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Abstract. Flows over time have received substantial attention from
both an optimization and (more recently) a game-theoretic perspective.
In this model, each arc has an associated delay for traversing the arc,
and a bound on the rate of flow entering the arc; flows are time-varying.
We consider a setting which is very standard within the transportation
economic literature, but has received little attention from an algorith-
mic perspective. The flow consists of users who are able to choose their
route but also their departure time, and who desire to arrive at their
destination at a particular time, incurring a scheduling cost if they ar-
rive earlier or later. The total cost of a user is then a combination of
the time they spend commuting, and the scheduling cost they incur. We
present a combinatorial algorithm for the natural optimization problem,
that of minimizing the average total cost of all users (i.e., maximizing
the social welfare). Based on this, we also show how to set tolls so that
this optimal flow is induced as an equilibrium of the underlying game.

Keywords: flows over time · tolls · traffic

1 Introduction

The study of flows over time is a classical one in combinatorial optimization; it
began already with the work of Ford and Fulkerson [9] in the 50s. It is a natural
extension of static flows, which associates a single numerical value, representing
a total quantity or rate of flow on the arc. In a flow over time, a second value
associated with each arc represents the time it takes for flow to traverse it; the
flow is then described by a function on each arc, representing the rate of flow
entering the arc as a function of time.

Classical optimization problems involving static flows have natural analogs
in the flow over time setting (see the surveys [17,24]). For example (restricting
the discussion to single commodity flows), the maximum flow over time problem
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asks to send as much flow as possible, departing from the source starting from
time 0 and arriving to the sink by a given time horizon T ; this can be solved in
polynomial time [9,10,8]. A quickest flow asks, conversely, for the shortest time
horizon necessary to send a given amount of flow. Of particular importance for
us is the notion of an earliest arrival flow : this has the very strong property that
simultaneously for all T ′ ≤ T , the amount of flow arriving by time T ′ is as large
as possible [12]. Such a flow can also be characterized as minimizing the average
arrival time [15]. Earliest arrival flows can be “complicated”, in that they can
require exponential space (in the input size) to describe [29], and determining
the average arrival time of an earliest arrival flow is NP-hard [7]. But they can
be constructed in time strongly polynomial in the sum of the input and output
size [2].

Another important aspect of many settings where flow-over-time models are
applicable—such as traffic—involves game theoretic considerations. In traffic
settings, the flow is made up of a large number of individuals making their
own routing choices, and aiming to maximize their own utility rather than the
overall social welfare (e.g., average journey time). Dynamic equilibria, which
is the flow over time equivalent of Wardrop equilibria for static flows, are key
objects of study. Existence, uniqueness, structural and algorithmic issues, and
much more have been receiving increasing recent interest from the optimization
community [3,4,5,6,16,22,23].

Traffic, being such a relevant and important topic, has received attention
from many different communities, each with their own perspective. Within the
transportation economic literature, modelling other aspects of user choice besides
route choice has been considered particularly important. A very standard setting,
motivated by morning rush-hour traffic, is the following [26,1]. Users are able
to choose not only their route, but also their departure time. They are then
concerned not only with their journey time, but also their arrival time at the
destination. This is captured in a scheduling cost function which we will denote
by ρ: a user arriving at time θ will experience a scheduling cost of ρ(θ). The total
disutility of a user is then the sum of their scheduling cost and their journey time
(scaled by some factor α > 0 representing their value for time spent commuting).
A very standard choice of ρ is

ρ(θ) =

{
−βθ if θ ≤ 0

γθ if θ > 0
, (1)

where β < α < γ (it is very bad to be late, but time spent in the office early is
better than time spent in traffic). Our approach can handle essentially general
scheduling cost functions, but we will restrict our discussion to strongly unimodal
cost functions; these are the most relevant, and this avoids some distracting
technical details.

Two very natural questions can be posed at this point. The first is a purely
optimization question, with no attention paid to the decentralized nature of
traffic.
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Problem 1. How can one compute a flow over time minimizing the average total
cost paid by users, i.e., maximizing the social welfare?

From now on, we will call a solution to this problem simply an optimal flow.

It is well understood that users will typically not coordinate their actions to
induce a flow that minimizes total disutility. There is a huge body of literature
(particularly in the setting of static flows [20]) investigating this phenomenon.
In the traffic setting, the relevance of an optimal flow represented by an answer
to this question comes primarily via the possibility of pricing. By putting appro-
priate tolls on roads, we can influence the behaviour of users and the resulting
dynamic equilibrium. Thus:

Problem 2. How can one set tolls (possibly time-varying) on the arcs of a given
instance so that an optimal flow is obtained in dynamic equilibrium?

One subtlety is that since dynamic equilibria need not be precisely unique, there
is a distinction between tolls that induce an optimal flow as an equilibrium,
compared to tolls for which all dynamic equilibria are optimal. (This is called
weak and strong enforcement by Harks [14] in a general pricing setting.) We will
return to this subtlety shortly.

Questions like these are of great interest to transportation economists. How-
ever, most work in that community has focused on obtaining a fine-grained
understanding of very restricted topologies (such as a single link, or multiple
parallel links); see [25] for a survey.

Both of these questions (for general network topologies) were considered by
Yang and Meng [28] in a discrete time setting, by exploiting the notion of time-
expanded graphs. This is a standard tool in the area of flows over time; discrete
versions all of the optimization questions concerning flows over time mentioned
earlier can (in a sense) be dealt with in this way. A node v in the graph is
expanded to a collection (v, i) of nodes, for i ∈ Z in a suitable interval, and
an arc vw of delay τvw becomes a collection of arcs ((v, i), (w, i + τvw)) (this
assumes a scaling so that τvw is a length in multiples of the chosen discrete
timesteps). Scheduling costs are encoded by appropriately setting arc costs from
(t, i) to a supersink t′ for each i, and the problem can be solved by a minimum
cost static flow computation. A primary disadvantage of this approach (and in
the use of time-expanded graphs more generally) is that the running time of the
algorithm depends polynomially on the number of time steps, which can be very
large. Further, it cannot be used to exactly solve the continuous time version
(our interest in this paper); by discretizing time, it can be used to approximate
it, but the size of the time-expanded graph is inversely proportional to the step
size of the discretization. In the same work [28], the authors also observe that
in the discrete setting, an answer to the second question can be obtained from
the time-expanded graph as well. Taking the LP describing the minimum cost
flow problem on the time-expanded graph, the optimal dual solution to this LP
provides the necessary tolls to enforce (weakly) an optimal flow. (This is no big
surprise—dual variables can frequently be interpreted as prices.)
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An assumption on ρ. Suppose we consider ρ in the standard form given in (1),
but with β > α. This means that commuting is considered to be less unpleasant
than arriving early. A user arriving earlier than time 0 at the sink would be
better off “waiting” at the sink before leaving, in order to pay a scheduling cost
of 0. Whether waiting in this way is allowed or not depends on the precise way
one specifies the model, but it is most natural (and convenient) to allow this. If
we do so, then it is clear that a scheduling cost function ρ can be replaced by

ρ̂(θ) := min
ξ≥θ

ρ(ξ) + α(ξ − θ)

without changing the optimal flow (except there is no longer any incentive to wait
at the sink, and we need not even allow it). Then θ → ρ̂(θ)+αθ is nondecreasing.
From now on, we always assume that ρ satisfies this; we will call it the growth
bound on ρ.

Our results. We give a combinatorial algorithm to compute an optimal flow.
Similarly to the case of earliest arrival flows, this flow can be necessarily com-
plicated, and involves a description length that is exponential in the input size.

The algorithm is also similar to that for computing an earliest arrival flow. It
is based on the (possibly exponentially sized) path decomposition of a minimum
cost flow into successive shortest paths. In particular, suppose we choose the
scheduling cost function to be as in (1), with β = α and γ = ∞. Then the
disutility a user experiences is precisely described by how much before time 0
they depart; all users must arrive by time 0 to ensure finite cost. This is precisely
the reversal (both in time and direction of all arcs) of an earliest arrival flow, from
the sink to the source. Our algorithm will be the same as the earliest arrival flow
in this case. This also shows that it may be the case that all optimal solutions to
Problem 1 require exponential size (as a function of the input encoding length),
since this is the case for earliest arrival flows.

Despite the close relation to earliest arrival flows, the proof of optimality
of our algorithm is rather different. A key reason for this is the following. As
mentioned, earliest arrival flows have the strong property that the amount of
flow arriving before a given deadline T ′ is the maximum possible, simultaneously
for all choices of T ′ (up to some maximum depending on the total amount of
flow being sent). This implies that an earliest arrival flow certainly minimizes
the average arrival time amongst all possible flows [15], but is a substantially
stronger property. A natural analog of this stronger property in our setting
would be to ask for a flow for which, simultaneously for any given cost horizon
C ′ ≤ C, the amount of flow consisting of agents experiencing disutility at most
C ′ is as large as possible. Unfortunately, in general no such flow exists. The
example is too involved to discuss here, but it relates to some questions on the
behaviour of dynamic equilibria in this model that are investigated in a parallel
manuscript [11].

Since the proofs for earliest arrival flows [12,19,27,2] show this stronger prop-
erty which does not generalize, we take a different approach. Our proof is based
on duality (of an infinite dimensional LP, though we do not require any technical
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results on such LPs). The main technical challenge in our work comes from deter-
mining the correct ansatz for the dual solution, as well as exploiting properties
of the residual networks obtained from the successive shortest paths algorithm
in precisely the right way to demonstrate certain complementary slackness con-
ditions. As was the case with the time-expanded graph approach, the optimal
dual solution immediately provides us with the tolls. However, we obtain an ex-
plicit formula for the optimal tolls, in terms of the successive shortest paths of
the graph (see Section 3). This may be useful in obtaining a better structural
understanding of optimal tolls, beyond just their computation. We also remark
that a corollary of our result is that there is always an optimal solution without
waiting (except at the source).

Consider for a moment the model where users cannot choose their departure
time, but instead are released from the source at a fixed rate u0, and simply
wish to reach the destination as early as possible. This is the game-theoretic
model that has received the most attention from the flow-over-time perspec-
tive [3,5,6,16,22]. Our construction of optimal tolls is applicable to this model as
well. Reverse all arcs, as well as the role of the source and sink (thus making s
the new sink), and also introduce a replacement sink s′ and arc ss′ of capacity
u0 in the original instance. Then by choosing ρ as described in (1) with β = α,
γ = ∞, the optimal flow is an earliest arrival flow, and the tolls we construct
will induce it in the original instance (after appropriate time reversal).

We now return to the subtlety alluded to earlier: the distinction between
strongly enforcing an optimal flow, and only weakly enforcing it.

s a t
νe = 2, τe = 0

νf = 2, τf = 1

νg = 1, τg = 0

Consider the simple instance shown.
Suppose that the outflow of arc e is
larger than 1 for some period in the
optimum flow, due to the choice of
scheduling cost function. In this period,
one unit of flow would take the bottom
arc g, and the rest will be routed on f . Since the total cost (including tolls) of
all users is the same in a tolled dynamic equilibrium, a toll of cost equivalent to
a unit delay on arc g is needed in this period to induce the optimal flow. But
then it will also be an equilibrium to send all flow in this period along f .

To strongly enforce an optimal flow, we need more flexible tolls. One way
that we can do it is by “tolling lanes”. If we are allowed to dynamically divide
up the capacity of an arc into “lanes” (say a “fast lane” and a “slow lane”),
and then separately set time-varying tolls on each lane, then we can strongly
enforce any optimal flow. We discuss this further in Section 5. We are not aware
of settings where this phenomenon has been previously observed, and it would
be interesting to explore this further in a more applied context.

Outline of the paper. We introduce some basic notation and notions, as well as
formally define our model, in Section 2. In Section 3, we describe our algorithm,
and show that it returns a feasible flow over time; we restrict ourselves to the
most relevant case of a strictly unimodal scheduling cost function. In Section 4
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we show optimality of this algorithm, and in Section 5 we derive optimal tolls
from this analysis.

2 Model and preliminaries

The notation (z)+ is used to denote the nonnegative part of z, i.e., (z)+ =
max{z, 0}. Given v : X → R and A ⊆ X, we will use the shorthand notation
v(A) :=

∑
a∈A v(a). We will not distinguish between a map v : X → R and a

vector in RX , and so the notation va and v(a) is interchangeable. All graphs will
be directed and (purely for notational convenience) simple and without digons.

Static flows. Let G = (V,E) be a directed graph, with source node s ∈ V
and sink node t ∈ V . Each arc e ∈ E has a capacity νe and a delay τe (both
nonnegative). We use δ+(v) to denote the set of arcs in E with tail v, and δ−(v)
the set of arcs with head v.

Consider some f : E → R+ (which we will equivalently view as a vector in
RE+). We use ∇fv to denote the net flow into v ∈ V ; a (static) s-t-flow satisfies
the usual flow conservation conditions. Given an s-t-flow f , its residual network
Gf = (V,Ef ) is defined by

Ef = {vw : vw ∈ E and fvw < νvw} ∪ {vw : wv ∈ E and fwv > 0}.

Call arcs in Ef ∩E forward arcs and arcs in Ef \E backwards arcs. The residual
capacity νfe of an arc e ∈ Ef is then νfvw = νvw − fvw for vw a forward arc, and
νfvw = fwv for vw a backwards arc. We also define τvw = −τwv for all backwards
arcs vw.

Given a subset F ⊆ E, we use χ(F ) to denote the characteristic vector of F .

We make the definitions
←−
E := {wv : vw ∈ E} and

←→
E := E ∪

←−
E. Given f, g ∈ RE+,

we define f + g in the obvious way, and also define f − g ∈ R
←→
E
+ , by interpreting

a negative value on vw instead as a positive value on wv.

Flows over time. Consider some f : E ×R→ R+. We will generally write fe(θ)
rather than f(e, θ). Define the net flow into v at time θ by

∇fv(θ) :=
∑

e∈δ−(v)

fe(θ − τe)−
∑

e∈δ+(v)

fe(θ).

Note that fe(θ) represents the flow entering arc e at time θ; this flow will exit
the arc at time θ + τe (explaining the asymmetry between the terms for flow
entering and flow leaving in the above).

We say that f is a flow over time of value Q if the following hold.

(i) For each e ∈ E, fe is integrable and has compact support.
(ii)

∫∞
−∞∇fv(θ)dθ = Q(1v=t − 1v=s) for all v ∈ V .

(iii)
∫ ξ
−∞∇fv(θ)dθ ≥ 0 for all v ∈ V \ {s} and ξ ∈ R.

(iv) fe(θ) ≤ νe for all e ∈ E and θ ∈ R.
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Note that this definition allows for flow to wait at a node; to disallow this and
consider only flows over time without waiting, we would replace (iii) with the
condition that ∇fv(θ) = 0 for all v ∈ V \ {s, t} and θ ∈ R.

We also have a natural notion of a residual network in the flow over time
setting. Define, for any flow over time f and θ ∈ R,

Ef (θ) = {vw : vw ∈ E and fvw(θ) < νvw}∪{vw : wv ∈ E and fwv(θ−τwv) > 0}.

Minimizing scheduling cost. We are concerned with the following optimization
problem. Given a scheduling cost function ρ : R→ R+, as well as a value α > 0,
determine a flow over time f of value Q that minimizes the sum of the commute
cost α

∑
e∈E τe ·

∫
R fe(θ)dθ and the scheduling cost

∫
R∇ft(θ) ·ρ(θ)dθ. As already

discussed, we assume that ρ satisfies the growth bound, i.e., that θ → ρ(θ) +αθ
is nondecreasing. This ensures that waiting at t is not needed, which is in fact
disallowed by our definition4, and makes various arguments cleaner. We will also
make the assumption that ρ is strongly unimodal5. We then assume w.l.o.g. that
the minimizer of ρ is at 0, and that ρ(0) = 0. For further technical convenience,
by adjusting ρ on a set of measure zero we take ρ to be lower semi-continuous.

The unimodal assumption is not necessary; the algorithm and analysis can
be extended to essentially general ρ, under some very weak technical conditions.
We postpone discussion to the full version of the paper; no major new technical
ideas are needed.

We also assume that we are able to query ρ−1(y) for a given rational y >
0, obtaining a pair of solutions (one positive, one negative) of moderate bit
complexity.

3 A combinatorial algorithm

In this section we present an algorithm that computes an optimal flow over time,
assuming that ρ is strongly unimodal. The proof of optimality is discussed in
Section 4.

We begin by recalling the successive shortest paths (SSP) algorithm for com-
puting a minimum cost static flow. It is not a polynomial time algorithm, so
it is deficient as an algorithm for static flows, but it provides a structure that
is relevant for flows over time. This is of course well known from its role in
constructing earliest arrival flows, which we will briefly detail.

The SSP algorithm construct a sequence of paths (P1, P2, . . .) and associated
amounts (x1, x2, . . .) inductively as follows. Suppose P1, . . . , Pj and x1, . . . , xj
have been defined. Let f (j) =

∑j
i=1 xiχ(Pi), and let Gj denote the residual

graph of f (j) (G0 being the original network). Also let dj(v, w) denote the length
(w.r.t. arc delays τ in Gj) of a shortest path from v to w in Gj (this may be
infinite). By construction, Gj will contain no negative cost cycles, so that dj is
computable. If dj(s, t) = ∞, we are done; set m := j. Otherwise, define Pj+1

4 Were this really needed, one could simply add a dummy arc tt′ to a new sink t′.
5 I.e., (strictly) decreasing until some moment, and then (strictly) increasing.
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to be any shortest s-t-path in Gj , and xj+1 the minimum capacity in Gj of an
arc in Pj+1. It can be shown that

∑r
j=1 x̃jχ(Pj), with r and x̃ defined such that

x̃j = xj for j < r, 0 ≤ x̃r ≤ xr and
∑r
j=1 x̃j = M , is a minimum cost flow of

value M , as long as M is not larger than the value of a maximum flow.
To construct an earliest arrival flow of value Q and time horizon T , we

(informally) send flow at rate xj along path Pj for the time interval [0, T−τ(Pj)],
for each j ∈ [m] (if τ(Pj) > T , we send no flow along the path). By this, we
mean that for each e = vw ∈ Pj , we increase by xj the value of fe(θ) for
θ ∈ [dj−1(s, v), T − dj−1(v, t)] (or if e is a backwards arc, we instead decrease
fwv(θ−τwv)). An argument is needed to show that this defines a valid flow, since
we must not violate the capacity constraints, and moreover, Pj may contain
reverse arcs not present in G.

We are now ready to describe our algorithm for minimizing the disutility,
which is a natural variation on the earliest arrival flow algorithm. It is also
constructed from the successive shortest paths, but using a cost horizon rather
than a time horizon. For now, consider C to be a given value (it will be the
“cost horizon”). For each j ∈ [m] with αdj−1(s, t) ≤ C, we send flow at rate
xj along path Pj for the time interval [aj , bj ] chosen maximally so that ρ(ξ +
dj−1(s, t)) ≤ C − αdj−1(s, t) for all ξ ∈ [aj , bj ]. (If ρ is continuous, then of
course ρ(aj + dj−1(s, t)) = ρ(bj + dj−1(s, t)) = C − αdj−1(s, t)). Note that a
user leaving at time aj or bj and using path Pj , without waiting at any moment,
incurs disutility C; whereas a user leaving at some time θ ∈ (aj , bj) and using
path Pj will incur a strictly smaller total cost.

As we will shortly argue, this results in a feasible flow over time f . Given
this, its value will be

∑m
j=1 xj(bj − aj). It is easy to see that this value changes

continuously and monotonically with C (here we use the strong unimodality).
Thus a bisection search can be used to determine the correct choice of C for a
given value Q. Alternatively, bisection search can be avoided by using Megiddo’s
parametric search technique [18]; this will ensure a strongly polynomial running
time, if queries to ρ−1 are considered to be of unit cost.

Feasibility. Given a vertex v ∈ V , a time θ ∈ R and j ∈ [m], let

cj(v, θ) = αdj−1(s, t) + ρ(θ + dj−1(v, t)).

If v ∈ Pj then cj(v, θ) is the travel cost of a user that utilizes path Pj and passes
through node v at time θ; there does not seem to be a simple interpretation if
v /∈ Pj however. Now define

J(v, θ) = max{j ∈ [m] : cj(v, θ) ≤ C}, (2)

with the convention that the maximum over the empty set is 0. The motivation
for this definition comes from the following theorem, which completely charac-
terizes f .

Theorem 1. fvw(θ) = f
(J(v,θ))
vw for any vw ∈ E and θ ∈ R.
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Since f has value Q and satisfies flow conservation by construction, the feasibility
of f is an immediate corollary of this theorem. We sketch the proof in the
appendix.

4 Optimality

Duality-based certificates of optimality. We can write the problem we are inter-
ested in as a (doubly) infinite linear program as follows:

min
∫∞
−∞ ρ(θ)∇ft(θ)dθ + α

∑
e∈E τe

∫∞
−∞ fe(θ)dθ + α

∑
v∈V \{s,t}

∫∞
−∞ zv(θ)dθ

s.t. −
∫∞
−∞∇fs(θ)dθ =

∫∞
−∞∇ft(θ)dθ = Q

(3)∫ θ
−∞∇fv(ξ)dξ = zv(θ) ∀v ∈ V \ {s, t}, θ ∈ R

fe(θ) ≤ νe ∀e ∈ E, θ ∈ R

z, f ≥ 0

Here, zv(θ) represents the amount of flow waiting at node v at time θ (which
must always be nonnegative). The travel cost is captured on a per-arc basis,
including waiting time as well.

The following theorem provides a certificate of optimality of a feasible solu-
tion to (3).

Theorem 2. Let f be a flow over time with value Q, and suppose that π :
V × R→ R satisfies the following, for some choice of C:

(i) θ → πv(θ)− αθ is nonincreasing.
(ii) πw(θ + τvw) ≤ πv(θ) + ατvw for all θ ∈ R, vw ∈ Ef (θ).

(iii) πs(θ) = 0 for all θ ∈ R.
(iv) πt(θ) = (C − ρ(θ))+ for all θ ∈ R, and ∇ft(θ) = 0 whenever ρ(θ) > C.

Then f is an optimal solution.

Essentially, πv(θ) are dual variables, and the assumptions of the theorem are
that f and π satisfy the complementary slackness conditions. There are many
extensions of LP duality theory to infinite dimensional settings, e.g., [13,21];
however the situation is subtle, since strong duality and even weak duality can
fail [21]. We prefer to avoid technicalities and derive it directly (the proof is
given in the full version).

The dual prescription. We now give a certificate of optimality π : V × R → R
for (3) that satisfies the conditions of the above LP. Given a vertex v ∈ V and
a time θ ∈ R let

πv(θ) = max{π′v(θ), π̄v(θ), 0}

where π′v(θ) = −αdJ(v,θ)(v, s),
π̄v(θ) = C − αdJ(v,θ)(v, t)− ρ(θ + dJ(v,θ)(v, t)).
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Notice that πs(θ) = 0 and πt(θ) = max{C − ρ(θ), 0} for all θ ∈ R and thus
conditions (iii) and (iv) of Theorem 2 hold. The bulk of the technical work is
in showing the remaining conditions; we sketch some part of the proof in the
appendix.

5 Optimal tolls

Tolls µ : E × R → R+ are per-arc, time-varying and nonnegative. The value
µe(ξ) represents the toll a user is charged upon entering the link at time ξ.

We have the following theorem.

Theorem 3. Let (f, π) be an optimal primal-dual solution to (3) (as constructed
in Section 3 and Section 4) and define, for each vw ∈ E,

µvw(θ) = (πw(θ + τvw)− πv(θ)− ατvw)+.

Then f is a dynamic equilibrium under tolls µ.

Of course, to make sense of this theorem we must know what is meant by
a dynamic equilibrium under tolls. A precise definition requires introducing the
full game-theoretic fluid queueing model (also known as the Vickrey bottleneck
model) [26,16]. Tolls and departure time choice can be introduced into the def-
inition of a dynamic equilibrium discussed in these works. Rather than going
this route, we will show that the tolls satisfy a strong property that very clearly
ensures the equilibrium property.

We show (in the full version—it is straightforward) that the following holds.
A user starting from some v ∈ V at some time θ ∈ R cannot incur a total
cost (including scheduling cost, and tolls and commuting cost from this point
forward) less than C − πv(θ). This is even allowing the user to take any link
at any time, as if no other users were present in the network. Since the flow
represents a solution where all users incur a total cost of precisely C, this must
certainly be an equilibrium.

As already discussed, we cannot in general strongly enforce an optimal flow.
The following shows that the “lane tolling” approach suffices to do this.

Theorem 4. Let f, π and µ be as in the previous theorem, and suppose g is any
dynamic equilibrium satisfying ge(θ) ≤ fe(θ) for all e ∈ E, θ ∈ R. Then g = f .

Essentially, being able to dynamically split and separately toll the capacity of
a link allows us to easily rule out all other potential equilibria just by using
tolls to artificially constrict the capacities (in addition to choosing tolls that
weakly enforce the desired flow, which is still needed). Tolling in this way seems
quite distant from what could be imaginable in realistic traffic scenarios. But
it does raise the interesting question of whether there is a tolling scheme which
can strongly enforce an optimum flow, but which is more restricted (and more
plausible) than fully dynamic lane tolling. Another natural question would be
to determine if an optimum flow can be strongly enforced using lane tolling only
on certain specified edges. We leave these as open questions.
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A Some omitted proofs

Proof (Theorem 1). The key ingredient is the following observation.

Lemma 1. cj(v, θ) is nondecreasing with j for any θ ∈ R.

Proof. Consider any j ∈ [m− 1]; we show that cj+1(v, θ) ≥ cj(v, θ). Suppose Q
is a shortest v-t-path in Gj−1, so τ(Q) = dj−1(v, t). Consider the unit v-t flow

g = χ(Pj+1)−χ(Pj)+χ(Q) in
←→
E . Now observe that the support of g is contained

in Gj : Pj+1 and
←−
Pj are certainly contained in Gj ; and if e ∈ Q∩(Ej−1\Ej), then

e ∈ Pj . Since Gj contains no negative cost cycles, the cost of g is at least that
of a shortest v-t-path in Gj , and so dj(v, t) ≤ τ(Pj+1) − τ(Pj) + τ(Q). Finally,
we can conclude

cj(v, θ) = αdj(s, t) + ρ(θ + dj−1(v, t))− ρ(θ + dj−1(v, t)) + ρ(θ + dj(v, t))

≥ αdj(s, t) + ρ(θ + dj−1(v, t))− α(dj(v, t)− dj−1(v, t))

≥ αdj−1(s, t) + ρ(θ + dj−1(v, t)),

where the first inequality follows from the growth assumption, using dj(v, t) ≥
dj−1(v, t). ut

Fix some vw ∈ E and θ ∈ R. Consider now any Pj (with ατ(Pj) ≤ C, so that
it is used for a nontrivial interval), with vw ∈ Pj . Since Pj is a shortest path in
Gj−1, if we send flow along this path starting from some time ξ, it will arrive at
v at time ξ+ dj−1(s, v). Considering the definition of the interval [aj , bj ], we see
that Pj contributes flow to vw at time θ if cj(v, θ) ≤ C. By Lemma 1, this occurs
precisely if j ≤ J(v, θ). Considering in similar fashion paths Pj with wv ∈ Pj
(and noting that J(w, θ + τvw) = J(v, θ)), the claim follows. ut

Optimality. We give the proof that π satisfies property (ii) in Theorem 2. The
proof of property (i), while differing in the details, has a very similar flavour.

We first state a technical lemma involving distances in the residual graphs
Gj ; we omit the proof.

Lemma 2.

(a) For all v ∈ V , dj(v, s) is nonincreasing with j.
(b) For all v ∈ V and j ∈ [m], dj−1(v, t)− dj−1(s, t) = dj(v, s).

Lemma 3. If vw ∈ Ef (θ), then πw(θ + τvw) ≤ πv(θ) + ατvw.

Proof. Let j := J(v, θ) and ` := J(w, θ + τvw). Note that since vw ∈ Ef (θ),
Theorem 1 implies that vw ∈ Ej .
– Case 1: πw(θ + τvw) = −αd`(w, s).

If ` ≤ j, then

πv(θ) ≥ −αdj(v, s)
≥ −ατvw − αdj(w, s) since vw ∈ Ej
≥ −ατvw − αd`(w, s) by Lemma 2 (a)

= πw(θ + τvw)− ατvw.
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So suppose ` > j. By the definition of J(w, θ + τvw) we know that

αd`−1(s, t) + ρ(θ + τvw + d`−1(w, t)) ≤ C. (4)

Since vw ∈ Ej and dj(w, t) ≤ d`−1(w, t), we also have

θ + dj(v, t) ≤ θ + τvw + d`−1(w, t). (5)

Thus

πv(θ) ≥ π̄v(θ)
= C − αdj(v, t)− ρ(θ + dj(v, t))

≥ C − αdj(v, t)− ρ(θ + τvw + d`−1(w, t))− α (τvw + d`−1(w, t)− dj(v, t))
≥ αd`−1(s, t)− ατvw − αd`−1(w, t) by (4)

= −ατvw − αd`(w, s) by Lemma 2 (b)

= πw(θ + τvw)− ατvw

where the second inequality follows from the growth assumption and (5).

– Case 2: πw(θ + τvw) = C − αd`(w, t)− ρ(θ + τvw + d`(w, t)).
If ` ≥ j, since vw ∈ Ej and dj(w, t) ≤ d`(w, t), we have that

θ + dj(v, t) ≤ θ + τvw + d`(w, t). (6)

As a consequence, exploiting also the growth assumption, we have

πv(θ) ≥ C − αdj(v, t)− ρ(θ + dj(v, t))

≥ C − αdj(v, t)− ρ(θ + τvw + d`(w, t))− α (τvw + d`(w, t)− dj(v, t))
= C − ρ(θ + τvw + d`(w, t))− ατvw − αd`(w, t)
= πw(θ + τvw)− ατvw.

If ` < j, by definition of J(w, θ + τvw) we have that

αd`(s, t) + ρ(θ + τvw + d`(w, t)) > C. (7)

Thus

πv(θ) ≥ −αdj(v, s)
≥ −αdj(w, s)− ατvw as vw ∈ Ej
≥ −αd`+1(w, s)− ατvw by Lemma 2 (a)

> C − αd`(s, t)− ρ(θ + τvw + d`(w, t))

− αd`+1(w, s)− ατvw by (7)

= C − αd`(w, t)− ρ(θ + τvw + d`(w, t))− ατvw by Lemma 2 (b)

= πw(θ + τvw)− ατvw.
ut
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