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SUPPLEMENTARY MATERIAL
PROOFS OF THEOREMS AND COROLLARIES

A. Proof of Lemma III.1

Using (11) with the definitions of ∇12 and ∇13 given in
(12) and (13), a comparison of utilities from (2) and (3), (2)
and (4), and (3) and (4), respectively, yields the following.

In equilibrium, a user with willingness to pay w will weakly
prefer:

i) Network 1 to network 2 if w ≤ ∇12, network 2 over
network 1 if w≥∇12

ii) Network 1 to option 3 if w≤∇13, option 3 over network 1
if w≥∇13

iii) Network 2 to option 3 if ∇12 ≤ ∇13, option 3 over
network 2 if ∇12 ≥∇13, regardless of w in both cases,
and strict preference obtains when the corresponding
inequality is strict.

Consider Case 1 of Lemma III.1. By iii, all users prefer
network 2 to option 3. Thus, any users taking option 3
would migrate from network 1 to network 2. Hence Q13

would decrease and Q2 would increase, until either there is
equality or until Q13 is zero. (The preference for network 1
or network 2 is given by i.)

In Case 2 of the Lemma, by iii all users prefer option 3
to network 2; thus, any users on network 2 would migrate to
network 1 to choose option 3. Hence Q2 decreases and Q1

increases until either there is equality, or until Q2 is zero.
For the equality of Case 3 of the Lemma, it follows from iii

that at equilibrium all users are indifferent between network 2
and option 3, but clearly they will not all choose one or
another, since otherwise some could reduce their cost by
choosing the empty network.

B. Proofs of Theorem III.2 and Corollary III.3

1) Proof of Theorem III.2:

Proof. We prove uniqueness and existence of Q by explicitly
characterizing Q11, Q13, Q2 in Theorem III.2 in the three
mutually exclusive cases of Lemma III.1. In each case, we first
show that Q11, Q13, Q2 are uniquely determined—specifically,
the solution of an appropriate system of linear equations; we
then establish feasibility, and hence the existence of the unique
solution.

Case 1: No users join the Content Provider, because the
price is too high, hence Q13=0. From Lemma III.1, it follows
that given a vector of prices p, the vector Q must satisfy

Q13 = 0 (S.1)

∇12 =
1

rĈ1

(Q2 − rQ11) + p2 − p1 (S.2)

Q11 = [∇12]
1
0 (S.3)

Q2 = 1−Q11. (S.4)

where [x]ul denotes the function equal to x when l ≤ x≤ u,
equal to l when x < l, and equal to u when x > u. Solving
(S.1)–(S.4) yields:

(Q1, Q2) =


(1, 0)

( 1+Ĉ1(p2−p1)r
1+r+Ĉ1r

, [1−Ĉ1(p2−p1−1)]r
1+r+Ĉ1r

)

(0, 1)

(S.5)

if, respectively, p2−p1 > 1+ 1

Ĉ1
, 1+ 1

Ĉ1
≥ p2−p1 ≥ − 1

rĈ1
,

and − 1

rĈ1
> p2−p1. The profits are:

π1 = p1Q1 (S.6)
π2 = p2Q2 (S.7)
π3 = 0. (S.8)

We have from (S.2) and (S.5):

∇12 =


− 1

Ĉ1
+ p2 − p1 if p2−p1 > 1+ 1

Ĉ1

1+Ĉ1(p2−p1)r
1+r+Ĉ1r

if 1+ 1

Ĉ1
≥ p2−p1 ≥ − 1

rĈ1
1

rĈ1
+ p2 − p1 if − 1

rĈ1
> p2−p1

(S.9)

which correspond to the three regions of ∇12, respectively,
being less than 1, in the closed interval [0, 1], and smaller
than 1.

Feasibility: From (14) and (15) and substituting into (S.6)
and (S.7) gives the necessary and sufficient conditions: p1≥0
and p2 ≥ 0. From (S.9) and (13), and using the defining ex-
pression for Case 1, which is given in terms of the user masses
and the prices, we have an alternative defining expression for
Case 1 in terms of the prices alone:

p3 >


− 1

Ĉ1
+ p2 − p1 if p2−p1 > 1+ 1

Ĉ1

1+Ĉ1(p2−p1)r
1+r+Ĉ1r

if 1+ 1

Ĉ1
≥ p2−p1 ≥ − 1

rĈ1
1

rĈ1
+ p2 − p1 if − 1

rĈ1
> p2−p1

.

(S.10)

Case 2: No users join network 2 because the price is too high.
Using (13):

Q11 = [p3]
1

Q13 = 1− [p3]
1

where [x]u denotes the function equal to x when x≤ u, and
equal to u when x > u. The requirement that firms 1 and 3
make non-negative profits, and the expressions for profits, (7),
yields:

p1 + t(1−[p3]1) ≥ 0 (S.11)

(p3−t)(1−[p3]1) ≥ 0. (S.12)

Feasibility: This region is feasible if the demand allocations
are feasible and profits are non-negative, and in addition the
defining condition for Case 2 holds. Using (S.12), (S.11), and
the defining condition for Case 2, the conditions are:

p3 ≥ t (S.13)

p1 + t(1−[p3]1) ≥ 0 (S.14)

p2 − p1 >
b+ Ĉ1p3 + (1−b)[p3]1

Ĉ1

. (S.15)
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Case 3: From (13) ∇13 = p3, and since Q11 = [∇13]
1, we

have:
Q11 = [p3]

1 (S.16)

and also have:

Q2 = 1− (Q11+Q13). (S.17)

Subcase A: 0 ≤ p3 ≤ 1: Solving simultaneously the defin-
ing condition for Case 3, (S.16), (S.17) together with (6) and
(10) yields:

Q11 = p3 (S.18)

Q13 =
1 + rĈ1(p2−p1)− (1+r+rĈ1)p3

1 + br
(S.19)

Q2 =
r[b− Ĉ1(p2−p1) + (1−b+Ĉ1)p3]

1 + br
(S.20)

Q1 =
1 + rĈ1(p2−p1)− r(1−b+Ĉ1)p3

1 + br
. (S.21)

Feasibility: For the demand allocations to be feasible given
the prices, we require (18) to hold. The nonnegativity condi-
tions on the Q’s given by (14), (15), and (16) imply necessary
and sufficient conditions for Case 3 to be feasible. These
conditions are that the pi satisfy:

0 ≤ p3 ≤ 1 (S.22)

p3 ≤
1 + r(p2−p1)Ĉ1

1 + r + rĈ1

(S.23)

(p2−p1)Ĉ1 − b ≤ (1−b+Ĉ1)p3 (S.24)

0 ≤ p1

[
1 + r(p2−p1)Ĉ1 − r(1−b+Ĉ1)p3

]
+t
[
1 + r(p2−p1)Ĉ1 − (1+r+rĈ1)p3

]
(S.25)

0 ≤ p2

[
rb− rĈ1(p2−p1) + r(1−b+Ĉ1)p3

]
(S.26)

0 ≤ (p3 − t)
[
1 + rĈ1(p2−p1)− (1+r+ rĈ1)p3

]
.

(S.27)

Note that the defining condition for Case 3 is satisfied by the
Q’s by construction.

Note also that in the “fully non-boundary” case, when all
the user masses are strictly positive, the conditions simplify to

0 < p3 < 1

p3 <
1 + r(p2−p1)Ĉ1

1 + r + rĈ1

r[(p2−p1)Ĉ1 − b] < r(1−b+Ĉ1)p3

−p1
1 + r(p2−p1)Ĉ1 − r(1−b+Ĉ1)p3

1 + r(p2−p1)Ĉ1 − (1+r+rĈ1)p3
≤ t

0 ≤ p2

t ≤ p3 .

Subcase B: p3 > 1: Solving simultaneously the defining
condition for Case 3, (S.16), (S.17) together with (6) and (10)
yields:

Q11 = 1 (S.28)
Q13 = 0 (S.29)
Q2 = 0 (S.30)
Q1 = 1. (S.31)

Feasibility: These conditions are that the pi satisfy:

p2−p1−p3 =
1

Ĉ1

(S.32)

p1 ≥ 0 (S.33)
p3 > 1. (S.34)

2) Proof of Corollary III.3:

Proof. The characterization of the constraints corresponding
to (14) to (18), for each of the three cases of Lemma III.1, is
given above in part 1, “Proof of Theorem III.2.” When t = 0,
each of the constraints corresponds to a separating hyperplane
or the space formed by intersecting hyperplanes (e.g., (S.26)
is equivalent to p2 ≥ 0 and (S.24)). The same holds true when
t > 0, apart from the constraint for π1 ≥ 0 for Case 3, (S.25),
which is quadratic in p1 but which reduces to an intersection
of hyperplanes. When t < 0, it is straightforward to show
the region is convex. Combining these statements proves the
corollary.

C. Proof of Theorem III.5
The system {(S.18), (S.20), (S.19)} in matrix form is:

Ĉ1(1+br)Q = c + q·p. Equivalently:

Ĉ1(1+br)

 Q11

Q2

Q13

 =

 c1
c2
c3

+ (qij).

 p1
p2
p3

 (S.35)

where

c =

 0

bĈ2

Ĉ1

, q =

 0 0 (1+br)Ĉ1

Ĉ1Ĉ2 −Ĉ1Ĉ2 (Ĉ1−b+1)Ĉ2

−Ĉ1Ĉ2 Ĉ1Ĉ2 −(1+r+rĈ1)Ĉ1

 .

(S.36)
Using (7) together with (S.35) gives:

Ĉ1(1+br)

π1π2
π3

 = Ĉ1(1+br)P·Q

=

p1 0 p1 + t
0 p2 0
0 0 p3 − t

· (c + q·p).

Taking derivatives

Ĉ1(1+br)


∂π1

∂p1
∂π2

∂p2
∂π3

∂p3

 =

1 0 1
0 1 0
0 0 1

· (c+ q · p)

+

q11 + q31 0 0
0 q22 0
0 0 q33

· p+ t

 q31
0
−q33

 . (S.37)
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Hence at the potential N.E. where ∂πi
∂pi

= 0 for all i, a
simultaneous turning point, the p∗i will satisfy

t

−q310
q33

−
1 0 1
0 1 0
0 0 1

 · c
=

1 0 1
0 1 0
0 0 1

 · q·p +

q11 + q31 0 0
0 q22 0
0 0 q33

 · p
=

2(q11 + q31) q12 + q32 q13 + q33
q21 2q22 q23
q31 q32 2q33

 .p

= q̃ · p
(S.38)

Now it follows from (S.37) that
∂2π1

∂p21
∂2π2

∂p22
∂2π3

∂p23

 = 2

q11 + q31 0 0
0 q22 0
0 0 q33

 (S.39)

= 2

−Ĉ1Ĉ2 0 0

0 −Ĉ1Ĉ2 0

0 0 −(1+r+rĈ1)Ĉ1


(S.40)

has strictly negative entries, (where we have used the def-
initions for qij in (S.36)) hence the profit functions are
strictly concave (in this Case 3), and hence there is a unique
maximum. From (S.36), here q̃ is given by:

q̃ = Ĉ2

−2C1 Ĉ1 −Ĉ1 + b− 1

Ĉ1 −2Ĉ1 Ĉ1 − b+ 1

−Ĉ1 Ĉ1 −2( 1r + 1 + Ĉ1)


and hence det q̃ = −2Ĉ5

1r
2[3 + r(2+ b+2Ĉ1)] < 0 (recall

Ĉ2 = rĈ1). The left hand side of (S.38) is−tq13 − c1 − c3−c2
tq33 − c3

 = −Ĉ1

 1− Ĉ2t
br

1 + (1 + r + Ĉ2)t

 .

Using Cramer’s rule

p∗1 =
rĈ2

1

det q̃
det

 Ĉ1rt Ĉ1 −[Ĉ1 − (b−1)]r

−(br + 2)Ĉ1 −2Ĉ1 [Ĉ1 − (b−1)]r

−(1 + r + rĈ2)tĈ1 Ĉ1 −2(1 + r + Ĉ2)

 .

Simplifying gives

p∗1 =
1

2Ĉ1r[3 + r(2+b+2Ĉ1)]

(
(2+br)[2 + br + r(1+Ĉ1)]

+rt
[
(1+r)(b− 1)− Ĉ1 [5(1+r) + 4rĈ1]

])
.

Hence if t = 0, it follows that p∗1 will be positive. Similarly,

p∗2 =
1

2Ĉ1r[3 + r(2+b+2Ĉ1)]

(
2 + 2(1+2b+Ĉ1)r

+ b(3+b+3Ĉ1)r2

−tr
[
b− 1 + Ĉ1 + (b− 1− Ĉ1 + 2bĈ1)r

])
(S.41)

Hence

p∗2 > 0⇔ 0 ≤ t < 2 + 2(1 + 2b+ Ĉ1)r + b(3 + b+ 3Ĉ1)r2

r(b− 1 + Ĉ1 + (b− 1− Ĉ1 + 2bĈ1)r)
.

Similarly,

p∗3 =
2 + br + (3 + 3r + 4Ĉ1r)t

6 + 2r(2 + b+ 2Ĉ1)
(S.42)

and hence p∗3 > 0 for all t≥0.

D. Proof of Theorem III.9 and Corollary III.10
The following Lemma proves parts 1 and 2 of Theorem III.9.

The candidate solution {p∗i } is a local optimum for each i. The
requirements that the p∗ induce a feasible solutions result in the
condition (26) together with the requirement that p∗1 ≥ 0. If
these conditions are satisfied, then either the p∗i constitute a Nash
equilibrium, or, they are such that either network 1 or 2 could improve
their profits by deviating, in which case p∗i is an ε-equilibrium. In
Lemma S.2 we prove part 3 of Theorem III.9, and also characterize
the ε of part 2. Note that we first prove the theorems for general
transfer price t, which includes the special case t = 0 (c.f. Section
F of this Supplementary Material).

1) Proof of part 1 and 2 of Theorem III.9:

Lemma S.1. If a Nash equilibrium exists with positive prices {p∗i },
given by (20), (21), (22), with both networks 1 and 2 and the Content
Provider having users and each making positive profit, then the
transfer price satisfies

− 2 + br

3 + r(3+4Ĉ1)
< t <

2 + br

3 + r + 2br
. (S.43)

Conversely, when (26) is satisfied and the expression for p∗1 in (20)
is positive, then the {p∗i } given by (20), (21), (22) constitute an ε-
equilibrium where ε ≥ 0. Further, all the prices {p∗i } are positive,
and networks 1 and 2 and the Content Provider all have users.

Proof. Since the prices {p∗i } are a local optimum for each i, it
follows that the p∗i will be a non-degenerate ε−equilibrium if and
only if the prices are positive, the market is covered (Q1+Q2 = 1),
the user masses are positive (Q11, Q13, Q2 > 0), and the profits
are positive. Since we solve the equations for the Qi ensuring the
constraint Q11 + Q13 + Q2 = 1 is met, necessary and sufficient
conditions are that each Q∗

11, Q
∗
13, Q

∗
2 is in (0, 1), pi∗ > 0 and

π∗
i > 0.
i) Since Q∗

11 = p∗3, the condition Q∗
11 ∈ (0, 1) is equivalent to,

0 < p∗3 < 1 (S.44)

ii) Using (23), Q∗
13 ∈ (0, 1) is equivalent to

0 < p∗3 − t <
1 + br

1 + r + rĈ1

(S.45)

iii) By construction Q∗
2 + Q∗

1 = 1, hence the requirement Q∗
2 ∈

(0, 1) is equivalent to requiring Q∗
1 ∈ (0, 1), which from (23)

is equivalent to

0 < p∗1 + t <
1 + br

rĈ1

(S.46)

These three conditions, together with the requirement that p∗1 ≥ 0
also ensure that each p∗i ≥ 0 and each π∗

i ≥ 0. Using inequality
(S.44) and substituting from (S.42) gives the condition

− 2 + br

3 + r(3+4Ĉ1)
< t <

4 + r(4+b+4Ĉ1)

3 + r(3+4Ĉ1)
(S.47)
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Using expression (S.45) and substituting from (S.42) gives the
condition

−4 + r(2 + 7b+ 2Ĉ1 + b(3 + 2b+ 3Ĉ1)r)

(3+r+2br)(1 + r + Ĉ1r)
< t <

2 + br

3 + r + 2br
(S.48)

The conjunction of (S.47) and (S.48) gives the condition

− 2 + br

3 + r(3+4Ĉ1)
< t <

2 + br

3 + r + 2br
.

This condition also ensures that (S.46) is satisfied, completing the
proof of the lemma.

2) Proof of part 3 of Theorem III.9, and characterization
of ε of part 2.:

Lemma S.2. A Nash equilibrium exists if t satisfies (S.43) and in
addition:([

(2+br)(2 + br + r(1+Ĉ1))
]

+ (S.49)

rt
[
(1+r)(b− 1)− Ĉ1

(
5(1+r) + 4rĈ1

)]
≥ 0

(S.50)

or t ≤ 0
)

[ condition for p∗1 to be positive]

and

(
t ≥ 2 + br

1 + r(1+Ĉ1)
or (S.51)

t ≤ (2+br)(2 + (1+Ĉ1+b)r)

6 + r(11 + b+ 15Ĉ1 + (b+ 2bĈ1 + (1+Ĉ1)(5 + 8Ĉ1))r)
(S.52)

or t satisfies expression (S.56)
)

[ for p∗1 to be optimal]

and
(
t ≤ −1 + r

br
or (S.53)

t ≤
4 + r

(
−b2r − b[2 + r(1+Ĉ1)] + 4(1+Ĉ1)[2 + r(1+Ĉ1)]

)
6 + r(11 + b+ 9Ĉ1 + (b+ (1+Ĉ1)(5+4Ĉ1))r)

(S.54)

or t satisfies expression (S.58)
)

[ cond. for p∗2 to be optimal]

Proof. We prove that p∗ is a Nash equilibrium by fixing two of
{p∗1, p∗2, p∗3} while allowing the other pi to vary, then showing
conditions under which p∗i is optimal for πi.

p∗
1 is optimal for network 1. With p2 = p∗2, p3 = p∗3, as we

increase p1 from p∗1 we either stay in Region 3, or potentially move
into Region 1. There are three mutually exclusive cases we need to
consider:

i) For all p1 ≥ p∗1 we remain in Region 3 and never move to
Region 1, and hence p∗1 is optimal.
The boundary between Regions 3 and 1 occurs when, from
(S.23) and (S.10), p1 = pB1 solves p∗3 = [1 + r(p∗2 −
p1)Ĉ1]/[1 + r(1 + Ĉ1)], (c.f. (S.73)), which substituting gives
pB1 = [2 + br− [1 + r(1+2Ĉ1)]t]/2rĈ1. Hence p1 will stay in
Region 3 if the boundary point is infeasible, pB1 ≤ 0, that is, if
t ≥ 2+br

1+r(1+Ĉ1)
, i.e., (S.51).

ii) πi(p1) is decreasing in Region 1 and hence π1(p1) <
π1(p∗1) ∀p1 ∈ Region 1.
Since π1(p1) is convex in Region 1, a sufficient condition for
this is ∂π1

∂p1
|p1=pB1

≤0, which substituting and taking derivatives
in (S.6), using (S.5) and substituting p2 = p∗2, p3 = p∗3,
p1 = p1 = pB1 gives (S.52).

iii) There is a feasible local maximum for π1 in Region 1, where
the profit is given by π̆1 = p̆1Q̆1, but

π∗
1 = p∗1Q

∗
1 + tQ∗

13 ≥ π̆1, (S.55)

and hence again p∗1 is optimal for π1. The point p̆1 is where
∂π1
∂p1

= 0, that is when 0 =
1+r(p∗2−p̆1)Ĉ1

1+r(1+Ĉ1)
− p̆1

rĈ1

1+r(1+Ĉ1)
and

hence p̆1 =
1+rĈ1p

∗
2

2rĈ1
. At this point, the profit is given by

π̆1 = p̆1Q̆1, which is

π̆1 = p̆2
1

rĈ1

1 + r(1+Ĉ1)
=

(1 + rĈ1p
∗
2)2

4rĈ1(1 + r(1+Ĉ1))
.

Substituting for Q∗
1 from (23) in (S.55) gives the full condition

as following the quadratic relation on t,

p∗1
rĈ1

1+br
(p∗1+t)+t

1+r(1+Ĉ1)

1+br
(p∗3−t) ≥

(1 + rĈ1p
∗
2)2

4rĈ1(1 + r(1+Ĉ1))
(S.56)

where p∗i are given in (20),(21),(22).
In the case that (S.56) does not hold (which necessarily also
requires that (S.51) and (S.52) are not satisfied), define

ε1 :=
(1 + rĈ1p

∗
2)2

4rĈ1(1 + r(1+Ĉ1))
− p∗1

rĈ1

1+br
(p∗1 +t)

+ t
1+r(1+Ĉ1)

1+br
(p∗3−t).

Finally, if we decrease, p1, we potentially move to Region 2. But
we know that π1 is decreasing in Region 2, and hence π1(p1) ≤
π(pB23

1 ) < π1(p∗1) f or all p1 ∈ Region 2 where pB23
1 is the value

of p1 at the boundary of Regions 2 and 3.
p∗
2 is optimal for network 2. The proof mirrors the arguments

for showing p∗1 is optimal for network 1. With p1 = p∗1, p3 = p∗3,
as we decrease p3 from p∗2 we either stay in Region 3, or move
into Region 1. There are three mutually exclusive cases we need to
consider:

i) For p2 ≤ p∗2 we remain in Region 3 and never move to Region
1.
At the boundary point, pB2 solves p∗3 =

1+r(p2−p∗1)Ĉ1

1+r(1+Ĉ1)
, that is,

pB2 = t+r(b+t)

2Ĉ1r
. The condition that is infeasible (pB2 < 0) or

zero gives condition (S.53)
ii) π2(p2) is increasing Region 1 and hence π2(p2) <

π2(p∗2) ∀p2 ∈ Region 1, since π2(p2) is concave in the interior
of Region 1 .
Now using (S.7), differentiating and substituting p1 = p∗1, p2 =
pB2 , p3 = p∗3 gives that ∂π2

∂p2
|pB2 = 1− p∗3 − t+r(b+t)

2[1+r(1+Ĉ1)]
which

will be non-negative if and only if (S.54) holds.
iii) There is a feasible local maximum for π2 in Region 1 at the

point p̆2, with profit given by by p̆2Q̆2, but for which

π̆2 ≤ π∗
2 = p∗2Q

∗
2 (S.57)

and hence p∗2 is optimal for π2. p̆2 is the point in Region 1 at
which ∂π2

∂p2
= 0, which using (S.7) and (S.5) gives the point

p̆2 =
1+Ĉ1+Ĉ1p

∗
1

2Ĉ1
. Using (20) gives the profit

π̆2 =

(
1 + Ĉ1 + Ĉ1p

∗
1

2Ĉ1

)2
rĈ1

1 + r(1+Ĉ1)
.

Q∗
2 is given by (21), and (23) and hence substituting (S.57) is

the condition(
1 + Ĉ1 + Ĉ1p

∗
1

2Ĉ1

)2
rĈ1

1 + r(1+Ĉ1)
≤ p∗2

rĈ1

1+br
p∗2 (S.58)

a quadratic in t, where the p∗i are given in (20),(21).
In the case that (S.58), (S.53), (S.54) all fail to hold, define

ε2 := p∗2
rĈ1

1+br
p∗2 −

(
1 + Ĉ1 + Ĉ1p

∗
1

2Ĉ1

)2
rĈ1

1 + r(1+Ĉ1)
.

Finally, if network 2 increases its price above p∗2, it potentially moves
to region 2; but network 2 receives zero profit in Region 2, hence
network 2 has no incentive to increase its price above p∗2.
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p∗
3 is optimal for the Content Provider. We show that under the

conditions of the lemma, p∗3 is optimal for the Content Provider with
no further restrictions.

i) If Ĉ1 ≥ b − 1: As we decrease p3, we remain in Region 3
and hence p∗3 is optimal for all p3 ≤ p∗3. Moving to Region 2
is not possible since the boundary is infeasible: the Region 2-3
boundary is the point p3 ≥ t which satisfies pB3 =

(p∗2−p
∗
1)−b

1−b+Ĉ1
.

Substituting for p∗1 and p∗2 gives

pB3 =
(
−1− br(3 + (1+Ĉ1+b)r)

+(2Ĉ1 + 1− b)r[1 + r(1+Ĉ1)]t
)

÷
(

(Ĉ1 + 1− b)r[3 + (2 + b+ 2Ĉ1)r]
)

(S.59)

and when − 2+br

3+3r+4rĈ1
≤ t ≤ 2+br

3+r+2br
, this implies pB3 < t,

and hence we never move to Region 2. Conversely, increasing
p3 either causes us to remain in Region 3, or move potentially
move to Region 1 where the Content Provider receives zero
profit, hence p∗3 is optimal for all p3 > p∗3.

ii) Ĉ1 < b − 1: the only way to violate (S.24) is to increase p3.
In this scenario with p∗1 and p∗2 then (S.59) with the condition
0 ≤ t ≤ 2+br

3+r+2br
implies p3 ≥ 1 and hence π3 = 0. If instead

− 2+br

3+3r+4rĈ1
≤ t < 0, then to have an interior maximum in

Region 2, it is necessary for both pB3 <1 and p3 < (1+t)/2, and
we can show that these three conditions cannot simultaneously
hold, and hence if we enter Region 2, the value of π3 will
decrease. Hence p∗3 is optimal .

Summary. Necessary and sufficient conditions for a non-
degenerate Nash equilibrium to exist at p∗ in are that Lemma S.2
holds, i.e., (S.43) and {(S.50) or t ≤ 0} and {(S.51) or (S.52) or
(S.56)} and { (S.53) or (S.54) or (S.58)} hold.

When only the necessary conditions hold ( (S.43) and
{(S.50) or t ≤ 0}) but not all the other conditions for Lemma S.2,
(so either {(S.51) and (S.52) and (S.56)} are all false, or {(S.53) and
(S.54) and (S.58)} are all false,) then p∗ is an ε-equilibrium, not a
Nash equilibrium, where ε = max{ε1, ε2}.

3) Proof of Corollary III.10:

Proof. From (20) and the conditions of the corollary, we obtain p∗1>
0. The result follows from part 2 of Theorem III.9.

E. Proof of Theorem III.11
We provide here a more detailed presentation of Theorem III.11

than is given in Section III.

THEOREM III.11. There are only three possibilities for degenerate
equilibria. Specifically, there exists a value tA (which can be com-
puted) such that:

1) If t ≥ tA, then there exists a Nash equilibrium in which the
Content Provider prices itself out of the market by setting p∗3 = t,
Q∗

13 =0, and for networks 1 and 2, the prices, user masses, and
profits are given by

p1
∗ =

2 + r + rĈ1

3rĈ1

, p2
∗ =

1 + 2r + 2rĈ1

3rĈ1

(S.60)

where the user masses are

Q∗
1 =

2 + r + rĈ1

3(1 + r + rĈ1)
Q∗

2 =
1 + 2r + 2rĈ1

3(1 + r + rĈ1)
(S.61)

and the profits are

π∗
1 =

(2 + r + rĈ1)2

9rĈ1(1+r+rĈ1)
π∗

2 =
[1 + 2(1+Ĉ1)r]2

9rĈ1(1+r+rĈ1)
.

(S.62)

2) If t < 0, then network 1 provides a subsidy to the Content
Provider for each user, i.e., let s := −t. Then if the subsidy
s is sufficiently great, viz., it is at least 2+br

3+r(3+4Ĉ1)
, then there

will be a unique Nash equilibrium where the Content Provider
sets p∗3 =0, and Q∗

11 =0. There are two subcases:
a) If s≤ 2+br

rĈ1
, then the equilibrium is:

p∗1 =
2 + r(b+2Ĉ1s)

3Ĉ1r
, p∗2 =

1 + r(2b+Ĉ1s)

3Ĉ1r
(S.63)

where

Q∗
13 =

2 + r(b− Ĉ1s)

3(1+br)
, Q∗

2 =
1 + r(2b+ Ĉ1s)

3(1+br)
(S.64)

with profits given by

π1 =
[2 + r(b−Ĉ1s)]

2

9rĈ1(1+br)
,

π2 =
[1 + r(2b+Ĉ1s)]

2

9rĈ1(1+br)
,

π3 =
[2 + r(b−Ĉ1)]s

3(1+br)
.

(S.65)

b) If s > 2+br

rĈ1
, then network 1 chooses a price of at least s;

in consequence all users will choose network 2, Q∗
2 =1, and

the equilibrium is: p∗1 = s, p∗2 = s − 1

rĈ1
, with network 2

capturing all the profit, π∗
2 = s− 1

rĈ1
.

3) If − 2+br

3+r(3+4Ĉ1)
< t < tA, there exists a set of parametric

conditions under which a Nash equilibrium exists where the
optimal strategy for network 1 is to set its price to zero.
Specifically, these are:

Ĉ1 > b+ 1/r (S.66)

(2+br)(2 + br + (1+Ĉ1)r)

r{(1+r)(1− b) + Ĉ1 [5(1+r) + 4Ĉ1r]}

≤ t <
2 + br

2 + br + (1+Ĉ1)r
(S.67)

[(2+br)(1−t)− (1+Ĉ1)rt]t

1 + br
≥ [2(2+br) + (1+Ĉ1−b)rt)]2

4Ĉ1r(4 + [3(1+Ĉ1) + b] r)
,

(S.68)
which necessarily imply t > 0. The unique equilibrium is:

p∗1 = 0 (S.69)

p∗2 =
1 + b+ Ĉ1 + 2br(1+Ĉ1) + (1 + Ĉ1 − b)[1 + r(1+Ĉ1)]t

Ĉ1 (4 + [3(1+Ĉ1) + b] r)
(S.70)

p∗3 =
2 + br + 2[1 + r(1+Ĉ1)]t

4 + [3(1+Ĉ1) + b] r
, (S.71)

where

Q∗
11 = p∗3, Q∗

2 =
rĈ1

1+br
p∗2, Q∗

13 =
1+r(1+Ĉ1)

1+br
(p∗3−t),

and where the profits π1, π2, and π3 can be calculated from
(7).

Proof. First note that no Nash equilibrium is possible in Region 2,
where ∇12>∇13, since in that case the feasibility condition is p2 >
p1 + p3 + p3 + b(1−p3)/Ĉ1, where the r.h.s is strictly greater than
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zero, and thus network 2 can decrease its price until equality holds,
attracting users and moving out of Region 2 into Region 3. We first
consider the three parts of the theorem, and then show that no other
degenerate Nash equilibria exist.

1) t ≥ tA: If the transfer price t is sufficiently large, the
condition p3 ≥ t implies Q13 = 0, and hence we are in Case 1
of Lemma III.1.

From (A.9), we have in the non-degenerate case the optimal critical
value of w, is given by:

∇12 =
(p2−p1)rĈ1 + 1

rĈ1 + r + 1
.

The profits are π1 = p1∇12 = p1

[
(p2−p1)rĈ1+1

rĈ1+r+1

]
, and π2 =

p2(1−∇12) = p2

[
[1−(p2−p1)]rĈ1+r

rĈ1+r+1

]
. From the first derivatives, we

obtain the unique optimal prices (S.60), (optimal since the second
derivatives are negative). The optimal critical value of w, i.e., the
optimal value of ∇12, is given by:

∇∗
12 =

2 + r + rĈ1

3(1 + r + rĈ1)
=

2 + r + Ĉ2

3(1 + r + Ĉ2)
. (S.72)

By (S.5), the mass of users on the networks at equilibrium are given
by (S.61).

The optimal choice of p1, p2, namely p∗1, p∗2, are given by (S.60)
and the Q∗

i from (S.61). Since Q13 = 0 and Q11 = Q1, we know
that (S.60) and p∗3 ≥ t constitute a local equilibrium. To prove that
these values constitute a Nash equilibrium, we need to show that for
t ≥ tA, given p∗2 and p3

∗, network 1 cannot benefit by altering its
price from p∗1, with corresponding statements for network 2 and the
Content Provider.

p∗
3 = t is optimal for the Content Provider. At this value the

Content Provider has zero profit. For the Content Provider to have a
nonzero profit, we require p3≥ t, hence the Content Provider cannot
lower its price below this value. With the given values of p∗1, p∗2,
rasing the price above t also generates zero profit. Hence p3 = t is
optimal for the Content Provider.

By Lemma III.1, we must have: Q∗
2/rĈ1 − gQ∗

1/Ĉ1 < p∗1+p3−
p∗2. Substituting in (27) implies this will hold iff p3 is greater than
[2+r(1+Ĉ1)]/[3(1+r(1+Ĉ1))]. Hence we must have

tA >
2 + r(1+Ĉ1)

3[1 + r(1+Ĉ1)]
,

since otherwise the Content Provider could lower its price, p3, below
this value to attract users until equality holds.

p∗
1 is optimal for network 1.

For the given values p∗1 and p∗2, we are in the middle subcase of
the alternative defining condition for Case 1 of Lemma III.1, (S.10).
If network 1 raises its price from p∗1, it will remain in Case 1 and
hence p∗1 will remain the optimal response to p∗2.

If network 1 decreases its price from p∗1, it is possible that
π1(p1; p∗2; p∗3) > π1(p∗1; p∗2; p∗3), in which case p∗1 is not an equi-
librium. It is straightforward to shown that this can only happen if
p1 moves to be in Region 3, and has a greater local optimum in
region 3 . We need to consider the cases (A) p∗3 = t ≤ 1 and (B)
t > 1 separately.

We consider subcase B first.

(B) p∗3 > 1. In this subcase, the first inequality in (S.10) is violated
by becoming an equality as p1 is decreased. By (S.31), Q1 =1, and

by (S.32), at this point p1 = p∗2 − p∗3 − 1

Ĉ1
, with profit π1 less than

the profit at p∗1, i.e.

π1 = p1Q1 = p1 < p∗2 − 1− 1

Ĉ1

=
1− r − rc

3rĈ1

<
(2 + r + rĈ1)2

9rĈ1[1 + r(1+Ĉ1)]
= p∗1Q

∗
1.

If we were to reduce p1 even further, then we would immediately
move to Case 2 Theorem III.1, since (S.32) is an equality, where
π1(p1) decreasing as we decrease p1. Hence no higher value of the
profit is possible in case B.

(A) p∗3 ≤ 1. For this to have a local maximum in Region 3 such
that π1(p1; p∗2; p∗3) > π1(p∗1; p∗2; p∗3) we require:

(i) The boundary between Region 1 and Region 3 to be feasible
for p1. At this boundary point the second inequality in (S.10)
is violated by becoming an equality,

t = p∗3 =
1 + r(p∗2−p13

1 )Ĉ1

1 + r(1+Ĉ1)
. (S.73)

Substituting for p∗2 from (27) and simplifying gives the condi-
tion that p13

1 > 0 if and only if

t <
4 + 2r + 2rĈ1

3 + 3r + 3rĈ1

. (S.74)

(ii) The derivative of the profit ∂π1/∂p1 at the boundary p13
1 is

negative. It follows from (7), (S.21), (S.19), (S.18), and from
Q13 =0, and (S.73), that:

∂π1

∂p1
|p131 = p1

∂Q1

∂p1
+Q1 + t

∂Q13

∂p1
= t− (p13

1 +t)
rĈ1

1+br
.

Substituting for p1 from (S.73) and for p∗2 from (27) yields the
condition:

t <
2(2 + r + rĈ1)

3(2 + r + br)
⇐⇒ ∂π1

∂p1
< 0. (S.75)

(iii) There is a feasible local optimum in region 3. Taking derivatives
∂π1/∂p1 using (7), (S.21), (S.19), (S.18), and solving for p0

1

such that ∂p1π1|p0
1 = 0, gives on substituting p∗3 = t,

p0
1 =

1 + p∗2rĈ1 + (b− 1− 2Ĉ1)rt

2rĈ1

and hence substituting for p∗2

t(3r[1− b+ 2Ĉ1]) < 2(2 + 2r + 2rĈ1) ⇐⇒ p0
1 > 0.

(S.76)
(iv) The feasible local optimum generates higher profit. That is

π1(p0
1; p∗2; p∗3) > π1(p∗1; p∗2; p∗3). Substituting gives the condi-

tion

1

36rĈ1(1 + br)

(
4(2 + r + rĈ1)2+

12(b− 1)r(2 + r + rĈ1)t+ 9r
(
(b− 1)2r − 4c(1 + br)

)
t2
)

>
(2 + r + rĈ1)2

9rĈ1(1 + r + rĈ1)

which is equivalent to the condition{
t < tl(b, r, Ĉ1) OR t > tu(b, r, Ĉ1) if (b− 1)2r ≥ 4Ĉ1(1 + br)

tl(b, r, Ĉ1) < t < tu(b, r, Ĉ1) if (b− 1)2r < 4Ĉ1(1 + br)
(S.77)
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where tl, tu are the upper and lower roots of the equation

9
(

(b− 1)2r − 4Ĉ1(1 + br)
)
t2

+ 12(b− 1)(2 + r(1 + Ĉ1))t−
4

1 + r(1 + Ĉ1)
(b− 1− c)(2 + r(1 + Ĉ1))2 = 0.

With a slight abuse of notation, we shall let (S.74) etc to refer to the
conditions on t: hence p∗1 is not optimal for network 1 only if (S.74)
AND (S.75) AND (S.76) AND (S.77) hold, thus p∗1 is optimal if
NOT ((S.74) AND (S.75) AND (S.76) AND (S.77)).

p∗
2 is optimal for network 2.

The proof mirrors that for showing p∗1 is optimal. For network 2,
if we decrease p2 from p∗2, we remain in Case 1 of Theorem III.1,
and hence cannot improve upon π2(p∗2).

As we increase p2 above p∗2 it is possible π2(p∗1; p2; p∗3) >
π2(p∗1; p∗2; p∗3), in which case p∗2 is not an equilibrium. For this to
happen, p2 must force a move to region 3, and network 2 must have
a greater local optimum in that region. We need to consider the cases
(A) p∗3 = t ≤ 1 and (B) t > 1 separately.

For case (B), p∗3 = p2 − 1

Ĉ1
+ p∗1 . At boundary point π2 =0 and

as we increase π2 still further we move into Case 2, hence no greater
profit for network 2 is possible in this case.

(A) π2(p∗1; p2; p∗3) > π2(p∗1; p∗2; p∗3) for some p2 requires
(i) The boundary between Region 1 and Region 3 to be feasible

for p2. At the boundary p2 = p13
2 solves

t = p∗3 =
1 + r(p13

2 −p∗1)Ĉ1

1 + r + rĈ1

. (S.78)

Substituting p∗1 from (27), and simplifying gives the condition
that p13

2 will be positive is

t >
1− r − Ĉ1r

3 + 3r + 3Ĉ1r
. (S.79)

(ii) The derivative ∂π2/∂p2 at the boundary p2 = p13
2 is positive.

Now
∂π2

∂p2
= −p2

rĈ1

1 + br
+ (1− p∗3).

Using (S.78) and (27), this will be positive if

t = p∗3 <
4 + 3br − (1+Ĉ1)r

3[2 + br + (1+Ĉ1)r]
. (S.80)

(iii) There is a feasible local optimum in region 3. The local
optimum for π2 in region occurs at the price p0

2 where
∂p2π2|p0

2 = 0, which substituting gives the value

p0
2 =

2 + r + 3br + rĈ1 + 3(1− b+ Ĉ1)rt

6rĈ1

which will be feasible provided that

2 + r + 3br + rĈ1 + 3(1− b+ Ĉ1)rt > 0. (S.81)

(iv) The feasible local optimum generates higher profit. The profit
at p0

2 is given by

π2(p∗1; p0
2; p∗3) =

(2 + r + 3br + rĈ1 + 3(1− b+ Ĉ1)rt)2

36rĈ1(1 + br)

and this will be greater than π2(p∗1; p∗2; p∗3) = (1+2(1+Ĉ1)r)2

9rĈ1(1+r+rĈ1)

provided that

t < tl(b, r, Ĉ1) OR t > tu(b, r, Ĉ1) (S.82)

where tl, tu are the upper and lower roots of the quadratic in t

(2 + r + 3br + rĈ1 + 3(1− b+ Ĉ1)rt)2

=
4(1 + br)(1 + 2(1 + Ĉ1)r)2

1 + r + rc
.

Hence p∗2 is not optimal only if (S.79) AND (S.80) AND (S.81)
AND (S.82) hold, and hence p∗2 is optimal if NOT ( (S.79) AND
(S.80) AND (S.81) AND (S.82) ).

p∗
3 is optimal for the Content Provider. Trivial.

Summarizing, hence necessary and sufficient conditions for a
Nash equilibrium to exist in this case are that NOT ( (S.79) AND
(S.80) AND (S.81) AND (S.82) ) AND NOT ( (S.74) AND (S.75)
AND (S.76) AND (S.77)). Hence by choosing the simpler conditions
in this expression, it follows that sufficient conditions for a Nash
equilibrium to exist with these p∗i are that t ≥ tA, where

tA = min

{
1,

max

(
4 + 3br − (1+Ĉ1)r

3[2 + br + (1+Ĉ1)r]
,

2 + r(1+Ĉ1)

3[1 + r(1+Ĉ1)]
,

2[2 + r(1+Ĉ1)]

3[2 + br + r]

)
,

max

(
4 + 3br − (1+Ĉ1)r

3[2 + br + (1+Ĉ1)r]
,

2[2 + r(1+Ĉ1)]

3[1 + r(1+Ĉ1)]

)}
. (S.83)

2) t < 0, s = −t ≥ 2+br

3+r(3+4Ĉ1)
: e

When the subsidy is large enough, the Content Provider can set
its price p3 to zero. Now when p3 =0, then by (S.16), Q11 =0, and
basic service is never used in this case. First consider the case

2 + br

rĈ1

≥ s ≥ 2 + br

3 + r(3+4Ĉ1)

corresponding to subcase 2(a) of Theorem III.5.

Proof. Proof of subcase 2(a) of III.11 It is straightforward to check
that the pi in the system (30) with the corresponding Q’s are given
in (31) are consistent with being in Region 3, and moreover p∗1, p∗2
satisfy the first order conditions for π1, π2, i.e., ∂πi

∂pi
=0, when p3 =

0. The second order conditions are also satisfied for networks 1 and
2. The condition for π3 to have a maximum at p3 =0 is that ∂p3

∂π3
≤ 0.

For this to hold when p=p∗ requires:

∂π3

∂p3

∣∣∣∣
p=p∗

= s
∂Q13

∂p3
+Q13 =

2 + br − (3 + 3r + 4Ĉ1r)s

3 + 3br
≤ 0

(S.84)
and hence

s ≥ 2 + br

3 + r(3+4Ĉ1)
. (S.85)

The requirement that Q13 ≥ 0 necessitates that

s ≤ 2 + br

rĈ1

.

When both conditions, (S.84) and (S.85), on s are satisfied, the
remaining feasibility requirements (Q13≤1, π≥0) are also satisfied,
hence we have shown that vector (p∗i ) is a local maximum. It remains
to prove that these are globally optimum prices.
p∗1 is optimal. While we remain in Region 3, we know p∗1 is

optimal. By increasing p1, we remain in Region 3 until we reach
the boundary with region 1, at which point from (S.19), Q13 = 0
(recall p∗3 = 0), hence Q1 = 0, π1 = 0 and this profit remains
zero remains so as we increase p1 further (c.f. (S.5) final condition).
Now consider what happens when we decrease p1 below p∗1. If we
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decrease p1 sufficiently, then we potentially enter Region 2. For this
to happen, since p2 =p∗2, it follows from (S.15) that

p1 < p∗2 −
b

Ĉ1

=
1− br + rĈ1s

3rĈ1

.

But then, to have a higher profit than that corresponding to the prices
given in (30), (30) we require

1− br − 2rĈ1s

3rĈ1

>
(2 + br − rĈ1s)

2

9rĈ1(1+br)

which is clearly impossible for s>0 (recall that b>1, r>0, c>0).
Hence p∗1 is optimal.
p∗2 is optimal. As we increase p2 and remain in Region 3 (holding

p3 =0 and p1 =p∗1), the profit for network 2 remains suboptimal (less
than π∗

2 ), until we enter Region 2. But network 2 has zero profit in
Region 2. Hence network 2 cannot increase its profit by increasing its
price. If network 2 were to decrease its price from p∗2, then again its
profit would be suboptimal while in Region 3. If it were to decrease
its price further to enter Region 1; then at the boundary of region
and 1 and 3, from (S.20) Q13 = 0 (recall p∗3 = 0) and hence Q2=1.
The profit at this point is less than π∗

2 , and decreasing pi2 further
decreases the profit further.
p∗3 is optimal. Since p∗3 =0, the Content Provider can only increase

its price, which potentially takes it to Region 1 where the Content
Provider has no users and zero profit. Hence the Content Provider
cannot increase its profit by changing its price.

Hence we have shown that p∗ is indeed a Nash equilibrium, thus
proving the subcase 2(a).

Now consider case 2(b) of the theorem where

s >
2 + br

rĈ1

.

Proof. Proof of subcase 2(b) of Theorem III.11 With the pi given by
p∗1 = s, p∗2 = s− 1

rĈ1
, p∗3 = 0, we are in Region 3 with Q2 = 1 .

We now show that this is indeed a Nash equilibrium. If the
Content Provider were to lower its price it would become negative and
potentially move the scenario to Region 2. However, p3<0 violates
Region 2 feasibility condition (S.13). If the Content Provider were to
raise its price, this could potentially move the scenario to Region 1,
but in that case the Content Provider still receives zero profit. Thus
the Content Provider will not change its price.

Network 2 has no incentive to lower its price, since network 2
already has all the users, and this could only result in lowering its
profit. network 2 has no incentive to raise its price either, since this
would potentially move the scenario to Region 2, but in Region 2 we
have Q2 =0, and so network 2 would have no profit. Thus network 2
will not change its price.

If network 1 were to decrease its price below s, this would
potentially move the scenario to Region 2; but Region 2 feasibility
condition (S.14) is p1 − s(1− p3) ≥ 0, which reduces here to
p1 − s ≥ 0, a contradiction, since p1−s < 0. If network 1 were to
increase its price, this would potentially move the scenario to Region
1; but in this case, (S.10) and (S.5) imply Q1 = 0, and network 1
would still get no profit. Thus network 1 will not benefit by changing
its price.

3) t > 0:
Proof. When p1 = 0 and we are in Region 3, then from (7), π1 =
tQ13, and using (S.19) and (S.21)

∂π1

∂p1
= Q1 + t

∂Q13

∂p1
= Q1 − t

rĈ1

1 + br

=
1 + p3(b− 1− rĈ1) + rĈ1(p2 − t)

1 + br
.

For p1 =0 to be a Nash equilibrium for network 1, it must first be a
local maximum within Region 3, which requires

π1 ≥ 0 and
∂π1

∂p1
< 0. (S.86)

In addition p2 and p3 need to be local maxima, and hence solve

∂π2

∂p2
= 0,

∂π3

∂p3
= 0 with p1 =0. (S.87)

Using equations (S.19), (S.20), then (S.87) becomes

b+ (1 + Ĉ1 − b)p3 = 2Ĉ1p2

2p3(1 + r + rĈ1) = 1 + t(1 + r + rĈ1) + rĈ1p2.

Solving these equations gives (S.70) and (S.71) which is a local
optimum since the πi(pi) are convex. Substituting into (S.86) and
using algebraic manipulation gives the conditions (S.66) and (S.67)
on b, r, Ĉ1, t in the proposition, which also enure that p∗2 > 0 and
p∗3 > 0. The profit for network 1 is then

1 + r(1 + Ĉ1)

1 + br
t(p∗3 − t). (S.88)

For this to be Nash equilibrium, it must a be global optimum: in the
case of network 1, network 1 can increase its price, and move the
solution into Region 1. If does so, it has an optimum response to
network 2 setting its price to p∗2, namely the price

p1 =
(1 + r + rĈ1)(4 + 2br + (1− b+ Ĉ1)rt)

2rĈ1(4 + [b+ 3(1+Ĉ1)]r)
.

The condition that the resulting profit for network 1 at this value
(calculated from (S.7)) does not exceed (S.88) gives (S.68).

4) No other degenerate Nash equilibria exist: To complete
the proof of the theorem, we need only show that there cannot be a
Nash equilibrium under any of the remaining boundary conditions,
all of which must be in Region 3. We will have a Nash equilibrium
at the point p∗ = (p∗1, p

∗
2, p

∗
3) provided that the point p∗ is feasible

and, for each i, πi(pi) is maximized at p∗. But as we have seen,
from (S.39), that the profit functions πi(pi) are strictly concave,
hence the only possible Nash equilibria in this case occur either at
a unique interior point of the feasible region or at the boundaries
of their support. The boundaries of the region are characterized
in Corollary III.3 (the corresponding intervals for each πi(pi) are
generated by the intersection of the lines formed by fixing pj , j 6= i
in the boundaries). The boundaries correspond to the hyperplanes
p1 = 0, p2 = 0 p3 = 0, and Q11 = 0, Q13 = 0, Q2 = 0 (and since
by construction Q11 +Q13 +Q2 = 1 holds, we also consider the
constraints Q2 = 1). In addition, when t ≥ 0 we have the boundary
p3 = t corresponding to π3(p3) = 0 (note that π1 = 0, π2 = 0 are
covered by other boundaries). When t ≤ 0, there is the additional
constraint boundary π1 =0.

Condition π1 =0. No Nash equilibrium can exist in this case, since
if π1 = p1Q11 + (p1 +t)Q13 = 0, we must have p1 + t < 0 (the
degenerate case Q11 = 0 = Q13 is covered by subcases below), then
from from (7)

∂π1

∂p1
= Q1 + (p1 + t)

∂Q13

∂p1
> 0

and network 1 can increase its profit away from 0 by increasing p1.

Condition Q13 =0. When Q13 = 0, then from (7)

∂π3

∂p3
= p3

∂Q13

∂p3
< 0
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unless p3 = 0. Hence we can decrease p3, thereby increasing the
Content Provider’s profit away from zero, unless either p3 = 0 or
t >0 and p3 = t. We treat each of these special cases below.

Condition p2 =0. Here, to maximize π2 we must have ∂π2
∂p2

∣∣
p2=0

≤
0. From (7), ∂π2

∂p2

∣∣
p2=0

=Q2, hence Q2 =0. Then from (12) and (13),
p1 +p3< 0, which implies at least one price is negative, and hence
there is no feasible Nash equilibrium.

Condition Q2 =0. (7) When Q2 = 0, π2 = 0 then to be in case 3
requires that p2>0, while from (7)

∂π2

∂p2
= p2

∂Q2

∂p2
< 0

and hence network 2 can decrease its price and generate positive
profit. Thus Q2 =0 cannot be a Nash equilibrium for network 2.

Condition p3 =t .
From (7), when p3 = t, ∂π3

∂p3
=Q13, and if Q13>0, then this cannot be

a Nash equilibrium for the Content Provider, since it could increase
its profit by increasing t. The only possibility is that both p3 = t and
Q13 = 0, which is included as a particular special case of Theorem
III.11 part 1.

F. Proof of Theorem III.13 and Corollary III.14
Proof. Theorem III.13 is a special case of Theorem III.9 where
t = 0, proved using Lemmas S.1 and S.2. Now (S.43), which gives
conditions for prices and profits to be non-negative, is automatically
satisfied when t = 0. This leaves Lemma S.2; when t = 0, the
conditions of Lemma S.2 simplify: the conditions for p∗1 to be positive
and p∗1 to be optimal are satisfied, leaving the conditions for π2 to
be optimal, ((S.54) or (S.58)), which reduce to

br[2 + (1+b+Ĉ1)r] ≤ 4(1+r+Ĉ1r)
2 OR (S.89)

4(2 + r(2 + 2Ĉ1 + b(4 + [b+ 3(1+Ĉ1)]r)))2

1 + br
≥(

4 + r
(
b2r + 4(1+Ĉ1)[2 + r(1+Ĉ1)] + b(4 + 3(1+Ĉ1)r)

))2

1 + r + Ĉ1r
.

(S.90)

We roll Theorem III.13 and Corollary III.14 into the following
Lemma.

Lemma S.3. When t = 0, sufficient conditions for a Nash equilib-
rium to exist are

b ≤ 2(1+Ĉ1) +
1

r
. (S.91)

Sufficient conditions for a Nash equilibrium not to exist are

r > 1 AND b > 4(1+Ĉ1) +
1

r
(S.92)

Proof. Proof of Lemma The first condition (S.89) is clearly satisfied
if b ≤ 1 + Ĉ1. By writing b = 2 + kĈ1, expanding the second
inequality, taking out a factor of (b − 1 − Ĉ1) and equating the
coefficients of ri in the remaining quartic to ensure that the resulting
polynomial is always positive , then we can show that resulting
inequality will always be satisfied provided k ≤ 2. That is, if
b ≤ 2(1+Ĉ1), a Nash equilibrium will always exist. A more detailed
line of reasoning will produce a broader sufficient condition:

b ≤ 2(1+Ĉ1) or r ≤ 1

b− 2(1+Ĉ1)
.

which can be combined into the single condition (S.91).
By substituting and simplifying, we can also show that when the

condition (S.92) holds then neither (S.89) nor (S.90) are true, and
hence (S.92) is a sufficient condition for a Nash equilibrium not to
exist.

G. Proof of Theorem IV.1
We provide here a slightly more detailed presentation of Theorem

IV.1 than is given in Section IV.

THEOREM IV.1 There exists a unique Nash equilibrium in the
two-stage game. This occurs in one of two mutually exclusive cases,
where in each case network 1 sets a positive transfer price t∗. In the
first case all three parties make a positive profit; the second case is
degenerate, where the Content Provider is shut out of the market.
Specifically, either:

1) All three parties make a positive profit. The prices, user masses,
and profits for this case are given by Theorem III.5 with t =
tBor tO , where:
a) tO solves the first-order profit maximization conditions. This

is the value of t satisfying first order conditions, namely

∂

∂t
π1(p∗1(t), p∗2(t), p∗3(t)) = 0.

This will yield an affine equation in t, with solution tO .
Here tO is the value of t that maximizes a concave profit
function and hence can in principle be found in a straight-
forward way by network 1.

b) tB is the point at which network 2 is indifferent between
competing with the Content Provider or lowering its price to
drive it out of the market. Here tB < tO , where tB is the
feasible solution to the equation in t derived from (S.58),
that is the positive solution to(

1 + Ĉ1 + Ĉ1p
∗
1(t)

2Ĉ1

)2
1

1 + r(1+Ĉ1)
=

1

1+br
(p∗2(t))2

(S.93)
a quadratic in t, where the p∗i are given in (20),(21). Note
that from Theorem III.9, equation (26), we must have tB <

2+br
3+r+2br

.
Sufficient conditions for this case to exist are that b∗(r, Ĉ1) ≤
b ≤ 1 + Ĉ1 OR (1 + Ĉ1 < b ≤ 2(1 + Ĉ1) + 1/r

2) The equilibrium is degenerate, with the two networks making
positive profit, and the Content Provider shut-out of the market.
The prices, user masses and profits are given in Theorem
III.11,with t∗ ≥ tA, where tA is defined in Theorem III.11
and tA is given explicitly in (S.83), and satisfies tA ≥ 1. There
are two subcases:
a) b is small, satisfying 1 ≤ b ≤ b∗(r, Ĉ1) where b∗ is the

root of a cubic equation, with the bound b∗ < 1 + Ĉ1. In
this case network 1 makes strictly greater profit than having
a positive transfer price.

b) b is large, for which sufficient conditions are b > 4(1+
Ĉ1) + 1/r and r > 1 (c.f. Corollary III.14). In this instance
network 1 cannot attain the higher profits that could be gained
by setting a positive transfer price.

Proof. Proof We consider two subcases separately: b ≤ 1 + Ĉ1 and
b > 1 + Ĉ1 . The statements of the theorem follow by combining
the results from the subcases.

Subcase: When b ≤ 1 + Ĉ1 Recall that in this case the profit for
network 1 is smaller with t = 0 than without the Content Provider.

i) First note that on calculating the profits from (7) using the
prices and user masses from Theorem III.5, we can see that
π1(p∗1(t), p∗2(t), p∗3(t)) is quadratic in t. By direct calculation, it
is straightforward to see that

∂2

∂t2
π1(p∗1(t), p∗2(t), p∗3(t)) < 0

for 1 ≤ b ≤ 1+ Ĉ1 hence any local optimum satisfying the first
order conditions will be a global optimum if staying within the
feasible region of Case 3.
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ii) The value of t satisfying first order conditions is

tO = (br + 2)(Ĉ1r + r + 1)
(
b2r + 2b− Ĉ1(r + 1)− r − 2

)
÷
[
16Ĉ3

1r
2(br + 1) + Ĉ2

1r(r(4b((b+ 8)r + 10)− r + 30) + 35)

+ 2Ĉ1(r + 1) (r([b(b+ 9)− 1]r + 11b+ 7) + 9)

−(b− 1)2r(r + 1)2] (S.94)

iii) For 1 ≤ b <
√

Ĉ1r2+Ĉ1r+r2+2r+1
r2

− 1
r

, then
∂
∂t
π1(p∗1(t), p∗2(t), p∗3(t))|t=0 < 0, so network 1 can indeed

increase revenue by reducing the transfer price from zero,
setting a negative transfer price, thereby effectively subsidizing
the Content Provider. However, network 1 can do even
better by raising the transfer price to such a level that the
Content Provider is shut out of the market—for example,
by setting t = 1. The latter follows by first showing that
∂
∂t
π1(p∗1(t), p∗2(t), p∗3(t))|

t=− −2+br

3+r(3+4Ĉ1)

> 0, hence the value

of t0 is a potential Nash equilibrium (c.f. Theorem 5.3));
second, proving that ∂

∂b
π1(p∗1(tO), p∗2(tO), p∗3(tO)) > 0 in this

region, i.e., profits for network 1 increase with b; and third,

showing that when b =

√
Ĉ1r2+Ĉ1r+r2+2r+1

r2
− 1

r
, network 1

is better shutting the Content Provider out of the market, hence
is it better offer adopting this policy for all b in this range.

iv) For
√

Ĉ1r2+Ĉ1r+r2+2r+1
r2

− 1
r
< b ≤ Ĉ1 + 1, then the optimal

choice of strategy depends upon the values of b, Ĉ1, r, or on a
value b∗ = b∗(r, Ĉ1), where b∗ is the root of a cubic equation
involving r and Ĉ1. This is the value of b at which network 1 is
indifferent between choosing the optimal value of t∗ = tO and
choosing t∗ = 1 to shut-out the Content Provider.

a) If
√

cr2+Ĉ1r+r2+2r+1
r2

− 1
r
< b < b∗ then optimal for

network 2 to shut-out the Content Provider, by raising t, eg
t = 1.

b) If b∗ ≤ b ≤ 1+Ĉ1 then network 1 announces t∗ = tO given
by (S.94).

Note that b∗ is very “close”to 1+Ĉ1 (informally; i.e., the region
is small)

v) These are the only possibilities: if a value of t is chosen so that
Case 3 of Theorem III.11 introduces a possible degenerate Nash,
network 1 can increase profits by setting t = 1.

Subcase: When b > 1 + Ĉ1

i) First note that when a Nash equilibrium exists in Case 3, i.e., in
Region 3, it is always advantageous for network 1 to have the
Content Provider use its network. That is, the profit for network 1
is greater with t = 0 than shutting the CP out.

ii) Straightforward to show that given b > 1 + Ĉ1,
∂
∂t
π1(p∗1(t), p∗2(t), p∗3(t))|t=0 > 0 and hence if a Nash equi-

librium exists with t set, t should be strictly positive.

iii) In this case (i.e., Nash equilibrium and in Region 3) there are
two possible cases
a) t can be t∗ = tO , i.e., solution to first order conditions

b) t∗ = tB is on the boundary of the Nash equilibrium
boundary, the critical point at which network 2 is indifferent
between competing with the Content Provider, or lowering its
price to drive out the Content Provider.

Sufficient condition for one of these two cases to exist is 1+c <
b ≤ 2(1+c)+ 1

r
, (which follows from combining Theorem III.13

with this subcase).

iv) We know from Cor. III.10 than an ε−equilibrium exists in this
(where b > 1 + Ĉ1) in the second stage game if t = 0), and
hence an “optimal” ε−equilibrium also exists -i.e.from above,

it follow that t∗ = tO is always an optimal ε−equilibrium in
Stackelberg game.

v) Under certain conditions, no Nash equilibrium exists in the
multistage game with the Content Provider involved —i.e., the
transfer price is raised to such a high level that it is shut out of the
market, (cf Theorems III.9 and III.11 which discuss equilibria
for when the Content Provider involved). Cor. III.14 gives a
sufficient condition for no Nash equilibrium to exist with t = 0,
and this implies the only Nash equilibrium is when t is raised to
such a level as to shut the Content Provider out of the market.

H. Proof of Theorem V.1
THEOREM V.1 For quadratic congestion costs and equal capacities,

the optimal strategy for network 1 is to set a negative transfer price
t∗ = tO(b, Ĉ1).

Proof. We will show that d
dt
π∗

1(t)|t=0 < 0, and that π∗
1(t) is

concave. When in Case 3 of Lemma III.1, putting r = 1/b, gives the
defining conditions as(

bQ2

Ĉ1

)2

−
(
Q11 + bQ13

Ĉ1

)2

+ p2 − p1 = p3 (S.95)

and Q11 = p3, hence Q13 is the solution to the quadratic(
b(1− p3 −Q13)

Ĉ1

)2

−
(
p3 + bQ13

Ĉ1

)2

+ p2 − p1 = p3 (S.96)

which reduces to a linear equation, with solution

Q13 =
b2(1− p3)2 − p2

3 − Ĉ2
1 (p1 − p2 + p3)

2b(b(1− p3) + p3)
. (S.97)

We have seen that π1(p1) and π2(p2) are concave when r = 1/b, and
that π3(p3) is in general concave (or quasi-concave), hence we can
find the optimum by considering the first order conditions. Equating
to zero the derivatives

∂πi
∂pi

for i = 1, 2, 3, and substituting for the
partial derivatives by implicitly differentiating (S.96) or (S.97) gives,
after simplifying, the equations

2b(p3 +Q13) =
Ĉ2

1 (p1 + t)

b(1− p3) + p3

2bQ2 =
Ĉ2

1p2

b(1− p3) + p3

(b+ t− bt)Q13 =

(
Ĉ2

1 + 2p3

)
(p3 − t)

2b
+ b(p3 − t)(1− p3),

(S.98)

whose solution give p∗i , and Q∗
i . Eliminating p1 and p2, and noting

that Q2 = 1 − p3 − Q13, enables us to reduce the set of equations
{(S.97), (S.98)} to a pair of simultaneous linear equations in Q13,
i.e.,

b2(1− p3)(3− 5p3 − 6Q13 − Ĉ2
1 (p3 − t)

= p3(b(4p3 + 6Q13 − 2) + p3)

(
Ĉ2

1 + 2p3

)
(p3 − t)

= 2b (b [(1− t)Q13 − (1− p3)(p3 − t)] +Q13t) . (S.99)

Eliminating Q13 reduces the equations to a cubic in p3, where p∗3 is
the real root in [0, 1]. Explicitly the cubic is

6(b− 1)2(b+ 1)p3
3 − (b− 1)

(
17b2 + 7b+ 3Ĉ2

1

)
p3

2

+ 2b
(

7b2 − b+ 2Ĉ2
1

)
p3 − 3b3 = 0.
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To show that d
dt
π∗

1(t)|t=0 < 0 involves
i) Writing π∗

1(t) = p∗1(t) (p∗3(t) +Q∗
13(t)) + tQ∗

13(t) and differ-
entiating to obtain d

dt
π∗

1(t)|t=0

ii) Differentiating (S.98) and (S.97) implicitly w.r.t t, and setting
t 7→ 0

iii) Showing that when t = 0 the resulting set of equations for
{π∗

1(t)|t=0, (p
∗
i (0), Q∗

i (0)), ( d
dt
p∗i (t)|t=0

d
dt
Q∗
i (t))|t=0)} do

not have a consistent solution unless d
dt
π∗

1(t)|t=0 < 0. This is
proved using Mathematica [18].




