The Ocean Genome and Future Prospects for Conservation and Equity

2 Blasiak R^{1,2}., Wynberg R.³, Grorud-Colvert K.⁴, Thambisetty S.⁵, Bandarra N.M.⁶, Canario A.V.M.⁷, da Silva J.^{8,9}, Duarte C.M.¹⁰, Jaspars M.¹¹, Rogers A.¹², Sink K.⁸ and Wabnitz C.C.C.^{1,13}

Life has evolved in the ocean for 3.7 billion years, resulting in a rich "ocean genome", the ensemble of genetic material present in all marine biodiversity, including both the physical genes and the information they encode. Rapid advances in sequencing technologies and bioinformatics have enabled exploration of the ocean genome and are informing innovative approaches to conservation and a growing number of commercial biotechnology applications. However, the capacity to undertake genomic research and to access and use sequence data is inequitably distributed among countries, highlighting an urgent need to build capacity, promote inclusive innovation, and increase access to affordable technologies.

The ocean is a vast and diverse habitat that covers 70% of the Earth's surface. Although estimates of extant species are based on indirect approaches and extrapolations can vary widely, some 2.2 million (range 0.3-10 million) eukaryotic marine species likely exist in the ocean, of which 230,000 are confirmed^{1,2}. Comparisons with terrestrial life underscore the striking diversity of marine life: for instance, of the 34 major animal phyla, only 12 are found on land, while 33 have been recorded in the ocean³. The abundance and diversity of marine prokaryotes (bacteria and archaea) and viruses reaches monumental orders of magnitude, collectively accounting for the majority of living mass in the ocean, with estimates, extrapolated from mean values per unit volume of seawater, of 1.2 ×10²⁹ prokaryote cells and 1.3×10³⁰ virus particles found in ocean waters^{4,5}. Some 24-98% of eukaryotic marine species, depending on the taxon group, remain undescribed, while even less is known about prokaryotic marine life, with estimates extrapolated using scaling laws, ranging from 1.0·10⁶ to 3.0·10²⁷ operational taxonomic units comparable, in taxonomic terms, to species^{2,6,7}.

The diversity of marine life is closely associated with and dependent upon underlying genetic diversity, namely the total number of genetic characters in the genetic makeup of each species.

Genetic diversity encodes the functional attributes of species, and their distribution and adaptability.

Conserving genetic diversity provides more opportunities for evolution, and helps to foster the fitness of populations and their potential to recover from and adapt to threats ranging from disease to environmental changes⁸.

We define the "ocean genome" as the ensemble of genetic material present in all marine biodiversity, including both the genes and the information they encode⁹. The explicit reference to the physical resources and informational component of genes reflects technological advances as well as the regulatory efforts striving to govern them. In recent decades, it has become possible not only to store the nucleotide sequences of DNA and RNA as digital information, but to then use this information to synthesize proteins, create molecular processes and innovation, and modify or even create organisms^{10,11}. Genetic sequence data and innovations based on such digital information are now the subject of patent and ownership claims¹². The complexity of regulating access to both informational and physical resources and equitably sharing benefits from the vast potential

_

¹ Author affiliations: (1) Stockholm Resilience Centre, Stockholm University, Sweden; (2) University of Tokyo, Japan; (3) University of Cape Town, South Africa; (4) Oregon State University, USA; (5) London School of Economics, UK; (6) Portuguese Institute of Sea and Atmosphere, Portugal; (7) CCMAR, University of Algarve, Portugal; (8) South African National Biodiversity Institute, South Africa; (9) Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, South Africa; (10) Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Saudi Arabia; (11) Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, UK; (12) REV Ocean, Lysaker, Norway and University of Oxford, UK; (13) University of British Columbia, Canada

- 40 applications of these genetic resources across multiple industries remains unresolved and is the
- 41 subject of negotiations in multiple international fora¹³.
- In this review, we address three questions. What are the benefits to the biosphere, to humanity and
- 43 to other living organisms that arise from the ocean genome? What are the threats eroding genetic
- diversity in the ocean? How can the ocean genome be conserved and used in a more sustainable, fair
- 45 and equitable manner?

Ecological benefits

46

- 47 Most attributes of organisms are encoded within their genomes, which determine much of their
- 48 morphology, biology, behavior and physiology. High levels of genetic variability and the presence of
- 49 multiple genotypes within a species can result in functional redundancy that supports species
- resilience and adaptive capacity under environmental pressures and anomalous conditions^{14,15}.
- Within the context of complex and dynamic systems, genetic diversity is therefore a crucial
- 52 stabilizing factor. Such benefits have been of interest to fishery managers, as genetically diverse fish
- 53 populations are better positioned to exploit a range of habitats, which adds flexibility in their
- responses to environmental change¹⁶. Alaska's Bristol Bay salmon, for instance, is a highly
- heterogeneous population that includes over 100 discrete sub-populations, resulting in a portfolio
- 56 effect, whereby the associated diversity has led not only to a more stable population, but also less
- 57 frequent closures for fishing communities¹⁵. Elsewhere, the benefits of genetic variability have been
- 58 recorded in restoration projects. For instance, in North America and Indonesia, plots of seagrass
- 59 with higher levels of genetic diversity also exhibited higher rates of survival, plant density and
- 60 growth¹⁷. The ecological benefits of genetic diversity extend beyond the resilience of individual
- 61 populations. In both of the above cases, positive impacts were recorded in the stability of
- 62 populations feeding on salmon during spawning, and in increased levels of primary production and
- nutrient retention in restored seagrass beds in the Chesapeake Bay^{15,18}.
- 64 Genetic variability also drives adaptive potential, which not only enhances resilience to anomalous
- conditions, but also enables persistence as environmental conditions change and evolve over time.
- Recent studies have demonstrated that this adaptive potential is of relevance even over short
- 67 timeframes, for instance within the span of 200 to 600 generations (6 months) of certain tropical
- 68 diatoms¹⁹. Due to the prominence of coral reef ecosystems as hotspots of marine biodiversity and a
- crucial element of marine food webs, the bleaching and loss of corals is of special concern. There is
- 70 evidence suggesting that some corals may already have begun adapting to ocean warming caused
- 71 by anthropogenic activity, rendering them more resistant in the context of mass-bleaching events .
- 72 This relatively rapid response is a function of genetic diversity and phenotypic plasticity at the
- 73 holobiont level. Likewise, current changes in ocean conditions could alter the functional
- 74 composition of marine phytoplankton communities, the foundation of virtually all marine food webs
- 75 and the source of roughly half of the oxygen on the planet. In an experimental setting, cultures of
- 76 marine phytoplankton with higher genetic diversity outperformed less diverse cultures with regard
- to their ability to withstand low salinities and maintain nitrogen uptake levels²³.
- 78 Closely studied ecosystems and commercial fisheries are already providing some evidence of how
- 79 genetic diversity contributes to ecosystem function and enhances adaptive potential. Yet the full
- value of marine genetic diversity for the ocean and the biosphere will become increasingly apparent
- as ocean systems continue to change and additive and synergistic impacts are better understood.

82

83

Commercial benefits

While the ocean genome provides the ecological foundation that sustains major commercial industries such as marine fisheries and tourism, commercial benefits are also derived directly from marine genes. Marine organisms, from microbes to large vertebrates, establish complex intra- and interspecific interactions mostly mediated by a variety of chemicals. These chemicals serve multiple purposes, including communication, chemical defense to predators, allelopathy, antifouling and many others^{24,25}. These chemicals, also called secondary metabolites, are small molecules of a diverse nature (e.g. peptides, sterols, phenols, terpenoids, alkaloids) often with a biological function yet to be resolved. The continuum of "omic" approaches, extending from genomics and functional genomics to transcriptomics, proteomics and metabolomics provides a mechanistic pathway linking the ocean genome to the metabolites that play an important role as potential natural products for human applications, as well as a key role in modulating interactions among organisms. Much research has focused on finding useful biological activities for biomedical, cosmetic and other commercial purposes. With the recent advances in analytical techniques (mass spectrometry, nuclear magnetic resonance), new high throughput metabolomics approaches are able to simultaneously unravel hundreds of novel compounds. When coupled to other omics technologies, such as Next-Generation Sequencing (NGS), in a systems biology approach, insights of the complex picture of interaction among organisms can be obtained. Furthermore, the pathways for production of the metabolites can be obtained, which opens the way to their mass production using biotechnological methods²⁶.

Perhaps the hallmark of human benefit from a marine gene is the discovery of green fluorescent protein, which produces bioluminescence in the jellyfish *Aequorea victoria* and has been used across a range of applications from protein tagging to identifying levels of environmental toxicity, contributions ultimately recognized with the 2008 Nobel Prize in Chemistry²⁷. Further examples include bioprospecting for novel antifoulants and adhesives, and the search for novel antibiotics, which has increasingly focused on the bioactive compounds produced by marine invertebrates and microorganisms associated with sea sponges^{28–30}. Other marine microorganisms produce a type of naturally occurring polymer (extracellular polymeric substance) that is of interest in bioremediation efforts due to its capacity to detoxify pollutants such as heavy metals³¹, while *Pseudomonas spp.* and *Ideonella sakaiensis* have the capacity to biodegrade certain plastics³². Additional categories of commercial activity focused on marine genetic resources are briefly introduced below. Controversies over the ownership and exclusive use of these genetic resources have persisted and present some unique challenges to existing international frameworks, as well as to potential pace of discovery.

Marine drug discovery

84

85

86

87

88

89 90

91

92

93

94

95

96

97

98

99

100

101

102

103104

105

106

107

108

109 110

111

112

113

114

115

116

117

118 The marine environment has been an attractive source of bioactive compounds for the development 119 of novel drugs. The approximately 34,000 marine natural products33 that have been reported have 120 resulted in 8 clinically-approved drugs, with a further 28 in clinical trials and 250 under preclinical 121 investigation³⁴. Compared with drug development from terrestrial natural products, this is a 122 remarkable success rate³⁵. A driving force behind the development of marine drugs has been 123 extensive funding from the US National Cancer Institute and prospective efforts by private 124 companies, as well as a focus on the collection of marine genetic resources globally, particularly 125 from shallow tropical reefs and marine invertebrates. Consequently, five of the eight clinically-126 approved drugs are treatments for cancer, with the remainder comprising treatments for 127 neuropathic pain, the Herpes simplex virus and hypertriglyceridemia. Seven of the eight drugs were derived from sessile marine invertebrates, whose tendency to produce highly bioactive compounds 128 129 - a virtual chemical arsenal - may be related to their lack of an adaptive immune system, predation 130 pressure, and intense competition for space and resources, although the majority of these 131 compounds have no apparent defensive function³⁶.

Nutraceuticals and cosmeceuticals

132

145

- 133 With properties that provide medical or health benefits and also serve cosmetic or nutritional
- purposes, cosmeceuticals and nutraceuticals are a growing industry, with marine resources
- comprising an attractive source due to the wide range of exhibited metabolic pathways. The
- 136 resulting diversity of bioactive compounds includes vitamins, carbohydrates, proteins and peptides,
- and perhaps most prominently omega-3 fatty acids³⁷. While fish and crustaceans have long been
- 138 exploited as sources of eicosapentaenoic acid and docosahexaenoic acid, overexploitation of fish
- stocks has led to research in alternative sources of omega-3 fatty acids, and the subsequent
- development of algal oils that can be produced in industrial quantities using phototrophic
- microalgae^{38,39}. Cosmeceutical skin creams with purported anti-inflammatory and detoxifying
- agents have been developed from species as diverse as the Caribbean gorgonian (*Pseudopterogorgia*
- 143 elisabethae) and bacteria isolated from deep-sea hydrothermal vents (Altermonas macleodi subsp.
- 144 fijiensis biovar deepsane; Thermus thermophilus)^{40,41}.

Aquaculture and new food products

- While genetic modification has been used on a variety of commercial land crops, it remains in its
- infancy in the aquaculture industry. To date, only the Atlantic salmon (Salmo salar) has been
- 148 commercialized using genetic engineering, namely through the insertion of growth hormone cDNA
- from Chinook salmon (*Oncorhynchus tshawytscha*) and regulated with antifreeze protein promoter
- 150 sequences from the Ocean pout (Zoarces americanus) that enable it to survive in near-freezing
- temperatures⁴². The resulting transgenic salmon, which reached the market for the first time in
- 152 2017⁴³, can reach a marketable size within 16-18 months, as opposed to the three years it would
- otherwise require. But with just 40 fish species having fully sequenced genomes, and the recent
- advent of tools such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and
- associated enzymes (e.g. Casq) allowing selective gene editing, the number of transgenic
- aquaculture species is expected to increase, particularly due to a growing demand for seafood and
- increasing focus on lower trophic level species like seaweeds and bivalve molluscs⁴⁴. However,
- 158 questions of consumer acceptability, environmental risk and social desirability remain paramount
- and unresolved, alongside an uncertain regulatory framework^{45,46}. Parallel research has also
- developed, focused on novel functional food ingredients with the potential to extend shelf-life and
- prevent spoilage (e.g. chitosan and protein hydrolysates)⁴⁷, and the use of enzymes from marine
- microorganisms as natural food processors⁴⁸.

163 Bulk chemicals

- 164 Products and processes derived from marine genetic resources are of growing importance for the
- bulk chemical market, with applications ranging from novel laundry detergents to their use as
- 166 emulsifiers and stabilizers in food production. Bioplastics derived from seaweed polymers are being
- used across a range of applications from straws and flip-flops to edible alternatives to plastic
- packaging^{48,49}. The enzymes allowing species to flourish in extremely cold and hot marine
- 169 environments have also attracted commercial interest. For example, a genetically modified version
- of a thermostable enzyme collected from a hydrothermal vent organism has been used for
- 171 bioethanol production due to its capacity to function across wide pH and temperature ranges⁵⁰. The
- 172 addition of certain red seaweeds (Asparagopsis taxiformis and Asparagopsis armata) to ruminant
- 173 feed has been shown to more than halve methane emissions, although concerns exist about the
- 174 ozone-depleting properties of bromoform, a secondary metabolite produced by these seaweeds, if
- industrial-scale production for animal feed is pursued^{51,52}.

176 Erosion of the ocean genome

All of these benefits—including products from marine genetic resources and ecosystem services delivered by diverse and fully functioning ocean systems—are predicated on the existing ocean genome. Yet this is threatened by the intensification of human activity around the world, which is contributing to a rapid loss of biodiversity in marine life and accelerating trends that are evident across multiple ocean-based industries⁵³. Marine capture fisheries, coastal development and pollution have contributed to the loss of (sub-) populations and in extreme cases, species extinction, although these are rare in marine environments⁵⁴. This leads to a decline in genetic diversity in the ocean, mostly concentrated, thus far, at the level of within species variability. The economic importance of the salmon industry has spurred close monitoring of the population dynamics of salmon, helping to understand the impact of human activities: within the Columbia River basin, for example, dam construction has resulted in the extinction of several sockeye salmon subpopulations, while chinook salmon have lost up to two-thirds of their genetic diversity⁵⁵. The decline in genetic diversity has resulted in smaller and more variable salmon returns¹⁵. Even within subpopulations that persist, overfishing can result in the loss of genetic diversity over time, most likely reflected in loss of allelic diversity for specific genes, as the prominence of certain genotypes fluctuates and genetic drift reduces genetic diversity and lowers the capacity of species to persist and adapt to changing conditions.

Although documented species extinction has been rare in the ocean compared with recent rates of terrestrial species loss, climate change is expected to result in disproportionate levels of species loss in the ocean due to the narrow thermal range tolerated by marine ectotherms^{54,56}. As the ocean warms and becomes more acidic and less oxygenated with climate change, the geographic distribution of species is also changing as they track their environmental niche⁵⁷. At a genetic level, this implies an altered distribution of genetic variants in space and time, impacts on levels of phenotypic plasticity and changes to connectivity and population size⁵⁸. Genetic variation is not uniform across species ranges, with populations in historic refuges often characterized by greater genetic diversity, and likewise threatened by shifts in distribution due to climate change⁵⁹.

Efforts to optimize marine aquaculture have included the selective breeding of species and their introduction into non-native habitats. Careful monitoring and containment helps to maintain the integrity of local ecosystems, but escape events do occur, and have led to farmed species outcompeting native populations as well as the interbreeding of farmed and native species⁶⁰. This results in genetic introgression and can lead to a rapid and irreversible loss of genetic diversity among the native fish populations, thereby lowering their adaptive capacity⁶¹. Such impacts could be accelerated by the accidental release of genetically modified strains in the ocean.

Much of the deep ocean and seabed remain unexplored, and scientific expeditions regularly result in the discovery of new species. A tendency for deep-sea life to exhibit slow growth rates and long lifespans renders deep-sea ecosystems particularly vulnerable to environmental disturbance⁶². The potential for large-scale commercial mining of the international seabed has therefore drawn particular concern within the scientific community due to uncertainty about the scale of physical and geochemical disturbance caused by mining operations and resulting sediment plumes in the deep sea, which are expected to lead to the loss of habitat and a potentially irreversible loss of biodiversity⁶². The scaly-foot snail (*Chrysomallon squamiferum*), for instance, is found exclusively on three hydrothermal vent systems in the Indian Ocean at depths of over 2400 meters, and was placed on the IUCN Red List in June 2019 due to two of the three systems falling within the boundaries of exploratory mining licenses granted by the International Seabed Authority⁶³.

The acceleration of human activities on land and in the sea means that many marine species and communities are simultaneously facing multiple pressures with cumulative or synergistic effects on genetic structure and gene flow. Well-studied examples include the twin pressures of wild capture

- 224 salmon fisheries and aquaculture escapement, which undermine the genetic variability of wild
- 225 populations⁶⁴. Looking beyond individual populations or species, multiple pressures can also result
- in a complete reordering of ecosystems into novel regimes. For instance, the combined and
- 227 interlinked pressures from eutrophication, overfishing and the introduction of invasive species into
- 228 the Black Sea led to abrupt transitions and the emergence of a new stable regime characterized by a
- 229 low-energy food web dominated by jellyfish and the dinoflagellate *Noctiluca scintillans*. 65

A more sustainable and equitable future

- How can a growing understanding of the ecological and commercial benefits associated with the
- ocean genome be leveraged to promote conservation efforts and mitigate the drivers of genetic
- diversity loss in the ocean? Below, we detail not only what can be done to conserve the ocean
- genome, but also avenues through improved regulatory frameworks and models of inclusive
- innovation that can render use of the ocean genome more sustainable, equitable and fair.

Towards conservation of the ocean genome

- In marine systems, there are opportunities for the conservation of genetic diversity via key tools,
- among them ecosystem-based approaches to fisheries management, spatial planning, effective
- 239 quotas, marine protected areas (MPAs), protecting and managing key marine biodiversity areas,
- 240 reducing run-off pollution into oceans, and working closely with producers and consumers of ocean
- products⁶⁶. Among these, the imperative of conserving the ocean genome would appear to be on
- 242 firm footing in existing international frameworks: the importance of genetic diversity was already
- emphasized in the Convention on Biological Diversity (CBD) (1992), while the target of protecting at
- least 10% of the ocean is found in both Sustainable Development Goal 14 and Aichi Target 11. Yet
- 245 genetic diversity has been largely overlooked in conservation policies and action plans, and only 8%
- of the ocean is set aside for biodiversity conservation, while just 2.5% is considered fully or highly
- protected⁶⁸.

230

- 248 MPAs are considered one of the most effective tools for achieving the conservation of genetic
- diversity on an ecosystem scale⁶⁹. Fully or highly-protected large-scale MPAs and networks of MPAs
- 250 can encompass multiple sites of importance for the life-cycle of marine species. Well-managed
- 251 MPAs with adequate protection levels function as storehouses of genetic diversity that
- simultaneously serve as important reference points for understanding changes to the ocean⁷⁰. MPA
- 253 networks can be designed with a specific focus on areas where genetic diversity is exceptionally high,
- or where particular adaptation potential lies. Such MPA adaptation networks are relevant for
- instance in coral reef systems⁷¹, which have been the focus of empirical work to map their
- adaptation potential⁷². The capacity for a single coral species to inhabit a range of environments
- 257 characterized by high genetic diversity and on scales of less than 100 meters underscores the need
- for protected areas to be designed with a consideration not only for potential shifts in species
- distribution across latitudes, but also different water depths^{14,73} (Figure 1).
- 260 Recognizing the importance of MPAs and other effective area-based conservation measures
- 261 (OECMs) as tools for conserving the ocean genome, there is a particular need to optimize design to
- 262 also conserve the genetic component of marine biodiversity. This remains a substantial challenge
- due to the rarity of temporal genetic diversity datasets or baselines, although a number of novel
- 264 genetic technologies are becoming available with the potential to overcome this barrier. These
- 265 include Sanger sequencing, with a history of applications ranging from wildlife conservation and
- 266 management to the identification of mislabeled seafood⁷⁴, as well as Next-Generation Sequencing
- 267 (NGS), a high-throughput DNA-sampling tool that can provide large-scale spatial and temporal
- syntheses for both individual species and community assemblages⁷⁵. Several community initiatives

- 269 using NGS are starting to change this landscape, such as the Earth BioGenome Project which aims
- 270 to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a
- period of 10 years⁷⁶, the sponge microbiome project a comprehensive resource of sponge-
- associated microbial communities based on 16S rRNA gene sequences that can be used to address
- overarching hypotheses regarding host-associated prokaryotes⁷⁷, and the Earth Microbiome Project
- to characterize microbial life on the planet using DNA sequencing and mass spectrometry⁷⁸.
- 275 Emerging data on diversity within the microbiome of marine holobionts is revealing a vast reservoir
- of hitherto largely ignored microbial biodiversity⁷⁹.
- When coupled with another novel molecular approach, environmental DNA (eDNA) analysis, NGS
- has also been used for the detection and monitoring of marine invasive species^{80,81}. The passive
- 279 sampling techniques employed for eDNA analysis provide multiple benefits of interest to marine
- 280 conservation. Due to the constant shedding of DNA by species as they interact with their
- 281 environment, analysis of eDNA samples can indicate whether certain species are present in a given
- geography⁸². As a result of the rapid decomposition of eDNA over the span of days or even hours in
- seawater, eDNA analysis provides an almost real-time picture of species presence, including rare or
- elusive species, and invasive species^{83,84}. The flexibility of the approach allows for simultaneous
- identification of hundreds of species in a single sample, providing insight into areas of particular
- species richness and potential priority for area-based protection. Recent advances in interpreting
- 287 eDNA are also enabling quantification of population genetic structure and insights into trophic
- 288 connectivity⁸⁵. Sampling and analysis of eDNA is most powerful in well-studied marine ecosystems
- 289 with substantial barcode reference collections, but may become an increasingly useful tool for the
- design of marine conservation interventions.
- 291 Some have touted the potential of new genome-editing techniques such as CRISPR for conservation,
- but their application remains theoretical. Extensive work done on corals, for example, reveals
- 293 limited knowledge about potential candidate genes to target, whether this would result in
- 294 phenotypic changes, whether the modified genome would be stable, and what unintended
- consequences gene editing could generate 86,87. Moreover, a scarcity of information about the
- 296 environmental, social and ethical risks of existing and new genetic engineering tools, especially in
- 297 marine environments, have raised important questions about the governance and regulation of such
- 298 technologies, necessitating a precautionary approach to the introduction of such technologies for
- 299 conservation and fisheries management.
- 300 Although genetic techniques are rapidly evolving, policymakers do not have the luxury of waiting to
- make interventions until comprehensive inventories of marine genetic diversity are available, or
- 302 until the extent of varied threats are fully understood. A delayed response risks resulting in the loss
- 303 of rapidly deteriorating storehouses of genetic information due to over-harvesting of species and
- habitat degradation. Scientific recommendations to protect 30% of the ocean from all but the most
- 305 minimal extraction focus on encompassing sufficient biodiversity, species biomass, and
- 306 representative habitats⁸⁸. This requires that ongoing management outside protected areas
- 307 complements these efforts by ensuring sustainable use, minimizing habitat destruction and
- 308 avoiding overexploitation of resources. Such strategies include sustainable management of fisheries
- 309 with a focus on ecosystem-based fisheries management, affording special protections for rare,
- 310 vulnerable, threatened or endangered genotypes, populations and species, and using precautionary
- 311 approaches when initiating exploitation of previously unexploited species or places.

Towards equitable benefit sharing

- 313 Investments in marine biodiscovery are typically extremely costly and risky due in part to the high
- 314 costs of sampling in areas like the deep sea, the low chances of success, the technical, financial and

scientific investments required, and the significant regulatory hurdles for product approval (Figure 3)^{89,90}. The nature of the research enterprise is also changing, as research shifts towards bioinformatics and the mining and exploration of these vast and growing datasets of genetic information, which requires advanced computational resources that are not broadly available 91. As a result, most exploration has been undertaken by high-income countries, especially with regard to deep-sea research ^{36,92,93}. Disparities in research capacity, technology, finances and intellectual property rights represent major constraints that prevent the inclusion of low and middle-income countries in marine biotechnology efforts. Biodiversity and molecular expertise is unevenly spread 94, and research vessels or submersibles are typically owned only by a few high-income nations, and require substantial operational costs⁹⁵, representing a major barrier to sampling of the deep ocean or in areas beyond national jurisdiction (see Box 1). While there are growing numbers of collaborations between high-income and lower-income countries ⁹⁶, the model of international collaboration is still characterized by a pharmaceutical or biotech company working with established centers of excellence located in high-income countries.

A number of international governance instruments and bodies provide an important platform where new models of equitable benefit sharing and research partnerships can evolve, and conservation of the ocean genome can be strengthened. These include the CBD, its Nagoya and Cartagena (Biosafety) Protocols, the International Treaty on Plant Genetic Resources for Food and Agriculture, the United Nations Convention on the Law of the Sea (UNCLOS) and the World Intellectual Property Organization (WIPO). Among other provisions, these agreements place the responsibility on states to conserve their biological diversity or to enter into meaningful management discussions with other countries with which they share resources (e.g. transboundary fish stocks). In the context of genetic resource use, the CBD's Nagoya Protocol sets forth the requirement for provider countries (where genetic resources are located) and user countries (those accessing and developing the genetic resources) to enter into mutually agreed terms based on prior informed consent before access to genetic resources is granted. In areas beyond national jurisdiction (ABNJ), roughly 64% of the ocean, no restrictions currently exist on access to genetic resources, or regulations for the sharing of benefits based on their potential commercialization. However, this is one of four main elements of ongoing UN treaty negotiations of cross-cutting importance for the ocean genome (Box 1).

A further complication is the so-called "definitional mistake" of the CBD and Nagoya Protocol, whereby focus is placed on genetic resources in terms of their physical form rather than explicitly including the intangible informational aspects⁹⁷. The development of novel genomic techniques has contributed to a 4,000-fold drop in sequencing costs over the past decade⁹⁸, and has resulted in vast and exponentially growing databases of genetic sequence data and hundreds of millions of predicted genes (Figure 2)⁹⁹⁻¹⁰¹. While many of these databases are in the public domain and freely accessible, the growing tendency towards "big data" applications means that leveraging novel genomic techniques for conservation or other uses is becoming increasingly dependent on computational and bioinformatics capacity, including access to technologies protected by intellectual property rights. Additionally, the private appropriation of genetic resources through intellectual property rights such as patents, because they result in exclusivity of use, can exacerbate existing gaps in the ability to benefit from their exploitation¹⁰². Because countries of the global North and South do not have equal capacities or technologies to exploit these resources, there is a risk of inequitable outcomes out of sync with the 2030 Agenda for Sustainable Development and the CBD and its Nagoya Protocol¹⁰³.

One opportunity rests in the development of research partnerships that connect countries that have high molecular research capacity and biotechnology infrastructure with those that do not, with such partnerships guided by norms of inclusive innovation and those of responsible research and innovation^{90,104}. Taking an explicit focus on those excluded from the development mainstream, inclusive innovation is a conceptual approach for ensuring that innovation both addresses the

problems faced by the poorest and most marginalized communities, and also involves these communities in crafting a range of legal, technical and governance-based solutions^{101,102}. The related concept of responsible research and innovation (RRI) envisages a transparent, interactive process by which societal actors and innovators become mutually responsive to each other with a view to the (a) ethical acceptability, (b) sustainability and (c) societal desirability of the innovation process and its marketable products¹⁰⁶.

Historically, the majority of exploration of the ocean genome has been funded by high-income countries such as the USA, Japan, Russia and EU states, and commercial activities and benefits continue to be concentrated within a handful of highly-industrialized countries 12,50. However, sustained commitments to research partnerships and inclusive and responsible research and innovation, including through capacity building and the transfer of marine technology, could result over time in a growing number of dynamic knowledge hubs and diffuse scientific collaborations outside the Global North¹⁰⁷. Indeed, it may well be that enabling virtual access to data and the ability to use it might prove an easier task than equalizing physical access to marine genetic resources.

While the concept of inclusive and responsible research and innovation is appealing and in line with existing governance and regulatory frameworks, there are substantial and unresolved legal and ethical issues related to the use and sharing of genomic information. The science bodies of the EU, USA and Australia, for instance, require genomic data collected over the course of funded projects to be deposited in open access databases. While regulations on disclosure of origin and other measures aimed at increasing transparency in the use of genetic sequence data are being negotiated within multiple international fora¹⁰⁸, the informational component of the ocean genome is increasingly entering the public domain and becoming a *de jure* universal resource, that is *de facto* only accessible to those with corresponding capacity. The capacity for industry actors to access public databases, while remaining unbound by benefit-sharing requirements, has compounded concerns among some countries of both a loss of control over national patrimony and the management of global resources and a loss of opportunity to reap benefits¹⁰⁹.

Scientists and policymakers have noted the importance of respecting such concerns and avoiding inequitable exploitation – commercial or otherwise – while also ensuring that scientific progress can continue with as few impediments as possible. Some have criticized the Nagoya Protocol for inadvertently hampering taxonomic research and international collaborations¹¹⁰, while being unable to enforce meaningful benefits sharing. Others have underscored that UNCLOS ensures freedom to undertake scientific research, including in ABNJ (Articles 256-257)¹¹¹ while still others have rejected the legitimacy of legal claims that arise from marine scientific research (Article 241), including in the form of intellectual property rights¹¹². The outcome of the BBNJ negotiations (see Box 1) has the potential to not only strike this balance for ABNJ, but also to illustrate alternative pathways for regulating the use and circulation of genetic resources internationally.

Conclusion

The future state of ocean ecosystems will depend in large part on recognizing that human activity has already substantially eroded the ocean genome and that this has been to the detriment of the biosphere, humanity and other life forms. Encouraging signals are emerging, including recent calls to move beyond current international targets by ensuring that in the future at least 30% of the ocean is fully or highly protected⁸⁸, the declaration of a UN Decade of Ocean Science for Sustainable Development (2021-2030), and the consensus decision among UN member states to move forward with negotiating a legally-binding instrument for conservation and sustainable use of BBNJ. Yet human impacts on the ocean are growing alongside accelerating commercial use of its resources and space^{53,113}, while the potential for new industries such as mining of the international seabed and

methane hydrates pose vast risks for the ocean genome⁶². Ensuring that the ocean genome is conserved will require effective regulation and governance based on inclusive and iterative dialogue processes that connect diverse stakeholders, are based on principles of fairness, equity and inclusivity, and are informed by the latest scientific techniques and knowledge of the ocean genome.

414

410 411

412

413

415

BOX 1: Negotiations on Biodiversity in Areas Beyond National Jurisdiction (BBNJ)

Some 36% of the ocean falls within exclusive economic zones (EEZs) within which states are granted a broad range of sovereign rights to make decisions related to the conservation and management of resources (UNCLOS, Article 57). The remaining 64% of the ocean is described as areas beyond national jurisdiction (ABNJ), comprised of the water column ("The High Seas") and the seabed and ocean floor beyond the limits of national jurisdiction ("The Area"). Multiple sectoral organizations exist with mandates to govern resources or activities in ABNJ, including a network of regional fisheries management organizations (RFMOs) under the Food and Agriculture Organization of the UN, the International Seabed Authority (for seabed mining), and the International Maritime Organization (for shipping). Recognizing that this landscape of sectoral organizations has been insufficient for addressing the full range of issues of relevance to BBNJ, states reached consensus with a UN General Assembly resolution (72/249) in December 2017 to initiate an intergovernmental conference with the aim to "elaborate the text of an international legally-binding instrument on the conservation and sustainable use of [BBNJ]". The BBNJ negotiations are focused around a "package" of four topics, all of relevance to the ocean genome, namely:

- marine genetic resources (MGR), including guestions on the sharing of benefits;
- measures such as area-based management tools, including MPAs;
- environmental impact assessments;
- capacity-building and the transfer of marine technology.

Negotiations related to MGR have proven complex due to the issues covered in this review relating to informational and physical aspects of MGR and conditions for equitable access and benefit sharing. The latter has been further hampered by a tendency for States to view MGR through the lens of contrasting regimes, namely "freedom of the high seas" or the "common heritage of [hu]mankind". The former implies a continuation of the liberal access regime that currently prevails in ABNJ and an absence of benefit-sharing obligations, while the latter would see changes to both to reflect a view that MGR from ABNJ are owned by all. Pragmatic approaches have sought to establish common ground between these positions, particularly by shifting focus from sharing of potential monetary benefits of commercial activity to emphasize the range of associated non-monetary benefits. For a detailed account of the BBNJ negotiations, their history, and negotiating positions, see Wright et al⁹¹.

416

417

418

419

BOX 2: The future of the ocean genome

Ensuring that the ocean genome is both preserved and used in a sustainable, fair and equitable manner is critical and requires effective conservation in both protected areas and beyond. It will also depend on operative national and transnational legal measures being in place to ensure incentives for research and development as well as equitable technology diffusion. Within this space, emerging opportunities exist for exploration, research, innovation, and investment. These include:

- 1) Building knowledge of the ocean genome: Increasing governmental and philanthropic support for basic taxonomic research as well as comprehensive assessments of the risks of transgenic marine organisms and other uses of new technologies to facilitate both effective conservation and sustainable use.
- 2) Protecting marine genetic diversity and monitoring outcomes: Management efforts that conserve marine genetic diversity should be supported by existing international commitments, including a particular focus on protecting areas of high biodiversity via fully and highly protected areas. Strategic Environmental Assessments and monitoring programs provide opportunities to report and revise national biodiversity strategies and action plans.
- 3) Embedding ocean genome conservation within research and commercialization: Benefits from ocean genome exploration and use would be enhanced by requiring equitable research partnerships between high- and low-income countries and through disclosure of the origin of genetic material as well as an explanation of the potential conservation and equity outcomes of commercialization.
- 4) Supporting greater equity in genomics research and commercialization: Incorporating marine science capacity building, information exchange, collaboration, and appropriate technology transfer into national research policies, plans and programs can benefit from the involvement of users and providers of marine genetic resources, who can work to set fair agreements on benefit sharing and technology transfer.
- 5) Promoting inclusive and responsible research and innovation: A transparent and interactive process can facilitate benefit-sharing and equitable outcomes by engaging multiple stakeholders, including private sector entities and scientists, with a view to the ethical acceptability, environmental sustainability and social desirability of the innovation process, and a focus on benefits for under-represented, marginalized, and vulnerable communities.

421

422

Acknowledgement

- 423 The author group was assembled under the auspices of the High-Level Panel for a Sustainable
- Ocean Economy, and provided with support to produce a paper titled "The ocean genome:
- 425 conservation and the fair equitable and sustainable use of marine genetic resources", on which this
- review heavily draws. The authors wish to thank the editors as well as three anonymous reviewers
- for constructive input, and J. Lokrantz (Azote) and J.B. Jouffray for their support with
- 428 conceptualizing and designing figures.

429

430

Correspondence

- 431 All correspondence and requests for materials should be addressed to Robert Blasiak
- 432 (robert.blasiak@su.se)

- 434 Competing interests
- 435 M.J. is founder of, shareholder in and consultant for 'GyreOx Ltd' which uses marine and terrestrial
- 436 enzymes for the rapid production of complex molecules to target protein-protein interactions
- involved in disease. S.T. has participated in the BBNJ negotiations as a Pacific Islands Forum Adviser.
- 438 Author contributions
- 439 R.B., R.W., K.G.-C., S.T., N.M.B., A.V.M.C., J.D.S., C.M.D., M.J., A.R., K.S. and C.C.C.W. all
- contributed to the writing and reviewing of this manuscript.

441 442

443 REFERENCES

- 1. Strother, P. K., Battison, L., Brasier, M. D. & Wellman, C. H. Earth's earliest non-marine
- eukaryotes. *Nature* **473**, 505–509 (2011).
- 2. Louca, S., Mazel, F., Doebeli, M. & Parfrey, L. A census-based estimate of Earth's
- bacterial and archaeal diversity. *PLOS Biology* **17**, (2019).
- 3. Jaume, D. & Duarte, C. M. General aspects concerning marine and terrestrial biodiversity.
- 450 The Exploration of Marine Biodiversity–Scientific and Technological Challenges. Bilbao:
- 451 Fundación BBVA 17–30 (2006).
- 452 4. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. *Proceedings of*
- 453 the National Academy of Sciences **115**, 6506–6511 (2018).
- 5. Cobián Güemes, A. G. et al. Viruses as Winners in the Game of Life. Annual Review of
- 455 *Virology* **3**, 197–214 (2016).
- 456 6. Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. *Proceedings*
- *of the National Academy of Sciences* **113**, 5970–5975 (2016).
- 458 7. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How Many Species
- Are There on Earth and in the Ocean? *PLOS Biology* 9, e1001127 (2011).
- 460 8. Reed, D. H. & Frankham, R. Correlation between Fitness and Genetic Diversity.
- 461 *Conservation Biology* **17**, 230–237 (2003).

- 9. Blasiak, R. et al. The Ocean Genome: Conservation and the Fair, Equitable and
- Sustainable Use of Marine Genetic Resources. (High Level Panel for a Sustainable Ocean
- 464 Economy, 2020).
- 10. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized
- 466 genome. Science **329**, 52–56 (2010).
- 11. Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351,
- 468 (2016).
- 12. Blasiak, R., Jouffray, J.-B., Wabnitz, C. C., Sundström, E. & Österblom, H. Corporate
- control and global governance of marine genetic resources. Science advances 4, eaar5237
- 471 (2018).
- 472 13. Blasiak, R. International regulatory changes poised to reshape access to marine genes.
- 473 *Nature biotechnology* **37**, 357 (2019).
- 474 14. Webster, M. S. et al. Who Should Pick the Winners of Climate Change? Trends in
- 475 *Ecology & Evolution* **32**, 167–173 (2017).
- 476 15. Schindler, D. E. *et al.* Population diversity and the portfolio effect in an exploited species.
- 477 *Nature* **465**, 609–612 (2010).
- 478 16. Ruzzante, D. E. et al. Biocomplexity in a highly migratory pelagic marine fish, Atlantic
- 479 herring. *Proc. Biol. Sci.* **273**, 1459–1464 (2006).
- 480 17. Reynolds, P. L., Richardson, J. P. & Duffy, J. E. Field experimental evidence that grazers
- mediate transition between microalgal and seagrass dominance. *Limnology and*
- 482 *Oceanography* **59**, 1053–1064 (2014).
- 483 18. Reynolds, L. K., McGlathery, K. J. & Waycott, M. Genetic Diversity Enhances
- 484 Restoration Success by Augmenting Ecosystem Services. *PLOS ONE* 7, e38397 (2012).
- 485 19. Jin, P. & Agustí, S. Fast adaptation of tropical diatoms to increased warming with trade-
- 486 offs. Sci Rep 8, 1–10 (2018).

- 487 20. Norström, A. V. et al. Guiding coral reef futures in the Anthropocene. Frontiers in
- 488 *Ecology and the Environment* **14**, 490–498 (2016).
- 489 21. Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to
- 490 construct bleaching-resistant nurseries. Proceedings of the National Academy of Sciences
- **116**, 10586–10591 (2019).
- 492 22. Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial
- 493 community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:
- 494 *14213*. (2017).
- 495 23. Sjöqvist, C. O. & Kremp, A. Genetic diversity affects ecological performance and stress
- response of marine diatom populations. *ISME J* **10**, 2755–2766 (2016).
- 497 24. Brown, E. R., Cepeda, M. R., Mascuch, S. J., Poulson-Ellestad, K. L. & Kubanek, J.
- 498 Chemical ecology of the marine plankton. *Natural Product Reports* **36**, 1093–1116
- 499 (2019).
- 500 25. Puglisi, M. P., Sneed, J. M., Sharp, K. H., Ritson-Williams, R. & Paul, V. J. Marine
- 501 chemical ecology in benthic environments. *Natural Product Reports* **31**, 1510–1553
- 502 (2014).
- 503 26. Kuhlisch, C. & Pohnert, G. Metabolomics in chemical ecology. *Natural Product Reports*
- **32**, 937–955 (2015).
- 505 27. Rogers, A. D. The Deep: The Hidden Wonders of Our Oceans and How We Can Protect
- 506 *Them.* (Wildfire, 2019).
- 507 28. El Samak, M., Solyman, S. M. & Hanora, A. Antimicrobial activity of bacteria isolated
- from Red Sea marine invertebrates. *Biotechnol Rep (Amst)* **19**, e00275 (2018).
- 509 29. Tortorella, E. et al. Antibiotics from deep-sea microorganisms: Current discoveries and
- perspectives. *Marine Drugs* **16**, 355 (2018).

- 30. Tincu, J. A. & Taylor, S. W. Antimicrobial peptides from marine invertebrates.
- Antimicrobial agents and chemotherapy 48, 3645–3654 (2004).
- 31. Pal, A. & Paul, A. K. Microbial extracellular polymeric substances: central elements in
- heavy metal bioremediation. *Indian J Microbiol* **48**, 49–64 (2008).
- 515 32. Wilkes, R. A. & Aristilde, L. Degradation and metabolism of synthetic plastics and
- associated products by Pseudomonas sp.: capabilities and challenges. *Journal of applied*
- 517 *microbiology* **123**, 582–593 (2017).
- 518 33. MarinLit. A database of marine natural products literature. (2019).
- 519 34. Clinical Pipeline.
- 520 https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml.
- 35. Gerwick, W. H. & Moore, B. S. Lessons from the past and charting the future of marine
- natural products drug discovery and chemical biology. *Chem. Biol.* **19**, 85–98 (2012).
- 36. Leal, M. C., Puga, J., Serôdio, J., Gomes, N. C. M. & Calado, R. Trends in the Discovery
- of New Marine Natural Products from Invertebrates over the Last Two Decades Where
- and What Are We Bioprospecting? *PLOS ONE* **7**, e30580 (2012).
- 37. Suleria, H. A. R., Osborne, S., Masci, P. & Gobe, G. Marine-Based Nutraceuticals: An
- 527 Innovative Trend in the Food and Supplement Industries. *Mar Drugs* **13**, 6336–6351
- 528 (2015).
- 529 38. Rodolfi, L. et al. Microalgae for oil: strain selection, induction of lipid synthesis and
- outdoor mass cultivation in a low-cost photobioreactor. *Biotechnol. Bioeng.* **102**, 100–112
- 531 (2009).
- 532 39. Chauton, M. S., Reitan, K. I., Norsker, N. H., Tveter\a as, R. & Kleivdal, H. T. A techno-
- economic analysis of industrial production of marine microalgae as a source of EPA and
- 534 DHA-rich raw material for aquafeed: research challenges and possibilities. *Aquaculture*
- **436**, 95–103 (2015).

- 536 40. Jaspars, M. et al. The marine biodiscovery pipeline and ocean medicines of tomorrow.
- Journal of the Marine Biological Association of the United Kingdom **96**, 151–158 (2016).
- 41. Cambon-Bonavita, M. A., Raguenes, G., Vincent, P. & Guezennec, J. A novel polymer
- produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid.
- *Journal of Applied Microbiology* **93**, 310–315 (2002).
- 42. Smith, M. D., Asche, F., Guttormsen, A. G. & Wiener, J. B. Genetically modified salmon
- and full impact assessment. *Science* **330**, 1052–1053 (2010).
- 543 43. Waltz, E. First genetically engineered salmon sold in Canada. *Nature News* 548, 148
- 544 (2017).
- 545 44. Zhu, B. & Ge, W. Genome editing in fishes and their applications. *Gen. Comp.*
- 546 *Endocrinol.* **257**, 3–12 (2018).
- 547 45. Otts, S. S. US regulatory framework for genetic biocontrol of invasive fish. *Biological*
- 548 invasions **16**, 1289–1298 (2014).
- 46. Van Eenennaam, A. L., Wells, K. D. & Murray, J. D. Proposed US regulation of gene-
- edited food animals is not fit for purpose. npj Science of Food 3, 1–7 (2019).
- 47. Shahidi, F. & Ambigaipalan, P. Novel functional food ingredients from marine sources.
- 552 *Current Opinion in Food Science* **2**, 123–129 (2015).
- 48. Beygmoradi, A. & Homaei, A. Marine microbes as a valuable resource for brand new
- industrial biocatalysts. *Biocatalysis and Agricultural Biotechnology* **11**, 131–152 (2017).
- 49. Guedes, A. C., Amaro, H. M., Sousa-Pinto, I. & Malcata, F. X. Chapter 16 Algal spent
- biomass—A pool of applications. in *Biofuels from Algae (Second Edition)* (eds. Pandey,
- 557 A., Chang, J.-S., Soccol, C. R., Lee, D.-J. & Chisti, Y.) 397–433 (Elsevier, 2019).
- 558 doi:10.1016/B978-0-444-64192-2.00016-0.
- 559 50. Leary, D., Vierros, M., Hamon, G., Arico, S. & Monagle, C. Marine genetic resources: A
- review of scientific and commercial interest. *Marine Policy* **33**, 183–194 (2009).

- 51. Roque, B. M., Salwen, J. K., Kinley, R. & Kebreab, E. Inclusion of Asparagopsis armata
- in lactating dairy cows' diet reduces enteric methane emission by over 50 percent.
- *Journal of Cleaner Production* **234**, 132–138 (2019).
- 52. Carpenter, L. J. & Liss, P. S. On temperate sources of bromoform and other reactive
- bromine gases. *Journal of Geophysical Research: Atmospheres* **105**, 20539–20547 (2000).
- 53. Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The Blue
- Acceleration The Trajectory of Human Expansion into the Ocean. *One Earth* (2020)
- 568 doi:10.1016/j.oneear.2019.12.016.
- 569 54. McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347,
- 570 1255641 (2015).
- 55. Johnson, B. M., Kemp, B. M. & Thorgaard, G. H. Increased mitochondrial DNA diversity
- in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha. *PLOS ONE*
- **13**, e0190059 (2018).
- 56. Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater
- vulnerability to warming of marine versus terrestrial ectotherms. *Nature* **569**, 108 (2019).
- 57. Poloczanska, E. S. *et al.* Responses of Marine Organisms to Climate Change across
- 577 Oceans. Front. Mar. Sci. 3, (2016).
- 58. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. *Nature* **470**,
- 579 479–485 (2011).
- 59. Provan, J. & Maggs, C. A. Unique genetic variation at a species' rear edge is under threat
- from global climate change. *Proc. Biol. Sci.* **279**, 39–47 (2012).
- 582 60. Fleming, I. A. et al. Lifetime success and interactions of farm salmon invading a native
- 583 population. Proceedings of the Royal Society of London. Series B: Biological Sciences
- **267**, 1517–1523 (2000).

- 585 61. Glover, K. A. et al. Half a century of genetic interaction between farmed and wild
- Atlantic salmon: Status of knowledge and unanswered questions. Fish and Fisheries 18,
- 587 890–927 (2017).
- 588 62. Van Dover, C. L. et al. Biodiversity loss from deep-sea mining. Nature Geoscience 10,
- 589 464–465 (2017).
- 590 63. Sigwart, J. D. et al. Red Listing can protect deep-sea biodiversity. Nat Ecol Evol 3, 1134–
- 591 1134 (2019).
- 592 64. Waples, R. S., Hindar, K. & Hard, J. J. Genetic risks associated with marine aquaculture.
- 593 (2012).
- 594 65. Oguz, T. & Velikova, V. Abrupt transition of the northwestern Black Sea shelf ecosystem
- from a eutrophic to an alternative pristine state. *Marine Ecology Progress Series* **405**,
- 596 231–242 (2010).
- 597 66. IPBES. Summary for policymakers of the global assessment report on biodiversity and
- 598 *ecosystem services unedited advance version.* (2019).
- 599 67. Laikre, L. Genetic diversity is overlooked in international conservation policy
- implementation. *Conservation Genetics* **11**, 349–354 (2010).
- 601 68. Sala, E. et al. Assessing real progress towards effective ocean protection. Marine Policy
- **91**, 11–13 (2018).
- 69. Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in
- the ocean. *ICES J Mar Sci* **75**, 1166–1168 (2018).
- 70. Grorud-Colvert, K. et al. Marine Protected Area Networks: Assessing Whether the Whole
- Is Greater than the Sum of Its Parts. *PLOS ONE* **9**, e102298 (2014).
- 71. Costello, M. J. Long live Marine Reserves: A review of experiences and benefits.
- 608 *Biological Conservation* **176**, 289–296 (2014).

- 72. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature **556**, 492–
- 610 496 (2018).
- 73. Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proceedings of
- the National Academy of Sciences **110**, 1387–1392 (2013).
- 74. Tinacci, L. et al. DNA barcoding for the verification of supplier's compliance in the
- seafood chain: How the lab can support companies in ensuring traceability. *Ital J Food*
- 615 Saf 7, (2018).
- 75. Djurhuus, A. et al. Evaluation of marine zooplankton community structure through
- environmental DNA metabarcoding. *Limnology and Oceanography: Methods* **16**, 209–
- 618 221 (2018).
- 76. Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J. & Coddington, J. Earth
- Biogenome Project: Sequencing Life for the Future of Life. *Proceedings of the National*
- 621 *Academy of Sciences* **115**, 4325–4333.
- 622 77. Moitinho-Silva, L., Nielsen, S., Amir, A. & Gonzalez, A. The sponge microbiome project.
- 623 *GigaScience* **6**, (2017).
- 78. Thompson, L. R., Sanders, J. G., McDonald, D. & Amir, A. A communal catalogue
- reveals Earth's multiscale microbial diversity. *Nature* **551**, 457–463 (2017).
- 626 79. Ainsworth, T. D., Krause, L., Bridge, T., Torda, G. & Raina, J. B. The coral core
- microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. *The ISME journal*
- **9**, 2261–2274 (2015).
- 80. Ardura, A. et al. eDNA and specific primers for early detection of invasive species–A
- case study on the bivalve Rangia cuneata, currently spreading in Europe. *Marine*
- 631 *Environmental Research* **112**, 48–55 (2015).

- 81. Simmons, M., Tucker, A., Chadderton, W. L., Jerde, C. L. & Mahon, A. R. Active and
- passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat.
- 634 *Sci.* **73**, 76–83 (2015).
- 82. Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: a new paradigm in ecosystem
- assessment made possible by next-generation DNA sequencing. *Molecular ecology* **21**,
- 637 2039–2044 (2012).
- 638 83. Bakker, J. et al. Environmental DNA reveals tropical shark diversity in contrasting levels
- of anthropogenic impact. *Scientific reports* **7**, 16886 (2017).
- 84. Weltz, K. et al. Application of environmental DNA to detect an endangered marine skate
- species in the wild. *PLOS ONE* **12**, e0178124 (2017).
- 85. Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong
- discrimination among diverse marine habitats connected by water movement. *Molecular*
- 644 *Ecology Resources* **19**, 426–438 (2019).
- 86. Caplan, A. L., Parent, B., Shen, M. & Plunkett, C. No time to waste—the ethical
- challenges created by CRISPR. *EMBO reports* **16**, 1421–1426 (2015).
- 87. National Academies of Sciences, E. A Research Review of Interventions to Increase the
- 648 Persistence and Resilience of Coral Reefs. (2018). doi:10.17226/25279.
- 88. O'Leary, B. C. et al. Effective coverage targets for ocean protection. Conservation Letters
- **9**, 398–404 (2016).
- 89. Laird, S. & Wynberg, R. Bioscience at a Crossroads: Implementing the Nagoya Protocol
- on Access and Benefit Sharing in a Time of Scientific. *Technological and Industry*
- 653 *Change* (2012).
- 654 90. Morgera, E. Fair and equitable benefit-sharing in a new treaty on marine biodiversity: a
- principled approach towards partnership building? Maritime Safety and Security Law
- 656 *Journal* **5**, 48–77 (2018).

- 91. Muir, P. et al. The real cost of sequencing: scaling computation to keep pace with data
- 658 generation. *Genome Biology* **17**, 53 (2016).
- 659 92. Greiber, T. An explanatory guide to the Nagoya Protocol on access and benefit-sharing.
- 660 (IUCN, 2012).
- 93. Oldham, P., Hall, S. & Forero, O. Biological Diversity in the Patent System. *PLOS ONE*
- **8**, e78737 (2013).
- 94. Hendriks, I. E. & Duarte, C. M. Allocation of effort and imbalances in biodiversity
- research. *Journal of Experimental Marine Biology and Ecology* **360**, 15–20 (2008).
- 95. Stokstad, E., 2018 & Pm, 12:00. Norwegian billionaire funds deluxe deep ocean research
- ship. Science / AAAS https://www.sciencemag.org/news/2018/11/norwegian-billionaire-
- funds-deluxe-deep-ocean-research-ship (2018).
- 96. Kyeremeh, K. et al. Making North–South Collaborations Work: Facilitating Natural
- Product Drug Discovery in Africa. in Africa and the Sustainable Development Goals (eds.
- Ramutsindela, M. & Mickler, D.) 257–266 (Springer International Publishing, 2020).
- 671 doi:10.1007/978-3-030-14857-7 24.
- 672 97. Mueller, M. R. Genetic Resources as Natural Information Implications for the
- 673 Convention on Biological Diversity and Nagoya Protocol. (Routledge, 2015).
- 98. Green, E. D., Rubin, E. M. & Olson, M. V. The future of DNA sequencing. *Nature News*
- **550**, 179 (2017).
- 99. Laird, S. & Wynberg, R. A Fact-Finding and Scoping Study on Digital Sequence
- Information on Genetic Resources in the Context of the Convention on Biological
- Diversity and the Nagoya Protocol. Secretariat of CBD 2–79 (2018).
- 679 100. Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat Commun 9, 1–13
- 680 (2018).

- 681 101. Gregory, A. C. et al. Marine DNA Viral Macro- and Microdiversity from Pole to Pole.
- 682 *Cell* **177**, 1109-1123.e14 (2019).
- 683 102. Angrist, M. & Cook-Deegan, R. 'Distributing the Future: The Weak Justifications for
- Keeping Genomic Databases Secret and the Challenges and Opportunities in Reverse
- Engineering them. *Applied and Translational Genomics* **3**, 124–127 (2014).
- 686 103. Österblom, H. et al. Towards Ocean Equity. (2020).
- 687 104. Heeks, R., Amalia, M., Kintu, R. & Shah, N. Inclusive innovation: definition,
- conceptualisation and future research priorities. development informatics working paper
- 689 (2013).
- 690 105. Foster, C. & Heeks, R. Conceptualising Inclusive Innovation: Modifying Systems of
- Innovation Frameworks to Understand Diffusion of New Technology to Low-Income
- 692 Consumers. *Eur J Dev Res* **25**, 333–355 (2013).
- 693 106. Von Schomberg, R. A Vision of Responsible Research and Innovation. in *Responsible*
- 694 Innovation. Managing the responsible emergence of science and innovation in society 51–
- 695 74 (Wiley, 2013).
- 696 107. Broggiato, A., Arnaud-Haond, S., Chiarolla, C. & Greiber, T. Fair and equitable
- sharing of benefits from the utilization of marine genetic resources in areas beyond
- national jurisdiction: Bridging the gaps between science and policy. *Marine Policy* **49**,
- 699 176–185 (2014).
- 700 108. Blasiak, R., Jouffray, J.-B., Wabnitz, C. C. & Österblom, H. Scientists Should
- Disclose Origin in Marine Gene Patents. *Trends in ecology & evolution* **34**, 392–395
- 702 (2019).
- 703 109. Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID's innovative
- contribution global health. *Global Challenges* **1**, 33–46 (2017).

- 705 110. Deplazes-Zemp, A. et al. The Nagoya Protocol could backfire on the Global South.
- 706 *Nat Ecol Evol* **2**, 917–919 (2018).
- 707 111. Vierros, M., Suttle, C. A., Harden □ Davies, H. & Burton, G. Who Owns the Ocean?
- Policy Issues Surrounding Marine Genetic Resources. *Limnology and Oceanography*
- 709 Bulletin **25**, 29–35 (2016).
- 710 112. Thambisetty, S. 'Biodiversity Beyond National Jurisdiction: (Intellectual) Property
- 711 Heuristics. in *Biodiversity Beyond National Jurisdiction: Intractable Challenges &*
- 712 Potential Solutions (Brill Nijhoff, 2020).
- 713 113. Halpern, B. S. et al. Recent pace of change in human impact on the world's ocean. Sci
- 714 *Rep* **9**, 1–8 (2019).
- 715 114. NCBI. Sequence Read Archive. https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?
- 716 (2020).
- 717 115. Wetterstrand, K. A. DNA Sequencing Costs: Data from the NHGRI Genome
- 718 Sequencing Program (GSP). (2020).
- 719 720
- 721 Figure captions
- 722 FIGURE 1: A portfolio approach for conserving the ocean genome and its associated benefits.
- 723 Effective conservation hinges on using multiple tools, including area-based conservation measures such
- as fully and highly protected marine protected areas (MPAs), that provide the greatest protection from
- 725 the impacts of extractive and destructive activities. Coupling these with effective management of
- 726 sustainable use can ensure wide-ranging benefits that are ecological, sustaining, provisional and
- 727 commercial.
- 728
- 729 FIGURE 2: (A) Decline in average sequencing costs (cost per raw megabase of DNA sequence)¹¹⁴; (B)
- 730 Growth in GenBank Sequence Read Archive (cumulative number of open access base pairs)¹¹⁵
- 731
- 732 FIGURE 3: Risk profit margins and timelines for commercial activities based on marine genetic resources