Discounted optimal stopping problems in first-
passage time models with random thresholds
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We derive closed-form solutions to some discounted optimal stopping problems re-
lated to the perpetual American cancellable dividend paying put and call option pricing
problems in an extension of the Black-Merton-Scholes model. The cancellation times are
assumed to occur when the underlying risky asset price process hits some unobservable
random thresholds. The optimal stopping times are shown to be the first times at which
the asset price reaches stochastic boundaries depending on the current values of its running
maximum and minimum processes. The proof is based on the reduction of the original
optimal stopping problems to the associated free-boundary problems and the solution of
the latter problems by means of the smooth-fit and modified normal-reflection conditions.
We show that the optimal stopping boundaries are characterised as the maximal and
minimal solutions of certain first-order nonlinear ordinary differential equations.

1. Introduction

The main aim of this paper is to present closed-form solutions to the discounted optimal
stopping problems with the values:

V= supE[e*” (K — X)) I(r < 0)) + e~ (p + 50 Xp,) 10, < 7) + % (1- eﬂm@l))} (1.1)
and
Vi = sup B e (X, = Ko) I(r < 02) = (m+ 56 Xo,) I(02 < 7) + 22 (1= 9)] (1.2)

*(Corresponding author) London School of Economics, Department of Mathematics, Houghton Street, Lon-
don WC2A 2AE, United Kingdom; e-mail: p.v.gapeev@lse.ac.uk
tKuwait University, Faculty of Science, Department of Mathematics, P.O. Box 5969, Safat - 13060, Kuwait;
e-mail: almotairi.h@gmail.com
Mathematics Subject Classification 2010: Primary 60G40, 60G44, 60J65. Secondary 91B25, 60J60, 35R35.
Key words and phrases: Discounted optimal stopping problem, Brownian motion, first passage times, run-
ning maximum and minimum processes, smooth-fit and normal-reflection conditions, perpetual American op-
tions, random dividends, free-boundary problem, a change-of-variable formula with local time on surfaces.
Date: September 17, 2020



for some given constants K; > 0, n; > 0, s > 0, and v; > 0, for every i = 1,2, where I(-)
denotes the indicator function. Here, for a precise formulation of the problem, we consider
a probability space (€2,G, P) with a standard Brownian motion B = (B;);>¢ and a strictly
positive integrable random variable ¢ which has a strictly increasing continuously differentiable
cumulative distribution function F'(x) such that F'(0) =1 — F(oco) =0 and 0 < F(z) <1 as
well as F'(z) > 0, forall x > 0 (B and ¢ are supposed to be independent under the probability
measure P). We assume that the process X = (X;);>0 is given by:

X, =x exp ((u—02/2)t+aBt> (1.3)
so that it solves the stochastic differential equation:

where > 0 is fixed, and r > 0, § > 0, and ¢ > 0 are some given constants. Suppose that
the process X describes the price of a risky asset in a financial market, where r is the riskless
interest rate, ¢ is the dividend rate paid to the asset holders, and o is the volatility rate. We
also define the random times 6;, + = 1,2, by:

O =inf{t >0|X; >¢} and 6y =inf{t >0]|X, <} (1.5)

and assume that cancellations of certain dividend paying contingent claims are announced at
these times, by the issuers of those products depending on the market price of the underlying
risky asset. Here, K is the strike price, n; + 7, X is a (linear) recovery, and v; is the promised
rate of continuously paid dividends. These properties particularly mean that the holders of
such contingent claims impose some prior (Bayesian) distribution on the unknown for them
and unobservable from the market cancellation thresholds £. Note that European contingent
claims with fixed finite-time horizon which have similar payoff and dividend structure were
described in Bielecki and Rutkowski [7; Section 2.1] and in the related references therein.
Suppose that the suprema in (1.1) and (1.2) are taken over all stopping times 7 with respect
to the natural filtration (F;);>¢ of the process X, and the expectations there are taken with
respect to the risk-neutral probability measure P. In this view, the values V}* and V5" in (1.1)
and (1.2) can be interpreted as the rational (or no-arbitrage) ex-dividend prices of the perpetual
American cancellable dividend paying put and call options in an extension of the Black-Merton-
Scholes model (see, e.g. [40; Chapter VII, Section 3g]). Observe that the structure of the
reward functionals in (1.1) and (1.2) allows to describe the associated contracts as standard
game (or Israeli) contingent claims introduced by Kifer [23]. Such contacts enable their issuers
to exercise their right to withdraw the contracts prematurely, by paying some penalties agreed
in advance. Further developments of the Israeli options and the associated zero-sum optimal
stopping (Dynkin) games were provided by Kyprianou [25], Kithn and Kyprianou [24], Kallsen
and Kiihn [22], Baurdoux and Kyprianou [3]-[5], Ekstrom and Villeneuve [11], and Baurdoux,
Kyprianou, and Pardo [6] among others. In contrast to the concept of game contingent claims
mentioned above, in the present paper, we study the cancellable American options in which
the exogenous terminations of the contracts occur at the first times when the underlying risky
asset price processes reach certain random thresholds being unknown and unobservable to the
usual investors trading in the market. We assume that these thresholds are independent of



the geometric Brownian motion describing the underlying risky asset price. Some extensive
overviews of the perpetual American options in diffusion models of financial markets and other
related results in the area are provided in Shiryaev [40; Chapter VIII; Section 2a], Peskir
and Shiryaev [34; Chapter VII; Section 25|, and Detemple [9] among others. Note that other
applications of the concept described above include the consideration of perpetual American
dividend paying options with credit risk which are defaulted at the times when the underlying
risky asset price processes reach random thresholds. Other perpetual American defaultable
dividend paying options were considered in [14] in some models with full and partial information.

We further study the problems of (1.1) and (1.2) as the associated optimal stopping problems
of (2.5) and (2.6) for the two-dimensional continuous Markov processes having the underlying
risky asset price X and its running maximum S or minimum () as their state space compo-
nents. The resulting problems turn out to be necessarily two-dimensional in the sense that they
cannot be reduced to optimal stopping problems for one-dimensional Markov processes. Note
that the reward functionals of the optimal stopping problems in (2.5) and (2.6) contain compli-
cated stochastic integrals with respect to the running maximum and minimum processes. This
feature initiates further developments of techniques to determine the structure of the associated
continuation and stopping regions as well as appropriate modifications of the normal-reflection
conditions in the equivalent free-boundary problems. Discounted optimal stopping problems for
the running maxima and minima of the initial continuous (diffusion-type) processes were initi-
ated by Shepp and Shiryaev [37]-[39] and further developed by Pedersen [29], Guo and Shepp
[20], Gapeev [12], Guo and Zervos [21], Peskir [32]-[33], Glover, Hulley, and Peskir [18], Gapeev
and Rodosthenous [15]-[17], Rodosthenous and Zervos [36], and Gapeev, Kort, and Lavru-
tich [13] among others. It was shown, by means of the established by Peskir [30] maximality
principle for solutions of optimal stopping problems, which is equivalent to the superharmonic
characterisation of payoff functions, that the optimal stopping boundaries are given by the
appropriate extremal solutions of certain (systems of) first-order nonlinear ordinary differential
equations. More complicated optimal stopping problems in models with spectrally negative
Lévy processes and their running maxima were studied by Asmussen, Avram, and Pistorius [1],
Avram, Kyprianou, and Pistorius [2], Ott [28], and Kyprianou and Ott [26] among others.

The rest of the paper is organised as follows. In Section 2, we embed the original problems
of (1.1) and (1.2) into the optimal stopping problems of (2.5) and (2.6) for the two-dimensional
continuous Markov processes (X, S) and (X, Q) defined in (1.3) and (2.1). It is shown that the
optimal stopping times 7 and 7 are the first times at which the process X reaches some lower
or upper boundaries a*(S) and b*(Q) depending on the current values of the processes S or @,
respectively. In Section 3, we derive closed-form expressions for the associated value functions
Vi*(z,s) and V) (x,q) as solutions to the equivalent free-boundary problems and apply the
modified normal-reflection conditions at the edges of the two-dimensional state spaces for (X, .S)
or (X,Q) to characterise the optimal stopping boundaries a*(S) and b*(Q)) as the maximal
and minimal solutions to the resulting first-order nonlinear ordinary differential equations. In
Section 4, by using the change-of-variable formula with local time on surfaces from Peskir [31],
we verify that the solutions of the free-boundary problems provide the solutions of the original
optimal stopping problems. The main results of the paper are stated in Theorem 4.1.



2. Preliminaries

In this section, we introduce the setting and notation of the two-dimensional optimal stop-
ping problems which are related to the pricing of perpetual American cancellable dividend
paying put and call options and formulate the equivalent free-boundary problems.

2.1 The optimal stopping problems. Let us now define the associated with X running
mazimum and minimum processes S = (St)i>0 and Q = (Q¢)i>0 by:

Sy =5V (()rgg;ct Xu> and Q; =qA <01£12t Xu) (2.1)
for some arbitrary s > x > ¢ > 0. Then, the conditional probabilities of the events that
cancellation occurs before any time ¢ > 0 take the form:

Py <t|F)=P(S, > &|F)=F(S) and POy <t|F)=PQ: <{[F)=G(Q), (2.2)

where F'(x) is the cumulative distribution function of ¢, and we set G(x) = 1 — F(z), for all
x > 0. Thus, by virtue of the assumptions made above, we have G(0) = 1 — G(oc0) = 1 and
0 < G(x) <1 as well as G'(z) < 0, for all x > 0. In this case, the values of (1.1) and (1.2)

admit the representations:

Vi =supF |:€_TT (K1 — X;)G(Sy) + /T e (m + 2 Xy) dF(S;) + /T e "y G(Sy) dt} (2.3)
and O 0

Vi = E|e (X~ K FQ) - [ e o+ X0 dG@)+ [ e F@Q) | 2

where the suprema are taken over all stopping times of 7 with respect to (F;):>o. In this case,
taking into account the facts that the processes S and () may change their values only when
Xy = S; and X; = @y, for t > 0, respectively, we see that the problems in (2.3) and (2.4) can
be naturally embedded into the optimal stopping problems for the (time-homogeneous strong)
Markov processes (X, S) = (X¢, St)i>0 and (X, Q) = (Xt, Q¢)i>o with the value functions:

Vi(z,s) (2.5)
= sup Ly {6_” (K1 — X;)G(S7) + / e " (m + 50 Sy) F'(S:) dS, + / e " G(S) dt}
T 0 0

and

V3 (2,q) (2.6)
R [ 6 K F@) ~ [t Q@)+ [ wF(@t)dt]
T 0 0

where F, s and £, denote the expectations with respect to the probability measures P, , and
P, , under which the two-dimensional Markov processes (X,S) and (X, Q) defined in (1.3)
and (2.1) start at (z,s) € By = {(z,s) € R*|0 < z < s} and (z,q) € Fy = {(z,q) e R*|0 <
q < z}, respectively. We further obtain solutions to the optimal stopping problems in (2.5)
and (2.6) and verify in Theorem 4.1 below that the value functions Vi*(x,s) and V;(z,q) are
the solutions of the problems in (2.3) and (2.4), and thus, of the original problems in (1.1) and
(1.2) under s = x and ¢ = x, respectively.



2.2 The structure of optimal stopping times. By means of standard applications of
Ito’s formula (see, e.g. [27; Theorem 4.4] or [35; Chapter II, Theorem 3.2]) to the processes
e (K — X;)G(S;) and e " (X; — K3)F(Q;), we obtain the representations:

e " (K — X;) G(S;) = (K; — 1) G(s) + N} (2.7)
t t
+ / e (00X, —rKy)G(S,) du +/ e ™ (K — X)) [(X, =8,)G'(S,)dS,
0 0
and
e (Xy — Ko) F(Qr) = (v — K2) F(q) + N/ (2.8)
t t
+ / e " (rKy —0X,) F(Q,) du+ / e ( Xy — Ko) I(Xy = Q) F'(Qu) dQy,
0 0
for all ¢ > 0. Here, the processes N* = (N})i>0, i = 1,2, defined by:

t t
N} = — / e o X,G(S,)dB, and N?= / e ™o Xy F(Qy)dB, (2.9)
0 0

are continuous uniformly integrable martingales under the probability measures P, ¢ and P, g,
for each (z,s) € Ey and (z,q) € Es, respectively. Then, by applying Doob’s optional sampling
theorem (see, e.g. [27; Chapter III, Theorem 3.6] or [35; Chapter II, Theorem 3.2]), we obtain
that the expected rewards from (2.5) and (2.6) admit the representations:

E.. [e” (K, — X,) G(S,) + /0 e (i + 30 S) F(Sy) S + /O " G(S) dt} (2.10)
— (K —2)G(s) + En,s [ /0 " (0, = 1Ky + ) G(S) dt
+ /0 e (Ky — i — (14 5) S) I(X0 = S) G'(S)) dst]
and
Epqle™ (Xr — K2) F(Qr) — /OT e (2 + 222 Qr) G'(Qr) dQ; + /OT e vy F(Q) dt} (2.11)
(= K) F(q) + Buy [ /0 "o (1K + vy — 6X2) F(Q1) dt
b [T (@ ) Kt ) 10X = Q) FQ)

for (xz,s) € Ey and (x,q) € FEy, for any stopping time 7 of the process (X,S) or (X,Q),
respectively. Observe from the structure of the integrands and the facts that 0 < G(z) < 1
and 0 < F(x) < 1, for all > 0, that the expectations of the integrals in the second lines of
the formulas in (2.10) and (2.11) are finite. Moreover, by virtue of the assumed integrability of
the random variable £, it is seen that the expectations of the integrals in the third lines of the
formulas in (2.10) and (2.11) are finite too.



We now recall the assumptions that 0 < F(z) < 1 and F'(x) > 0, so that 0 < G(z) < 1
and G'(x) < 0 holds, for all x > 0. Then, according to the properties that 0 < G(S;) < 1 and
G'(S;) < 0, for any ¢t > 0, by virtue of the fact that the process S is positive and increasing, it is
seen from the structure of the integrands in (2.10) that the optimal stopping time 7 is infinite,
whenever K < vq/r holds. Furthermore, by virtue of the properties that 0 < G(S;) < 1 and
0 < F(Q:) <1, for any t > 0, it follows from the structure of the first integrands in (2.10)
and (2.11) that it is not optimal to exercise the cancellable put option when @ < X; < S;
with @ = (rK; —11)/d under K; > vy/r, while it is not optimal to exercise the cancellable
call option when Q; < X; < b with b = (rKs + 11)/d, for any ¢ > 0, respectively. In other
words, these facts mean that the set {(z,s) € F;|a <z < s} under K; > v1/r belongs to the
continuation region C7 which has the form:

Cr = {(z.5) € By |V (x,5) > (K1 —2) G(s) }, (2.12)
while the set {(x,q) € Ey|q < x < b} belongs to the continuation region Cj which is given by:
Cy = {(x,q) € By | V5 (x,q) > (z — K3) F(q)} (2.13)

(see, e.g. [34; Chapter I, Subsection 2.2]).

Note that, by virtue of properties of the running maximum S and minimum ¢ from (2.1)
of the geometric Brownian motion X from (1.3)-(1.4) (see, e.g. [10; Subsection 3.3] for similar
arguments applied to the running maxima of the Bessel processes), it is seen that, for any
s’ >0 and ¢ > 0 fixed and an infinitesimally small deterministic time interval A, we have:

S =5V Jmax X, = sV (s+AX)+o0(A) as ALO (2.14)
and
Qa =4 A  in X, = d N +AX)+0(A) as ALO (2.15)

where we set AX = X — s and AX = X5 — ¢, respectively. Observe that AS = o(A) when
AX <0, AS =AX+0(A) when AX >0, AQ = o(A) when AX >0, and AQ = AX +0(A)
when AX < 0, where we set AS =Sy — s and AQ = Qa — ¢, and recall that o(A) denotes
a random function satisfying o(A)/A — 0 as A | 0 (P-a.s.). In this case, using the following
asymptotic formulas:

By o[AX; AX > 0] = Ey o [AX I(AX > 0)] ~ '/ 23 as A L0 (2.16)

T
and

/A
Eypy[AX; AX <0] = Ey g [AX I(AX < 0)] ~ —¢ 5= 8 ALO (2.17)

as well as applying the representations in (2.10) and (2.11), we get:

By [G_TA (65 — Ky + 1) G(s) A+ e (K —my — (14 30) §') G'(5) As} (2.18)
~e TR (8 —r Ky ) G(S) A+ e (Ki—m —(1+30)s)G(s)s QA as A0
e



and

Ey o [e‘m (rKy+ 15 —6¢)F(¢) A+ e ™ ((1 +0)q — Ky + 772) F'(q) AQ] (2.19)

/ / —-T / / / / A
~e A (rKy + 1 —0¢)F(¢)A —e A((1—1-%2)(] — Ks+m2) F'(¢) q \/% as A0

for each & > 0 and ¢ > 0 fixed. Since we have G'(s) < 0 and F’(q) > 0, for all s > 0
and ¢ > 0, we see that the resulting coefficients by the terms of order v/A in the expressions
of (2.18) and (2.19) are strictly positive, when s > s* with s* = (K; — 11)/(1 + 54) under
Ky > m (or when s’ > 0 under K; <), as well as ¢’ < ¢* with ¢* = (Ky—mn2)/(1+ 52) under
Ky > ny. Hence, taking into account the facts that the process S is positive and increasing
and the process ) is positive and decreasing, by virtue of the properties that G'(S;) < 0
and F'(Q;) > 0, for any ¢ > 0, we may therefore conclude from the structure of the second
integrands in (2.10) and (2.11) as well as the heuristic arguments presented in (2.18) and (2.19)
above that it is not optimal to exercise the cancellable put option when s* < S; = X; with
s* = (K1 —mn1)/(14 5) under Ky > n; (or when 0 < S; = X; under K; < ), while it is not
optimal to exercise the cancellable call option when X; = Q; < ¢* with ¢* = (K —n2)/(1+ 553)
under Ky > o, for any ¢t > 0, respectively. In other words, these facts mean that the
sets d} = {(x,s) € Ei|x = s > s*} under K; > 1, (which becomes the whole diagonal
di ={(z,s) € Ey |z = s} under Ky <) and d) = {(z,q) € Ex |z = q < ¢*} under Ky > ny
(which becomes an empty set under Ky < 1) surely belong to the continuation regions C}
and Cj in (2.12) and (2.13) above. For simplicity of presentation, we further assume that the
inequalities K7 > n; V (v1/r) and Ky > 1y hold.

On the other hand, it follows from the definition of the processes (X, S) and (X, @) in (1.3)
and (2.1) and the structure of the rewards in (2.5) and (2.6) with the representations in (2.10)
and (2.11) that, for each s > 0 fixed, there exists a sufficiently small = > 0 such that the point
(x,s) belongs to the stopping region D which has the form:

D; = {(z,s) € By | Vi(z,s) = (K1 — 2) G(s)}, (2.20)

while, for each ¢ > 0 fixed, there exists a sufficiently large > 0 such that the point (z,q)
belongs to the stopping region D3 which is given by:

D; = {(2.9) € Ba| Vi (2.0) = (x — K2) F(0)}, (2.21)

respectively (see, e.g. [34; Chapter I, Subsection 2.2]). According to arguments similar to
the ones applied in [10; Subsection 3.3] and [30; Subsection 3.3], the latter properties can be
explained by the facts that the costs of waiting until the process X coming from such a small
x > 0 increases the current value of the running maximum process S, as well as the costs of
waiting until the process X coming from such a large x > 0 decreases the current value of the
running minimum process (), may be too large due to the presence of the discounting factor
in the reward functionals of (2.5) and (2.6). It is seen from the results of Theorem 4.1 proved
below that the value functions Vi*(x,s) and V' (x,q) are continuous, so that the sets C} and
C5 in (2.12) and (2.13) are open, while the sets D} and D} in (2.20) and (2.21) are closed.
Observe that, if we take some (x,s) € Di from (2.20) and use the fact that the process
(X, S) started at some (2',s) such that 2’ < x passes through the point (x,s) before hitting

7



the diagonal d; = {(z,s) € Ei|xz = s}, then the equalities in (2.5) and (2.10) imply that
Vir(x',s) — (K1 —2')G(s) < Vi*(x,s) — (K1 —x)G(s) = 0 holds, so that (z',s) € Di. Moreover,
if we take some (z,q) € Dj from (2.21) and use the fact that the process (X, () started at some
(«', q) such that ' > z passes through the point (x, q) before hitting the diagonal dy = {(z, q) €
Es|x = ¢}, then the equalities in (2.6) and (2.11) imply that V;*(2/,q) — (' — K3)F(q) <
Vi (x,q) — (x — K2)F(q) = 0 holds, so that (z’,q) € D;. On the other hand, if take some
(z,s) € CF from (2.12) and use the fact that the process (X, ) started at (z,s) passes through
some point (z”,s) such that z” > x before hitting the diagonal d;, then the equalities in (2.5)
and (2.10) yield that Vi*(2",s) — (K1 — 2”")G(s) > V*(x,s) — (K; — x)G(s) > 0 holds, so that
(2", s) € CF. Moreover, if we take some (x,q) € Cj from (2.13) and use the fact that the process
(X, Q) started at (z,q) passes through some point (z”,q) such that 2" < x before hitting the
diagonal dy, then the equalities in (2.6) and (2.11) yield that Vi (2",q) — (2" — K3)F(q) >
Vii(z,q) — (x — K3)F(q) > 0 holds, so that (z”,q) € C;. Hence, combining these arguments
together with the comments in [10; Subsection 3.3] and [30; Subsection 3.3] and recalling the
facts that the sets d} = {(z,s) € Fi|x = s > s*} and d), = {(z,q) € Ez2|x = q¢ < ¢}
surely belong to the continuation regions C} and Cj in (2.12) and (2.13), respectively, we may
conclude that there exist functions a*(s) and b*(q) satisfying the inequalities a*(s) < s A @
with @ = (rKy —1)/6 and b*(q) > ¢V b with b = (rKs + 15)/d, for all s > s and ¢ < G and
some 0 < s < s*Aa and ¢ > ¢* Vb fixed, as well as the equalities a*(s) = s and b*(q) = ¢, for
all s <s and ¢ > @, such that the continuation regions C} and Cj in (2.12) and (2.13) have
the form:

Ci={(z,s) € By|a*(s) <w <s} and Cj={(z,q) € Bx|q<z<b(q)}, (2.22)
while the stopping regions Di and Dj in (2.20)-(2.21) are given by:
Di ={(z,s) € Ey|z <a*(s)} and Dj={(z,q) € Ex|z>b"(q)}, (2.23)

under K7 > my V (11/r) and Ky > 19, respectively (see Figures 1 and 2 below for computer
drawings of the optimal exercise boundaries a*(s) and b*(q)).

We summarise the arguments shown above in the following assertion.

Lemma 2.1 Let the processes (X, S) and (X, Q) be given by (1.3) and (2.1), with some r > 0,
d >0, and 0 > 0 fized, and the inequalities Ky > m V (v1/r) and Ky > 1y hold. Suppose that
the random times 0;, i = 1,2, are defined in (1.5) for a strictly positive continuous integrable
random variable & with a strictly increasing continuously differentiable cumulative distribution
function F(x) = 1 — G(z) such that F(0) =1 — F(oco) =0 and 0 < F(z) < 1 as well as
F'(z) > 0, for all x > 0. Then, the optimal stopping times in the problems of (2.5) and (2.6)
have the structure:

o =inf{t >0 X, <a"(S)} and 7, =inf{t>0]X; > b"(Q:)} (2.24)

for some functions a*(s) and b*(q) satisfying the inequalities a*(s) < sAa with a = (rKy—uvy)/0
and b*(q) > qVb with b= (rKy+13)/d, for all s > s and g <q and some 0 < s < s*\Na@ and
G > q" VDb fized, as well as the equalities a*(s) = s and b*(q) = q, for all s < s and q > 7,
respectively.
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Figure 1. A computer drawing of the optimal exercise boundary a*(s).
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Figure 2. A computer drawing of the optimal exercise boundary b*(q)



2.3 The free-boundary problems. By means of standard arguments based on the appli-
cation of Itd’s formula, it is shown that the infinitesimal operator L of the process (X, S) or
(X,Q) from (1.4) and (2.1) has the form:

ola?
L:(T—5)x8x+78m in 0<x<s or 0<g<zx (2.25)
Js=0 at z=s or 9,=0 at z=gq (2.26)

(see, e.g. [30; Subsection 3.1]). In order to find analytic expressions for the unknown value
functions Vi*(z,s) and Vy(x,q) in (2.5) and (2.6) and the unknown boundaries a*(s) and
b*(q) from (2.24), we apply the results of general theory for solving optimal stopping problems
for Markov processes presented in [34; Chapter IV, Section 8] among others (see also [34;
Chapter V, Sections 15-20] for optimal stopping problems for maxima processes and other
related references). More precisely, for the original optimal stopping problems in (2.5) and (2.6),
we formulate the associated free-boundary problems (see, e.g. [34; Chapter IV, Section 8]) and
then verify in Theorem 4.1 below that the appropriate candidate solutions of the latter problems
coincide with the solutions of the original problems. In other words, we reduce the optimal
stopping problems of (2.5) and (2.6) to the following equivalent free-boundary problems:

(LV) — rVi)(z, s) = —11G(s) for (x,s) € C], (LVa —rVa)(x,q) = —11F(q) for (z,q) € (227)
Vil )|, = (K1 — () G(s), Valw,a)],_yy = (bla) — K2) Fla)  (2.25)

0, Vi (z, s)|x_a(s)+ ==G(s), 0:Va(x,q)|,_y,_ = F(a) (2.29)

OVi(w,s)|,_,_ = —(m +sa8) F'(s), 93Valz,q)|,_,, = (2 +3249) G'(q) (2.30)

Vi(z,s) = (K, — x) G(s) for (z,s) € Dy, Va(z,q) = (x — Ky) F(q) for (z,q) € Dy (2.31)

Vi(z,s) > (K, —x)G(s) for (z,s) € Cy, Va(x,q) > (x — Ky) F(q) for (z,q) € Cy (2.32)

(LV) —rVi)(z, s) < —1nG(s) for (z,s) € Dy, (LVe —1rVs)(z,q) < —1aF(q) for (z,q) € [2:33)

where C; and D;, i = 1,2, are defined as C} and D}, i = 1,2, in (2.22) and (2.23) with a(s)
and b(q) instead of a*(s) and b*(q), respectively, and we set C] = Cy \ {(z,s) € Ey |z = s}
and C) = Cy\ {(z,q) € Es|x = q}. Here, the instantaneous-stopping as well as the smooth-fit
and modified normal-reflection conditions of (2.28)-(2.30) are satisfied, for all s > s and ¢ < g,
respectively. Observe that the superharmonic characterisation of the value function (see, e.g.
[34; Chapter IV, Section 9]) implies that V*(z,s) and V;(x,q) are the smallest functions
satisfying (2.27)-(2.28) and (2.31)-(2.32) with the boundaries a*(s) and b*(q), respectively.
Note that the inequalities in (2.33) follow directly from the assertion of Lemma 2.1 proved in

Subsection 2.2 above.

3. Solutions to the free-boundary problems

In this section, we obtain solutions to the free-boundary problems in (2.27)-(2.33) and
derive first-order nonlinear ordinary differential equations for the candidate optimal stopping
boundaries.
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3.1 The candidate value functions. It is shown that the second-order ordinary differential
equations in (2.27) have the general solutions:

Vi(z,s) = Cri(s) 2™ + Cra(s) 2 + v G(s)/r (3.1)
and

Va(z,q) = Coa(q) 2™ + Ca(q) 2™ + 10 F(q) /1, (3.2)

where C ;(s) and Cs;(q), j = 1,2, are some arbitrary (continuously differentiable) functions,
and v;, j = 1,2, are given by:

1 r—4¢ (1 r=68\" 2r
VT 5T T2 _(_1)3\/(5_ o2 ) +§ (3.3)

so that 79 < 0 < 1 < =; holds. Then, by applying the conditions of (2.28)-(2.30) to the
functions in (3.1), we obtain the equalities:

Cra(s)a(s) + Cia(s) a”(s) +v1 G(s)/r = (K1 — a(s)) G(s) )
11 Cra(8) a"(s) + 72 Cra(s) a(s) = —a(s) G(s) (3.5)
Cla(8) 8™ + Cla(s) s + 11 G'(s)/r = —(m + 501 5) F'(s)

for all s > s, and

C21(q) b7 (q) + C22(q) 02(q) + v2 F(q) /7 = (b(q) — K2) F'(q) (3.7)
Y1 C2,1(q) b (q) + 72 C22(q) b2 (q) = b(q) F(q) (3.8)
Co1(0) g™ + Co0(q) O + 2 F'(q) /1 = (2 + 2229) G'(q) (3.9)

for all ¢ < @, respectively. Hence, by solving the systems of equations in (3.4)-(3.5) and
(3.7)-(3.8), we obtain that the candidate value functions admit the representations:

Vi(z, s;a(s)) = Cra(s;a(s)) 2™ + Cra(s;a(s)) 27 + vy G(s)/r (3.10)
for a(s) <z < s, with

(V3 (K1 — 1 /1) = (13-5 — 1)a(s))G(s)

Ci(ssa(s)) = (Y3—j — ;)a (s)

(3.11)

for j =1,2, and
Va(z,q;b(q)) = Coa(q;b(q)) 2™ + Ca2(q; b(q)) 27 + v Fq) /7 (3.12)
for ¢ <z < b(q), with

(73— — 1)b(q) — 3 (Ko + 12/7)) F(q)
(v3—j — 73)b7 (q)

Cai(g;b(q)) = (3.13)
for j = 1,2, respectively.
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3.2 The candidate stopping boundaries. By applying the conditions of (3.6) and (3.9)
to the functions in (3.11) and (3.13), we conclude that the candidate boundaries satisfy the
first-order nonlinear ordinary differential equations:

_ WYia(s,al(s))s™ + Wia(s, a(s))s™ + (m + 208 — v /r)G'(s)

a'(s) = D11 (s, a(s))s1 + Pra(s, a(s))s™ (3.14)

for s > s, and

_ V(9. 0(0)q™ + Wa2(q,0(9))q™ + (112 + 209 + v2/7) ' (g)
©2,1(q,0(9))a™ + P22(q, b(a))q

for ¢ < @, respectively. Here, the functions @y ,(s,a(s)), ¥q;(s,a(s)) and Po,(q,b(q)),
Uy (g, b(q)) are defined by:

V' (q)

(3.15)

By (s, a(s)) = (1 = 1) —'tig—;7i7iiiizgzsgl/T)/G(S))(;(S) (3.16)
((y3-5 — Dals) = 3 (K1 — 1 /1))G'(s)

(V35 — v5)a% (s)

Wy 5(s,a(s)) =

(3.17)

for s > 0, and

(1= D) (2 = 1) = 172 (Ks + v2/1) /b(q)) F(q)
(3—5 — ;)b (q)
(35— — 1)b(q) — 35— (K2 + 10/7)) F'(q)

Us5(q,0(q)) = (s =200 (@) (3.19)

Dy5(q,0(q)) =

(3.18)

for ¢ > 0, and every j = 1,2. We have also used the obvious facts that F'(s) = —G'(s),
for all s > 0, and G'(q) = —F'(q), for all ¢ > 0, by virtue of the definition of the function
G(z)=1— F(z), for all > 0.

3.3 The maximal and minimal admissible solutions a*(s) and b*(q). We further con-
sider the maximal and minimal admissible solutions of first-order nonlinear ordinary differential
equations as the largest and smallest possible solutions a*(s) and b*(q) of the equations in (3.14)
and (3.15) with (3.16)-(3.17) and (3.18)-(3.19) which satisfy the inequalities a*(s) < s Aa@ and
b*(¢) > qVb with @ = (rK; —vy)/6 and b= (rKy +1»)/d, for all s > s and ¢ < g and some
0 <s<s*and ¢ > ¢* fixed. By virtue of the classical results on the existence and unique-
ness of solutions for first-order nonlinear ordinary differential equations, we may conclude that
these equations admit (locally) unique solutions, in view of the facts that the right-hand sides
in (3.14) and (3.15) with (3.16)-(3.17) and (3.18)-(3.19) are (locally) continuous in (s,a(s))
and (q,b(¢q)) and (locally) Lipschitz in a(s) and b(q), for each s > s and ¢ < G fixed (see
also [30; Subsection 3.9] for similar arguments based on the analysis of other first-order nonlin-
ear ordinary differential equations). Then, it is shown by means of technical arguments based
on Picard’s method of successive approximations that there exist unique solutions a(s) and
b(q) to the equations in (3.14) and (3.15) with (3.16)-(3.17) and (3.18)-(3.19), for s > s and
q < @, started at some points (sg, sg) and (qo, qo) such that sy > s and gy < g (see also [19;
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Subsection 3.2] and [30; Example 4.4] for similar arguments based on the analysis of other first-
order nonlinear ordinary differential equations). Hence, in order to construct the appropriate
functions a*(s) and b*(¢) which satisfy the equations in (3.14) and (3.15) and stays strictly
above and below the appropriate diagonal, for s > s and ¢ < @, respectively, we can follow
the arguments from [33; Subsection 3.5] (among others) which are based on the construction of
sequences of the so-called bad-good solutions which intersect the diagonals. For this purpose,
for any sequences (s;)eny and (q;)ien such that s; > s and ¢, < g as well as s; T 00 and ¢; | 0
as | — 0o, we can construct the sequence of solutions a;(s) and b;(q), | € N, to the equations
(3.14) and (3.15), for all s > s and ¢ < G such that a;(s;) = s; and b;(q;) = ¢; holds, for each
[ € N. It follows from the structure of the equations in (3.14) and (3.15) as well as the functions
in (3.16)-(3.17) and (3.18)-(3.19) that the properties aj(s;) < 1 and bj(¢g;) > 1 holds, for each
[ € N (see also [29; pages 979-982] for the analysis of solutions of another first-order nonlinear
differential equation). Observe that, by virtue of the uniqueness of solutions mentioned above,
we know that each two curves s — q;(s) and s — a,,,(s) as well as ¢ — b(q) and g — b, (q)
cannot intersect, for [;m € N, [ # m, and thus, we see that the sequence (a;(s))en is in-
creasing and the sequence (b;(q))en is decreasing, so that the limits a*(s) = lim;_,, a;(s) and
b*(q) = limy_,, by(q) exist, for each s > s and ¢ > @, respectively. We may therefore conclude
that a*(s) and b*(¢) provides the maximal and minimal solutions to the equations in (3.14)
and (3.15) such that a*(s) < s A@ and b*(¢) > ¢V b holds, for all s > s and ¢ < . Moreover,
since the right-hand sides of the first-order nonlinear ordinary differential equations in (3.14)
and (3.15) with (3.16)-(3.17) and (3.18)-(3.19) are (locally) Lipschitz in s and ¢, respectively,
one can deduce by means of Gronwall’s inequality that the functions a;(s) and b(q), [ € N,
are continuous, so that the functions a*(s) and b*(¢) are continuous too. The corresponding
mazimal admissible solutions of first-order nonlinear ordinary differential equations and the as-
sociated maximality principle for solutions of optimal stopping problems which is equivalent to
the superharmonic characterisation of the payoff functions were established in [30] and further
developed in [19], [29], [20], [12], [5], [21], [32]-[33], [18], [28], [26], [15]-[17], [36], and [13] among
other subsequent papers (see also [34; Chapter I; Chapter V, Section 17| for other references).

4. Main results and proofs

In this section, based on the expressions computed above, we formulate and prove the main
results of the paper.

Theorem 4.1 Suppose that the assumptions of Lemma 2.1 are satisfied. Then, the value func-

tions of the perpetual American cancellable put and call option optimal stopping problems in
(2.5) and (2.6) have the expressions:

Vi(z,s;a*(s)), if a*(s)<x<s and s>s
Vii(z,s) =< (K1 —x)G(s), if 0<ax<a*(s) and s>s (4.1)
(K1 —x2)G(s), if 0<a<s<s
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and
Va(z,q;0%(q)), if ¢<xz<b(q) and 0<qg<q
Vi(z,q) = (x — K2) Fq), if z>0b"(q) and 0<q<q (4.2)
(x — K9) F(q), if x>q>7q

and the optimal exercise times have the form of (2.24). Here, the functions Vi(z,s;a(s)) and
Vo(z,q;b(q)) are given by (3.10) and (3.12) with (3.11) and (3.13), and the optimal exer-
cise boundaries a*(s) and b*(q) provide the mazimal and minimal solutions of the first-order
nonlinear ordinary differential equations in (3.14) and (3.15) with (3.16)-(3.17) and (5.18)-
(3.19) satisfying the inequalities a*(s) < s Aa with @ = (rK; —11)/0 and b*(q) > qV b with
b= (rKy+1y)/6, for all s > s and ¢ <G and some 0 < s < s*AN@ and § > ¢* Vb fized, as
well as the equalities a*(s) = s and b*(q) = q, for all s < s and q > G, respectively.

Since both assertions stated above are proved using similar arguments, we only give a proof
for the case of the two-dimensional optimal stopping problem of (2.6) related to the dividend
paying perpetual American cancellable call option. Observe that we can put s =z and ¢ = x
to obtain the values of the original perpetual American cancellable option pricing problems of
(2.3) and (2.4) from the values of the optimal stopping problems of (2.5) and (2.6).

Proof In order to verify the assertion stated above, it remains for us to show that the function
defined in (4.2) coincides with the value function in (2.6) and that the stopping time 75 in (2.24)
is optimal with the boundary b*(q) specified above. For this purpose, let b(q) be any solution
of the ordinary differential equation in (3.15) satisfying the inequality b(q) > qV b, for all ¢ <@
and some § > ¢* Vb fixed. Let us also denote by V2(x,q) the right-hand side of the expression
in (4.2) associated with b(¢q). Then, it is shown by means of straightforward calculations from
the previous section that the function VP (z,q) solves the system of (2.27) with (2.31)-(2.33)
and satisfies the conditions of (2.28)-(2.30). Recall that the function V(z,q) is C?! on the
closure Cy of Cy and is equal to (z — K3)F(g) on Ds, which are defined as C,, C and D3
in (2.22) and (2.23) with b(q) instead of b*(q), respectively. Hence, taking into account the
assumption that the boundary b(q) is continuously differentiable, for all ¢ < g, by applying
the change-of-variable formula from [31; Theorem 3.1] to the process e "VY(Xy, Q;) (see also
[34; Chapter II, Section 3.5] for a summary of the related results and further references), we
obtain the expression:

¢
e V(X Q) =V (wg) + / e (LYY = V) (X Qu) I(Xo # b(Qu) X # Qu) du (4:3)
0
¢
b [ e AV QU I, = Q) dQu + M
0
for all ¢ > 0. Here, the process M? = (M});>o defined by:

M? = / t e " 0,V X,, Qu) (X, # Q,) 0 X, dB, (4.4)
0

is a continuous local martingale with respect to the probability measure P, ,. Note that, since
the time spent by the process (X, Q) at the boundary surface 90Cy = {(x,q) € Ey |z = b(q)}
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as well as at the diagonal dy = {(z,q) € Ey |z = ¢} is of the Lebesgue measure zero (see, e.g.
[8; Chapter II, Section 1]), the indicators in the first line of the formula in (4.3) as well as in
the expression of (4.4) can be ignored. Moreover, since the component () decreases only when
the process (X, Q) is located on the diagonal dy = {(x,q) € Ey |z = q}, the indicator in the
second line of (4.3) and the one in (4.4) can also be set equal to one. Observe that the integral
in the second line of (4.3) will actually be compensated accordingly, due to the fact that the
candidate value function VY (z,q) satisfies the modified normal-reflection condition of (2.30) at
the diagonal d,.

It follows from straightforward calculations and the arguments of the previous section that
the function V(x,q) satisfies the second-order ordinary differential equation in (2.27), which
together with the conditions of (2.28)-(2.29) and (2.31) as well as the fact that the inequality in
(2.33) holds imply that the inequality (LVY—rVP)(z,q) < —1uF(q) is satisfied, forall 0 < ¢ < z
such that ¢ < g and x # b(q). Moreover, it is shown by means of standard arguments applied
to the expressions in (3.12)-(3.13) that the property in (2.32) also holds, which together with
the conditions of (2.28)-(2.29) and (2.31) imply that the inequality VP(x,q) > (z — K2)F(q)
is satisfied, for all (z,q) € Fy. Let (0,)nen be the localising sequence of stopping times for
the process M? from (4.4) such that o, = inf{t > 0| |M?| > n}, for each n € N. It therefore
follows from the expression in (4.3) that the inequalities:

6_T(T/\Jn) (XT/\O'n - KQ) F(QT/\O’n) (45)

TNAOR TNAOR
— / e T (7]2 + 19 Qu) G,(Qu) dQu + / ey F(QU) du
0 0
S G_T(T/\Un) %(XTAUn7 QT/\O’n)

TNAOR, TNAOR,
- / e "™ (772 + 59 Qu) Gl(Qu) dQu + / e ™ V2 F(Qu) du
0 0
S ‘/Qb(x7 q) + M’E/\Un
hold, for any stopping time 7 of the process X and each n € N fixed. Then, taking the

expectation with respect to P, , in (4.5), by means of Doob’s optional sampling theorem, we
get:

El”vq |:€_T(T/\Jn) (XT/\O'n - KZ) F(QT/\O'n) (46)
TNAOp TNAOp,
- / e (2 + 502 Qu) G'(Qu) dQu + / e "My F(Qu) du}
0 0
S E%q |:€T(TAUn) Vv2b (X‘r/\crna Q‘r/\crn)

TAOn TNOn
- / e ™ (772 + 2 Qu) GI(QU) dQu + / e ) F(Qu) du:|
0 0
< VQb(xv Q) + Eiyq [MTZ/\UH] = VQb(xa Q)

for all 0 < ¢ < x such that ¢ < g, and each n € N. Hence, letting n go to infinity and using
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Fatou’s lemma, we obtain from the expressions in (4.6) that the inequalities:
E., {e” (X, — Ky) F(Q,) — / e (2 + 20 Qu) G'(Qu) dQ, + / e "y F(Qu) du] (4.7)
0 0

S Em,q |:6_TT ‘/éb(XT) QT) - /T e—ru (772 + o Qu) Gl(Qu) dQu + /T e—'ru Vo F(Qu) du:|
0 0
< Vy(z,q)

are satisfied, for any stopping time 7, and all 0 < ¢ < z such that ¢ < g. Thus, taking
the supremum over all stopping times 7 and then the infimum over all boundaries b in the
expressions of (4.7), we may therefore conclude that the inequalities:

sup Ey, 4 {e” (X, — Ky) F(Qr) (4.8)
— /T e (2 + 20 Qu) G'(Qu) dQu + /T e "M F(Q,)du| < iI;f Vi (z,q) = Vi (z,q)
0 0

hold, for all 0 < ¢ < x such that ¢ < g, where b*(q) is the minimal solution of the ordinary
differential equation in (3.15) as well as satisfying the inequality b*(q) > ¢ V b, for all ¢ < .
By using the fact that the function V@(x,q) is (strictly) increasing in the value b(q), for
each g < g fixed, we see that the infimum in (4.8) is attained over any sequence of solutions
(bm(q))men to (3.15) satisfying the inequality b,,(q) > ¢ V b, for all ¢ < @, for each m € N,
and such that b,,(¢) | b*(¢) as m — oo, for each ¢ < § fixed. It follows from the (local)
uniqueness of the solutions to the first-order (nonlinear) ordinary differential equation in (3.15)
that no distinct solutions intersect, so that the sequence (b,,(q))men is decreasing and the limit
b*(q) = limy,— 00 bin(q) exists, for each ¢ < G fixed. Since the inequalities in (4.7) hold for b*(q)
too, we see that the expression in (4.8) holds, for *(¢q) and (z,q) € Es, as well. We also note
from the inequality in (4.6) that the function V(z,q) is superharmonic for the Markov process
(X,Q) on E,. Hence, taking into account the facts that VJ(x, q) is increasing in b(q) > ¢V b,
for all ¢ < g, and the inequality VY(z,q) > (z — K3)F(q) holds, for all (z,q) € Fy, we
observe that the selection of the minimal solution b*(¢) which stays strictly above the diagonal
do = {(z,q) € Es|x = ¢} and the level © = b is equivalent to the implementation of the
superharmonic characterisation of the value function as the smallest superharmonic function
dominating the payoff function (cf. [30] or [34; Chapter I and Chapter V, Section 17]).

In order to prove the fact that the boundary b*(¢) is optimal, we consider the sequence
of stopping times 7,,, m € N, defined as in the right-hand part of (2.24) with b,,(q) instead
of b*(q), where b,,(q) is a solution to the first-order ordinary differential equation in (3.15),
and such that b,,(q) | b*(¢) as m — oo, for each ¢ < g fixed. Then, by virtue of the fact
that the function V;™(x,q) from the right-hand side of the expression in (4.2) associated with
the boundary b,,(¢) satisfies the conditions of (2.27) and (2.28), and taking into account the
structure of 75 in (2.24), it follows from the expression which is equivalent to the one in (4.3)
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that the equalities:
e_T(Tm/\U”) (XTm/\Un - KQ) F(QTm/\Jn) (49)

Tm/\On e
[ e Q) G QIR [ e (@) da
; 0
— ¢ "(TmATn) ngm (Xrunons @runos)

Tm/\On Tm/\On
- / e (s + 363 Qu) G'(Qu) dQu + / e vy F(Qu) du
0 0
— ‘/me(.ﬁl?? q) —|— M2

Tm/N\On

hold, for all 0 < ¢ < z such that ¢ < ¢ and each n,m € N. Observe that, by virtue of the
arguments from [40; Chapter VIII, Section 2al, the property:

Big [SUP (e_T(TSM) (Xogne — Ka) F(Qryae) (4.10)

t>0
Ty At T3 A
— / e (y + 20 Q) GN(Qy) dQy + / e My F(Qu) du)] < 0
0 0

holds, for all (x,q) € E,, as well as the variable e (X s — K5)F(Q.;) is equal to zero on the
event {75 = oo}, because the value b*(0+) is finite. Hence, letting m and n go to infinity and
using the condition of (2.28) as well as the property 7, | 75 (FPrq4-a.8.) as m — 0o, we can
apply the Lebesgue dominated convergence theorem to the appropriate (diagonal) subsequence
in the expression of (4.9) to obtain the equality:

B, { (X; — Ko) F(Q,:) (4.11)

- /72 efru (772 + 2 Qu) G/<Qu) dQu + /T2 efru V2 F(Qu) du| = ‘/Qb* (l’, Q>
0 0

for all 0 < z < ¢ such that ¢ < g, which together with the inequalities in (4.8) directly implies
the desired assertion. [
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