probability on the great circle, even
in the framework of conditioning via conditional expectations, is concealed by the
deceptive determinatness of the versions of the A- and B-conditional expectations.
This seeming determinatness of the versions is due to the fact that the sphere is a two-
dimensional surface, and this allows integrating two-place functions on the sphere with
respect to one variable. It is this particular structure of the probability space on the
sphere that leads to a natural selection of a version of the .A-conditional expectations
featuring in Kolmogorov’s resolution — and also of the B-conditional expectations
yielding the uniform conditional probability on the great circle (see Gyenis et al.
(2017) for details). But linear dimension is not a property that is invariant with respect
to measure-theoretic isomorphisms mod0: The probability measure space consisting
of the two-dimensional sphere with the uniform probability on its Lebesgue measur-
able sets is a purely non-atomic probability space, with the sphere being a complete
metric space; hence Proposition 3.4 applies, and so the sphere with its uniform prob-
ability is isomorphic modO with the unit interval with the Lebesgue measure on it.
In this latter probability space there is no natural selection of a version of the con-
ditional expectation that corresponds to the version of the .A-conditional expectation
Kolmogorov chose, nor is there a natural choice of a version of the conditional expec-
tation that corresponds to the version of the B-conditional expectation that yields
the uniform conditional probability on the great circle. The Maxim of Probabilism
tells us then that selecting either the version in the Kolmogorov resolution or in the
resolution yielding the uniform conditional probability on the great circle does not
satisfy the necessary condition to be even weakly probabilistic: the selections involve
non-probabilistic features of the situation.

The upshot is that the Maxim of Probabilism tells us that the conditional probability
on any given great circle is probabilistically genuinely undetermined by the assumption
of the uniform probability on the sphere. Tacit, non-probabilistic reasonings (e.g.
symmetry considerations (Gyenis et al. (2017))) play arole in influencing our intuition
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that the conditional probability on a great circle is determined probabilistically by the
uniform probability on the sphere. But the group-theoretic structure of the sphere on
which the symmetry considerations are based is also not invariant with respect to
measure-theoretic isomorphisms.

6 Concluding comments

The Maxim of Probabilism only gives a necessary condition to be satisfied by a
concept in order to qualify as probabilistic. Why not sufficient as well? If one views
mathematical concepts as originating in the attempts to describe natural and social
phenomena (as for instance von Neumann saw mathematics (Rédei (2020))), then no
sufficient and necessary conditions are feasible that relate a mathematical structure
exclusively to a specific circle of phenomena because typically there is a large variety
of phenomena whose main features are described by the same mathematical structure.
This is so with (bounded) measure theory as well: A lot of diverse phenomena can
be described mathematically in terms of bounded measure theory in addition to those
that can be regarded as probabilistic in an intuitive sense.

Viewed from this empiricist perspective, Reichenbach’s attempt at axiomatizing
probability theory aims at specifying a mathematical structure that is richer than
measure theory, embodying extra content, the extra content being the frequency
interpretation. This leads to the difficulty that a finite frequency interpretation is too
constraining and one has to allow that probabilities are limits of relative frequencies
in infinite ensembles — but this latter view does not have a direct empirical basis. So
Reichenbach creates one artificially by formulating the transcendental (non-empirical)
principle of lawful distribution (Axiom of Induction). By assigning a major function
to this principle in foundations of probability theory Reichenbach moves away from
empiricism; on the other hand, insisting on expressing the frequency content in the
mathematical axioms of probability theory he tried to remain very close to an empiri-
cist position. We regard this tension the fundamental reason for the difficulties in his
foundational work on probability, which however is still a rich source of inspiration —
as we hope the idea of utilizing the notion of isomorphism in foundations of probability
shows.
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