SUPPLEMENTARY MATERIAL
PROOFS OF THEOREMS AND COROLLARIES

A. Proof of Lemma III.1

Using (11) with the definitions of V15 and Vi3 given in
(12) and (13), a comparison of utilities from (2) and (3), (2)
and (4), and (3) and (4), respectively, yields the following.

In equilibrium, a user with willingness to pay w will weakly
prefer:

i) Network 1 to network 2 if w < Vo, network 2 over
network 1 if w>V o

ii) Network 1 to option 3 if w < V3, option 3 over network 1
if w Z V1 3

iii) Network 2 to option 3 if V1o < Vi3, option 3 over
network 2 if V15 > Vi3, regardless of w in both cases,
and strict preference obtains when the corresponding

inequality is strict.

Consider Case 1 of Lemma III.1. By iii, all users prefer
network 2 to option 3. Thus, any users taking option 3
would migrate from network 1 to network 2. Hence Qi3
would decrease and () would increase, until either there is
equality or until Q13 is zero. (The preference for network 1
or network 2 is given by i.)

In Case 2 of the Lemma, by iii all users prefer option 3
to network 2; thus, any users on network 2 would migrate to
network 1 to choose option 3. Hence @5 decreases and )y
increases until either there is equality, or until @5 is zero.

For the equality of Case 3 of the Lemma, it follows from iii
that at equilibrium all users are indifferent between network 2
and option 3, but clearly they will not all choose one or
another, since otherwise some could reduce their cost by
choosing the empty network.

B. Proofs of Theorem II1.2 and Corollary I11.3
1) Proof of Theorem II1.2:

Proof. We prove uniqueness and existence of Q by explicitly
characterizing 11, @13, Q2 in Theorem II.2 in the three
mutually exclusive cases of Lemma III.1. In each case, we first
show that QQ11, @13, Q2 are uniquely determined—specifically,
the solution of an appropriate system of linear equations; we
then establish feasibility, and hence the existence of the unique
solution.

Case 1: No users join the Content Provider, because the
price is too high, hence @13 =0. From Lemma III.1, it follows
that given a vector of prices p, the vector Q must satisfy

Qi3 =0 (S.D

Vie = ——(Qs—rQu)+po—p1 (S2)
’I“O1

Qu = [Visl} (S.3)

@ = 1-Qu. (S4)

where [z]}* denotes the function equal to = when [ <z <,
equal to [ when x <[, and equal to v when = > u. Solving
(S8.1)—(S.4) yields:

(1,0)
_ ) (14Ciap)r [1=Ci(papri—1)]r
(Ql)QQ) - ( 1+r+617‘ ) 1+T‘+61r ) (SS)
(0,1)
if, respectively, po—py > 1+2, 14+ > po—p; > ——L,
G Ch rCq
and *% > po—p1. The profits are:
™ = p1Q1 (S.6)
Ty = p2Q (S.7)
w3 = 0. (S.8)

We have from (S.2) and (S.5):
—é +p2—p1 if p2—p1 > 1-1—(%1

— 14+C1 (p2—p1)r . 1S _ > 1
V12 1+r+617’ if 1+ 61 =p2—P = rél
1 _ : _ 1 _
o tp2—pr i = >y

(S.9)

which correspond to the three regions of Vs, respectively,
being less than 1, in the closed interval [0, 1], and smaller
than 1.

Feasibility: From (14) and (15) and substituting into (S.6)
and (S.7) gives the necessary and sufficient conditions: p; >0
and pz > 0. From (S.9) and (13), and using the defining ex-
pression for Case 1, which is given in terms of the user masses
and the prices, we have an alternative defining expression for
Case 1 in terms of the prices alone:

—é +p2—p1 if pa—p1 > 1+5%

14+C1 (p2—p1)r ; L o> po—p > —_1
p3 > riCor if I+z 2p2—p1 2> — &
1 _ : _ 1 _
o, tpr2—nm if G, > P2

(S.10)
Case 2: No users join network 2 because the price is too high.
Using (13):
Q11 = [P3]1
Qi3 =1— [ps]'
where [z]* denotes the function equal to = when z <u, and
equal to v when z > u. The requirement that firms 1 and 3
make non-negative profits, and the expressions for profits, (7),
yields:
p1+t(1=[ps]") >0
(p3—t)(1—[ps]") > 0.
Feasibility: This region is feasible if the demand allocations
are feasible and profits are non-negative, and in addition the

defining condition for Case 2 holds. Using (S.12), (S.11), and
the defining condition for Case 2, the conditions are:

(S.11)
(S.12)

ps >t (S.13)

pr+t(1=[ps]") = 0 (S.14)
b+ C 1—b) =]t

pr—py > G A=Wl gy

Cy



Case 3: From (13) Vi3 = ps3, and since Q11 = [V13]}, we
have:

Q11 = [p3]' (S.16)

and also have:

Q2 = 1—(Qu1+CQ13). (S.17)

Subcase A: 0 < pg < 1: Solving simultaneously the defin-
ing condition for Case 3, (S.16), (S.17) together with (6) and
(10) yields:

Q11 =p3 (S.18)
1+7rCi(pa—p1) — (A+r+rC
le _ 1(p2 1911)+ b: 1)P3 (5.19)
rb— Ci(pa—p1) + (1—b+C1)p3)
= .2
Q2 1+ br (5.20)
1+ rCi(pa—p1) — r(1—b+C
Ql _ “!‘7“01(1)2 pl) 7“( b+01)p3 (SZ])

1+br

Feasibility: For the demand allocations to be feasible given
the prices, we require (18) to hold. The nonnegativity condi-
tions on the @)’s given by (14), (15), and (16) imply necessary
and sufficient conditions for Case 3 to be feasible. These
conditions are that the p; satisfy:

0 <p3 <1 (5.22)

py < LEr2mp)C (S.23)
14+r+rCy

(p2—p1)C1 —b < (1-b+C1)ps (S.24)

0 < m {1 +r(pa—p1)Cy — T(l—b+6'1)p3}
{1 +r(p2—p1)Ci — (1—1-7“—1—7“6'1)1?3}
(S5.25)
0 < [rb—rCl pa—p1) +r(l— b+Cl)
(5.26)
0 < (p3—1) {1 +7“01 (p2—p1) — (1+r+ 7“61)1)3
(8.27)

Note that the defining condition for Case 3 is satisfied by the
@’s by construction.

Note also that in the “fully non-boundary” case, when all
the user masses are strictly positive, the conditions simplify to

0 <ps <1
. 1+7"(p2*p1)a1
14+r+rCy

T[(pg—pl)él — b] < T(l—b—‘—él)pg

7p11+r(p27p1)§1—r(l—b+§1)p3 <
1+ 7r(p2—p1)C1 — (14+r+rCh)ps

0 < po

t < ps3.

Subcase B: pz > 1: Solving simultaneously the defining
condition for Case 3, (S.16), (S.17) together with (6) and (10)
yields:

Qu =1 (5.28)
Qiz = 0 (S.29)
Q2 =0 (S.30)
Q1 1 (S.31)
Feasibility: These conditions are that the p; satisfy:
1
P2—p1—P3 = a (5.32)
=0 (8.33)
p3 > 1. (S.34)
O

2) Proof of Corollary II1.3:

Proof. The characterization of the constraints corresponding
to (14) to (18), for each of the three cases of Lemma III.1, is
given above in part 1, “Proof of Theorem III.2.”” When ¢ = 0,
each of the constraints corresponds to a separating hyperplane
or the space formed by intersecting hyperplanes (e.g., (S.26)
is equivalent to ps > 0 and (S.24)). The same holds true when
t > 0, apart from the constraint for m; > 0 for Case 3, (S.25),
which is quadratic in p; but which reduces to an intersection
of hyperplanes. When ¢ < 0, it is straightforward to show
the region is convex. Combining these statements proves the
corollary. O

C. Proof of Theorem II.5

__The system {(5.18), (S.20), (S.19)} in matrix form is:
C1(1+br)Q = ¢ + q-p. Equivalently:

- Q11 a1 b1
Ci(l+br) | Q2 | =1\ c2 | +(qj)| p2 (5.35)
Q13 C3 b3
where
0 0 0 (1+br)C,
c= 592 ,q=| CiCq —0102 (C1—b+1)Cs
C1 —C1Cy  C1Cy —(1+4r+1Ch)C
(8.36)
Using (7) together with (S.35) gives:
01(1+b7‘) o | = 01(1—|-b7‘)P-Q
3
pr 0 pi+t
=10 p2 0 |-(ct+qp).
0 0 P3s — t
Taking derivatives
oy
N op 1 0 1
Cy(1+br) g—;j = (0 1 0f|-(c+q-p)
Om3 0 0 1
Op3
qun+gs1 0 0 qs1
+ 0 g2 0 |-p+t 0 (8.37)
0 0 ¢33 —q33



Bm

Hence at the potential N.E. where i = (O for all 7, a
simultaneous turning point, the p; will satisfy

—g31 1 01
t 0 —10 1 0]-c
433 0 0 1
1 0 1 gi1+gn O 0
=101 0] -qp+ 0 q2 0
0 0 1 0 0 q33
2(qi1+g31) qi2+4g32 ¢z +gs3
= o1 2q22 q23 §o
431 432 2q33
=q-p
(S.38)
Now it follows from (S.37) that
8%y
opi qgi1+gn 0 0
52| =2 0 g2 O (S.39)
9%y 0 0 gs3
Op2
—C1C, 0 0
=2 0 —0102 0
0 0 —(1+7"+7'01)C1
(S.40)

has strictly negative entries, (where we have used the def-
initions for ¢;; in (S.36)) hence the profit functions are
strictly concave (in this Case 3), and hence there is a unique
maximum. From (S.36), here q is given by:

N —2C, 61 —61 +b—-1
q=0 Cy —20C4 Ci—-b+1
—Cl Cl —2(% + 1+ Cl)

and hence detq = —2C572[3 + r(24+b+2C})] < 0 (recall
Cy = rC4). The left hand side of (S.38) is
—tquz — 1 — c3 1—Cot
—Co = - br
tq3s —c3 1+ (1+r+Co)t

Using Cramer’s rule

Cirt Ci —[Ci = (b-1)r
—(b?‘ + 2)/\01 R —2/\01 [Cl — (b—].)\]T
—(1+T+7‘02)t01 4 —2(1+T+C2)

* ,,,.612
= — det
P det q

Simplifying gives
. 1
P = —= =~
2C T3+ r(2+b+2C:
7t [(141)(b— 1) = C1 [5(1+7) + 4rCh] ).

; ((2+br) 2+ br +r(1+Ch))

Hence if ¢ = 0, it follows that p7 will be positive. Similarly,
. 1
P2 = —= =
2C17[3 + r(2+b4+2C1)]
+ b(34+b+3Ch)r?
—tr [b 14+C+(b-1-Cy + zbél)r]) (S.41)

(2 +2(1+2b+C)r

Hence

24 2(142b+ C1)r + b(3 + b+ 3C)r?
T(b—1+61+(b—1—51+2ba1)7‘) .

py>00<t<

Similarly,
« _ 24br+ (34 3r4+4Cir)t
6+ 2r(2+ b+ 2C1)

(5.42)

pand hence p3 > 0 for all ¢>0.

D. Proof of Theorem II1.9 and Corollary II1.10

The following Lemma proves parts 1 and 2 of Theorem IIL.9.
The candidate solution {p;} is a local optimum for each 4. The
requirements that the p* induce a feasible solutions result in the
condition (26) together with the requirement that p; > 0. If
these conditions are satisfied, then either the p; constitute a Nash
equilibrium, or, they are such that either network 1 or 2 could improve
their profits by deviating, in which case p; is an e-equilibrium. In
Lemma S.2 we prove part 3 of Theorem IIL.9, and also characterize
the e¢ of part 2. Note that we first prove the theorems for general
transfer price ¢, which includes the special case t = 0 (c.f. Section
F of this Supplementary Material).

1) Proof of part 1 and 2 of Theorem II1.9:

Lemma S.1. If a Nash equilibrium exists with positive prices {p; },
given by (20), (21), (22), with both networks 1 and 2 and the Content
Provider having users and each making positive profit, then the
transfer price satisfies

2+ br

24 br <
3+7r+2br

- (S.43)
3+ r(3+4Ch)

Conversely, when (26) is satisfied and the expression for pi in (20)
is positive, then the {p;} given by (20), (21), (22) constitute an e-
equilibrium where € > 0. Further, all the prices {p;} are positive,
and networks 1 and 2 and the Content Provider all have users.

Proof. Since the prices {p;} are a local optimum for each 4, it
follows that the p; will be a non-degenerate e—equilibrium if and
only if the prices are positive, the market is covered (Q1+Q2 = 1),
the user masses are positive (Q11, @13, Q2 > 0), and the profits
are positive. Since we solve the equations for the @); ensuring the
constraint Q11 + Q13 + Q2 = 1 is met, necessary and sufficient
conditions are that each Q71,Q13,®@5 is in (0,1), p;* > 0 and
w > 0.
i) Since @71 = p3, the condition Q7; € (0, 1) is equivalent to,

0<p; <1 (S.44)
" i) Using (23), Q13 € (0, 1) is equivalent to
" 1+
0<ph—t < T (S.45)
1+7r+rCy

iii) By construction Q5 + Q7 = 1, hence the requirement Q5 €
(0,1) is equivalent to requiring Q7 € (0, 1), which from (23)
is equivalent to

1+0br

0 < pl+t < —
rCl

(S.46)

These three conditions, together with the requirement that p; > 0
also ensure that each p; > 0 and each w; > 0. Using inequality
(S.44) and substituting from (S.42) gives the condition

2+ br

B 4+ r(44b+4Ch)
3+ r(3+4C))

= (S.47)
34 r(3+4Ch)



Using expression (S.45) and substituting from (S.42) gives the
condition

4+ 72+ Tb+2C1 +b(3 + 2b+ 3C1)r)
(3+r+2br)(1+ 1+ Chr)

2+ br

3+ r+2br
(S.48)

The conjunction of (S.47) and (S.48) gives the condition
2+ br 2+ br
3+ r(3+4Ch) 3474 2br

This condition also ensures that (S.46) is satisfied, completing the
proof of the lemma.

2) Proof of part 3 of Theorem II1.9, and characterization
of € of part 2.:

Lemma S.2. A Nash equilibrium exists if t satisfies (S.43) and in
addition:

([+or)@+br+r(+C) + (S.49)
rt [(1—}—7’)(1) ~1)-Ch (5(1+r) + 47"61)} >0
(8.50)
or t< 0) [ condition for p} to be positive]
and (1> 20 (S.51)
1+r(14Ch)

(240r)(2 + (14+C1 +b)r)

t < = = = =
64 r(114+ b+ 15C) + (b+ 2bC1 + (1+C1)(5 + 8C1))r)
(S.52)
or t satisfies expression (S.56)) [ for pi to be optimal]
and (1 <~ L (S.53)
br

447 (—b% — b2+ r(14+C1)]) + 4(14+Ch)[2 + r(1+(71)])

6+ (11 +b+9C1 + (b+ (1+C1)(5+4C1))r)
(S.54)

t<

or t satisfies expression (S.58) ) [ cond. for p5 to be optimal]

Proof. We prove that p* is a Nash equilibrium by fixing two of
{p1,p5,p3} while allowing the other p; to vary, then showing
conditions under which p; is optimal for ;.
pi is optimal for network 1. With ps = p5, p3s = p3, as we
increase p1 from p we either stay in Region 3, or potentially move
into Region 1. There are three mutually exclusive cases we need to
consider:
i) For all p; > p] we remain in Region 3 and never move to
Region 1, and hence p7 is optimal.
The boundary between Regions 3 and 1 occurs when, from
(5.23) and (S.10), p1 = pP solves p3 = [1 + r(ps —
pl)Cl]/[1+r(1+C1)] (c.f. (8.73)), which substituting gives
pf =[2+br—|1 +r(1+201)]t]/2r6’1 Hence p1 will stay in
Region 3 if the boundary point is infeasible, p? < 0, that is, if

2+br .
Z )’ ie., (S.51).

ii) mi(p1) is decreasing in Region 1 and hence mi(p1) <
m1(pl) Vp1 € Region 1.
Since m1(p1) is convex in Region 1, a sufficient condition for
this is 6"1 | p1=pf < <0, which substituting and taking derivatives
in (S. 6) usmg (S.5) and substituting ps = p3, ps = p3,
p1=p1=pi gives (S.52).

iii) There is a feasible local maximum for 7; in Region 1, where
the profit is given by 71 =p1 Q1, but

T o= Q1 + Qs > T, (8.55)

and hence again p7 is optimal for 7r;. The point pq is where

971 — (), that is when 0 = Lrps—p)C1 _ &y

am T+r(1101) Lo 2nd

hence p1 = %. At this point, the profit is given by
9 re1
ﬁ'l :]31@1, which is
. w2 r@l 1+ rélpS)Q
T = =

P = = .
1—|—7"(1—|—Cl) 4TC1(1+T(1+01))
Substituting for Q7 from (23) in (S.55) gives the full condition
as following the quadratic relation on ¢,

. 101 1+r(1+Ch) (14 rCips)?

(prtt)+t (p3t) >

P or L+br 4rCi (1 +r(1+Ch))
(S.56)

where p; are given in (20),(21),(22).

In the case that (S.56) does not hold (which necessarily also

requires that (S.51) and (S.52) are not satisfied), define

1+ rCip3)? L0
€1 = /g tr 1p2),\ — D1 1 (p1+t)
4TC1(1—|—7"(1—|—01)) 14-br
1+r(1+Cy) , .
T gy Wi,

Finally, if we decrease, p1, we potentially move to Region 2. But
we know that 7 is decreasing in Region 2, and hence m1(p1) <

7(pP?3) < 71 (p}) f or all p; € Region 2 where pP2® is the value
of p1 at the boundary of Regions 2 and 3.

p> is optimal for network 2. The proof mirrors the arguments
for showing p7 is optimal for network 1. With p; = p7, p3 = p3,
as we decrease p3 from p5 we either stay in Region 3, or move
into Region 1. There are three mutually exclusive cases we need to
consider:

i) For p2 < p5 we remain in Region 3 and never move to Region

1.

At the boundary point, pZ solves p} = (100
r 1
t+r(b+t)

PP = 25 . The condition that is infeasible (p¥ < 0) or
Zero gives clondition (S.53)

ii) m2(p2) is increasing Region 1 and hence wa(p2) <
m2(p3) Vp2 € Region 1, since m2(p2) is concave in the interior
of Region 1 .
Now using (S.7), dlfferentlating and substituting p1 = pi,p2 =
P2 p3 = p3 gives that ool p=1- 5 — % which
will be non-negative if and only if (S.54) holds.

iii) There is a feasible local maximum for 72 in Region 1 at the
point pa2, with profit given by by ps Qg, but for which

147 (p2—p})C1 that is

72 < 7T2 :p2Q2 (8.57)

and hence p3 is optimal for 72. P2 is the point in Region 1 at
which 8”2 = 0, which using (S.7) and (S.5) gives the point

P2 = % Using (20) gives the profit
~ ~ 2 ~
5 _ (1L Ci+Cipi rCi

2 = — —.

2C, 1+7r(1+Ch)

Q3 is given by (21), and (23) and hence substituting (S.57) is
the condition
~ ~ 2 ~ ~
1+ C1:\|> Clpl rCh < ; rCh p; (S.58)
20, 14+ 7(1+Ch) 1+br

a quadratic in ¢, where the p; are given in (20),(21).
In the case that (S.58), (S.53), (S.54) all fail to hold, define

~ ~ 2
* 1 + Cl + Clp){
P2 — =
2C,

Finally, if network 2 increases its price above p3, it potentially moves
to region 2; but network 2 receives zero profit in Region 2, hence
network 2 has no incentive to increase its price above p3.

rCy
1+r(1+Ch)

* Tél
2 1+br

€2 = D



p3 is optimal for the Content Provider. We show that under the
conditions of the lemma, p3 is optimal for the Content Provider with
no further restrictions.
i) If C1 > b — 1: As we decrease p3, we remain in Region 3
and hence p3 is optimal for all ps < p3. Moving to Region 2
is not possible since the boundary is infeasible: the Region 2-3
boundary is the point p3 > ¢ which satisfies p§ = “f:bii%fb.
Substituting for p} and p3 gives '

pE = (—1 —br(3+ (1+Ca+b)r)
+(20, +1—byr[L + r(1+61)]t)
- ((61 F1-b)r3+(2+b+ 261)r]) (5.59)
and when —ﬁ <t < 3f:f;bw this implies p < t,

and hence we never move to Region 2. Conversely, increasing
ps either causes us to remain in Region 3, or move potentially
move to Region 1 where the Content Provider receives zero
profit, hence p3 is optimal for all ps > p3.

ii) C1 < b — 1: the only way to violate (S.24) is to increase ps.
In this scenario with p7 and p3 then (S.59) with the condition

0<t< 3f:'f;bT implies p3 > 1 and hence 73 =0. If instead
——24br__ < ¢ < (, then to have an interior maximum in
34-3r+4rCy

Region 2, it is necessary for both p¥ < 1 and p3 < (14t)/2, and
we can show that these three conditions cannot simultaneously
hold, and hence if we enter Region 2, the value of w3 will
decrease. Hence p3 is optimal .

Summary. Necessary and sufficient conditions for a non-
degenerate Nash equilibrium to exist at p* in are that Lemma S.2
holds, i.e., (S.43) and {(S.50) or ¢ < 0} and {(S.51) or (S.52) or
(S.56)} and { (S.53) or (S.54) or (S.58)} hold.

When only the necessary conditions hold ( (S.43) and
{(S.50) or ¢ < 0}) but not all the other conditions for Lemma S.2,
(so either {(S.51) and (S.52) and (S.56)} are all false, or {(S.53) and
(S.54) and (S.58)} are all false,) then p* is an e-equilibrium, not a
Nash equilibrium, where € = max{e1, e2}. O

3) Proof of Corollary II1.10:

Proof. From (20) and the conditions of the corollary, we obtain py >
0. The result follows from part 2 of Theorem III.9. O

E. Proof of Theorem III.11

We provide here a more detailed presentation of Theorem III.11
than is given in Section III.

THEOREM III.11. There are only three possibilities for degenerate
equilibria. Specifically, there exists a value t** (which can be com-
puted) such that:

1) If ¢t > t*#, then there exists a Nash equilibrium in which the
Content Provider prices itself out of the market by setting p3 =t,
Q13=0, and for networks 1 and 2, the prices, user masses, and
profits are given by

x 2—|—7"+r61 x 1+2r+2r6’1
P = ———=—, p2 = ———=—
3rCy 3rCh

where the user masses are

(S.60)

. 2+r+rCh *

142+ 2y
3(1—|—r+r61) ?

31+r+ 7“@128 61)

and the profits are

[1+2(1+C)r)?

9rCh (14+7r+1Cy)’
(5.62)

* (2+T+7"61)2 *
T = ——=———=—_ T =
97”01(1—|—7’+7‘01)

2) If t <0, then network 1 provides a subsidy to the Content
Provider for each user, i.e., let s := —t. Then if the subsidy
. . . e 24br
s .1s sufﬁcwr%tly great, v1z.,.1.t 1§ at least (31400’ then tl}ere
will be a unique Nash equilibrium where the Content Provider
sets p3 =0, and Q7, =0. There are two subcases:

a) If s< 2%”, then the equilibrium is:
1

r

. 2+ r(b+2Chs) . 1+ r(2b4Chs)
P11 = = = =
3017" 3C11"
(S.63)
where
Qs = 2+ r(b— Cis) Q; — 1+7(2b+ Cis)
BT 3(14br) 2 3(1+br)
(S.64)
with profits given by
[2 4 r(b—Chs))?
7T1 i e ——
9rC1(1+br)
~ 2
o — [1 —|—TA(2b—|—Cls)] (S.65)
9rC1(1+4br)
. 24r-Cys
2T 30+

b) If s> if—abr, then network 1 chooses a price of at least s;
1
in consequence all users will choose network 2, Q3 =1, and

the equilibrium is: p7 = s, p3 = s — %, with network 2
1
capturing all the profit, 75 = s — —.
1
_ 2+br A : .
3) If T 140)) <t <t”, there exists a set of parametric

conditions under which a Nash equilibrium exists where the
optimal strategy for network 1 is to set its price to zero.
Specifically, these are:

Ci>b+1/r (8.66)
(24br)(2 + br + (1+Ch)r)
r{(147)(1= b) + C1 [5(1+7) + 4C1 7]}
<te —2FU (g6

24+ br+ (1—1—51)7“
[2(2+4br) + (1+Cy —b)rt)]?

[(2+br)(1—t) — (1+Cy)rt]t -

1+obr ACir(4+ [3(1+Ch) + b 1)

(S.68)
which necessarily imply ¢ > 0. The unique equilibrium is:
p1 =0 (S.69)
by Ltbt Ch +2br(14Ch) + (1 + Cy — b)[1 + r(1+C))]t
o = = =
C1(4+ [3(1+Ch) + b 1)

(S.70)
ol = 2+br+2[1tr(1+01)]t .71
4+ [3(14+Cy) + b r
where
« « . ra " . 1+7r 1+6 "
Qu=p3, Q2= ?;szv Q13 = ﬁ(?s_t)v

and where the profits 71, 72, and 73 can be calculated from

).

Proof. First note that no Nash equilibrium is possible in Region 2,
where V12 > V3, since in that case the feasibility condition is p2 >
p1 + p3 + p3 + b(1—p3)/C1, where the r.h.s is strictly greater than



zero, and thus network 2 can decrease its price until equality holds,
attracting users and moving out of Region 2 into Region 3. We first
consider the three parts of the theorem, and then show that no other
degenerate Nash equilibria exist.

1) t > tA: If the transfer price t is sufficiently large, the
condition p3 > t implies @13 = 0, and hence we are in Case 1
of Lemma III.1.

From (A.9), we have in the non-degenerate case the optimal critical
value of w, is given by:

(p2*p1)7’6'1 +1

Viz = =
rCi+r+1

(pzim)rélvLl
rC1+r+1

p2(1—Vi2) = p2 wg . From the first derivatives, we

The profits are m1 = p1Viz = p1 [ ], and T =

. . L rCatrtl . .
obtain the unique optimal prices (S.60), (optimal since the second

derivatives are negative). The optimal critical value of w, i.e., the
optimal value of V2, is given by:

. 2+ 1 +1rC 2+ 1+ Cs
12 — = = =~ _ - (S.72)
3(1+r+rCh) 3(1+7r+Ch)

By (S.5), the mass of users on the networks at equilibrium are given
by (S.61). O

The optimal choice of p1, p2, namely p7, p3, are given by (S.60)
and the Q] from (S.61). Since Q13 =0 and Q11 = Q1, we know
that (S.60) and p3 >t constitute a local equilibrium. To prove that
these values constitute a Nash equilibrium, we need to show that for
t > t#, given p5 and ps*, network 1 cannot benefit by altering its
price from p7, with corresponding statements for network 2 and the
Content Provider.

p3 = t is optimal for the Content Provider. At this value the
Content Provider has zero profit. For the Content Provider to have a
nonzero profit, we require p3 >t, hence the Content Provider cannot
lower its price below this value. With the given values of pI, p3,
rasing the price above ¢ also generates zero profit. Hence p3 = ¢ is
optimal for the Content Provider.

By Lemma III.1, we must have: Q;/rél — gQI/él < pl+p3s—
p5. Substituting in (27) implies this will hold iff ps is greater than
[247(14+C1)]/[3(147(1+Ch1))]. Hence we must have

s 24 r(1+Ch)
3[1+r(1+Ch))’

since otherwise the Content Provider could lower its price, ps, below
this value to attract users until equality holds.

p1 is optimal for network 1.

For the given values p] and p3, we are in the middle subcase of
the alternative defining condition for Case 1 of Lemma III.1, (S.10).
If network 1 raises its price from p7, it will remain in Case 1 and
hence p] will remain the optimal response to p3.

If network 1 decreases its price from pj, it is possible that
w1 (p1;p5;p3) > mi(pl;ps;p3), in which case pi is not an equi-
librium. It is straightforward to shown that this can only happen if
p1 moves to be in Region 3, and has a greater local optimum in
region 3 . We need to consider the cases (A) p3 =t < 1 and (B)
t > 1 separately.

We consider subcase B first.

(B) p3 > 1. In this subcase, the first inequality in (S.10) is violated
by becoming an equality as p; is decreased. By (S.31), @1 =1, and
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by (S.32), at this point p; = pj — p} — C% with profit 7y less than
1
the profit at p7, i.e.

N 1

m = p1Q1 = p1 < pp—1— =
C

1—r—rc

37”61
2+7+47rCh)?

it r(11 Gy e

If we were to reduce p; even further, then we would immediately
move to Case 2 Theorem IIL.1, since (S.32) is an equality, where
m1(p1) decreasing as we decrease p1. Hence no higher value of the
profit is possible in case B.
(A) p3 < 1. For this to have a local maximum in Region 3 such
that 71 (p1; p3; p3) > m1(pl; pa; p3) we require:
(1) The boundary between Region 1 and Region 3 to be feasible
for pi. At this boundary point the second inequality in (S.10)
is violated by becoming an equality,

1+7r(ps *Pi3)61

t=p; = —
? 1+r(1+C)

(8.73)

Substituting for p5 from (27) and simplifying gives the condi-
tion that p1> > 0 if and only if

4420 +2rC
< +2r + 2rCh

t —.
34+ 3r 4+ 3rC:

(S.74)

(ii) The derivative of the profit 9wy /Op; at the boundary pi® is
negative. It follows from (7), (S.21), (S.19), (S.18), and from
Q13=0, and (S.73), that:

871’1

7‘ 13 = P1 8Q1 8Q13
op1 ! op1 op1

Substituting for p; from (S.73) and for p5 from (27) yields the
condition:

-~

7‘01
14+br"

+Q1 +t = t— (pi°+t)

(97r1
— < 0.
8])1

22471+ rCh)

3247+ br) 8.75)

(iii)

There is a feasible local optimum in region 3. Taking derivatives
Omy/Op1 using (7), (S.21), (S.19), (S.18), and solving for pd
such that 9, m1|p; = 0, gives on substituting p3 = ¢,
0= 14 p5rCy+ (b—1—2Cy)rt
! 27‘61

and hence substituting for p3

— pl>0.

(S.76)
The feasible local optimum generates higher profit. That is
m(pY;p3;p3) > mi(p};ps;ph). Substituting gives the condi-
tion

t(3r[1 — b+ 2C1]) < 2(2 4 2r + 2rCh)

@iv)

1 _
—_—— (4(2 +7r+7rC1)*+
36rC1(1 + br)

12— )r(2+7r+rCi)t+ 9r ((b— 1)%r —4e(1 + br)) t2)

2+r+ 7"61)2
9rCi (147 +1Ch)

which is equivalent to the condition

t < t;(b,r,C1) OR t > t,(b,r,Ch)
ti(b,r,C1) <t < ty(b,r,Ch)
(8.77)

if (b—1)%r > 4C:(1 + br)
if (b—1)% < 4Ci(1+ br)



where ¢;,t, are the upper and lower roots of the equation

9 ((b —1)%r —4Ci (1 + br)) £
+12(b— 1) 2+ r(1+ C))t—

4 A2
m(b—l—c)(?—i—r(l—i—C’l)) =0.

With a slight abuse of notation, we shall let (S.74) etc to refer to the
conditions on ¢: hence py is not optimal for network 1 only if (S.74)
AND (S.75) AND (S.76) AND (S.77) hold, thus p7 is optimal if
NOT ((S.74) AND (S.75) AND (S.76) AND (S.77)).

p5 is optimal for network 2.

The proof mirrors that for showing p7 is optimal. For network 2,
if we decrease p2 from p3, we remain in Case 1 of Theorem IIL.1,
and hence cannot improve upon 72 (p3).

As we increase p above pj it is possible w2 (pl;pe2;p3) >
m2(p1; p5; p3), in which case p5 is not an equilibrium. For this to
happen, p2 must force a move to region 3, and network 2 must have
a greater local optimum in that region. We need to consider the cases
(A) p3 =t <1 and (B) t > 1 separately.

For case (B), p3 = p2 — % + pi . At boundary point w2 =0 and
as we increase o still further 1We move into Case 2, hence no greater
profit for network 2 is possible in this case.

(A) m2(pi;p2;p3) > m2(pi; pa; p3) for some pa requires
(1) The boundary between Region 1 and Region 3 to be feasible

for p2. At the boundary ps = p3® solves

. L+r(d—p)Ci

t=p3 = = (S.78)
’ 1+r+rC

Substituting p7 from (27), and simplifying gives the condition
that p3> will be positive is
1—r—Chr

t> —mm——. (S.79)
3+ 3r+3C1ir

(ii) The derivative Om2/dp2 at the boundary po = p3® is positive.
Now R
87r2 _ rCl

Op2 - R 14 br

Using (S.78) and (27), this will be positive if

+ (1 = p3).

= ph < 4+ 3br — (1—&-?1)1“ .
3[2+br + (14+Ch)7]
(iii) There is a feasible local optimum in region 3. The local

optimum for mo in region occurs at the price p3 where
OpyT2|p3 = 0, which substituting gives the value

(S.80)

pO _ 2+r+3br+rél +3(1—b+61)rt
? 67“61
which will be feasible provided that

247+ 3br +rCy +3(1 — b+ Cy)rt > 0. (S.81)

(iv) The feasible local optimum generates higher profit. The profit
at p3 is given by
(2474 3br +7Ci + 3(1 — b+ Ch)rt)?
36rCi (1 + br)

Ta(pi;p3;p3) =

(1+2(1+C1)r)?

and this will be greater than 72 (p7;p3; p3) = 0B (L8
1 rCy

provided that

t < ty(b,r,C1) OR t > t, (b7, Ch) (S.82)
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where {;,t,, are the upper and lower roots of the quadratic in ¢

(24 7r+3br+ rCy + 3(1-b+ 51)7“15)2
41+ br)(1 4 2(1 4 Cy)r)?
o 14+7r4+7rc ’

Hence p5 is not optimal only if (S.79) AND (S.80) AND (S.81)
AND (S.82) hold, and hence p3 is optimal if NOT ( (S.79) AND
(S.80) AND (S.81) AND (S.82) ).

p3 is optimal for the Content Provider. Trivial.

Summarizing, hence necessary and sufficient conditions for a
Nash equilibrium to exist in this case are that NOT ( (S.79) AND
(S.80) AND (S.81) AND (S.82) ) AND NOT ( (S.74) AND (S.75)
AND (S.76) AND (S.77)). Hence by choosing the simpler conditions
in this expression, it follows that sufficient conditions for a Nash
equilibrium to exist with these p; are that ¢ > t4, where

t4 = min{l7

o 443br — (1+C)r  2+7(1+Ch)
324 br + (1+Ci)r] " 3[1+r(1+Ch)]

. < 4+43br — (1+C)r 22+ NH@”) } . (S.83)

202+ r(1+Ch)]
3[2 4 br + 7] ’

3[2+br + (1+C1)r] 3[L+7(14Ch)]

_ 2+br
2) <0, s=—t> Hpr.

When the subsidy is large enough, the Content Provider can set
its price ps to zero. Now when ps =0, then by (S.16), Q11 =0, and
basic service is never used in this case. First consider the case

thr N 2+brA
7’01

T 34 r(3+4Cy)
corresponding to subcase 2(a) of Theorem IIL.5.

Proof. Proof of subcase 2(a) of III.11 It is straightforward to check
that the p; in the system (30) with the corresponding (Q’s are given
in (31) are consistent with being in Region 3, and moreover p7, p3
satisfy the first order conditions for 71, 72, i.e., ‘9”? =0, when p3 =
0. The second order conditions are also satisfied f(;r networks 1 and
2. The condition for 73 to have a maximum at p3 =0 is that OL;% <0.
For this to hold when p=p* requires:

Oms 0Q1 24br—(3+3r+ 4617“)5
“73 - = <0
Ops | e * ops e 3+ 3br =
(S.84)
and hence 9+ b
L L (S.85)
3+ r(3+4CH)
The requirement that Q13 > 0 necessitates that
< 2 —|—A br‘
rCy

When both conditions, (S.84) and (S.85), on s are satisfied, the
remaining feasibility requirements (Q13 <1, w >0) are also satisfied,
hence we have shown that vector (p; ) is a local maximum. It remains
to prove that these are globally optimum prices.

pl is optimal. While we remain in Region 3, we know pj is
optimal. By increasing pi, we remain in Region 3 until we reach
the boundary with region 1, at which point from (S.19), Q13 = 0
(recall p3 = 0), hence @1 = 0, 71 = 0 and this profit remains
Zero remains so as we increase p; further (c.f. (S.5) final condition).
Now consider what happens when we decrease p1 below pi. If we



decrease p; sufficiently, then we potentially enter Region 2. For this
to happen, since ps =ps, it follows from (S.15) that

< pt b 1—br+ 7‘6’18
P1 Po— = = —= .

C 1 37’01
But then, to have a higher profit than that corresponding to the prices
given in (30), (30) we require

1—br—2r518 (2+br—r61s)2
37"61 97“61(14—1)7")

which is clearly impossible for s >0 (recall that b> 1,7 >0,c>0).
Hence p7 is optimal.

p5 is optimal. As we increase ps and remain in Region 3 (holding
p3=0 and p; =p7), the profit for network 2 remains suboptimal (less
than 73), until we enter Region 2. But network 2 has zero profit in
Region 2. Hence network 2 cannot increase its profit by increasing its
price. If network 2 were to decrease its price from p3, then again its
profit would be suboptimal while in Region 3. If it were to decrease
its price further to enter Region 1; then at the boundary of region
and 1 and 3, from (S.20) Q13 = 0 (recall p5 = 0) and hence Q2=1.
The profit at this point is less than 75, and decreasing pis further
decreases the profit further.

p3 is optimal. Since p3 =0, the Content Provider can only increase
its price, which potentially takes it to Region 1 where the Content
Provider has no users and zero profit. Hence the Content Provider
cannot increase its profit by changing its price.

Hence we have shown that p* is indeed a Nash equilibrium, thus
proving the subcase 2(a). O

Now consider case 2(b) of the theorem where
24 br
rCh
Proof. Proof of subcase 2(b) of Theorem III.11 With the p; given by
pl =S, p5 :s—%,pfgzo, we are in Region 3 with Q2 = 1.

We now show that this is indeed a Nash equilibrium. If the
Content Provider were to lower its price it would become negative and
potentially move the scenario to Region 2. However, p3 <0 violates
Region 2 feasibility condition (S.13). If the Content Provider were to
raise its price, this could potentially move the scenario to Region 1,
but in that case the Content Provider still receives zero profit. Thus
the Content Provider will not change its price.

Network 2 has no incentive to lower its price, since network 2
already has all the users, and this could only result in lowering its
profit. network 2 has no incentive to raise its price either, since this
would potentially move the scenario to Region 2, but in Region 2 we
have Q2 =0, and so network 2 would have no profit. Thus network 2
will not change its price.

If network 1 were to decrease its price below s, this would
potentially move the scenario to Region 2; but Region 2 feasibility
condition (S.14) is p1 — s(1 —p3) > 0, which reduces here to
p1 — s > 0, a contradiction, since p1 —s < 0. If network 1 were to
increase its price, this would potentially move the scenario to Region
1; but in this case, (S.10) and (S.5) imply 1 =0, and network 1
would still get no profit. Thus network 1 will not benefit by changing
its price. O

s >

3) t>0:

Proof. When p1 =0 and we are in Region 3, then from (7), m1 =
tQ13, and using (S.19) and (S.21)

om 8Q13 7'61

op1 @+ op1 @ 1+or
14+ p3(b—1—7Cy) +rCi(p2 —t)
o 14 br ’
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For p1 =0 to be a Nash equilibrium for network 1, it must first be a
local maximum within Region 3, which requires

m >0 and 2 <. (S.86)
8p1
In addition p2 and ps3 need to be local maxima, and hence solve
O _ o 9T _ ) with pr =0, (S.87)
6}92 8p3

Using equations (S.19), (5.20), then (S.87) becomes

26‘1p2
1+¢(1+r+ 7"51) + rChpo.

b+ (1+Cr—b)ps =
2p3(1+7+1rCy) =

Solving these equations gives (S.70) and (S.71) which is a local
optimum since the 7;(p;) are convex. Substituting into (S.86) and
using algebraic manipulation gives the conditions (S.66) and (S.67)
on b,r,C1,t in the proposition, which also enure that p5 > 0 and
p3 > 0. The profit for network 1 is then

1+7r(1+Ch)

t(ps —t). S.88
For this to be Nash equilibrium, it must a be global optimum: in the
case of network 1, network 1 can increase its price, and move the
solution into Region 1. If does so, it has an optimum response to

network 2 setting its price to p3, namely the price

1+r+ 7”61)(4 +2r+(1-0b+ él)rt)
2rCy(4+ [b+ 3(1+C)]r) '

P =

The condition that the resulting profit for network 1 at this value
(calculated from (S.7)) does not exceed (S.88) gives (S.68). O

4) No other degenerate Nash equilibria exist: To complete
the proof of the theorem, we need only show that there cannot be a
Nash equilibrium under any of the remaining boundary conditions,
all of which must be in Region 3. We will have a Nash equilibrium
at the point p* = (p1, p3,p3) provided that the point p* is feasible
and, for each i, m;(p;) is maximized at p*. But as we have seen,
from (S.39), that the profit functions ;(p;) are strictly concave,
hence the only possible Nash equilibria in this case occur either at
a unique interior point of the feasible region or at the boundaries
of their support. The boundaries of the region are characterized
in Corollary IIL.3 (the corresponding intervals for each 7;(p;) are
generated by the intersection of the lines formed by fixing p;, j #1
in the boundaries). The boundaries correspond to the hyperplanes
pP1 = 0, p2 = 0 p3 = 0, and Qn = 0, Q13 = 0, QQ =0 (and since
by construction Q11+ Q13+ Q2 = 1 holds, we also consider the
constraints (J2 =1). In addition, when ¢ > 0 we have the boundary
p3 =t corresponding to m3(p3) =0 (note that 7y = 0,72 = 0 are
covered by other boundaries). When ¢ < 0, there is the additional
constraint boundary m; =0.

Condition 71 =0. No Nash equilibrium can exist in this case, since
if 11 = p1Q11 + (p1+t)Q13 = 0, we must have p; +t < 0 (the
degenerate case Q11 = 0 = Q13 is covered by subcases below), then
from from (7)

om 0Q13
—_— = t >0
o Q1+ (p1+ 1) o

and network 1 can increase its profit away from 0 by increasing p;.

Condition Q13=0. When Q13 = 0, then from (7)

871'3 8@15

— <0
8p3 (9])3

= P3



unless p3 = 0. Hence we can decrease ps, thereby increasing the
Content Provider’s profit away from zero, unless either p3 = 0 or
t >0 and p3 =t. We treat each of these special cases below.

Condition pz=0. Here, to maximize 2 we must have 972

Op2 ‘m:o <
0. From (7), g—;r;} =0 =2, hence Q2 =0. Then from (12) and (13),
p1+p3 <0, which implies at least one price is negative, and hence
there is no feasible Nash equilibrium.

Condition Q2=0. (7) When Q2 =0, m2 =0 then to be in case 3
requires that p2 >0, while from (7)

0 0

ﬂ = p2 7622 <0

apz apz
and hence network 2 can decrease its price and generate positive
profit. Thus QY2 =0 cannot be a Nash equilibrium for network 2.

Condition ps=t .

From (7), when p3 =t, gig =Q13, and if Q13 >0, then this cannot be
a Nash equilibrium for the Content Provider, since it could increase
its profit by increasing ¢. The only possibility is that both p3 =t and
(13 =0, which is included as a particular special case of Theorem

III.11 part 1.

FE. Proof of Theorem I11.13 and Corollary II1.14

Proof. Theorem II1.13 is a special case of Theorem IIL.9 where
t = 0, proved using Lemmas S.1 and S.2. Now (S.43), which gives
conditions for prices and profits to be non-negative, is automatically
satisfied when t = 0. This leaves Lemma S.2; when t = 0, the
conditions of Lemma S.2 simplify: the conditions for p] to be positive
and p] to be optimal are satisfied, leaving the conditions for 72 to
be optimal, ((S.54) or (S.58)), which reduce to

br2+ (1+b+C1)r] < 4(1+r+Cir)> OR (S.89)
42+ 724201 +b(A+ b +3(1+C1)r))*
14 br =
~ ~ ~ 2
(4+r(Vr+40+0ﬂp+TG+OQL+M4+3u+cgm))
1+T+617”
(5.90)

We roll Theorem III.13 and Corollary III.14 into the following
Lemma.

Lemma S.3. When t = 0, sufficient conditions for a Nash equilib-
rium to exist are

~ 1
b < 2(1+Cl)+;. (S.91)
Sufficient conditions for a Nash equilibrium not to exist are
~ 1
r>1AND b > 4(1+C1) + - (5.92)

Proof. Proof of Lemma The first condition (S.89) is clearly satisfied
if b < 1+ Ci1. By writing b = 2 + kC1, expanding the second
inequality, taking out a factor of (b — 1 — C1) and equating the
coefficients of r* in the remaining quartic to ensure that the resulting
polynomial is always positive , then we can show that resulting
inequality will always be satisfied provided k < 2. That is, if
b < 2(1+C1), a Nash equilibrium will always exist. A more detailed
line of reasoning will produce a broader sufficient condition:

1
b—2(1+Ch)

which can be combined into the single condition (S.91).

By substituting and simplifying, we can also show that when the
condition (S.92) holds then neither (S.89) nor (S.90) are true, and
hence (S.92) is a sufficient condition for a Nash equilibrium not to
exist. O

b<2(14Cy) or r<
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G. Proof of Theorem IV.1

We provide here a slightly more detailed presentation of Theorem
IV.1 than is given in Section IV.

THEOREM IV.1 There exists a unique Nash equilibrium in the
two-stage game. This occurs in one of two mutually exclusive cases,
where in each case network 1 sets a positive transfer price ¢t*. In the
first case all three parties make a positive profit; the second case is
degenerate, where the Content Provider is shut out of the market.
Specifically, either:

1) All three parties make a positive profit. The prices, user masses,
and profits for this case are given by Theorem IIL.5 with ¢t =
tBor tO, where:

a) t© solves the first-order profit maximization conditions. This
is the value of t satisfying first order conditions, namely

%m@;(t),p;(t),pz(t)) — 0.

This will yield an affine equation in ¢, with solution ¢t°.
Here t© is the value of ¢ that maximizes a concave profit
function and hence can in principle be found in a straight-
forward way by network 1.

b) t? is the point at which network 2 is indifferent between
competing with the Content Provider or lowering its price to
drive it out of the market. Here t® < to, where ¢ is the
feasible solution to the equation in ¢ derived from (S.58),
that is the positive solution to

~ ~ 2
1+C1+Cipi(t) 1 |
- = t
( 2C1 1+7(14Ch) i

(5.93)
a quadratic in ¢, where the p; are given in (20),(21). Note

that from Theorem II1.9, equation (26), we must have t? <
2+b
3+r+;br :

Sufficient conditions for this case to exist are that b* (r, 61) <
b<14+Ci1OR(1+Ci<b<2(1+C1)+1/r

2) The equilibrium is degenerate, with the two networks making
positive profit, and the Content Provider shut-out of the market.
The prices, user masses and profits are given in Theorem
II.11,with t* > tA, where t* is defined in Theorem IIL11
and t 4 is given explicitly in (S.83), and satisfies t4 > 1. There
are two subcases:

a) b is small, satisfying 1 < b < b (r, 61) where b* is the
root of a cubic equation, with the bound b* < 1 4 C;. In
this case network 1 makes strictly greater profit than having
a positive transfer price.

b) Q is large, for which sufficient conditions are b > 4(1+
C1)+1/r and r > 1 (c.f. Corollary II1.14). In this instance
network 1 cannot attain the higher profits that could be gained
by setting a positive transfer price.

Proof. Proof We consider two subcases separately: b < 1 + Cy and
b > 1+ C . The statements of the theorem follow by combining
the results from the subcases,

Subcase: When b < 1+ C'; Recall that in this case the profit for
network 1 is smaller with ¢ = 0 than without the Content Provider.

i) First note that on calculating the profits from (7) using the
prices and user masses from Theorem III.5, we can see that
m1(p1(t), p3(¢t), p3(t)) is quadratic in ¢. By direct calculation, it
is straightforward to see that

2

F 1 (1 (1), p2(1), p3(t)) <0

for1<b< 1+ C1 hence any local optimum satisfying the first
order conditions will be a global optimum if staying within the
feasible region of Case 3.



ii) The value of ¢ satisfying first order conditions is

= (br+2)(61r+r+1) (b2r+2b—61(r+1) —r—2)
=|16C3r2 (br + 1) + Cr(r(4b((b + 8)r + 10) — r + 30) + 35)

+2C(r+ 1) (r([b(b+9) — 1]r + 116+ 7) + 9)

—(b-1)*r(r+1)*] (S99
iii) For 1<b< \/w — %, then
Zmi(pi(t), p5(t),p3(t))|t=0 < 0, so network 1 can indeed

increase revenue by reducing the transfer price from zero,
setting a negative transfer price, thereby effectively subsidizing
the Content Provider. However, network 1 can do even
better by raising the transfer price to such a level that the
Content Provider is shut out of the market—for example,
bg/ setting ¢ = 1. The latter follows by first showing that
Sm(pi(t), ps (t) P3()],—_ e > 0, hence the value
r(3+4

of to is a potential Nash equlhbriulm (c.f. Theorem 5.3));
second, proving that %m(p’{(to),pé (t°), p5(t)) > 0 in this
region, i.e., profits for network 1 increase with b; and third,
Clr2+Clr+r2+2r+1 _

showing that when b = \/ , network 1
is better shutting the Content Prov1der out of the market hence
is it better offer adopting this policy for all b in this range.

For \/ w — 1 <b< 61 + 1, then the optimal
choice of strategy depends upon the values of b, Ch T, Or on a
value b* = b*(r, C’l) where b* is the root of a cubic equation
involving r and C1 This is the value of b at which network 1 is
indifferent between choosing the optimal value of t* = ¢t and

choosing ¢t* =1 to shut-out the Content Provider.

a) If < b < b* then optimal for
network 2 to shut-out the Content Provider, by raising ¢, eg

iv)

cr? +61 r4r242r4+1 1
r2 .

t=1.
b) If b* <b < 1+61 then network 1 announces t* = ¢© given
by (S.94).
Note that b* is very “close”to 1 +C4 (informally; i.e., the region
is small)

v) These are the only possibilities: if a value of ¢ is chosen so that
Case 3 of Theorem III.11 introduces a possible degenerate Nash,

network 1 can increase profits by setting ¢t = 1.

Subcase: When b > 1 + C,

i) First note that when a Nash equilibrium exists in Case 3, i.e., in
Region 3, it is always advantageous for network 1 to have the

Content Provider use its network. That is, the profit for network 1
is greater with ¢ = O than shutting the CP out.

Straightforward to show that given b > 1 + Ci,
%m(p’{ (t),p5(t),p3(t))|t=0 > 0 and hence if a Nash equi-
librium exists with ¢ set, ¢ should be strictly positive.

ii)

iii) In this case (i.e., Nash equilibrium and in Region 3) there are

two possible cases
a) t can be t* = ¢°

b) t* t? is on the boundary of the Nash equilibrium
boundary, the critical point at which network 2 is indifferent
between competing with the Content Provider, or lowering its
price to drive out the Content Provider.

Sufficient condition for one of these two cases to exist is 1+c¢ <
b < 2(1+c)+ %, (which follows from combining Theorem III.13
with this subcase).

, 1.e., solution to first order conditions

iv) We know from Cor. IIL.10 than an e—equilibrium exists in this
(where b > 1 + C’l) in the second stage game if ¢ = 0), and

hence an “optimal” e—equilibrium also exists -i.e.from above,
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it follow that t* = ¢©

Stackelberg game.

is always an optimal e—equilibrium in

v) Under certain conditions, no Nash equilibrium exists in the
multistage game with the Content Provider involved —i.e., the
transfer price is raised to such a high level that it is shut out of the
market, (cf Theorems II1.9 and III.11 which discuss equilibria
for when the Content Provider involved). Cor. III.14 gives a
sufficient condition for no Nash equilibrium to exist with ¢ = 0,
and this implies the only Nash equilibrium is when ¢ is raised to

such a level as to shut the Content Provider out of the market.
O

H. Proof of Theorem V.1

THEOREM V.1 For quadratic congestion costs and equal capacities,
the optimal strategy for network 1 is to set a negative transfer price
t* =t (b,Ch).
Proof. We will show that 4mf(t)}i—o < 0, and that w7 (t) is
concave. When in Case 3 of Lemma L1, putting » = 1/b, gives the
defining conditions as

bQ2)2 <Q11+5Q13>2
= (=" +p2—p1 = S.95
( o 3 P2 —P1 = Pp3 (S5.95)

and Q11 = p3, hence Q13 is the solution to the quadratic

(b(l —p3 — Q13))2 _ (pg +bQ13
Cy Cy

which reduces to a linear equation, with solution

b*(1 — ps)” — p3 — CF(p1 — p2 + ps)
2b(b(1 — p3) + ps) '
We have seen that 71 (p1) and w2 (p2) are concave when » = 1/b, and
that 73 (ps) is in general concave (or quasi-concave), hence we can
find the optimum by considering the first order conditions. Equating
to zero the derivatives ™% for ¢ = 1,2, 3, and substituting for the

partial derivatives by 1mp11c1tly differentiating (S.96) or (S.97) gives,
after simplifying, the equations

612(271 +1)

2
) +p2—p1 =ps (5.96)

Q13 = (8.97)

2b(ps + Qu3) =

b(1 —p3) +ps
Cips
WQy = —— P2
@ b(1 — p3) + p3
(612 + 2173) (ps — 1)
(b+t—0bt)Q13 = % +b(ps — t)(1 — ps3),

(5.98)

whose solution give p;, and Q;. Eliminating p; and p2, and noting
that Q2 = 1 — p3 — @13, enables us to reduce the set of equations
{(S8.97), (S.98)} to a pair of simultaneous linear equations in Q1s,
ie.,
b*(1 — p3)(3 — 5ps — 6Qus — Cr (ps — t)
= p3(b(4ps + 6Q13 — 2) + ps3)

(512 + 2173) (ps — 1)
=2b(b[(1 —t)Q13 — (1 — p3)(ps — t)] + Qu3t) .

Eliminating Q13 reduces the equations to a cubic in ps, where p3 is
the real root in [0, 1]. Explicitly the cubic is

(5.99)

6(b—1)2(b+ 1)ps® — (b— 1) (17b2 +7b+ 3612) P>

42 (71)2 —b+ 2512) ps — 36° = 0.



To show that 477 (t)[¢=0 < O involves
i) Writing 73 (t) = pf(gt) (p5(¢) + Q13(t)) + tQ13(¢) and differ-
entiating to obtain 77 (¢)[t=0
ii) Differentiating (S.98) and (S.97) implicitly w.r.t ¢, and setting
t—0
iii) Showing that when ¢ = 0 the resulting set of equations for
{71 (1) |e=0, (P} (0), Q7 (0)), (P} (t)]t=0 Q1 (t))|e=0)}  do
not have a consistent solution unless <7 (¢)|¢—o < 0. This is
proved using Mathematica [18].
O
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