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Abstract: Let P be a set of n points in real projective d-space, not all contained in a
hyperplane, such that any d points span a hyperplane. An ordinary hyperplane of P is a
hyperplane containing exactly d points of P. We show that if d > 4, the number of ordinary
hyperplanes of P is at least

(n−1
d−1

)
−Od(nb(d−1)/2c) if n is sufficiently large depending on d.

This bound is tight, and given d, we can calculate the exact minimum number for sufficiently
large n. This is a consequence of a structure theorem for sets with few ordinary hyperplanes:
For any d > 4 and K > 0, if n > CdK8 for some constant Cd > 0 depending on d, and P
spans at most K

(n−1
d−1

)
ordinary hyperplanes, then all but at most Od(K) points of P lie on a

hyperplane, an elliptic normal curve, or a rational acnodal curve. We also find the maximum
number of (d + 1)-point hyperplanes, solving a d-dimensional analogue of the orchard
problem. Our proofs rely on Green and Tao’s results on ordinary lines, our earlier work on
the 3-dimensional case, as well as results from classical algebraic geometry.

1 Introduction

An ordinary line of a set of points in the plane is a line passing through exactly two points of the set. The
classical Sylvester–Gallai theorem states that every finite non-collinear point set in the plane spans at
least one ordinary line. In fact, for sufficiently large n, an n-point non-collinear set in the plane spans at
least n/2 ordinary lines, and this bound is tight if n is even. This was shown by Green and Tao [9] via a
structure theorem characterising all finite point sets with few ordinary lines.

It is then natural to consider higher dimensional analogues. Motzkin [22] noted that there are finite
non-coplanar point sets in 3-space that span no plane containing exactly three points of the set. He
proposed considering instead hyperplanes Π in d-space such that all but one point contained in Π is
contained in a (d−2)-dimensional flat of Π. The existence of such hyperplanes was shown by Motzkin
[22] for 3-space and by Hansen [10] in higher dimensions.
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Purdy and Smith [25] considered instead finite non-coplanar point sets in 3-space with no three points
collinear, and provided a lower bound on the number of planes containing exactly three points of the
set. Referring to such a plane as an ordinary plane, Ball [1] proved a 3-dimensional analogue of Green
and Tao’s [9] structure theorem, and found the exact minimum number of ordinary planes spanned by
sufficiently large non-coplanar point sets in real projective 3-space with no three points collinear. Using
an alternative method, we [20] were able to prove a more detailed structure theorem but with a stronger
condition; see Theorem 4.1 in Section 4.

Ball and Monserrat [3] made the following definition, generalising ordinary planes to higher dimen-
sions.

Definition. An ordinary hyperplane of a set of points in real projective d-space, where every d points
span a hyperplane, is a hyperplane passing through exactly d points of the set.

They [3] also proved bounds on the minimum number of ordinary hyperplanes spanned by such sets
(see also [21]). Our first main result is a structure theorem for sets with few ordinary hyperplanes. The
elliptic normal curves and rational acnodal curves mentioned in the theorem and their group structure
will be described in Section 3. Our methods extend those in our earlier paper [20], and we detail them in
Section 2.

Theorem 1.1. Let d > 4, K > 0, and suppose n > C max{(dK)8,d32dK} for some sufficiently large
absolute constant C > 0. Let P be a set of n points in RPd where every d points span a hyperplane. If P
spans at most K

(n−1
d−1

)
ordinary hyperplanes, then P differs in at most O(d2dK) points from a configuration

of one of the following types:

(i ) A subset of a hyperplane;

(ii ) A coset H ⊕ x of a subgroup H of an elliptic normal curve or the smooth points of a rational
acnodal curve of degree d +1, for some x such that (d +1)x ∈ H.

It is easy to show that conversely, a set of n points where every d span a hyperplane and differing
from (i ) or (ii ) by O(K) points, spans O(K

(n−1
d−1

)
) ordinary hyperplanes. By [3, Theorem 2.4], if a set of

n points where every d points span a hyperplane itself spans K
(n−1

d−1

)
ordinary hyperplanes, and is not

contained in a hyperplane, then K = Ω(1/d). Theorem 1.2 below implies that K > 1 for sufficiently large
n depending on d.

For a similar structure theorem in dimension 4 but with K = o(n1/7), see Ball and Jimenez [2], who
show that P lies on the intersection of five quadrics. Theorem 1.1 proves [2, Conjecture 12], noting
that elliptic normal curves and rational acnodal curves lie on

(d
2

)
− 1 linearly independent quadrics

[6, Proposition 5.3; 17, p. 365]. We also mention that Monserrat [21, Theorem 2.10] proved a structure
theorem stating that almost all points of the set lie on the intersection of d−1 hypersurfaces of degree at
most 3.

Our second main result is a tight bound on the minimum number of ordinary hyperplanes, proving
[3, Conjecture 3]. Note that our result holds only for sufficiently large n; see [3, 14, 21] for estimates
when d is small or n is not much larger than d.

DISCRETE ANALYSIS, 2020:4, 34pp. 2

http://dx.doi.org/10.19086/da


ON SETS DEFINING FEW ORDINARY HYPERPLANES

Theorem 1.2. Let d > 4 and let n > Cd32d for some sufficiently large absolute constant C > 0. The
minimum number of ordinary hyperplanes spanned by a set of n points in RPd , not contained in a
hyperplane and where every d points span a hyperplane, is(

n−1
d−1

)
−O

(
d2−d/2

(
n
bd−1

2 c

))
.

This minimum is attained by a coset of a subgroup of an elliptic normal curve or the smooth points
of a rational acnodal curve of degree d + 1, and when d + 1 and n are coprime, by n− 1 points in a
hyperplane together with a point not in the hyperplane.

Green and Tao [9] also used their structure theorem to solve the classical orchard problem of finding
the maximum number of 3-point lines spanned by a set of n points in the plane, for n sufficiently large.
We solved the 3-dimensional analogue in [20]. Our third main result is the d-dimensional analogue. We
define a (d +1)-point hyperplane to be a hyperplane through exactly d +1 points of a given set.

Theorem 1.3. Let d > 4 and let n > Cd32d for some sufficiently large absolute constant C > 0. The
maximum number of (d +1)-point hyperplanes spanned by a set of n points in RPd where every d points
span a hyperplane is

1
d +1

(
n−1

d

)
+O

(
2−d/2

(
n
bd−1

2 c

))
.

This maximum is attained by a coset of a subgroup of an elliptic normal curve or the smooth points of a
rational acnodal curve of degree d +1.

While the bounds in Theorems 1.2 and 1.3 are asymptotic, we provide a recursive method (as part of
our proofs) to calculate the exact extremal values for a given d and n sufficiently large in Section 5. In
principle, the exact values can be calculated for any given d and turns out to be a quasi-polynomial in n
with a period of d +1. We present the values for d = 4,5,6 at the end of Section 5.

Relation to previous work

The main idea in our proof of Theorem 1.1 is to induct on the dimension d, with the base case d = 3
being our earlier structure theorem for sets defining few ordinary planes [20], which in turn is based on
Green and Tao’s Intermediate Structure Theorem for sets defining few ordinary lines [9, Proposition 5.3].

Roughly, the structure theorem in 3-space states that if a finite set of points is in general position (no
three points collinear) and spans few ordinary planes, then most of the points must lie on a plane, two
disjoint conics, or an elliptic or acnodal space quartic curve. In fact, we can define a group structure on
these curves encoding when four points are coplanar, in which case our point set must be very close to a
coset of the curve. (See Theorem 4.1 for a more precise statement.)

As originally observed by Ball [1] in 3-space, the general position condition allows the use of
projection to leverage Green and Tao’s Intermediate Structure Theorem [9, Proposition 5.3]. This avoids
having to apply their Full Structure Theorem [9, Theorem 1.5], which has a much worse lower bound on
n, as it avoids the technical Section 6 of [9], dealing with the case in the plane when most of the points
lie on a large, though bounded, number of lines. On the other hand, to get to the precise coset structure,
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we used additive-combinatorial results from [9, Section 7], specifically [9, Propositions A.5, Lemmas
7.2, 7.4, 7.7, and Corollary 7.6]. In this paper, the only result of Green and Tao [9] we explicitly use
is [9, Proposition A.5], which we extend in Proposition 4.3, while all other results are subsumed in the
structure theorem in 3-space. In dimensions d > 3, the general position condition also allows the use
of projections from a point to a hyperplane (see also Ball and Monserrat [3]). In Section 2.2 we detail
various technical results about the behaviour of curves under such projections, which are extensions of
3-dimensional results in [20].

While the group structure on elliptic or singular space quartic curves are well studied (see for instance
[23]), we could not find references to the group structure on singular rational curves in higher dimensions.
This is our main focus in Section 3, which in a way extends [20, Section 3]. In particular, we look at
Sylvester’s theorem on when a binary form can be written as a sum of perfect powers, which has its
roots in classical invariant theory. In extending the results of [20, Section 3], we have to consider how to
generalise the catalecticant (of a binary quartic form), which leads us to the secant variety of the rational
normal curve as a determinantal variety.

Green and Tao’s Intermediate Structure Theorem in 2-space has a slightly different flavour to their
Full Structure Theorem, the structure theorem in 3-space, and Theorem 1.1. However, this is not the
only reason why we start our induction at d = 3. A more substantial reason is that there are no smooth
rational cubic curves in 2-space; as is well known, all rational planar cubic curves are singular. Thus, both
smooth and singular rational quartics in 3-space project onto rational cubics, and we need some way to
tell them apart. In higher dimensions, we have Lemma 3.7 to help us, but since this is false when d = 3,
the induction from the plane to 3-space [20] is more technical. This is despite the superficial similarity
between the 2- and 3-dimensional situations where there are two almost-extremal cases while there is
essentially only one case when d > 3.

Proving Theorem 1.1, which covers the d > 3 cases, is thus in some sense less complicated, since
not only are we leveraging a more detailed structure theorem (Theorems 1.1 and 4.1 as opposed to
[9, Proposition 5.3]), we also lose a case. However, there are complications that arise in how to generalise
and extend results from 2- and 3-space to higher dimensions.

2 Notation and tools

By A = O(B), we mean there exists an absolute constant C > 0 such that 06 A6CB. Thus, A =−O(B)
means there exists an absolute constant C > 0 such that −CB 6 A 6 0. We also write A = Ω(B)
for B = O(A). None of the O(·) and Ω(·) statements in this paper have implicit dependence on the
dimension d.

We write A4B for the symmetric difference of the sets A and B.
Let F denote the field of real or complex numbers, let F∗ = F \ {0}, and let FPd denote the d-

dimensional projective space over F. We denote the homogeneous coordinates of a point in d-dimensional
projective space by a (d+1)-dimensional vector [x0,x1, . . . ,xd ]. We call a linear subspace of dimension k
in FPd a k-flat; thus a point is a 0-flat, a line is a 1-flat, a plane is a 2-flat, and a hyperplane is a (d−1)-flat.
We denote by ZF( f ) the set of F-points of the algebraic hypersurface defined by the vanishing of a
homogeneous polynomial f ∈ F[x0,x1, . . . ,xd ]. More generally, we consider a (closed, projective) variety
to be any intersection of algebraic hypersurfaces. We say that a variety is pure-dimensional if each of its
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irreducible components has the same dimension. We consider a curve of degree e in CPd to be a variety
δ of pure dimension 1 such that a generic hyperplane in CPd intersects δ in e distinct points. More
generally, the degree of a variety X ⊂ CPd of dimension r is

deg(X) := max{|Π∩X | : Π is a (d− r)-flat such that Π∩X is finite} .

We say that a curve is non-degenerate if it is not contained in a hyperplane, and non-planar if it is not
contained in a 2-flat. We call a curve real if each of its irreducible components contains infinitely many
points of RPd . Whenever we consider a curve in RPd , we implicitly assume that its Zariski closure is a
real curve.

We denote the Zariski closure of a set S ⊆ CPd by S. We will use the secant variety SecC(δ ) of a
curve δ , which is the Zariski closure of the set of points in CPd that lie on a line through some two points
of δ .

2.1 Bézout’s theorem

Bézout’s theorem gives the degree of an intersection of varieties. While it is often formulated as an
equality, in this paper we only need the weaker form that ignores multiplicity and gives an upper bound.
The (set-theoretical) intersection X ∩Y of two varieties is just the variety defined by PX ∪PY , where X
and Y are defined by the collections of homogeneous polynomials PX and PY respectively.

Theorem 2.1 (Bézout [7, Section 2.3]). Let X and Y be varieties in CPd with no common irreducible
component. Then deg(X ∩Y )6 deg(X)deg(Y ).

2.2 Projections

Given p ∈ FPd , the projection from p, πp : FPd \ {p} → FPd−1, is defined by identifying FPd−1 with
any hyperplane Π of FPd not passing through p, and then letting πp(x) be the point where the line
px intersects Π [11, Example 3.4]. Equivalently, πp is induced by a surjective linear transformation
Fd+1→ Fd where the kernel is spanned by the vector p.

As in our previous paper [20], we have to consider projections of curves where we do not have
complete freedom in choosing a generic projection point p.

Let δ ⊂ CPd be an irreducible non-planar curve of degree e, and let p be a point in CPd . We call πp

generically one-to-one on δ if there is a finite subset S of δ such that πp restricted to δ \S is one-to-one.
(This is equivalent to the birationality of πp restricted to δ \{p} [11, p. 77].) If πp is generically one-to-
one, the degree of the curve πp(δ \{p}) is e−1 if p is a smooth point on δ , and is e if p does not lie
on δ ; if πp is not generically one-to-one, then the degree of πp(δ \{p}) is at most (e−1)/2 if p lies on
δ , and is at most e/2 if p does not lie on δ [11, Example 18.16], [18, Section 1.15].

The following three lemmas on projections are proved in [20] in the case d = 3. They all state
that most projections behave well and can be considered to be quantitative versions of the trisecant
lemma [15]. The proofs of Lemmas 2.3 and 2.4 are almost word-for-word the same as the proofs of the
3-dimensional cases in [20]. All three lemmas can also be proved by induction on the dimension d > 3
from the 3-dimensional case. We illustrate this by proving Lemma 2.2.
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Lemma 2.2. Let δ be an irreducible non-planar curve of degree e in CPd , d > 3. Then there are at most
O(e4) points p on δ such that πp restricted to δ \{p} is not generically one-to-one.

Proof. The case d = 3 was shown in [20], based on the work of Furukawa [8]. We next assume that
d > 4 and that the lemma holds in dimension d−1. Since d > 3 and the dimension of SecC(δ ) is at most
3 [11, Proposition 11.24], there exists a point p ∈ CPd such that all lines through p have intersection
multiplicity at most 1 with δ . It follows that the projection δ ′ := πp(δ ) of δ is a non-planar curve of
degree e in CPd−1. Consider any line ` not through p that intersects δ in at least three distinct points
p1, p2, p3. Then πp(`) is a line in CPd−1 that intersects δ ′ in three points πp(p1),πp(p2),πp(p3). It
follows that if x ∈ δ is a point such that for all but finitely many points y ∈ δ , the line xy intersects δ in a
point other than x or y, then x′ := πp(x) is a point such that for all but finitely many points y′ := πp(y)∈ δ ′,
the line x′y′ intersects δ ′ in a third point. That is, if πx restricted to δ is not generically one-to-one,
then the projection map πx′ in CPd−1 restricted to δ ′ is not generically one-to-one. By the induction
hypothesis, there are at most O(e4) such points and we are done.

Lemma 2.3. Let δ be an irreducible non-planar curve of degree e in CPd , d > 3. Then there are at most
O(e3) points x ∈ CPd \δ such that πx restricted to δ is not generically one-to-one.

Lemma 2.4. Let δ1 and δ2 be two irreducible non-planar curves in CPd , d > 3, of degree e1 and e2
respectively. Then there are at most O(e1e2) points p on δ1 such that πp(δ1 \{p}) and πp(δ2 \{p})
coincide.

3 Curves of degree d +1

In this paper, irreducible non-degenerate curves of degree d +1 in CPd play a fundamental role. Indeed,
the elliptic normal curve and rational acnodal curve mentioned in Theorem 1.1 are both such curves. In
this section, we describe their properties that we need. These properties are all classical, but we did not
find a reference for the group structure on singular rational curves of degree d +1, and therefore consider
this in detail.

It is well-known in the plane that there is a group structure on any smooth cubic curve or the set of
smooth points of a singular cubic. This group has the property that three points sum to the identity if
and only if they are collinear. Over the complex numbers, the group on a smooth cubic is isomorphic
to the torus (R/Z)2, and the group on the smooth points of a singular cubic is isomorphic to (C,+) or
(C∗, ·) depending on whether the singularity is a cusp or a node. Over the real numbers, the group on a
smooth cubic is isomorphic to R/Z or R/Z×Z2 depending on whether the real curve has one or two
semi-algebraically connected components, and the group on the smooth points of a singular cubic is
isomorphic to (R,+), (R,+)×Z2, or R/Z depending on whether the singularity is a cusp, a crunode, or
an acnode. See for instance [9] for a more detailed description.

In higher dimensions, it turns out that an irreducible non-degenerate curve of degree d +1 does not
necessarily have a natural group structure, but if it has, the behaviour is similar to the planar case. For
instance, in CP3, an irreducible non-degenerate quartic curve is either an elliptic quartic, with a group
isomorphic to an elliptic curve such that four points on the curve are coplanar if and only if they sum to
the identity, or a rational curve. There are two types, or species, of rational quartics. The rational quartic
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curves of the first species are intersections of two quadrics (as are elliptic quartics), they are always
singular, and there is a group on the smooth points such that four points on the curve are coplanar if and
only if they sum to the identity. Those of the second species lie on a unique quadric, are smooth, and
there is no natural group structure analogous to the other cases. See [20] for a more detailed account. The
picture is similar in higher dimensions.

Definition (Clifford [4], Klein [17]). An elliptic normal curve is an irreducible non-degenerate smooth
curve of degree d +1 in CPd isomorphic to an elliptic curve in the plane.

Proposition 3.1 ([28, Exercise 3.11 and Corollary 5.1.1], [29, Corollary 2.3.1]). An elliptic normal curve
δ in CPd , d > 2, has a natural group structure such that d +1 points in δ lie on a hyperplane if and only
if they sum to the identity. This group is isomorphic to (R/Z)2.

If the curve is real, then the group is isomorphic to R/Z or R/Z×Z2 depending on whether the real
curve has one or two semi-algebraically connected components.

A similar result holds for singular rational curves of degree d +1. Since we need to work with such
curves and a description of their group structure is not easily found in the literature, we give a detailed
discussion of their properties in the remainder of this section.

A rational curve δ in FPd of degree e is a curve that can be parametrised by the projective line,

δ : FP1→ FPd , [x,y] 7→ [q0(x,y), . . . ,qd(x,y)],

where each qi is a homogeneous polynomial of degree e in the variables x and y. The following lemma is
well known (see for example [27, p. 38, Theorem VIII]), and can be proved by induction from the planar
case using projection.

Proposition 3.2. An irreducible non-degenerate curve of degree d+1 in CPd , d > 2, is either an elliptic
normal curve or rational.

We next describe when an irreducible non-degenerate rational curve of degree d +1 in CPd has a
natural group structure. It turns out that this happens if and only if the curve is singular.

We write νd+1 for the rational normal curve in CPd+1 [11, Example 1.14], which we parametrise as

νd+1 : [x,y] 7→ [yd+1,−xyd ,x2yd−1, . . . ,(−x)d−1y2,(−x)dy,(−x)d+1].

Any irreducible non-degenerate rational curve δ of degree d +1 in CPd is the projection of the rational
normal curve, and we have

δ [x,y] = [yd+1,−xyd ,x2yd−1, . . . ,(−x)d−1y2,(−x)dy,(−x)d+1]A,

where A is a (d +2)× (d +1) matrix of rank d +1 (since δ is non-degenerate) with entries derived from
the coefficients of the polynomials qi of degree d +1 in the parametrisation of the curve (with suitable
alternating signs). Thus δ ⊂ CPd is the image of νd+1 under the projection map πp defined by A. In
particular, the point of projection p = [p0, p1, . . . , pd+1] ∈ CPd+1 is the (1-dimensional) kernel of A. If
we project νd+1 from a point p ∈ νd+1, then we obtain a rational normal curve in CPd . However, since δ

is of degree d +1, necessarily p /∈ νd+1. Conversely, it can easily be checked that for any p /∈ νd+1, the
projection of νd+1 from p is a rational curve of degree d +1 in CPd . We will use the notation δp for this
curve. We summarise the above discussion in the following proposition that will be implicitly used in the
remainder of the paper.
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Proposition 3.3. An irreducible non-degenerate rational curve of degree d +1 in CPd is projectively
equivalent to δp for some p ∈ CPd+1 \νd+1.

We use the projection point p to define a binary form and a multilinear form associated to δp.
The fundamental binary form associated to δp is the homogeneous polynomial of degree d +1 in two
variables fp(x,y) := ∑

d+1
i=0 pi

(d+1
i

)
xd+1−iyi. Its polarisation is the multilinear form Fp : (F2)d+1 → F

[5, Section 1.2] defined by

Fp(x0,y0,x1,y1, . . . ,xd ,yd) :=
1

(d +1)! ∑
I⊆{0,1,...,d}

(−1)d+1−|I| fp

(
∑
i∈I

xi,∑
i∈I

yi

)
.

Consider the multilinear form Gp(x0,y0, . . . ,xd ,yd) = ∑
d+1
i=0 piPi, where

Pi(x0,y0,x1,y1, . . . ,xd ,yd) := ∑
I∈({0,1,...,d}i )

∏
j∈I

x j ∏
j∈I

y j (1)

for each i = 0, . . . ,d +1. Here the sum is taken over all subsets I of {0,1, . . . ,d} of size i, and I denotes
the complement of I in {0,1, . . . ,d}. It is easy to see that the binary form fp is the restitution of Gp,
namely [5, Section 1.2]

fp(x,y) = Gp(x,y,x,y, . . . ,x,y).

Since the polarisation of the restitution of a multilinear form is itself [5, Section 1.2], we must thus have
Fp = Gp. (This can also be checked directly.)

Lemma 3.4. Let δp be an irreducible non-degenerate rational curve of degree d+1 in CPd , d > 2, where
p ∈ CPd+1 \νd+1. A hyperplane intersects δp in d +1 points δp[xi,yi], i = 0, . . . ,d, counting multiplicity,
if and only if Fp(x0,y0,x1,y1, . . . ,xd ,yd) = 0.

Proof. We first prove the statement for distinct points [xi,yi] ∈ CP1. Then the points δp[xi,yi] are all on a
hyperplane if and only if the hyperplane in CPd+1 through the points νd+1[xi,yi] passes through p. It will
be sufficient to prove the identity

D := det


νd+1[x0,y0]

...
νd+1[xd ,yd ]

p

= Fp(x0,y0,x1,y1, . . . ,xd ,yd) ∏
06 j<k6d

∣∣∣∣x j xk
y j yk

∣∣∣∣ , (2)

since the second factor on the right-hand side does not vanish because the points [xi,yi] are distinct. We
first note that

D =

∣∣∣∣∣∣∣∣∣
yd+1

0 −x0yd
0 x2

0yd−1
0 . . . (−x0)

dy0 (−x0)
d+1

...
...

...
. . .

...
...

yd+1
d −xdyd

d x2
dyd−1

d . . . (−xd)
dyd (−xd)

d+1

p0 p1 p2 . . . pd pd+1

∣∣∣∣∣∣∣∣∣
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= (−1)b
d+2

2 c

∣∣∣∣∣∣∣∣∣
yd+1

0 x0yd
0 x2

0yd−1
0 . . . xd

0y0 xd+1
0

...
...

...
. . .

...
...

yd+1
d xdyd

d x2
dyd−1

d . . . xd
dyd xd+1

d

p0 −p1 p2 . . . (−1)d pd (−1)d+1 pd+1

∣∣∣∣∣∣∣∣∣ . (3)

We next replace (−1)i pi by xiyd+1−i for each i = 0, . . . ,d+1 in the last row of the determinant in (3) and
obtain the Vandermonde determinant

(−1)b
d+2

2 c

∣∣∣∣∣∣∣∣∣
yd+1

0 x0yd
0 x2

0yd−1
0 . . . xd

0y0 xd+1
0

...
...

...
. . .

...
...

yd+1
d xdyd

d x2
dyd−1

d . . . xd
dyd xd+1

d

yd+1 xyd x2yd−1 . . . xdy xd+1

∣∣∣∣∣∣∣∣∣
= (−1)b

d+2
2 c ∏

06 j<k6d

∣∣∣∣y j yk
x j xk

∣∣∣∣ ∏
06 j6d

∣∣∣∣y j y
x j x

∣∣∣∣
= (−1)b

d+2
2 c(−1)(

d+2
2 ) ∏

06 j<k6d

∣∣∣∣x j xk
y j yk

∣∣∣∣ ∏
06 j6d

∣∣∣∣x j x
y j y

∣∣∣∣ .
Finally, note that (−1)b(d+2)/2c(−1)(

d+2
2 ) = 1 and that the coefficient of xiyd+1−i in ∏06 j6d

∣∣∣∣x j x
y j y

∣∣∣∣ is

∑
I⊆({0,...,d}i )

∏
j∈I

(−y j)∏
j∈I

x j = (−1)iPi,

where Pi is as defined in (1). It follows that the coefficient of pi in (3) is Pi, and (2) follows.
We next complete the argument for the case when the points [xi,yi] are not all distinct. First suppose

that a hyperplane Π intersects δp in δp[xi,yi], i = 0, . . . ,d. By Bertini’s theorem [12, Theorem II.8.18 and
Remark II.8.18.1], there is an arbitrarily close perturbation Π′ of Π that intersects δp in distinct points
δp[x′i,y

′
i]. By what has already been proved, Fp(x′0,y

′
0, . . . ,x

′
d ,y
′
d) = 0. Since Π′ is arbitrarily close and Fp

is continuous, Fp[x0,y0, . . . ,xd ,yd ] = 0.
Conversely, suppose that Fp(x0,y0, . . . ,xd ,yd) = 0 where the [xi,yi] are not all distinct. Perturb

the points [x0,y0], . . . , [xd−1,yd−1] by an arbitrarily small amount to [x′0,y
′
0], . . . , [x

′
d−1,y

′
d−1] respectively,

so as to make δp[x′0,y
′
0], . . . ,δp[x′d−1,y

′
d−1] span a hyperplane Π′ that intersects δp again in δp[x′d ,y

′
d ],

say, and so that [x′0,y
′
0], . . . , [x

′
d ,y
′
d ] are all distinct. If we take the limit as [x′i,y

′
i]→ [xi,yi] for each

i = 0, . . . ,d−1, we obtain a hyperplane Π intersecting δp in δp[x0,y0], . . . ,δp[xd−1,yd−1],δp[x′′d ,y
′′
d ], say.

Then Fp(x0,y0, . . . ,xd−1,yd−1,x′′d ,y
′′
d) = 0. Since the multilinear form Fp is non-trivial, it follows that

[xd ,yd ] = [x′′d ,y
′′
d ]. Therefore, Π is a hyperplane that intersects δp in δp[xi,yi], i = 0, . . . ,d.

The secant variety SecC(νd+1) of the rational normal curve νd+1 in CPd+1 is equal to the set of points
that lie on a proper secant or tangent line of νd+1, that is, on a line with intersection multiplicity at least
2 with νd+1. We also define the real secant variety of νd+1 to be the set SecR(νd+1) of points in RPd+1

that lie on a line that either intersects νd+1 in two distinct real points or is a tangent line of νd+1. The
tangent variety TanF(νd+1) of νd+1 is defined to be the set of points in FPd+1 that lie on a tangent line
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of νd+1. We note that although TanR(νd+1) = TanC(νd+1)∩RPd+1, we only have a proper inclusion
SecR(νd+1)⊂ SecC(νd+1)∩RPd+1 for d > 2.

We will need a concrete description of SecC(νd+1) and its relation to the smoothness of the curves δp.
For any p ∈ FPd+1 and k = 2, . . . ,d−1, define the (k+1)× (d− k+2) matrix

Mk(p) :=


p0 p1 p2 . . . pd−k+1
p1 p2 p3 . . . pd−k+2
...

...
...

. . .
...

pk pk+1 pk+2 . . . pd+1

 .

Suppose that δp has a double point, say δp[x0,y0] = δp[x1,y1]. This is equivalent to p, νd+1[x0,y0],
and νd+1[x1,y1] being collinear, which is equivalent to p being on the secant variety of νd+1. (In
the degenerate case where [x0,y0] = [x1,y1], we have that p ∈ TanF(νd+1).) Then δp[x0,y0], δp[x1,y1],
δp[x2,y2],. . . , δp[xd ,yd ] are on a hyperplane in FPd for all [x2,y2], . . . , [xd ,yd ] ∈ FP1. It follows that the
coefficients of Fp(x0,y0,x1,y1,x2,y2, . . . ,xd ,yd) as a polynomial in x2,y2, . . . ,xd ,yd all vanish, that is,

pix0x1 + pi+1(x0y1 + y0x1)+ pi+2y0y1 = 0

for all i = 0, . . . ,d−1. This can be written as [x0x1,x0y1 + y0x1,y0y1]M2(p) = 0. Conversely, if M2(p)
has rank 2 with say [c0,2c1,c2]M2(p) = 0, then there is a non-trivial solution to the linear system with
c0 = x0x1, c1 = x0y1 + y0x1, c2 = y0y1, and we have c0x2 +2c1xy+ c2y2 = (x0x+ y0y)(x1x+ y1y). In the
degenerate case where [x0,y0] = [x1,y1], we have that the quadratic form has repeated roots.

It follows that M2(p) has rank at most 2 if and only if p ∈ SecC(νd+1) (also note that M2(p) has
rank 1 if and only if p ∈ νd+1). We note for later use that since the null space of M2(p) is 1-dimensional
if it has rank 2, it follows that each p ∈ SecC(νd+1) lies on a unique secant (which might degenerate
to a tangent). This implies that δp has a unique singularity when p ∈ SecC(νd+1) \ νd+1, which is a
node if p ∈ SecC(νd+1) \TanC(νd+1) and a cusp if p ∈ TanC(νd+1) \ νd+1. In the real case there are
two types of nodes. If p ∈ SecR(νd+1)\νd+1, then the roots [x0,y0], [x1,y1] are real, and δp has either a
cusp when p ∈ TanR(νd+1)\νd+1 and [x0,y0] = [x1,y1], or a crunode when p ∈ SecR(νd+1)\TanR(νd+1)
and [x0,y0] and [x1,y1] are distinct roots of the real binary quadratic form c0x2 + 2c1xy + c2y2. If
p ∈ SecC(νd+1)\SecR(νd+1)∩RPd+1 then the quadratic form has conjugate roots [x0,y0] = [x1,y1] and
δp has an acnode.

If p /∈ Sec(νd+1), then δp is a smooth curve of degree d +1. It follows that δp is singular if and only
if p ∈ Sec(νd+1)\νd+1. For the purposes of this paper, we make the following definitions.

Definition. A rational singular curve is an irreducible non-degenerate singular rational curve of degree
d +1 in CPd . In the real case, a rational cuspidal curve, rational crunodal curve, or rational acnodal
curve is a rational singular curve isomorphic to a singular planar cubic with a cusp, crunode, or acnode
respectively.

In particular, we have shown the case k = 2 of the following well-known result.

Proposition 3.5 ([11, Proposition 9.7]). Let d > 3. For any k = 2, . . . ,d−1, the secant variety of νd+1 is
equal to the locus of all [p0, p1, . . . , pd+1] such that Mk(p) has rank at most 2.
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Corollary 3.6. Let d > 3. For any k = 2, . . . ,d−1 and p ∈ CPd+1 \νd+1, the curve δp of degree d +1
in CPd is singular if and only if rankMk(p)6 2.

We next use Corollary 3.6 to show that the projection of a smooth rational curve of degree d +1 in
CPd from a generic point on the curve is again smooth when d > 4. This is not true for d = 3, as there
is a trisecant through each point of a quartic curve of the second species in 3-space. (The union of the
trisecants form the unique quadric on which the curve lies [11, Exercise 8.13].)

Lemma 3.7. Let δp be a smooth rational curve of degree d +1 in CPd , d > 4. Then for all but at most
three points q ∈ δp, the projection πq(δp \{q}) is a smooth rational curve of degree d in CPd−1.

Proof. Let q = δp[x0,y0]. Suppose that πq(δp \{q}) is singular. Then there exist [x1,y1] and [x2,y2]
such that πq(δp[x1,y1]) = πq(δp[x2,y2]) and the points δp[x0,y0], δp[x1,y1], and δp[x2,y2] are collinear.
Then for arbitrary [x3,y3], . . . , [xd ,yd ] ∈ CP1, the points δp[xi,yi], i = 0, . . . ,d are on a hyperplane, so by
Lemma 3.4, Fp(x0,y0, . . . ,xd ,yd) is identically 0 as a polynomial in x3,y3, . . . ,xd ,yd . The coefficients of
this polynomial are of the form

pix0x1x2 + pi+1(x0x1y2 + x0y1x2 + y0x1x2)+ pi+2(x0y1y2 + y0x1y2 + y0y1x2)+ pi+3y0y1y2

for i = 0, . . . ,d−2. This means that the linear system [c0,3c1,3c2,c3]M3(p) = 0 has a non-trivial solution
c0 = x0x1x2, 3c1 = x0x1y2 + x0y1x2 + y0x1x2, 3c2 = x0y1y2 + y0x1y2 + y0y1x2, c3 = y0y1y2. The binary
cubic form c0x3+3c1x2y+c2xy2+c3y3 then has the factorisation (x0x+y0y)(x1x+y1y)(x2x+y2y), hence
its roots give the collinear points on δp. Since δp is smooth, M3(p) has rank at least 3 by Corollary 3.6,
and so the cubic form is unique up to scalar multiples. It follows that there are at most three points q such
that the projection πq(δp \{q}) is not smooth.

We need the following theorem on the fundamental binary form fp that is essentially due to Sylvester
[30] to determine the natural group structure on rational singular curves. Reznick [26] gives an elementary
proof of the generic case where p does not lie on the tangent variety. (See also Kanev [16, Lemma 3.1] and
Iarrobino and Kanev [13, Section 1.3].) We provide a very elementary proof that includes the non-generic
case.

Theorem 3.8 (Sylvester [30]). Let d > 2.

(i ) If p ∈ TanC(νd+1), then there exist binary linear forms L1,L2 such that fp(x,y) = L1(x,y)dL2(x,y).
Moreover, if p /∈ νd+1 then L1 and L2 are linearly independent, and if p ∈ RPd+1 then L1 and L2
are both real.

(ii ) If p ∈ SecC(νd+1)\TanC(νd+1), then there exist linearly independent binary linear forms L1,L2
such that fp(x,y) = L1(x,y)d+1−L2(x,y)d+1. Moreover, if p∈RPd+1 \SecR(νd+1) then L1 and L2
are complex conjugates, while if p ∈ SecR(νd+1) then there exist linearly independent real binary
linear forms L1,L2 such that fp(x,y) = L1(x,y)d+1±L2(x,y)d+1, where we can always choose the
lower sign when d is even, and otherwise depends on p.

DISCRETE ANALYSIS, 2020:4, 34pp. 11

http://dx.doi.org/10.19086/da


AARON LIN AND KONRAD SWANEPOEL

Proof. (i ): We work over F ∈ {R,C}. Let p = [p0, p1, . . . , pd+1] ∈ TanF(νd+1). Let p∗ = νd+1[α1,α2]
be the point on νd+1 such that the line pp∗ is tangent to νd+1 (if p ∈ νd+1, we let p∗ = p). We will show
that

fp(x,y) =
d+1

∑
i=0

pi

(
d +1

i

)
xd+1−iyi = (α2x−α1y)d(β2x−β1y) (4)

for some [β1,β2] ∈ FP1.
First consider the special case α1 = 0. Then p∗ = [1,0, . . . ,0] and the tangent to νd+1 at p∗ is the line

x2 = x3 = · · ·= xd+1 = 0. It follows that fp(x,y)= p0xd+1+ p1(d+1)xdy=(1x−0y)d(p0x+ p1(d+1)y).
If p1 = 0, then p = p∗ ∈ νd+1. Thus, if p /∈ νd+1, then p1 6= 0, and x and p0x+ p1(d +1)y are linearly
independent.

We next consider the general case α1 6= 0. Equating coefficients in (4), we see that we need to find
[β1,β2] such that

pi

(
d +1

i

)
=

(
d
i

)
α

d−i
2 (−α1)

i
β2−

(
d

i−1

)
α

d−i+1
2 (−α1)

i−1
β1

for each i = 0, . . . ,d +1, where we use the convention
( d
−1

)
=
( d

d+1

)
= 0. This can be simplified to

pi =

(
1− i

d +1

)
α

d−i
2 (−α1)

i
β2−

i
d +1

α
d−i+1
2 (−α1)

i−1
β1. (5)

Since we are working projectively, we can fix the value of β1 from the instance i = d +1 of (5) to get

pd+1 =−(−α1)
d
β1. (6)

If pd+1 6= 0, we can divide (5) by (6). After setting α = α2/α1, β = β2/β1, and ai = pi/pd+1, we
then have to show that for some β ∈ F,

ai =−
(

1− i
d +1

)
(−α)d−i

β +
i

d +1
(−α)d−i+1 (7)

for each i = 0, . . . ,d. We next calculate in the affine chart xd+1 = 1 where the rational normal curve be-
comes νd+1(t) = ((−t)d+1,(−t)d , . . . ,−t), p = (a0, . . . ,ad), and p∗ = νd+1(α). The tangency condition
means that p∗− p is a scalar multiple of

ν
′
d+1(α) = ((d +1)(−α)d ,d(−α)d−1, . . . ,2α,−1),

that is, we have for some λ ∈ F that (−α)d+1−i− ai = λ (d + 1− i)(−α)d−i for all i = 0, . . . ,d. Set
β = α +λ (d +1). Then (−α)d+1−i−ai = (β −α)(1− i

d+1)(−α)d−i, and we have

ai = (−α)d+1−i− (β −α)

(
1− i

d +1

)
(−α)d−i

=−
(

1− i
d +1

)
(−α)d−i

β +
i

d +1
(−α)d−i+1,

DISCRETE ANALYSIS, 2020:4, 34pp. 12

http://dx.doi.org/10.19086/da


ON SETS DEFINING FEW ORDINARY HYPERPLANES

giving (7) as required. If α = β , then λ = 0 and p = p∗ ∈ νd+1. Thus, if p /∈ νd+1, then α 6= β , and
α2x−α1y and β2x−β1y are linearly independent.

We still have to consider the case pd+1 = 0. Then β1 = 0 and we need to find β2 such that

pi =

(
1− i

d +1

)
α

d−i
2 (−α1)

i
β2 (8)

for all i = 0, . . . ,d. Since pd+1 = 0, we have that ν ′d+1(α) is parallel to (p0, . . . , pd), that is,

pi = λ (d +1− i)(−α)d−i

for some λ ∈ F∗. Set β2 = λ (d +1)/(−α1)
d . Then

pi =
(−α1)

dβ2

d +1
(d +1− i)

(
α2

−α1

)d−i

=

(
1− i

d +1

)
α

d−i
2 (−α1)

i
β2,

again giving (8) as required. Note that since α1 6= 0 but β1 = 0, α2x−α1y and β2x−β1y are linearly
independent. Note also that since λ 6= 0, we have β2 6= 0 and p 6= [1,0, . . . ,0], hence p /∈ νd+1.

(ii ): Let p = [p0, . . . , pd+1] ∈ SecC(νd+1) \TanC(νd+1), and suppose that p lies on the secant line
through the distinct points p1 := νd+1[α1,α2] and p2 := νd+1[β1,β2]. Since p, p1, p2 are distinct and
collinear, there exist µ1,µ2 ∈ C∗ such that p = µ1 p1 + µ2 p2. This means that for i = 0, . . . ,d + 1, we
have

pi = µ1(−α1)
i
α

d+1−i
2 +µ2(−β1)

i
β

d+1−i
2 .

Then

fp(x,y) =
d+1

∑
i=0

pi

(
d +1

i

)
xd+1−iyi

= µ1

d+1

∑
i=0

(
d +1

i

)
(α2x)d+1−i(−α1y)i +µ2

d+1

∑
i=0

(
d +1

i

)
(β2x)d+1−i(−β1y)i

= µ1(α2x−α1y)d+1 +µ2(β2x−β1y)d+1

= L1(x,y)d+1−L2(x,y)d+1

where the linear forms L1,L2 are linearly independent.
If p ∈ RPd+1 \SecR(νd+1), then fp is real and p1 and p2 are non-real points. Taking conjugates, we

have
p = µ1νd+1[α1,α2]+µ2νd+1[β1,β2]

as vectors, and because of the uniqueness of secants of the rational normal curve through a given
point, we obtain µ1 = µ2 and νd+1[α1,α2] = νd+1[β1,β2], hence α1 = β1 and α2 = β2. It follows that
L1(x,y) = L2(x,y).

If p ∈ SecR(νd+1), then p1 and p2 are real, so [µ1,µ2], [α1,α2], [β1,β2] ∈ RP1, and we obtain
fp(x,y) = Ld+1

1 ±Ld+1
2 for some linearly independent L1,L2 over R, where the choice of sign depends

on p.
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We are now in a position to describe the group laws on rational singular curves. We first note the
effect of a change of coordinates on the parametrisation of δp. Let ϕ : FP1 → FP1 be a projective
transformation. Then νd+1 ◦ϕ is a reparametrisation of the rational normal curve. It is not difficult to
see that there exists a projective transformation ψ : FPd+1→ FPd+1 such that νd+1 ◦ϕ = ψ ◦νd+1. It
follows that if we reparametrise δp using ϕ , we obtain

δp ◦ϕ = πp ◦νd+1 ◦ϕ = πp ◦ψ ◦νd+1 = ψ
′ ◦πψ−1(p) ◦νd+1 ∼= δψ−1(p),

where ψ ′ : FPd → FPd is an appropriate projective transformation such that first transforming FPd+1

with ψ and then projecting from p is the same as projecting from ψ−1(p) and then transforming FPd

with ψ ′. So by reparametrising δp, we obtain δp′ for some other point p′ that is in the orbit of p under the
action of projective transformations that fix νd+1.

Since δp ◦ ϕ[x0,y0], . . . ,δp ◦ ϕ[xd ,yd ] lie on a hyperplane if and only if the δψ−1(p)[xi,yi]’s are
on a hyperplane, it follows from Lemma 3.4 that Fp(ϕ(x0,y0), . . . ,ϕ(xd ,yd)) is a scalar multiple of
Fψ−1(p)(x0,y0, . . . ,xd ,yd), in which case fp ◦ϕ = fψ−1(p) up to a scalar multiple. Thus, we obtain the
same reparametrisation of the fundamental binary form fp.

Proposition 3.9. A rational singular curve δp in CPd has a natural group structure on its subset of
smooth points δ ∗p such that d +1 points in δ ∗p lie on a hyperplane if and only if they sum to the identity.
This group is isomorphic to (C,+) if the singularity of δp is a cusp and isomorphic to (C∗, ·) if the
singularity is a node.

If the curve is real and cuspidal or acnodal, then it has a group isomorphic to (R,+) or R/Z
depending on whether the singularity is a cusp or an acnode, such that d + 1 points in δ ∗p lie on a
hyperplane if and only if they sum to the identity. If the curve is real and the singularity is a crunode,
then the group is isomorphic to (R,+)×Z2, but d +1 points in δ ∗p lie on a hyperplane if and only if they
sum to (0,0) or (0,1), depending on p.

Proof. First suppose δp is cuspidal and F ∈ {R,C}, so that p ∈ TanF(νd+1) \ νd+1. By Theorem 3.8,
fp = Ld

1L2 for some linearly independent linear forms L1 and L2. By choosing ϕ appropriately, we
may assume without loss of generality that L1(x,y) = x and L2(x,y) = (d + 1)y, so that fp(x,y) =
(d +1)xdy and p = [0,1,0, . . . ,0], with the cusp of δp at δp[0,1]. It follows that the polarisation of fp is
Fp(x0,y0, . . . ,xd ,yd) = P1 = x0x1 · · ·xd ∑

d
i=0 yi/xi. For [xi,yi] 6= [0,1], i = 0, . . . ,d, the points δp[xi,yi] are

on a hyperplane if and only if ∑
d
i=0 yi/xi = 0. Thus we identify δp[x,y] ∈ δ ∗p with y/x ∈ F, and the group

is (F,+).
Next suppose δp is nodal, so that p ∈ SecC(νd+1)\TanC(νd+1). By Theorem 3.8, fp = Ld+1

1 −Ld+1
2

for some linearly independent linear forms L1 and L2. Again by choosing ϕ appropriately, we may
assume without loss of generality that L1(x,y) = x and L2(x,y) = y, so that fp(x,y) = xd+1−yd+1 and p =
[1,0, . . . ,0,−1], with the node of δp at δp[0,1] = δp[1,0]. The polarisation of fp is Fp(x0,y0, . . . ,xd ,yd) =
P0−Pd+1 = x0x1 · · ·xd− y0y1 · · ·yd . Therefore, δp[xi,yi], i = 0, . . . ,d, are on a hyperplane if and only if
∏

d
i=0 yi/xi = 1. Thus we identify δp[x,y] ∈ δ ∗p with y/x ∈ C∗, and the group is (C∗, ·).

Now suppose δp is real and the node is an acnode. Then the linearly independent linear forms L1 and
L2 given by Theorem 3.8 are L1(x,y) = αx+βy and L2(x,y) = αx+βy for some α,β ∈ C\R. There
exists ϕ : RP1→ RP1 such that L1 ◦ϕ = x+ iy and L2 ◦ϕ = x− iy, hence we may assume after such
a reparametrisation that fp(x,y) = (x+ iy)d+1− (x− iy)d+1 and that the node is at δp[i,1] = δp[−i,1].
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The polarisation of fp is Fp(x0,y0, . . . ,xd ,yd) = ∏
d
j=0(x j + iy j)−∏

d
j=0(x j − iy j), and it follows that

δp[x0,y0], . . . ,δp[xd ,yd ] are collinear if and only if ∏
d
j=0

x j+iy j
x j−iy j

= 1. We now identify RP1 with the circle

R/Z∼= {z ∈ C : |z|= 1} using the Möbius transformation [x,y]→ x+iy
x−iy .

It remains to consider the crunodal case. Then, similar to the complex nodal case, we obtain after a
reparametrisation that δp[xi,yi], i = 0, . . . ,d, are on a hyperplane if and only if ∏

d
i=0 yi/xi =±1, where

the sign depends on p. Thus we identify δp[x,y] ∈ δ ∗p with y/x ∈ R∗, and the group is (R∗, ·)∼= R×Z2,
where ±1 ∈ R∗ corresponds to (0,0),(0,1) ∈ R×Z2 respectively.

The group on an elliptic normal curve or a rational singular curve of degree d +1 as described in
Propositions 3.1 and 3.9 is not uniquely determined by the property that d +1 points lie on a hyperplane
if and only if they sum to some fixed element c. Indeed, for any t ∈ (δ ∗,⊕), x� y := x⊕ y⊕ t defines
another abelian group on δ ∗ with the property that d +1 points lie on a hyperplane if and only if they
sum to c⊕dt. However, these two groups are isomorphic in a natural way with an isomorphism given
by the translation map x 7→ x	 t. The next proposition show that we always get uniqueness up to some
translation. It will be used in Section 5.

Proposition 3.10. Let (G,⊕,0) and (G,�,0′) be abelian groups on the same ground set, such that for
some d > 2 and some c,c′ ∈ G,

x1⊕·· ·⊕ xd+1 = c ⇐⇒ x1� · · ·� xd+1 = c′ for all x1, . . . ,xd+1 ∈ G.

Then (G,⊕,0)→ (G,�,0′),x 7→ x�0 = x⊕0′ is an isomorphism, and

c′ = c�0� · · ·�0︸ ︷︷ ︸
d times

= c	 (0′⊕·· ·⊕0′︸ ︷︷ ︸
d times

).

Proof. It is clear that the cases d > 3 follow from the case d = 2, which we now show. First note that
for any x,y ∈ G, x� y� (c	 x	 y) = c′ and (x⊕ y)� 0� (c	 x	 y) = c′, since x⊕ y⊕ (c	 x	 y) =
(x⊕ y)⊕ 0⊕ (c	 x	 y) = c. Thus we have x� y = (x⊕ y)� 0, hence (x⊕ y)� 0 = x� y� 0� 0 =
(x� 0)� (y� 0). Similarly we have x⊕ y = (x� y)⊕ 0′, hence x� y = x⊕ y	 0′, so in particular
0′ = 0� 0 = 0⊕ (�0)	 0′, and �0 = 0′⊕ 0′. So we also have x� 0 = x⊕ (�0)	 0′ = x⊕ 0′, and
(G,⊕,0)→ (G,�,0′),x 7→ x�0 = x⊕0′ is an isomorphism.

4 Structure theorem

We prove Theorem 1.1 in this section. The main idea is to induct on the dimension d via projection. We
start with the following statement of the slightly different case d = 3, which is [20, Theorem 1.1]. Note
that it contains one more type that does not occur when d > 4.

Theorem 4.1. Let K > 0 and suppose n >C max{K8,1} for some sufficiently large absolute constant
C > 0. Let P be a set of n points in RP3 with no 3 points collinear. If P spans at most Kn2 ordinary
planes, then up to projective transformations, P differs in at most O(K) points from a configuration of
one of the following types:
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(i ) A subset of a plane;

(ii ) A subset of two disjoint conics lying on the same quadric with n
2 ±O(K) points of P on each of the

two conics;

(iii ) A coset of a subgroup of the smooth points of an elliptic or acnodal space quartic curve.

We first prove the following weaker lemma using results from Section 2.

Lemma 4.2. Let d > 4, K > 0, and suppose n > C max{d32dK,(dK)8} for some sufficiently large
absolute constant C > 0. Let P be a set of n points in RPd where every d points span a hyperplane. If P
spans at most K

(n−1
d−1

)
ordinary hyperplanes, then all but at most O(d2dK) points of P are contained in a

hyperplane or an irreducible non-degenerate curve of degree d +1 that is either elliptic or rational and
singular.

Proof. We use induction on d > 4 to show that for all K > 0 and all n> f (d,K), for all sets P of n points
in RPd with any d points spanning a hyperplane, if P has at most K

(n−1
d−1

)
ordinary hyperplanes, then all

but at most g(d,K) points of P are contained in a hyperplane or an irreducible non-degenerate curve of
degree d +1, and that if the curve is rational then it has to be singular, where

g(d,K) :=
d

∑
k=0

k32d−k +C12d(d−1)K

and
f (d,K) := d2(g(d,K)+C2d10)+C(d−1)8K8

for appropriate C1,C2 > 0 to be determined later and C from Theorem 4.1. We assume that this holds in
RPd−1 if d > 5, while Theorem 4.1 takes the place of the induction hypothesis when d = 4.

Let P′ denote the set of points p ∈ P such that there are at most d−1
d−2 K

(n−2
d−2

)
ordinary hyperplanes

through p. By counting incident point-ordinary-hyperplane pairs, we obtain

dK
(

n−1
d−1

)
> (n−|P′|)d−1

d−2
K
(

n−2
d−2

)
,

which gives |P′|> n/(d−1)2. For any p ∈ P′, the projected set πp(P\{p}) has n−1 points and spans at
most d−1

d−2 K
(n−2

d−2

)
ordinary (d−2)-flats in RPd−1, and any d−1 points of πp(P\{p}) span a (d−2)-flat.

To apply the induction hypothesis, we need

f (d,K)> 1+ f (d−1, d−1
d−2 K),

as well as f (3,K)>C max{K8,1}, both of which easily follow from the definition of f (d,K). Then all
except g(d−1, d−1

d−2 K) points of πp(P\{p}) are contained in a (d−2)-flat or a non-degenerate curve γp

of degree d in RPd−1, which is either irreducible or possibly two conics with n
2 ±O(K) points on each

when d = 4.
If there exists a p ∈ P′ such that all but at most g(d−1, d−1

d−2 K) points of πp(P\{p}) are contained in
a (d−2)-flat, then we are done, since g(d,K)> g(d−1, d−1

d−2 K). Thus we may assume without loss of
generality that for all p ∈ P′ we obtain a curve γp.
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Let p and p′ be two distinct points of P′. Then all but at most 2g(d−1, d−1
d−2 K) points of P lie on the

intersection δ of the two cones π
−1
p (γp) and π

−1
p′ (γp′). Since the curves γp and γp′ are 1-dimensional, the

two cones are 2-dimensional. Since their vertices p and p′ are distinct, the cones do not have a common
irreducible component, so their intersection is a variety of dimension at most 1. By Bézout’s theorem
(Theorem 2.1), δ has total degree at most d2, so has to have at least one 1-dimensional irreducible
component. Let δ1, . . . ,δk be the 1-dimensional components of δ , where 1 6 k 6 d2. Let δ1 be the
component with the most points of P′ amongst all the δi, so that

|P′∩δ1|>
|P′|−2g(d−1, d−1

d−2 K)

d2 .

Choose a q ∈ P′ ∩ δ1 such that πq is generically one-to-one on δ1. By Lemma 2.2 there are at most
O(deg(δ1)

4) = O(d8) exceptional points, so we need

|P′∩δ1|>C2d8. (9)

Since |P′|> n/(d−1)2, we need

n
(d−1)2 −2g(d−1, d−1

d−2 K)

d2 >C2d8,

or equivalently, n > (d− 1)2(2g(d− 1, d−1
d−2 K)+C2d10). However, this follows from the definition of

f (d,K). If πq does not map δ1 \ {q} into γq, then by Bézout’s theorem (Theorem 2.1), n− 1− g(d−
1,
(d−1

d−2

)
K)6 d3. However, this does not occur since f (d,K)> g(d−1,

(d−1
d−2

)
K)+d3+1. Thus, πq maps

δ1 \{q} into γq, hence δ1 is an irreducible curve of degree d+1 (or, when d = 4, possibly a twisted cubic
containing at most n/2+O(K) points of P).

We first consider the case where δ1 has degree d + 1. We apply Lemma 2.4 to δ1 and each δi,
i = 2, . . . ,k, and for this we need |P′∩δ1|>C′′d4, since deg(δ1)6 d2 and ∑

d
i=2 deg(δi)6 d2. However,

this condition is implied by (9). Thus we find a q′ ∈ P′∩δ1 such that πq′(δ1 \{q′}) = γq′ as before, and
in addition, the cone π

−1
q′ (γq′) does not contain any other δi, i = 2, . . . ,k. Since all points of P except

2g(d−1, d−1
d−2 K)+d2 lie on δ1∪·· ·∪δk, we obtain by Bézout’s theorem (Theorem 2.1) that

|P\δ1|6 d(d2−d−1)+d2 +2g(d−1, d−1
d−2 K)< g(d,K).

We next dismiss the case where d = 4 and δ1 is a twisted cubic. We redefine P′ to be the set of points
p ∈ P such that there are at most 12Kn2 ordinary hyperplanes through p. Then |P′|> 2n/3. Since we
have |P∩δ1|6 n/2+O(K), by Lemma 2.3 there exists q′ ∈ P′ \δ1 such that the projection from q′ will
map δ1 onto a twisted cubic in RP3. However, by Bézout’s theorem (Theorem 2.1) and Theorem 4.1,
πq′(δ1 \{q′}) has to be mapped onto a conic, which gives a contradiction.

Note that g(d,K) = O(d2dK) since K = Ω(1/d) by [3, Theorem 2.4]. We have shown that all but
O(d2dK) points of P are contained in a hyperplane or an irreducible non-degenerate curve δ of degree
d +1. By Proposition 3.2, this curve is either elliptic or rational. It remains to show that if δ is rational,
then it has to be singular. Similar to what was shown above, we can find more than 3 points p ∈ δ

for which the projection πp(δ \{p}) is a rational curve of degree d that is singular by the induction
hypothesis. Lemma 3.7 now implies that δ is singular.
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To get the coset structure on the curves as stated in Theorem 1.1, we use a simple generalisation of an
additive combinatorial result used by Green and Tao [9, Proposition A.5]. This captures the principle that
if a finite subset of a group is almost closed, then it is close to a subgroup. The case d = 3 was shown
in [19].

Lemma 4.3. Let d > 2. Let A1,A2, . . . ,Ad+1 be d +1 subsets of some abelian group (G,⊕), all of size
within K of n, where K 6 cn/d2 for some sufficiently small absolute constant c > 0. Suppose there are
at most Knd−1 d-tuples (a1,a2, . . . ,ad) ∈ A1×A2×·· ·×Ad for which a1⊕a2⊕·· ·⊕ad /∈ Ad+1. Then
there is a subgroup H of G and cosets H⊕ xi for i = 1, . . . ,d such that

|Ai4 (H⊕ xi)|,

∣∣∣∣∣Ad+14

(
H⊕

d⊕
i=1

xi

)∣∣∣∣∣= O(K).

Proof. We use induction on d > 2 to show that the symmetric differences in the conclusion of the lemma
have size at most C ∏

d
i=1(1+

1
i2 )K for some sufficiently large absolute constant C > 0. The base case

d = 2 is [9, Proposition A.5].
Fix a d > 3. By the pigeonhole principle, there exists b1 ∈ A1 such that there are at most

1
n−K

Knd−1 6
1

1− c
d2

Knd−2

(d−1)-tuples (a2, . . . ,ad) ∈ A2×·· ·×Ad for which b1⊕a2⊕·· ·⊕ad /∈ Ad+1, or equivalently a2⊕·· ·⊕
ad /∈ Ad+1	b1. Since

1
1− c

d2

K 6
c

d2− c
n6

c
(d−1)2 n,

we can use induction to get a subgroup H of G and x2, . . . ,xd ∈ G such that for j = 2, . . . ,d we have

|A j4 (H⊕ x j)|,

∣∣∣∣∣(Ad+1	b1)4

(
H⊕

d⊕
j=2

x j

)∣∣∣∣∣6C
d−1

∏
i=1

(
1+

1
i2

)
1

1− c
d2

K.

Since |Ad ∩ (H⊕ xd)|> n−K−C ∏
d−1
i=1 (1+

1
i2 )

1
1− c

d2
K, we repeat the same pigeonhole argument on

Ad ∩ (H⊕ xd) to find a bd ∈ Ad ∩ (H⊕ xd) such that there are at most

1
n−K−C ∏

d−1
i=1

(
1+ 1

i2
) 1

1− c
d2

K
Knd−1 6

1
1− c

d2 −C ∏
d−1
i=1

(
1+ 1

i2
) c

d2−c

Knd−2

6
1

1−C1
c

d2−c
Knd−2

6

(
1+

C2c
d2− c

)
Knd−2

6

(
1+

1
d2

)
Knd−2
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(d−1)-tuples (a1, . . . ,ad−1)∈A1×·· ·Ad−1 with a1⊕·· ·⊕ad−1⊕bd /∈Ad+1, for some absolute constants
C1,C2 > 0 depending on C, by making c sufficiently small. Now (1+ 1

d2 )K 6 cn/(d−1)2, so by induction
again, there exist a subgroup H ′ of G and elements x1,x′2, . . . ,x

′
d−1 ∈ G such that for k = 2, . . . ,d−1 we

have

|A14 (H ′⊕ x1)|, |Ak4 (H ′⊕ x′k)|,

∣∣∣∣∣(Ad+1	bd)4

(
H ′⊕ x1⊕

d−1⊕
k=2

x′k

)∣∣∣∣∣6C
d−1

∏
i=1

(
1+

1
i2

)(
1+

1
d2

)
K.

From this, it follows that |(H⊕ xk)∩ (H ′⊕ x′k)| > n−K− 2C ∏
d
i=1(1+

1
i2 )K = n−O(K). Since (H⊕

xk)∩ (H ′⊕ x′k) is non-empty, it has to be a coset of H ′∩H. If H ′ 6= H, then |H ′∩H| 6 n/2+O(K), a
contradiction since c is sufficiently small. Therefore, H = H ′, and H⊕ xk = H ′⊕ x′k. So we have

|Ai4 (H⊕ xi)|,

∣∣∣∣∣Ad+14

(
H⊕

d−1⊕
`=1

x`⊕bd

)∣∣∣∣∣6C
d

∏
i=1

(
1+

1
i2

)
K.

Since bd ∈ H⊕ xd , we also obtain∣∣∣∣∣Ad+14

(
H⊕

d⊕
i=1

xi

)∣∣∣∣∣6C
d

∏
i=1

(
1+

1
i2

)
K.

To apply Lemma 4.3, we first need to know that removing K points from a set does not change the
number of ordinary hyperplanes it spans by too much.

Lemma 4.4. Let P be a set of n points in RPd , d > 2, where every d points span a hyperplane. Let P′ be
a subset that is obtained from P by removing at most K points. If P spans m ordinary hyperplanes, then
P′ spans at most m+ 1

d K
(n−1

d−1

)
ordinary hyperplanes.

Proof. Fix a point p ∈ P. Since every d points span a hyperplane, there are at most
(n−1

d−1

)
sets of d points

from P containing p that span a hyperplane through p. Thus, the number of (d +1)-point hyperplanes
through p is at most 1

d

(n−1
d−1

)
, since a set of d + 1 points that contains p has d subsets of size d that

contain p. If we remove points of P one-by-one to obtain P′, we thus create at most 1
d K
(n−1

d−1

)
ordinary

hyperplanes.

The following lemma then translates the additive combinatorial Lemma 4.3 to our geometric setting.

Lemma 4.5. Let d > 4, K > 0, and suppose n>C(d3K+d4) for some sufficiently large absolute constant
C > 0. Let P be a set of n points in RPd where every d points span a hyperplane. Suppose P spans at
most K

(n−1
d−1

)
ordinary hyperplanes, and all but at most dK points of P lie on an elliptic normal curve or a

rational singular curve δ . Then P differs in at most O(dK +d2) points from a coset H⊕ x of a subgroup
H of δ ∗, the smooth points of δ , for some x such that (d +1)x ∈ H. In particular, δ is either an elliptic
normal curve or a rational acnodal curve.

Proof. Let P′ = P∩δ ∗. Then by Lemma 4.4, P′ spans at most K
(n−1

d−1

)
+d 1

d K
(n−1

d−1

)
= 2K

(n−1
d−1

)
ordinary

hyperplanes.
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First suppose δ is an elliptic normal curve or a rational cuspidal or acnodal curve. If a1, . . . ,ad ∈ δ ∗

are distinct, then by Propositions 3.1 and 3.9, the hyperplane through a1, . . . ,ad meets δ again in the
unique point ad+1 = 	(a1⊕·· ·⊕ ad). This implies that ad+1 ∈ P′ for all but at most d!O(K

(n−1
d−1

)
) d-

tuples (a1, . . . ,ad)∈ (P′)d with all ai distinct. There are also at most
(d

2

)
nd−1 d-tuples (a1, . . . ,ad)∈ (P′)d

for which the ai are not all distinct. Thus, a1⊕ ·· ·⊕ ad ∈ 	P′ for all but at most O((dK + d2)nd−1)
d-tuples (a1, . . . ,ad) ∈ (P′)d . Applying Lemma 4.3 with A1 = · · · = Ad = P′ and Ad+1 = 	P′, we
obtain a finite subgroup H of δ ∗ and a coset H⊕ x such that |P′4 (H⊕ x)|= O(dK +d2) and |	P′4
(H⊕ dx)| = O(dK + d2), the latter being equivalent to |P′4 (H	 dx)| = O(dK + d2). Thus we have
|(H⊕ x)4 (H	dx)|= O(dK +d2), which implies (d +1)x ∈ H. Also, δ cannot be cuspidal, otherwise
by Proposition 3.9 we have δ ∗ ∼= (R,+), which has no finite subgroup of order greater than 1.

Now suppose δ is a rational crunodal curve. By Proposition 3.9, there is a bijective map ϕ :
(R,+)×Z2→ δ ∗ such that d + 1 points in δ ∗ lie in a hyperplane if and only if they sum to h, where
h = ϕ(0,0) or ϕ(0,1) depending on the curve δ . If h = ϕ(0,0) then the above argument follows through,
and we obtain a contradiction as we have by Proposition 3.9 that δ ∗ ∼= (R,+)×Z2, which has no finite
subgroup of order greater than 2. Otherwise, the hyperplane through distinct a1, . . . ,ad ∈ δ ∗ meets δ

again in the unique point ad+1 = ϕ(0,1)	 (a1⊕·· ·⊕ad). As before, this implies that ad+1 ∈ P′ for all
but at most O((dK +d2)nd−1) d-tuples (a1, . . . ,ad) ∈ (P′)d , or equivalently a1⊕·· ·⊕ad ∈ ϕ(0,1)	P′.
Applying Lemma 4.3 with A1 = · · ·= Ad = P′ and Ad+1 = ϕ(0,1)	P′, we obtain a finite subgroup H of
δ ∗, giving a contradiction as before.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.2, all but at most O(d2dK) points of P are contained in a hyperplane
or an irreducible curve δ of degree d +1 that is either elliptic or rational and singular. In the prior case,
we get Case (i ) of the theorem, so suppose we are in the latter case. We then apply Lemma 4.5 to obtain
Case (ii ) of the theorem, completing the proof.

5 Extremal configurations

We prove Theorems 1.2 and 1.3 in this section. It will turn out that minimising the number of ordinary
hyperplanes spanned by a set is equivalent to maximising the number of (d +1)-point planes, thus we
can apply Theorem 1.1 in both theorems. Then we only have two cases to consider, where most of our
point set is contained either in a hyperplane or a coset of a subgroup of an elliptic normal curve or the
smooth points of a rational acnodal curve.

The first case is easy, and we get the following lower bound.

Lemma 5.1. Let d > 4, K > 1, and let n> 2dK. Let P be a set of n points in RPd where every d points
span a hyperplane. If all but K points of P lie on a hyperplane, then P spans at least

(n−1
d−1

)
ordinary

hyperplanes, with equality if and only if K = 1.

Proof. Let Π be a hyperplane with |P∩Π|= n−K. Since n−K > d, any ordinary hyperplane spanned
by P must contain at least one point not in Π. Let mi be the number of hyperplanes containing exactly
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d−1 points of P∩Π and exactly i points of P\Π, i = 1, . . . ,K. Then the number of unordered d-tuples
of elements from P with exactly d−1 elements in Π is

K
(

n−K
d−1

)
= m1 +2m2 +3m3 + · · ·+KmK .

Now consider the number of unordered d-tuples of elements from P with exactly d− 2 elements
in Π, which equals

(K
2

)(n−K
d−2

)
. One way to generate such a d-tuple is to take one of the mi hyperplanes

containing i points of P\Π and d−1 points of P∩Π, choose two of the i points, and remove one of the
d−1 points. Since any d points span a hyperplane, there is no overcounting. This gives(

K
2

)(
n−K
d−2

)
> (d−1)

((
2
2

)
m2 +

(
3
2

)
m3 +

(
4
2

)
m4 + · · ·

)
>

d−1
2

(2m2 +3m3 +4m4 + · · ·).

Hence the number of ordinary hyperplanes is at least

m1 > K
(

n−K
d−1

)
− K(K−1)

d−1

(
n−K
d−2

)
= K

(
n−K
d−1

)
n−2K−d +3
n−K−d +2

.

We next show that for all K > 2, if n> 2dK then

K
(

n−K
d−1

)
n−2K−d +3
n−K−d +2

>

(
n−1
d−1

)
.

This is equivalent to

K >
n−K +1

n−2K−d +3

K−2

∏
i=1

n− i
n−d− i+1

. (10)

Note that
n−K +1

n−2K−d +3
< 2 (11)

if n > 3K +2d−5 and
n− i

n−d− i+1
<

i+2
i+1

(12)

if n > (i+2)d for each i = 1, . . . ,K−2. However, since 2dK > (i+2)d and also 2dK > 4K +2d−5,
the inequality (10) now follows from (11) and (12).

The second case needs more work. We first consider the number of ordinary hyperplanes spanned
by a coset of a subgroup of the smooth points δ ∗ of an elliptic normal curve or a rational acnodal curve.
By Propositions 3.1 and 3.9, we can consider δ ∗ as a group isomorphic to either R/Z or R/Z×Z2. Let
H⊕ x be a coset of a subgroup H of δ ∗ of order n where (d +1)x =	c ∈ H. Since H is a subgroup of
order n of R/Z or R/Z×Z2, we have that either H is cyclic, or Zn/2×Z2 when n is divisible by 4. The
exact group will matter only when we make exact calculations.

Note that it follows from the group property that any d points on δ ∗ span a hyperplane. Also,
since any hyperplane intersects δ ∗ in d + 1 points, counting multiplicity, it follows that an ordinary
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hyperplane of H⊕ x intersects δ ∗ in d points, of which exactly one of them has multiplicity 2, and the
others multiplicity 1. Denote the number of ordered k-tuples (a1, . . . ,ak) with distinct ai ∈ H that satisfy
m1a1⊕·· ·⊕mkak = c by [m1, . . . ,mk;c]. Then the number of ordinary hyperplanes spanned by H⊕ x is

1
(d−1)!

[2,1, . . . ,1︸ ︷︷ ︸
d−1 times

;c]. (13)

We show that we can always find a value of c for which (13) is at most
(n−1

d−1

)
.

Lemma 5.2. Let δ ∗ be an elliptic normal curve or the smooth points of a rational acnodal curve in RPd ,
d > 2. Then any finite subgroup H of δ ∗ of order n has a coset H⊕ x with (d +1)x ∈ H, that spans at
most

(n−1
d−1

)
ordinary hyperplanes. Furthermore, if d +1 and n are coprime, then any such coset spans

exactly
(n−1

d−1

)
ordinary hyperplanes.

Proof. It suffices to show that there exists c ∈ H such that the number of solutions (a1, . . . ,ad) ∈ Hd of
the equation 2a1⊕a2⊕·· ·⊕ad = c, where c =	(d +1)x, is at most (d−1)!

(n−1
d−1

)
.

Fix a1 and consider the substitution bi = ai− a1 for i = 2, . . . ,d. Note that 2a1⊕·· ·⊕ ad = c and
a1, . . . ,ad are distinct if and only if b2⊕·· ·⊕bd = c	 (d +1)a1 and b2, . . . ,bd are distinct and non-zero.
Let

Ac, j = {( j,a2, . . . ,ad) : 2 j⊕a2⊕·· ·⊕ad = c,a2, . . . ,ad ∈ H \{ j} distinct} ,

and let
Bk = {(b2, . . . ,bd) : b2⊕·· ·⊕bd = k,b2, . . . ,bd ∈ H \{0} distinct} .

Then |Ac, j|= |Bc	(d+1) j|, and the number of ordinary hyperplanes spanned by H⊕ x is

1
(d−1)! ∑

j∈H
|Ac, j|.

If d +1 is coprime to n, then c	 (d +1) j runs through all elements of H as j varies. So we have
∑ j |Bc	(d+1) j|= (n−1) · · ·(n−d +1), hence for all c,

1
(d−1)! ∑

j∈H
|Ac, j|=

(
n−1
d−1

)
.

If d + 1 is not coprime to n, then c	 (d + 1) j runs through a coset of a subgroup of H of size
n/gcd(d +1,n) as j varies. We now have

∑
j∈H
|Bc	(d+1) j|= gcd(d +1,n) ∑

k∈c	(d+1)H
|Bk|.

Summing over c gives

∑
c∈H

∑
j∈H
|Ac, j|= gcd(d +1,n) ∑

c∈H
∑

k∈c	(d+1)H
|Bk|
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= gcd(d +1,n)
n

gcd(d +1,n)
(n−1) · · ·(n−d +1)

= n(n−1) · · ·(n−d +1).

By the pigeonhole principle, there must then exist a c such that

1
(d−1)! ∑

j∈H
|Ac, j|6

(
n−1
d−1

)
.

We next want to show that [2,

d−1 times︷ ︸︸ ︷
1, . . . ,1;c] is always very close to (d−1)!

(n−1
d−1

)
, independent of c or

the group H. Before that, we prove two simple properties of [m1, . . . ,mk;c].

Lemma 5.3. [m1, . . . ,mk;c]6 2mk(k−1)!
( n

k−1

)
.

Proof. Consider a solution (a1, . . . ,ak) of m1a1⊕·· ·⊕mkak = c where all the ai are distinct. We can
choose a1, . . . ,ak−1 arbitrarily in (k−1)!

( n
k−1

)
ways, and ak satisfies the equation mkak = c	m1a1	·· ·	

mk−1ak−1, which has at most mk solutions if H = Zn and at most 2mk solutions if H = Z2×Zn/2.

Lemma 5.4. We have the recurrence relation

[m1, . . . ,mk−1,1;c] = (k−1)!
(

n
k−1

)
− [m1 +1,m2, . . . ,mk−1;c]

− [m1,m2 +1,m3, . . . ,mk−1;c]

−·· ·
− [m1, . . . ,mk−2,mk−1 +1;c].

Proof. We can arbitrarily choose distinct values from H for a1, . . . ,ak−1, which determines ak, and then
we have to subtract the number of k-tuples where ak is equal to one of the other ai, i = 1, . . . ,k−1.

Lemma 5.5.
[2,1, . . . ,1︸ ︷︷ ︸

d−1 times

;c] = (d−1)!
((

n−1
d−1

)
+ ε(d,n)

)
,

where

|ε(d,n)|=

O
(

2−d/2
( n
(d−1)/2

)
+
( n
(d−3)/2

))
if d is odd,

O
(

d2−d/2
( n

d/2−1

)
+
( n

d/2−2

))
if d is even.

Proof. Applying Lemma 5.4 once, we obtain

[2,1, . . . ,1︸ ︷︷ ︸
d−1 times

;c] = (d−1)!
(

n
d−1

)
− [3,1, . . . ,1︸ ︷︷ ︸

d−2 times

;c]− (d−2)[2,2,1, . . . ,1︸ ︷︷ ︸
d−3 times

;c].

Note that at each stage of the recurrence in Lemma 5.4 (as long as it applies), there are (d− 1)(d−
2) · · ·(d− k) terms of length d− k, where we define the length of [m1, . . . ,mk;c] to be k.

DISCRETE ANALYSIS, 2020:4, 34pp. 23

http://dx.doi.org/10.19086/da


AARON LIN AND KONRAD SWANEPOEL

If d is odd, we can continue this recurrence until we reach

[2,1, . . . ,1︸ ︷︷ ︸
d−1 times

;c] = (d−1)!
((

n
d−1

)
−
(

n
d−2

)
+ · · ·+(−1)(d+1)/2

(
n

(d +1)/2

))
+(−1)(d−1)/2R,

where R is the sum of (d−1)(d−2) · · ·(d− (d−1)/2) terms of length (d+1)/2. Among these there are(d−1
2

)(d−3
2

)
· · ·
(2

2

)
(d−1

2 )!
= (d−2)(d−4) · · ·3 ·1

terms of the form [2, . . . ,2;c]. We now write R = A+B, where A is the same sum as R, except that we
replace each occurrence of [2, . . . ,2;c] by [1, . . . ,1;c], and

B := (d−2)(d−4) · · ·3 ·1([2, . . . ,2︸ ︷︷ ︸
d+1

2 times

;c]− [1, . . . ,1︸ ︷︷ ︸
d+1

2 times

;c]).

We next bound A and B. We apply Lemma 5.4 to each term in A, after which we obtain (d− 1)(d−
2) · · ·(d− (d +1)/2) terms of length (d−1)/2. Then using the bound in Lemma 5.3, we obtain

A = (d−1)!
(

n
(d−1)/2

)
−O

(
(d−1)(d−2) · · ·(d− (d +1)/2)

(d−3
2

)
!
(

n
(d−3)/2

))
= (d−1)!

((
n

(d−1)/2

)
−O

((
n

(d−3)/2

)))
.

For B, we again use Lemma 5.3 to get

|B|= O
(
(d−2)(d−4) · · ·3 ·1

(
d−1

2

)
!
(

n
(d−1)/2

))
= O

(
(d−2)(d−4) · · ·3 ·1 ·2−

d−1
2 (d−1)(d−3) · · ·4 ·2

(
n

(d−1)/2

))
= O

(
(d−1)!2−

d−1
2

(
n

(d−1)/2

))
.

Thus we obtain

[2,1, . . . ,1︸ ︷︷ ︸
d−1 times

;c] = (d−1)!
((

n
d−1

)
−
(

n
d−2

)
+ · · ·+(−1)

d+1
2

(
n

(d +1)/2

))

+(−1)
d−1

2 (d−1)!
((

n
(d−1)/2

)
−O

((
n

(d−3)/2

)))
+(−1)

d−1
2 B

= (d−1)!
((

n−1
d−1

)
+(−1)

d+1
2 O

((
n

(d−3)/2

))
±O

(
2−

d−1
2

(
n

(d−1)/2

)))
,
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which finishes the proof for odd d.
If d is even, we obtain

[2,1, . . . ,1︸ ︷︷ ︸
d−1 times

;c] = (d−1)!
((

n
d−1

)
−
(

n
d−2

)
+ · · ·+(−1)

d
2+1
(

n
d/2

))
+(−1)d/2R,

where R now is the sum of (d−1)(d−2) · · ·(d−d/2) terms of length d/2. Among these there are

(d−1)
(d−2

2

)(d−4
2

)
· · ·
(2

2

)
(d−2

2 )!
+

2
(d−1

3

)(d−4
2

)
· · ·
(2

2

)
(d−4

2 )!
= (d +1)(d−1) · · ·7 ·5

terms of the form [3,2, . . . ,2;c]. Again we write R = A+B, where A is the same sum as R, except that
each occurrence of [3,2, . . . ,2;c] is replaced by [1, . . . ,1;c], and

B := (d +1)(d−1) · · ·7 ·5([3,2, . . . ,2︸ ︷︷ ︸
d
2 −1 times

;c]− [1, . . . ,1︸ ︷︷ ︸
d
2 times

;c]).

Similar to the previous case, we obtain

A = (d−1)!
((

n
d/2−1

)
−O

((
n

d/2−2

)))
and

|B|= O
(
(d +1)(d−1) · · ·7 ·5(d

2 −1)!
(

n
d/2−1

))
= O

(
2−d/2d!

(
n

d/2−1

))
,

which finishes the proof for even d.

Computing [2, . . . ,2;c] and [3,2, . . . ,2;c] exactly is more subtle and depends on c and the group H.
We do not need this for the asymptotic Theorems 1.2 and 1.3, and will only need to do so when computing
exact extremal values.

To show that a coset is indeed extremal, we first consider the effect of adding a single point. The case
where the point is on the curve is done in Lemma 5.6, while Lemma 5.7 covers the case where the point
is off the curve. We then obtain a more general lower bound in Lemma 5.8.

Lemma 5.6. Let δ ∗ be an elliptic normal curve or the smooth points of a rational acnodal curve in
RPd , d > 2. Suppose H⊕ x is a coset of a finite subgroup H of δ ∗ of order n, with (d +1)x ∈ H. Let
p ∈ δ ∗ \ (H⊕ x). Then there are at least

( n
d−1

)
hyperplanes through p that meet H⊕ x in exactly d−1

points.

Proof. Take any d − 1 points p1, . . . , pd−1 ∈ H ⊕ x. Suppose that the (unique) hyperplane through
p, p1, . . . , pd−1 contains another point p′ ∈ H⊕ x. Since p⊕ p1⊕·· ·⊕ pd−1⊕ p′ = 0 by Propositions 3.1
and 3.9, we obtain that p ∈ H	dx. Since (d +1)x ∈ H, we obtain p ∈ H⊕ x, a contradiction. Therefore,
the hyperplane through p, p1, . . . , pd−1 does not contain any other point of H⊕ x.

It remains to show that if {p1, . . . , pd−1} 6= {p′1, . . . , p′d−1} where also p′1, . . . , p′d−1 ∈ H⊕ x, then the
two sets span different hyperplanes with p. Suppose they span the same hyperplane. Then 	(p⊕ p1⊕
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· · ·⊕ pd−1) also lies on this hyperplane, but not in H⊕ x, as shown above. Also, p′i /∈ {p1, . . . , pd−1} for
some i, and then p1, . . . , pd−1, p′i, and 	(p⊕ p1⊕·· ·⊕ pd−1) are d +1 distinct points on a hyperplane,
so their sum is 0, which implies p = p′i, a contradiction.

So there are
( n

d−1

)
hyperplanes through p meeting H⊕ x in exactly d−1 points.

The following Lemma generalises [9, Lemma 7.7], which states that if δ ∗ is an elliptic curve or the
smooth points of an acnodal cubic curve in the plane, H⊕x is a coset of a finite subgroup of order n > 104,
and if p /∈ δ ∗, then there are at least n/1000 lines through p that pass through exactly one element of
H⊕ x. A naive generalisation to dimension 3 would state that if δ ∗ is an elliptic or acnodal space quartic
curve with a finite subgroup H of sufficiently large order n, and x ∈ δ ∗ and p /∈ δ ∗, then there are Ω(n2)
planes through p and exactly two elements of H⊕ x. This statement is false, even if we assume that
4x ∈H (the analogous assumption 3x ∈H is not made in [9]), as can be seen from the following example.

Let δ be an elliptic quartic curve obtained from the intersection of a circular cylinder in R3 with
a sphere which has centre c on the axis ` of the cylinder. Then δ is symmetric in the plane through c
perpendicular to `, and we can find a finite subgroup H of any even order n such that the line through any
element of H parallel to ` intersects H in two points. If we now choose p to be the point at infinity on
`, then we obtain that any plane spanned by p and two points of H not collinear with p, intersects H in
two more points. Note that the projection πp maps δ to a conic, so is not generically one-to-one. The
number of such p is bounded by the trisecant lemma (Lemma 2.3). However, as the next lemma shows, a
generalisation of [9, Lemma 7.7] holds except that in dimension 3 we have to exclude such points p.

Lemma 5.7. Let δ be an elliptic normal curve or a rational acnodal curve in RPd , d > 2, and let δ ∗ be
its set of smooth points. Let H be a finite subgroup of δ ∗ of order n, where n>Cd4 for some sufficiently
large absolute constant C > 0. Let x ∈ δ ∗ satisfy (d + 1)x ∈ H. Let p ∈ RPd \ δ ∗. If d = 3, assume
furthermore that δ is not contained in a quadric cone with vertex p. Then there are at least c

( n
d−1

)
hyperplanes through p that meet the coset H ⊕ x in exactly d− 1 points, for some sufficiently small
absolute constant c > 0.

Proof. We prove by induction on d that under the given hypotheses there are at least c′∏d
i=2(1− 1

i2 )
( n

d−1

)
such hyperplanes for some sufficiently small absolute constant c′ > 0. The base case d = 2 is given by
[9, Lemma 7.7].

Next assume that d > 3, and that the statement holds for d−1. Fix a q ∈ H⊕ x, and consider the
projection πq. Since q is a smooth point of δ , πq(δ \{q}) is a non-degenerate curve of degree d in RPd−1

(otherwise its degree would be at most d/2, but a non-degenerate curve has degree at least d−1). The
projection πq can be naturally extended to have a value at q, by setting πq(q) to be the point where the
tangent line of δ at q intersects the hyperplane onto which δ is projected. (This point is the single point
in πq(δ \{q})\πq(δ \{q}).) The curve πq(δ ) has degree d and is either elliptic or rational and acnodal,
hence it has a group operation � such that d points are on a hyperplane in RPd−1 if and only if they sum
to the identity.

Observe that any d points πq(p1), . . . ,πq(pd) ∈ πq(δ
∗) lie on a hyperplane in RPd−1 if and only if

p1⊕·· ·⊕ pd⊕q = 0. By Proposition 3.10 it follows that the group on πq(δ
∗) obtained by transferring the

group (δ ∗,⊕) by πq is a translation of (πq(δ
∗),�). In particular, πq(H⊕ x) = H ′� x′ for some subgroup

H ′ of (πq(δ
∗),�) of order n, and (d +1)x′ ∈ H ′.
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We would like to apply the induction hypothesis, but we can only do that if πq(p) /∈ πq(δ
∗), and

when d = 4, if πq(p) is not the vertex of a quadric cone containing πq(δ ). We next show that there are
only O(d2) exceptional points q to which we cannot apply induction.

Note that πq(p) ∈ πq(δ
∗) if and only if the line pq intersects δ with multiplicity 2, which means

we have to bound the number of these lines through p. To this end, we consider the projection of δ

from the point p. Suppose that πp does not project δ generically one-to-one to a degree d +1 curve in
RPd−1. Then πp(δ ) has degree at most (d + 1)/2. However, its degree is at least d− 1 because it is
non-degenerate. It follows that d = 3, and that πp(δ ) has degree 2 and is irreducible, so δ is contained in
a quadric cone with vertex p, which we ruled out by assumption.

Therefore, πp projects δ generically one-to-one onto the curve πp(δ ), which has degree d +1 and
has at most

(d
2

)
double points (this follows from the Plücker formulas after projecting to the plane

[31, Chapter III, Theorem 4.4]). We thus have that an arbitrary point p ∈ RPd \δ lies on at most O(d2)
secants or tangents of δ (or lines through two points of δ ∗ if p is the acnode of δ ).

If d = 4, we also have to avoid q such that πq(p) is the vertex of a cone on which πq(δ ) lies. Such q
have the property that if we first project δ from q and then πq(δ ) from πq(p), then the composition of
these two projections is not generically one-to-one. Another way to do these to successive projections is to
first project δ from p and then πp(δ ) from πp(q). Thus, we have that πp(q) is a point on the quintic πp(δ )
in RP3 such that the projection of πp(δ ) from πp(q) onto RP2 is not generically one-to-one. However,
there are only O(1) such points by Lemma 2.3. Thus there are at most Cd2 points q ∈ H⊕ x to which we
cannot apply the induction hypothesis.

For all remaining q ∈ H⊕ x, we obtain by the induction hypothesis that there are at least c′∏d−1
i=2 (1−

1
i2 )
( n

d−2

)
hyperplanes Π in RPd−1 through πq(p) and exactly d− 2 points of H ′� x′. If none of these

d−2 points equal πq(q), then π−1
q (Π) is a hyperplane in RPd through p and d−1 points of H⊕ x, one

of which is q. There are at most
(n−1

d−3

)
such hyperplanes in RPd−1 through πq(q). Therefore, there are at

least c′∏d−1
i=2 (1−

1
i2 )
( n

d−2

)
−
(n−1

d−3

)
hyperplanes in RPd that pass through p and exactly d−1 points of

H⊕ x, one of them being q. If we sum over all n−Cd2 points q, we count each hyperplane d−1 times,
and we obtain that the total number of such hyperplanes is at least

n−Cd2

d−1

(
c′

d−1

∏
i=2

(
1− 1

i2

)(
n

d−2

)
−
(

n−1
d−3

))
. (14)

It can easily be checked that

n−Cd2

d−1

(
n

d−2

)
>

(
1− 1

2d2

)(
n

d−1

)
(15)

if n > 2Cd4, and that

c′
d−1

∏
i=2

(
1− 1

i2

)
1

2d2

(
n

d−1

)
>

n−Cd2

d−1

(
n−1
d−3

)
(16)

if n > 4d3/c′. It now follows from (15) and (16) that the expression (14) is at least

c′
d

∏
i=2

(
1− 1

i2

)(
n

d−1

)
,
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which finishes the induction.

Lemma 5.8. Let δ ∗ be an elliptic normal curve or the smooth points of a rational acnodal curve in
RPd , d > 4, and let H⊕ x be a coset of a finite subgroup H of δ ∗, with (d + 1)x ∈ H. Let A ⊆ H⊕ x
and B ⊂ RPd \ (H ⊕ x) with |A| = a and |B| = b. Let P = (H ⊕ x \A)∪B with |P| = n be such that
every d points of P span a hyperplane. If A and B are not both empty and n>C(a+b+d2)d for some
sufficiently large absolute constant C > 0, then P spans at least (1+ c)

(n−1
d−1

)
ordinary hyperplanes for

some sufficiently small absolute constant c > 0.

Proof. We first bound from below the number of ordinary hyperplanes of (H⊕ x)\A that do not pass
through a point of B.

The number of ordinary hyperplanes of (H⊕ x)\A that are disjoint from A is

1
(d−1)!

∣∣∣∣{(a1, . . . ,ad) ∈ (H \ (A	 x))d :
2a1⊕a2⊕·· ·⊕ad =	(d +1)x,

a1, . . . ,ad are distinct

}∣∣∣∣ .
If we denote by by [m1, . . . ,mk]

′ the number of ordered k-tuples (a1, . . . ,ak) with distinct ai ∈ H \ (A	 x)
that satisfy m1a1⊕·· ·⊕mkak =	(d +1)x, then we obtain, similar to the proofs of Lemmas 5.3 and 5.4,
that

[2,1, . . . ,1︸ ︷︷ ︸
d−1 times

]′ = (d−1)!
(

n−b
d−1

)
− [3,1, . . . ,1︸ ︷︷ ︸

d−2 times

]′− (d−2)[2,2,1, . . . ,1︸ ︷︷ ︸
d−3 times

]′

> (d−1)!
(

n−b
d−1

)
−2(d−2)!

(
n−b
d−2

)
−2(d−2)(d−2)!

(
n−b
d−2

)
= (d−1)!

(
n−b
d−1

)
−2(d−1)!

(
n−b
d−2

)
,

and it follows that the number of ordinary hyperplanes of (H⊕ x)\A disjoint from A is at least
(n−b

d−1

)
−

2
(n−b

2

)
.

Next, we obtain an upper bound on the number of these hyperplanes that pass through a point q ∈ B.
Let the ordinary hyperplane Π pass through p1, p2, . . . , pd ∈ (H⊕ x)\A, with p1 being the double point.
Since q ∈ Π and any d points determine a hyperplane, Π is still spanned by q, p1, . . . , pd−1, after a
relabelling of p2, . . . , pd . Let S be a minimal subset of {p2, . . . , pd−1} such that the tangent line ` of δ at
p1 lies in the flat spanned by S∪{q, p1}.

If S is empty, then ` is a tangent from q to δ , of which there are at most d(d +1) (this follows again
from projection and the Plücker formulas [24, Corollary 2.5; 31, Chapter IV, p. 117]). Therefore, the
number of ordinary hyperplanes through p1, p2, . . . , pd ∈ (H⊕ x)\A with the tangent of δ at p1 passing
through q is at most d(d +1)

(n−b
d−2

)
.

If on the other hand S is non-empty, then there is some pi, say pd−1, such that q, p1, . . . , pd−2 together
with ` generate Π. Therefore, Π is determined by p1, the tangent through p1, and some d−3 more points
pi. There are at most (n−b)

(n−b−1
d−3

)
= (d−2)

(n−b
d−2

)
ordinary hyperplanes through q in this case.

The number of ordinary hyperplanes of (H⊕ x)\A that contain a point from A is at least

a
((

n−b
d−1

)
−a
(

n−b
d−2

)
− (n−b)

(
n−b−1

d−3

))
= a
(

n−b
d−1

)
− (a2 +a(d−2))

(
n−b
d−2

)
,
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since we can find such a hyperplane by choosing a point p∈ A and d−1 points p1, . . . , pd−1 ∈ (H⊕x)\A,
and then the remaining point 	(p⊕ p1⊕·· ·⊕ pd−1) might not be a new point in (H⊕ x)\A by either
being in A (possibly equal to p) or being equal to one of the pi. The number of these hyperplanes that
also pass through some point of B is at most ab

(n−b
d−2

)
.

Therefore, the number of ordinary hyperplanes of (H⊕ x)\A that miss B is at least

(1+a)
(

n−b
d−1

)
−
(
2+b(d(d +1)+d−2)+a2 +a(d−2)+ab

)(n−b
d−2

)
. (17)

Next, assuming that B 6= /0, we find a lower bound to the number of ordinary hyperplanes through
exactly one point of B and exactly d−1 points of (H⊕ x)\A. The number of hyperplanes through at
least one point of B and exactly d−1 points of (H⊕ x)\A is at least bc′

(n−b
d−1

)
−ab

(n−b
d−2

)
by Lemmas 5.6

and 5.7 for some sufficiently small absolute constant c′ > 0. The number of hyperplanes through at least
two points of B and exactly d−1 points of (H⊕ x)\A is at most

(b
2

)(n−b
d−2

)
. It follows that there are at

least bc′
(n−b

d−1

)
−
(
ab+

(b
2

))(n−b
d−2

)
ordinary hyperplanes passing though a point of B.

Combining this with (17), P spans at least

(1+a+bc′)
(

n−b
d−1

)
−
(

2+b(d(d +1)+d−2)+a2 +a(d−2)+2ab+
(

b
2

))(
n−b
d−2

)
=: f (a,b)

ordinary hyperplanes. Since

f (a+1,b)− f (a,b) =
(

n−b
d−1

)
− (2a+2b+d−1)

(
n−b
d−2

)
is easily seen to be positive for all a > 0 as long as n > (2a+2b+d−1)(d−1)+b+d−2, we have
without loss of generality that a = 0 in the case that b> 1. Then f (0,b+1)− f (0,b) is easily seen to be
at least

c′
(

n−b−1
d−1

)
− (d2 +d−2+b)

(
n−b−1

d−2

)
,

which is positive for all b> 1 if n>C(b+d2)d for C sufficiently large. Also, f (0,1) = (1+ c′)
(n−1

d−1

)
−

(d2 +2d)
(n−1

d−2

)
)> (1+ c)

(n−1
d−1

)
if n>Cd3. This completes the proof in the case where B is non-empty.

If B is empty, then we can bound the number of ordinary hyperplanes from below by setting b = 0 in
(17), and checking that the resulting expression

(1+a)
(

n
d−1

)
−
(
d +a2 +a(d−2)

)( n
d−2

)
is increasing in a if n > (2a+d−1)(d−1)+d−2, and larger than 3

2

(n−1
d−1

)
if n >Cd3.

We are now ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let P be the set of n points. By Lemma 5.2, we may assume that P has at most(n−1
d−1

)
ordinary hyperplanes. Since n>Cd32d , we may apply Theorem 1.1 to obtain that up to O(d2d)
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points, P lies in a hyperplane or is a coset of a subgroup of an elliptic normal curve or the smooth points
of a rational acnodal curve.

In the first case, by Lemma 5.1, since n>Cd32d , the minimum number of ordinary hyperplanes is
attained when all but one point is contained in a hyperplane and we get exactly

(n−1
d−1

)
ordinary hyperplanes.

In the second case, by Lemma 5.8, again since n > Cd32d , the minimum number of ordinary
hyperplanes is attained by a coset of an elliptic normal curve or the smooth points of a rational acnodal
curve. Lemmas 5.2 and 5.5 then complete the proof. Note that the second term in the error term of
Lemma 5.5 is dominated by the first term because of the lower bound on n, and that the error term here is
negative by Lemma 5.2.

Note that if we want to find the exact minimum number of ordinary hyperplanes spanned by a set of
n points in RPd , d > 4, not contained in a hyperplane and where every d points span a hyperplane, we
can continue with the calculation of [2,1, . . . ,1;c] in the proof of Lemma 5.5. As seen in the proof of
Lemma 5.2, this depends on gcd(d +1,n). We also have to minimise over different values of c ∈ H, and
if n≡ 0 (mod 4), consider both cases H ∼= Zn and H ∼= Zn/2×Z2.

For example, it can be shown that if d = 4, the minimum number is{(n−1
3

)
−4 if n≡ 0 (mod 5),(n−1

3

)
otherwise,

if d = 5, the minimum number is

(n−1
4

)
− 1

8 n2 + 1
12 n−1 if n≡ 0 (mod 6),(n−1

4

)
if n≡ 1,5 (mod 6),(n−1

4

)
− 1

8 n2 + 3
4 n−1 if n≡ 2,4 (mod 6),(n−1

4

)
− 2

3 n+2 if n≡ 3 (mod 6),

and if d = 6, the minimum number is{(n−1
5

)
−6 if n≡ 0 (mod 7),(n−1

5

)
otherwise.

Proof of Theorem 1.3. We first show that there exist sets of n points, with every d points spanning a
hyperplane, spanning at least 1

d+1

(n−1
d

)
+O

(
2−d/2

( n
b d−1

2 c
))

(d + 1)-point hyperplanes. Let δ ∗ be an
elliptic normal curve or the smooth points of a rational acnodal curve. By Propositions 3.1 and 3.9, the
number of (d +1)-point hyperplanes spanned by a coset H⊕ x of δ ∗ is

1
(d +1)!

[1, . . . ,1︸ ︷︷ ︸
d +1 times

;c]

for some c ∈ δ ∗. Note that

[1, . . . ,1︸ ︷︷ ︸
d +1 times

;c] = d!
(

n
d

)
−d[2,1, . . . ,1︸ ︷︷ ︸

d−1 times

;c],
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so if we take H⊕ x to be a coset minimising the number of ordinary hyperplanes, then by Theorem 1.2,
there are

1
d +1

((
n
d

)
−
(

n−1
d−1

))
+O

(
2−

d
2

(
n
bd−1

2 c

))
=

1
d +1

(
n−1

d

)
+O

(
2−

d
2

(
n
bd−1

2 c

))
(18)

(d +1)-point hyperplanes.
Next let P be an arbitrary set of n points in RPd , d > 4, where every d points span a hyperplane.

Suppose P spans the maximum number of (d +1)-point hyperplanes. Without loss of generality, we can
thus assume P spans at least 1

d+1

(n−1
d

)
+O

(
2−d/2

( n
b d−1

2 c
))

(d +1)-point hyperplanes.
Let mi denote the number of i-point hyperplanes spanned by P. Counting the number of unordered

d-tuples, we get (
n
d

)
= ∑

i>d

(
i
d

)
mi > md +(d +1)md+1,

hence we have

md 6

(
n
d

)
−
(

n−1
d

)
−O

(
d2−

d
2

(
n
bd−1

2 c

))
= O

((
n−1
d−1

))
,

and we can apply Theorem 1.1.
In the case where all but O(d2d) points of P are contained in a hyperplane, it is easy to see that P

spans O(d2d
( n

d−1

)
) (d +1)-point planes, contradicting the assumption.

So all but O(d2d) points of P are contained in a coset H⊕ x of a subgroup H of δ ∗. Consider the
identity

(d +1)md+1 =

(
n
d

)
−md− ∑

i>d+2

(
i
d

)
mi.

By Theorem 1.2 and Lemma 5.8, we know that md >
(n−1

d−1

)
−O

(
d2−d/2

( n
b d−1

2 c
))

and any deviation of

P from the coset H⊕ x adds at least c
(n−1

d−1

)
ordinary hyperplanes for some sufficiently small absolute

constant c > 0. Since we also have

∑
i>d+2

(
i
d

)
mi =

(
n
d

)
−md− (d +1)md+1

=

(
n
d

)
−
(

n−1
d−1

)
−
(

n−1
d

)
+O

(
d2−

d
2

(
n
bd−1

2 c

))
= O

(
d2−

d
2

(
n
bd−1

2 c

))
,

we can conclude that md+1 is maximised when P is exactly a coset of a subgroup of δ ∗, in which case
(18) completes the proof.
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Knowing the exact minimum number of ordinary hyperplanes spanned by a set of n points in RPd ,
d > 4, not contained in a hyperplane and where every d points span a hyperplane then also gives the exact
maximum number of (d +1)-point hyperplanes.

Continuing the above examples, for d = 4, the maximum number is{
1
5

(n−1
4

)
+ 4

5 if n≡ 0 (mod 5),
1
5

(n−1
4

)
otherwise,

for d = 5, the maximum number is
1
6

(n−1
5

)
+ 1

48 n2− 1
72 n+ 1

6 if n≡ 0 (mod 6),
1
6

(n−1
5

)
if n≡ 1,5 (mod 6),

1
6

(n−1
5

)
+ 1

48 n2− 1
8 n+ 1

6 if n≡ 2,4 (mod 6),
1
6

(n−1
5

)
+ 1

9 n− 1
3 if n≡ 3 (mod 6),

and for d = 6, the maximum number is{
1
7

(n−1
6

)
+ 6

7 if n≡ 0 (mod 7),
1
7

(n−1
6

)
otherwise.
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