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Angular measures and Birkhoff orthogonality in Minkowski
planes
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Abstract. Let x and y be two unit vectors in a normed plane R
2. We say that x is Birkhoff

orthogonal to y if the line through x in the direction y supports the unit disc. A B-measure
(Fankhänel in Beitr Algebra Geom 52(2):335–342, 2011) is an angular measure μ on the unit
circle for which μ(C) = π/2 whenever C is a shorter arc of the unit circle connecting two
Birkhoff orthogonal points. We present a characterization of the normed planes that admit
a B-measure.
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1. Introduction

Let K be an origin-symmetric convex body in the plane, that is, a compact
convex set with non-empty interior in R

2, and consider the normed plane
(R2, ‖·‖K), where ‖x‖K = min {λ > 0 : x ∈ λK} for any x ∈ R

2. Then K is
the unit ball of the norm, and its boundary bdK the unit circle.

Let x, y ∈ bdK be two unit vectors in R
2. We say that x is Birkhoff

orthogonal to y, and denote it by x � y, if ‖x‖K ≤ ‖x + ty‖K for all t ∈ R.
Geometrically, this means that the line through the point x in the direction y
supports the unit ball K. In general, Birkhoff orthogonality is not a symmetric
relation. Normed planes where Birkhoff orthogonality is symmetric are called
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Radon planes and the boundaries of their unit balls Radon curves (see the
survey [5]).

A Borel measure μ on bdK is called an angular measure, if μ(bdK) = 2π,
μ(X) = μ(−X) for every Borel subset X of bdK, and μ is continuous, that
is, μ({x}) = 0 for every x ∈ bdK. There always exists an angular measure
on bdK, such as the one-dimensional Hausdorff measure on bdK normalized
to 2π, but an arbitrary angular measure does not necessarily have any rela-
tion to the geometry of (R2, ‖·‖K). A natural problem then is to find angular
measures with interesting geometric properties. For instance, Brass [2] showed
that whenever the unit ball is not a parallelogram, there is an angular measure
in which the angles of any equilateral triangle are equal. This type of angular
measure is very useful in studying packings of unit balls [2,8]. Angular mea-
sures with other properties have been proposed; see the survey [1, Section 4]
for an overview. An angular measure μ is called a B-measure [3] if μ(C) = π/2
for every closed arc C of bdK that contains no opposite points of bdK, and
whose endpoints x and y satisfy x � y.

The main result of this note (Theorem 1) is a characterization of the normed
planes (R2, ‖·‖K) which admit a B-measure. In order to formulate this theorem,
we need to introduce two subsets of bd K.

We call a point x in bdK an Auerbach point, if there is a y ∈ bdK such
that x � y and y � x. In this case we say that x and y form an Auerbach pair.
It is well known that Auerbach points exist for any norm [9, Section 3.2]. We
denote the set of Auerbach points of K by A(K). Note that A(K) is a closed
subset of bdK. We denote the union of open non-degenerate line segments
contained in bdK by E(K).

Theorem 1. Let K be an origin-symmetric convex body in R
2. Then there is a

B-measure on bdK if, and only if, the set A(K)\E(K) is uncountable.

This is a strengthening of a result of Fankhänel [3, Theorem 1], where
the existence of a B-measure is shown under the condition that A(K)\E(K)
contains an arc. (Fankhänel does not explicitly exclude line segments, but it is
clear that they have to be excluded, as line segments in A(K) necessarily have
measure 0 for any B-measure; see Lemma 3.) We prove Theorem 1 in Section 2,
where we also present a smooth, strictly convex, centrally symmetric planar
body K such that A(K) is the union of two disjoint copies of the Cantor set
and a countable set of isolated points (Example 4). Thus, A(K) is of Lebesgue
measure zero and yet, by Theorem 1, there is a B-measure on bd K.

We recall that a subset of a topological space is called perfect if it is closed
and has no isolated point. Recall that the support supp(μ) of a Borel measure
μ on a topological space X is the set of all x ∈ X such that all open sets
containing x have positive μ-measure. It is easy to see that the support of any
continuous measure is a perfect set. In the proof of Theorem 1, we rely on the
following converse for X = [0, 1].
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Proposition 2. Let H ⊂ [0, 1] be a non-empty, perfect set. Then there is a
continuous probability measure on [0, 1] whose support is H.

This is a well-known result holding more generally for any separable com-
plete metric space [6, Chapter II, Theorem 8.1], but for the convenience of the
reader we present an explicit construction for this special case in Section 3. It is
well known that every non-empty perfect set is uncountable [7, Theorem 2.43]
and every uncountable Borel set contains a perfect set [4, Section 6B]. (There
is an even larger class, the analytic sets, with this property [4], but we will
only need it for Fσ sets).

2. The Auerbach set and B-measure

Given two non-opposite points a, b ∈ bd K, we denote by �(a, b) the closed
arc from a to b that does not contain any opposite pairs of points. We denote
the closed line segment with endpoints a, b ∈ R

2 by [a, b].

Lemma 3. Let K be an origin-symmetric convex body in R
2 and μ be a B-

measure on bdK. Then supp(μ) ⊆ A(K)\E(K).

Proof. Let x ∈ E(K). Then x ∈ [x−, x+] ⊂ bd K for some x−, x+ with
x, x−, x+ distinct. Let y ∈ bdK be parallel to [x−, x+]. Since x−, x+ � y, we
have μ([x+, y]) = μ([x−, y]) = π/2, hence μ([x−, x+]) = 0 and x /∈ supp(μ).

Next, let x ∈ bdK\A(K). Let y1, y2 ∈ bdK such that x � y1 and y2 � x.
Then y1 �= y2. By possibly replacing y2 by −y2, we assume without loss of
generality that y1 and y2 are in the same open half plane bounded by the
line ox. By possibly replacing x by −x, we may also assume without loss of
generality that y2 and x are in the same open half plane bounded by oy1. Let
x1 and x2 be points on the same side of oy1 as x such that y1 � x1 and x2 � y2.
Then x1, x2 �= x. Because y2 is between x and y1, we have that x1 and x2 are
in opposite open half planes bounded by ox. As above, since μ is a B-measure,
μ(�(x1, x2)) = μ(�(x, x1)) = μ(�(x, x2)) = 0, hence x /∈ supp(μ). �
Proof of Theorem 1. Let μ be a B-measure on bd K. Then supp(μ) is a perfect
set, hence uncountable, and Lemma 3 gives that A(K)\E(K) is uncountable.

Conversely, assume that ˜A := A(K)\E(K) is uncountable. We next find an
appropriate perfect subset of ˜A and use Proposition 2 to define a B-measure
on bdK. We first need to define an auxiliary map φ : ˜A → A(K) by setting
φ(x) to be the first y ∈ A(K) in the positive direction along bdK from x
so that x � y and y � x. Then φ is monotone, but not necessarily injective.
However, if φ(x1) = φ(x2), then x1 � y and x2 � y, as well as x1 and x2 being
on the same side of line oy. Thus [x1, x2] is a line segment on bdK. Since the
set

E′(K) := {y ∈ bdK : K has more than one supporting line at y}
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is countable, it follows that for any given y ∈ A(K), there are at most two
values of x ∈ ˜A such that φ(x) = y, and there are at most countably many
y ∈ A(K) for which there is more than one x ∈ ˜A such that φ(x) = y. In
particular, φ is a Borel measurable map.

We next find an appropriate arc �(a, b) such that �(a, b)∩ ˜A is uncountable.
For any x ∈ bd K, let x+ denote the first element of ˜A in the positive direction
from x, and let x− be the first element of ˜A in the negative direction from x.
(If x ∈ ˜A then x = x− = x+).

Let E(K) denote the union of the closed line segments on bdK. Then E(K)
is the union of E(K) with a countable set. Observe that for any p ∈ bd K,
the set φ−1(p) contains at most two points. Thus, φ−1(E′(K)) is countable.
Moreover, φ−1(Ē(K)) is countable, since φ takes at most one value on an open
line segment on bd(K). Fix an element

a ∈ A(K) \ [

E(K) ∪ E′(K) ∪ φ−1
(

Ē(K) ∪ E′(K)
)]

,

and let b = φ(a). Since a /∈ E′(K), the only two points of bd(K) that form an
Auerbach pair with a are ±b. Since a /∈ E(K), the only two points of bd(K)
that form an Auerbach pair with b are ±a. Since a /∈ φ−1(E(K)), we have
b ∈ A(K)\E(K). It follows that φ(b) = −a, φ(−a) = −b and φ(−b) = a.

We also obtain that �(a, b) ∩ ˜A or �(b,−a) ∩ ˜A is uncountable. Thus we
may assume without loss of generality that �(a, b) ∩ ˜A is uncountable, where
φ(a) = b and φ(b) = −a, so it contains a perfect set, and by Proposition 2
there is a continuous probability measure ν on the Borel sets of bd K with
supp(ν) ⊆ �(a, b) ∩ ˜A. We use ν to define the B-measure as follows. For any
Borel set S ⊆ bdK, let

μ(S) :=
π

2
[

ν(S) + ν(−S) + ν(φ−1(S)) + ν(φ−1(−S))
]

. (1)

Then μ is clearly an angular measure. Showing that μ is a B-measure is some-
what technical, mainly because � is not in general a symmetric relation. Let
x, y ∈ bdK with x � y. We have to show that μ(�(x, y)) = π/2. After possibly
replacing x by −x and y by −y, we may assume that x ∈ �(a, b) ∪ �(b,−a)
and y ∈ �(a, b) ∪ �(b,−a).
Case 1: x ∈ �(a, b). Then either y ∈ �(a, b) or y ∈ �(b,−a)\{b}.
Case 1.1: y ∈ �(a, b). There are two cases depending on the relative position
of x and y.
Case 1.1.1: x ∈ �(a, y). Since a /∈ E(K), we obtain x = a, and since a /∈ E′(K),
we obtain y = b. Hence, μ(�(x, y)) = π/2 as required.
Case 1.1.2: x ∈ �(y, b). Since b /∈ E′(K), we obtain y = a, and since b /∈ E(K),
we obtain x = b, and again μ(�(x, y)) = π/2.
Case 1.2: y ∈ �(b,−a)\{b}. In order to show that μ(�(x, y)) = π/2, it will be
sufficient to show that φ−1(�(b, y)) equals �(a, x) ∩ ˜A up to ν-measure 0. In
fact, we show that
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φ−1(�(b, y+)) ∪ ({x} ∩ ˜A) ∪ φ−1(E(K))

= (�(a, x) ∩ ˜A) ∪ φ−1({b, y+}) ∪ φ−1(E(K)). (2)

First, let p ∈ φ−1(�(b, y+))\φ−1(E(K)). Then φ(p) ∈ �(b, y+) and p ∈ ˜A.
Without loss of generality, φ(p) �= b, y+, and we want to show that p ∈ �(a, x).
Clearly, p ∈ �(a, b). Suppose that p ∈ �(x, b) and p �= x. It follows from
p � φ(p) and x � y that φ(p) /∈ �(b, y)\{y}, since otherwise p = x. Therefore,
φ(p) ∈ �(y, y+). However, since φ(p), y+ ∈ ˜A, we obtain the contradiction
φ(p) = y+. Therefore, p /∈ �(x, b)\{x}, and it follows that p ∈ �(a, x), which
finishes the proof of the ⊆-inclusion of (2).

For the opposite inclusion, we assume without loss of generality that p ∈
�(a, x) ∩ ˜A and φ(p) �= b, y+. Suppose that φ(p) /∈ �(b, y+). Then y+ ∈
�(b, φ(p))\{φ(p)}. By considering p � φ(p) and x � y, we obtain that p = x,
so p ∈ {x} ∩ ˜A. This proves the ⊇-inclusion of (2).
Case 2: x ∈ �(b,−a). This case is very similar to Case 1 and we only summarize
the argument.
Case 2.1: y ∈ �(b,−a). As in Case 1.1, we use a, b /∈ E′(K) ∪ E(K) to obtain
that {x, y} = {a, b}.
Case 2.2: y ∈ �(a, b). In an almost identical way as in Case 1.2, we can show
that

φ−1(�(b, x+)) ∪ ({y} ∩ ˜A) ∪ φ−1(E(K))

= (�(a, y) ∩ ˜A) ∪ φ−1({b, x+}) ∪ φ−1(E(K)),

from which it follows that ν(�(b, x)) = ν(�(a, y)), hence μ(�(x, y) = π/2
by (1).

This completes the proof of Theorem 1. �

Example 4. We present a smooth, strictly convex, origin-symmetric planar
body K such that A(K) is the union of two disjoint copies of the Cantor
set and a countable set of isolated points.

First, let D denote the Euclidean unit disk centered at the origin, and let
C be the shorter arc connecting the two points whose angles with the positive
x axis are −π/4 and π/4. Let C0 denote the Cantor set in C. Now, C0 can be
written as

C0 = C\
∞
⋃

n=1

In,

where the In are disjoint open arcs in C.
For each n ∈ Z

+, we construct a smooth and strictly convex curve Cn

connecting the two endpoints of In with the following properties.
1. Cn has the same tangents at the endpoints as D;
2. Cn is contained in conv In;
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3. For any point x of Cn, the tangent of Cn at x is orthogonal (in the
Euclidean sense) to x if, and only if, x is the midpoint or an endpoint
of Cn.

Consider the bump function

Ψ(x) =

{

exp
(

− 1
1−x2

)

if x ∈ (−1, 1),

0 otherwise.

It is well known that Ψ is non-negative, smooth, its support is [−1, 1], and the
only points in its support where the derivative is zero are −1, 1 and 1/2.

Let the endpoints of In be (cos αn, sin αn) and (cos βn, sin βn), where αn <
βn. Let Cn be the curve

ϕ 
→
(

1 − εΨ

(

2
βn − αn

[

ϕ − αn + βn

2

]))

(cos ϕ, sin ϕ), ϕ ∈ [αn, βn],

for some small ε > 0.
Clearly, Cn is a smooth curve, and if ε is sufficiently small, then it is also

strictly convex. Moreover, Cn satisfies Property 1, as Ψ ′(−1) = Ψ ′(1) = 0. If
ε is sufficiently small, then Cn satisfies Property 2 as well. Finally, to verify
Property 3, observe that the tangent of Cn is orthogonal to (cos ϕ, sin ϕ) ∈ Cn

if, and only if, the derivative of

ϕ 
→ 1 − εΨ

(

2
βn − αn

[

ϕ − αn + βn

2

])

vanishes at ϕ. However, this is only the case at the midpoint and two endpoints
of Cn.

The closed curve

L := (bdD\(C ∪ −C)) ∪ (C0 ∪ −C0) ∪
∞
⋃

n=1

(Cn ∪ −Cn)

is the boundary of a smooth, strictly convex, origin-symmetric planar body
K, say. In order to identify the Auerbach points of K, first observe that if
x, y ∈ L form an Auerbach pair in K, then x and y are orthogonal in the
Euclidean sense. (The converse does not hold, of course.) By this observation
and Property 3, for each n ∈ Z

+, the only Auerbach point in the relative
interior of the arc Cn is the midpoint of Cn. The same holds for −Cn. Again
by the observation, all points of C0 ∪ −C0 are Auerbach points. Finally, again
by the observation, the set of Auerbach points of (bdD\(C ∪ −C)) is the
rotation of the previously described set of Auerbach points in (C0 ∪ −C0) ∪
⋃∞

n=1 (Cn ∪ −Cn) by an angle of π/2. It follows that A(K) is the union of two
disjoint copies of the Cantor set and a countable set of isolated points. �
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3. Proof of Proposition 2

We may assume that 0, 1 ∈ H. Enumerate the components of R\H as I0, I1, . . .,
where I0 := (−∞, 0) and I1 := (1,∞). We will recursively assign a real number
yn to each open interval In. Let y0 := 0 and y1 := 1.

If yk has already been defined for all k < n, let

yn :=
1
2

⎛

⎝max
�<n

I�<In

y� + min
�<n

I�>In

y�

⎞

⎠ ,

that is, we consider the two intervals with indices less than n just below and
just above In, and yn is the average of the two values assigned to these two
intervals.

We define a function f on R as follows. First, on R\H, let f |In
= yn. To

extend f to R, we set

ax := sup(−∞, x)\H, and bx := inf(x,∞)\H. (3)

If x ∈ H and ax = bx, then the left limit, f(ax−), of f at ax clearly equals
the right limit f(bx+). Thus, the function

f(x) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yn if x ∈ In;
f(ax−) = f(bx+) if x ∈ H and x = ax = bx;

f(ax−)
bx − x

bx − ax
+ f(bx+)

x − ax

bx − ax
if x ∈ H and ax < bx

is continuous, strictly increasing on H, and locally constant on R\H.
Finally, let μ0 denote the Lebesgue-Stieltjes measure corresponding to f ,

and μ1 the measure μ1(A) = λ(A ∩ H), where λ is Lebesgue measure. Then
μ = μ0 + μ1 is a continuous measure, and suppμ ⊆ H.

To show the reverse inclusion, let I be an open interval and assume that
I ∩ H �= ∅. If I ∩ H is of positive Lebesgue measure, then μ(I) > μ1(I) > 0.
Otherwise, I is intersected by at least two Ik. Indeed, if only one Ik intersected
I, then I ∩ H would be the union of at most two intervals, contradicting that
H is perfect and of Lebesgue measure zero.

Since the values of f on distinct intervals Ik are distinct, f is not constant
on I, and hence, μ(I) > μ0(I) > 0, completing the proof of Proposition 2.

The total measure is μ(R) = μ0(R) + μ1(R) = 1 + λ(H) ∈ [1, 2], and thus
ν = μ/μ(R) is a probability measure with the desired properties. �
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