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The aim of the paper is to describe a bootstrap, contrary to the sieve boot-
strap, valid under either long memory (L M) or short memory (SM) depen-
dence. One of the reasons of the failure of the sieve bootstrap in our context
is that under LM dependence, the sieve bootstrap may not be able to capture
the true covariance structure of the original data. We also describe and ex-
amine the validity of the bootstrap scheme for the least squares estimator of
the parameter in a regression model and for model specification. The moti-
vation for the latter example comes from the observation that the asymptotic
distribution of the test is intractable.

1. INTRODUCTION. Inference on statistics of interest is often carried out by employ-
ing the asymptotic distribution as an approximation to their finite sample one. However such
an approximation is not always satisfactory and researchers have then looked for alternative
approaches. One of them is resampling methods, introduced by Efron’s seminal paper (1979)
for independent and identically distributed, iid, data. Motivated by its finite sample refine-
ments and statistical properties in different contexts, see for instance Hall (1992), Efron’s
resampling ideas have been extended to a variety of different non-iid situations, including
dependent data. The validity of the different bootstrap algorithms depend crucially on the
dependence structure of the data and/or on the statistic under consideration. See for instance
Biihlmann (2002), Lahiri (2003) or Politis (2003) among others for comprehensive reviews
on resampling dependent data.

When resampling dependent data we can differentiate two main methodologies. A first
methodology is based on time domain methods, being the two most common ones the Mov-
ing Block Bootstrap (M BB), see Kiinsch (1989), and the AR—sieve bootstrap, introduced
by Kreiss (1988) and explored by Bithlmann (1997). Among these two approaches, due to its
computationally and conceptual simplicity, the A R-sieve bootstrap is very much employed
with real data and its validity has been shown for a variety of statistics for time series se-
quences not necessarily being linear. We refer to Kreiss, Paparoditis and Politis (2011) for
a thorough discussion when the A R—sieve bootstrap is expected to be valid, who also gave
situations for its nonvalidity, such as when the data is noncausal, whereas under long mem-
ory (LM) dependence they cast some doubts on its validity. Notice that the latter type of
dependence does not satisfy their conditions. In addition to Kreiss et al.’s (2011) comments,
we have some further doubts on the validity of the AR—sieve bootstrap. The reason being
as the bootstrap may not preserve the covariance structure of the data, which is one of the
key requirements for the validity of any resampling scheme. Indeed the A R—sieve bootstrap
appears to match, if anything, a Type II dependence structure whereas Condition 1, see Sec-
tion 2, implies that u; may have a Type I dependence. See Marinucci and Robinson’s (1999)

MSC 2010 subject classifications: Primary 62G10, 62F40; secondary 62J20, 62G30
Keywords and phrases: long memory, bootstrap methods


http://www.imstat.org/aos/
http://arxiv.org/abs/arXiv:0000.0000
mailto:f.j.hidalgo@lse.ac.uk

2 J. HIDALGO

Type I and II definitions for fractional Gaussian motions. See also Remark 4 for some extra
arguments and/or comments.

A second (general) approach to implement resampling schemes is based on frequency
domain methods. The idea or motivation behind this approach comes from the observation
that periodogram ordinates at a finite number of frequencies are approximately independent
and exponentially distributed, see Brockwell and Davis’s (1991) Theorem 10.3.1., so that
Efron’s ideas may be employed. Early examples are Franke and Hérdle’s (1992) bootstrap of
the spectral density function or Dahlhaus and Janas (1996) for statistics based on functionals
of the periodogram. A similar approach might be based on resampling the discrete Fourier
transform, DFT, as similarly to the periodogram, the DFT at two different frequencies can
be considered approximately independent. See Hurvich and Zeger (1987) who proposed a
nonparametric bootstrap although without any theoretical justification, or Hidalgo (2003)
who showed the validity of the resampling for the least squares estimator in a time series
regression model. More recently Kirsch and Politis (2011), who also gave a comprehensive
review of the literature, proposed and examined a bootstrap scheme with the aim to obtain
time series resamples by using the inverse of the DFT, which they called Time Frequency
Toggle (TFT).

However, the previous frequency domain resampling schemes have some limitations. To
see this, suppose that {u;},., is a sequence of random variables which has an M A (co)
representation

0o
U = Zﬁj&t,]’; with ¢ =1,
Jj=0

where {€;},., is a zero mean iid sequence of random variables with [ (5?) = o2, Basi-
cally what the aforementioned frequency domain bootstrap schemes do is to “approximate”

‘Z;‘io ﬁjeij’\‘, the modulus of the spectral transfer function, so that it suggests that the

scheme will be valid only for statistics that only require to mimic the second order depen-
dence structure of the data. So, they might not be a valid resampling scheme for the estimators
of the parameters in the transformed regression model

E(ys;0) = B + s

S —_ . . .
such as the well employed Box-Cox transformation = (y;;8) =: ¥ 5 ! as their statistical prop-

erties involve features beyond the second moments of the data.

The aim of the paper is thus to describe and examine a bootstrap algorithm which, unlike
the methods mentioned previously, approximates directly the transfer function Z;’;O ¥ eI
as opposed to its modulus, and hence able to match moments greater than or equal to 2 of the
data as it is the case with the AR-sieve bootstrap scheme, see Biihlmann (1997). However
contrary to the AR—sieve bootstrap, we want to allow for sequences that might exhibit LM
dependence, as well as short memory (SM) dependence. Also, as our resampling scheme
obtains time series resamples, it has some similarities with the T'F'T" scheme, and thus it
appears that the conditions in Kirsch and Politis (2011) might be sufficient but not necessary.
Observe that Kirsch and Politis’s (2011) Assumptions P.1 to P.3 are not satisfied for LM
dependent sequences.

The bootstrap described in Section 2 is based on the “discrete” Cramér representation
of Uy, = {us},_, and Bartlett’s approximation of the discrete Fourier transform of Uy, by
that of its innovation sequence, say {e;}; . In addition, our resampling scheme, contrary
to the MBB, is not a subset of the original data and similar to the T'F'T" scheme, we obtain
time series resamples. Finally, similar to the AR-sieve bootstrap scheme, the bootstrap data
sequence is covariance stationary.
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The remainder of the paper is as follows. Section 2 states the regularity conditions and it
describes the resampling scheme. Section 3 describes two main situations where the proposed
bootstrap scheme is valid. More specifically, for the least squares estimator in a time series
regression model and for model specification in regression models when both regressors and
error term may exhibit LM dependence. Section 4 reports the results of a Monte Carlo study
of the finite sample performance of the bootstrap, and in the case of SM sequences how
it compares with the AR-sieve bootstrap, whereas Section 5 concludes. The proofs of all
our main results in Section 2 are collected in Section 6, whereas Section 7 states a series
of Lemmas for easy reference. The supplementary material provides the proofs of the main
results as well as the lemmas.

2. REGULARITY CONDITIONS AND DESCRIPTION OF THE BOOTSTRAP.
We give some notation first. For any d € (—1/2,1/2), we denote

ey (1_L)d:Z7rk (d)LF; 7 (—d) = T L (k+d)
k=0

@rihr1y PN

(1 —2coswL + L2)d = Zrk (cosw; d) L*,
k=0

where I (+) denotes the gamma function such that I' (¢) = oo for ¢ =0 with I" (0) /T' (0) =1
and the coefficients 7 (cosw;d) follow the second order homogeneous difference equation

o (z:d) = 22 (T) o1 (2:d) — (k_zkd_?> s (2:d),

see Section 8.93 in Gradshteyn and Ryzhik (2000).
We now introduce the following regularity condition.

CONDITION 1. {u;},.; is a sequence of random variables such that

o0 o)
Utzzﬁjftfj; 219]2 < 00, 190:1,
Jj=0 J=0

where {€t},., is a zero mean iid sequence of random variables with E (5,52) =02 and a
spectral density function, f, ()\), bounded away from zero. Also

J J
@ 0= &(—dii—do)bp_j = & j(—di;—da)by;  di,dy €[0,1/2),
k=0 k=0

where &, (dy;d2) = 25:0 7o (cosw;da) mp_yg (dy) =: Z?:o Ti—e (cosw;do) 7o (di) and y 72 k2 |br| <

Q.

Condition 1 implies that the process {u;},., belongs to the class of linear processes and
it implies that for instance

e — Z;iofj (—dl;—dg)&‘g_j; 52:Z§.;Obj5t—j if dl,dg >0
' 2720 biet—j if dy=dy=0

and denoting

3) g () =: (1- e‘“)d — iwj (d) e~
j=0
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g2 (A, d) == (1 —2coswe ™ + 12’\) ZT] cosw;d) e

A) :ijefij)‘; A€ (—m, 7],
=0

the decomposition given in (2), together with (3), implies that f,, (\) can be factorized as

2
) Ju ) = 22 lg O =, ~d)P B A€ (=7,

g(A,di,d2) = g1 (A, d1) g2 (A, d2) = ij (di,da) e

Recall that our condition 3"7° , k2 |by,| < oo implies that | B (\)|? is twice continuously dif-
ferentiable for all A € [0, 7]. Observe that the condition d;,ds > 0 implies that f,, (\) > 0 for
any X € [0, 7]. Also the sequence {u},., admits the AR representation

o) J
S w=Y bpujten  ¢j= & (didy)ar; = ng j (dy;d) ay,

j=1 k=0 k=0
where ;7 k? [ag| < oo and B™' (A) =: A(X) = Y52 aje”"*. So, we can then write also
the spectral density function as

o2 2 -2
fu) =5 lg(Nsdi, do)| 7 [A (V)

One model satisfying (2) is the multiplicative GARM A (p, dy,d2, q) process
(1—L)™ (1= 2coswL + L?) ™ @, (L) u; = ©, (L) &,

where @, (L) and ©, (L) are the autoregressive and moving average polynomials with
no common roots and outside the unit circle. The latter implies that @, L))o, (L) =
>0 b; L7 with b; = O () for any v > 0.

It is worth mentioning that the results hold true under the slightly weaker condition and
where for the sake of the argument, we shall consider the case do = 0.

CONDITION 2. {u},y is a sequence of random variables such that

(o.9] 9]
up=>» Vg > ¥<oo, Yp=1,
§=0 j=0

where {€},c, is a zero mean sequence of iid random variables and E (5,52) =02, Also

J
= ngbkfj,
k=0

where Oy, = £ (k) k=1 |0 (k) — £ (k+1)| < ¢/ (k) k=" with ¢/ (k) >0, dy € [0,3) and
zozo k2 |bk‘ < Q.

Condition 2 is similar to that in Marinucci and Robinson (2000). An example of ¢ (k)
is any slowly varying function. Moreover, because Condition 2 implies that the sequence
{ﬂk}:io is of bounded variation, that is .7, |19k — ﬂk_l‘ < 00, and because {19k}210
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is a quasi-monotonic sequence, see Yong (1974, p.2) for a definition, we then have that
>0, Eke_““‘f ~ DA7?% as X\ — 0+, 0 < D < o0, and continuous differentiable outside
any open set around the zero frequency, see Yong’s (1974) Theorems III-11 and 12. However,
we have preferred to keep Condition 1 as it eases the notation and it does not unnecessarily
complicate and lengthen the arguments of our results.

Before we present our bootstrap scheme, it is also worth given the trivial observation,
which plays an important role in the bootstrap scheme below, that

(6) gt (\dy,dp) = <1 — e‘“‘) - (1 — 2coswe N + e—i2)\> —d

=Y & (—di,—da) e =1 g (X —dy, —dy).
i=0

In what follows the upperscript “*”” denotes the bootstrap analogue. That is, P* and E* (2)
denote respectively the probability and the expectation conditional on {u};" ;. We shall now
describe and examine a valid bootstrap scheme when the data may exhibit either LM or
SM dependence. For that purpose, for a generic sequence {z;}," ;, we write the DFT and
periodogram respectively as

1 — ,
(7) w, (A):mz,zte_“»‘; L.\ =|w, (V)2
t=1

Also, we denote the Fourier frequencies as \; = 27 /n, for integer j > 0.
The idea behind the resampling scheme is based on two well known results. First the
identity

I &
) ut:WZem‘qu()\j), t=1,...,n,
j=1

and secondly the Bartlett’s approximation of the DFT of {u;};_, by that of {¢;}}" ;. That s,
9 wy (Aj) & g~ (A di, da) B (Aj)we (A7),

or using (6)

(10) wy (Aj) = g (Aj; —di, —d2) B (Aj) we (A;),

where “~” should be read as “approximately”. Expressions (8) and (10) suggest that we
might approximate u; by

I & i
(11) w5 Y g (g —di, —da) B () we ().
j=1

However the existence of a singularity for g (\; —di, —d2) =: g~ (\;dy,d2) at A =0
when d; > 0 and at A = w when do > 0, for instance, suggests that the approximation given
in (10), or (9), is not adequate for frequencies near zero or w, see for instance Robinson
(1995a). In addition, see Remark 4 below for some details, the implicit circularity induced
on the right side of (11) casts some additional doubts on the validity of the approximation
given in (11). So, the idea of the bootstrap scheme is based on a modification of (11) given
by

1 &
(12) wm s Y e g (g —di, —da; L) B () we (),
Jj=1
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where, using (4), for any dy,ds € (—1/2,1/2),
L

(13) g(Nid,da; L) =Y & (da,da) e
§=0

Thus, for instance we can view the modification given in (12) as a trimming version of (11).
It is worth observing that (6) and (13) yield that

N\ di . . do
g (A;dy,da;00) = g ! (\;—d1, —da;00) =: (1 — 67’)‘> (1 —2coswe” ™ + 6712)‘> ,

so that we can then approximate g (\; —dy, —da; 00) by either g =1 (\; dy,ds; L) or g (\; —d1,
Although there is no doubts that the results hold true using either approximation, we shall
employ g (\; —dy, —da; L) or g (\;dy,ds; L) if our purpose is respectively to approximate
ug, i.e. (11), or &, i.e.

S 1/226”*19 Ajidy,da; L) A (A wy (A)) -

The motivation is because it simplifies significantly the computation of the bootstrap, see
STEPS 1&3 below, as well as some of the technical aspects of the proofs.
Now (12) suggests that if dq,d» and B (\;) were replaced respectively by consistent esti-

mators dy, dy and B (A;), the problem to obtain a valid bootstrap sample {u;};" ; becomes a
problem of designing a valid bootstrap algorithm for w. (};), j = 1,...,7 = [n/2]. Regarding
the estimator of d;, we shall employ Robinson’s (1995b) Local Pseudo-Gaussian estimator.
That is,

m

1
14 dy = ] AXT — =) log)j ¢,
(14) 1=arg min | log m; ua Z og

where 0 < A < 1/2, m =m(n) increasing with the sample size n. On the other hand to
estimate do, we employ an obvious extension of (14), see Arteche (2000) or Hidalgo (2005)
for an alternative method, given by

(15)
dy = arg min { log L Xm: A — w|? T (N)) _ 2 Xm: log|A\; — w]
2 de[0,A] 2m L / we 2m L !

Also we estimate h () =: g (\;dy,d2) fu (N) by

Z )g <A+)\k’d1,d2>‘2M’

(16) h(\) = o

2m—|—1

which can be regarded as an estimator of o2 |B(\)|? /21 = 02|A(\)| " /27. As a by-
product

o =|o (xdd)| B

becomes an estimator of f,, (), which can be viewed as a prewhitening and then recolouring
type of estimator for the spectral density function, see Press and Tukey (1956).

—da; L).
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Before we present the bootstrap scheme, denoting M = [n/4m| we introduce

M
17 C (A) =exp {Z/c\ge_w‘} ,

/=1

M
Z 1 (Agmj) cos homj, £=0,..., M,

with h (\;) given in (16). Recall that 52 =: 27 exp (p) is an estimator of o2. Finally in what
follows, for any integer k£ > 0,

T =17k (d1); T =Tk (@):

Ty =M (—d1); T =: T}, (-Cﬁ)

Tp =17y (coswida); Tp =Ty (cosw; 32) ;
(18) Tr =: Tk (cosw; —da); T =: Tk (cosw; —C/i\z)

Eo =18 (d,da); & =1§; (31,6?2>

& =& (—d1, —da); ék =& <—6?1, —32> .

Our bootstrap scheme is given in the following 3 STEPS.

STEP 1 We compute the innovations as
1 & s
(19) a:mzem@(Aj)wu(Aj), t=1,..,n,
j=1

@(A):g(A;cﬂ,@;n—M) A

with g (\;dy,do; L) given in (13) and A (\) = Y0 Gge ™™, where dp = 1 and
M .
U Namg) e ®Aemi k=1,..., M.

ak_

REMARK 1. (i) Standard algebra yields that o A)=>"10 &;ge_’M)\j, where &ZO =1and

< Z f( Lk 1§£§7’L—M
20 qse_{ZkZ(nMéﬁ o n—M<L<n.

(ii) Because for any sequence {v¢};_,

1 n . n N t—1 n
@b i >t (Z vee M) we (\) =D _vez-e+ ) Veta—(-y
j=1 /=0 /=0 {=t

we have that €, in (19) can be written as

t—1 n
(22) =) buo+ Y Spuniit
=0 =t
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STEP 2 Draw a random sample e* = {&}}>", from the empirical distribution of {&;}7_, =:
{&—nt Z?Zlgt}?zl, and compute the DFT of ¥, that is

wg*( j) 1/22 efe ™y X, =2rj/3n, j=1,...,3n.

REMARK 2. (i) We shall mention that we could have computed w- (Xj) as

e (5) = B

where {u;‘}?gl is a random sample from the empirical distribution of
{u} = {w —n"1Y0, ut}?zl. However, we prefer our STEP 2 since as Corollary 2 below
shows, we would be able to match the moments of {u},.,, whereas the approach given in
the last displayed expression would only match the first two moments of u.

(ii) Our results hold true if instead of a sample of size 3n we would have chosen 2n.
However, we have decided to choose 3n instead of say n or 2n for notational simplicity as it
becomes clear from expressions (24) and (25) below.

(iii) In STEP 1 we could have computed ® (\) = g ()\; dy, do; n) A(N) instead of ® (\) as

given in (19). However, the former introduces some additional notational complication due
to end effects, so we have decided for clarity to keep STEP 1 as it stands.

STEP 3 Denoting U (\) = g ()\; —dy, —dy; ) (A) with B (\) = ch\iogke_ik/\, where

> 1 —ikA

§ i f=1,..M

sy C (\zmy) e k=1,..M,
P

and 30 =1, we compute

3n
1 s ~
(23) i = > N (Aj> Wen (Aj) L t=1,..3n
(3n)1/2 j=1

. n
and denote our bootstrap sequence as {u; };_; =: {ii} 9, },_,-

REMARK 3. (i) T (N) is an estimator of ¥ (\) = g(\;—dy,—d2) B()\) as is d (A) an
estimator of ® (A\) = g (A\;d1,d2) A(A) for A € (0,w) U (w, 7.
(ii) Because Zj 1 et =0 if ¢ #0,3n,..., we can write i} in (23) as

24) iiy = tE;HMWEle e if n+M<t
ZZ:O Deey_y + Z?it ﬁ€5§n+t—e if t<n+ M,

with 1A90 =1and

L
(25) 552 Zp/\](‘)prgf —p? 1§€§n
Z;\/[anfz —p n<tf<n+ M.

~ yn+M
So, the sequence {u;}; | behaves as a M A (n + M) process with weights {195}4 .
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REMARK 4. (i) Regarding our definition in (13), we might be tempted to use (13) with
L = oo, there. However due to the circularity of e~"?, it is not feasible. Take B ()\) =1and
= 0 for simplicity. Then, because for any integer q > 0, e = e—ilt+asn)

that if we employed g1 (), dy;00), we would then have that

i, it implies

3n
up = z Zwﬂgn Zs*I s=t—F¢mod3n), t=1,...3n.
/=0 \qg=1

But when dy > 0 the sequence {T¢} ;e is not summable which implies that 3 | 7 g3, Will
not be bounded in probability and hence the procedure invalid.

(ii) One reason why the AR-sieve bootstrap might not be valid under LM dependence is
due to the fact that it will not catch the singularity of f, (\) at zero and/or w frequencies.

Recall that ‘1 — Zg;l &pe_im’ is an estimator of the spectral density function, see Berk

(1974) or Biihlmann (1997), where {&p}gil are the estimators of the parameters in the
AR (pn) sieve approximation.

We need to impose some restrictions on the bandwidth m employed to estimate d; and dy
in (14) and (15) respectively.

CONDITION 3. Asn — 00,

m4 2

n

Condition 3 gives upper and lower bounds on the rate of increase to infinity of the smooth-

ing parameter m. For example, m = n?¥ would satisfy Condition 3 for any 1) € (%, %)
Our first two corollaries shows that our bootstrap scheme is able to match the moments of
the innovation sequence {¢;},., and those of {us},c;.

PROPOSITION 1. Under Conditions 1 and 3, for any p > 1 such that E |&;|’ < oo, we
have that

1 n
(26) ~D -l =0, (1).
t=1

As a consequence of Proposition 1, we have the following corollary.

COROLLARY 1. Assume Conditions 1 and 3. Then, for any p > 1 such that E |e|’ < oo,
we have that

Erel? = Z 5 Eeb.

PROOF. By standard equalities, we have that

1 — 1 1 PR
ﬁg ét:*E gt—gtp—i—g ng ( > et—st)ksf_ +%§ ep.
t=1 t=1 t=1

The first term is o, (1) by Proposition 1. The third term converges in probability to Ec} by
Condition 1. From here the conclusion follows by Holder’s inequality. i
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PROPOSITION 2. Under Conditions 1 and 3, for any p > 1 such that E || < oo, we
have that

(27) E* |uf — P =0, (1),

where u; = Z?;Léw Vee;_,.

Before we state our next corollary, it is worth recalling that for any sequence {C j }j>1 and

a martingale difference sequence {77]- }j ez with finite p moments, we have that

p/2 b p/2-1

b p b b
@) ED ¢l <KDY GBI <kBY G| S GEW)
i=a i=a j=a

Jj=a
by Burkholder and then Holder’s inequalities.

A consequence of Proposition 2 is the following corollary.

COROLLARY 2. Under Conditions 1 and 3 for any p > 1 such that E ||V < oo, we
have that

(29) E*ui? — Eul =0, (1).
PROOF. Because us = U + )2\ 1rvq Vegi—g, Where uy = Z’Zi(fw Y¢es_p, and using

28) and that {92 is summable, F |>7° Yeer_o|f = 0(1), it suffices to show
LS e>1 l{=n+M+1
(29) but with u; replaced by ;. Now, by standard equalities, we have that

p—1
* A~k * ~x% p * ~x\k —k
uy” =" = (ug _Ut)p+z (k) (up — )"y ™"
k=1
Thus proceeding as with the proof of Corollary 1, by Proposition 2 and then Holder’s in-
equality, we conclude that (29) holds true if
(30) E*u? — Eal =0, (1).

Now, because both {e}},., and {e;},., are iid sequences of random variables, we have that
the left side of (30) is

n+M p n+M P
E* (Z 19@6’{[) - F (Z 79£5t€>
£=0 £=0
n+M T r r
= > \Mvg | Ie (%) - I # () -
lryorle=0 \ j=1 j=1 j=1
where Z;Zl gj=pand g; >2forall j=1,...,r. Now we conclude by Corollary 1 and that

{[9¢]7} 4>, is a summable sequence when g > 2. 1

Our next result shows that the bootstrap scheme is able to estimate correctly the covariance
structure of the sequence {u;},c.

PROPOSITION 3. Under Conditions 1 and 3, we have that for 0 < £ < n,

E* (U:’LL;M) — (f) —o, (1) g?(dl/\dz)—l +0 (nQ(dl/\dg)—l) )
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PROOF. Itis immediate by standard algebra using Lemmas 4, 9 and 10. §

We now verify in Propositions 4 and 5 that Bithlmann’s (1997) Lemmas 5.4 and 5.5 hold
true in our scenario.

PROPOSITION 4. Assume Conditions 1 and 3 hold. Then, as n — oo, in probability,

« d¥
€t _> €t.
PROOF. Denote by da(-,-) the Mallows metric as defined for example by Bickel

and Freedman (1981). Let F, (z) = IS IE <), Fy(z) =230 ZT(e<z) and
F(x)=P (e <x).Then

31) ds (ﬁnF) < dy (ﬁnFn> tdy (Fy, F).

Let W be a random variable distributed uniformly on {1,2,...,n}. Then,

~ N 1 e~
d2 <Fn, Fn) < EW (€W — t’fI/I/)2 = ﬁ ; (515 - €t)2 .
By Proposition 1, the last expression converges to zero in probability. The second term of (31)

converges to zero almost surely by Lemma 8.4 of Bickel and Freedman (1981). Therefore
do (F\n,F> = 0p (1) and the proposition holds.

In the next step we extend Proposition 4 for the innovations €} to the observations u;.

PROPOSITION 5. Assume Conditions 1 and 3 hold. Then, as n — oo, in probability,

d*
*

COROLLARY 3. Assume Conditions 1 and 3 hold. Then, for any finite collection
(t1,...,tq), in probability,

(32) (u;,..,u;‘q) & (utl,..,utq).

PROOF. This follows by Cramér-Wold device. It suffices to show that for any ¢ =
(c1,...,¢q)'s  in probability,

But proceeding as in Proposition 5, we conclude that (32) holds true. I

We finish this section giving some guidelines on how to choose m with real data sets. A
first approach may be via cross-validation methods as in Beltrao and Bloomfield (1987), see
also Robinson (1991). That is,

m= argmini {logf; (m, Aj) + W} ,

m j=1 fu (m7 )‘j)

where fu_ (m,\) = o > ke —mi0 Luu (A, — A) is the leave-one-out average periodogram
estimator.
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A second approach is that employed in Lobato and Robinson (1997), see also Hidalgo
(2008), where m is chosen according to
7" (0)

m0)=; (igm 27(0)

and ~y (\) is the spectral density function of an AR (1) sequence with parameter p, that
is y(A) = (2m) (1+p*=2p cos(/\))fl, although more general « (\) functions can be
adopted, see Lobato and Robinson (1997) for a discussion. Alternatively, we might employ

1/3n\**1 <
(33) m=2<> =3

4 n 4
]7

-3/8

-3/8

which is, in a sense, the average pointwise bandwidths

m(Aj) =271 Bn/4m)* [y () / (27 ()]

In practice as p is not known, we would replace, say, m (0) by

3/8

" (O) _ 1 3£ 3/4 ;Y\// (0) *3/8
TS\ ) 1230
_1 3£ 3/4 7 —3/8
C2\dn) o=l

where p is the least squares estimator of p. Because m** (0) could be smaller than 1 or greater
than n, we truncate m** (0) as

[m] o it m™ (0) < [m]
m =0 (42" | =2 [m] < m* (0) < [fm]
[m] if [m] <m**(0),

where m = 0.06n3/* and m = 1.2n3/%. Of course, similar comments can be used if one opts
for the option of choosing m as in (33).

3. EXAMPLES OF THE VALIDITY OF THE BOOTSTRAP . In this section we
illustrate the validity of the bootstrap scheme for some examples or situations of interest
in statistics. More specifically, we shall look at the least squares estimator in a time series
regression model and model specification in the context of regression models.

3.1. Validity of the bootstrap in time series regression models.
Consider the regression model

(34) y=a+Bri+u, t=1,...n

and introduce the following condition on x;.

CONDITION 4. {2}, , is a sequence of random variables, mutually independent of
{ut},cq, such that

o0 oo
. 2 —
l’t:Z(Pth—j, ZSOJ' <oo, ap=1,
j=0 J=0
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where {0, },cy, is a zero mean iid sequence of random variables with finite variance o2 and

J
v = Z@kckﬂ"
k=0

where By, = € (k) k%1 [0(k) —€(k+1)| < ¢ (k)k~* with £/ (k) >0, d, € [0,3) and
oo k% ex] < 0.

Condition 4 allows for the sequence {x},., to exhibit LM dependence. Following the
results in Robinson and Hidalgo (1997), we can weaken this condition as their results do
not require x; to be a linear sequence at all, i.e. (34) can be modified to y; = o + ¢ (z¢) +
u;. However, since our purpose is to illustrate the validity of the bootstrap scheme in this
scenario, we keep it for notational convenience. For the same reason, we shall modify our
Condition 1 in that we shall assume that dy = 0. It is obvious that the results would not be
affected if do were greater than zero, but it would not add anything substantial or relevant.
That is,

CONDITION 5. Condition 1 holds except that dy = 0.

Denote the least squares estimator, LSF, of 5 as

n n

—1
B= <Z (e —$)2) > (@ =Ty,

t=1 t=1

where Z =n"1 Y"1 | z for a generic sequence {z;};_;. We first examine our estimator of
dy.
Compute the residuals as

(35) U=y -7 Be—7); t=1,...n
We then estimate d; as in (14) but with wu; replaced there by %, that is

m

~ _ 1 0d 2d
(36) dy =arg min, log m;/\j Tsa (M) | — m;bg/\j :

where I;; (M) is the periodogram of {;};._,. Similarly the estimator of & (\) becomes

- 1 & : 241 I (A + M)

7 h(\) = ‘1_ _Z(/\—l-)\k)‘ Laa AT Ak)
©7 N =g k_z ‘ 2

—m

We have now the following proposition.
PROPOSITION 6.  Under Conditions 3,4 and 5, if dy + d, < 1/2, as n — o0,
d—dy =0, (m_1/2> .

PROOF. Similar to Robinson (1997), the properties of the estimator are not affected by
using the residuals u; instead of the true errors u;. Indeed, by definition,

L)~ L ) = (3= 8) L ) + (B 8) L ().
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B-B= O, (n‘l/z) and proceeding as in Robinson (1995a), we have that
Bl (Aj) Lue (M) = E (wy (Aj) Wy (Ak)) B (we (Aj) e (Ak))
~ A BTN max (K.

So, we easily conclude that
1 m
S (T () — T () = 0 (m712).
j=1
From here the proof proceeds as in Robinson (1997). 1
We now describe the bootstrap in the following 4 STEPS, where the first 3 STEPS are an

obvious reformulation of STEPS I to 3 given in Section 2.

STEP 1 We compute the innovations as

~

where @ (\) = g, ()\, dyin — M) A), g1 (A, dy; L) given in (13) and A ()\) is computed

(
similarly as in STEP 1 but with h (A;) given in (37) instead of (16) in the definition of
C () given in (17).
STEPS 2 and 3 As those in Section 2.
STEP 4 Construct the bootstrap sample y; as

(38) v =T+ 8w %) +uf, t=1,..,n
Compute the bootstrap LS E B* as
- n -1 n
(39) 3 = (Z (24 —x)2> > (e -7)
t=1 t=1
being uy =y —y* + B (¢ — T) the least squares residuals.
REMARK 5. One of the motivations to keep x; fixed in the bootstrap algorithm comes

from results/observation in Horowitz (1997), who shows that there is no advantage by “boot-
strapping” also the regressor x;.

Denote the spectral density function of x; by f, ().

PROPOSITION 7. Assuming Conditions 3,4 and 5, if di + d, < 1/2, we have that, in
probability,

n'/2 (B B) SN (0,V),
where V = (02)72 J7_ fu(X) fz (X) dX is the asymptotic variance of the LSE.

Looking at the proofs of Proposition 7 and Robinson and Hidalgo’s (1997) Theorems 1
and 2, we envisage that Proposition 7 holds true for the bootstrap analogue of the estimator
of [ proposed in the latter manuscript. That is, let the estimator of 3 be

St (@~ ) (s — 7)

(40 o= S s (@D (@ —7)
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where

1 s
Yy = 2/ ['(X\) coslAdA
o7 )
and the function I' () satisfies A = [T T2 (X) fu (A) fo (A) dX\ < oo. Then, the bootstrap

analogue of BW defined as

B* _ 22521 Yy (mt - f) (y; - g*)
D VTN EAEE N

will be valid for Bw. Notice that when I' (A) = 1, Bd) becomes the LSE in (34), whereas the

generalized least squares, G LS, estimator is obtained when I' (\) = f,~1 (). In addition, we
would not require the assumption that d; + d, < 1/2, neither for the results of Proposition 6

nor for the validity of BZ, as

W02 (3, ) SN <o, (/

™

—T

)
DO £ () dA) A)
forany 0 <d,,d; < 1/2.

3.2. Validity of the bootstrap for model specification.

Because the purpose of this section is to illustrate the validity of our bootstrap scheme,
we shall only consider the case where the sequence x; is Gaussian and consider the question
of the correct specification of (34). For a more comprehensive set of results which include
when 2x; is nonGaussian and/or nonlinear regression models and linear regression models
with no intercept a, we refer to Hidalgo (2019). The main reason is because the asymptotic
distribution of 7, () in (42) below depends, among other issues, on whether {z},_, is or
is not a Gaussian sequence as Koul, Baillie and Surgailis (2004) and Hidalgo (2019) have
showed. Thus, we consider the hypothesis testing

41 Hy: E[yt |.Z‘t] :Oé+ﬁ.%‘t

being our alternative hypothesis H; the negation of the null. Following Stute (1997), the
testing procedure will be based on the partial sums empirical process

1« _
(42) To (z) = n;I(:ct <)y,
where u; was given in (35) and Z (o) denotes the indicator function. The bootstrap scheme

is given in the next 5 STEPS.

STEP 1-4 As given in the previous section.
STEP 5 Compute the bootstrap analogue of 7T, (x) as

1 .
T () = 521(% <)
t=1
We need to introduce an extra condition for the validity of our results.

CONDITION 6. {9, },., and {e;},., are iid sequences of random variables with finite
8th moments. In addition, denoting ¢ (x) as the probability density function of xy, we have

that
4
X

¢

B dx < oco.

()
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Condition 6 is very mild and similar to that in Wu (2003). Although when z; is Gaussian,
the condition is redundant, we keep it because the results of Theorem 1 holds true regardless
whether z; is or it is not Gaussian provided that Condition 6 holds. We now introduce some
notation.

We shall write

(43) 1, () =T (xy <z) - F(z) — G ()24,

where F(z) = [“ ¢ (2)dz and G (z) = E (I (z < ) x4).

Some comments regarding i (z) are relevant and helpful to understand why the results
that follow are different when {z;},., is nonGaussian. When {z;},., is Gaussian, G (z) =
—¢(x), so that F'(x) — ¢ (z) x; becomes the first two terms in the Hermite expansion of
T (x¢ < x), see Dehling and Taqqu (1989), whereas for non-Gaussian linear sequences, it
becomes the first two terms of the expansion of Z (x; < z) in terms of its Appell expansion,
see Giraitis and Surgailis (1994). It is well known that under Gaussianity E (1, (z)2;) =0,
whereas the latter is not guaranteed if x; is nonGaussian, due to the lack of orthogonality
of the Appell polynomials. This rather innocuous result plays a key and pivotal role when
examining the statistical properties of T, (x), see Koul et al. (2004) or Hidalgo (2019) for
some details. For the sake of convenience we shall state a few results regarding the statistical
behaviour of 7, (z). For a proof we refer to the aforementioned manuscripts of Koul et al.
(2004) or Hidalgo (2019).

We denote G () a Gaussian process in x € R with covariance structure given by

Cov (G (x),G (y) =74 (0) E (1o () 10 (1) + Y 7. (O E (1o (2) 1o (1))
(=1

+> 7 (O E (fo(y) ie(x).
=1

Observe that because E (1, (z) 1o (z)) = O (¢49=72), see Wu (2003) or Dehling and Taqqu
(1989) under Gaussianity, and Condition 5 implies that 7, (¢) = O (¢2®~1), we conclude
that |Cov (G (2),G (y))| < C for all z,y € R if d; + 2d, < 1. It is worth mentioning that, in
view of our comments at the end of last section, under the latter condition, the LS E might
not be asymptotically Gaussian neither n'/2—consistent.

THEOREM 1. Assume Conditions 4,5 and 6. Then, if di + 2d,, < 1, we have that

1 " o weakl
G () := mZh(az)ut 2YG(x) zeR
t=1

The results of Theorem 1 are valid under either LM or SM dependence. However it is
more relevant to notice that the results hold true either {z;},., is a sequence of Gaussian
random variables or not. We now look at the behaviour of 7,, (x), which is a consequence of
Theorem 1.

PROPOSITION 8. Assume Conditions 3,4,5 and 6 with {x},., being a sequence of
Gaussian random variables. Then under Hy, we have that, if di + 2d, < 1, we have that
uniformly in x € R,

weakly

2T (2) = Gu () + 05 (1) =57 G ().
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COROLLARY 4. Under the conditions of Proposition 8, we have that for any continuous
functional ¢ () : R — R™, if dy + 2d, < 1,

@ (0T (@) S 2 (G (@)).

PROOF. The proof is standard by the continuous mapping theorem and Proposition 8, so
it is omitted. N

Standard functionals ¢ (-) are the Kolmogorov-Smirnov and the Cramér von Mises. The
former is the £..-norm whereas the latter is the £s-norm, and they are given respectively by

>

KS, = max ‘nlmﬁ(m)

2
L |

1 N
: can:NZ]nl/Qmm)
(=1

where {z,};., forms a set dense in any compact set X CR.

THEOREM 2. Assuming Conditions 3,4, 5 and 6, if d1 + 2d, < 1, we have that, in prob-
ability,

It is important to notice that the results of Theorem 2 hold true either for {z;},., being a
Gaussian sequence or not. The only condition that we used there was that the x; is a linear
sequence and the order of magnitude of the covariance of the sequence {it (x) } rez- We now
examine the behaviour of 7,* (z).

PROPOSITION 9.  Assuming Conditions 3,4,5 and 6 with {x},., being a sequence of
Gaussian random variables, we have that, in probability,

(a) n'/?T7 (2) N G(z) zeR

(b) ¢ (n'2T; (2)) 5 ¢ (G (x))
for any continuous functional ¢ (-) : R — R,

4. MONTE CARLO EXPERIMENT. We present a Monte Carlo experiment to shed
some light on the behaviour of the bootstrap scheme for the least squares and also our test.
A more complete set of scenarios can be obtained in the Appendix of the supplementary
material, where we consider even when 2d, + d; > 1 or d, + d; > 1/2 and z; is a non-
Gaussian sequence.

To address the performance of the bootstrap least squares and the test under the null hy-
pothesis, we have generated the linear regression model

(44) Yy =a+ By +u,t=1,..,n,

where o = 8 =1 for two different sample sizes n = 128 and 512. When we examine
the performance of the bootstrap for the least squares estimator of 3, we have considered
dy =0.1,0.2,0.3 and d; = 0.2,0.3. Also to shed some light as how the proposed bootstrap
compares to the sieve bootstrap, we have considered the case when the errors follow an
AR (1) or M A(1) sequence with parameters 0.7 and 0.9. On the other hand, when address-
ing the performance of the test, we considered the scenarios d, = 0.1,..,0.4 and d; = 0.2.
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In the latter scenario we also present the results when the innovations of the regressor were
a X3 centered around its mean. All throughout the errors {u;}}_, were generated as a se-
quence of Gaussian random variables with mean 0. The statistic 7,, (x) were computed in the
range x € [—1.0,1.0] with a mesh width of 0.1 and we have chosen the Kolmogorov's type
of functional for ¢ (-). That is,

KS, = max ‘nlﬂﬁ(w)‘,

[RAS]

where {z,}70,, 2= —1.0+ (£ — 1) 0.1.

In order to save computational time, for each sample we compute only one bootstrap coun-
terpart according to Section 3 and equations (3.1) and (3.2). The stacked bootstrapped statis-
tics are then used to construct critical values and confidence regions at appropriate levels.
For each combination of models and/or samples sizes n, 1000 iterations were performed.
This is the idea behind the WARP algorithm of Giacomini et al. (2013). Finally, to imple-
ment the bootstrap algorithm we need to choose the smoothing parameter m. Although an
algorithm as that described at then end of the previous section can be implemented, in this
Monte-Carlo experiment we have considered two different choices of m, namely m = n/4
and m = n/8. Likewise in the expression C (\) = exp {Zgnz/f ] E,,e*"’\}, we have chosen
¢, = 0 for r > 1 and the case ¢, = 0 for r > 1 with ¢; # 0. The first scenario uses the fact that
we know that there is no SM component whereas in the second we have taken [n/4m| =1,
after we notice that in almost all cases [n/4m| < 1. Finally, in all the tables, the first row in
each cell presents the results of the test for the 10% size whereas the second row are those
for the 5% size.

Table 1 presents the results of the size when testing 8 = 0 against the alternative that it is
different than zero using the critical values from the asymptotic Gaussian random variable or
those obtained under the bootstrap scheme, whereas Table 2 presents the results when u; is
weak dependent.
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TABLE 1

Size using the asymptotic critical values

d 2 2 3 3
n=128 n=512 n=128 n=512
de |m= 3 3§ i3 i i
| 20.6 199 214 214 204 204 21.1  21.1
’ 10.5 104 9.6 9.6 10.8 9.7 10.5 105
) 23.1 219 22.1 221 219 229 21.6 21.6
' 11.7 123 10.7 10.7 11.8 11.8 10.0 10.0
3 2277 213 21.8 21.8 26.8 25.0 23.1 23.1
' 124 12.0 120 12.0 14.1 135 124 124
Size using the bootstrap critical values
d; 2 2 3 3
n=128 n=512 n=128 n=512
T N N N T N
| 10.1 9.5 9.1 9.1 8.6 9.7 10.2 10.0
' 43 5.6 5.1 5.2 4.7 4.8 4.7 4.5
) 123 10.8 9.9 10.1 9.6 10.0 11.7 11.6
’ 7.1 4.8 52 52 48 53 6.6 6.7
3 94 120 114 113 124 122 109 10.8
’ 49 58 6.0 6.6 6.9 58 4.8 5.9

19
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TABLE 2

Size using the bootstrap critical values

AR (1) n=128 n=512
p=.7 | m=7m=gAR(1)AR(3) | m=7m=g AR(1) AR(3)
do— 1 50 49 42 47 43 37 46 4.6

v 95 95 76 88 85 87 83 95
do— 9 48 48 50 65 75 7.6 38 42

v 1.1 113 126 137 120 120 11.1 9.1
do— 3 50 47 68 58 47 46 6.1 6.2

v 11.7 11.2 13.1 10.0 93 9.0 113 1038
AR(1) n=128 n=512
p=.9 | m=Fm=gAR(1) AR(3) | m=7m =g AR(1) AR(3)
do— 1 37 40 62 60 66 66 44 30

v 85 83 109 11.6 131 125 99 93
do— 2 41 46 61 54 57 54 54 46

v 95 94 113 102 96 97 11.0 104
d— 3 40 42 39 48 51 50 52 50

v 94 96 9.1 122 96 96 92 1038
MA(1) n=128 n=512
=7 m=4m=g AR(1) AR(3) | m =7 m =g AR(1) AR(3)
do— 1 52 52 65 40 44 49 48 58

v 10.6 10.1 106 9.8 8&5 9.0 98 11.8
do— 92 57 58 52 48 47 47 49 47

v 87 92 99 105 101 102 9.0 9.1
do—3 46 47 46 55 40 39 35 48

v 97 92 101 10.2 97 101 85 95
MA(1) n=128 n=512
0= m=3m=¢g AR(1)AR(3) | m =7 m =g AR(1) AR(3)
d— 76 84 51 52 39 40 39 45

v 13,5 140 113 120 84 95 91 100
do— 2 50 52 37 44 46 44 63 62

v 103 10.1 102 9.6 10.0 104 101 7.8
do— 40 43 45 54 45 45 65 6.2

v 89 95 106 114 97 95 111 104

A general conclusion from 7able 1 is the good performance of the bootstrap scheme even
for samples sizes as small as n = 128, and that it gives a big improvement when compared
the size obtained using the asymptotic critical values from the standard Gaussian random
variable. Also, even when the LSE is known not to be Gaussian, i.e. when d,, = d, = 0.3,
the bootstrap scheme appears to approximate the finite sample distribution quite well. On the
other hand, Table 2 suggests that our proposed bootstrap compares favourably to the sieve

bootstrap.
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TABLE 3
Size with C (\) =1
Ty Normal Normal X3 %
n=128 n=512 n=128 n=512
OIS H B :
! 78 6.2 105 7.8 93 74 114 8.0
' 40 35 52 40 50 31 37 29
) 10.1 9.8 11.9 10.6 9.0 99 99 89
' 48 49 58 59 37 47 62 37
4 93 170 97 80 112 9.1 10.0 105
) 45 31 47 51 47 42 58 50
Size with C (A) =exp {cre7"™}
Tt Normal Normal X% X%
n=128 n=512 n=128 n=512
G m=3 3 T I 1 T 1
! 125 9.8 1.1 9.1 106 114 97 88
' 6.1 6.1 69 35 62 5.7 42 65
) 1.1 8.0 102 85 99 86 93 117
’ 47 42 49 45 51 43 52 52
4 124 117 10.7 12.8 109 85 127 117
' 6.8 55 45 73 51 34 75 58

A general conclusion from 7Table 3 is the good performance of the test even for samples
sizes as small as n = 128. This performance is regardless the distribution of the regressor x;
and the choice of m = n /4 appears to perform slightly better for moderate sample sizes, i.e.
when n = 128. Also the tables suggests that even when we choose ¢; # 0, there is no visible
deterioration of the finite sample performance when compared to the case of ¢; = 0.

To address the power of the test we simulated the regression model
(45) yr=a+ Bry+ysin(xy) +u, t=1,...,n

with v = 0.5 and 1.5. We present the results of the Monte Carlo experiment in Table 4 below
with C' () = exp {Gre™ 7} .
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TABLE 4
Power for model with v=0.5
Tt Normal Normal X% X%
n=128 n=512 n=128 n=512
d |m= © o n n o n o n
X ! 4 4

8 4 8 8 8
199 174 53.8 529 77.6  67.2 99.9 100
85 87 43.4  40.0 644 524 99.8 99.8
23,5 173 59.3 61.2 73.1 65.6 100  99.9

2 13.5 82 42.1 453 58.7 534 99.4 99.6
4 373 340 85.9 855 720 71.6 100 100
’ 269 21.6 737 777 58.8 56.0 100 100
Power for model with v=1.5
Ty Normal Normal 1% %
n=128 n=512 n=128 n=512
T T N B T
1 74.8 69.9 99.7 100 100 100 100 100
' 61.8 572 99.6 99.8 100 100 100 100
) 79.0 759 100 100 100 100 100 100
' 69.4 60.1 100 99.9 100 100 100 100
4 89.9 88.1 100 100 100 100 100 100
’ 82.6 80.7 100 100 100 100 100 100

The results for (45) illustrate a very good power performance of the test, and as expected
it improves as the value of ~ or the sample size increases.

5. CONCLUSIONS. This paper has introduced a bootstrap scheme in the frequency
domain which is valid when the data exhibits either SM or LM dependence. The bootstrap
has some similarities with the 7'F'T" given in Kirsch and Politis (2011) in that we obtain time
series resamples. On the other hand, the scheme is similar to the A R—sieve bootstrap in that it
is able to match the moments of the data correctly. We have also illustrated the validity of the
scheme in some situations/statistics of interest. Namely for the LS E and model specification
in a time series regression model context.

Acknowledgments. I thank the Associate Editor and three referees for helpful comments
which led to a much improved and clearer version of the article. Also I thank Hao Dong and
Chen Qiu for their excellent Monte Carlo computations. Of course, all remaining errors are
my sole responsibility.

SUPPLEMENTARY MATERIAL

Supplement: Bootstrap Long Memory Processes in the Frequency Domain
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). All the technical de-
tails and Tables are provided in the Supplementary Section.

6. PROPOSITIONS. In what follows, K denotes a generic finite and positive constant.
We shall give the proofs of our main results
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6.0.1. Proof of Proposition 1.
First observe that because

fZ]&t—ét\p<2p 1( Z"s\t—at’p—i-

t=1

it suffices to show that the first term on the right is o, (1) .
We shall first examine the case when B (L) = 1. Denoting

B I N RSy
A VE > et (Z §oe m]) wy (Aj)
j=1 (=0

and observing that when B (L) = A (L) =1, ; in STEP I becomes

we then have that (21) and Lemma 3 imply that

t—1

£ &= Z <§é - fz) g + i (2@ - 54) Up—(6—1)
= —t

0
H-1

R Uty
=S ot @i 5

+I:§11Hd dH Zgg ) Eetin— (o~ t)+10g an d” Z‘;ﬁdgi

By standard inequalities, it suffices to show that

I -
40 n 2 EP =01
(47) lzn]st—ayp:o (1).
nt:l "

That (47) holds true follows because e, — &y =: 2, §ptus—¢ — Yy EgUp—(s—y) SO that
the expectation of the left side of (47) is bounded by

n 00 p n
K K Z(dy Nda>0)
n;(Z&c‘) S;Zﬂ,(dl—,\dz):ﬂl),

=t

because |£;| = O (k=17 (AT (dy Ady > 0)), that E |u|P < K and Holder’s inequality
yields that

(48)

p b p—1 4
< (ZKk’) Z|Ck|E\77k’p-
k=a k=a

Next (46) also holds true after we observe that (48) implies that

Zg? (d) Etin—(1—p)
—t

p

p
d)&up—g| +E

SK;n%‘g?(d)ﬁe’SK,
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Hc?— dH =0, (m_1/2) and choosing H large enough in Lemma 3.
Now, we examine the general case when B (L) # 1. To that end, denote

t—1 n
&= Z Ppui—g + Z Pptn—(0—t)»
=0 =t
where

AM
o - .Gk, 1</<n—-—M
(49) By = Zj\z}_o §o 10k <
Zszf(nfM) §o—kOks n—M<{<n.

As we proceed when we assumed that B (L) = 1, by standard inequalities, it suffices to
show that

1o .
(50) S3 Bl =0 (1)
t=1
1 — 1 —
51 - g, — 5P+ = — &P = 1),
(51) nz::\gt &l +nz::\5t &’ =o0p(1)

where 2, = Y070 dpus o+ 37 ¢ GoUn—(¢—r) and € given in (22).
Now, that the second term on the left of (51) is o), (1) follows proceeding as with the proof

of (47). Next, the first term on the left of (51). Because ¢, — ¢, = 0 if £ < M, we have that
that its expectation is bounded by

n t—1 P n P
% Z E Z (¢g - ¢e) ug| +F Z (¢£ ¢€) Un—(£—t)
t=M+1  |[¢=M+1 b=t
1 . ’
+g Z E Z <¢ ¢Z> Up—(£—t)
t=1 (=M+1

by (48) and that E |u;|” < K and then because ‘gbg — qﬁé‘ is a summable sequence by Lemma

)

Finally (50), whose left term is bounded by

) P b oo
nZ{ Z¢£Ut—€ + Z@%-(z-ﬂ Z Pyl —(0—t)

{=M+1
t—1 p P
K5 { ] 4| T b e }
t M+1 {=M+1
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where we have abbreviated ag — 555 = ébg. Now, that the fourth term is o, (1) follows because

(59) yields that this term is
p/2
=0p ( ) =op(1)

0, (m ( —p/2) Z
by Condition 3. Next by Lemma 6 part (ii), the sixth term is

t=M+1

Z|Ut €|

=0

p

=0, (m_p/2>

n

|0 Ju—e
—t

because (48) and F |us|’ < K imply that

n n p n n p
E DY D lmllud] <K {(Z(ﬁM}l(dlAd2>> }zo(n)
=t

t=M+1 | 1=t t=M+1

because (d; A d2) > 0. The fifth term follows by the same argument, whereas the first three
terms are o, (1) proceeding as with the last three terms and that M/ /n =o(1).

6.0.2. Proof of Proposmon 2.
Defining u} =Y 7, ﬁgst ¢» Where

> R
it suffices to show that

43) B Juf — | = 0, (1)

(54) E*Jif — @ [P = o, (1).

We first examine (54). Because 9y — Uy = 0 if £ < M, we have that @ — U} =
S ( ﬂg) €5y so that the left side of (54) becomes

n+M p n+M 9 p/2-1 n+M
E* Z (19@-195) Er_p SK( Z ‘19@—75‘4) ‘19@ 194 E*‘Et E‘p
=M+1 l=M+1 {=M+1

by (28) because {¢; };~ "+M is a random sequence with zero mean. Now, by definition we have
that Uy — 9 =: £,0 ( ~2) by Lemma 9, so that we conclude that (54) holds true because

{f e} is a summable sequence and Corollary 1 implies that E* ’5t A — Eler—g|’ =
op(1). So to complete the proof it remains to show that (53) holds true. But this is the

case because u; — u; = ”+M (19@ ﬁg) e;_, and hence
n+M p/2- 1n+M
B lu? —a;ypgK< ‘19@—794 > ‘19@ 194 Jod B
(=

by (28). From here the proof follows by Lemma 8 since Ek is a summable sequence and
Corollary 1.
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6.0.3. Proof of Proposition 5.
By the definition of u; in (23), we obtain that

(55)
S TR JUSETS SISO ETES SO
=0 _ I=M+1 {=M+1

where 55 was given in (25) and because V¢ — 9y =0 if £ < M. The last term on the right of
(55) is 0p+ (1), since its second moment is

n+M

> (194 1%) E*ei?,=o0p(1)

{=M+1

5 2

by summability of {‘194 — 194‘ } by Lemma 9 and Corollary 1 implies that E*sﬁe —
>1

FEe? ,=o0,(1). Next, the second and third terms on the right of (55) are also o,- (1) as we

now show. Indeed, the second moment is

M n+M

S (0-0) mer Y (i) B,

=0 {=M+1

From here we conclude by Lemma 8 parts (i) and (ii) respectively and again by Corollary 1.
Thus, Markov inequality implies that the last three terms on the right of (55) are 0,~ (1), so
that

n+M

= et +op (1)
£=0

Now, Proposition 4 and Cramér-Wold’s device imply that for any u € R,
n+M n+M

P* ( > et < u> =P < > W < u> +o0,(1).
(=0 =0

Since {07 },., is summable, E (332, 1/ 4 9eer¢)° = o(1) and Markov’s inequality
yields that

n+M

Up = Zﬁg&t 0= Zﬁe&t g+0p 1).

Gathering the last three displayed expressions we conclude the proof of the proposition.
7. LEMMAS.
LEMMA 1. For any H > 2 and under Condition 1, we have that if d; > 0

%\k—ﬂk fds N h h N H H
() T = Z(dl—ch) gl (d) +Op<’d1—d1’ >1og k

h=1

(b) ﬁk:ﬁk _ (Hl

™
k h=1

—~ h ~ H
(d1 —dl) gl (d1)> +0, <’d1 _ d1’ >10gH k.
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where gy, (dy) = dy ' + 2522 =1, whereas if d = 0

 logk~ 1 ~H\ log! k
(C) T = i dy + (‘dll >+Op (’d1’ ) gk

and the Oy, (o) is uniformly in k.

We shall denote proportional by “oc” that is “c,, o< £,,” means that K ~¢,, < ¢,, < K, for
some finite and positive constant K.

LEMMA 2. For any H > 2 and under Condition 1, we have that if |da| > 0

H-1 h Hlo Hk
~ ~ ) g
(&) T — Tk =Tk <Z (dz —d2) gr (da) | +0p <‘d2 —d2‘ i )

h=1

where gy, (d2) = dy ' + 25:2 (=1, whereas when dy = 0,

(b) 7, = (,1 S &gt <o>> +0,(|a]") ok

where gi, (0) o< (1 + log k).

LEMMA 3. Under Condition 1, we have that for any integer H > 2
log™ k
(a) & — & =& Z |a-d] ot @+ 0, <Hd |’ W) Cdy,dy >0

log" k
()é*k—&k—ékZHd d|" gl @)+ 0, (Hd |’ W);dl,dxa

where d = (dy,d3), gx (||d]]) (HdH_l + logk),
Oy (o) is uniformly in k.

Y M o M
For the next lemma we shall denote by {d,},_; and {5Z}£ either {b¢},_, and {bg}z
=1

=1
or {as}s", and {a}0L,.

LEMMA 4. Under Conditions 1,2 and 4, we have that, uniformly in ¢ =1,..., M,

5ﬁ A Z“n,pvn tp+ MZ‘”n,pvn &p’ +0p < _3/2)’

p=1
where Uy ¢ | < K, {kn, p} _, is a triangular array sequence of random variables such that
’szl K,n’pvn’g’p‘ = O r/2)forany r > 2 such that E |5t| < oo, K (Zp 1 FnpUn,typ Zp 1 FnpUn. b p)
_ M _
O (n16)s,—¢,|) and E> i |Enpnepl =0 (m=1/2).

REMARK 6. Notice that one consequence of Lemma 4 is that

(56) sup ‘5@ — 55‘ = <m*1/2> .
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LEMMA 5. For0<r<n,

n+MfrA R
(57) E* (ujuiy,) =62 Y OxOpsr
k=0

First by definitions of ?qgk and ¢, in (20) and (49) respectively, we have that
kAM kAM

(58) &y — by = Z Epoe @ —ag) + Z (Ek—ﬁ - fk—e> ap,  k<n.

(=1Vk—(n—M) (=1Vk—(n—M)
LEMMA 6. Under Conditions 1 and 3, we have that
(i) & — b= SnM F Sn, g E<M
(i) ép — b = Sn &k ar M<k<n,
where ¢, a1 = O, (m_1/2) and s, v = O (n‘l/Z) independent of k.
REMARK 7. A consequence of Lemma 6 together with (56) is that

(59) sup ak - d)k’ =0, (m*1/2> .

k=1,....,n

The next lemma examines the behaviour of

k
b — O = Z E—rar M<k<n-M
{=M+1
k—(n—M) k
- Z et — Z Ep—ear n—M<k<n
(=0 (=M+1
LEMMA 7. Under Condition 1, we have that
(i) by — =0 (M72)g, M<k<n—M
(ii) ¢p —dp =0 (1)&p, n—M<k<n.

Next by definition of ¥, and ¥}, in (25) and (52) respectively, we have that

R i kAM 3 = kAM 5 _
60)  Tp— b= 3 iy (b =)+ D (Eme— i) b 1<k<n+M
/=1 /=1

LEMMA 8. Under Conditions 1 and 3, we have that

kAM
(i) D=k =) & @ - bz) +(sntop(n )& 0<k<M
=0

kAM
(11) @k — 109]{ = Z Ek‘—f (Eg - bf) + (§n +0p (nil))gk_M M<k <n-+ M,
=0

where ¢, = O), (m_l/ 2) independent of k.
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REMARK 8. A consequence of the previous lemma together with (56) is that

(61)

sup 5;.3 - 19k

k=1,....,m

=0, (m_1/2) .

By definition of 9}, and Uy, in (2) and (52) respectively, we have that

k
109]{—19]?: Z Ek—ﬁbé M<k<n
(=M+1
k—ni k B
:_Zﬁk_ebe— Z Er—ebe n<k<n+M
/=0 I=M+1
LEMMA 9. Under Condition 1, we have that
(i) Op— =0 (M2)E, M<k<n
(i) Ux—V=0(1)E, n<k<n-+M.
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