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Abstract: Let P be a set of n points in real projective d-space, not all contained in a
hyperplane, such that any d points span a hyperplane. An ordinary hyperplane of P is a
hyperplane containing exactly d points of P. We show that if d > 4, the number of ordinary
hyperplanes of P is at least (" }) — O4(nl@=D/2)) if n is sufficiently large depending on d.
This bound is tight, and given d, we can calculate the exact minimum number for sufficiently
large n. This is a consequence of a structure theorem for sets with few ordinary hyperplanes:
Foranyd >4 and K >0, ifn > C,K?® for some constant C; > 0 depending on d, and P
spans at most K (fl:i) ordinary hyperplanes, then all but at most O,(K) points of P lie on a
hyperplane, an elliptic normal curve, or a rational acnodal curve. We also find the maximum
number of (d + 1)-point hyperplanes, solving a d-dimensional analogue of the orchard
problem. Our proofs rely on Green and Tao’s results on ordinary lines, our earlier work on
the 3-dimensional case, as well as results from classical algebraic geometry.

1 Introduction

An ordinary line of a set of points in the plane is a line passing through exactly two points of the set. The
classical Sylvester—Gallai theorem states that every finite non-collinear point set in the plane spans at
least one ordinary line. In fact, for sufficiently large n, an n-point non-collinear set in the plane spans at
least /2 ordinary lines, and this bound is tight if n is even. This was shown by Green and Tao [9] via a
structure theorem characterising all finite point sets with few ordinary lines.

It is then natural to consider higher dimensional analogues. Motzkin [22] noted that there are finite
non-coplanar point sets in 3-space that span no plane containing exactly three points of the set. He
proposed considering instead hyperplanes IT in d-space such that all but one point contained in IT is
contained in a (d — 2)-dimensional flat of IT. The existence of such hyperplanes was shown by Motzkin
[22] for 3-space and by Hansen [10] in higher dimensions.
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Purdy and Smith [25] considered instead finite non-coplanar point sets in 3-space with no three points
collinear, and provided a lower bound on the number of planes containing exactly three points of the
set. Referring to such a plane as an ordinary plane, Ball [1] proved a 3-dimensional analogue of Green
and Tao’s [9] structure theorem, and found the exact minimum number of ordinary planes spanned by
sufficiently large non-coplanar point sets in real projective 3-space with no three points collinear. Using
an alternative method, we [20] were able to prove a more detailed structure theorem but with a stronger
condition; see Theorem 4.1 in Section 4.

Ball and Monserrat [3] made the following definition, generalising ordinary planes to higher dimen-
sions.

Definition. An ordinary hyperplane of a set of points in real projective d-space, where every d points
span a hyperplane, is a hyperplane passing through exactly d points of the set.

They [3] also proved bounds on the minimum number of ordinary hyperplanes spanned by such sets
(see also [21]). Our first main result is a structure theorem for sets with few ordinary hyperplanes. The
elliptic normal curves and rational acnodal curves mentioned in the theorem and their group structure
will be described in Section 3. Our methods extend those in our earlier paper [20], and we detail them in
Section 2.

Theorem 1.1. Let d > 4, K > 0, and suppose n > Cmax{(dK)3,d*2¢K} for some sufficiently large
absolute constant C > 0. Let P be a set of n points in RP? where every d points span a hyperplane. If P
spans at most K (Z:i) ordinary hyperplanes, then P differs in at most O(d2¢K) points from a configuration
of one of the following types:

(i) A subset of a hyperplane;

(ii) A coset H®x of a subgroup H of an elliptic normal curve or the smooth points of a rational
acnodal curve of degree d + 1, for some x such that (d+ 1)x € H.

It is easy to show that conversely, a set of n points where every d span a hyperplane and differing
from (/) or (ii) by O(K) points, spans O(K (Z:i)) ordinary hyperplanes. By [3, Theorem 2.4], if a set of
n points where every d points span a hyperplane itself spans K (Z:}) ordinary hyperplanes, and is not
contained in a hyperplane, then K = Q(1/d). Theorem 1.2 below implies that K > 1 for sufficiently large
n depending on d.

For a similar structure theorem in dimension 4 but with K = o(nl/ 7), see Ball and Jimenez [2], who
show that P lies on the intersection of five quadrics. Theorem 1.1 proves [2, Conjecture 12], noting
that elliptic normal curves and rational acnodal curves lie on (‘21) — 1 linearly independent quadrics
[6, Proposition 5.3; 17, p. 365]. We also mention that Monserrat [21, Theorem 2.10] proved a structure
theorem stating that almost all points of the set lie on the intersection of d — 1 hypersurfaces of degree at
most 3.

Our second main result is a tight bound on the minimum number of ordinary hyperplanes, proving
[3, Conjecture 3]. Note that our result holds only for sufficiently large n; see [3, 14,21] for estimates

when d is small or # is not much larger than d.
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Theorem 1.2. Let d > 4 and let n > Cd*2¢ for some sufficiently large absolute constant C > 0. The
minimum number of ordinary hyperplanes spanned by a set of n points in RP¢, not contained in a
hyperplane and where every d points span a hyperplane, is

(G0l (i)

This minimum is attained by a coset of a subgroup of an elliptic normal curve or the smooth points
of a rational acnodal curve of degree d + 1, and when d + 1 and n are coprime, by n — 1 points in a
hyperplane together with a point not in the hyperplane.

Green and Tao [9] also used their structure theorem to solve the classical orchard problem of finding
the maximum number of 3-point lines spanned by a set of n points in the plane, for n sufficiently large.
We solved the 3-dimensional analogue in [20]. Our third main result is the d-dimensional analogue. We
define a (d + 1)-point hyperplane to be a hyperplane through exactly d + 1 points of a given set.

Theorem 1.3. Let d > 4 and let n > Cd>2¢ for some sufficiently large absolute constant C > 0. The
maximum number of (d + 1)-point hyperplanes spanned by a set of n points in RPY where every d points

span a hyperplane is
1 n—1 n
— +0<2d/2< - ))
d+1< d ) Bl

This maximum is attained by a coset of a subgroup of an elliptic normal curve or the smooth points of a
rational acnodal curve of degree d + 1.

While the bounds in Theorems 1.2 and 1.3 are asymptotic, we provide a recursive method (as part of
our proofs) to calculate the exact extremal values for a given d and n sufficiently large in Section 5. In
principle, the exact values can be calculated for any given d and turns out to be a quasi-polynomial in n
with a period of d + 1. We present the values for d = 4,5, 6 at the end of Section 5.

Relation to previous work

The main idea in our proof of Theorem 1.1 is to induct on the dimension d, with the base case d = 3
being our earlier structure theorem for sets defining few ordinary planes [20], which in turn is based on
Green and Tao’s Intermediate Structure Theorem for sets defining few ordinary lines [9, Proposition 5.3].

Roughly, the structure theorem in 3-space states that if a finite set of points is in general position (no
three points collinear) and spans few ordinary planes, then most of the points must lie on a plane, two
disjoint conics, or an elliptic or acnodal space quartic curve. In fact, we can define a group structure on
these curves encoding when four points are coplanar, in which case our point set must be very close to a
coset of the curve. (See Theorem 4.1 for a more precise statement.)

As originally observed by Ball [1] in 3-space, the general position condition allows the use of
projection to leverage Green and Tao’s Intermediate Structure Theorem [9, Proposition 5.3]. This avoids
having to apply their Full Structure Theorem [9, Theorem 1.5], which has a much worse lower bound on
n, as it avoids the technical Section 6 of [9], dealing with the case in the plane when most of the points
lie on a large, though bounded, number of lines. On the other hand, to get to the precise coset structure,
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we used additive-combinatorial results from [9, Section 7], specifically [9, Propositions A.5, Lemmas
7.2,7.4,7.7, and Corollary 7.6]. In this paper, the only result of Green and Tao [9] we explicitly use
is [9, Proposition A.5], which we extend in Proposition 4.3, while all other results are subsumed in the
structure theorem in 3-space. In dimensions d > 3, the general position condition also allows the use
of projections from a point to a hyperplane (see also Ball and Monserrat [3]). In Section 2.2 we detail
various technical results about the behaviour of curves under such projections, which are extensions of
3-dimensional results in [20].

While the group structure on elliptic or singular space quartic curves are well studied (see for instance
[23]), we could not find references to the group structure on singular rational curves in higher dimensions.
This is our main focus in Section 3, which in a way extends [20, Section 3]. In particular, we look at
Sylvester’s theorem on when a binary form can be written as a sum of perfect powers, which has its
roots in classical invariant theory. In extending the results of [20, Section 3], we have to consider how to
generalise the catalecticant (of a binary quartic form), which leads us to the secant variety of the rational
normal curve as a determinantal variety.

Green and Tao’s Intermediate Structure Theorem in 2-space has a slightly different flavour to their
Full Structure Theorem, the structure theorem in 3-space, and Theorem 1.1. However, this is not the
only reason why we start our induction at d = 3. A more substantial reason is that there are no smooth
rational cubic curves in 2-space; as is well known, all rational planar cubic curves are singular. Thus, both
smooth and singular rational quartics in 3-space project onto rational cubics, and we need some way to
tell them apart. In higher dimensions, we have Lemma 3.7 to help us, but since this is false when d = 3,
the induction from the plane to 3-space [20] is more technical. This is despite the superficial similarity
between the 2- and 3-dimensional situations where there are two almost-extremal cases while there is
essentially only one case when d > 3.

Proving Theorem 1.1, which covers the d > 3 cases, is thus in some sense less complicated, since
not only are we leveraging a more detailed structure theorem (Theorems 1.1 and 4.1 as opposed to
[9, Proposition 5.3]), we also lose a case. However, there are complications that arise in how to generalise
and extend results from 2- and 3-space to higher dimensions.

2 Notation and tools

By A = O(B), we mean there exists an absolute constant C > 0 such that 0 <A < CB. Thus, A = —O(B)
means there exists an absolute constant C > 0 such that —CB < A < 0. We also write A = Q(B)
for B = O(A). None of the O(-) and Q(-) statements in this paper have implicit dependence on the
dimension d.

We write A A B for the symmetric difference of the sets A and B.

Let F denote the field of real or complex numbers, let F* = F\ {0}, and let FP¢ denote the d-
dimensional projective space over IF. We denote the homogeneous coordinates of a point in d-dimensional
projective space by a (d + 1)-dimensional vector [xp,x7,...,x;]. We call a linear subspace of dimension k
in FP¢ a k-flat; thus a point is a 0-flat, a line is a 1-flat, a plane is a 2-flat, and a hyperplane is a (d — 1)-flat.
We denote by Zr(f) the set of F-points of the algebraic hypersurface defined by the vanishing of a
homogeneous polynomial f € Flxo,xi,...,x;]. More generally, we consider a (closed, projective) variety
to be any intersection of algebraic hypersurfaces. We say that a variety is pure-dimensional if each of its
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irreducible components has the same dimension. We consider a curve of degree e in CP“ to be a variety
8 of pure dimension 1 such that a generic hyperplane in CP? intersects § in e distinct points. More
generally, the degree of a variety X C CIP4 of dimension r is

deg(X) :=max {|IINX]|: ITis a (d — r)-flat such that IINX is finite}.

We say that a curve is non-degenerate if it is not contained in a hyperplane, and non-planar if it is not
contained in a 2-flat. We call a curve real if each of its irreducible components contains infinitely many
points of RPY. Whenever we consider a curve in RP¢, we implicitly assume that its Zariski closure is a
real curve.

We denote the Zariski closure of a set S C CP? by S. We will use the secant variety Secc(8) of a
curve 8, which is the Zariski closure of the set of points in CPP¢ that lie on a line through some two points
of o.

2.1 Bézout’s theorem

Bézout’s theorem gives the degree of an intersection of varieties. While it is often formulated as an
equality, in this paper we only need the weaker form that ignores multiplicity and gives an upper bound.
The (set-theoretical) intersection X NY of two varieties is just the variety defined by Py U Py, where X
and Y are defined by the collections of homogeneous polynomials Py and Py respectively.

Theorem 2.1 (Bézout [7, Section 2.3]). Let X and Y be varieties in CP? with no common irreducible
component. Then deg(X NY) < deg(X)deg(Y).

2.2 Projections

Given p € FIP4, the projection from p, m,: FP4\ {p} — FP?"!, is defined by identifying FP¢~! with
any hyperplane IT of FP? not passing through p, and then letting 7,(x) be the point where the line
px intersects IT [11, Example 3.4]. Equivalently, 7, is induced by a surjective linear transformation
F?+1 — ¥ where the kernel is spanned by the vector p.

As in our previous paper [20], we have to consider projections of curves where we do not have
complete freedom in choosing a generic projection point p.

Let § C CP? be an irreducible non-planar curve of degree e, and let p be a point in CP?. We call 7,
generically one-to-one on § if there is a finite subset S of § such that 7, restricted to 0 \ S is one-to-one.
(This is equivalent to the birationality of 7, restricted to 8 \ {p} [11, p. 77].) If 7, is generically one-to-
one, the degree of the curve m,(8 \ {p}) is e — 1 if p is a smooth point on §, and is e if p does not lie
on §; if 7, is not generically one-to-one, then the degree of 7,(6 \ {p}) is at most (e — 1) /2 if p lies on
0, and is at most e/2 if p does not lie on & [11, Example 18.16], [18, Section 1.15].

The following three lemmas on projections are proved in [20] in the case d = 3. They all state
that most projections behave well and can be considered to be quantitative versions of the trisecant
lemma [15]. The proofs of Lemmas 2.3 and 2.4 are almost word-for-word the same as the proofs of the
3-dimensional cases in [20]. All three lemmas can also be proved by induction on the dimension d > 3
from the 3-dimensional case. We illustrate this by proving Lemma 2.2.
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Lemma 2.2. Let § be an irreducible non-planar curve of degree e in CP?, d > 3. Then there are at most
O(e*) points p on § such that m, restricted to 8\ {p} is not generically one-to-one.

Proof. The case d = 3 was shown in [20], based on the work of Furukawa [8]. We next assume that
d > 4 and that the lemma holds in dimension d — 1. Since d > 3 and the dimension of Secc(6) is at most
3 [11, Proposition 11.24], there exists a point p € CP? such that all lines through p have intersection
multiplicity at most 1 with &. It follows that the projection 6’ := ,(8) of d is a non-planar curve of
degree e in CP“~!. Consider any line ¢ not through p that intersects & in at least three distinct points
p1,P2,p3. Then m,(€) is a line in CPY~! that intersects 8’ in three points 7,(p1), 7, (p2), @, (p3). It
follows that if x € § is a point such that for all but finitely many points y € 8, the line xy intersects 0 in a
point other than x or y, then x’ := 7,,(x) is a point such that for all but finitely many points y := 7, (y) € &',
the line x’y’ intersects &’ in a third point. That is, if 7, restricted to & is not generically one-to-one,
then the projection map 7, in CP?~! restricted to 8’ is not generically one-to-one. By the induction
hypothesis, there are at most O(e*) such points and we are done. O

Lemma 2.3. Let § be an irreducible non-planar curve of degree e in CP?, d > 3. Then there are at most
0(e3) points x € CP4\ 8 such that T, restricted to § is not generically one-to-one.

Lemma 2.4. Let 6, and &, be two irreducible non-planar curves in CP? d >3, of degree e| and e
respectively. Then there are at most O(ejey) points p on 6y such that m,(8; \ {p}) and ©,(8 \{p})
coincide.

3 Curves of degree d + 1

In this paper, irreducible non-degenerate curves of degree d + 1 in CP? play a fundamental role. Indeed,
the elliptic normal curve and rational acnodal curve mentioned in Theorem 1.1 are both such curves. In
this section, we describe their properties that we need. These properties are all classical, but we did not
find a reference for the group structure on singular rational curves of degree d 4 1, and therefore consider
this in detail.

It is well-known in the plane that there is a group structure on any smooth cubic curve or the set of
smooth points of a singular cubic. This group has the property that three points sum to the identity if
and only if they are collinear. Over the complex numbers, the group on a smooth cubic is isomorphic
to the torus (R/Z)?, and the group on the smooth points of a singular cubic is isomorphic to (C,+) or
(C*,-) depending on whether the singularity is a cusp or a node. Over the real numbers, the group on a
smooth cubic is isomorphic to R/Z or R/Z x Z, depending on whether the real curve has one or two
semi-algebraically connected components, and the group on the smooth points of a singular cubic is
isomorphic to (R,+), (R,+) x Z,, or R/Z depending on whether the singularity is a cusp, a crunode, or
an acnode. See for instance [9] for a more detailed description.

In higher dimensions, it turns out that an irreducible non-degenerate curve of degree d + 1 does not
necessarily have a natural group structure, but if it has, the behaviour is similar to the planar case. For
instance, in CP3, an irreducible non-degenerate quartic curve is either an elliptic quartic, with a group
isomorphic to an elliptic curve such that four points on the curve are coplanar if and only if they sum to
the identity, or a rational curve. There are two types, or species, of rational quartics. The rational quartic
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curves of the first species are intersections of two quadrics (as are elliptic quartics), they are always
singular, and there is a group on the smooth points such that four points on the curve are coplanar if and
only if they sum to the identity. Those of the second species lie on a unique quadric, are smooth, and
there is no natural group structure analogous to the other cases. See [20] for a more detailed account. The
picture is similar in higher dimensions.

Definition (Clifford [4], Klein [17]). An elliptic normal curve is an irreducible non-degenerate smooth
curve of degree d + 1 in CIP? isomorphic to an elliptic curve in the plane.

Proposition 3.1 ([28, Exercise 3.11 and Corollary 5.1.1], [29, Corollary 2.3.1]). An elliptic normal curve
8 in CP4, d > 2, has a natural group structure such that d + 1 points in 8 lie on a hyperplane if and only
if they sum to the identity. This group is isomorphic to (R /7)>.

If the curve is real, then the group is isomorphic to R/7Z or R/7 x Z, depending on whether the real
curve has one or two semi-algebraically connected components.

A similar result holds for singular rational curves of degree d + 1. Since we need to work with such
curves and a description of their group structure is not easily found in the literature, we give a detailed
discussion of their properties in the remainder of this section.

A rational curve § in FP? of degree e is a curve that can be parametrised by the projective line,

0: ]F]P)l _>]F]P)d7 [xay] — [qo(xay)a"de(x?y)])

where each g; is a homogeneous polynomial of degree e in the variables x and y. The following lemma is
well known (see for example [27, p. 38, Theorem VIII]), and can be proved by induction from the planar
case using projection.

Proposition 3.2. An irreducible non-degenerate curve of degree d+ 1 in CP?, d > 2, is either an elliptic
normal curve or rational.

We next describe when an irreducible non-degenerate rational curve of degree d + 1 in CP¢ has a
natural group structure. It turns out that this happens if and only if the curve is singular.
We write vV, for the rational normal curve in CP4H 11, Example 1.14], which we parametrise as

Via+1: [X,y] = [yd+17 _xydaxzydila ceey (_x>d71y27 <_x)dy7 (_'x)dJrl]'

Any irreducible non-degenerate rational curve § of degree d + 1 in CP is the projection of the rational
normal curve, and we have

Ox,y] = [de,—xyd,xzyd_l,...,(—x)d_ly{ (—x)dy, (_x)dJrl]A7

where A is a (d+2) x (d+ 1) matrix of rank d + 1 (since 6 is non-degenerate) with entries derived from
the coefficients of the polynomials g; of degree d + 1 in the parametrisation of the curve (with suitable
alternating signs). Thus § C CP? is the image of v, | under the projection map T, defined by A. In
particular, the point of projection p = [pg, p1,...,pas1] € CP?*! is the (1-dimensional) kernel of A. If
we project V1 from a point p € vy, then we obtain a rational normal curve in CP¢. However, since &
is of degree d + 1, necessarily p ¢ v, ;. Conversely, it can easily be checked that for any p ¢ v, 1, the
projection of v, from p is a rational curve of degree d + 1 in CP?. We will use the notation 0), for this
curve. We summarise the above discussion in the following proposition that will be implicitly used in the
remainder of the paper.
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Proposition 3.3. An irreducible non-degenerate rational curve of degree d + 1 in CP? is projectively
equivalent to 8, for some p € CPH1\ vy .

We use the projection point p to define a binary form and a multilinear form associated to J,,.
The fundamental binary form associated to §, is the homogeneous polynomial of degree d + 1 in two
variables f,(x,y) := Z?IOI Di (dJlTl)xd“*iy". Its polarisation is the multilinear form F,: (F?)?*! — F
[5, Section 1.2] defined by

iel iel

Fp(x07J’0,x17)’1a'--axda}’d) = d Y Z (_1)d+17|1|fp (Z-xhzyl') .
(d+ 1!

Consider the multilinear form G, (xo,yo, - - ,X4,ya) = L4 piP;, where

B(x()ay(),xlayly"'axdvyd) = Z HxJHyj (1)

Ic ({0,1,[:...61}) jel  Jel

foreach i =0,...,d + 1. Here the sum is taken over all subsets I of {0,1,...,d} of size i, and I denotes
the complement of 7 in {0, 1,...,d}. It is easy to see that the binary form f, is the restitution of G,
namely [5, Section 1.2]

fp(xvy) = Gp(x7y7x7y7' . 7x7y)‘

Since the polarisation of the restitution of a multilinear form is itself [5, Section 1.2], we must thus have
F, = G,. (This can also be checked directly.)

Lemma 3.4. Let 5p be an irreducible non-degenerate rational curve of degree d+ 1 in CP4, d > 2, where
p € CPYT\ vy 1. A hyperplane intersects 8, in d + 1 points 8y[x;,yi], i =0,...,d, counting multiplicity,
if and only if Fy(x0,Y0,X1,Y1, - ,%a,¥a) = 0.

Proof. We first prove the statement for distinct points [x;,y;] € CP!. Then the points 8,[x;,y;] are all on a

hyperplane if and only if the hyperplane in CP4*! through the points v, | [x;,y;] passes through p. It will
be sufficient to prove the identity

Va-+1[x0, o]
. Xj Xk
D .= det ’ :Fp(x()?yOaxl,yla--'7xd7yd) H C ) (2
VatilXa,yd] 0<j<k<d Vi Yk
p

since the second factor on the right-hand side does not vanish because the points [x;,y;] are distinct. We
first note that

Yot —xovg xyg! (—x0)%y0  (—x0)**!
yif“ —xdy§ xf;yﬁffl o (=x2)%ya (—xg)™!
Po P1 )2) . Pd Pl
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y‘OH'1 xoyg x%ygfl .. xgyo xgH
d+2 : : : ) : :
:(_1)LTJ : : o : : ‘ 3)
yZ“ xdyg xﬁyj b xgyd xZH
po —pi pr o (=D)%pa (1) pay

We next replace (—1)'p; by x'y?*! = for each i = 0,...,d + 1 in the last row of the determinant in (3) and
obtain the Vandermonde determinant

o xof e - xve T
w2l | o : : : :
Cplel] P L S
Y gy 2yt Xy, x4t
YL gpd  2yd-l o dy
— (_1) V%ZJ Vi Yk yi Yy
o<j<k<d Y XkloLjcalXi X
= (- =) Xj Xk xXjox|
o<j<k<d Vi YklogjcalYi Y
Finally, note that (—1)L(4+2)/2] (—1)(d;2) = 1 and that the coefficient of x'y* ™~ in [To< <y i’ ;C is
j

Y TI[lxi=ve,

Ig({ou;.,.d}) JEI jel
where P; is as defined in (1). It follows that the coefficient of p; in (3) is P,, and (2) follows.

We next complete the argument for the case when the points [x;,y;] are not all distinct. First suppose
that a hyperplane IT intersects &, in 0p[x;,yi], i =0,...,d. By Bertini’s theorem [12, Theorem II.8.18 and
Remark I1.8.18.1], there is an arbitrarily close perturbation IT' of IT that intersects J,, in distinct points
0p[x},y!]. By what has already been proved, F},(x(, Y, - - -,X;,Y,;) = 0. Since I’ is arbitrarily close and F),
is continuous, Fy[xo,Y0, - . .,X4,ya] = 0.

Conversely, suppose that Fj,(xo,y0,...,%4,¥a) = 0 where the [x;,y;] are not all distinct. Perturb

the points [xo, o], - .., [X4—1,Ya—1] by an arbitrarily small amount to [x;,y;], ..., [x,_,,¥,_,] respectively,
so as to make J,[x(, Y], --,0p[x,_;,¥;_,] span a hyperplane IT’ that intersects &, again in §,[x),,y/,],
say, and so that [x{,y(],...,[x,),] are all distinct. If we take the limit as [x],y!] — [x;,y;] for each

i=0,...,d—1, we obtain a hyperplane IT intersecting &, in 8,[xo,y0], -, Op[xa—1,Ya—1], 0p[x}},y}j], say.
Then F},(x0,Y0, - --,Xa—1,Ya—1,Xy,y;) = 0. Since the multilinear form F, is non-trivial, it follows that
[xa,ya] = [x],¥]]. Therefore, IT is a hyperplane that intersects &, in 8 [x;,yi], i =0,...,d. O

The secant variety Secc (V4 1) of the rational normal curve v, 1 in CP4*! is equal to the set of points
that lie on a proper secant or tangent line of v;, 1, that is, on a line with intersection multiplicity at least
2 with v;;1. We also define the real secant variety of v, to be the set Secg (v, 1) of points in RP4+!
that lie on a line that either intersects v, in two distinct real points or is a tangent line of v;;. The
tangent variety Tany (v, ) of V44 is defined to be the set of points in FP4*! that lie on a tangent line
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of V4, 1. We note that although Tang (V) = Tanc(vz, 1) "RPY*!, we only have a proper inclusion
SCCR(Vd+1) - SCCC(Vd+1) NRP! for d > 2.

We will need a concrete description of Secc(V441) and its relation to the smoothness of the curves 6.
For any p € FP“*! and k =2,...,d — 1, define the (k+ 1) x (d — k+2) matrix

pPo D1 P2 coo Pd—k+1

P11 p2 p3  --- Pd—k+2
Mi(p):=| . ) . )

Pk Pk+1 Pk+2  --- Pd+1

Suppose that 8, has a double point, say 8,[xo,yo] = 6p[x1,y1]. This is equivalent to p, Va1 [x0,y0],
and v, [x1,y1] being collinear, which is equivalent to p being on the secant variety of v;.;. (In
the degenerate case where [xg,yo] = [x1,y1], we have that p € Tang(Vy41).) Then 6, [x0,y0], Op[x1,y1]
8y[x2,¥2]s- - . 8y[xa,y4) are on a hyperplane in FP for all [x2,y2), ..., [x4,y4] € FPL. It follows that the
coefficients of Fy,(xo,Y0,X1,Y1,%2,Y2,---,X4,Ya4) as a polynomial in x3,y,...,xz,yq all vanish, that is,

pixox1 + pir1(xoy1 +yoxi) + piroyoyr =0

forall i =0,...,d — 1. This can be written as [xox1,xoy1 + yox1,yoy1]Ma2(p) = 0. Conversely, if M>(p)
has rank 2 with say [co,2c1,c2]Ma(p) = 0, then there is a non-trivial solution to the linear system with
Co = X0X1, €1 = XoY1 + YoX1, ¢2 = yoy1, and we have cox? 4 2c1xy + 23> = (x0x +yoy) (x1x +y1y). In the
degenerate case where [xg,yo| = [x1,y1], we have that the quadratic form has repeated roots.

It follows that M, (p) has rank at most 2 if and only if p € Secc(Vz+1) (also note that M>(p) has
rank 1 if and only if p € v;,1). We note for later use that since the null space of M (p) is 1-dimensional
if it has rank 2, it follows that each p € Secc(V,441) lies on a unique secant (which might degenerate
to a tangent). This implies that 8, has a unique singularity when p € Secc(V441) \ Va+1, which is a
node if p € Secc(Vy+1) \ Tanc(Vy41) and a cusp if p € Tang(Vyy1) \ Va+1. In the real case there are
two types of nodes. If p € Secr(Vy+1) \ Va+1, then the roots [xo, yol, [x1,y1] are real, and J, has either a
cusp when p € Tang(V441) \ Va+1 and [xo,yo] = [x1,y1], or a crunode when p € Secr (V1) \ Tang (V1)
and [xg,yo] and [x;,y1] are distinct roots of the real binary quadratic form cox? + 2cixy + cpy?. If
p € Secc(Vay1) \ Secr(Vai1) NRP4*H! then the quadratic form has conjugate roots [xo,yo] = [¥T,¥1] and
0, has an acnode.

If p ¢ Sec(Vy41), then 8, is a smooth curve of degree d + 1. It follows that §,, is singular if and only
if p € Sec(vy41) \ Vas1. For the purposes of this paper, we make the following definitions.

Definition. A rational singular curve is an irreducible non-degenerate singular rational curve of degree
d+1in CP?, In the real case, a rational cuspidal curve, rational crunodal curve, or rational acnodal
curve is a rational singular curve isomorphic to a singular planar cubic with a cusp, crunode, or acnode
respectively.

In particular, we have shown the case & = 2 of the following well-known result.

Proposition 3.5 ([11, Proposition 9.7]). Letd > 3. Forany k=2,...,d — 1, the secant variety of V41 is
equal to the locus of all [po, p1,...,pa+1] such that My(p) has rank at most 2.
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Corollary 3.6. Letd > 3. Forany k=2,...,d — 1 and p € CP4™1\ vy, the curve 8, of degree d + 1
in CP4 is singular if and only if rank My (p) < 2.

We next use Corollary 3.6 to show that the projection of a smooth rational curve of degree d 41 in
CP4 from a generic point on the curve is again smooth when d > 4. This is not true for d = 3, as there
is a trisecant through each point of a quartic curve of the second species in 3-space. (The union of the
trisecants form the unique quadric on which the curve lies [11, Exercise 8.13].)

Lemma 3.7. Let 8, be a smooth rational curve of degree d + 1 in CP¢, d > 4. Then for all but at most
three points q € 8,,, the projection m,(8,\ {q}) is a smooth rational curve of degree d in CP4~1.

Proof. Let g = J,[xo,yo]. Suppose that m,(J,\ {¢}) is singular. Then there exist [x;,y;] and [x2,y»]
such that 7, (0p[x1,y1]) = 7,(8,[x2,¥2]) and the points &, [xo,Y0], 8,[x1,y1], and &, [x2,y] are collinear.
Then for arbitrary [x3,y3), ..., [xs,y4] € CP!, the points 8,[x;,y], i =0,...,d are on a hyperplane, so by
Lemma 3.4, F,(x0,Y0, - - -,X4,Yq) is identically O as a polynomial in x3,y3,...,x4,y4. The coefficients of
this polynomial are of the form

PiXoX1X2 + pit1(X0X1y2 +Xoy1X2 + Yox1x2) + pit2(Xoy1y2 + YoX1y2 4+ Yoy1X2) + pit3y0y1y2

fori=0,...,d —2. This means that the linear system [co,3c1,3¢2,c3]M3(p) = 0 has a non-trivial solution
Co = XoX1X2, 3¢ = XoX1y2 + Xoy1X2 + YoX1X2, 3¢2 = Xoy1y2 + YoX1y2 + Yoy1X2, €3 = yoy1y2. The binary
cubic form cox® 4+ 3c1x%y+ c2xy? +c3y? then has the factorisation (xox+yoy) (x1x+y1y)(x2x+y2y), hence
its roots give the collinear points on §,. Since §, is smooth, M3(p) has rank at least 3 by Corollary 3.6,
and so the cubic form is unique up to scalar multiples. It follows that there are at most three points g such
that the projection 7, (5, \ {¢}) is not smooth. O

We need the following theorem on the fundamental binary form f), that is essentially due to Sylvester
[30] to determine the natural group structure on rational singular curves. Reznick [26] gives an elementary
proof of the generic case where p does not lie on the tangent variety. (See also Kanev [16, Lemma 3.1] and
larrobino and Kanev [13, Section 1.3].) We provide a very elementary proof that includes the non-generic
case.

Theorem 3.8 (Sylvester [30]). Letd > 2.

(i) If p € Tanc(Vyy1), then there exist binary linear forms Ly, Ly such that f,(x,y) = Ly (x,y)?La(x,y).
Moreover, if p & V4,1 then Ly and Ly are linearly independent, and if p € RP4*! then Ly and L,
are both real.

(i) If p € Secc(Vyi1) \ Tang (Vg 1), then there exist linearly independent binary linear forms Ly, L,
such that f,(x,y) = Ly (x,)?! — Ly (x,y)4 L. Moreover, if p € RPT1\ Secg (Vyy1) then Ly and L,
are complex conjugates, while if p € Secr(Vy41) then there exist linearly independent real binary
linear forms Ly, Ly such that f,(x,y) = L1 (x,y)*! £ Ly (x,y)?"!, where we can always choose the
lower sign when d is even, and otherwise depends on p.
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Proof. (i): We work over F € {R,C}. Let p = [po, p1,---,Pa+1] € Tanp(Vgi1). Let pe = V[0, 0]
be the point on v, such that the line pp, is tangent to v, (if p € V4.1, we let p,. = p). We will show
that
d+1 d+1 o
DEDY Pi( . >xd+UY’ = (x— ouy)! (Box— Bry) “
i=0
for some [By, B>] € FP!.
First consider the special case oy = 0. Then p, = [1,0,...,0] and the tangent to v, at p, is the line
Xy =x3="--=xg41 =0. It follows that f,,(x,y) = pox?t! + p1 (d + 1)x%y = (1x— 0y)4 (pox+ p1 (d + 1)y).
If py =0, then p = p, € V411. Thus, if p ¢ v,441, then p; # 0, and x and pox + p;(d + 1)y are linearly
independent.
We next consider the general case @ # 0. Equating coefficients in (4), we see that we need to find

[B1,B2] such that
(T = (D)t o (1) o e

foreachi=0,...,d+ 1, where we use the convention (_dl) = ( d +1) 0. This can be simplified to

Pi:(l dil) i)~ o5 (—an) B ®)

Since we are working projectively, we can fix the value of B from the instance i = d + 1 of (5) to get
par1=—(—a1)'Br. (6)

If pyy1 # 0, we can divide (5) by (6). After setting o = &/, B = B2/B1, and a; = p;/pa+1, we
then have to show that for some 8 € FF,

i ] -
=_ (1= d—i o d—i+1 7
a=(1- 717 ) B+ ) )
foreach i =0,...,d. We next calculate in the affine chart x;,; = 1 where the rational normal curve be-
comes Vg 1(t) = (=), (=t)4,...,—t), p = (ap,...,aq), and p, = V4,1 (). The tangency condition

means that p, — p is a scalar multiple of
! _ d d—1
vd+1(a)_((d+l)(_a) 7d(_a) ,...,2&,—1),

that is, we have for some A € F that (—a)?*!'~" —a; = A(d + 1 —i)(—a)? for all i = 0,...,d. Set
B=o+A(d+1). Then (—a)¥*!'~—aq; = (B — Ot)( — 747)(—a)?7, and we have

= (o (B (1 dL)(—a)“

__<1_djt1>( o) 1B+d+l( o)
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giving (7) as required. If &« = 3, then A =0 and p = p, € V4. Thus, if p ¢ v, 1, then o # B, and
opx — ayy and Box — By are linearly independent.
We still have to consider the case p;,1 = 0. Then f; = 0 and we need to find 3, such that

m=@—)%’PmW2 ®)
foralli=0,...,d. Since py.1 = 0, we have that v, () is parallel to (po,.. ., pq), that is,

pr=A(d+1—i)(—a)d™

for some A € F*. Set B, = A(d+1)/(—0)?. Then

p= C By (2) - (- ) cap,

again giving (8) as required. Note that since o # 0 but B; = 0, oxx — oty and Box — By are linearly
independent. Note also that since A # 0, we have 3, # 0 and p # [1,0,...,0], hence p & v, 1.

(ii): Let p = [po,...,Pa+1) € Secc(Vas+1) \ Tang(Vy41), and suppose that p lies on the secant line
through the distinct points p; := vyy1[ot, 0] and ps := v441[B1, B2]. Since p, pi, p2 are distinct and
collinear, there exist u, o € C* such that p = y;p; + tap>. This means that fori =0,...,d + 1, we
have

pi=ti(—on) ot 4 (—Br) By
Then

d+1 d+1 o
fr(x,y) = Zpi< ; )x"“"y’
i=0

d+1 d+1
iy (7 (e ey g (1) By

i=0

= 1 (0x — o4 y) 1+ o (Box — Bry) !
Ly (x,y) " = Ly (x,y)*"!

where the linear forms L;, L, are linearly independent.
If p € RP+1\ Secg (V44 1), then fp isreal and p; and p; are non-real points. Taking conjugates, we
have

p =M Va+1[00, 0] + I2Var1[Br, Bo]
as vectors, and because of the uniqueness of secants of the rational normal curve through a given
point, we obtain ff; = up and Vg 1[0, 0] = V4+1[Bi1, B2], hence @) = B and o, = B,. It follows that
Li(x,y) = La(X.y).
If p € Secr(Vai1), then p; and p; are real, so [uy, to], [, ], [B1,B2] € RP!, and we obtain
fo(x,y) = LI £ 197! for some linearly independent L, L, over R, where the choice of sign depends
on p. O
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We are now in a position to describe the group laws on rational singular curves. We first note the
effect of a change of coordinates on the parametrisation of §,. Let ¢: I P! — FP! be a projective
transformation. Then v, o @ is a reparametrisation of the rational normal curve. It is not difficult to
see that there exists a projective transformation y: FP4+! — FP?+! such that vy, 0@ = wovgy . It
follows that if we reparametrise 0, using ¢, we obtain

OpO P =TpoVar10Q =Tpo Yo Va1 =W 0Ty-1(,) 0 Var1 = Sy-1(y),

where y': FP? — FP? is an appropriate projective transformation such that first transforming FP?*!
with y and then projecting from p is the same as projecting from y~!(p) and then transforming FP¢
with y'. So by reparametrising J,, we obtain &,/ for some other point p’ that is in the orbit of p under the
action of projective transformations that fix v, ;.

Since 6, o @[xo,y0];---,06p © P[xa,ya] lie on a hyperplane if and only if the ,-1(,)[x;,yi]’s are
on a hyperplane, it follows from Lemma 3.4 that F,(¢(x0,Y0), ..., Q(x4,Yq)) is a scalar multiple of
Fy-1(p) (X0,¥0, - - - ,X4,Ya), in which case f, 0@ = Jy-1(p) up to a scalar multiple. Thus, we obtain the
same reparametrisation of the fundamental binary form f),.

Proposition 3.9. A rational singular curve J, in CP¢ has a natural group structure on its subset of
smooth points 5; such that d + 1 points in 5; lie on a hyperplane if and only if they sum to the identity.
This group is isomorphic to (C,+) if the singularity of 8, is a cusp and isomorphic to (C*,-) if the
singularity is a node.

If the curve is real and cuspidal or acnodal, then it has a group isomorphic to (R,+) or R/Z
depending on whether the singularity is a cusp or an acnode, such that d + 1 points in 5;; lie on a
hyperplane if and only if they sum to the identity. If the curve is real and the singularity is a crunode,
then the group is isomorphic to (R,+) X Zy, but d + 1 points in 5;,‘ lie on a hyperplane if and only if they
sum to (0,0) or (0,1), depending on p.

Proof. First suppose 3, is cuspidal and F € {R,C}, so that p € Tanp(V441) \ Va41. By Theorem 3.8,
fr= L‘liLz for some linearly independent linear forms L; and L,. By choosing ¢ appropriately, we
may assume without loss of generality that L;(x,y) = x and Ly(x,y) = (d + 1)y, so that f,(x,y) =
(d+1)x%y and p = [0,1,0,...,0], with the cusp of 8, at 5,[0, 1]. It follows that the polarisation of f,, is
F,(x0,Y0,---,Xa,Ya) = Pt = xox1 - - ~xd2?:0y,~/xi. For [x;,yi| #[0,1],i=0,...,d, the points 8, [x;,y;] are
on a hyperplane if and only if Y ,y;/x; = 0. Thus we identify 5, [x,y] € 6, with y/x € IF, and the group
is (F,+).

Next suppose 8, is nodal, so that p € Secc(Vyy1) \ Tanc(Vi11). By Theorem 3.8, f, = L9 — L4F!
for some linearly independent linear forms L; and L,. Again by choosing ¢ appropriately, we may
assume without loss of generality that L; (x,y) = x and L,(x,y) =, so that f,(x,y) = x4 —y?*! and p =
[1,0,...,0,—1], with the node of §, at §,[0, 1] = 0,[1,0]. The polarisation of f,, is F},(xo, Y0, - - - ,X4,Ya) =
Py — Pgy1 = XoX1---Xg — Yoy1 - - - ya. Therefore, 8,[x;,yi], i =0,...,d, are on a hyperplane if and only if
1% yi/xi = 1. Thus we identify 5,[x,y] € 6, with y/x € C*, and the group is (C*,-).

Now suppose 8, is real and the node is an acnode. Then the linearly independent linear forms L; and
L, given by Theorem 3.8 are L (x,y) = ax + By and L,(x,y) = 0ix+ By for some a, 8 € C\ R. There
exists @: RP' — RP' such that L; o ¢ = x+iy and L, o ¢ = x — iy, hence we may assume after such
a reparametrisation that f,(x,y) = (x+iy)?*t! — (x — iy)4*! and that the node is at §,[i, 1] = 8,[—i, 1].
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The polarisation of f, is F,(x0,Y0,--,Xd,Yd) = H?:o(xj +iy;) — H?:o(xj —iyj), and it follows that

?:0 YA — 1, We now identify RPP! with the circle
Xj—1yj
X+iy

R/Z={z € C:|z| =1} using the M&bius transformation [x,y] — =5

It remains to consider the crunodal case. Then, similar to the complex nodal case, we obtain after a
reparametrisation that 8,[x;, ], i = 0,...,d, are on a hyperplane if and only if [T¢_,y;/x; = &1, where
the sign depends on p. Thus we identify &p[x,y] € §; with y/x € R*, and the group is (R*,-) = R x Z,,
where +1 € R* corresponds to (0,0),(0,1) € R x Z, respectively. O

Op[x0, Y0, -, Op[xa,ya) are collinear if and only if [T

The group on an elliptic normal curve or a rational singular curve of degree d + 1 as described in
Propositions 3.1 and 3.9 is not uniquely determined by the property that d + 1 points lie on a hyperplane
if and only if they sum to some fixed element c. Indeed, for any 7 € (6*,@), xHy :=x®y®1 defines
another abelian group on 6* with the property that d + 1 points lie on a hyperplane if and only if they
sum to ¢ b dt. However, these two groups are isomorphic in a natural way with an isomorphism given
by the translation map x — x ©¢. The next proposition show that we always get uniqueness up to some
translation. It will be used in Section 5.

Proposition 3.10. Let (G, ®,0) and (G,8,0) be abelian groups on the same ground set, such that for
some d > 2 and some c¢,c’ € G,

X1® - Pxgy=c < x B---Bxyp = foralx,... ,xq11 €G.
Then (G,®,0) — (G,8,0),x — xB0 =x&0 is an isomorphism, and

! ce — / e /
¢ =cBHOB---BH0=co(0a---a0).

d times d times

Proof. Ttis clear that the cases d > 3 follow from the case d = 2, which we now show. First note that
for any x,y € G, xHyHB (c6x6y) = and (x®y) BOB (c6x6y) =/, since xdyd (coxOy) =
(x®y)®0® (cexey) =c. Thus we have xHy = (x®y)BO, hence (x@y)B0=xByB080 =
(xB0)H (yHO0). Similarly we have x&y = (xBy) &0/, hence xHy = x®yS 0, so in particular
0'=0B0=0®(H0)c0, and BO =0 ®0". So we also have xBHB0 =x® (B0)©0 =x® 0/, and
(G,®,0) — (G,H8,0'),x —»xBH0=x®0 is an isomorphism. O

4 Structure theorem

We prove Theorem 1.1 in this section. The main idea is to induct on the dimension d via projection. We
start with the following statement of the slightly different case d = 3, which is [20, Theorem 1.1]. Note
that it contains one more type that does not occur when d > 4.

Theorem 4.1. Let K > 0 and suppose n > Cmax{K8,1} for some sufficiently large absolute constant
C > 0. Let P be a set of n points in RP? with no 3 points collinear. If P spans at most Kn?> ordinary
planes, then up to projective transformations, P differs in at most O(K) points from a configuration of
one of the following types:
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(i) A subset of a plane;

(ii) A subset of two disjoint conics lying on the same quadric with 5 + O(K) points of P on each of the
two conics;

(iii) A coset of a subgroup of the smooth points of an elliptic or acnodal space quartic curve.
We first prove the following weaker lemma using results from Section 2.

Lemma 4.2. Let d > 4, K > 0, and suppose n > Cmax{d°2/K, (dK)8} for some sufficiently large
absolute constant C > 0. Let P be a set of n points in RP? where every d points span a hyperplane. If P
spans at most K (Z:}) ordinary hyperplanes, then all but at most O(d2¢K) points of P are contained in a
hyperplane or an irreducible non-degenerate curve of degree d + 1 that is either elliptic or rational and
singular.

Proof. We use induction on d > 4 to show that for all K > 0 and all n > f(d, K), for all sets P of n points
in RPY with any d points spanning a hyperplane, if P has at most K (Zj) ordinary hyperplanes, then all
but at most g(d, K) points of P are contained in a hyperplane or an irreducible non-degenerate curve of
degree d + 1, and that if the curve is rational then it has to be singular, where
d
g(d,K) =Y kK24 *+c2(a— 1K
k=0
and

f(d,K) :=d*(g(d,K)+Cad") +C(d —1)*K®

for appropriate Cy,C, > 0 to be determined later and C from Theorem 4.1. We assume that this holds in
RP4~!if d > 5, while Theorem 4.1 takes the place of the induction hypothesis when d = 4.
Let P’ denote the set of points p € P such that there are at most %K (Z:%) ordinary hyperplanes

through p. By counting incident point-ordinary-hyperplane pairs, we obtain

n—1 d—1_(n—-2
dK —|P'))=——=K
<d—1>>(" P (d—Z)’
which gives |P’| > n/(d — 1)2. For any p € P, the projected set 7,(P\ {p}) has n — 1 points and spans at

most =LK (}_3) ordinary (d —2)-flats in RP“~!, and any d — 1 points of 7,(P\ {p}) span a (d — 2)-flat.
To apply the induction hypothesis, we need

as well as f(3,K) > Cmax{K8, 1}, both of which easily follow from the definition of f(d,K). Then all
except g(d — 1, %K ) points of 7,(P\ {p}) are contained in a (d — 2)-flat or a non-degenerate curve 7,
of degree d in RPY~!, which is either irreducible or possibly two conics with 5 £ O(K) points on each
when d = 4.

If there exists a p € P’ such that all but at most g(d — 1, %K ) points of 7, (P \ {p}) are contained in
a (d —2)-flat, then we are done, since g(d,K) > g(d — 1,9=1K). Thus we may assume without loss of

' d—2
generality that for all p € P’ we obtain a curve ¥,.
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Let p and p’ be two distinct points of P’. Then all but at most 2g(d — 1, %K ) points of P lie on the

intersection § of the two cones 7, ' (¥,) and 717[;1 (7). Since the curves 7, and 7, are 1-dimensional, the
two cones are 2-dimensional. Since their vertices p and p’ are distinct, the cones do not have a common
irreducible component, so their intersection is a variety of dimension at most 1. By Bézout’s theorem
(Theorem 2.1), é has total degree at most d?, so has to have at least one 1-dimensional irreducible
component. Let &;,...,8 be the 1-dimensional components of §, where 1 < k < d?. Let §; be the
component with the most points of P’ amongst all the &;, so that

|P| —2g(d — 1, K)

d?
Choose a g € P'N §; such that m, is generically one-to-one on §;. By Lemma 2.2 there are at most
O(deg(8;)*) = O(d®) exceptional points, so we need

Idarine

IP' N8| > Cad®. ©)
Since |P'| > n/(d — 1)?, we need

n d—1
d?

or equivalently, n > (d — 1)?(2g(d — 1, %K )+ C2d'?). However, this follows from the definition of
f(d,K). If ; does not map 9 \ {¢} into ¥,, then by Bézout’s theorem (Theorem 2.1), n — 1 — g(d —
1, (4~3)K) < d°. However, this does not occur since f(d,K) > g(d — 1, (4_3)K)+d*+ 1. Thus, 7, maps
01\ {¢} into y,, hence §; is an irreducible curve of degree d + 1 (or, when d = 4, possibly a twisted cubic
containing at most n/2 + O(K) points of P).

We first consider the case where 8, has degree d + 1. We apply Lemma 2.4 to §; and each &,
i=2,...,k, and for this we need |P' N ;| > C"d*, since deg(5;) < d* and Y%, deg(8;) < d°. However,

this condition is implied by (9). Thus we find a ¢’ € P'N §; such that 7, (5 \ {¢'}) = 7, as before, and

> Czdg,

in addition, the cone nq_,l (7y) does not contain any other J;, i = 2,...,k. Since all points of P except
2g(d—1, %K) +d? lie on 8 U--- U &, we obtain by Bézout’s theorem (Theorem 2.1) that

IP\&| <d(d*—d—1)+d*+2g(d—1,%2=LK) < g(d,K).

We next dismiss the case where d = 4 and J; is a twisted cubic. We redefine P’ to be the set of points
p € P such that there are at most 12Kn? ordinary hyperplanes through p. Then |P’| > 2n/3. Since we
have |PN&;| <n/2+4 O(K), by Lemma 2.3 there exists ¢’ € P'\ §; such that the projection from ¢’ will
map §; onto a twisted cubic in RP3. However, by Bézout’s theorem (Theorem 2.1) and Theorem 4.1,
my (81 \ {¢'}) has to be mapped onto a conic, which gives a contradiction.

Note that g(d,K) = 0(d2?K) since K = Q(1/d) by [3, Theorem 2.4]. We have shown that all but
0(d2%K) points of P are contained in a hyperplane or an irreducible non-degenerate curve § of degree
d + 1. By Proposition 3.2, this curve is either elliptic or rational. It remains to show that if  is rational,
then it has to be singular. Similar to what was shown above, we can find more than 3 points p € 0
for which the projection 7, (8 \ {p}) is a rational curve of degree d that is singular by the induction
hypothesis. Lemma 3.7 now implies that § is singular. O

DISCRETE ANALYSIS, 2020:4, 34pp. 17


http://dx.doi.org/10.19086/da

AARON LIN AND KONRAD SWANEPOEL

To get the coset structure on the curves as stated in Theorem 1.1, we use a simple generalisation of an
additive combinatorial result used by Green and Tao [9, Proposition A.5]. This captures the principle that
if a finite subset of a group is almost closed, then it is close to a subgroup. The case d = 3 was shown
in [19].

Lemma 4.3. Letd > 2. Let A1,Ay,...,Ayq1 be d+ 1 subsets of some abelian group (G, ®), all of size
within K of n, where K < cn/d? for some sufficiently small absolute constant ¢ > 0. Suppose there are
at most Kn®~! d-tuples (ay,ay,...,a5) € Ay X Ay X -~ X Ay for which a; ©ar®--- D ag ¢ Agy1. Then
there is a subgroup H of G and cosets H ® x; fori=1,...,d such that

|AiA (H @xi)\,

d
Agi N (H@@Xi> ‘ = O(K)

i=1

Proof. We use induction on d > 2 to show that the symmetric differences in the conclusion of the lemma
have size at most C Hflzl (1+ }Z)K for some sufficiently large absolute constant C > 0. The base case
d =2 is [9, Proposition A.5].

Fix a d > 3. By the pigeonhole principle, there exists b; € A; such that there are at most

n—K 1-5

(d—1)-tuples (ay,...,aq) € Ay X --- x Aq for which by ©a, @ --- @ ag ¢ Agy1, or equivalently ar @ --- @

aq ¢ Ag+1Sb. Since |
K< ——n<———n
-5 S@&—c"S@-1y

we can use induction to get a subgroup H of G and x,...,x; € G such that for j = .,d we have

1

CH<1+ )1_

Since |A; N (H ®x4)| =n—K—CII ] (1+ 7) ﬁK , we repeat the same pigeonhole argument on
d
AgsN(H®xy) to find ab, € AyN (H S xg) such that there are at most

[Aj A (H D x;),

d
(Agr1©b1) A (H@ @’ﬁ)
j=2

1 d—1 ]

Kn < Kn??
KO () K ST e ()
1
< _ Knd—2
1-Gz=

Coc d-2
< (1 + 7 —c) Kn

1 d-2
(1 + d2> Kn
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(d—1)-tuples (aj,...,ag—1) €Ay X ---Ag_1 wWitha; @---Day_ Dby ¢ Ag+1, for some absolute constants
C1,C, > 0 depending on C, by making c sufficiently small. Now (1+ ﬁ)K <cn/(d—1)2, so by induction
again, there exist a subgroup H' of G and elements xj,x5, ... ,xﬁi_l € Gsuchthatfork=2,...,d—1 we

have
d—1 1 1
<C 14+ = 1+— | K.
() (1)

From this, it follows that [(H ®x¢) N (H' ®x})| > n—K —2CTIL;(1 + 5)K = n— O(K). Since (H ®
xx) N (H' @ x},) is non-empty, it has to be a coset of H' NH. If H' # H, then |H' NH| <n/2+0(K), a
contradiction since c is sufficiently small. Therefore, H = H', and H @ x; = H' @ x}. So we have

AL A (H ©x1)] A A (H @)l

-1
(Ag+16ba) A <H/ ®x1 0 @ﬁ)

k=2

d
’AIA (H @xi)|,

1
<CH<1+i2>K.

i=1

d—1
Ad+1 A (H@@Xg@bd>

=1

Since b; € H & x,, we also obtain

d
Ad+1 A (H@@x,-)

i=1

d 1
<C[] <1+i2> K. O
i=1

To apply Lemma 4.3, we first need to know that removing K points from a set does not change the
number of ordinary hyperplanes it spans by too much.

Lemma 4.4. Let P be a set of n points in RP?, d > 2, where every d points span a hyperplane. Let P' be
a subset that is obtained from P by removing at most K points. If P spans m ordinary hyperplanes, then
P’ spans at most m -+ %K (Zj) ordinary hyperplanes.

Proof. Fix a point p € P. Since every d points span a hyperplane, there are at most (Z:}) sets of d points
from P containing p that span a hyperplane through p. Thus, the number of (d + 1)-point hyperplanes
through p is at most é(t’}j), since a set of d + 1 points that contains p has d subsets of size d that
contain p. If we remove points of P one-by-one to obtain P’, we thus create at most éK (Z:i) ordinary
hyperplanes. O

The following lemma then translates the additive combinatorial Lemma 4.3 to our geometric setting.

Lemma 4.5. Letd >4, K > 0, and suppose n > C(d°K +d*) for some sufficiently large absolute constant
C > 0. Let P be a set of n points in RP? where every d points span a hyperplane. Suppose P spans at
most K (Zj) ordinary hyperplanes, and all but at most dK points of P lie on an elliptic normal curve or a
rational singular curve 8. Then P differs in at most O(dK +d?) points from a coset H ® x of a subgroup
H of 6%, the smooth points of 8, for some x such that (d + 1)x € H. In particular, § is either an elliptic
normal curve or a rational acnodal curve.

Proof. Let P = PN &*. Then by Lemma 4.4, P’ spans at most K(Zj) + d%K(Z’I:i) =2K (Zj) ordinary
hyperplanes.
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First suppose 0 is an elliptic normal curve or a rational cuspidal or acnodal curve. If ay,...,a; € 6*
are distinct, then by Propositions 3.1 and 3.9, the hyperplane through a1, ...,a,; meets § again in the
unique point ay1 = S(a; & --- ®ay). This implies that ay,; € P’ for all but at most d!O(K(Z:})) d-

tuples (ai, ...,az) € (P')¢ with all ¢; distinct. There are also at most (3)n?~! d-tuples (ai,...,a4) € (P')?
for which the a; are not all distinct. Thus, a; @ --- ©ay € ©P' for all but at most O((dK +d*)n?1)
d-tuples (ay,...,aq) € (P)4. Applying Lemma 4.3 with A| = --- = A; = P’ and Ay, = OP', we

obtain a finite subgroup H of §* and a coset H @ x such that |P' A (H @ x)| = O(dK +d?) and |© P’ A
(H ©dx)| = O(dK +d?), the latter being equivalent to |P' A (H ©dx)| = O(dK +d*). Thus we have
|(H®x) A (HSdx)| = O(dK + d?), which implies (d + 1)x € H. Also, § cannot be cuspidal, otherwise
by Proposition 3.9 we have 6* 2 (R, +), which has no finite subgroup of order greater than 1.

Now suppose & is a rational crunodal curve. By Proposition 3.9, there is a bijective map ¢ :
(R,+) x Zp — 8" such that d + 1 points in 6* lie in a hyperplane if and only if they sum to /&, where
h=¢(0,0) or ¢(0,1) depending on the curve &. If 1 = ¢(0,0) then the above argument follows through,
and we obtain a contradiction as we have by Proposition 3.9 that 6* = (R, +) X Z,, which has no finite
subgroup of order greater than 2. Otherwise, the hyperplane through distinct ay,...,a; € 6* meets 0
again in the unique point az; = @(0,1) & (a1 ®--- @ ay). As before, this implies that az.; € P’ for all
but at most O((dK +d*)n?~") d-tuples (ay,...,a;) € (P')?, or equivalently a; ®--- B ay € ¢(0,1)© P
Applying Lemma 4.3 withA; =--- =A; =P and Ay, 1 = ¢(0,1) & P', we obtain a finite subgroup H of
0*, giving a contradiction as before. O

We can now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.2, all but at most O(d2¢K) points of P are contained in a hyperplane
or an irreducible curve 0 of degree d + 1 that is either elliptic or rational and singular. In the prior case,
we get Case (i) of the theorem, so suppose we are in the latter case. We then apply Lemma 4.5 to obtain
Case (i1 ) of the theorem, completing the proof. 0

S Extremal configurations

We prove Theorems 1.2 and 1.3 in this section. It will turn out that minimising the number of ordinary
hyperplanes spanned by a set is equivalent to maximising the number of (d + 1)-point planes, thus we
can apply Theorem 1.1 in both theorems. Then we only have two cases to consider, where most of our
point set is contained either in a hyperplane or a coset of a subgroup of an elliptic normal curve or the
smooth points of a rational acnodal curve.

The first case is easy, and we get the following lower bound.

Lemma 5.1. Letd >4, K > 1, and let n > 2dK. Let P be a set of n points in RPY where every d points
span a hyperplane. If all but K points of P lie on a hyperplane, then P spans at least (Zj) ordinary
hyperplanes, with equality if and only if K = 1.

Proof. Let I1 be a hyperplane with |[PNII| = n— K. Since n — K > d, any ordinary hyperplane spanned
by P must contain at least one point not in Il. Let m; be the number of hyperplanes containing exactly
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d — 1 points of PNII and exactly i points of P\IL, i = 1,...,K. Then the number of unordered d-tuples
of elements from P with exactly d — 1 elements in IT is

—K
K<’; 1> =m; +2my+3mz+---+ Kmg.

Now consider the number of unordered d-tuples of elements from P with exactly d — 2 elements
in I1, which equals (%) ("~%). One way to generate such a d-tuple is to take one of the m; hyperplanes
containing i points of P\ IT and d — 1 points of PNII, choose two of the i points, and remove one of the
d — 1 points. Since any d points span a hyperplane, there is no overcounting. This gives

(3)(G2) 2 (e (e ()

d—1
= - (2my +3m3 +4mg+---).

Hence the number of ordinary hyperplanes is at least

K n—K\ KK-1)/n—-K _x n—K\n—2K—-d+3
d—1 d—1 \d-2) "\d-1)n—-K—-d+2~

We next show that for all K > 2, if n > 2dK then

% n—K n—2K—d+3> n—1
d—1) n—K—d+2 d—1)°

WV

m

This is equivalent to
n—K+1 K2 n—i
K> . 10
n—2K—d+3Hn—d—i+1 (10)

i=1

Note that
n—K+1

n—2K—d+3<2 (n
if n>3K+2d—5 and

n—i i+2

n—d—it1l i+l

ifn> (i+2)d foreachi=1,...,K —2. However, since 2dK > (i+2)d and also 2dK > 4K +2d — 5,

the inequality (10) now follows from (11) and (12). ]

(12)

The second case needs more work. We first consider the number of ordinary hyperplanes spanned
by a coset of a subgroup of the smooth points 8* of an elliptic normal curve or a rational acnodal curve.
By Propositions 3.1 and 3.9, we can consider 6* as a group isomorphic to either R/Z or R/Z x Z,. Let
H @ x be a coset of a subgroup H of 6* of order n where (d + 1)x = ©¢ € H. Since H is a subgroup of
order n of R/Z or R/Z x Z,, we have that either H is cyclic, or Z, /2 X Zo when n is divisible by 4. The
exact group will matter only when we make exact calculations.

Note that it follows from the group property that any d points on 6* span a hyperplane. Also,
since any hyperplane intersects 8* in d + 1 points, counting multiplicity, it follows that an ordinary
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hyperplane of H & x intersects 6* in d points, of which exactly one of them has multiplicity 2, and the
others multiplicity 1. Denote the number of ordered k-tuples (aj,...,a;) with distinct a; € H that satisfy
mya; @ - - & mgay = c by [my,...,my;c|]. Then the number of ordinary hyperplanes spanned by H @ x is

1
2,1,...,1;c|. 13
(d_l)‘[ s ) C] ( )
d — 1 times

We show that we can always find a value of ¢ for which (13) is at most (Zj)

Lemma 5.2. Let §* be an elliptic normal curve or the smooth points of a rational acnodal curve in RP?,
d > 2. Then any finite subgroup H of 6* of order n has a coset H® x with (d + 1)x € H, that spans at
most (Zj) ordinary hyperplanes. Furthermore, if d 4+ 1 and n are coprime, then any such coset spans

exactly (Z:}) ordinary hyperplanes.

Proof. Tt suffices to show that there exists ¢ € H such that the number of solutions (ay,...,a;) € H? of
the equation 2a; ®a, & -+ ® ay = ¢, where ¢ = S(d + 1)x, is at most (d — 1)!(}"}).

Fix a; and consider the substitution b; = a; —a; fori =2,...,d. Note that 2a; @ --- ® ay = ¢ and
ai,...,aq are distinct if and only if b, & --- Dby = c© (d+ 1)a; and by, ..., by are distinct and non-zero.
Let

Acj=A{(j,a2,...,a0) 1 2j®ar®---®ag =c,a,...,a; € H\ {j} distinct},

and let
B, = {(bz,...,bd) by Dby =k,by,....,by EH\{O} diStil’lCt}.

Then A, | = |Bec(a+1) j|» and the number of ordinary hyperplanes spanned by H & x is

Z| ejl-

jEH

If d + 1 is coprime to n, then ¢ & (d + 1) runs through all elements of H as j varies. So we have
Y|Bes(as)l = (n—1)---(n—d+1), hence for all c,

1 n—1
()
(d—l)!j;H \d—-1

If d + 1 is not coprime to n, then ¢ © (d + 1)j runs through a coset of a subgroup of H of size
n/ged(d+ 1,n) as j varies. We now have

Y [Beowrnjl =ged(d+1,n) Y By
jeH keco(d+1)H

Summing over ¢ gives

ZZ]A”\—gcdd—l—ln Z Z |By|

ceH jeH c€EH keco(d+1)H
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=ged(d+1,n) (n—1)---(n—d+1)

ged(d+1,n)
=nn—1)---(n—d+1).

By the pigeonhole principle, there must then exist a ¢ such that
1 n—1
P (1Y) :
(d—1)! b= d—1
d —1 times

,_/R‘ . a1y
We next want to show that [2,1,..., 1;c] is always very close to (d —1)!(’}”,), independent of ¢ or
the group H. Before that, we prove two simple properties of [my,...,my;c].

Lemma 5.3. [my,...,mg;c] <2m(k—1)!(,",).

Proof. Consider a solution (ajy,...,ax) of ma; @ --- @ myay = ¢ where all the a; are distinct. We can
choose ay,...,a_ arbitrarily in (k—1)! (kfl) ways, and a; satisfies the equation myay =cema1S---6
my—1ax—1, which has at most my, solutions if H = Z, and at most 2my, solutions if H = Zy X Z,, 5. ]

Lemma 5.4. We have the recurrence relation

n
[mla"'amk—lal;c] = (k_ 1)'( > - [ml +1,m2,-~-,mk_];C]

k—1
—[mi,my+1,m3,... ,m_y;c]
- [ml,. co Mg My + 1;C].
Proof. We can arbitrarily choose distinct values from H for ay,...,a;_, which determines ay, and then
we have to subtract the number of k-tuples where ay, is equal to one of the othera;, i=1,...,k—1. [
Lemma 5.5. |
n —_—
2,1,...,;c] =(d—1)! e(d, ,
2t =@t ) +etan)
d — 1 times
where

o Zfd/z((df;)/z) + ((dfé)/z)) ifdis odd,

e(d,n)| = v . o
0(d2 (d/271)+(d/272)> if d is even.

Proof. Applying Lemma 5.4 once, we obtain

2,1,...,1;c] = (d—l)!(dn 1) —B,1,..., L= (d—2)[2,2,1,...,1;d].
N—— — N—— N——
d — 1 times d — 2 times d — 3 times

Note that at each stage of the recurrence in Lemma 5.4 (as long as it applies), there are (d — 1)(d —
2)---(d —k) terms of length d — k, where we define the length of [my, ... ,my;c] to be k.
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If d 1s odd, we can continue this recurrence until we reach

2L lic] = (@ 1) ((d"1> - (dn2> +~~+(—1)("“)/2<(d+n1)/2>)

d — 1 times

+ (71)((1_1)/2R7

where R is the sum of (d —1)(d —2)---(d — (d —1)/2) terms of length (d 4 1) /2. Among these there are

d—1y (d—3 2
(5!
terms of the form [2,...,2;c]. We now write R = A + B, where A is the same sum as R, except that we
replace each occurrence of [2,...,2;¢] by [1,..., l;c], and
B:=(d—-2)(d—4)---3-1(]2,...,2;¢c] = [1,..., 1;¢]).
~——
%times %times

We next bound A and B. We apply Lemma 5.4 to each term in A, after which we obtain (d — 1)(d —
2)---(d—(d+1)/2) terms of length (d — 1)/2. Then using the bound in Lemma 5.3, we obtain

n

—(d—1)! <<<d_"1>/z> -0 (((d—n3>/2>>> '

For B, we again use Lemma 5.3 to get

|B| :0((d—2)(d—4)-~3' 1 (d;1>!((d—nl)/2>>

—0((61—2)(61—4)---3-1-2—“2](d—1)(d_3)...4.2< n ))

@1/
~of@-02(, )

Thus we obtain

pea= a0 (()2 ) () e ()

d — 1 times
0= ) -0 ( (0 ly ) Hons
=@=0r((520) 0o (o)) =0 (0 )
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which finishes the proof for odd d.
If d is even, we obtain

2.0 L] = (d—1)! <<d"1) - <d”2> +-~+(—1)‘5“<d’;z>> +(—=1)7R,

d — 1 times

where R now is the sum of (d —1)(d —2)---(d —d/2) terms of length d /2. Among these there are

(=D (%) ()

+2(dg1)(d;4),..(§) @t 1)d—1) 75

(5! (5!
terms of the form [3,2,...,2;c|. Again we write R = A + B, where A is the same sum as R, except that
each occurrence of [3,2,...,2;c] is replaced by [1,..., 1;c], and
B:i=(d+1)d—1)---7-5(3,2,....2:c] —[1,..., 1;¢]).
(d+1)(d—1) (I ] 1)
% — 1 times % times

Similar to the previous case, we obtain

A=(d-1)! <(d/2n_1> ‘0<<d/2n—2>>>

18] :0((d+1)(d—1)--.7.5(;’—1)!<d/2”_ 1)) :0<2d/2d!<d/2”_1>>,

which finishes the proof for even d. O

and

Computing [2,...,2;c] and [3,2,...,2;c] exactly is more subtle and depends on ¢ and the group H.
We do not need this for the asymptotic Theorems 1.2 and 1.3, and will only need to do so when computing
exact extremal values.

To show that a coset is indeed extremal, we first consider the effect of adding a single point. The case
where the point is on the curve is done in Lemma 5.6, while Lemma 5.7 covers the case where the point
is off the curve. We then obtain a more general lower bound in Lemma 5.8.

Lemma 5.6. Let §* be an elliptic normal curve or the smooth points of a rational acnodal curve in
RP4, d > 2. Suppose H $x is a coset of a finite subgroup H of §* of order n, with (d +1)x € H. Let
p € 0\ (H @©x). Then there are at least (dfl) hyperplanes through p that meet H @ x in exactly d — 1
points.

Proof. Take any d — 1 points pi,...,pqs—1 € H@ x. Suppose that the (unique) hyperplane through
P, P1,---,Pd—1 contains another point p’ € H & x. Since p® p1 & -+ & py_1 & p' = 0 by Propositions 3.1
and 3.9, we obtain that p € H ©dx. Since (d + 1)x € H, we obtain p € H @ x, a contradiction. Therefore,
the hyperplane through p, py,..., ps—1 does not contain any other point of H & x.

It remains to show that if {p1,...,ps—1} # {p,...,p},_,} where also p!,...,p/, | € H®x, then the
two sets span different hyperplanes with p. Suppose they span the same hyperplane. Then ©(p @ p; @
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-+~ @ pg—1) also lies on this hyperplane, but not in H & x, as shown above. Also, p; ¢ {p1,...,ps—1} for
some i, and then py,...,ps—1,pl, and S(p® p1 ®--- @ py—1) are d + 1 distinct points on a hyperplane,
so their sum is 0, which implies p = p/, a contradiction.

So there are ( dfl) hyperplanes through p meeting H & x in exactly d — 1 points. O

The following Lemma generalises [9, Lemma 7.7], which states that if 0* is an elliptic curve or the
smooth points of an acnodal cubic curve in the plane, H @ x is a coset of a finite subgroup of order n > 10%,
and if p ¢ 8%, then there are at least n/1000 lines through p that pass through exactly one element of
H @ x. A naive generalisation to dimension 3 would state that if 0* is an elliptic or acnodal space quartic
curve with a finite subgroup H of sufficiently large order n, and x € 8* and p ¢ &%, then there are Q(n?)
planes through p and exactly two elements of H & x. This statement is false, even if we assume that
4x € H (the analogous assumption 3x € H is not made in [9]), as can be seen from the following example.

Let § be an elliptic quartic curve obtained from the intersection of a circular cylinder in R* with
a sphere which has centre ¢ on the axis ¢ of the cylinder. Then 0 is symmetric in the plane through ¢
perpendicular to #, and we can find a finite subgroup H of any even order n such that the line through any
element of H parallel to ¢ intersects H in two points. If we now choose p to be the point at infinity on
¢, then we obtain that any plane spanned by p and two points of H not collinear with p, intersects H in
two more points. Note that the projection 7, maps § to a conic, so is not generically one-to-one. The
number of such p is bounded by the trisecant lemma (Lemma 2.3). However, as the next lemma shows, a
generalisation of [9, Lemma 7.7] holds except that in dimension 3 we have to exclude such points p.

Lemma 5.7. Let § be an elliptic normal curve or a rational acnodal curve in RP4, d > 2, and let 8* be
its set of smooth points. Let H be a finite subgroup of 8* of order n, where n > Cd* for some sufficiently
large absolute constant C > 0. Let x € 8* satisfy (d+ 1)x € H. Let p € RP?\ §*. If d = 3, assume
furthermore that 8 is not contained in a quadric cone with vertex p. Then there are at least c( dﬁ 1)
hyperplanes through p that meet the coset H ® x in exactly d — 1 points, for some sufficiently small
absolute constant ¢ > 0.

Proof. We prove by induction on d that under the given hypotheses there are at least ¢’ Hfzz(l — ,lz) ( dfl)
such hyperplanes for some sufficiently small absolute constant ¢’ > 0. The base case d = 2 is given by
[9, Lemma 7.7].

Next assume that d > 3, and that the statement holds for d — 1. Fix a ¢ € H ® x, and consider the
projection 7,. Since ¢ is a smooth point of §, 7,(8 \ {g}) is a non-degenerate curve of degree d in RP¢~!
(otherwise its degree would be at most d/2, but a non-degenerate curve has degree at least d — 1). The
projection 7, can be naturally extended to have a value at g, by setting 7,(g) to be the point where the
tangent line of § at ¢ intersects the hyperplane onto which & is projected. (This point is the single point
in ,(8\ {q}) \ 7y (6 \ {q}).) The curve m,(5) has degree d and is either elliptic or rational and acnodal,
hence it has a group operation [ such that d points are on a hyperplane in RP¢~! if and only if they sum
to the identity.

Observe that any d points 7,(p1), ..., T, (pa) € 7,(5*) lie on a hyperplane in RPY~! if and only if
P1®---®pa®q=0. By Proposition 3.10 it follows that the group on 7,(8*) obtained by transferring the
group (6%, @) by 7, is a translation of (7,(5*),H). In particular, m,(H & x) = H' B’ for some subgroup
H' of (m,(6*),H) of order n, and (d +1)x" € H'.
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We would like to apply the induction hypothesis, but we can only do that if m,(p) ¢ m,(6*), and
when d = 4, if m,(p) is not the vertex of a quadric cone containing 7,(8). We next show that there are
only O(d?) exceptional points ¢ to which we cannot apply induction.

Note that 7,(p) € m,(8*) if and only if the line pg intersects § with multiplicity 2, which means
we have to bound the number of these lines through p. To this end, we consider the projection of &
from the point p. Suppose that 7, does not project 0 generically one-to-one to a degree d + 1 curve in
RP?~!. Then 7,(8) has degree at most (d + 1)/2. However, its degree is at least d — 1 because it is
non-degenerate. It follows that d = 3, and that 7,(0) has degree 2 and is irreducible, so J is contained in
a quadric cone with vertex p, which we ruled out by assumption.

Therefore, 7, projects 0 generically one-to-one onto the curve 7,(8), which has degree d + 1 and
has at most ( ) double points (this follows from the Pliicker formulas after projecting to the plane
[31, Chapter III, Theorem 4.4]). We thus have that an arbitrary point p € RP?\ § lies on at most O(d?)
secants or tangents of § (or lines through two points of 6* if p is the acnode of 0).

If d = 4, we also have to avoid ¢ such that 7, (p) is the vertex of a cone on which 7,(§) lies. Such g
have the property that if we first project § from ¢ and then 7,(6) from 7,(p), then the composition of
these two projections is not generically one-to-one. Another way to do these to successive projections is to
first project 6 from p and then 7,(6) from 7,(g). Thus, we have that 7, (g) is a point on the quintic 7,(5)
in RP? such that the projection of 7,(8) from 7,(g) onto RP? is not generically one-to-one. However,
there are only O(1) such points by Lemma 2.3. Thus there are at most Cd? points ¢ € H & x to which we
cannot apply the induction hypothesis.

For all remaining g € H & x, we obtain by the induction hypothesis that there are at least ¢ Hd 1(1 —
liz) (,",) hyperplanes ITin RP“~! through ,(p) and exactly d — 2 points of H' Hx’. If none of these
d — 2 points equal 7,(q), then 7r_1 (IT) is a hyperplane in RP? through p and d — 1 points of H & x, one
of which is ¢. There are at most ( #~1) such hyperplanes in RP“~! through 7,(g). Therefore, there are at

least ¢' T (1— %) (,",) — (4~3) hyperplanes in RP? that pass through p and exactly d — 1 points of

H @ x, one of them being g. If we sum over all n — Cd? points ¢, we count each hyperplane d — 1 times,
and we obtain that the total number of such hyperplanes is at least

n—Cd> [ 4 1 n n—1
1—= — . 14
S0 () (o) o
It can easily be checked that
n—Cd> n 1 n
_ > 1l-—=— 15
d—1 (d—Z) < 2d2> (d—l) (15)

1 n n—Cd* (n—1
CH( >2d2<d >> d—1 (d—3> (16)

if n > 4d° /c’. Tt now follows from (15) and (16) that the expression (14) is at least

h6-2)0)
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which finishes the induction. OJ

Lemma 5.8. Ler 6* be an elliptic normal curve or the smooth points of a rational acnodal curve in
RP4, d > 4, and let H @ x be a coset of a finite subgroup H of 8*, with (d +1)x € H. Let AC H®x
and B C RP?\ (H ©x) with |A| = a and |B| = b. Let P = (H®x\ A) UB with |P| = n be such that
every d points of P span a hyperplane. If A and B are not both empty and n > C(a+ b +d?)d for some
sufficiently large absolute constant C > 0, then P spans at least (14 ¢) (Zj) ordinary hyperplanes for
some sufficiently small absolute constant ¢ > 0.

Proof. We first bound from below the number of ordinary hyperplanes of (H @ x) \ A that do not pass
through a point of B.
The number of ordinary hyperplanes of (H @ x) \ A that are disjoint from A is

1 ¢ 201Barx®---dag=0(d+1)x,
(d—1)! {(al,...,ad)E(H\(A@x)) ’ ai,...,ay are distinct '

If we denote by by [my,...,my;]’ the number of ordered k-tuples (ay,...,a;) with distinct a; € H \ (A& x)
that satisfy mja; @ - -- @ mya = ©(d + 1)x, then we obtain, similar to the proofs of Lemmas 5.3 and 5.4,
that

I o n—b o - o I
2,1,...,1] = 1)z<d_1> 3.1,...,1) = (d—2)[2,2,1,...,1]

d —1 times d — 2 times d — 3 times

a2 s ()2 ()
= (d—l)!<z,:l1’> ~2(d - 1)!(23),

and it follows that the number of ordinary hyperplanes of (H @ x) \ A disjoint from A is at least (Z:II’) —
2 (n;b) )

Next, we obtain an upper bound on the number of these hyperplanes that pass through a point g € B.
Let the ordinary hyperplane IT pass through py, p2,...,ps € (H ®x) \ A, with p; being the double point.
Since g € Il and any d points determine a hyperplane, II is still spanned by ¢, p1,...,ps—1, after a
relabelling of ps,..., ps. Let S be a minimal subset of {p»,...,ps—1} such that the tangent line ¢ of  at
p1 lies in the flat spanned by SU{q, p1 }.

If S is empty, then ¢ is a tangent from ¢ to 0, of which there are at most d(d + 1) (this follows again
from projection and the Pliicker formulas [24, Corollary 2.5; 31, Chapter 1V, p. 117]). Therefore, the
number of ordinary hyperplanes through py, pa,...,ps € (H @ x)\ A with the tangent of d at p; passing
through ¢ is at most d(d + 1) (%_3).

If on the other hand S is non-empty, then there is some p;, say ps—1, such that g, py, ..., ps—» together
with ¢ generate I1. Therefore, IT is determined by p;, the tangent through p;, and some d — 3 more points
pi. There are at most (n — b) (";ﬁgl) =(d-2) (Z:g) ordinary hyperplanes through ¢ in this case.

The number of ordinary hyperplanes of (H @ x) \ A that contain a point from A is at least

() (a2 o 5)) =eG) e (G3)
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since we can find such a hyperplane by choosing a point p € A and d — 1 points py,...,ps—1 € (HDx)\A,
and then the remaining point ©(p @ p; ® -+ @ py—1) might not be a new point in (H @ x) \ A by either
being in A (possibly equal to p) or being equal to one of the p;. The number of these hyperplanes that
also pass through some point of B is at most ab (%_3).

Therefore, the number of ordinary hyperplanes of (H @ x) \ A that miss B is at least

(1+a) <Z_ 1) — (24 b(d(d+1)+d—2)+d*+a(d—2) +ab) <Z:§) 17)

Next, assuming that B # @, we find a lower bound to the number of ordinary hyperplanes through
exactly one point of B and exactly d — 1 points of (H @ x) \ A. The number of hyperplanes through at
least one point of B and exactly d — 1 points of (H @x) \ A is at least bc’ (2~%) —ab(’"5) by Lemmas 5.6
and 5.7 for some sufficiently small absolute constant ¢/ > 0. The number of hyperplanes through at least
two points of B and exactly d — 1 points of (H ®x) \ A is at most () (“_3). It follows that there are at
least bc’ (Z:ll’) — (ab+ (g)) (Z:g) ordinary hyperplanes passing though a point of B.

Combining this with (17), P spans at least

n—>b

Z:’;) - (2+b(d(d+1)+d—2)+a2+a(d—2)+2ab+ (Z)) (d_2> =i f(a,b)

(1+a+bc) (
ordinary hyperplanes. Since

n

fla+1,b)— f(a,b) = (d:ID —(2a—|—2b+d—1)<2:[;>

is easily seen to be positive for all @ > 0 as long as n > (2a+2b+d —1)(d — 1) +b+d — 2, we have
without loss of generality that a = 0 in the case that b > 1. Then f(0,b+ 1) — £(0,b) is easily seen to be

at least
f(n—b—-1\  » n—b—1
(307 iz (573),

which is positive for all b > 1 if n > C(b+ d?)d for C sufficiently large. Also, f(0,1) = (1+¢’) (Z:}) —
(d*+2d) (Z:;)) > (1+¢) (Z:]I) if n > Cd®. This completes the proof in the case where B is non-empty.

If B is empty, then we can bound the number of ordinary hyperplanes from below by setting » = 0 in
(17), and checking that the resulting expression

(1+a)<dil> —(d+d*+a(d—2)) <di2>

is increasing in a if n > (2a+d — 1)(d — 1) +d — 2, and larger than %(Z:ll) if n > Cd>. O
We are now ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let P be the set of n points. By Lemma 5.2, we may assume that P has at most

(;’:}) ordinary hyperplanes. Since n > Cd32¢, we may apply Theorem 1.1 to obtain that up to O(d2%)
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points, P lies in a hyperplane or is a coset of a subgroup of an elliptic normal curve or the smooth points
of a rational acnodal curve.

In the first case, by Lemma 5.1, since n > Cd?2¢, the minimum number of ordinary hyperplanes is
attained when all but one point is contained in a hyperplane and we get exactly (fl:i) ordinary hyperplanes.

In the second case, by Lemma 5.8, again since n > Cd>2¢, the minimum number of ordinary
hyperplanes is attained by a coset of an elliptic normal curve or the smooth points of a rational acnodal
curve. Lemmas 5.2 and 5.5 then complete the proof. Note that the second term in the error term of
Lemma 5.5 is dominated by the first term because of the lower bound on n, and that the error term here is
negative by Lemma 5.2. O

Note that if we want to find the exact minimum number of ordinary hyperplanes spanned by a set of
n points in RP?, d > 4, not contained in a hyperplane and where every d points span a hyperplane, we
can continue with the calculation of [2,1,..., 1;¢] in the proof of Lemma 5.5. As seen in the proof of
Lemma 5.2, this depends on ged(d + 1,n). We also have to minimise over different values of ¢ € H, and
if n=0 (mod 4), consider both cases H = Z, and H = Z, ), X Zy.

For example, it can be shown that if d = 4, the minimum number is

("3 —4 ifn=0 (mod >5),
(”gl) otherwise,

(n;l)_%nZ_i_%n_l ifn=0 (mod 6),
(n;l) ifn=1,5 (mod 6),
(n;l)_énZ_F%n_l ifn=2,4 (mod 6),
(") = 3n+2 ifn=3 (mod6)

and if d = 6, the minimum number is

(" —6 ifn=0 (mod?7),
(”g ! ) otherwise.

Proof of Theorem 1.3. We first show that there exist sets of n points, with every d points spanning a
hyperplane, spanning at least 71¢ (" H+o <2*d/ Z(Lé J)> (d + 1)-point hyperplanes. Let 3* be an
elliptic normal curve or the smooth points of a rational acnodal curve. By Propositions 3.1 and 3.9, the
number of (d 4 1)-point hyperplanes spanned by a coset H @ x of 0* is

1
—1,...,1;
@bl

d+ 1 times

for some ¢ € §*. Note that

[1,...,1;c]:d!<”> —d2,1,...,1;¢],
S~—— d S~——

d+ 1 times d — 1 times
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so if we take H & x to be a coset minimising the number of ordinary hyperplanes, then by Theorem 1.2,

there are
rri((6) (o)) o ()
e () ol ()

(d + 1)-point hyperplanes.
Next let P be an arbitrary set of n points in RP?, d > 4, where every d points span a hyperplane.
Suppose P spans the maximum number of (d + 1)-point hyperplanes. Without loss of generality, we can

thus assume P spans at least %ﬂ (";1) +0 (2_"/ 2 (Ld?l J)) (d + 1)-point hyperplanes.
2
Let m; denote the number of i-point hyperplanes spanned by P. Counting the number of unordered

d-tuples, we get
n i
<d> = Z <d> m; = mg+ (d+ l)de,

i>d

s (- (3ol () ()

and we can apply Theorem 1.1.

In the case where all but O(d2?) points of P are contained in a hyperplane, it is easy to see that P
spans O(d2?(," ) (d + 1)-point planes, contradicting the assumption.

So all but O(d2¢) points of P are contained in a coset H & x of a subgroup H of §*. Consider the

identity
n i
e Dma = (d) o 2 (d)mi'

i>d+2

hence we have

By Theorem 1.2 and Lemma 5.8, we know that m,; > (Z:}) -0 <d2*d/2 (Léj)> and any deviation of
2

P from the coset H & x adds at least C(Zj) ordinary hyperplanes for some sufficiently small absolute
constant ¢ > 0. Since we also have

i>§12 <;> e (Z?) —mg—(d+1)ma.1
()-()- () ol (8
“o(e (1))

we can conclude that m,, | is maximised when P is exactly a coset of a subgroup of 6*, in which case
(18) completes the proof. O
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Knowing the exact minimum number of ordinary hyperplanes spanned by a set of n points in RP¢,
d > 4, not contained in a hyperplane and where every d points span a hyperplane then also gives the exact
maximum number of (d + 1)-point hyperplanes.

Continuing the above examples, for d = 4, the maximum number is

(n11)+§ ifn=0 (mod5),

(" 4 1) otherwise,

D|— |—

for d = 5, the maximum number is

—

N

+ 5t —5n+i ifn=0 (mod 6),

ifn=1,5 (mod6),
+&n®—gn++ ifn=2,4 (mod 6),
Netin—1 ifn=3 (mod 6),

N
—

/‘\/\/\3/\

(IR R
—_

S— N

Q= A= = A=
B

and for d = 6, the maximum number is

(ngl) otherwise.
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