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Abstract 
In a competitive labor market, immigration affects native wages only through its impact on marginal 
products. Under the sole assumption of constant returns, we show that a larger supply of migrants (keeping 
their skill mix constant) must increase the marginal products of native-owned factors on average (an 
extension of the familiar “immigration surplus” result); and in the long run (if capital is supplied 
elastically), this surplus passes entirely to native labor. However, in a monopsonistic labor market, wages 
will also depend on any mark-downs applied by firms; and immigration may affect native wages through 
these mark-downs. We present a model of monopsony which generates testable restrictions on the null 
hypothesis of perfect competition, which we reject using US census data commonly studied in the 
literature. Our estimates suggest that the (negative) mark-down effect dominates the (by construction, 
positive) effect on marginal products for the average native. These findings shed new light on the 
interpretation of previous empirical estimates and the so-called “structural approach” to predicting wage 
effects. 
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1 Introduction

Much has been written on the impact of migration on native wages: see, for example,

recent surveys by Borjas (2014), Card and Peri (2016) and Dustmann, Schoenberg and

Stuhler (2016). This literature has traditionally studied these effects through the lens of

a competitive labor market, where wages are equal to the marginal products of labor. In

this paper, we assess the implications and robustness of this assumption.

We make three contributions to the literature. First, we offer new results on how

immigration affects natives’ marginal products. Under the sole assumption of constant

returns, we show a larger supply of migrants (keeping their skill mix constant) must always

increase the marginal products of native-owned factors on average (in a closed economy),

as long as native and migrant workers have different skill mixes; and in the long run (if

capital is supplied elastically), this surplus passes entirely to native labor. Borjas (1995)

famously proved this “immigration surplus” result for a one-good economy with up to

two types of labor and capital; but we demonstrate it holds for any number of labor

types, any number of (intermediate or final) goods, and any form of technology, as long

as there are constant returns to scale. This does not mean that the marginal products of

all native workers will increase: there may be large distributional effects. Although these

are theoretical results, they do have empirical implications: any empirical model which

imposes constant returns and perfect competition (as all existing “structural models” do,

e.g. Borjas, Freeman and Katz, 1997; Borjas, 2003; Card, 2009; Manacorda, Manning and

Wadsworth, 2012; Ottaviano and Peri, 2012) can only ever conclude that immigration

(keeping the skill mix of migrants constant) increases the average native wage in the long

run (where capital is elastic), whatever data is used for estimation.1

Our second contribution is a theoretical and empirical model of the impact of immi-

gration in the absence of perfect competition. In this environment, the wage of skill type

j natives will depend on both the marginal product and any mark-down φj imposed by

monopsonistic firms:

log Wj = log MPj − φj (1)

Just as there are good theoretical reasons to believe that natives’ marginal products are

sensitive to immigration, our contention is that the same may be true of the mark-downs,

if firms’ monopsony power depends on the labor share of migrants. In particular, if mi-

grants supply labor to firms less elastically than natives (or migrants’ reservation wages

are lower), firms can exploit immigration by imposing larger mark-downs on natives and

migrants alike. We develop a theoretical, yet estimable, model to assess this possibility.

There are a number of other papers which consider the impact of immigration in non-

1Borjas (2013) also emphasizes that factor demand theory imposes strong constraints on the impact
of migration on the average wage of all workers. Our contribution here is to develop the implications for
natives specifically. He also considers extensions to open economies which we do not address here.
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competitive settings: Chassamboulli and Palivos (2013, 2014), Chassamboulli and Peri

(2015), Battisti et al. (2017), Albert (2017) and Amior (2017) offer theoretical discus-

sions or calibrations of search or monopsonistic models; and Malchow-Moller, Munch and

Skaksen (2012) and Edo (2015) offer suggestive evidence for mark-down effects.2 But

as Borjas (2013) has noted, the literature is surprisingly sparse, given the ubiquity of

imperfectly competitive models in other parts of labor economics.

There are a number of reasons why migrants may supply labor to firms less elastically

(or have lower reservation wages). First, migrants may be less efficient in job search, due

to lack of information, language barriers, exclusion from social networks or undocumented

status (Hotchkiss and Quispe-Agnoli, 2013; Albert, 2017) or visa-related restrictions on

labor mobility (see e.g. Depew, Norlander and Sørensen, 2017, on the H1B). Second,

migrants may discount their time in the host country more heavily, perhaps because

they intend to only work there for a limited period (see Dustmann and Weiss, 2007),

or there may be binding visa time limits or deportation risk. Third, migrants may face

more restricted access to out-of-work benefits. Finally, migrants may base their reference

points on their country of origin (Constant et al., 2017; Akay, Bargain and Zimmermann,

2017), whether for psychological reasons or because of remittances (Albert and Monras,

2018; Dustmann, Ku and Surovtseva, 2019). These intuitions are consistent with a range

of empirical evidence: Hotchkiss and Quispe-Agnoli (2009), Hirsch and Jahn (2015) and

Borjas (2017) confirm that migrants do indeed supply labor less elastically. Also, using

a structural model, Nanos and Schluter (2014) find that migrants demand lower wages

(for given productivity). And Dustmann, Ku and Surovtseva (2019) show that migrants’

reservation wages (and occupation quality) are sensitive to exchange rate fluctuations.

Beyond this, the expenditures of individual employers on foreign recruitment (whether

through political lobbying, payment of visa fees, or use of foreign employment agencies)

offer prima facie evidence for a gap between migrants’ marginal products and their wages,

suggestive of imperfect competition (Rodriguez, 2004; Fellini, Ferro and Fullin, 2007;

Facchini, Mayda and Mishra, 2011).

But rather than relying on this literature, our third contribution is to directly test

the claim that monopsony power depends on the migrant share - using standard wage

and employment data from the US census, as analyzed (among others) by Borjas (2003)

and Ottaviano and Peri (2012). We rely on a standard structural model with a nested

CES technology (as in Ottaviano and Peri, 2012 or Manacorda, Manning and Wadsworth,

2012), but we relax the assumption of perfect competition. Wages of each labor type de-

2Using Danish data, Malchow-Moller, Munch and Skaksen (2012) find that migrant employees depress
native wages within firms; and they cite lower reservation wages as a possible explanation. Edo (2015)
finds that non-naturalized migrants in France reduce native employment rates, while naturalized migrants
have no effect; and he too relates this to reservation wages. Also, Naidu, Nyarko and Wang (2016) study
a UAE reform which relaxed restrictions on employer transitions for migrant workers (and improved their
outside options), though they focus on the implications for incumbent migrants rather than natives.
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pend on both the cell-specific marginal products and the cell-specific mark-downs, where

cells are defined by education and experience. The marginal products are determined by

the cell-level employment stocks, according to a functional form set by the technology.

Conditional on these stocks, our model predicts that the mark-down effects are identified

by the wage response to a cell’s composition (and specifically its migrant share). Our

empirical strategy is closely related to Beaudry, Green and Sand (2012), who study the

role of industrial composition in wage-setting under imperfect competition.3

Although the model is not fully identified, we are able to test (and reject) the null hy-

pothesis that native and migrant mark-downs are equal and independent of the migrant

share, of which perfect competition is a special case. For a native-migrant substitution

elasticity similar to that of Ottaviano and Peri (2012), our estimates suggest a 1 pp in-

crease in a cell’s migrant share allows firms to mark down native wages by 0.5-0.6% more;

and the effect is similar for migrants. An analysis of alternative calibrations suggests this

is a lower bound. This mark-down effect more than offsets the small (positive) surplus

from changes in marginal products typically estimated by competitive structural models.

The direction of the mark-down effect suggests that migrants do indeed supply labor

to firms less elastically than natives. Consistent with this interpretation, we show that

natives’ employment rates are more responsive to cell-specific wage changes (identified

by immigration shocks) than those of migrants.

Our findings also shed new light on other debates in the empirical literature. A

key source of contention is the appropriate functional form for migration shocks. While

Borjas (2003 and 2014) uses the migrant share in the labor market cell, Peri and Sparber

(2011) and Card and Peri (2016) argue this generates an artificial bias because of the

endogeneity of the native labor supply (see e.g. Hunt, 2017; Llull, 2017) which appears

in the share’s denominator, preferring instead a measure based on migrants’ contribution

to the size of the cell. In our model, there is a role both for the size of the cell (which

determines the impact on marginal products) and the mix of the cell (i.e. the migrant

share), which accounts for the extent of labor market competition within the cell. We

attempt to address the empirical concerns by introducing instruments for native and

migrant labor supply, based on education cohort sizes at the previous observation both

at home (for US residents) and abroad (for new immigrants). See also Llull (2018) and

Monras (forthcoming) for earlier attempts to instrument for cell-specific immigration.

Given the apparent fragility of the competitive markets assumption, one may choose

to abandon structural approaches to estimating wage effects altogether - in favor of more

empirical reduced-form strategies. Dustmann, Schoenberg and Stuhler (2016) recommend

this strategy, though for different reasons, namely the difficulty of correctly allocating mi-

grants to skill cells (if migrants do not compete with equally skilled natives). But, there

3They show that wage bargains (for given productivity) depend on local industrial composition, since
this affects workers’ outside options. In our paper, it is the composition of the labor force which matters.
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are advantages to the structural approach: reduced form studies typically cannot esti-

mate the impact of different types of migrants on different types of natives. If there are

A native types and B migrant types, one would need to include A × B interactions in

a fully specified reduced-form model, almost certainly more than can be estimated from

the data. In practice, the reduced-form approach is typically restricted to studying the

impact of particular migration events, which bring particular skill mixes. Though natural

experiments may offer remarkably clean identification (see e.g. Dustmann, Schoenberg

and Stuhler, 2017; Edo, forthcoming; Monras, forthcoming), it may be difficult to extrap-

olate to other scenarios. Instead, our paper offers an approach to embedding more flexible

assumptions on labor market competition within a tractable structural framework.

Our mark-down results may be interpreted as supporting a story of “cheap” migrant

labor undercutting native wages, which often has strong resonance in the public conscious-

ness.4 However, it is important to note that such effects may be offset through policies

which constrain monopsony power (such as minimum wages: see Edo and Rapoport,

2017, for evidence), rather than by restricting migration itself. In fact, these objectives

may come into conflict: for example, limitations on migrant access to welfare benefits or

visa restrictions (designed to deter migration) may deliver more market power to firms,

and natives may ultimately suffer (Amior, 2017).

In the next section, we set out our theoretical results on the effects of immigration

on marginal products, under the assumptions of constant returns. Section 3 extends our

framework to allow for monopsonistic firms. In Section 4, we describe our data, which

are based on the classic studies of Borjas (2003) and Ottaviano and Peri (2012); and we

then turn to identification and our empirical strategy in Section 5. Section 6 presents our

basic estimates, and we offer various empirical extensions in Section 7.

2 Immigration surplus results: Impact on natives’

marginal products

In a competitive labor market, the wages of native labor are fully determined by their

marginal products (MPs). In this section, we offer a set of “immigration surplus” results

which describe how immigration affects these MPs in a closed economy.5 Underpinning

our results is the crucial assumption of constant returns to scale (CRS).

4One representative example from Bernie Sanders: “Bringing undocumented workers out of the shad-
ows will make it more difficult for employers to undercut the wages and benefits of all workers” (Sunday
Express, 11/02/2016, “Bernie Sanders for President? Policy on ISIS, immigration and abortion”).

5See Borjas (2013) for an open economy model, which shows the wage effects of immigration will
depend on the extent to which natives and migrants consume imported goods.
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Consider the following production function:

Y = F (K, L) (2)

where K = (K1, K2, ...KI) is a vector of perfectly elastic factor inputs, and L =

(L1, L2, ...LJ ) is a vector of inputs which are treated as fixed (either because they are

inelastically supplied, or simply for analytical convenience). Each input may be owned

by native or migrants, or a combination of the two. Without loss of generality, we iden-

tify the fixed inputs with labor and the elastic ones with capital (or non-labor factors

more generally). This approach follows the precedent of the migration literature, which

traditionally equates an elastic supply of capital with a “long run” scenario. We consider

more general scenarios at the end of this section, as well as the case of factor inputs in

imperfectly elastic supply.

Under the assumption of CRS, we can simplify the analysis with the following claim:

Proposition 1. We can summarize total revenue net of the costs of the (elastic) K inputs

using a “long run” production function F̃ (L), where F̃ has constant returns in the (fixed)

L inputs, and where the derivatives of each L input equal their MPs.

Proof. See Appendix A, and see also Dustmann, Frattini and Preston (2012).

This proposition allows us to abstract away from the elastic “capital” inputs. In

what follows, we will begin with the simplest possible model, and we will consider the

implications for the immigration surplus as we progressively add more features.

2.1 Homogeneous natives and migrants

Suppose there are two fixed labor inputs, natives and migrants: L = (N, M); so long

run output is F̃ (N, M). Each group is homogeneous, though they may differ from each

other. The two-input case was originally analyzed6 by Borjas (1995), but we summarize

it here as it provides a useful foundation for more general results:

Proposition 2. Given CRS, a larger supply of homogeneous migrants M must strictly

increase the MPs of homogeneous natives N , unless natives and migrants are perfect

substitutes - in which case there is no effect.

Proof. If there are two factor inputs with CRS, the inputs must be Q-complements: i.e.

F̃NM (N, M) ≥ 0, where subscripts denote partial derivatives, and with equality only

if N and M are perfect substitutes. It immediately follows that the MP of natives is

increasing in migrant supply M , unless the two inputs are perfect substitutes.

6To be more precise, Borjas’ (1995) two inputs are capital and labor, where immigration contributes
to the latter only. But the implications are the same.
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2.2 Heterogeneous skills

Proposition 1 is well-known: see e.g. Borjas (2014, p. 65). But perhaps it is specific to

the extreme case of two inputs. To investigate this, suppose there are J types of (fixed)

labor inputs in the economy, characterized by arbitrary patterns of substitutability and

complementarity. And for each labor type j, suppose Lj = Nj + Mj, where Nj and Mj

are the native and migrant components respectively. Let ηj ≡
Nj

N
denote the share of

natives who are type-j, and µj ≡ Mj

M
the type-j share of migrants. This set-up allows

the possibility that any or all types are exclusively native or migrant, which would imply

ηjµj = 0 for some j. Long run output (net of the elastic inputs’ costs) is then:

Ỹ = F̃ (L1, .., LJ) (3)

And under the assumption of CRS, we can make the following claim:

Proposition 3. Suppose natives are divided into an arbitrary number of skill groups, and

similarly for migrants. Given CRS, a larger supply of migrants M (holding their skill mix

fixed) raises the average MP of natives, unless the skill mixes of natives and migrants are

identical - in which case there is no effect.

Proof. Write the production function in (3) as:

Ỹ = F̃ (η1N + µ1M, .., ηJN + µJM) = Z (N, M) (4)

i.e. output can be expressed as a function Z of the total number of natives N and migrants

M , where the skill mix of these groups is subsumed in Z. The function Z (N, M) must

have CRS if F̃ (L1, .., LJ) does. And the partial derivative of Z (N, M) with respect to

N can be written as:

ZN (N, M) =
∑

j

ηjF̃j (L1, .., LJ) (5)

which is the average native MP (or, under perfect competition, the average native wage).

Similarly, the partial derivative of Z (N, M) with respect to M is equal to the average

migrant MP. In this way, we have reduced a production function with arbitrarily many

types of labor to one with only two composite inputs, N and M . Furthermore, Z satisfies

the usual properties of production functions, with marginal products of the composite

inputs equal to the average MP. And with two labor types and CRS, we already know

(from Proposition 2) that an increase in the supply of one group (e.g. migrants) must

increase the average MP of the other, as long as natives’ and migrants’ skill mixes dif-

fer. If the skill mixes are identical, then Z (N, M) = k (N + M) for some constant k;

and migration will have no effect on natives’ MPs, because they are effectively perfect

substitutes (at the aggregate level).
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Note that Proposition 3 applies only to the average native MP: there may be negative

effects on particular skill types. For example, if all migrants were unskilled, a larger M

would compress the MPs of unskilled natives.

It is not entirely clear how well-known Proposition 3 is in the current literature.

Dustmann, Frattini and Preston (2012) use a CES production function satisfying the

requirements above and conclude: “For small levels of immigration, we should therefore

expect to find mean native wages rising if capital is perfectly mobile. Indeed, there

can be a positive surplus for labor if capital is mobile and immigrant labor sufficiently

different to native labor [emphasis added]”. This result is similar to the one proved here,

but we impose no restriction on technology beyond CRS (so a CES production function

is not required), no requirement that immigration be “small”, and no requirement that

native and migrant skill mixes be “sufficiently” different: we show that any difference

will generate a surplus, though the size of the surplus will depend on the amount of

immigration and the extent of skill differences between natives and migrants.

2.3 Changing the skill mix of immigration

Propositions 1-3 focus on how CRS constrains the response of natives’ MPs to immi-

gration, holding the skill mix of migrants constant. However, CRS also constrains the

possible response of natives’ MPs to changes in the skill mix of migrants. Denote the vec-

tor of natives’ skill shares (η1, η2, ..., ηJ) by η, and suppose that the skill mix of migrants

can be written as:

µ (ζ) = η + ζ (µ − η) (6)

where ζ describes the extent to which the skill mixes of natives and migrants differ. If

ζ = 0, the two groups are identical, while ζ = 1 corresponds to the case analyzed so far.

It can then be shown that natives benefit from greater skill differences:

Proposition 4. An increase in ζ increases the average native MP.

Proof. See Appendix B.

Borjas (1995) makes a similar point, that the immigration surplus is increasing in

native-migrant skill differences. But our result generalizes this claim to an economy with

an arbitrary number of skill types.

2.4 Multiple goods

Until now, we have restricted attention to a single-good economy. But can allowing

for multiple goods overturn the surplus result? In this more general environment, the

marginal revenue products are affected by relative prices and not just technology. To

obtain the welfare implications of immigration, we must therefore account for these price
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changes; and this necessitates an assumption about price determination (which we did

not require before). It turns out that if both product and labor markets are perfectly

competitive, and if preferences are homothetic (so there is a single price index for all

consumers, native and migrant alike), the surplus result continues to hold:

Proposition 5. In an economy with multiple (intermediate or final) goods, in which

all sectors satisfy CRS, with perfect competition in all product and labor markets, and

with all consumers having the same homothetic preferences, a larger supply of migrants

(holding their skill mix constant) must increase the average utility of natives, unless the

skill mixes of natives and migrants are identical (in which case there is no effect).

Proof. See Appendix C.

Intuitively, one can think of all goods as being produced, directly or indirectly, by

labor inputs. So, consumption of goods can be interpreted as demand for different types

of labor. When M increases, the relative price of goods which are intensive users of

migrant labor (in the sense of supply minus demand) must fall, and this must be to the

advantage of natives. Note that Proposition 4 also applies for the multiple good case.

2.5 Robustness of conclusions

To summarize, any model, theoretical or empirical, which imposes CRS and a perfectly

elastic supply of capital (or non-labor) inputs, must always predict that more immigration

(holding migrants’ skill mix constant) weakly increases native labor’s average MP in a

closed economy, irrespective of the data used for estimation.

We have assumed that the labor inputs in the L vector are fixed, but allowing for

an imperfect elasticity of labor supply would not change the nature of these results. It

would still be the case that, holding the migrant skill mix fixed, immigration generates

an outward-shift of the labor demand curve for the average native. Whether this shift

manifests in higher wages or employment will depend on the elasticity of the supply of

natives to the labor market. We return to this question in the empirical analysis below.

But either way, the shift in MPs for fixed labor inputs is informative about whether

market opportunities are improving for natives.

Above, we have identified the fixed inputs in L with labor. But one may also consider

“short run” scenarios where some capital inputs are fixed. In this more general case, the

results above will apply to the average MP of all native-owned factors in the L vector,

whether labor or capital; and native labor may lose out on average. But to the extent that

capital (and other non-labor) inputs become elastic in the “long run”, the entire surplus

will ultimately pass to native labor. Certainly, there are various objections to this long

run scenario: persistent immigration may depress wages if capital cannot accumulate fast

enough (Borjas, 2019), though immigration may also generate increasing returns if there
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are human capital externalities. Nevertheless, Ottaviano and Peri (2008) argue that long

run macroeconomic trends are consistent with CRS and elastic capital.

In a competitive labor market, the predicted increase in native labor’s average MP

will necessarily translate to larger average wages. However, we now show that an imper-

fectly competitive model does admit the possibility of negative wage effects (even if MPs

increase), if immigration increases the monopsony power of firms.

3 Modeling imperfect competition

3.1 Existing literature

There is a small existing literature which models the impact of migration under imperfect

competition. The earliest studies (Chassamboulli and Palivos, 2013, 2014; Chassamboulli

and Peri, 2015; Battisti et al., 2017) assume wages are bargained individually (due to ran-

dom matching), which rules out direct competition between natives and migrants. As a

result, natives unambiguously benefit from low migrant reservation wages: immigration

stimulates the creation of new vacancies, which improves natives’ outside options and

wage bargains. In contrast, Albert (2017) and Amior (2017) do allow for direct competi-

tion7; but both assume marginal products are fixed, which rules out wage effects through

traditional competitive channels. We offer a simple framework which accounts for both.

3.2 Imperfect competition and mark-downs

We account for imperfect competition by modeling wage mark-downs. Based on (1) in

the introduction, we summarize the wage of type j workers as:

log Wj = log F̃j − φj (7)

where F̃j is the marginal product (for long run output), and φj ≥ 0 is the mark-down,

equal to zero in a perfectly competitive market. In what follows, we interpret the mark-

downs as arising from a simple monopsony model (as used by Card et al., 2018), where

the market power of wage-setting firms depends on the elasticity of labor supply they

individually face. But a wage equation like (7) may alternatively be derived from a

bargaining model (see e.g. Barnichon and Zylberberg, 2019, for an exposition where

matching is not entirely random), where wages depend on marginal products, reservation

wages and workers’ bargaining power.

We define the markets for each labor type j sufficiently narrowly, such that all con-

stituent natives and migrants are perfect substitutes and receive the market wage Wj .

7This builds on the ideas of Albrecht and Axell (1984) and Burdett and Mortensen (1998), who study
the equilibrium labor market implications of heterogeneous leisure values.
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The allocation of natives and migrants across these markets may differ (according to the

η and µ vectors defined above), whether because of divergent productive specializations

(e.g. Peri and Sparber, 2009, emphasize comparative advantage in communication or

manual tasks) or labor market discrimination. We do not permit discrimination within

markets; but this should not be restrictive, if they are defined sufficiently narrowly. The

market wage is determined by the standard monopsony formula, Wj =
ǫj

1+ǫj
F̃j , where ǫj is

the elasticity of labor supply to individual firms (rather than to the market as a whole).

Consequently, the mark-down φj in (7) can be expressed as:

φj = log
(
1 + ǫ−1

j

)
(8)

where ǫj is a weighted average of the elasticities of native and migrant labor supply to

firms (denoted ǫN and ǫM respectively), with the weight depending on the migrant share

in market j:

ǫj = ǫN +
µjM

µjM + ηjN
(ǫM − ǫN ) (9)

and where µj and ηj are the shares of migrants and natives allocated to market j.

3.3 Aggregation

Our analysis above applies to markets j which are sufficiently narrow such that all con-

stituent natives and migrants are perfect substitutes. In practice, we assume we cannot

observe these “true” markets; instead simply observing an aggregate of them. However,

Proposition 3 allows us to model this aggregate: we combine the output of the individual

markets j using a CRS function Z (N, M), which subsumes the submarket allocations η

and µ, and which depends solely on the total native and migrant stocks. Our approach

here builds on an existing literature on such aggregations in the production function and

growth literature (Houthakker, 1955; Levhari, 1968; Jones, 2005; Growiec, 2008). As we

show in Appendix D, the average native and migrant wage can be written as:

log WN = log ZN − φN

(
M

N

)
(10)

log WM = log ZM − φM

(
M

N

)
(11)

where ZN and ZM are the average native and migrant MPs, and φN and φM are the

aggregated native and migrant mark-downs. Note that φN and φM will differ if natives

and migrants are allocated differently across unobserved submarkets, in which case each

are distinct functions of the migrant share.

Our interpretation of Z as an aggregation of many markets is important to our specifi-

cation. Suppose instead that the N and M arguments of Z (N, M) represent two distinct
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skill inputs. Firms would then set distinct wages for each input, so natives would be

sheltered from any direct competition from migrants (beyond any effect migrants may

have on their marginal products). This would rule out any effect of immigration on

mark-downs, even if firms had market power. Direct competition would only arise in the

extreme case where natives and migrants are perfect substitutes and therefore compete

in the same market. In contrast, our aggregation approach allows imperfect competition

to coexist with direct competition at the level of observed labor markets.

In (10) and (11), we interpret Z as aggregate output, and WN and WM as national

average wages. But Z may equally represent any observable nest of a multi-level pro-

duction function.8 For example, in our empirical application below, we interpret Z as

an education-experience cell; so WN and WM represent mean wages within those cells.

The idea that these cells may aggregate the outputs of unobserved markets builds on

Dustmann, Schoenberg and Stuhler (2016).

3.4 Impact of immigration on aggregate mark-downs

We wish to know how immigration affects the aggregate mark-downs, φN and φM . These

effects are largely determined by the differential between the native and migrant elastic-

ities, ǫN and ǫM . To illustrate this point, we now work intuitively through some cases of

interest. We refer readers to Appendix D for a more formal exposition.

Consider first the case where natives and migrants supply labor to firms with equal

elasticities, i.e. ǫM = ǫN . Based on (9), the overall elasticities ǫj are then independent

of migrant share and invariant with submarket j. And so, natives will face the same

mark-downs as migrants (φN = φM); and both will be independent of migrant share. We

illustrate φN and φM as functions of migrant share in Figure 1a. In the empirical analysis,

we will treat this case (of equal and independent mark-downs) as our null hypothesis. This

environment is implicitly assumed by the seminal studies in the literature: mark-downs

are fixed constants, and immigration only affects wages through marginal products. Note

that perfect competition is a special case of ǫM = ǫN , where both ǫM and ǫN are infinite,

and both φN and φM equal zero, irrespective of migrant share.

In Figure 1b, we consider the case where migrants supply labor less elastically to

firms (ǫM < ǫN ), as the evidence detailed in the introduction might suggest. Migrants

must, on average, be in submarkets j with larger migrant shares and larger mark-downs;

and therefore, φM ≥ φN . However, φM and φN must converge to equality as M

N
→ 0

or M
N

→ ∞. Intuitively, as the labor force becomes exclusively native or migrant, the

8In this case, we would also need to account for the marginal contribution of the nest Z to aggregate
output in (10) and (11).
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elasticity facing firms converges to the native or migrant one, in which case all workers

will face the same mark-down. Also, both φN and φM must be increasing in M
N

, as firms

can exploit the less elastic supply of migrants by cutting wages. And given the equality

of φM and φN in the limits, the differential between φM and φN must be non-monotonic

in M
N

.9 The final case, ǫM > ǫN , is of course the reverse of ǫM < ǫN , given the symmetry

of the model.

The response of the mark-downs φN and φM to migrant share will depend on the

extent of labor market segregation, i.e. the deviation between the native and migrant

skill mixes, η and µ. Greater segregation will moderate the impact of immigration, as the

submarket migrant shares become less responsive to the aggregate-level migrant supply

M . This offers an interesting counterpoint to the impact of immigration on the average

native MP, which is increasing in the extent of segregation (see Proposition 4).

To summarize, for the average native, the effect of immigration on mark-downs may

in principle offset its (positive) effect on marginal products. We have offered one story

for the relationship between the mark-downs and migrant share (in terms of differential

elasticities), but there may be others - and we do not rule these out. In what follows,

we consider the estimation of these mark-down effects in practice. These estimates have

validity even if the source of the mark-downs differs from that proposed here. We first

discuss the data we use for estimation, and we then turn to our empirical methodology.

4 Data

4.1 Samples and variable definitions

We have chosen to describe our data at this stage, so as not to interrupt the discus-

sion later on. Similarly to Borjas (2003; 2014) and Ottaviano and Peri (2012), we will

study how wages respond to native and migrant employment stocks, exploiting variation

across education-experience groups and US census years. But we will offer a different

interpretation of these estimates, based on our monopsony model - as we explain below.

We construct our data in a similar way to these earlier studies, but we extend the

time horizon: we use IPUMS (Ruggles et al., 2017) census extracts of 1960, 1970, 1980,

1990 and 2000, and American Community Survey (ACS) samples of 2010 and 2017.10

Throughout, we exclude under-18s and those living in group quarters.

Following Borjas (2003) and Ottaviano and Peri (2012), we group individuals into

9In Appendix D, we summarize the differential between φM and φN as the covariance between sub-
market migrant allocations and submarket mark-downs.

10The 1960 census does not report migrants’ year of arrival, but we require this information to construct
our instruments, as well as for particular empirical specifications. In particular, we need to know the
employment stocks of migrants living in the US for no more than ten years. We impute these stocks using
education cohort sizes by country of origin in 1950, combined with origin-specific data on employment
rates. See Appendix F for further details.
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four education groups in our main specifications: (i) high school dropouts, (ii) high

school graduates, (iii) some college education and (iv) college graduates.11 But we also

consider specifications with two groups, college and high-school equivalents. Following

Borjas (2003; 2014) and Ottaviano and Peri (2012), we divide each education group into

eight categories of potential labor market experience, based on 5-year intervals between

1 and 40 years - though we also estimate specifications with four 10-year categories.

To predict experience, we assume high school dropouts begin work at 17, high school

graduates at 19, those with “some college” at 21, and college graduates at 23.

We identify employment stocks with hours worked by demographic cell, and wages

with log weekly earnings of full-time workers (at least 35 weekly hours and 40 weeks per

year), weighted by weeks worked - though we study robustness to using hourly wages.

Following the recommendation of Borjas (2003 and 2014), we exclude enrolled students

from the wage sample.

4.2 Composition-adjusted wages

Ruist (2013) argues that Ottaviano and Peri’s (2012) estimates of the elasticity of relative

migrant-native wages (within education-experience cells) may be conflated with changes

in the composition of the migrant workforce (by country of origin). To address this issue

(and related concerns about composition effects), we adjust wages for observable changes

in demographic composition over time in some specifications.

We begin by pooling census and ACS microdata from all our observation years. Sep-

arately for each of our 32 education-experience cells, and separately for men and women,

we regress log wages on a quadratic in age, a postgraduate education indicator (for col-

lege graduate cells only), race indicators (Hispanic, Asian, black), and a full set of year

effects. We then predict the mean male and female wage for each year, for a distribution

of workers characteristics identical to the multi-year pooled sample (within education-

experience cells). And finally, we compute a composition-adjusted native wage in each

cell-year by taking weighted averages of the predicted male and female wages (using the

gender ratios in the pooled sample as weights). We repeat the same exercise for migrants,

but replacing the race indicators with 12 region of origin dummies12 in our regressions.

4.3 Instruments

An important concern is that both native and migrant employment stocks, by education-

experience cell, may be endogenous to wages. Unobserved cell-specific demand shocks

11Borjas (2014) further divides college graduates into undergraduate and postgraduate degree-holders.
We choose not to account for this distinction, as there are very few postgraduates early in our sample.

12Specifically: North America, Mexico, Other Central America, South America, Western Europe,
Eastern Europe and former USSR, Middle East and North Africa, Sub-Saharan Africa, South Asia,
Southeast Asia, East Asia, Oceania.
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may affect the labor supply or human capital choices of both natives (Hunt, 2017; Llull,

2017) and foreign-born residents, as well as the skill mix of new migrants from abroad

(Llull, 2018; Monras, forthcoming). We use instruments to predict employment stocks

(by demographic cell) for each of three worker types: (i) natives, (ii) “old” migrants

(living in the US for more than ten years) and (iii) “new” migrants (no more than ten

years).

Our instrument for native employment is based on cohort sizes and education choices

ten years earlier. For individuals aged over 33, we predict current employment using

the ten-year lagged native employment stock (within education groups), separately by

single-year age. This is not feasible for 18-33s: given our assumptions on graduation

dates, some of them will not have reached their final education status. For this group,

we begin with the ten-year lagged total cohort size (again, separately by single-year age);

and we allocate these individuals to education groups using the education shares (also

lagged ten years) of the cohort which is ten years older. Having predicted population

stocks by single-year age and education, we then aggregate to 5-year experience groups.

And we then linearly project the log native employment stock (across cells and years) on

the log predicted population. The predicted employment stock, Ñext, then serves as our

instrument. We construct our instrument for “old” migrants, M̃old
ext , in an identical way.

Analogously to our approach for existing US residents, we predict “new” migrant

inflows using lagged cohort sizes in origin countries. This is motivated by Hanson, Liu and

McIntosh (2017), who relate the rise and fall of US low skilled immigration to changing

fertility patterns in Latin America. We are also building on Llull (2018) and Monras

(forthcoming), who offer alternative instruments for cell-specific inflows of new migrants:

Monras exploits a natural experiment (the Mexican Peso crisis), while Llull bases his

instrument on interactions of origin-specific push factors, distance and skill-cell dummies.

But for consistency with our approach for existing residents, we instead exploit data on

lagged population stocks.

We predict cell-specific inflows using estimates from the following regression:

log Mnew
oext = λ0 + λ1 log (OriginP opoext−10) + λ2Mobilityex + OriginRegiono + εoext (12)

where our dependent variable, Mnew
oext , is the US employment stock of new migrants (with

up to ten years in the US) at each observation year t (between 1960 and 2017), for each of

164 origin countries o and 32 education-experience cells (e, x). We take this information

from our ACS and census samples. OriginP opoext−10 is the population of the relevant

education cohort at origin o ten years before t, which we take from Barro and Lee (2013)

and the UN World Population Prospects database.13 We assign cohorts aged 18-33 to

13The Barro-Lee data offer population counts by country, education and 5-year age category for indi-
viduals aged 15 or over. We identify Barro and Lee’s “complete tertiary” education category with college
graduates, “incomplete tertiary” with some college, “secondary complete” with high school graduates,
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education groups in the same way as for US natives, based on the education choices of

the previous cohort at origin. For a given cohort size, one would of course expect more

emigration among more mobile demographic groups - especially the young. To account

for this, we also include a cell-specific measure of mobility, Mobilityex, equal to the cross-

state migration rate14 within the US in 1960. And finally, we control for a set of 12 region

of origin effects (see footnote 12), which account for the fact that demographic shifts in

certain regions matter more for migratory flows to the US.

Using our predicted values for log Mnew
oext , we then impute total inflows by education-

experience cell (e, x) for the ten years before each observation year t, by taking exponents

and summing over origin countries o. We denote this predicted employment stock of new

migrants as M̃new
ext . Effectively, this is a weighted average of lagged cohort sizes in origin

countries, where the weights depend on origin-specific migration propensities and cell-

specific mobility. And we can now predict the total migrant stock as M̃ext = M̃old
ext +M̃new

ext .

4.4 Descriptive statistics

Table 1 sets out a range of descriptive statistics, across our 32 education-experience cells.

All wage data in the table is adjusted for changes in demographic composition, and we

have normalized the wage changes in Panel C to have mean zero across all groups. The

average migrant employment share was just 5% in 1960 (Panel A), but reached 24% by

2017. This expansion was disproportionately driven by high school dropouts (Panel B).

Over the same period, native wages have declined most (in relative terms) among the

young and low educated (Panel C).

Panel D sets out the mean migrant-native wage differentials in each cell, averaged

over all sample years. In almost all cells, migrants earn less than natives, with wage

penalties varying from 0 to 15%, typically larger among high school workers and the

middle-aged. In the context of our model, these penalties may reflect differences in

within-cell marginal products or alternatively differential monopsony power. Either way,

this can be interpreted as “downgrading” (Dustmann, Schoenberg and Stuhler, 2016),

where migrants receive “lower returns to the same measured skills than natives”.

and all remaining categories with high school dropouts. We impute single-year age counts by dividing the
5-year stocks equally across their single-year components. To predict lagged cohort sizes of the youngest
groups, we also require counts of under-15s; and we take this information from the UN World Population
Prospects database: https://population.un.org/wpp/.

14This is the share of natives in each demographic cell who lived in a different state 5 years previously.
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5 Empirical model

We now turn to our empirical model. We begin by discussing identification of the mark-

down effects, and we then set out our estimation strategy. To make our model empirically

tractable, we will impose particular functional forms. Our approach consists of two

steps. First, we estimate a relative migrant-native wage equation; and we then use the

parameters from this equation (plus some auxiliary assumptions) to estimate a native

wage equation. This approach offers a simple way to test the assumption of zero mark-

down effects, which previous structural models in the literature have implicitly imposed.

5.1 Production technology and wages

Our empirical strategy is to exploit variation across education-experience cells, following

a long-standing empirical literature beginning with Borjas (2003). We model these cells

as the lowest (observable) level of a nested CES structure. In the long run, output Ỹt at

time t (net of the elastic inputs’ costs) depends on the composite labor inputs, Let, of

education groups e:

Ỹt =

(
∑

e

αetL
σE
et

) 1

σE

(13)

where the αet are education-specific productivity shifters (which may vary with time), and
1

1−σE is the elasticity of substitution between education groups. In turn, the education

inputs Let will depend on (education-specific) experience inputs Lext:

Let =

(
∑

x

αextL
σX
ext

) 1

σX

(14)

where the αext encapsulate the relative efficiency of the experience inputs within each ed-

ucation group e. Finally, in line with Card (2009), Manacorda, Manning and Wadsworth

(2012) and Ottaviano and Peri (2012), we allow for distinct native and migrant labor

inputs (within education-experience cells) which are imperfect substitutes:

Lext = Z (Next, Mext) (15)

We will ultimately impose a CES structure on Z also; but for now, we assume only

constant returns. As explained above, Z can be interpreted as an aggregation of the

outputs of many unobserved labor types or submarkets, which simultaneously permits

both imperfect substitutability and direct competition between natives N and migrants

M . While equation (4) performs this transformation at the national level, we now perform

it within education-experience cells.

We can then write equations for average native and migrant wages in education-
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experience cells, based on (10) and (11):

log WNext = Aext [Z (Next, Mext)]
σX−1

ZN (Next, Mext) − φN

(
Mext

Next

)
(16)

log WMext = Aext [Z (Next, Mext)]
σX−1

ZM (Next, Mext) − φM

(
Mext

Next

)
(17)

The first term in each equation is the marginal product, and the second is the cell-level

mark-down. We allow both the native and migrant mark-downs to depend (in possibly

different ways) on the cell-level migrant composition, Mext

Next
. Finally, Aext is a cell-level

productivity shifter:

Aext = αetαext

(
Ỹt

Let

)1−σE

L1−σX

et (18)

which summarizes the impact of all other labor market cells, as well as the general level

of productivity.

5.2 Identification of mark-down effects

In principle, we would like to estimate the cell-level wage equations (16) and (17). How-

ever, it turns out we cannot separately identify (i) the cell aggregator Z in the lowest

observable nest and (ii) the mark-down functions (φN , φM), using standard wage and

employment data. Nevertheless, we can test the joint hypothesis that the native and

migrant mark-downs are equal and independent of migrant share. This represents the

case of equal elasticities (ǫN = ǫM ) described in Figure 1a, of which perfect competition

is a special case (where the mark-downs are equal to zero).

We begin by considering identification in the abstract, without imposing particular

functional forms on Z, φN and φM . Assuming the cell aggregator Z has constant returns,

and suppressing the ext (education-experience-time) subscripts, it can be written as:

Z (N, M) = Nz

(
M

N

)
(19)

for some single-argument function z. Using (19), the wage equations (16) and (17) can

then be expressed as:

log WN = log A − (1 − σX) log N + log




z
(

M
N

)
− M

N
z′

(
M
N

)

z
(

M
N

)1−σX


− φN

(
M

N

)
(20)

log WM = log A − (1 − σX) log N + log




z′

(
M
N

)

z
(

M
N

)1−σX


− φM

(
M

N

)
(21)

where σX represents the substitutability between experience groups, and A is the cell-level

productivity shifter defined by (18).
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Clearly, it is impossible to separately identify a constant in A from one in the mark-

downs, φN and φM . Intuitively, the observed level of wages can be rationalized by one

set of general productivity and mark-downs, but also by a higher level of productivity

and larger mark-downs.15 One may be able to separately identify these parameters using

data on output and labor shares, but we do not pursue this line of inquiry here.

Of greater concern for our purposes, we also cannot identify the relationship between

the mark-downs and the migrant share, if this relationship is different for natives and

migrants. To see this, suppose one observes a large number of labor markets, differing

only in the total number of natives N and the ratio M
N

. Then, using (20) and (21),

one can identify σX by observing how wages vary with N , holding the ratio M
N

constant

(which fixes the final two terms in each equation). However, holding N constant and

observing how wages vary with M
N

, it is not possible to separately identify the three

functions (z, φN , φM), as we only have two equations.16

But while the most general model is not identified, there are interesting models which

can be estimated and tested. It is useful to consider two distinct hypotheses:

1. H1 (Equal mark-downs): Natives face the same mark-downs as migrants within

labor market cells, i.e. φN

(
M
N

)
= φM

(
M
N

)
.

2. H2 (Independent mark-downs): Natives’ mark-downs are independent of mi-

grant share, i.e. φ′

N

(
M
N

)
= 0.

Of course, H1 and H2 jointly imply that migrants’ mark-downs are also independent of

migrant share, i.e. φ′

M

(
M
N

)
= 0. In the model of Section 3, both H1 and H2 follow

from the ǫN = ǫM case, where natives and migrants supply labor to firms with equal

elasticities: see Figure 1a. But while we use the ǫN = ǫM case to motivate H1 and

H2, our tests of these claims will have validity irrespective of the underlying theory of

imperfect competition. Furthermore, for any theory, it will always be true that perfect

competition is a special case of the joint hypothesis of H1 and H2, with both mark-downs

equal to zero.

It turns out we can test this joint hypothesis: H1 implies restrictions which make H2

testable. Conditional on equal mark-downs (H1), the difference between (20) and (21)

collapses to:

log
WM

WN

= log




z′

(
M
N

)

z
(

M
N

)
− M

N
z′

(
M
N

)


 (22)

15There may also be a mark-up if there is imperfect competition in the product market. Any such
mark-up is unlikely to depend on the migrant share in the workforce, so we subsume this in the constant.

16Identification may be feasible as M

N
→ 0 or M

N
→ ∞, if one accepts our micro-foundation for the

mark-downs. As we argue in Section 3.4, the difference between φN and φM must converge to 0 at the
limits. So, taking differences between (20) and (21), we can identify Z (at least at the limits); and given
Z, we can back out the mark-down functions. However, we do not pursue this strategy: “identification
at infinity” may be feasible asymptotically, but it will be unreliable in small samples.
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Using (22), variation in M
N

can then identify z
(

M
N

)
up to a constant. And with knowl-

edge of z, we can identify the native mark-down φN

(
M
N

)
up to a constant, using (20).

Intuitively, knowledge of z
(

M
N

)
allows us to predict how the native marginal product

varies with M
N

; so we can attribute the remaining effect of M
N

on wages to the mark-down

(conditional on native employment N , which identifies the substitutability σX between

experience groups). So conditional on equal mark-downs (H1), we are able to test whether

the native mark-down is independent of the migrant share (H2). A rejection of H2 would

then imply rejection of the combination of H1 and H2 (i.e. the null hypothesis of equal

and independent mark-downs), of which perfect competition is a special case.

5.3 Empirical specification

Above, we have considered identification in the abstract; and we now turn to estimation

and testing in practice. To this end, we impose more structure on the technology and

mark-down functions. Assume Z has CES form:

Z (N, M) = (NσZ + αZMσZ )
1

σZ (23)

where αZ is a migrant-specific productivity shifter, and 1
1−σZ is the elasticity of substi-

tution between natives and migrants (within education-experience cells). From this, it

follows that:

z

(
M

N

)
=

[
1 + αZ

(
M

N

)σZ
] 1

σZ

(24)

And suppose we approximate the mark-downs φN and φM by log-linear functions of M
N

:

φN

(
M

N

)
= φ0N + φ1N log

M

N
(25)

φM

(
M

N

)
= φ0N + ∆φ0 + (φ1N + ∆φ1) log

M

N
(26)

where we permit the two mark-downs to have different intercepts and different sensitivity

to M
N

. Note that equal mark-downs (H1) would imply ∆φ0 = ∆φ1 = 0, and independence

of the native mark-down (H2) would imply φ1N = 0. Though we express the mark-downs

as functions of log M
N

, there are good theoretical reasons to prefer a specification in terms

of the migrant share, M
N+M

: equal absolute changes are more likely to have the same

impact on mark-downs than equal proportionate changes. We make this point more

formally in Appendix E. But as we now show, we can better illustrate the identification

problem by formulating (25) and (26) in terms of log M
N

.

Applying (24)-(26) to (20) and (21) respectively, and taking differences, yields the
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following expression for log relative wages:

log
WM

WN

= log αZ − ∆φ0 − (1 − σZ + ∆φ1) log
M

N
(27)

Equation (27) illustrates the identification problem: the intercept of the relative

wage equation only allows us to estimate (log αZ − ∆φ0), and the slope coefficient

− (1 − σZ + ∆φ1).
17 Manacorda, Manning and Wadsworth (2012) and Ottaviano and

Peri (2012) implicitly solve this problem by assuming equal mark-downs (H1), i.e.

∆φ0 = ∆φ1 = 0. Though we cannot test H1 in isolation, as we have explained above, we

are able to test the joint hypothesis of H1 and H2.

In practice, our strategy is the following. Under the assumption of equal mark-downs

(H1), we identify αZ and σZ using the relative wage equation (27). Using (20), (24) and

(25), the native wage can then be written as:

log WN + (1 − σZ) log N = log A − φ0N − (σZ − σX) log (NσZ + αZMσZ )
1

σZ − φ1N log
M

N
(28)

The left-hand side of (28) is a weighted average of log native wages and employment.

This has precedent in the literature on skill-biased technical change: see e.g. Berman,

Bound and Griliches (1994). If, for example, the production nest Z is Cobb-Douglas (so

σZ = 0), the left-hand side is the total log wage bill accruing to natives.

Given our estimates of (αZ , σZ), we can then regress [log WN + (1 − σZ) log N ] on

log (NσZ + αZMσZ )
1

σZ and log M
N

; and the estimated coefficient on log M
N

will identify φ1N .

Intuitively, the effect of immigration on the marginal products must enter through the

cell “Armington” aggregator; so conditional on this, the cell composition log M
N

will pick

up the mark-down effect. The hypothesis of independent native mark-downs (H2) then

yields a testable overidentifying restriction: that φ1N = 0. We have framed this test using

the native wage equation (28), but one may alternatively derive an equivalent equation

for migrant wages. However, this would add no information beyond the combination of

the relative wage equation (27) and the native levels equation (28).

6 Estimates of wage effects

We now turn to our empirical estimates. We begin by estimating the relative wage

equation (27). On imposing H1, we are able to identify (αZ , σZ), and this allows us to

test the joint hypothesis of H1 and H2 by estimating the native wage equation (28). As

it happens, we reject this joint hypothesis; and we then explore set identification of the

key parameters by exploiting the model’s various restrictions.

17If we write (25) and (26) in terms of M

N+M
, we could in principle rely on functional form for identi-

fication. But we prefer not to pursue this strategy.
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6.1 Estimates of relative wage equation

We initially parameterize the relative migrant productivity αZ in (27) as:

αZext = ᾱZ + uext (29)

for education e, experience x and time t, where ᾱZ is the mean across education-experience

cells, and the deviations uext have mean zero. (29) yields the following specification:

log
WMext

WNext

= β0 + β1 log
Mext

Next

+ uext (30)

where β0 identifies log ᾱZ − ∆φ0, and β1 identifies − (1 − σZ + ∆φ1).

We report estimates of (30) in Table 2. In line with Ottaviano and Peri (2012),

we cluster our standard errors by the 32 education-experience groups. And following

the recommendation of Cameron and Miller (2015), we apply a small-sample correction

to the cluster-robust standard errors (in this case, scaling them by
√

G
G−1

· N−1
N−K

) and

using T (G − 1) critical values, where G is the number of clusters, and K the number

of regressors and fixed effects. We apply these adjustments both for OLS and IV. The

relevant 95% critical value of the T distribution (with 31 degrees of freedom) is 2.04.18

In column 1, we present OLS estimates for “raw” wages (i.e. not adjusted for changes

in demographic composition): β0 takes a value of -0.14, and β1 is -0.033. These numbers

are comparable to Ottaviano and Peri (2012).19 Under the hypothesis of equal mark-

downs H1 (i.e. ∆φ0 = ∆φ1 = 0), β0 identifies within-cell productivity differentials

log ᾱZ , and β1 identifies − (1 − σZ), implying an elasticity of substitution of 1
1−σZ

= 30

between natives and migrants. But in general, these parameters cannot be separately

identified from differentials in the mark-downs. A negative β0 may reflect larger migrant

mark-downs (∆φ0 > 0), and a negative β1 a greater sensitivity of migrant mark-downs

to immigration (∆φ1 > 0).

Our estimates are somewhat sensitive to specification. Adjusting wages for compo-

sition in column 2 reduces the coefficients substantially, and especially β1: this reflects

Ruist’s (2013) findings on migrant cohort effects. One may also be concerned that the

relative migrant supply, Mext

Next
, is endogenous to within-cell relative demand shocks in the

error, uext. In column 3, we attempt to address this problem by instrumenting log Mext

Next

18As Cameron and Miller (2015) emphasize, these adjustments do not entirely eliminate the bias. But
even when we reduce the number of clusters to 16 (see below), bootstrapped estimates suggest the bias
is small in this data: see Section 7.2.

19For full-time wages of men and women combined, with no fixed effects, Ottaviano and Peri estimate
a β1 of -0.044: see column 4 of their Table 2. The small difference is partly due to our extended year
sample (we include 2010 and 2017) and restricted wage sample (like Borjas, 2003, we exclude students).
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with log M̃ext

Ñext
, where M̃ext = M̃new

ext + M̃old
ext is the total predicted migrant employment

(described above), and Ñext is predicted native employment. The first stage has consid-

erable power: see Panel B. But, our β1 estimate in Panel A remains at zero. Following

Ottaviano and Peri, we next respecify αZext to include interacted education-experience

and year fixed effects:

αZext = αZex + αZt + uext (31)

which now enter our empirical specification. In columns 4-5, instead of a constant, we

report the mean intercept across all cells (averaging the fixed effects). β1 now turns

negative again (reaching -0.039 in IV), and the mean β0 expands. Columns 6-7 estimate

the same specifications in first differences: i.e. regressing ∆ log WMext

WNext
on ∆ log Mext

Next
and

year effects (the education-experience effects are eliminated). The instrument is also

differenced, and it continues to offer substantial power (see column 7 of Panel B). The

IV estimate of β1 remains negative, though a little smaller than under fixed effects. To

summarize, our mean β0 varies from -0.07 to -0.18, and β1 from zero to -0.039.20

6.2 Testing the null of equal and independent mark-downs

We now test the null hypothesis of equal and independent mark-downs (i.e. the combi-

nation of H1 and H2), of which perfect competition is a special case. To this end, we

turn to the equation for native wages (28). We parameterize the cell-level productivity

shifter Aext in (18) as:

Aext = dex + det + dxt + vext (32)

where the dex are education-experience interacted fixed effects, the det are education-year

effects, and the dxt experience-year effects. Comparing to (18), notice the det pick up

productivity shocks αet and labor supply effects at the education nest level; and the dex

and dxt account for components of the education-specific experience effects αext. Any

remaining variation in the αext (at the triple interaction) falls into the idiosyncratic vext

term. Our native wage equation (28) can then be estimated using:

[log WNext + (1 − σZ) log Next] = γ0 + γ1

[
log (NσZ

ext + αZextM
σZ
ext)

1

σZ

]
(33)

+γ2 log
Mext

Next

+ dex + det + dxt + vext

Based on (28), γ1 will identify (σX − σZ), where σX measures the substitutability between

experience groups and σZ between natives and migrants (within education-experience

cells). In turn, γ2 will identify φ1N , the impact of migrant composition on native wage

20Borjas, Grogger and Hanson (2012) find the β1 coefficient is also sensitive to the choice of regression
weights: they recommend using the inverse sampling variance, rather than Ottaviano and Peri’s total
employment. In light of this controversy, we have chosen instead to focus on unweighted estimates.
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mark-downs. In some specifications, we replace the relative supply variable log Mext

Next
with

the migrant share Mext

Next+Mext
: as we argue above, the latter should better represent the

mark-down effects. We also estimate first differenced versions of (33), where all variables

of interest are differenced and the dex fixed effects eliminated.

As we have explained above, under equal mark-downs (H1), equation (30) identifies

the technology parameters (αZ , σZ). We rely on the β0 and β1 estimates in column 5

of Table 2, which imply σZ = 1 − 0.039 and a mean log αZext of -0.177. These allow us

to construct the two bracketed terms (the augmented wage variable and cell aggregator)

and estimate (33) linearly. Under the joint null of equal and independent mark-downs

(H1 and H2), it must then be that γ2 = 0; and this can be tested.

The two right hand side variables in (33) rely on different sources of variation: native

employment Next increases the aggregator log (NσZ
ext + αZextM

σZ
ext)

1

σZ but diminishes the

migrant composition log Mext

Next
; whereas migrant employment Mext increases both. How-

ever, there are a number of concerns about their exogeneity. First, omitted demand

shocks at the interaction of education, experience and time (in vext in (32)) may gen-

erate unwanted selection: both through the arrival of new immigrants (see Llull, 2018,

Monras, forthcoming) and the human capital choices of existing US residents (Hunt,

2017; Llull, 2017). Second, native employment Next appears on both the left and right

hand sides; so any measurement error in Next or misspecification of the technology will

mechanically threaten identification. Beyond this, measurement error will be a prob-

lem for the cell aggregator log (NσZ
ext + αZextM

σZ
ext)

1

σZ , which is a generated regressor and

therefore contains noise. To address these challenges, we construct instruments for the

two right hand side variables by combining our predicted native and migrant stocks,

Ñext and M̃ext: we instrument log Mext

Next
using log M̃ext

Ñext
, and log (NσZ

ext + αZextM
σZ
ext)

1

σZ using

log
(
ÑσZ

ext + αZextM̃
σZ
ext

) 1

σZ .

In Panel A of Table 3, we present our first stage estimates for equation (33), imposing

the hypothesis of equal mark-downs (H1). Each instrument drives its corresponding

endogenous variable with considerable power: the Sanderson and Windmeijer (2016) F-

statistics, which account for multiple endogenous variables, range from 16 to 83.

Panel A of Table 4 presents the second stage results (we return to Panel B below).

Our estimates of γ1 are mostly positive (which would imply σX > σZ) but close to zero.

If σZ is close to 1 (as Table 2 suggests, at least under H1), these γ1 estimates would imply

σX ≈ 1, i.e. experience groups are (approximately) perfect substitutes within education

nests. This appears to contradict the prevailing view in the literature; but as we show

below, our estimates closely match those of Card and Lemieux (2001), the seminal work

on this subject, when we use broader education groups.
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The effect of migrant cell composition, γ2, is universally negative. The statistical

significance of γ2 leads us to reject the null hypothesis of independent native mark-downs

(H2), conditional on H1. Adjusting native wages for compositional changes (columns 3-4)

approximately doubles our γ2 coefficient. When we control for the relative supply log Mext

Next

and migrant share Mext

Next+Mext
simultaneously (in column 5), the latter picks up the entire

effect: this suggests Mext

Next+Mext
is the more appropriate functional form for the mark-down

effect, which is consistent with our monopsony story. Using IV instead of OLS makes

little difference, which suggests selection is not a significant problem in this context.21

For illustration, identifying cell composition with the migrant share, our IV estimate of

γ2 is -0.61 (column 7 of Panel A). That is, conditional on H1, a 1 pp expansion of the

migrant share increases the native mark-down by 0.61%. The first differenced estimates

are similar: the equivalent specification yields a γ2 of -0.54 (in column 9).

To summarize, the fact that γ2 is significantly different from zero allows us to reject

the null hypothesis of equal and independent mark-downs (i.e. the joint hypothesis of

H1 and H2). In our model in Section 3, this joint hypothesis corresponds to the case of

equal native and migrant elasticities (ǫN = ǫM ). Crucially, perfect competition (i.e. zero

mark-downs) is a special case of this joint hypothesis.

6.3 Set identification of key parameters

Above, we have offered a simple two-step procedure which tests (and rejects) the joint

hypothesis of equal and independent mark-downs. If we are willing to accept H1 (equal

mark-downs), our γ2 estimates imply a φ1N of 0.5-0.6. That is, a 1pp increase in the

migrant share raises the native mark-down by 0.5-0.6%. However, we are unable to test

H1 in isolation. If it is not satisfied in reality, the true φ1N may be entirely different from

(the negative of) our γ2 estimate: conceivably, even its sign may be incorrect.

Though the full model is not identified, it does imply restrictions on sets of parameters;

and this allows us to explore the robustness of our conclusions. For any given αZ and σZ ,

we can use the native wage equation (28) to point identify the mark-down effect, φ1N .

(And for given αZ and σZ , we can also identify ∆φ0 and ∆φ1 using our estimates of the

relative wage equation.) Our strategy is therefore to study how φ1N varies across a broad

range of αZ and σZ values. This approach offers a form of set identification, in the sense

that only some combinations of parameters are consistent with the data.

We begin by considering a specification where, in line with e.g. Borjas (2003), natives

and migrants contribute identically to output within education-experience cells: i.e. αZ =

σZ = 1. In this environment, we would attribute any deviation of β0 and β1 from zero (in

the relative wage equation) to the differential competition effects, ∆φ0 and ∆φ1. Moving

21In contrast, Llull’s (2018) IV estimate of the migrant share effect is more than twice his OLS estimate
- though as we have explained above, he uses a different instrument.
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to the native wage equation (33), the left hand side collapses to the log native wage

log WNext, and the cell aggregator collapses to total employment log (Next + Mext). We

offer first and second stage estimates for this specification in Panel B of Tables 3 and 4.

Unsurprisingly perhaps, the results are similar to Panel A: the αZ and σZ values implied

by H1 are themselves close to 1. In the fixed effect IV specification (column 7), the

coefficient on γ1 now drops to zero (from 0.04 in Panel A), and the coefficient γ2 on the

migrant share (which identifies φ1N) drops to -0.55 from -0.61.

In Figure 2, we now study how our estimate of φ1N , the effect of migrant share on

the native mark-down, varies across a broader range of (αZ , σZ) calibrations.22 In panel

A, we focus on the IV fixed effect specification (comparable with column 7 of Table 4),

with native wages adjusted for composition.

Compared with other (αZ , σZ) values, our φ1N estimates in Table 4 (which hover

around 0.5) represent a lower bound. As σZ decreases from 1, φ1N becomes larger. In-

tuitively, for a lower σZ , we are treating natives and migrants as relatively more comple-

mentary in technology. This would imply that immigration is relatively more beneficial

for native marginal products; and consequently, to account for the observable wage vari-

ation, we require a more adverse mark-down effect. Notice the effect of σZ diminishes as

αZ declines: if migrants contribute little to output, they will have less influence on native

marginal products, so the value of σZ becomes moot. In the limit, when αZ reaches zero,

the cell aggregator collapses to the native stock; so σZ has no influence.

In Panel B of Figure 2, we repeat the exercise for the IV fixed effect specification (com-

parable to column 9 of Table 4). The effects are much the same, though the (shaded) 95%

confidence intervals are wider. We offer more complete regression tables for a selection

of (αZ , σZ) values in Appendix Table A1.

6.4 Interpretation of results

To summarize, our estimates reject the null hypothesis of equal and independent mark-

downs, of which perfect competition is a special case. We are unable to point identify

the mark-down response to the migrant share, φ1N . But comparing a broad range of

calibrations, our estimates suggest a 1 pp increase in migrant share increases the native

mark-down by at least 0.5% (with larger effects for certain specifications of technology).

What are the implications for native wages overall? We must consider both the

marginal products and the mark-downs. As we show above, in the “long run” (with

elastic capital), natives’ marginal products must increase on average. Ottaviano and

22Note that, unlike in Panel A of Table 2, our approach here is to impose equal αZ values in every
labor market cell.
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Peri (2012), for example, predict that migration caused native wages to grow by 0.6%

over 1990-2006, based on simulations of various nested CES structures (calibrated by

estimated elasticities of substitution). In some specifications, all native education groups

gain; in others, high school dropouts suffer wage declines of up to 2 percent.

How do the mark-down effects compare? Over these same years, the migrant share

grew by 7 pp. For a φ1N of 0.5-0.6, this would imply that mean native wages contracted 4%

due to mark-downs (which exceeds the positive effect from marginal products). Among

high school dropouts, who saw a 24 pp increase in migrant share over the period, the

implied mark-down effect is about three times larger.

Until now, we have focused on natives; but our results also speak to the mark-downs

of migrants. Again, identification presents a challenge. The coefficient β1 in the relative

wage equation identifies − (1 − σZ + ∆φ1), where σZ is the native-migrant substitutabil-

ity, and ∆φ1 is the differential response of migrant relative to native mark-downs. Under

H1, ∆φ1 will equal zero by construction; so the mark-down responses will be identical. If

instead we assume σZ = 1, our preferred β1 estimate of -0.039 would imply ∆φ1 = 0.039.

So, doubling the relative supply of migrants would cause migrants’ mark-downs to expand

by 4% more than natives’. In Appendix G.2 and Appendix Figure A1, we study how the

migrant mark-down response varies across a broader range of αZ and σZ values.

6.5 Comparison with existing empirical literature

Of course, we are not the first to estimate a native wage equation across education-

experience cells. But equation (33) is distinctive in controlling simultaneously for cell

size (i.e. the Armington aggregator) and cell composition (migrant share). Intuitively,

the aggregator controls for the impact of immigration on marginal products, allowing the

migrant share to identify the mark-down effect.

Borjas (2003; 2014) and Ottaviano and Peri (2012) study a specification with the cell

aggregator alone, to estimate the substitutability σX between experience groups within

education nests (building on the earlier work of Card and Lemieux, 2001). Borjas (2003)

estimates a coefficient γ1 of -0.29 on the cell aggregator (implying an elasticity of sub-

stitution of 3.4, assuming σZ = 1), and Ottaviano and Peri’s preferred estimate is -0.16;

while our estimates of γ1 are zero or slightly positive. However, both Borjas and Otta-

viano and Peri instrument the cell aggregator Z (N, M) using total migrant labor hours.

This instrument will violate the exclusion restriction if, as our model suggests, migrant

composition enters wages independently. In contrast, we identify the effects of the cell

aggregator and cell composition separately, using two distinct instruments.

Borjas (2003) also estimates a version of equation (33) which excludes the cell aggre-

gator Z (N, M), implicitly imposing γ1 = 0. His motivation is to generate descriptive

estimates (i.e. without imposing theoretical structure) of the effect of immigration, using
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skill-cell variation. The effect of migrant share varies from -0.5 or -0.6, very similar to

our own estimates of γ2. His empirical specification has latterly been criticized by Peri

and Sparber (2011) and Card and Peri (2016). They note that the native stock in the

education-experience cell appears in the denominator of the migrant share Mext

Next+Mext
. Un-

observed cell-specific demand shocks (which raise wages and draw in natives) may then

generate a spurious negative relationship between wages and the migrant share. However,

our IV strategy should in principle address this concern.

In short, our estimates are driven by similar variation to previous studies (abstracting

from our instruments and residualized wages); but our contribution is to give these effects

a different interpretation.

7 Robustness and empirical extensions

7.1 Outliers, wage definition, weighting and instruments

We now consider the robustness of our native wage equation (33) to outliers, wage defini-

tion, choice of weighting, and specification of instruments. First, one may be concerned

that the migrant share effects, γ2, are driven by outliers. To address this, Figure 3

graphically illustrates our OLS and IV estimates of γ2, both for fixed effects and first

differences, based on columns 4, 7, 8 and 9 of Panel B in Table 4. For simplicity, we

impose αZ = σZ = 1, so the dependent variable collapses to log native wages and the cell

aggregator to log total employment, log (Next + Mext).

For the OLS plot, we partial out the effect of the controls (i.e. log total employment

and the various fixed effects) from both native wages (on the y-axis) and migrant share

(on the x-axis). For IV, we first replace both (i) log total employment and (ii) migrant

share with their linear projections on the instruments and fixed effects; and we then follow

the same procedure as for OLS. By construction, the slope coefficients are identical to

the γ2 estimates in Panel B of Table 4. And by inspection of the plots, it is clear these

effects are not driven by outliers. On the contrary, the correlation between the partialed

variables is remarkably strong, at least in the fixed effect specifications.

In Appendix Table A2, we show our IV estimates of γ2 are robust to the choice of

wage variable and weighting. We study the wages of native men and women separately,

and hourly wages instead of full-time weekly wages; and we experiment with weighting

observations by total cell employment. But the effect of the migrant share is little affected.

One may also be concerned that our predictor for the migrant stock, M̃ext, is largely

noise; and that the first stage is driven instead by the correlation between native em-

ployment Next and its predictor Ñext (which appear in the denominators of the migrant
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share Mext

Next+Mext
and its instrument M̃ext

Ñext+M̃ext
). See Clemens and Hunt (2019) for a related

criticism. But in Appendix Table A3, we show our IV estimates are robust to replacing

the migrant share instrument M̃ext

Ñext+M̃ext
with its numerator M̃ext.

7.2 Broad education and experience groups

We next study an alternative specification with two (instead of four) education groups. As

Card (2009) notes, a four-group scheme implicitly constrains the elasticity of substitution

between any two groups to be identical; but there is evidence that high-school graduates

and dropouts are closer substitutes with each other than with college graduates. For this

exercise, we divide workers into “college-equivalents” (which include all college graduates,

plus 0.8 times half of the some-college stock) and “high-school equivalents” (high school

graduates, plus 0.7 times the dropout stock, plus 1.2 times half of the some-college stock):

the weights, borrowed from Card (2009), have an efficiency unit interpretation. This

leaves us with just 16 clusters (since we cluster by labor market cell); but at least in this

data, the bias to the standard errors appears to be small.23

We report OLS and IV estimates in columns 1-4 of Table 5; and we leave the first stage

estimates to Appendix Table A4. For simplicity, we continue to impose αZ = σZ = 1.

Notice that γ1 (the elasticity to total cell employment) is now consistently negative and

lies around -0.1. For σZ = 1, this implies an elasticity of substitution between experience

groups (within education nests) of 10. These estimates are consistent with those of

Card and Lemieux (2001), who use an equivalent two-group education classification.24

The γ2 estimates (on migrant share) now increase to -1 in the OLS and IV fixed effect

specifications. The first differenced estimates remain closer to -0.5; but the standard

errors in IV now balloon, which reflects the weakness of the instruments (as Appendix

Table A4 shows, the F-statistics are below 4).

In columns 5-8 of Table 5, we also re-estimate our model using four 10-year experience

groups (rather than eight 5-year groups), while keeping the original four-group education

classification. This appears to make little difference to our baseline estimates in Table 4.

To summarize, conditional on cell size, the effect of migrant share on native wages

appears to be reasonably robust to alternative skill group definitions.

23For just 16 clusters, one may fear that asymptotic inference is invalid - even after applying the small-
sample corrections recommended by Cameron and Miller (2015), as we do for both OLS and IV. However,
the bias in this data appears to be small. For example, consider the OLS coefficient on Mext

Next+Mext

in
column 1 of Table 5. Since we have 16 clusters, we apply the 95% critical value of the T (15) distribution,
which is 2.13. The standard error in column 1 then implies a confidence interval of [−1.324, −0.783].
But the wild bootstrap recommended by Cameron, Gelbach and Miller (2008), which we implement with
Roodman et al.’s (2019) “boottest” command, delivers a very similar interval of [−1.310, −0.775].

24In their main specification, they estimate an elasticity of substitution of 5 across age (rather than
experience) groups; but they also offer estimates across experience groups which are similar to ours.
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7.3 Heterogeneous effects by education and experience

Another pertinent question is whether the mark-down effects differ across labor market

cells. To study this heterogeneity, we alternately interact the migrant share in (33) with

a college dummy (taking 1 for cells with any college education) and a high-experience

dummy (for 20+ years). These interactions require additional instruments: we use the

interactions between the predicted migrant share and the college/experience dummies.

We report our first stage estimates in Appendix Tables A5 and A6, and the OLS

and IV estimates in Table 6. In OLS, the migrant share responses (which identify the

mark-down effects) are entirely driven by non-college workers, both in the fixed effect and

first differenced specifications. Intuitively, one might expect that lower income migrants

suffer disproportionately from a lack of outside options, allowing employers to extract

relatively more rents from their native co-workers. Still, we do not find differential effects

by education in IV, though the first stage F-statistics are small (never above 5). With

respect to experience, we find no evidence of heterogeneous effects in OLS or IV.

7.4 Heterogeneous effects of new and old migrants

We next explore whether mark-downs are more responsive to newer migrants. On the

one hand, newer migrants may supply labor less elastically to firms, allowing them to

extract larger rents from labor. However, they may also be less assimilated into native

labor markets, so there may be less direct competition (see the discussion in Section 3.4).

Our approach is to control separately for the shares of new migrants
Mnew

ext

Next+Mext
(in

the US for up to new years) and old migrants Mold
ext

Next+Mext
(more than ten years) in the

native wage equation (33). We construct distinct instruments for each, i.e.
M̃new

ext

Ñext+M̃ext

and
M̃old

ext

Ñext+M̃ext
. Appendix Table A7 reports the first stage: our instruments perform

remarkably well in fixed effects, but
M̃new

ext

Ñext+M̃ext
has no explanatory power in first differences.

Table 7 presents our OLS and IV estimates. In the fixed effect specification (columns

3-4), there is no significant difference in the impact of new and old migrants. In first

differences though, the standard errors are generally too large to identify their effect.

7.5 Impact on employment rates

We focus in this paper on wage effects, and we have taken employment as given through-

out. But, Dustmann, Schoenberg and Stuhler (2016) have stressed the importance of
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labor supply responses to migration; and Borjas (2003) and Monras (forthcoming) have

estimated effects on native employment rates as well as wages, exploiting similar skill-cell

variation to us. This question is especially pertinent in the context of monopsony: Chas-

samboulli and Palivos (2013) and Chassamboulli and Peri (2015) argue that migrants’

low wage demands may stimulate job creation; and Albert (2017) and Amior (2017) note

that, under certain parameterizations, such a job creation effect may dominate any ad-

verse wage effects in the determination of native welfare. However, if the job creation

response is weak, native employment may also contract - in response to the lower wages.

To estimate the elasticity of employment to wages, we use the following specification:

log ERNext = δ0 + δ1 log WNext + dex + det + dxt + eext (34)

where log ERNext is the log of mean annual native employment hours. Like Borjas (2003),

we exclude enrolled students from our employment rate sample. The regressor of interest

is the (composition-adjusted) log native wage, and we control for the full set of interacted

fixed effects. We also study first differenced specifications, where the dex effects are elim-

inated. Borjas (2017) uses a similar specification to estimate employment elasticities; we

build on his work by adjusting employment rates for changes in demographic composition

(as we do for wages25) and by instrumenting wages using migration shocks.

We present estimates of the native employment elasticity δ1 in Panel A of Table 8.

For raw employment rates, our OLS estimate is 0.5 using fixed effects (column 1) and

0.9 in first differences (column 5). After adjusting employment for composition, these

become 0.7 (column 2) and 0.8 (column 6) respectively.

Of course, the OLS estimates may be conflated with omitted cell-specific demand

shocks. In columns 3 and 7, we now introduce the instruments from our native wage

equation: (i) predicted log total employment (in the labor market cell) and (ii) predicted

migrant share. It is worth stressing that our instruments are constructed using population

(and not employment) data, so they are not conflated with variation in employment

rates. The first stage in Panel C can be interpreted as a reduced form wage equation,

regressing wages directly on the instruments. Consistent with our findings in Table 4,

only the predicted migrant share has power; and we also offer an “IV2” specification

which excludes the total employment instrument.

Turning to the second stage, IV yields much larger native employment elasticities,

reaching 1.2 for fixed effects (column 4) and 1.3 for first differences (column 8). Notice

25Our motivation for adjusting employment rates is the same as for wages: changes in either outcome
may be conflated with observable demographic shifts (within education-experience cells). We follow
identical steps to those described in Section 4.2; but this time, we estimate linear regressions for annual
employment hours (including zeroes for individuals who do not work) rather than log wages.
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these estimates are identified entirely from the predicted migrant share, which our model

associates with the mark-down channel. This suggests that larger mark-downs, driven by

immigration, have eroded native employment rates.

In Panel B, we repeat the exercise for migrants, replacing the employment rate and

wage variables with migrant equivalents. Our δ1 estimates are universally smaller than

those of natives. The IV estimates are difficult to interpret because of weak instruments

(see the first stage in Panel D), but we do see similar patterns in OLS. This suggests that

migrants supply labor relatively inelastically to the market, which reflects the evidence

from Borjas (2017). Of course, this is not the same as migrants supplying labor inelasti-

cally to individual firms (i.e. ǫM < ǫN). But the two stories are certainly consistent, and

this offers additional support for our interpretation of the mark-down effects: firms are

able to set larger mark-downs by exploiting an inelastic supply of migrant labor.

8 Conclusion

Under the assumption of constant returns, we show that a larger supply of migrants

(keeping their skill mix constant) must always increase the marginal products of native-

owned factors on average, unless natives and migrants have identical skill mixes. And in

the long run (if capital is supplied elastically), this surplus passes entirely to native labor.

This extends Borjas’ (1995) “immigration surplus” results to a wide class of models with

many types of labor and goods. But in a monopsonistic labor market, wages will also

depend on any mark-downs imposed by firms. If migrants supply labor to firms less

elastically than natives (and there is evidence to support this claim), firms can exploit

immigration by imposing larger mark-downs (relative to marginal products) on the wages

of natives and migrants alike.

We develop a test of the hypothesis that native and migrant mark-downs are equal and

independent of the migrant share, of which perfect competition (and zero mark-downs) is

a special case; and we reject this hypothesis using standard US data on employment and

wages. Under an alternative framework with monopsonistic firms, our estimates suggest

that immigration may in fact depress mean native wages overall - even in a “long-run”

setting with perfectly elastic capital.

It is worth stressing that the policy implications are nuanced: one cannot conclude

that migration is generally harmful for native workers. If policy interventions can make

the labor market more competitive (by limiting the power of firms to set mark-downs), im-

migration would only have the surplus-raising feature. See e.g. Edo and Rapoport (2017)

for evidence on minimum wages. On the other hand, as we have noted in the introduc-

tion, interventions ostensibly designed to protect native wages by stemming the flow of

migrants (such as restricting access of migrants to welfare benefits) may be self-defeating,

if they make the labor market less competitive. Whether the impact of immigration is
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affected by labor market institutions may be a fruitful topic for further investigation.
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A The long-run production function

Suppose the production function can be written as F (L, K), where L is a vector of

inputs that are treated as fixed (perhaps because they are in inelastic supply or simply

for analytical convenience) and K a vector of other inputs (possibly including capital)

that are in perfectly elastic supply at prices pK. Assume the production function has

constant returns to scale in all its inputs. For given L, let Π represent the profits net of

the cost of non-labor inputs:

Π (L, pK) = max
K

{F (L, K) − p′

K
K} (A1)

The purpose of this appendix is to show that Π can be treated as a “long run” production

function with constant returns in the L inputs, and whose derivatives equal their marginal
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products.

Notice first that the first-order conditions for profit maximization can be written as:

FK (L, K) = pK (A2)

These first-order conditions can be solved to write the optimal choice of inputs as a

function K (L, pK) of L and input prices. From the assumption of constant returns,

K (L, pK) must be Hod1 in L. Substituting this for K in (A1) gives:

Π (L, pK) = F (L, K (L, pK)) − pK
′K (L, pK) (A3)

which is a function of L and pK alone. Since K (L, pK) is Hod1 in L, the net profit

function Π (L, pK) must have constant returns in L. Also, the derivatives of the net

profit function must equal the marginal products of the respective labor inputs. To see

this, notice that:

ΠL (L, pK) = FN (L, K (L, pK)) + [FK − pK]′
∂K (L, pK)

∂L
= FL (L, K (L, pK)) (A4)

where the second equality follows from (A2).

Therefore, assuming non-labor inputs are elastically supplied, we can write the long-

run production function as F̃ (L) = Π (L, pK) in the main body of the paper, where we

suppress the dependence on pK for notational convenience.

B Proof of Proposition 4

Proposition 4 follows from Proposition 3 with the following modification. Instead of

defining natives and migrants as the two distinct groups, define the two groups as those

with skill mix vector η and those with skill mix µ. Let Ñ be the first group’s vector of

employment stocks (across skill types), and M̃ the second group’s vector. Based on (6),

the Ñ group consists of all natives and a fraction 1 − ζ of migrants:

Ñ = N + (1 − ζ) M (A5)

and the M̃ group consists of the remaining migrants:

M̃ = ζM (A6)

An increase in ζ diminishes the first group but expands the second. From Proposition

3, we know this must increase the average wage of the first group. This group is not

exclusively composed of natives. But the natives and migrants in this group have, by
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construction, the same skill mix; so the average wage must be the same for both these

components of the group. Hence, the average wage of natives must rise. Note that the

average wage of migrants may also rise, because a change in the skill mix may shift the

group composition towards skills that yield higher wages in equilibrium.

C Proof of Proposition 5

C.1 Production

Suppose there are K industries in a closed economy, all of which produce goods with

the J different types of labor (and possibly the K goods as intermediate inputs) using

a constant returns to scale production function. If the goods market is competitive, the

price of each good will equal its unit cost function:

p = c̃ (w, p) (A7)

where p is the K × 1 vector of prices, and the cost function c̃ will depend on the J × 1

vector of wages w and (if there are intermediate or capital good inputs) the vector of

goods prices.26 From standard theory, c̃ will be homogenous of degree 1 in its arguments,

increasing and concave. One can solve (A7) to give a “reduced form” cost function:

p = c (w) (A8)

This cost function c must also be homogeneous of degree 1 in its arguments.

Let akj (w) denote the quantity of factor j demanded for producing one unit of good

k (both directly and indirectly through the intermediate inputs), and let A(w) denote

the K × J matrix of these factor demands. By Shephard’s lemma, the vector A(w) can

be obtained by differentiating the cost function c with respect to wages:

cw (w) = A (w) (A9)

C.2 Consumption

Now consider the consumer side. To keep things simple, we assume every consumer, native

and migrant, has the same homothetic utility function; so the expenditure function can

be written as ẽ (p) u, where p is the price vector and the level of utility is u. It will be

convenient to write this expenditure function not (as is usual) in terms of prices, but

26As Caselli and Manning (2019) note, the rental price of capital should equal the user cost - which is
(r + δ) times the purchase price of the relevant intermediate good, where r and δ are the rates of interest
and depreciation respectively.
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rather in terms of wages - using (A8). Per utility expenditure can be written as:

e (w) = ẽ (c (w)) (A10)

where e (w) will be an increasing, concave function of its arguments and homogeneous of

degree 1. That is, it will behave identically to a normal expenditure function. It is useful

to imagine consumers as demanding different types of labor (which produce the goods

they consume), rather than demanding the goods directly. These derived demands for

labor can be written as:

L (w, u) = ew (w) u (A11)

To see how, notice that differentiating (A10) with respect to wages yields:

ew (w) = ẽp (c (w)) cw (w) = X (c (w)) A (w) (A12)

where X (p) is the per utility demands for goods. And consequently, the product of X

and A is equal to the factor demands for unit utility - from which (A11) follows.

C.3 Introducing natives and migrants

Suppose there are N natives and M migrants in total. Natives and migrants differ in

their per capita factor supplies: denote the skill mix of natives by η and migrants by µ.

The vector of total labor supply can then be written as:

L = Nη + Mµ (A13)

Since natives and migrants differ in skill mix, they may have different levels of utility in

equilibrium. Let un denote the average utility of natives, and um the average utility of

migrants.27 As total income must equal total expenditure for natives and migrants alike,

we must have:

ηw = e (w) un (A14)

and

µw = e (w) um (A15)

Finally, supply must equal demand in each of the labor markets. This equilibrium con-

dition can be written as:

Nη + Mµ = ew (w) [Nun + Mum] (A16)

27Because of the homotheticity assumption, we can focus on the average level of utility - and we do
not have to worry about the distribution of utility
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where the left-hand side is supplies of labor, and the right-hand side the derived demand

of different types of labor from native and migrant consumers, using (A11). (A16) can

conveniently be rewritten as:

N [η − ew (w) un] + M [µ − ew (w) um] = 0 (A17)

The terms in square brackets represent a “balance of payments condition”: the difference

between the factors supplied by each group (natives or migrants) and the factors they

demand. If factor supplies are identical for natives and migrants, these terms must both

be zero. But if natives and migrants differ in skill mix, this will not be the case.

Equations (A14), (A15) and (A17) appear to consist of J + 2 equations in J + 2

unknowns (w, un, um). But as usual, one of the factor demands is redundant and equi-

librium wages are only determined up to a common factor - so they must be normalized

in some way.

C.4 Assessing the impact of immigration

We want to know what happens when the number of migrants M increases, holding

constant their skill mix µ. Differentiating (A14) leads, after some rearrangement, to:

e (w) dun = [η − unew (w)] dw (A18)

That is, native utility grows (on average) if wages increase more for the types of labor

they supply than the implied labor in the goods they buy. And differentiating (A14)

leads to a similar equation for migrant utility (in the host country):

e (w) dum = [µ − uem
w (w)] dw (A19)

Multiplying (A18) by N and (A19) by M , and using (A17), then leads to:

Mdum = −Ndun (A20)

which implies that average native and migrant utility must move in opposite directions,

if there is any change at all. But this does not tell us who gains and who loses.28 This

would require an expression for the change in wages. Differentiating (A17) leads to:

dM [µ − ew (w) um] = dw′eww (w) [Nun + Mum] + ew (w) [Ndun + Mdum] (A21)

28Note that this is migrant utility in the host country: it says nothing about whether there are gains
from migration as a whole.
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Using (A20), the final term must equal zero. Multiplying both sides by dw then gives:

dM [µ − ew (w) um] dw = [Nun + Mum] dw′eww (w) dw (A22)

and substituting (A19) into the left-hand side:

dMe (w) dum = [Nun + Mum] dw′eww (w) dw (A23)

The right-hand side of (A23) is negative, because it contains a quadratic form in which

the middle matrix is negative semi-definite (from concavity of the expenditure function).

This means that migrant utility (in the host country) must fall, or at least not rise; and

from (A20), it then follows that native utility must rise, or at least not fall. The effect

will be zero if the factor content of the goods demanded by migrants is identical to the

factors which they supply: in this case, we would have dw = 0, as can be seen from (A18)

or (A19).

D Aggregation of monopsony model

D.1 Aggregation of production

The purpose of this appendix is to describe how our simple monopsony model for a single

unobservable submarket j, outlined in Section 3.2, can be aggregated to the national

level (or to any observable labor market cell). At the aggregate level, suppose there are

M migrants, a fraction µj of which are exogenously allocated to submarket j; and there

are N natives, who are allocated according to fraction ηj. The economy consists of many

such submarkets j, whose long run output (net of the costs of elastic inputs) is aggregated

according to the function F̃ (Lj, .., LJ), which we assume to be homogeneous of degree 1.

As we have described in Section 3.2, natives and migrants are perfect substitutes within

these submarkets.

Following equation (4) and Proposition 3, we can define an aggregate production

function in terms of N and M as:

Z (N, M) = F̃ ((η1N + µ1M) , .., (ηJN + µJM)) (A24)

The partial derivative of Z with respect to N is:

ZN (N, M) =
∑

j

ηjF̃j (A25)

which is the mean marginal product of natives. Similarly, the partial derivative with
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respect to M is:

ZM (N, M) =
∑

j

µjF̃j (A26)

which is the mean marginal product of migrants. In this way, we have reduced F̃ to an

aggregated production function over two composite inputs (N and M), whose marginal

products are equal to those of the average native and migrant. The feasibility of this

aggregation follows from a long-standing literature on the aggregation of production func-

tions (Houthakker, 1955; Levhari, 1968; Jones, 2005; Growiec, 2008). This literature offers

a range of methods to achieve this where the two inputs are capital and labor, rather

than natives and migrants. Levhari (1968) in particular shows how one can construct an

underlying F̃ from a desired Z, using as an example the case where Z is CES.

D.2 Average wages

Using (8), the average wage in submarket j is:

log Wj = log F̃j − log
(
1 + ǫ−1

j

)
(A27)

where F̃j is the marginal product of submarket j labor; and the second term is the mark-

down, which depends on the elasticity ǫj of labor supply to firms in the submarket. In

turn, ǫj is a weighted average of native and migrant elasticities (ǫN and ǫM); and using

(9), it can be written as a function of the migrant and native submarket allocations:

ǫ

(
µjM

ηjN

)
= ǫN +

µjM

µjM + ηjN
(ǫM − ǫN) (A28)

If natives supply labor more elastically (ǫN > ǫM ), ǫj will be decreasing in the migrant

share.

Let WN be the mean native wage. This will be a weighted average of the wages (A27)

across the various submarkets, with weights equal to ηj :

log WN = log ZN (N, M) − φN

(
M

N

)
(A29)

where we have applied the aggregation in (A25), and where φN is the native aggregate

mark-down:

φN

(
M

N

)
= log

∑
j ηjF̃j

[
1 + ǫ

(
µjM

ηjN

)
−1
]

∑
j ηjF̃j

(A30)

which is a function of the migrant share. Similarly, the mean migrant wage can be written

as:

log WM = log ZM (N, M) − φM

(
M

N

)
(A31)
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where φM is the migrant aggregate mark-down:

φM

(
M

N

)
= log

∑
j µjF̃j

[
1 + ǫ

(
µjM

ηjN

)
−1
]

∑
j µjF̃j

(A32)

D.3 Properties of the aggregate mark-down functions

We now explore the properties of the aggregate mark-down functions φN

(
M
N

)
and

φM

(
M
N

)
. First, consider the special case where the submarkets j are completely seg-

regated (i.e. each is entirely composed of either natives or migrants, so µjηj = 0 for

all j), whether due to skills or discrimination. This implies that φj = log
(
1 + ǫ−1

N

)

in all native markets (where ηj > 0), so the aggregate native mark-down φN

(
N
M

)
de-

pends only on the native supply elasticity. Similarly, complete segregation implies that

φj = log
(
1 + ǫ−1

M

)
in all migrant submarkets (where µj > 0), so the migrant mark-down

φM

(
M
N

)
will only depend on the migrant elasticity.

However, if there is any overlap of natives and migrants across submarkets j, the

aggregate mark-downs will depend on the migrant share (except under the null hypothesis

of interest, where ǫN = ǫM ). To study this dependence, consider first the extreme ends

of the support. As M
N

→ 0, both the aggregate native and migrant mark-downs (i.e. φN

and φM) will converge to log
(
1 + ǫ−1

N

)
, i.e. a function only of the native supply elasticity.

Similarly, as M
N

→ ∞, both φN and φM will converge to log
(
1 + ǫ−1

M

)
, a function only of

the migrant elasticity.

More generally, for intermediate values of M
N

, the differential between the aggregate

migrant and native mark-downs (φM and φN) will depend on the submarket elasticity

function ǫ
(

µjM

ηjN

)
and the differential between ǫM and ǫN . Define η̃j = ηj F̃j∑

j
ηj F̃j

and µ̃j =

µj F̃j∑
j

µj F̃j
. From (A30) and (A32), we then have that:

exp (φM) − exp (φN) =
∑

j

µ̃j


1 + ǫ

(
µjM

ηjN

)
−1

−

∑

j

η̃j


1 + ǫ

(
µjM

ηjN

)
−1

 (A33)

=
∑

j

η̃j

(
µ̃j

η̃j

)

1 + ǫ

(
µjM

ηjN

)
−1


−
∑

j

η̃j



1 + ǫ

(
µjM

ηjN

)
−1




= Eη



 µ̃j

η̃j



1 + ǫ

(
µjM

ηjN

)
−1






− Eη

[
µ̃j

η̃j

]
Eη



1 + ǫ

(
µjM

ηjN

)
−1




= Covη



 µ̃j

η̃j

, ǫ

(
µjM

ηjN

)
−1




where the expectation Eη is taken with respect to the distribution η̃j , and we are using

the fact that Eη

[
µ̃j

η̃j

]
= 1. If ǫN > ǫM (i.e. if natives supply labor to firms more elastically
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than migrants), the overall submarket elasticity ǫ
(

µjM

ηjN

)
will be a decreasing function of

the ratio
µ̃j

η̃j
; so the covariance in the final line of (A33) will be positive, and the aggregate

mark-down will be larger for migrants. Intuitively, migrants will be disproportionately

located in migrant-intensive submarkets which are less competitive. But as mentioned

above, the differential between φM and φN must converge to zero as the overall native-

migrant ratio M
N

goes to either zero or ∞. And consequently, the differential will not be

monotonic in M
N

.

E Functional form of mark-down effects

In this appendix, we study the relationship between the mark-down φj in submarket j

and the migrant cell composition. We argue that a linear relationship between φj and

the migrant share
Mj

Nj+Mj
offers a better approximation than a linear with the relative log

migrant supply log
Mj

Nj
.

In our model, the mark-down depends on the migrant share if the elasticity of labor

supply to firms is different for natives and migrants, i.e. if ǫN 6= ǫM . From (9), the

elasticity of labor supply facing firms in a given submarket j is equal to:

ǫj = ǫN +
Mj

Nj + Mj

∆ǫ (A34)

where Mj

Nj+Mj
is the migrant share in the submarket, ǫN is the native elasticity, and

∆ǫ ≡ ǫM − ǫN is the difference between the migrant and native elasticities. Note that the

overall elasticity ǫj is linear in
Mj

Nj+Mj
, with slope equal to the difference in elasticities.

In the wage equations (20) and (21), it is the log of the mark-down φj which is relevant,

rather than the labor supply elasticity ǫj . The mark-down in submarket j is:

φj = log
1 + ǫj

ǫj

(A35)

The derivative of the mark-down with respect to the migrant share is:

dφj

d
(

Mj

Nj+Mj

) = −
1

ǫj (1 + ǫj)
∆ǫ (A36)

Notice that the migrant share
Mj

Nj+Mj
has no effect on the mark-down φj if the elasticity

difference is zero (∆ǫ = 0), but a positive effect if migrants supply labor less elastically

(∆ǫ < 0), and vice versa. And importantly, this is true irrespective of the size of the

migrant share.

However, this is not the case for the relationship between φj and log
(

Mj

Nj

)
. The
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derivative can be written as:

dφj

d log
(

Mj

Nj

) =
dφj

d
Mj

Nj+Mj

·
d

Mj

Nj+Mj

d log
(

Mj

Nj

) = −
1

ǫj (1 + ǫj)
·

Mj

Nj + Mj

(
1 −

Mj

Nj + Mj

)
∆ǫ (A37)

This derivative goes to zero as the migrant share becomes small, even for a non-zero

elasticity difference ∆ǫ. Intuitively, a very small rise in the migrant share can lead to

a very large rise in log
(

Mj

Nj

)
if the initial migrant share is small; but such a rise would

be expected to have only a small impact on the labor supply elasticity (and the mark-

down φj) overall. Given this, a linear relationship between φj and log
(

Mj

Nj

)
would offer a

relatively poor approximation of the true relationship, especially for small Mj

Nj+Mj
.

F Disaggregation of migrant stocks in 1960 census

The 1960 census does not report migrants’ year of arrival, but we require this information

for the construction of the instruments, as well as for the empirical specifications which

disaggregate between new and old migrants (i.e. in Table 7). In particular, we need to

know the employment stocks of migrants living in the US for no more than ten years, by

country of origin and education-experience cell.

For each country of origin and labor market cell, our strategy is to impute these stocks

using the size of the same cohort ten years later. For example, to impute the 1960 stock

of new Mexican migrants (with up to ten years in the US) among high school graduates

with 25-30 years of labor market experience, we use the 1970 stock of high school graduate

Mexicans with 11-20 years in the US and 35-40 years of experience.

We then use the 1970 population stocks to predict the 1960 employment stocks. To

this end, we exploit the relationship between these variables in future years, when they

are both observed. Specifically, we regress the log employment stock of new migrants,

by (i) 164 countries of origin, (ii) 32 education-experience cells and (iii) four census

years (1970, 1980, 1990 and 2000), on the log population stock of the same cohort ten

years later. To allow for cell-specific deviations, we also control for interacted education-

experience-region fixed effects, where we account for 12 regions (North America, Mexico,

Other Central America, South America, Western Europe, Eastern Europe and former

USSR, Middle East and North Africa, Sub-Saharan Africa, South Asia, Southeast Asia,

East Asia, Oceania).

We then use the regression estimates (and fixed effects) to predict the employment

stocks of new migrants in 1960, conditional on the within-cohort population stocks in

1970. Our approach here will account for cell differences in employment rates, as well

as any systematic contraction of migrant cohorts over time (due to emigration). In

particular, the coefficient on the future log population (i.e. ten years later) is 0.88. This
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suggests about 10% of immigrants leave the country over each decade, which is consistent

with estimates from Ahmed and Robinson (1994).

G Supplementary empirical estimates

G.1 Regression tables corresponding to Figure 2

In Appendix Table A1, we offer complete regression tables (i.e. estimates of the native

wage equation (33)) corresponding to a selection of (αZ , σZ) values in Figure 2. Notice

that column 2 is identical to columns 7 and 9 of Panel B of Table 4.

G.2 Estimates of migrant mark-down effects

In this section, we consider the response of the migrant mark-down to cell composition

(i.e. φ1N + ∆φ1 in (26)), and how this varies across different αZ and σZ values. We

base our analysis on our estimates of the relative wage equation (30) and native wage

equation (33). Conditional on (αZ , σZ), the γ2 coefficient in the native wage equation

identifies (the negative of) the mark-down effect φ1N ; and β1 in the relative wage equation

identifies − (1 − σZ + ∆φ1). Therefore, for given (αZ , σZ), we can impute the response

of the migrant mark-down, φ1N + ∆φ1.

We focus here on the mark-down response to log relative supply, log M
N

, rather than

to migrant share, M
M+N

. This is because we estimate β1 (in the relative wage equation)

as a response to log M
N

(in line with our CES technology); so for consistency, we impute

∆φ1 (for a given σZ value) as a response to log M
N

also.

In Appendix Figure A1, we begin by estimating the native mark-down response φ1N

to log M
N

, for a range of αZ and σZ values, and alternately for the fixed effect and first

differenced specifications of the native wage equation (33). This replicates the exercise of

Figure 2 (as described in Section 6.3), but we now replace the migrant share M
M+N

with

the log relative supply log M
N

in the native wage equation. The numbers are of course

different to Figure 2, but the patterns look much the same.

In the bottom two panels of Appendix Figure A1, we now back out the migrant mark-

down response, which is equal to φ1N +∆φ1. The 95% confidence intervals account for the

standard errors in the estimates of both β1 and γ2. For σZ = 1, the migrant mark-down

response varies little with αZ . The intuition is the same as that described in Section
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6.3. Note that σZ = 1 implies the differential mark-down effect is equal to −β1 (since

∆φ1 = σZ − 1 − β1), which we estimate as 0.039, based on column 5 of Table 2. Thus,

migrants’ mark-downs are increasing somewhat more in migrant share than natives’.

However, for smaller σZ values, we see a very different picture. While the native

mark-downs become much more (positively) responsive to migrant share (as the top

two panels of Appendix Figure A1 confirm), the migrant mark-downs respond heavily

negatively. Intuitively, since our β1 estimate is close to zero, small values of σZ necessarily

generate very negative values of the differential mark-down effect, ∆φ1. Given the size

of the migrant mark-down response, this may raise questions about the realism of these

particular σZ values.

G.3 Robustness to wage definition and weighting

In Appendix Table A2, we confirm that our IV estimates of the native wage equation

(33) are robust to the choice of wage variable and weighting.

In each specification, the right hand side is identical to columns 7 and 9 of Panel B

of Table 4, and we also use the same instruments. The only difference is the left hand

side variable and the choice of weighting. Odd columns study the wages of native men,

and even columns those of native women. Columns 1-2 and 5-6 study weekly wages of

full-time workers (as in the main text), and the remaining columns hourly wages of all

workers. All wage variables are adjusted for changes in demographic composition, in line

with the method described in Section 4.2. The estimates in Panel A are unweighted (as

in Table 4); while in Panel B, we weight observations by total cell employment. It turns

out the estimates are very similar across all specifications.

G.4 Alternative specification for instrument

One may also be concerned that our predictor for the migrant stock, M̃ext, is largely

noise; and that the first stage of our native wage equation is driven instead by the

correlation between native employment Next and its predictor Ñext (which appear in the

denominators of the migrant share Mext

Next+Mext
and its instrument M̃ext

Ñext+M̃ext
). See Clemens

and Hunt (2019) for a related criticism.

However, in Appendix Table A3, we show the IV estimates are robust to replacing the

migrant share instrument M̃ext

Ñext+M̃ext
with its numerator M̃ext. In practice, we scale M̃ext

by 10−9 to make the coefficients visible in the table. For the purposes of this exercise, we

impose throughout that αZ = σZ = 1, so the dependent variable collapses to log native

wages and the cell aggregator to log total employment, log (Next + Mext). Columns 1-4 are
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otherwise identical to columns 3-6 in Table 3 (Panel B), and columns 5-6 are comparable

to columns 7 and 9 in Table 4 (Panel B).

The instruments take the correct sign in the first stage: in particular, the migrant

share is decreasing in log
(
Ñext + M̃ext

)
but increasing in M̃ext; and the associated F-

statistics are reasonably large, especially in first differences. Comparing the second stage

estimates to Table 4, the standard errors are unsurprisingly larger. But the coefficients

are similar in magnitude: the fixed effect estimate is somewhat smaller (decreasing from

-0.55 to -0.41), but the first differenced estimate is larger (increasing from -0.47 to -0.68).

G.5 Supplementary first stage estimates

In Appendix Table A4, we report first stage estimates corresponding to the IV specifica-

tions in Table 5 in the main text. In Appendix Tables A5 and A6, we do the same for

the IV specifications in Table 6. And Appendix Table A7 reports first stage estimates

corresponding to Table 7.
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Tables and figures

Table 1: Descriptive statistics

Experience groups

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

Panel A: Migrant share of employment hours, 1960

HS dropouts 0.035 0.037 0.040 0.045 0.045 0.053 0.083 0.127

HS graduates 0.016 0.017 0.024 0.031 0.03 0.046 0.074 0.115

Some college 0.027 0.033 0.041 0.045 0.042 0.058 0.073 0.094

College graduates 0.031 0.038 0.045 0.048 0.058 0.064 0.092 0.111

Panel B: Change in migrant share of employment hours, 1960-2017

HS dropouts 0.142 0.304 0.447 0.513 0.579 0.582 0.526 0.402

HS graduates 0.082 0.125 0.174 0.188 0.210 0.173 0.105 0.029

Some college 0.057 0.071 0.076 0.085 0.100 0.075 0.046 0.015

College graduates 0.084 0.120 0.142 0.156 0.130 0.113 0.063 0.034

Panel C: Change in log natives wages, 1960-2017

HS dropouts -0.055 -0.146 -0.187 -0.099 -0.039 -0.029 -0.030 0.036

HS graduates -0.231 -0.215 -0.207 -0.129 -0.081 -0.019 -0.012 -0.012

Some college -0.218 -0.168 -0.107 -0.049 0.013 0.062 0.097 0.113

College graduates 0.048 0.112 0.178 0.237 0.261 0.302 0.292 0.283

Panel D: Mean log migrant-native wage differential

HS dropouts -0.002 -0.106 -0.124 -0.140 -0.142 -0.144 -0.123 -0.089

HS graduates -0.049 -0.106 -0.131 -0.139 -0.134 -0.143 -0.133 -0.117

Some college -0.033 -0.082 -0.093 -0.093 -0.108 -0.115 -0.089 -0.087

College graduates 0.018 -0.031 -0.065 -0.079 -0.109 -0.129 -0.133 -0.131

Panel A reports the migrant employment share in 1960, across the four education and eight
experience groups; and Panel B reports changes in this share over 1960-2017. Panel C reports
changes over 1960-2017 in composition-adjusted log native (weekly) wages, normalized to
mean zero across all groups. Panel D reports the mean composition-adjusted log migrant-
native wage differential, averaged over 1960-2017, in education-experience cells. The wage
sample consists of full-time workers who are not enrolled as students. Wages are adjusted
for cell-level changes in demographic composition, according to the prodecure described in
Section 4.2.
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Table 2: Model for log relative migrant-native wages

Basic estimates Fixed effects: Edu*Exp, Year First diff + Year effects

Raw wages Composition-adjusted Composition-adjusted Composition-adjusted

OLS OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7)

Panel A: OLS and IV estimates

log M
N

-0.033*** 0.001 0.013 -0.019** -0.039*** -0.017* -0.028**

(0.004) (0.004) (0.010) (0.007) (0.012) (0.009) (0.012)

Constant (or -0.138*** -0.098*** -0.071** -0.135*** -0.177*** 0.017*** 0.020***

mean intercept) (0.012) (0.012) (0.027) (0.014) (0.024) (0.003) (0.003)

Panel B: First stage estimates

log M̃

Ñ
- - 1.186*** - 1.400*** - 0.890***

- - (0.122) - (0.134) - (0.115)

Observations 224 224 224 224 224 192 192

Panel A reports estimates of equation (30), across 32 education-experience cells and 7 year observations (over 1960-2017). Columns
1-3 include no fixed effects, while columns 4-5 control for interacted education-experience and year fixed effects. The "constant" row
in these columns reports the mean intercept (accounting for the fixed effects) across all cells. Finally, columns 6-7 are estimated
in first differences, controlling for year effects. Panel B reports first stage coefficients for the IV estimates, where the instrument is
the log ratio of the predicted migrant to native employment. Robust standard errors, clustered by 32 education-experience cells,

are in parentheses. We adjust these for degrees of freedom, scaling them by
√

G

G−1
· N−1

N−K
for both OLS and IV, where G is the

number of clusters, and K the number of regressors and fixed effects. The relevant 95% critical value for the T distribution (with
G − 1 = 31 degrees of freedom) is 2.04. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: First stage for native wage model

Fixed effects First differences

log Z (N, M) log M
N

log Z (N, M) M
N+M

log Z (N, M) M
N+M

(1) (2) (3) (4) (5) (6)

Panel A: Imposing equal mark-downs (H1), ∆φ0 = ∆φ1 = 0

log Z
(
Ñ , M̃

)
1.597*** -0.812*** 1.626*** -0.035 1.053*** -0.024

(0.188) (0.205) (0.185) (0.029) (0.165) (0.021)

log M̃

Ñ
0.144 0.774***

(0.128) (0.122)
M̃

Ñ+M̃
1.118 1.231*** 0.365 0.778***

(0.669) (0.196) (0.773) (0.176)

Panel B: Imposing αZ = σZ = 1

log
(
Ñ + M̃

)
1.578*** -0.798*** 1.617*** -0.036 1.046*** -0.025

(0.193) (0.204) (0.188) (0.029) (0.168) (0.020)

log M̃

Ñ
0.123 0.798***

(0.126) (0.118)
M̃

Ñ+M̃
1.088 1.233*** 0.349 0.779***

(0.653) (0.193) (0.764) (0.174)

SW F-stat: Panel A 34.30 82.82 78.88 45.87 55.52 16.42

SW F-stat: Panel B 33.57 84.40 72.33 48.03 53.05 17.47

Observations 224 224 224 224 192 192

This table presents first stage estimates for the native wage equation (33), across 32 education-experience cells
and 7 year observations (over 1960-2017). There are two endogenous variables: the cell aggregator log Z (N, M) =

log (NσZ + αZMσZ )
1

σZ and the cell composition. We consider two specifications for the cell aggregator: in Panel
A, we identify αZ and σZ using the β0 and β1 estimates from column 5 of Table 2, under the hypothesis of equal
mark-downs (H1: ∆φ0 = ∆φ1 = 0); and in Panel B, we impose that αZ = σZ = 1, so Z (N, M) collapses to
total employment, N + M . We also consider two specifications for the cell composition: columns 1-2 use the
log relative migrant-native ratio log M

N
, while columns 3-6 use the migrant share M

N+M
. For each endogenous

variable, the corresponding instrument is constructed using the identical functional form over the predicted native
and migrant employment, i.e. Ñ and M̃ . Columns 1-4 control for interacted education-year, experience-year and
education-experience fixed effects; and columns 5-6 are estimated in first differences, controlling for the interacted
education-year and experience-year effects. Sanderson-Windmeijer F-statistics account for multiple endogenous
variables. Robust standard errors, clustered by 32 education-experience cells, are in parentheses. We apply the
same small-sample corrections as detailed in Table 2. The relevant 95% critical value for the T distribution (with
G − 1 = 31 degrees of freedom, where G is the number of clusters) is 2.04. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Model for native wages

Fixed effects First differences

Raw wages Comp-adjusted Comp-adjusted

OLS OLS OLS OLS OLS IV IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Imposing equal mark-downs (H1), ∆φ0 = ∆φ1 = 0

log Z (N, M) 0.068*** 0.079*** 0.030 0.061*** 0.062* 0.014 0.043** 0.059*** 0.012

(0.015) (0.014) (0.023) (0.019) (0.031) (0.032) (0.019) (0.018) (0.032)

log M
N

-0.048** -0.100*** 0.002 -0.112***

(0.019) (0.016) (0.040) (0.031)
M

N+M
-0.320*** -0.529*** -0.540*** -0.608*** -0.388*** -0.544***

(0.079) (0.066) (0.190) (0.090) (0.071) (0.153)

Panel B: Imposing αZ = σZ = 1

log (N + M) 0.032** 0.041*** -0.006 0.022 0.022 -0.026 0.004 0.022 -0.025

(0.015) (0.014) (0.023) (0.019) (0.032) (0.031) (0.019) (0.018) (0.032)

log M
N

-0.038** -0.088*** -0.002 -0.105***

(0.018) (0.015) (0.041) (0.029)
M

N+M
-0.258*** -0.466*** -0.459** -0.546*** -0.323*** -0.473***

(0.080) (0.067) (0.195) (0.090) (0.071) (0.149)

Observations 224 224 224 224 224 224 224 192 192

Panels A and B present OLS and IV estimates of the native wage equation (33), across 32 education-experience cells and 7 year
observations (over 1960-2017). The dependent variable is [log WN + (1 − σZ) log N ], where we use either raw mean or composition-

adjusted wages. The two regressors of interest are the cell aggregator log Z (N, M) = log (NσZ + αZMσZ )
1

σZ and cell composition. In
Panel A, we identify αZ and σZ using the β0 and β1 estimates from column 5 of Table 2, under the hypothesis of equal mark-downs (H1:
∆φ0 = ∆φ1 = 0); and in Panel B, we impose that αZ = σZ = 1, so the dependent variable collapses to the log native wage, and Z (N, M)
collapses to total employment, N + M . We also consider two specifications for the cell composition: the log relative migrant-native
ratio log M

N
and the migrant share M

N+M
. Columns 1-7 control for interacted education-year, experience-year and education-experience

fixed effects; and columns 8-9 are estimated in first differences, controlling for the interacted education-year and experience-year effects.
We report the corresponding first stage estimates in Table 3. Robust standard errors, clustered by 32 education-experience cells, are in
parentheses. We apply the same small-sample corrections as detailed in Table 2. The relevant 95% critical value for the T distribution
(with G − 1 = 31 degrees of freedom, where G is the number of clusters) is 2.04. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Native wage effects in broad education and experience groups

2 education groups 4 experience groups

Fixed effects First differences Fixed effects First differences

OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

log (N + M) -0.126*** -0.114* -0.063* -0.081 0.004 0.000 0.008 -0.001

(0.042) (0.056) (0.033) (0.134) (0.020) (0.022) (0.018) (0.022)
M

N+M
-1.053*** -1.016*** -0.528*** -0.769 -0.454*** -0.503*** -0.418*** -0.454***

(0.127) (0.275) (0.125) (0.873) (0.069) (0.110) (0.091) (0.142)

Observations 112 112 96 96 112 112 96 96

This table presents OLS and IV estimates of the native wage equation (33), but this time across broader labor market
cells. In columns 1-4, we study 2 broad education groups (college and high-school equivalents) and 8 experience groups;
and in columns 5-8, we study the original 4 education groups, but 4 broad experience groups (1-20 and 21-40 years of
experience). See Section 7.2 for further details on these groupings. We impose that αZ = σZ = 1, so the dependent variable
collapses to the log natives wage (which we adjust for composition in all specifications), and the cell aggregator on the right
hand side collapses to log (N + M). The fixed effect specifications control for interacted education-year, experience-year
and education-experience fixed effects; and the differenced specifications control only for the interacted education-year and
experience-year effects. We report the corresponding first stage estimates in Appendix Table A4. Robust standard errors,
clustered by 16 education-experience cells, are in parentheses. We apply the same small-sample corrections as detailed in
Table 2. The relevant 95% critical value for the T distribution (with G − 1 = 15 degrees of freedom, where G is the number
of clusters) is 2.13. *** p<0.01, ** p<0.05, * p<0.1.

Table 6: Heterogeneous effects by education and experience

Fixed effects First differences

OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

log (N + M) 0.032* 0.006 0.034 0.011 0.029 -0.138 0.021 -0.029

(0.018) (0.019) (0.021) (0.020) (0.019) (0.188) (0.022) (0.038)
M

N+M
-0.429*** -0.534*** -0.516*** -0.575*** -0.318*** -0.835 -0.319*** -0.441***

(0.063) (0.118) (0.101) (0.111) (0.070) (0.708) (0.106) (0.144)
M

N+M
* Coll 0.507* 0.082 0.314* -2.548

(0.274) (0.513) (0.181) (3.480)
M

N+M
* (Exp ≥ 20) 0.071 0.045 -0.009 -0.046

(0.070) (0.067) (0.095) (0.100)

Observations 224 224 224 224 192 192 192 192

This table presents OLS and IV estimates of the native wage equation (33), but this time accounting for heterogeneous
effects. We study differential effects of migrant share among the college-educated (i.e. some college or college graduate)
and older workers (20+ years of experience). We impose that αZ = σZ = 1, so the dependent variable collapses to the log
natives wage (which we adjust for composition in all specifications), and the cell aggregator on the right hand side collapses
to log (N + M). Columns 1-4 control for interacted education-year, experience-year and education-experience fixed effects;
and columns 5-8 are estimated in first differences, controlling for the interacted education-year and experience-year effects.
We report the corresponding first stage estimates in Appendix Tables A5 and A6. Robust standard errors, clustered by
32 education-experience cells, are in parentheses. We apply the same small-sample corrections as detailed in Table 2. The
relevant 95% critical value for the T distribution (with G − 1 = 31 degrees of freedom, where G is the number of clusters) is
2.04. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Impact of new and old migrants on native wages

Fixed effects First differences
OLS IV OLS IV
(1) (2) (3) (4)

log (N + M) 0.014 0.011 0.023 -0.248

(0.021) (0.022) (0.027) (1.319)
Mnew

N+M
-0.377*** -0.663** -0.287 4.825

(0.131) (0.319) (0.173) (30.169)
Mold

N+M
-0.487*** -0.532*** -0.308** -1.577

(0.063) (0.076) (0.138) (6.473)

Observations 224 224 192 192

This table presents OLS and IV estimates of the native wage equa-
tion (33), but this time, accounting separately for the effect of the
new migrant share M

new

N+M
(i.e. up to ten years in the US) and

the old migrant share M
old

N+M
(more than ten years). We impose

that αZ = σZ = 1, so the dependent variable collapses to the
log natives wage (which we adjust for composition in all specific-
ations), and the cell aggregator on the right hand side collapses
to log (N + M). Columns 1-2 control for interacted education-
year, experience-year and education-experience fixed effects; and
columns 3-4 are estimated in first differences, controlling for the
interacted education-year and experience-year effects. We report
the corresponding first stage estimates in Appendix Table A7. Ro-
bust standard errors, clustered by 32 education-experience cells,
are in parentheses. We apply the same small-sample corrections
as detailed in Table 2. The relevant 95% critical value for the T

distribution (with G − 1 = 31 degrees of freedom, where G is the
number of clusters) is 2.04. *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Elasticity of employment rates

Fixed effects First differences

Log raw Composition-adjusted Log raw Composition-adjusted
emp rate emp rate

OLS OLS IV1 IV2 OLS OLS IV1 IV2

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Native elasticity

Log native wage 0.528* 0.663*** 1.226*** 1.204*** 0.898*** 0.778*** 1.660*** 1.270***

(0.271) (0.167) (0.386) (0.352) (0.327) (0.206) (0.312) (0.309)

Panel B: Migrant elasticity

Log migrant wage 0.029 0.261* 0.555 0.603 0.277** 0.200** 0.580 -6.645

(0.134) (0.138) (0.526) (0.540) (0.134) (0.091) (0.720) (122.055)

Panel C: First stage for native wages

log
(
Ñ + M̃

)
0.026 -0.014

(0.028) (0.027)
M̃

Ñ+M̃
-0.669*** -0.726*** -0.378*** -0.352***

(0.148) (0.142) (0.083) (0.067)

Panel D: First stage for migrant wages

log
(
Ñ + M̃

)
0.011 0.017

(0.040) (0.029)
M̃

Ñ+M̃
-0.374* -0.397* 0.044 0.013

(0.193) (0.202) (0.236) (0.222)

Observations 224 224 224 224 192 192 192 192

Panel A reports OLS and IV estimates of native employment rate elasticities, based on the empirical specification in (34). The
dependent variable is the mean log of annual hours of natives in each labor market cell (excluding enrolled students), and the
regressor of interest is the composition-adjusted native wage. Panel B repeats the exercise for migrants, replacing the employment
and wage variables with migrant equivalents. In columns 2-4 and 6-8, we adjust employment rates for changes in demographic
composition, following the procedure outlined in Section 7.5. In the "IV1" specification, we instrument the wage variable with
predicted log total employment (in the labor market cell) and the predicted migrant share; and in the "IV2" specification, we use
the predicted migrant share alone. First stage estimates are reported in Panels C and D. The fixed effect specifications control
for interacted education-year, experience-year and education-experience fixed effects; and the differenced specifications control
only for the interacted education-year and experience-year effects. Robust standard errors, clustered by 32 education-experience
cells, are in parentheses. We apply the same small-sample corrections as detailed in Table 2. The relevant 95% critical value for
the T distribution (with G − 1 = 31 degrees of freedom, where G is the number of clusters) is 2.04. *** p<0.01, ** p<0.05, *
p<0.1.
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Table A1: IV estimates of native wage equation for selection of (αZ , σZ) values

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Fixed effects (N = 224)

log Z (N, M) 0.002 0.004 0.003 0.502*** 0.510*** 0.519*** 1.002*** 1.039*** 0.971***

(0.020) (0.019) (0.019) (0.020) (0.024) (0.030) (0.020) (0.076) (0.103)
M

N+M
-0.546*** -0.546*** -0.549*** -0.546*** -1.573*** -1.992*** -0.546*** -3.180*** -4.108***

(0.118) (0.090) (0.083) (0.118) (0.089) (0.086) (0.118) (0.294) (0.320)

Panel B: First differences (N = 192)

log Z (N, M) -0.031 -0.025 -0.027 0.469*** 0.481*** 0.496*** 0.969*** 1.067*** 1.009***

(0.037) (0.032) (0.034) (0.037) (0.040) (0.046) (0.037) (0.097) (0.124)
M

N+M
-0.540** -0.473*** -0.457*** -0.540** -1.523*** -1.939*** -0.540** -3.213*** -4.208***

(0.217) (0.149) (0.133) (0.217) (0.152) (0.135) (0.217) (0.418) (0.463)

σZ 1 1 1 0.5 0.5 0.5 0 0 0

αZ 0 1 2 0 1 2 0 1 2

In this table, we offer complete regression tables (i.e. IV estimates of the native wage equation (33)) corresponding to a selection of
(αZ , σZ) values in Figure 2. These replicate the exercises of columns 7 and 9 of Table 4 (with the same instruments), but for different
(αZ , σZ) values. See the notes accompanying that table for further details. *** p<0.01, ** p<0.05, * p<0.1.

Table A2: Robustness of native IV estimates to wage variable and weighting

Fixed effects First differences

FT weekly wages Hourly wages FT weekly wages Hourly wages

Men Women Men Women Men Women Men Women

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Unweighted estimates

log (N + M) -0.008 0.031 0.003 0.014 -0.045 -0.003 -0.027 0.005

(0.017) (0.022) (0.019) (0.027) (0.031) (0.043) (0.028) (0.036)
M

N+M
-0.469*** -0.554*** -0.399*** -0.563*** -0.448*** -0.514* -0.359*** -0.464**

(0.073) (0.146) (0.081) (0.121) (0.125) (0.287) (0.116) (0.205)

Panel B: Weighted by cell employment

log (N + M) -0.017 0.046* -0.011 0.028 -0.075** -0.009 -0.063* -0.001

(0.019) (0.026) (0.019) (0.032) (0.034) (0.039) (0.034) (0.037)
M

N+M
-0.526*** -0.471*** -0.456*** -0.470*** -0.568*** -0.470* -0.461*** -0.425*

(0.075) (0.163) (0.084) (0.139) (0.137) (0.272) (0.137) (0.216)

Observations 224 224 224 224 192 192 192 192

In this table, we study the robustness of our IV estimates of the native wage equation (33) to the wage definition and
choice of weighting. Throughout, the right hand side is identical to columns 7 and 9 of Panel B of Table 4, and we also
use the same instruments. Odd columns estimate the impact on the wages of native men, and even columns on those of
native women. Columns 1-2 and 5-6 study weekly wages of full-time workers (as in the main text), and the remaining
columns hourly wages of all workers. All wage variables are adjusted for demographic composition, in line with the method
described in Section 4.2. The estimates in Panel A are unweighted (as in Table 4); while in Panel B, we weight observations
by total cell employment. Robust standard errors, clustered by 32 education-experience cells, are in parentheses. We apply
the same small-sample corrections as detailed in Table 2. The relevant 95% critical value for the T distribution (with
G − 1 = 31 degrees of freedom, where G is the number of clusters) is 2.13. *** p<0.01, ** p<0.05, * p<0.1.
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Table A3: Model for native wages: Alternative instrument specification

First stage Second stage

Fixed effects (FE) First differences (FD) FE FD

log (N + M) M
N+M

log (N + M) M
N+M

log WN log WN

(1) (2) (3) (4) (5) (6)

log
(
Ñ + M̃

)
1.462*** -0.137*** 1.022*** -0.082***

(0.141) (0.030) (0.130) (0.015)

M̃ × 10−9 -0.058 0.134*** -0.152 0.139***

(0.095) (0.040) (0.123) (0.022)

log (N + M) 0.022 -0.042

(0.033) (0.041)
M

N+M
-0.406* -0.683***

(0.220) (0.230)

SW F-stat 18.47 9.39 37.70 31.19 - -

Observations 224 224 192 192 224 192

This table replicates the first and second stage estimates of the native wage equation (33) in Tables 3
and 4, but using an alternative instrument for migrant share. In the main text, our two instruments are

log
(
Ñ + M̃

)
and M̃

Ñ+M̃
; but here, we replace M̃

Ñ+M̃
with M̃ ×10−9, the predicted migrant employment

level (which we have scaled to make the coefficients visible). Columns 1-4 are otherwise identical to
columns 3-6 in Table 3, and columns 5-6 are otherwise identical to columns 7 and 9 in Panel B of
Table 4. See the notes under Tables 3 and 4 for additional details. *** p<0.01, ** p<0.05, * p<0.1.

Table A4: First stage for broad education and experience groups

Two education groups Four experience groups

Fixed effects First differences Fixed effects First differences

log (N + M) M
N+M

log (N + M) M
N+M

log (N + M) M
N+M

log (N + M) M
N+M

(1) (2) (3) (4) (5) (6) (7) (8)

log (N + M) 1.041*** -0.064*** 0.767** -0.055*** 1.756*** -0.026 1.091*** -0.004

(0.187) (0.018) (0.304) (0.015) (0.256) (0.045) (0.168) (0.036)
M

N+M
1.283 0.297*** -0.195 0.223** 1.044 1.129*** 0.346 0.563**

(0.949) (0.100) (1.099) (0.090) (0.788) (0.270) (0.723) (0.221)

SW F-stat 7.91 17.37 2.02 3.38 50.07 26.97 34.45 6.64

Observations 112 112 96 96 112 112 96 96

This table presents first stage estimates for the native wage equation (33), but this time across broader labor market cells. These
estimates correspond to the IV specifications in Table 5. In columns 1-4, we study 2 broad education groups (college and high school
equivalents) and 8 experience groups; and in columns 5-8, we study the original 4 education groups, but 4 broad experience groups
(1-20 and 21-40 years of experience). See Section 7.2 for further details on these groupings. We impose that αZ = σZ = 1, so the
dependent variable collapses to the log natives wage (which we adjust for composition in all specifications), and the cell aggregator on
the right hand side collapses to log (N + M). The fixed effect specifications control for interacted education-year, experience-year and
education-experience fixed effects; and the differenced specifications control only for the interacted education-year and experience-year
effects. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust standard errors, clustered by 16 education-
experience cells, are in parentheses. We apply the same small-sample corrections as detailed in Table 2. The relevant 95% critical value
for the T distribution (with G − 1 = 15 degrees of freedom, where G is the number of clusters) is 2.13. *** p<0.01, ** p<0.05, * p<0.1.
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Table A5: First stage for college interactions

Fixed effects First differences

log (N + M) M
N+M

M
N+M

* Coll log (N + M) M
N+M

M
N+M

* Coll

(1) (2) (3) (4) (5) (6)

log
(
Ñ + M̃

)
1.632*** -0.027 -0.040** 1.068*** -0.018 -0.046***

(0.166) (0.024) (0.016) (0.133) (0.019) (0.009)
M̃

Ñ+M̃
1.385** 1.415*** -0.282*** 1.665*** 1.195*** -0.323***

(0.595) (0.103) (0.059) (0.505) (0.121) (0.047)
M̃

Ñ+M̃
* Coll -1.890** -1.162*** 0.517*** -3.282** -1.038*** 0.492***

(0.850) (0.223) (0.110) (1.295) (0.205) (0.083)

SW F-stat 4.81 5.34 3.69 1.17 1.49 1.00

Observations 224 224 224 192 192 192

This table presents first stage estimates for the native wage equation (33), but this time interacting the
migrant share with a collge dummy (taking 1 for the "some collge" and college graduate cells). These
estimates correspond to the IV specifications in columns 1-2 and 5-6 of Table 6. We require one more
instrument, so we interact our migrant share predictor with the college dummy. We impose that αZ =
σZ = 1, so the dependent variable collapses to the log natives wage (which we adjust for composition in
all specifications), and the cell aggregator on the right hand side collapses to log (N + M). Columns 1-3
control for interacted education-year, experience-year and education-experience fixed effects; and columns 4-
6 are estimated in first differences, controlling for the interacted education-year and experience-year effects.
Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust standard errors,
clustered by 32 education-experience cells, are in parentheses. We apply the same small-sample corrections
as detailed in Table 2. The relevant 95% critical value for the T distribution (with G − 1 = 31 degrees of
freedom, where G is the number of clusters) is 2.04. *** p<0.01, ** p<0.05, * p<0.1.

Table A6: First stage for experience interactions

Fixed effects First differences

log (N + M) M
N+M

M
N+M

* (Exp ≥ 20) log (N + M) M
N+M

M
N+M

* (Exp ≥ 20)

(1) (2) (3) (4) (5) (6)

log
(
Ñ + M̃

)
1.331*** 0.007 0.017 0.899*** 0.008 0.013

(0.190) (0.026) (0.019) (0.179) (0.025) (0.011)
M̃

Ñ+M̃
1.451** 1.177*** 0.222*** 0.802 0.680*** 0.192***

(0.656) (0.191) (0.068) (0.850) (0.177) (0.065)
M̃

Ñ+M̃
* (Exp ≥ 20) -1.632*** 0.250** 1.775*** -2.244*** 0.495** 1.676***

(0.581) (0.113) (0.043) (0.715) (0.192) (0.069)

SW F-stat 64.59 86.34 96.49 27.75 14.60 19.35

Observations 224 224 224 192 192 192

This table presents first stage estimates for the native wage equation (33), but this time interacting the migrant share with a
dummy for labor market cells with 20+ years of experience. These estimates correspond to the IV specifications in columns
3-4 and 7-8 of Table 6. We require one more instrument, so we interact our migrant share predictor with the experience
dummy. We impose that αZ = σZ = 1, so the dependent variable collapses to the log natives wage (which we adjust for
composition in all specifications), and the cell aggregator on the right hand side collapses to log (N + M). Columns 1-3 control
for interacted education-year, experience-year and education-experience fixed effects; and columns 4-6 are estimated in first
differences, controlling for the interacted education-year and experience-year effects. Sanderson-Windmeijer F-statistics account
for multiple endogenous variables. Robust standard errors, clustered by 32 education-experience cells, are in parentheses. We
apply the same small-sample corrections as detailed in Table 2. The relevant 95% critical value for the T distribution (with
G − 1 = 31 degrees of freedom, where G is the number of clusters) is 2.04. *** p<0.01, ** p<0.05, * p<0.1.
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Table A7: First stage for new and old migrant shares

Fixed effects First differences

log (N + M) Mnew

N+M
Mold

N+M
log (N + M) Mnew

N+M
Mold

N+M

(1) (2) (3) (4) (5) (6)

log
(
Ñ + M̃

)
1.522*** 0.052* -0.046* 0.434*** 0.035* -0.033***

(0.197) (0.029) (0.023) (0.081) (0.019) (0.011)
M̃new

Ñ+M̃
2.581** 0.730** -0.162 0.084 0.088 0.053

(1.247) (0.321) (0.142) (0.954) (0.169) (0.081)
M̃old

Ñ+M̃
-0.727 -0.468 2.509*** -0.330 0.197 1.693***

(1.235) (0.329) (0.225) (1.189) (0.240) (0.185)

SW F-stat 115.34 14.58 113.88 0.04 0.03 0.04

Observations 224 224 224 192 192 192

This table presents first stage estimates for the native wage equation (33), but this time ac-
counting separately for the effect of the new migrant share M

new

N+M
(i.e. up to ten years in the US)

and the old migrant share M
old

N+M
(more than ten years). These estimates correspond to the IV

specifications of Table 7. We impose that αZ = σZ = 1, so the dependent variable collapses to
the log natives wage (which we adjust for composition in all specifications), and the cell aggreg-
ator on the right hand side collapses to log (N + M). As always, we construct corresponding
instruments by applying the same functional forms over the predicted native employment and
(in this case) new and old migrant employment separately. Columns 1-3 control for interac-
ted education-year, experience-year and education-experience fixed effects; and columns 4-6 are
estimated in first differences, controlling for the interacted education-year and experience-year
effects. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust
standard errors, clustered by 32 education-experience cells, are in parentheses. We apply the
same small-sample corrections as detailed in Table 2. The relevant 95% critical value for the T

distribution (with G − 1 = 31 degrees of freedom, where G is the number of clusters) is 2.04.
*** p<0.01, ** p<0.05, * p<0.1.
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(a) ǫM = ǫN (b) ǫM < ǫN

Figure 1: Mark-down functions for ǫM = ǫN and ǫM < ǫN
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Figure 2: Native mark-down response φ1N for different (αZ , σZ)

In this table, we report IV estimates of the response φ1N of the native mark-down to the migrant share, M
N+M

, for a range

of (αZ , σZ ) values. This is identified as the negative of γ2, the coefficient on migrant share, in the native wage equation
(33). The estimates for αZ = σZ = 1 are identical to columns 7 and 9 of Panel B of Table 4. Other plotted values replicate
the exercise of these columns, but for different (αZ , σZ ) values. See the notes accompanying that table for further details.
The shaded areas are 95% confidence intervals on our γ2 estimates. We offer more formal regression tables for a selection
of (αZ , σZ) values in Appendix Table A1.
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Figure 3: Visualization of native wage effects

This figure graphically illustrates the OLS and IV effects of migrant employment share, M
N+M

, on native composition-
adjusted wages, based on columns 4, 7, 8 and 9 of Panel B in Table 4. For the OLS plot, we partial out the effect of the
controls (i.e. log total employment and the various fixed effects) from both the composition-adjusted log native wage (on the
y-axis) and the migrant employment share (on the x-axis). For IV, we first replace both (i) the log total employment and
(ii) the migrant employment share with their linear projections on the instruments and fixed effects; and we then follow the
same procedure as for OLS. In the fixed effect specifications, we control for interacted education-year, experience-year and
education-experience fixed effects; and in first differences, we control for the interacted education-year and experience-year
effects only.
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Figure A1: Native and migrant mark-down responses, φ1N and φ1M , to log M
N

In this table, we report IV estimates of the native and migrant mark-down responses, φ1N and φ1M , to the log relative
migrant supply, log M

N
, for a range of (αZ , σZ ) values. The native response is identified as the negative of γ2 in the native

wage equation (33). The migrant responses are identified as φ1N + ∆φ1, where ∆φ1 = − (1 − σ + β1), and where β1 is
estimated using the relative wage equation (30). We rely on our β1 estimate of -0.039 from column 5 of Table 2. In the fixed
effect (FE) specifications, we control for interacted education-year, experience-year and education-experience fixed effects
in the native wage equations; and in first differences (FD), we control for the interacted education-year and experience-year
effects only. Estimates are clustered by the 32 education-experience cells. The shaded areas are 95% confidence intervals
on our γ2 estimates. The relevant 95% critical value for the T distribution (with G − 1 = 31 degrees of freedom, where
G is the number of clusters) is 2.04. For the native response φ1N , the standard errors are those on our γ2 estimates from

equation (33). For the migrant response φ1N , we compute the standard errors as
√

[se (γ2)]2 + [se (β1)]2, where se are
the standard errors on the γ2 and β1 estimates respectively.
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