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Decomposing tournaments into paths

Allan Lo, Viresh Patel, Jozef Skokan and John Talbot

Abstract

We consider a generalisation of Kelly’s conjecture which is due to Alspach, Mason, and Pullman
from 1976. Kelly’s conjecture states that every regular tournament has an edge decomposition
into Hamilton cycles, and this was proved by Kühn and Osthus for large tournaments. The
conjecture of Alspach, Mason, and Pullman asks for the minimum number of paths needed
in a path decomposition of a general tournament T . There is a natural lower bound for this
number in terms of the degree sequence of T and it is conjectured that this bound is correct
for tournaments of even order. Almost all cases of the conjecture are open and we prove many
of them.

1. Introduction

There has been a great deal of recent activity in the study of decompositions of graphs and
hypergraphs. The prototypical question in this area asks whether, for some given class C of
graphs, hypergraphs or directed graphs, the edge set of each H ∈ C can be decomposed into
parts satisfying some given property. The development of the robust expanders technique by
Kühn and Osthus [9] was a major breakthrough leading to the resolution of several conjectures
concerning decompositions of (directed) graphs into spanning structures such as matchings and
Hamilton cycles (see, for example, [4, 10]).

The problem we address in this paper is that of decomposing tournaments into directed paths.
A tournament is an orientation of the complete graph, that is, one obtains a tournament by
assigning a direction to each edge of the (undirected) complete graph. Let us begin, however,
in the more general setting of directed graphs.

Let D be a directed graph with vertex set V (D) and edge set E(D). When referring to paths
and cycles in directed graphs, we always mean directed paths and directed cycles. A path
decomposition of D is a collection of paths P1, . . . , Pk of D whose edge sets E(P1), . . . , E(Pk)
partition E(D). Given any directed graph D, it is natural to ask what the minimum number
of paths is in a path decomposition of D. This is called the path number of D and is denoted
pn(D). A natural lower bound on pn(D) is obtained by examining the degree sequence of D.
For each vertex v ∈ V (D), write d+

D(v) (respectively, d−D(v)) for the number of edges exiting
(respectively, entering) v. Define the excess at v to be ex(v) := d+

D(v) − d−D(v) and similarly
define the positive and negative excess at v to be, respectively, ex+(v) := max{ex(v), 0}
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and ex−(v) := max{−ex(v), 0}. It is easy to see that the excesses of all vertices sum
to zero.

We note that in any path decomposition of D, at least ex+(v) paths must start at v and at
least ex−(v) paths must end at v. Therefore, we have

pn(D) � ex(D) :=
∑

v∈V (D)

ex+(v) =
∑

v∈V (D)

ex−(v) =
1
2

∑
v∈V (D)

|ex(v)|,

where ex(D) is called the excess of D. Any digraph for which equality holds above is called
consistent. Clearly, not every digraph is consistent; in particular, any nonempty digraph D of
excess 0 cannot be consistent. However, Alspach, Mason, and Pullman [1] conjectured that
every even tournament is consistent.

Conjecture 1.1 (Alspach, Mason, and Pullman [1]). Every tournament T with an even
number of vertices satisfies pn(T ) = ex(T ).

It is almost immediate to see that this conjecture is a considerable generalisation of Kelly’s
conjecture stated below. We give the easy argument after Theorem 1.3.

Conjecture 1.2 (Kelly; see, for example, [3]). The edge set of every regular tournament
can be decomposed into Hamilton cycles.

Almost 50 years after it was stated, Kühn and Osthus [9] finally proved Kelly’s conjecture
for large tournaments using their powerful robust expanders technique, which was subse-
quently used to prove several other conjectures on edge decompositions of (directed) graphs
[4, 10].

Theorem 1.3 (Kühn and Osthus [9]). Every sufficiently large regular tournament has a
Hamilton decomposition.

To see that Conjecture 1.1 implies Conjecture 1.2, take any regular (n + 1)-vertex tour-
nament T (so n must be even) and any v ∈ V (T ), and note that ex(T − v) = n/2. If
Conjecture 1.1 holds, then T − v can be decomposed into n/2 paths, so they must be
Hamilton paths. Adding v back to T − v, it is easy to see that each path can be completed
to a Hamilton cycle, giving a Hamilton decomposition of T . The converse is also easy to
see. Thus, the special case of Conjecture 1.1 in which ex(T ) = n/2 is equivalent to Kelly’s
Conjecture. In general, however, ex(T ) can take a large range of values as the proposition below
shows.

Proposition 1.4. If T is an n-vertex tournament with n even, then n/2 � ex(T ) � n2/4.
Furthermore, each value in the range occurs.

As we saw, the lower bound occurs for any almost-regular tournament and it is easy to verify
that the upper bound occurs for the transitive tournament (in fact it occurs for any tournament
with a vertex partition into two equal size parts A and B where all edges are directed from A to
B). Alspach and Pullman [2] showed that for any tournament T , pn(T ) � n2/4 thus verifying
Conjecture 1.1 for the special case ex(T ) = n2/4 (and this was generalised to digraphs [13]).
Thus, the conjecture has been solved for the two extreme values of excess, namely, n/2 and
n2/4: for every other value of ex(T ) between n/2 and n2/4 the conjecture remains open. Our
main contribution is to solve many more cases of the conjecture.
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Theorem 1.5. There exists C > 0 and n0 ∈ N such that if T is an n-vertex tournament
with n � n0 even and ex(T ) > Cn, then pn(T ) = ex(T ).

We make no attempt to optimise or even compute the value of C, but we note that it is not
a tower-type constant that one associates with the use of the Szemerédi Regularity Lemma (a
powerful tool used in extremal combinatorics and elsewhere). We prove this theorem in two
steps. We will first prove the following weakening of the Theorem 1.5.

Theorem 1.6. There exists ε > 0 (we can take ε = 1/18) and n0 ∈ N such that if T is a
tournament on n > n0 vertices with n even and ex(T ) � n2−ε, then pn(T ) = ex(T ).

The proof of this result is short and self-contained, relying on a novel application of the
absorption technique due to Rödl, Ruciński, and Szemerédi [14] (with special forms appearing
in earlier work, for example, [7]).

In the next step, we consider tournaments of excess smaller than n2−ε but bigger than Cn.
Such tournaments are almost regular and are therefore amenable to the techniques used by
Kühn and Osthus [9]. For tournaments of small excess, we will ultimately reduce the problem of
showing that pn(T ) = ex(T ) to the problem of showing that a regular oriented graph D of very
high degree has an edge decomposition into Hamilton cycles; such a Hamilton decomposition
of D is known to exist by the main result from [9].

1.1. Outline

In the next section, we give the basic notation we will use as well as some preliminary results
needed in Section 3. In Section 3, we give the short proof of Theorem 1.6, which requires only
Hall’s Theorem and Menger’s Theorem. In Section 4, we give further preliminaries needed for
the remaining sections; in particular, we state the results related to robust expansion that
we will need. At the end of Section 4, we give an overview of the arguments in Section 5 and
Section 6 that allow us to extend Theorem 1.6 to Theorem 1.5. Section 5 contains a preliminary
result, Lemma 5.1, that helps us to deal with certain problematic vertices that we encounter in
Section 6. In Section 6, we prove Theorem 1.5 in a three-step reduction via Theorems 6.1, 6.7,
and 6.12.

2. Notation and preliminaries

2.1. Notation

In this paper, a digraph refers to a directed graph without loops where we allow up to two
edges between any pair x, y of distinct vertices, at most one in each direction. Occasionally we
work with directed multigraphs which again have no loops, but where we permit more than
two directed edges between any pair of distinct vertices. An oriented graph is a directed graph
where we permit only one edge between any pair of distinct vertices. Given a digraph D, we
write V (D) for its vertex set and E(D) for its edge set. We write xy for an edge directed from
x to y.

We write H ⊆ D to mean that H is a subdigraph of D, that is, V (H) ⊆ V (D) and E(H) ⊆
E(D). Given X ⊆ V (D), we write D −X for the digraph obtained from D by deleting all
vertices in X, and D[X] for the subdigraph of D induced by X. Given F ⊆ E(D), we write
D − F for the digraph obtained from D by deleting all edges in F . If H is a subdigraph of
D, we write D −H for D − E(H). For two subdigraphs H1 and H2 of D, we write H1 ∪H2

for the subdigraph with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). For a set of
edges F ⊆ E(D), we sometimes write V (F ) to denote the set of vertices incident to some edge
in F .
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If x is a vertex of a digraph D, then N+
D (x) denotes the out-neighbourhood of x, that

is, the set of all those vertices y for which xy ∈ E(D). Similarly, N−
D (x) denotes the in-

neighbourhood of x, that is, the set of all those vertices y for which yx ∈ E(D). For S ⊆ V (D),
we write N+

D (x, S) for all those vertices y ∈ S such that xy ∈ E(D) and correspondingly for
N−

D (x, S). We write d+
D(x) := |N+

D (x)| for the outdegree of x and d−D(x) := |N−
D (x)| for its

indegree. Similarly, we write d±D(x, S) := |N±
D (x, S)|. We denote the minimum outdegree of

D by δ+(D) := min{d+
D(x) : x ∈ V (D)} and the minimum indegree δ−(D) := min{d−D(x) : x ∈

V (D)}. The minimum semi-degree of D is δ0(D) := min{δ+(D), δ−(D)} and the minimum
degree is δ(D) := min{d+(x) + d−(x) : x ∈ V (D)}. We use Δ±(D), Δ0(D) and Δ(D) for the
corresponding maximum degrees.

Whenever X,Y ⊆ V (D) are disjoint, we write ED(X) for the set of edges of D having both
endvertices in X, and ED(X,Y ) for the set of edges of D that start in X and end in Y .

Unless stated otherwise, when we refer to paths and cycles in digraphs, we mean directed
paths and cycles, that is, the edges on these paths and cycles are oriented consistently. We
write P = x1x2 · · ·xt to indicate that P is a path with edges x1x2, x2x3, . . . , xt−1xt, where
x1, . . . , xt are distinct vertices. We occasionally denote such a path P by x1Pxt to indicate
that it starts at x1 and ends at xt. For two paths P = a · · · b and Q = b · · · c, we write aPbQc
for the concatenation of the paths P and Q and this notation generalises to cycles in the
obvious ways. In particular, for a cycle C and vertices a, b on the cycle, aCb denotes the paths
from a to b along the cycle. We often use calligraphic letters, for example, P for a set of paths
P = {P1, . . . , Pr}. In that case ∪P refers to the digraph that is the union of the paths and
V (P) and E(P) refer to the vertex and edge set of the union.

For a set X and U ⊆ X, we will write IU : X → {0, 1} for the indicator function of U .
For x, y ∈ (0, 1], we often use the notation x � y to mean that x is sufficiently small as a

function of y, that is, x � f(y) for some implicitly given non-decreasing function f : (0, 1] →
(0, 1].

Throughout, we omit floors and ceilings and treat large numbers as integers whenever this
does not affect the argument.

2.2. Basic graph theory

We will very occasionally work with undirected graphs for which we use standard notation
similar to that used for directed graphs (see, for example, [5]).

Theorem 2.1 (variant of Hall’s Theorem). Suppose G is a bipartite graph with vertex
classes A and B and k ∈ N. If k|NG(X)| � |X| for every X ⊆ A, then each a ∈ A can be
matched with some b ∈ B such that each b ∈ B is matched with at most k elements of A, that
is, there exists a subgraph G′ ⊆ G in which every vertex in A has degree 1 and every vertex in
B has degree at most k.

Corollary 2.2. Suppose G is a bipartite graph with vertex classes A and B both of size
n and suppose δ(G) � n/2. Then G has a perfect matching.

For a directed graph D and A,B ⊆ V (D), an A,B-path of D is a path of D that starts in
A and ends in B. An A,B-separator of D is a vertex subset S ⊆ V (D) such that there are no
A,B-paths in D − S.

Theorem 2.3 (Menger’s Theorem). Suppose D is a directed graph and A,B ⊆ V (D). If the
smallest A,B-separator in D has size t, then there exist t internally vertex-disjoint A,B-paths
in D.
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2.3. Excess and partial decompositions

We recall definitions from the introduction. Let D be a directed graph. For a vertex v ∈ V (D),
recall that exD(v) := d+

D(v) − d−D(v). We define ex+
D(v) := max{0, exD(v)} and ex−

D(v) :=
max{0,−exD(v)}. Let

ex(D) :=
1
2

∑
v∈V (D)

|exD(v)| =
∑

v∈V (D)

ex+
D(v) =

∑
v∈V (D)

ex−
D(v).

For ∗ ∈ {+,−}, let U∗(D) := {v ∈ V (D) : ex∗
D(v) > 0} and let U0(D) := {v ∈ V (D) :

exD(v) = 0}.
We state the following very simple observation, so that we can refer to it later.

Proposition 2.4. Suppose D is a directed graph and H ⊆ D is a subdigraph in which
ex∗

H(v) � ex∗
D(v) for all v ∈ V (D) and ∗ ∈ {+,−} (here we define ex∗

H(v) = 0 for v ∈ V (D) \
V (H)). Then ex(D) = ex(H) + ex(D −H).

Proof. To see this, note that either exD(v), exH(v), and exD−H(v) are all at least zero or
all at most zero for each v ∈ V (D). Hence, exD(v) = exH(v) + exD−H(v) for all v ∈ V (D). We
sum over all vertices to obtain the result. �

The following definitions are convenient.

Definition 2.5. A perfect decomposition of a digraph D is a set P = {P1, . . . , Pr} of edge-
disjoint paths of D that together cover E(D) with r = ex(D). (Thus, Conjecture 1.1 states
that every even tournament has a perfect decomposition.)

A partial decomposition of a digraph D is a set P = {P1, . . . , Pk} of edge-disjoint paths of
D such that for every v ∈ V (D) at most ex+

D(v) of the paths start at v and at most ex−
D(v) of

the paths end at v.

It is easy to see that any subset of a perfect decomposition of G is a partial decomposition
of G. We will need the following straightforward fact about perfect decompositions.

Proposition 2.6. If D is an acyclic digraph, then it has a perfect decomposition.

Proof. Iteratively remove paths of maximum length. Note that removing such a path from
an acyclic digraph reduces the excess by one (since such a path must begin at a vertex v,
where d−(v) = 0 (and hence, ex(v) > 0), and must end at a vertex, where d+(v) = 0 (and
hence, ex(v) < 0). So, the proposition holds by induction on ex(D). �

3. Exact Decomposition for tournaments with high excess

In this section, we prove Theorem 1.6. We start by showing that any Eulerian oriented graph
can be decomposed into a small number of cycles. We will also need an extra technical condition
on this cycle decomposition. We use the following result of Huang, Ma, Shapira, Sudakov, and
Yuster [6, Proposition 1.5].

Lemma 3.1. Every Eulerian digraph D with n vertices and m edges has a cycle of length
1 + max(m2/24n3, �

√
m/n	).
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Lemma 3.2. Let n ∈ N. Let D be an Eulerian oriented graph with n vertices. Then we can
decompose D into t � 50n4/3 log n cycles C1, . . . , Ct and for each cycle Ci we can find distinct
representatives xi

1, x
i
2, . . . , x

i
ri ∈ V (Ci) (indexed in order) with the following properties.

(i) Every cycle has at least two representatives, that is, ri � 2 for all i.
(ii) The interval between consecutive representative vertices on a cycle xi

jCix
i
j+1 has length

at most n2/3.
(iii) Every vertex v ∈ V occurs as a representative at most 24n2/3 log1/2 n times.

Proof. We first show that D can be decomposed into at most 50n4/3 log n cycles. Note that
D has m < n2/2 edges. We iteratively remove the longest cycle and let mt be the number of
edges remaining at step t. From Lemma 3.1, we have that mt+1 � mt − g(mt), where

g(r) = max
{
r2/24n3, �

√
r/n	

}
>

r

24n4/3
.

To see the inequality note that if r � n5/3, then r2/24n3 � r/24n4/3, and if r < n5/3, then√
r/n > r/n1/2+5/6 = r/n4/3. Thus, we see that

mt+1 < mt −
mt

24n4/3
= mt

(
1 − 1

24n4/3

)
� mt exp

(
− 1

24n4/3

)
.

Hence, mt < exp(−t/24n4/3)n2 from which we see that mt < 1 after at most 50n4/3 log n steps,
giving at most as many cycles in the greedy decomposition of D.

Next, we show how to obtain the representatives. Assume we have a decomposition of D
into a minimum number of cycles C1, . . . , Ct, where we know t � 50n4/3 log n.

First we treat the long cycles. Assume without loss of generality that C1, . . . , Ck are
the cycles in our decomposition of length larger than n2/3. Divide each such cycle Ci into
intervals Ii1, . . . , I

i
ri each of length between n2/3/4 and n2/3/2 with ri minimal. Note that

ri � 4|E(Ci)|n−2/3 for all i ∈ [k]. Thus, in total we have at most
∑

i∈[k] 4|E(Ci)|n−2/3 �
4|E(D)|n−2/3 � 2n4/3 intervals each of length at least n2/3/4. Therefore, we can greedily pick
xi
j ∈ Iij such that no vertex in V (D) appears as a representative more than 8n2/3 times.
Consider the remaining (short) cycles Ck+1, . . . , Ct, for which we need only find two

representatives each. Let C = {Ck+1, . . . Ct}. First, we will find one representative in each cycle
of C such that no vertex is chosen more than 8n2/3 log1/2 n times. Let H be the bipartite graph
with vertex partitions C and V (D), where for C ∈ C and v ∈ V (D) are joined if and only if
v ∈ V (C). We now apply (a version of) Hall’s theorem (Theorem 2.1) to find one representative
in each C such that no vertex is chosen more than 8n2/3 log1/2 n times. If such a collection of
representatives does not exist, then Theorem 2.1 implies that there exists a subset C′ of C such
that 8n2/3 log1/2 n|NH(C′)| < |C′|. On the other hand, we have

|NH(C′)| = |V
(⋃

C′
)
| � |E

(⋃
C′
)
|1/2 � |C′|1/2.

This implies that t � |C′| > 64n4/3 log n, a contradiction. Thus, we have found one representa-
tive xi

1 ∈ V (Ci) for each k + 1 � i � t such that each vertex v ∈ V occurs as a representative at
most 8n2/3 log1/2 n times. Next, let Pi := Ci \ xi

1 for each k + 1 � i � t. Note that |E(Pi)| � 1.
By a similar argument as above, we can find one representative xi

2 ∈ V (Pi) for each k + 1 �
i � t such that each vertex v ∈ V occurs as a representative at most 8n2/3 log1/2 n times. In
summary, we have found two distinct representatives for each C ∈ C such that each v ∈ V
occurs as a representative at most 16n2/3 log1/2 n times.

Now, combining the representatives of the long cycles and the short cycles, we see that each
vertex is represented at most 8n2/3 + 16n2/3 log1/2 n � 24n2/3 log1/2 n times. �
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For the remainder of the section, assume T = (V,E) is a tournament with ex(T ) � 8n17/9+γ ,
where 1/n � γ. In the next two lemmas, we will construct paths in T that will form a partial
decomposition of T when combined in the right way. Moreover, it will turn out that these paths
can also be used to ‘absorb’ cycles; this is the crucial idea of the proof of Theorem 1.6.

For any digraph D, any s ∈ R, and ∗ ∈ {+,−}, we define W ∗
s (D) := {v ∈ V (D) : ex∗

D(v) �
s}.

Lemma 3.3. Let n ∈ N and 1/n � γ. Suppose that T = (V,E) is a tournament on n vertices
with ex(T ) � 8n17/9+γ . Set s = n8/9+γ . Let H ⊆ T with Δ(H) � s and S ⊆ V with |S| � s.
For any v ∈ V \ S, there exist n2/3+γ paths in T −H − S that start in W+

s (T ), end at v, have
length at most 4n1/9, and are vertex-disjoint except at their end point v.

In the statement above, a path could be a single vertex v, and moreover this single vertex
path could occur many times. Such a collection of paths should be thought of as being ‘vertex
disjoint with each other except at their end point v’.

Note that, by symmetry, the same result as above holds if we wish to find paths from v to
W−

s (T ).

Proof. We write W+ for W+
s (T ) and note that ex(T ) � |W+|n + ns, so that

|W+| � 7n8/9+γ . If v ∈ W+, then we are done (by the remark above), so assume not. Write
T ′ := T −H − S. Let A+ := W+ \ S. Suppose that all (A+, v)-separators in T ′ have size at
least s. Thus, by Menger’s Theorem we can find at least s paths in T ′ that start in A+, end
at v and are vertex disjoint except for their common end point v. If we pick the shortest
n2/3+γ of these paths, they all have length at most 4n1/9 since otherwise we have at least
s− n2/3+γ � 1

2n
8/9 paths of length at least 4n1/9 that are vertex-disjoint except for one

common vertex; such paths cover at least 1
2n

8/9 · (4n1/9 − 1) > n vertices, a contradiction.
Therefore, to prove the lemma, it suffices to show that all (A+, v)-separators X in T ′ satisfy
|X| � n8/9+γ .

Let X be a (A+, v)-separator in T ′ and let T̂ := T ′ −X = T −H − (S ∪X). Define

B = {x ∈ V (T̂ ) : ∃ a path from x to v in T̂}.

Then A+ ∩B = ∅ (since otherwise X is not a (A+, v)-separator) and so W+ ∩B = ∅.
Furthermore, by the definition of B there are no directed edges in T̂ from B := V (T̂ ) \B
to B. Using this and the fact that every vertex in a tournament is adjacent (in some direction)
to every other vertex, we have for all x ∈ B that

|N+
T (x) \B| � V (T ) − |B| − |X| − |S| − Δ(H)

� |W+| − |X| − |S| − Δ(H),

and

|N−
T (x) \B| � |X| + |S| + Δ(H).

Pick a vertex x∗ ∈ B with exT [B](x∗) � 0 (note that every directed graph has a vertex with
non-negative excess). Then we have

exT (x∗) � exT [B](x∗) + |N+
T (x∗) \B| − |N−

T (x∗) \B|

� 0 + |W+| − 2|X| − 2|S| − 2Δ(H) � |W+| − 4s− 2|X|.

We know that exT (x∗) � s (otherwise x∗ ∈ W+, a contradiction) and that |W+| � 7n8/9+γ =
7s. Hence, |X| � s = n8/9+γ , as required. �
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By inductively applying the previous lemma, we obtain the following.

Lemma 3.4. Let n ∈ N and 1/n � γ. Suppose that T = (V,E) is a tournament on n vertices
with ex(T ) � 8n17/9+γ . Let � := n2/3+γ and m := 4n1/9 and s := n8/9+γ . Then we can find
edge-disjoint paths P v

j , Q
v
j , where v ∈ V , j = 1, . . . , � with the following properties.

(i) P v
j is a path of length at most m from W+

s (T ) to v and Qv
j is a path of length at most

m from v to W−
s (T ).

(ii) For each fixed v ∈ V , the paths P v
1 , . . . , P

v
� are vertex-disjoint except that they all meet

at v and the paths Qv
1, . . . , Q

v
� are vertex-disjoint except that they all meet at v.

(iii) Δ(
⋃

v,j(P
v
j ∪Qv

j )) < n8/9+γ = s.

Proof. Fix an ordering v1, . . . , vn of the vertices of T and inductively construct the desired
paths as follows. Suppose at the kth step, we have constructed the P vi

j and Qvi
j for all i � k − 1

and all j � � satisfying the first two conditions of the lemma. Furthermore, we assume that
the oriented graph Hk−1 on V , which is union of the paths constructed so far, satisfies

dHk−1(vi) � 2� + s/2 ∀1 � i � k − 1 (3.1)

and dHk−1(vi) � s/2 ∀k � i � n. (3.2)

By our choice of parameters, we have

Δ(Hk−1) � 2� + s/2 < s. (3.3)

Let S∗ be the set of vertices v ∈ V such that dHk−1(v) � s/4. Note that 1
4s|S∗| � 2|E(Hk−1)| �

4nm� = 16n16/9+γ , so |S∗| � 64n8/9 � s.
Now, applying Lemma 3.3 (where (Hk−1, S

∗) play the role of (H,S)), we obtain vertex-
disjoint (except at vk) paths P vk

j for all j � � from W+
s (T ) to vk each of length at most m.

Applying Lemma 3.3 again (where (Hk−1 ∪
⋃

j E(P vk
j )), S∗) play the roles of (H,S) and noting

Δ(
⋃

j E(P vk
j )) � �), we obtain vertex-disjoint (except at vk) paths Qvk

j for all j � � from v to
W−

s (T ), each of length at most m. Note that all the new paths are edge-disjoint from each
other and from the old ones and satisfy properties (i) and (ii) of the lemma.

Letting Hk be the union of all the paths constructed so far, note that compared to Hk−1,
the degree of vk goes up by at most 2� and the degree of every vertex v ∈ V \ (S∗ ∪ vk) goes
up by at most 4. Thus, (3.1) and (3.2) hold. At the nth step, we are able to construct all the
paths satisfying properties (i) and (ii), and property (iii) also holds by (3.3). �

We now prove the following theorem which immediately implies Theorem 1.6 by taking
ε = 1/18.

Theorem 3.5. Let n ∈ N and 1/n � γ. Suppose that T = (V,E) is a tournament on n
vertices with ex(T ) � 8n17/9+γ . Then T has a perfect decomposition.

Proof. Let � := n2/3+γ and m := 4n1/9 and s := n8/9+γ . Apply Lemma 3.4 to T , so that we
obtain edge-disjoint paths P v

j , Q
v
j , where v ∈ V and j = 1, . . . , � with the following properties.

(i) P v
j is a path of length at most m from W+

s (T ) to v and Qv
j is a path of length at most

m from v to W−
s (T ).

(ii) For each fixed v ∈ V , the paths P v
1 , . . . , P

v
� are vertex-disjoint except that they all meet

at v and the paths Qv
1, . . . , Q

v
� are vertex-disjoint except that they all meet at v.

(iii) Δ(
⋃

v,j(P
v
j ∪Qv

j )) < s.
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Call a path of the form P v
j a v-in-path and a path of the form Qv

j a v-out-path. Write
H for the graph that is the union of these paths and let T ′ = T −H. For each v ∈ V and
j � �, each walk P v

j ∪Qv
j starts in W+

s (T ) and ends in W−
s (T ) and no vertex occurs as a

start or end point more than s times. Therefore, we have that ex±
H(v) � s � ex±

T (v) for all
v ∈ W±

s (T ) and exH(v) = 0 for all other v ∈ V \ (W+
s (T ) ∪W−

s (T )). This means in particular
that ex(T ) = ex(H) + ex(T ′) (by Proposition 2.4). (In fact, ex(H) = �n = n5/3+γ .) Let TE be
a maximal Eulerian subgraph of T ′ and let TR = T ′ − TE , where TR is necessarily acyclic.
Thus, we have that T = H ∪ TR ∪ TE and ex(T ) = ex(H) + ex(TR) + ex(TE) (and of course
ex(TE) = 0).

Finally, we show how to decompose TE ∪H into ex(H) paths. Apply Lemma 3.2 to TE .
Thus, we can decompose TE into t � 50n4/3 log n cycles C1, . . . , Ct and for each cycle Ci we
can find distinct representatives xi

1, x
i
2, . . . , x

i
ri ∈ V (Ci) (indexed in order) with the following

properties.

(i′) Every cycle has at least two representatives, that is, ri � 2 for all i.
(ii′) The interval between consecutive vertices on a cycle xi

jCix
i
j+1 has length at most n2/3.

(iii′) Every vertex v ∈ V occurs as a representative at most 24n2/3 log1/2 n times.

Write Ci
j for the interval xi

jCix
i
j+1. By (i), (ii), (ii′), and (iii′), for each i � t and j � ri, we

can greedily find distinct P
xi
j

j′ such that each P
xi
j

j′ C
i
j is a path from W+

s (T ) to xi
j+1. (Given Ci

j ,

since the paths P
xi
j

1 , . . . , P
xi
j

� are vertex disjoint (except at xi
j), at least �− |Ci

j | of these paths
avoid Ci

j and since we never use more than 24n2/3 log1/2 n of these paths, there is always one
available.) Hence, we have shown that

⋃
v,j P

v
j ∪ TE can be edge-decomposed into �n paths

P1, . . . , P�n each of length at most n2/3 + m. Note crucially that each vertex v is an end point
of exactly � paths and at least �− 24n2/3 log1/2 n of such paths belong to {P v

j : j � �}.
We now extend P1, . . . , P�n using the paths {Qv

j : v ∈ V, j � �} as follows. Consider any
v ∈ V . Let Pv be the set of Pi with end point v and let Qv = {Qv

j : j � �}. Clearly, |Pv| =
� = |Qv|. Let P ′

v (and Q′
v) be the largest set of vertex-disjoint (except at v) paths of Pv

(and Qv, respectively). Thus, |P ′
v| � �− 24n2/3 log1/2 n and |Q′

v| = �. Let B be the auxiliary
bipartite graph with vertex partition Pv and Qv, where P ∈ Pv is joined to Q ∈ Qv if and only if
V (P ) ∩ V (Q) = {v}. For each Q ∈ Qv, |NB(Q)| � |P ′

v| − |V (Q)| � �− (24n2/3 log1/2 n) −m �
�/2. Similarly, we have |NB(P )| � �/2 for each P ∈ Pv. By Corollary 2.2, B has a perfect
matching, which implies

⋃
Pv ∪

⋃
Qv can be decomposed into � paths. Therefore, TE ∪H =⋃

v∈V (
⋃

Pv ∪
⋃
Qv) can be decomposed into �n = ex(H) paths.

Thus, we can now write T = H ∪ T ′ = (H ∪ TE) ∪ TR, where ex(T ) = ex(H) + ex(T ′) =
ex(H) + ex(TR) = �n + ex(TR) and where H ∪ TE can be decomposed into �n paths and TR

can be decomposed into ex(TR) paths (by Proposition 2.6). Hence, T can be decomposed into
ex(T ) paths. �

4. Further preliminaries and overview

In this section, we provide further preliminaries used in Sections 5 and 6 as well as an overview
of the proof of Theorem 1.5.

4.1. Partial decompositions

We will use the following easy facts about partial decompositions repeatedly. The proofs are
straightforward, but we give them for completeness.
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Proposition 4.1. Let D be a directed graph and let P = {P1, . . . , Pk} be a partial
decomposition of D where Pi is a path from xi to yi. Then the following hold.

(a) Any Q ⊆ P is a partial decomposition of D and a partial decomposition of D − E(P \
Q).

(b) If Q is a partial decomposition of D − E(P), then P ∪Q is a partial decomposition of
D (and so is Q).

(c) If π is a permutation of [k] and Q = {Q1, . . . , Qr} is a set of edge-disjoint paths with
r � k and Qi is a path from xi to yπ(i), then Q is a partial decomposition of D.

(d) If D′ ⊆ D is an Eulerian subdigraph of D and Q is a partial decomposition of D −D′,
then Q is a partial decomposition of D.

Proof. For any collection of paths A = {A1, . . . , At} where Ai is a path in a digraph D and
x ∈ V (D), write p+

A(x) for the number of paths in A that start at x and p−A(x) for the number
of paths in A that end at x.

(a) The fact that Q (and P \ Q) is a partial decomposition of D is immediate. For the second
part note that for any x ∈ V (D), if exD(x) � 0, then

ex+
D−E(P\Q)(x) = ex+

D(x) − p+
P\Q(x) + p−P\Q(x)

� p+
P(x) − p+

P\Q(x) + 0 = p+
Q(x),

where the inequality holds since P is a partial decomposition of D. A similar statement holds
if exD(x) � 0.

(b) Note that for any x ∈ V (D), if exD(x) � 0, then

exD(x) − p+
P(x) + p−P(x) = ex+

D−E(P)(x) � p+
Q(x)

and a similar statement holds if exD(x) � 0. Rearranging gives exD(x) � p+
P(x) + p+

Q(x) =
p+
P∪Q(x).
(c) Here we note that p+

P(x) � p+
Q(x) and p−P(x) � p−Q(x) for all x ∈ V (D).

(d) Here we note that exD(x) = exD−E(D′)(x) for all x ∈ V (D). �

Proposition 4.2. Let D be a directed graph and suppose there is a partition of V (D) into
sets A+, A−, R such that ED(R,A+) = ED(A−, R) = E(D[A+ ∪A−]) = ∅. Then the following
holds.

(a) If P = {P1, . . . , Pr} is a partial decomposition of D[R], then there is a partial
decomposition P ′ = {P ′

1, . . . , P
′
r} of D such that V (P ′

i ) ∩R = V (Pi) for all i = 1, . . . , r.
(b) If there is a perfect decomposition of D[R], then there is a perfect decomposition of D.
(c) If in addition we assume exD(v) � 0 for every v ∈ N+

D (A+) and exD(v) � 0 for every
v ∈ N−

D (A−) and N+
D (A+) ∩N−

D (A−) = ∅, then ex(D[R]) = ex(D).

Proof. (a) This is easily proved by induction on the number of paths; we give the details
for completeness. By induction, we will find paths P ′

1 . . . , P
′
r such that each path {P ′

i} is a
partial decomposition of Di := D − (P ′

1 ∪ · · · ∪ P ′
i−1) for i = 1, . . . , r and V (Pi) = V (P ′

i ) ∩R.
By r applications of Proposition 4.1(b), {P ′

1 . . . , P
′
r} is a partial decomposition of D with the

desired properties.
Suppose we have found the paths P ′

1 . . . , P
′
k−1 as described above. Then {Pk} is a partial

decomposition of D[R] − (P1 ∪ · · · ∪ Pk−1) = Dk[R]. Write Pk = xPky. If there is some edge
a+x ∈ E(Dk) with a+ ∈ A+, then append it to Pk and if there is some edge ya− ∈ E(Dk) with
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a− ∈ A−, then append it to Pk and write P ′
k for the resulting path. Let P ′

k = x′Pky
′; we show

that exDk
(x′) > 0 > exDk

(y′) proving that {P ′
k} is a partial decomposition of Dk.

By symmetry, it is sufficient to show exDk
(x′) > 0. If x′ = a+ ∈ A+, then this is certainly

the case. If x′ = x, then

exDk
(x) � exDk[R](x) > 0.

The first inequality holds because there is no edge in Dk from A+ to x (nor from A− to x from
the statement of the lemma). The second inequality holds because Pk starts at x and {Pk} is
a partial decomposition of Dk[R].

(b) From (a) we can extend our perfect decomposition of D[R] to a partial decomposition
Q1 of D that uses every edge of D[R]. The remaining digraph D − E(Q1) ⊆ D − E(D[R]) is
acyclic so has a perfect decomposition Q2 by Proposition 2.6. Therefore, Q1 ∪ Q2 is a perfect
decomposition of D by Proposition 4.1(b).

(c) This is proved by induction on the number of edges between A+ ∪A− and R. If D has
no edges between A+ ∪A− and R, then we are done. For any edge e = a+r with a+ ∈ A+ and
r ∈ R, exD−e(r) > exD(r) � 0. Furthermore, r �∈ N−

D−e(A
−) because N+

D (A+) ∩N−
D (A−) = ∅.

It is easy to check that the conditions in (c) are satisfied for D − e so we can assume by induction
that ex(D − e) = ex(D[R]). Also, we see that adding the edge e back to D − e reduces ex(r) by
1 and increases ex(a+) by 1, so that ex(D) = ex(D − e) = ex(D[R]). The case when e = ra−

for some r ∈ R and some a− ∈ A− holds similarly. �

4.2. Robust expanders

The notation of robust expanders was first introduced by Kühn, Osthus, and Treglown [11].
Here we introduce the basic notions of robust expansion and their consequences, which we will
use in Sections 5 and 6. Most of this can be found in [9, 10]

We give the definition of robust expander here for completeness. We will not use the definition
directly, but only use some of the consequences given below.

Definition 4.3. An n-vertex digraph D is a robust (ν, τ)-outexpander if for every S ⊆ V (D)
with τn � |S| � (1 − τ)n there is some set T ⊆ V (D) with |T | � |S| + νn such that every
vertex in T has at least νn in-neighbours in |S|.

It turns out that sufficiently dense oriented graphs are robust expanders.

Lemma 4.4 [9, Lemma 13.1]. Let 0 < 1/n � ν � τ � ε. Suppose that D is an oriented
graph on n vertices with δ0(D) � (3/8 + ε)n. Then D is a robust (ν, τ)-outexpander.

The notion of robust expansion was developed to help solve problems on Hamilton cycles.
Here are two of the main results.

Theorem 4.5 [8, Corollary 6.9]. Let 0 < 1/n � ν � τ � δ. Suppose that D is a robust
(ν, τ)-outexpander on n vertices with δ0(D) � δn. Let a, b ∈ V (D). Then D contains a Hamilton
path from a to b.

Theorem 4.6 [9]. Let 0 < 1/n � ν � τ � δ. Suppose that D is an r-regular oriented graph
with r � δn and a robust (ν, τ)-outexpander. Then E(D) can be decomposed into r edge-
disjoint Hamilton cycles.

An immediate consequence of the above is the following path decomposition result, which
we use right at the end of the paper.
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Theorem 4.7. Let 0 < 1/n � 1 and let D be an oriented graph with a vertex partition
V (D) = X+ ∪X− ∪X0 with |X+| = |X−| = d � 3n/7 such that

exD(v) =

⎧⎪⎨
⎪⎩

1 if v ∈ X+;
0 if v ∈ X0;
−1 if v ∈ X−;

and dD(v) =

⎧⎪⎨
⎪⎩

2d− 1 if v ∈ X+;
2d if v ∈ X0;
2d− 1 if v ∈ X−.

Then D has a perfect decomposition.

Proof. Fix ν, τ such that 1/n � ν � τ � 1. We form D′ by adding a vertex y such
that N+

D′(y) = X+ and N−
D′(y) = X−. Then D′ is a regular oriented graph with in- and

outdegree d > 3/7n and so is a robust (ν, τ)-outexpander by Lemma 4.4. Thus, it has an
edge decomposition into Hamilton cycles H1, . . . , Hd by Theorem 4.6. Taking Pi to be the
path Hi − y, P = {P1, . . . , Pd} gives a perfect decomposition of D. �

Robust expanders are highly connected as one would expect and so we can find (many) short
paths between any pair of vertices. This is made precise in the following three lemmas.

Lemma 4.8 (see, for example, [12, Lemma 9]). Let n ∈ N and 0 < 1/n � ν � τ � δ � 1.
Suppose that D is a robust (ν, τ)-outexpander on n vertices with δ0(D) � δn. Then, given any
distinct vertices x, y ∈ V (D), there exists a path P in D from x to y such that |V (P )| � ν−1.

The following lemma and its corollary will be used many times in our proof.

Lemma 4.9. Let n ∈ N and 0 < 1/n � γ � 1. Suppose that D is an oriented graph on n
vertices with δ0(D) � 3n/7. Let H1, . . . , Hm be directed multigraphs on V (D) with Δ(Hi) � 2,
|E(Hi)| � γn and m � γn. Let S1, . . . , Sm ⊆ V (D) with |Si| � n/25 and Si ∩ V (E(Hi)) = ∅.
Then there exists a set of edge-disjoint paths P = {Pi,e : i ∈ [m] and e ∈ E(Hi)} in D such
that:

(i) Pi,e has the same starting and ending points as e;
(ii) the paths in Pi := {Pi,e : e ∈ E(Hi)} are internally vertex-disjoint;
(iii) V (∪Pi) = V (D) \ Si;
(iv) Δ(∪P) � 2m.

Proof. We proceed by induction on m, the number of multigraphs. Suppose that we have
already found P ′ := {Pi,e : i ∈ [m− 1] and e ∈ E(Hi)} with the desired properties.

Let ν, τ, ε be such that γ � ν � τ � ε � 1. Pick an arbitrary ordering e1, . . . , er of the
edges in E(Hm). Further, assume that for some j ∈ [r], we have already constructed paths
P1, . . . , Pj−1 such that, for each j′ ∈ [j − 1],

(i) Pj′ has the same starting and ending points as ej′ and has length at most ν−1;
(ii) V (E(Hi)), Si, V (P1) \ V (e1), . . . , V (Pj−1) \ V (ej−1) are disjoint.

We now find Pj as follows. Let ej = xy. Let D′ := D − E(∪P ′) − Si − (V (P1 ∪ · · · ∪ Pj−1) \
{x, y}). Since |Si ∪ V (P1 ∪ · · · ∪ Pj−1)| � ( 1

25 + ν−1γ)n, then |D′| � (1 − 1
25 − ν−1γ)n and

δ0(D′) � δ0(D) − ( 1
25 + ν−1γ)n � (3/8 + ε)|D′|. By Lemma 4.4, D′ is a robust (ν, τ)-

outexpander. If j < r, then D′ has a path Pj from x to y of length at most ν−1 by Lemma 4.8.
If j = r, then D′ has a Hamilton path Pj from x to y by Theorem 4.5. We are done by setting
Pm,ej := Pj for all j ∈ [r]. �

Let H be a directed multigraph on n vertices with Δ(H) � γn. Note that H can be
decomposed into digraphs H1, . . . , Hm with m � 2

√
γn and Δ(Hi) � 1 and |E(Hi)| � 2

√
γn.
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(By Vizing’s theorem, H can be partitioned into γn + 1 matchings and each matching can then
be further split into γ−1/2 almost equal parts to give us the Hi.) Applying the previous lemma
to these Hi (taking the Si to be empty), we obtain the following corollary.

Corollary 4.10. Let n ∈ N and 0 < 1/n � γ � 1. Suppose that D is an oriented graph
on n vertices with δ0(D) � 3n/7. Let H be a directed multigraph on V (D) with Δ(H) � γn.
Then there exists a set of edge-disjoint paths P = {Pe : e ∈ E(H)} in D such that:

(i) Pe has the same starting and ending points as e;
(ii) Δ(∪P) � 4

√
γn.

4.3. Overview

In this subsection, we give an overview of the proof of Theorem 1.5 (which is proved in Sections 5
and 6). We wish to show that every even n-vertex tournament T satisfying ex(T ) > Cn and
n sufficiently large has a perfect decomposition (that is, is consistent). Let us fix such a
tournament T ; we may further assume by Theorem 1.6 that ex(T ) < n2−ε. We will accomplish
this in three steps. In each step, we reduce the problem of finding a perfect decomposition of
T to the problem of finding a perfect decomposition of a digraph that looks more and more
like the digraph described in Theorem 4.7.

Step 1: Remove vertices of high excess. Let W = {v ∈ V (T ) : |ex(v)| > αn} for some suitable
α. Note that since ex(T ) is small, W is also small. Let W± be, respectively, the vertices
of W with positive / negative excess and let R = V (T ) \W . We will construct a partial
decomposition P0 of T with a small number of paths that uses all edges in ET (R,W+) ∪
ET (W−, R) ∪ ET (W ) but does not interfere much with ET (R). Set D1 = T − ∪P0 −W . Now,
we can apply Proposition 4.2(b) to T − ∪P0 to conclude that if D1 has a perfect decomposition,
then so does T − ∪P0 and hence, so does T . Thus, we have reduced the problem of finding a
perfect decomposition of T to that of finding one for D1, but where D1 has no vertices of high
excess and

ex(D1) = ex(T − ∪P0) = ex(T ) − |P0| � C ′n.

Since there are no vertices of high excess, D1 is close to regular and so one can apply the
methods of robust expansion. This step takes place in Theorem 6.1 and the key tool for finding
P0 is Lemma 5.1 from Section 5.

Step 2: Equalise the number of vertices of positive and negative excess. Given D1 from the
previous step, it may be the case that almost all vertices of D1 have say negative excess that is
U−(D1) is significantly larger than U+(D1), where U±(D) denote the set of vertices of positive
/ negative excess in D.

For some fixed z ∈ U−(D1), consider how we might change the sign of its excess. The idea
would be to find x ∈ U+(D1) with xz ∈ E(D1) and a partial decomposition Q that:

• has a path Q∗ that starts at x, uses the edge xz but does not end at z;
• uses all edges incident with x;
• has exactly ex−

D1
(z) paths ending at z.

If we can find such a Q, then consider D′
1 = D1 − E(Q \ {Q∗}) − x. We have exD′

1
(z) = 1 and

moreover if D′
1 has a perfect decomposition, so does D1 (the path that starts at z in a perfect

decomposition of D′
1 would be extended by the edge xz in D1).

We refine this idea to switch the sign of the excess for many vertices in U−(D1) in
Theorem 6.7. We carefully choose a small set of vertices X ⊆ U+(D1) and a suitably larger set
Z ⊆ U−(D1) and a partial decomposition P1 of D1 such that writing D2 = D1 − E(P1) −X,
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D1 has a perfect decomposition if D2 does, and U+(D2) = U−(D2) ∪ Z \X and U−(D2) =
U−(D1) \ Z. Again we use Lemma 5.1 from Section 5 as a tool.

Step 3: Control the degrees. In this final step (Theorem 6.12), starting with D2 we carefully
construct a partial decomposition P2 of D2 such that D3 = D2 − E(P2) is a digraph satisfying
the properties of Theorem 4.7. Hence, D3 has a perfect decomposition, and thus so do D2, D1,
and T .

We make use of the robust expansion properties of D2 to construct P2; this is why we need
step 1. Also, essentially by definition, the excess of a vertex can never change sign when we
remove a partial decomposition from a digraph; this is why we need step 2. Each of steps 1
and 2 will require us to remove a partial decomposition of size linear in n, and this is why we
must start with ex(T ) > Cn for a suitably large C.

5. Removing small vertex subsets

In Section 3, we showed how to find a perfect decomposition of n-vertex tournaments T (n even)
whenever ex(T ) > n2−ε. For the remaining cases of Thoerem 1.5, we will require a preliminary
result which we prove in this section. For almost complete oriented graphs D satisfying
Cn � ex(D) � n2−ε, we show in Lemma 5.1 that for certain choices of small W ⊆ V (D), we
can find a partial decomposition P of D that uses all the edges incident with W going in the
‘wrong’ direction. We will also guarantee that P uses only a small number of edges from D −W
and that |P| is small. This will be useful later as, in combination with Proposition 4.2, it allows
us to remove a small number of problematic vertices from our digraph D at the expense of a
small reduction in ex(D). This is the content of Lemma 5.1 and our goal in this section is to
prove it.

Lemma 5.1. Let n ∈ N and 0 < 1/n � α, β � γ � 1 and 0 < 1/n � ε � 1 and C � 32.
Let D be an oriented graph on n vertices such that δ(D) � (1 − ε)n and ex(D) � Cn. Let
W ⊆ V (D) of size |W | � βn. Suppose that |exD(v)| � αn for all v ∈ V (D) \W . Then there
exists a partial decomposition P of D such that writing H = ∪P we have:

(i) for all v ∈ V (D) \W , dH(v) = 2d for some d � (18β + 4γ)n;
(ii) H[W ] = D[W ];
(iii) for all w ∈ W , if ±exD(w) � 0, then d∓D−H(w) = 0;
(iv) ex(D −H) = ex(D) − ex(H) � Cn/4.

Note that (iii) guarantees that for every w ∈ W with ex(w) � 0 (respectively, ex(w) � 0),
every edge of the form vw (respectively, wv) is in H and we informally refer to such edges as
going in the ‘wrong’ direction. The proof of Lemma 5.1 is split into two lemmas, Lemmas 5.4
and 5.7. In Lemma 5.4, we deal with all edges inside W and in Lemma 5.7, we deal with the
edges between W and V (D) \W going in the ‘wrong’ direction. The basic idea in each case is
as follows. Write F for the set of edges incident with W which we wish to remove from D (and
thus to add to H). Each of these edges can be thought of as a path and we start by extending
these paths (if necessary), so that their end points lie in V (D) \W to give a set of paths Q.
The reason for doing this is that D −W is a robust expander and so has good connectivity
properties; this allows us to connect the large number of paths in Q into a small number of long
paths Q′ (see Corollary 5.3). At the same time, we can ensure the paths in Q′ have suitable
start and end points, so that Q′ is a partial decomposition with a small number of paths that
contains all edges in F . While this is conceptually quite simple, the process of extending the
paths into V (D) \W and choosing appropriate start and end points becomes technical if we
wish to ensure that the paths we create do not interfere with each other.
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Before we can prove these two lemmas, we will need a technical definition and one
preliminary result.

Consider a digraph D and a vertex subset W ⊆ V (D). Let V = V (D) \W . Suppose we have
two internally vertex-disjoint paths P, P ′ that both start at some x ∈ V (D) and end at some
different vertex y ∈ V (D). Now, starting with P ∪ P ′ delete any edges of P ∪ P ′ that occur
inside V ; this is essentially what we refer to as a (W,V )-path system, which is formally defined
below.

Definition 5.2. Let W and V ′ be disjoint vertex sets and let X, Y , and J be sets of paths
on W ∪ V ′. We write, for example, V (J) to mean the set of all vertices of all paths in J .

We say that (X,Y, J) is a (W,V ′)-path system if there exist distinct vertices x and y such
that:

(P1) X = {x} if x ∈ V ′; otherwise X is a set of two edge-disjoint paths that both start at
x and end in V ′;

(P2) Y = {y} if y ∈ V ′; otherwise Y is a set of two edge-disjoint paths that both start in
V ′ and end at y;

(P3) J is a set of vertex-disjoint paths such that each path in J has both end points in V ′;
(P4) dX∪Y ∪J(v) � 1 for all v ∈ V ′;
(P5) V (X), V (Y ), and V (J) are disjoint.

We will often take X = {xx′, xx′′} for some x′, x′′ ∈ V ′ if x ∈ W and similarly for Y . We will
interchangeably think of X, Y , and J both as a set of paths and as the graph which is the
union of those paths, but it will always be clear from the context.

We say that the two paths P1 and P2 extend (X,Y, J), if X ∪ Y ∪ J ⊆ P1 ∪ P2 and each Pi

starts at x and ends at y. We refer to x and y as the source and sink, respectively.

The following corollary (of Lemma 4.9) shows how to simultaneously extend a collection of
vertex-disjoint (W,V ′)-path systems, so that the resulting paths are internally vertex-disjoint.

Corollary 5.3. Let n, s ∈ N and 0 < 1/n � ε, ε′ � 1 and 1/n � 1/s. Let D be an oriented
graph with vertex partition V (D) = W ∪ V ′ such that |V ′| = n and δ0(D[V ′]) � (1/2 − ε)n.
For i ∈ [s], let (Xi, Yi, Ji) be (W,V ′)-path systems. Suppose that the sets Vi := V (Xi ∪
Yi ∪ Ji) ∩ V ′ for i ∈ [s] are disjoint and that |

⋃
i∈[s] Vi| � ε′n. Then D ∪

⋃
i∈[s](Xi ∪ Yi ∪ Ji)

contains paths P1, P
′
1, . . . , Ps, P

′
s such that:

(a) for each i ∈ [s], Pi and P ′
i extend (Xi, Yi, Ji);

(b) d⋃
i∈[s](Pi∪P ′

i )
(v) = 2 for all v ∈ V ′.

Proof. Let Ṽ = ∪i∈[s]Vi, so that s � |Ṽ | � ε′n. Let Ẽ be the set of edges used in all the
paths in all the path systems (Xi, Yi, Ji) for all i ∈ [s]. Write D′ = D[V ′] − Ẽ.

For each i ∈ [s] let Pi1, . . . , Pit(i) be the paths of Ji. We will apply Lemma 4.9 to join the
paths of our path systems together. Let aij and bij be starting and ending points of Pij ,
respectively, so aij , bij ∈ Ṽ . Also, let xi, x

′
i be the two end points in V ′ of the paths in X and

let yi, y′i be the two end points in V ′ of the paths in Y (where possibly xi = x′
i and/or yi = y′i).

Let H :=
⋃

i∈[s] Ti be a multigraph on Ṽ ⊆ V ′, where

Ti := {xiai1, bi1ai2, bi2ai3, . . . , bi(t(i)−1)ait(i), bit(i)yi, x
′
iy

′
i}.

By property (P4) of path systems Ti is a matching and since the Vi are disjoint, then H is
a matching on Ṽ so |E(H)| � |Ṽ | � ε′n � |D′|. Note that δ0(D′) � δ0(D[V ′]) − |Ṽ | � (1/2 −
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ε− ε′)n � 3n/7. We apply Lemma 4.9 with D′, H, ∅, 2ε′ playing the roles of D,H1, S1, γ and
obtain a set of edge-disjoint paths Q := {Qe : e ∈ E(H)} such that:

• for each e = xy ∈ E(H), Qe is a path from x to y;
• the paths Qe : e ∈ E(H) are vertex-disjoint (since H is a matching);
• V (∪Q) = V and Δ(∪Q) � 2.

For each i ∈ [s], set

Pi := (Xi ∪ Yi ∪ Ji) ∪
⋃

e∈Ti\{x′
iy

′
i}
Qe and P ′

i = Qx′
iy

′
i
.

Note that Pi forms a path by our choice of Ti and that Pi, P
′
i extends (Xi, Yi, Ji); thus conditions

(a) and (b) of the corollary are satisfied. �

Our first step towards proving Lemma 5.1 is Lemma 5.4 where we construct a partial
decomposition that uses all the edges inside W .

Lemma 5.4. Let n ∈ N and 0 < 1/n � α, β, ε � 1. Let C � 32. Let D be an oriented graph
on n vertices such that δ(D) � (1 − ε)n and ex(D) � Cn. Let W ⊆ V (D) of size |W | � βn.
Suppose that |exD(v)| � αn for all v ∈ V (D) \W . Then there exists a partial decomposition
P of D such that writing H = ∪P we have:

(i) H[W ] = D[W ];
(ii) Δ(H) � 21|W | and dH(v) = 18|W | for all v ∈ V (D) \W ;
(iii) ex(D −H) � Cn/2.

Proof. Let γ > 0 be such that α, β, ε � γ � 1. Let � := |W | and let V ′ := V (D) \W . Note
that

δ0(D[V ′]) � (1/2 − ε− α− β)n. (5.1)

Let W±
γ := {w ∈ W : ex±(w) � (1 − γ)n} and W0 := W \ (W+

γ ∪W−
γ ). By Vizing’s theorem,

D[W ] can be decomposed into � (possibly empty) matchings M1, . . . ,M�. For each i ∈ [�], we
partition Mi into matchings

M0
i := {ab ∈ Mi : a ∈ W+

γ , b ∈ W−
γ },

M+
i := {ab ∈ Mi : a ∈ W+

γ , b �∈ W−
γ },

M−
i := {ab ∈ Mi : a �∈ W+

γ , b ∈ W−
γ },

M ′
i := {ab ∈ Mi : a �∈ W+

γ , b �∈ W−
γ } = Mi \ (M0

i ∪M+
i ∪M−

i ).

Let m∗
i := |M∗

i | for all ∗ ∈ {0, ′,+,−}. Note that for each i

m0
i + m+

i + m−
i � |W+

γ | + |W−
γ |, (5.2)

since M0
i ∪M+

i ∪M−
i is a matching in which all edges are incident with W+

γ ∪W−
γ .

Suppose that we have found partial decompositions P1, . . . ,P� such that writing Hj = ∪Pj ,
we have for each j ∈ [�],

(i′) Pj is a partial decomposition of Dj−1 := D − (H1 ∪ · · · ∪Hj−1) (and hence, ∪j∈[�]Pj

is a partial decomposition of D by Proposition 4.1(b));
(ii′) Hj [W ] = Mj ;
(iii′) Δ(Hj) � 21 and dHj

(v) = 18 for all v ∈ V ′;
(iv′) |Pj | = ex(Hj) = m0

i + 2m+
i + 2m−

i + 4;
(v′) H1, . . . , Hj ,Mj+1, . . . ,M� are edge-disjoint.
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Set P := ∪j∈[�]Pj and H := ∪j∈[�]Hj . Clearly, (i) and (ii) hold by (ii′) and (iii′), respectively.
To see (iii), note that (iv′) and (i′) imply

ex(D −H) = ex(D) − ex(H)
(5.2)

� ex(D) − 2(|W+
γ | + |W−

γ | + 2)�.

If |W+
γ | + |W−

γ | � 2C, then ex(D −H) � Cn− 4(C + 1)� � Cn/2. If |W+
γ | + |W−

γ | > 2C,
then

ex(D −H) � ex(D) − 3(|W+
γ | + |W−

γ |)�

=
1
2

∑
v∈V (D)

|exD(v)| − 3(|W+
γ | + |W−

γ |)�

� (1 − γ)n
2

(|W+
γ | + |W−

γ |) − 3(|W+
γ | + |W−

γ |)�

� (1 − γ − 6β)n(|W+
γ | + |W−

γ |)/2 � Cn/2.

Therefore, to prove the lemma, it suffices to show that such P1, . . . ,P� exist.
Suppose for some i ∈ [�], we have already found partial decompositions P1, . . . ,Pi−1 satisfy-

ing (i′)–(v′). We now construct Pi = P ′
i ∪ P+

i ∪ P−
i ∪ P0, where P∗

i is a partial decomposition
containing the edges of M∗

i for ∗ ∈ {+,−,′ , 0}. We immediately define P0
i = M0

i . We will
write Hi, H

′
i, H

+
i , H−

i , H0
i , respectively, for the union of paths in Pi,P ′

i,P+
i ,P−

i ,P0
i . Let

D0
i−1 := Di−1 −H0

i − (Mi+1 ∪ · · · ∪M�). Note that by (5.1) and (iii′),

δ0(D0
i−1[V

′]) � δ0(D[V ′]) − 21(i− 1) − � � (1/2 − γ)n (5.3)

and (by a similar argument as used to bound ex(D −H)) we have

ex(D0
i−1) � Cn/2. (5.4)

We first construct the partial decomposition P ′
i of D0

i−1 containing M ′
i in the following claim.

Claim 5.5. There exists a partial decomposition P ′
i of D0

i−1 such that, recalling H ′
i = ∪P ′

i,
we have:

(a1) |P ′
i| = 4 (and there exist vertices x1, x2, y1, y2 such that two of the paths start at x1

and end at y1 and the other two start at x2 and end at y2);
(a2) H ′

i[W ] = M ′
i , Δ(H ′

i) � 4 and dH′
i
(v) = 2 for all v ∈ V ′.

Proof of Claim. Let x1, x2, y1, y2 be any four distinct vertices such that ex+
D0

i−1
(xj) � 2 and

ex−
D0

i−1
(yj) � 2 for all j ∈ [2]. Note that such vertices exist by (5.4). Consider j ∈ [2]. If xj ∈ V ′,

then set Xj = {xj}; if xj ∈ W , then xj �∈ W−
γ since exD0

i−1
(xj) > 0. So,

d+
D0

i−1
(xj , V

′) �
dD0

i−1
(xj)

2
− |W |

(iii′)
� (1 − ε)n− 21(i− 1) − 2|W |

2
� 2|W | + 4

and we can set Xj = {xjx
′
j , xjx

′′
j } for some distinct x′

j , x
′′
j ∈ N+

D0
i−1

(xj) ∩ V ′. Similarly,

if yj ∈ V ′, then set Yj = {yj}; if yj ∈ W , then set Yj = {y′jyj , y′′j yj} for some distinct
y′j , y

′′
j ∈ N−

D0
i−1

(yj) ∩ V ′. Moreover, we may further assume that X1, X2, Y1, Y2 are vertex-

disjoint. Let U := V (X1) ∪ V (X2) ∪ V (Y1) ∪ V (Y2). Partition M ′
i into M1 and M2 such that



DECOMPOSING TOURNAMENTS INTO PATHS 443

(by relabelling X1, X2, Y1, Y2 if necessary) V (M j) ∩ (Xj ∪ Yj) = ∅ for j ∈ [2]. Let

M1 := {ajbj : j ∈ [r]} and M2 := {ar+jbr+j : j ∈ [s]}.

For each j ∈ [r + s], note that aj ∈ W \W+
γ and so

d−
D0

i−1
(aj , V ′)

(iii′)
� d−D(aj) − |W | − 21|W | =

dD(aj) − ex+
D(aj)

2
− 22|W |

� (1 − ε)n− (1 − γ)n
2

− 22βn � 2βn + 4 � 2|W | + 4.

By a similar argument, we have d+
D0

i−1
(bj , V ′) � 2|W | + 4. So, there exist distinct

a′1, . . . , a
′
r+s, b

′
1, . . . , b

′
r+s ∈ V ′ \ U such that a′j ∈ N−

D0
i−1

(aj) and b′j ∈ N+
D0

i−1
(bj) for all

j ∈ [r + s]. Let

J1 := {a′jajbjb′j : j ∈ [r]}, J2 := {a′r+jar+jbr+jb
′
r+j : j ∈ [s]}.

Observe that (X1, Y1, J1) and (X2, Y2, J2) are (W,V ′)-path systems. Note further that
X1, Y1, J1, X2, Y2, J2 are vertex-disjoint and their union has size at most 2|W | + 4 � 3βn. By
considering (X1, Y1, J1), (X2, Y2, J2) and (5.3), Corollary 5.3 implies that D0

i−1[V
′] ∪ J1 ∪ J2

contains paths P1, P
′
1, P2, P

′
2 such that, for j ∈ [2], Pj and P ′

j extend (Xj , Yj , Jj) and
dP1∪P ′

1∪P2∪P ′
2
(v) = 2 for all v ∈ V ′. Let P ′

i := {P1, P
′
1, P2, P

′
2}. It is easy to check that P ′

i has
the desired properties. �

In the next claim, we construct the partial decompositions P+
i and P−

i of D′
i−1 := D0

i−1 −H ′
i

containing M+
i and M−

i , respectively, as follows.

Claim 5.6. There is a partial decomposition P+
i ∪ P−

i of D′
i−1 such that, recalling

H±
i = ∪P±

i , we have:

(b1) |P±
i | = 2m±

i ;
(b2) H±

i [W ] = M±
i , Δ(H±

i ) = 8 and dH±
i

(v) = 8 for all v ∈ V ′.

Proof of Claim. First we arbitrarily partition M+
i into four matchings, which we denote by

N1, N2, N3, N4, each of size �m+
i /4	 or �m+

i /4�. Let m := |N1| and N1 = {wjw
′
j : j ∈ [m]}.

We show that there exist distinct vertices z1, . . . , zm ∈ V (D) \ V (N1) such that, for all
j ∈ [m], ex−

D′
i−1

(zj) � 2. Indeed, if m � C/8, then ex(D′
i−1) � ex(D0

i−1) − 4 � 3Cn/8 � 3mn =
(|V (N1)| + m)n by (5.4), so we can find such zj in this case. On the other hand, if m � C/8 � 4,
then

ex(D′
i−1) �

∑
w∈W+

γ

ex+
D′

i−1
(w) � |W+

γ |

⎛
⎝(1 − γ)n−

∑
j∈[i−1]

Δ(Hj) − Δ(H ′
i) − 1

⎞
⎠

(iii′),(a2)

� |M+
i |(1 − 2γ)n � (4m− 3)(1 − 2γ)n � 3mn = (|V (N1)| + m)n,

so again we can find the desired zj .
By a similar argument as used in the proof of Claim 5.5, there exist (W,V ′)-path systems

(Wj , Zj , ∅) for j ∈ [m] such that, for all j ∈ [m],

• Wj = {wjw
′
jw

′′
j , wjw

′′′
j } with w′′

j , w
′′′
j ∈ V ′;

• if zj ∈ V ′, then Zj = {zj}; otherwise Zj = {z′jzj , z′′j zj} for some z′j , z
′′
j ∈ V ′;

• the 2m graphs Wj , Zj with j ∈ [m] are vertex-disjoint and are subgraphs of D′
i−1.
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By considering (W,V ′)-path systems (Wj , Zj , ∅) (and using (5.3) and (a2)), Corollary 5.3
implies that D′

i−1[V
′] contains paths P1, P

′
1, . . . , Pm, P ′

m such that:

• for all j ∈ [m], Pj and P ′
j extend (Wj , Zj , ∅);

• d⋃
j∈[m](Pj∪P ′

j)
(v) = 2 for all v ∈ V ′.

Let P+
i,1 := {Pj , P

′
j : j ∈ [m]} and H+

i,1 := ∪P+
i,1. Note that |Pi,1| = 2m (where two paths start

at wj and end at zj for every j ∈ [m]). Moreover, H+
i,1[W ] = N1, Δ(H+

i,1) = 2, dH+
i,1

(v) = 2
for all v ∈ V ′ and Pi,1 is a partial decomposition D′

i−1 by the choice of zj , wj . By a
similar argument, D′

i−1 −H+
i,1 has edge-disjoint partial decompositions P+

i,2,P+
i,3,P+

i,4 such that
P+
i :=

⋃
k∈[4] P+

i,k satisfies (b1) and (b2). By a similar argument, we can construct a partial
decomposition P−

i of Di −H ′
i −H+

i satisfying (b1) and (b2). �

Finally, we let Pi = P ′
i ∪ P+

i ∪ P−
i ∪ P0. Our sequential construction of partial decompo-

sitions in the digraphs with earlier partial decompositions removed means that (i′) holds by
Proposition 4.1(b). Clearly, (ii′) holds. Also (v′) holds by our definition of D0

i−1. Note that
(iv′) is implied by (a1), (b1). Finally, (iii′) holds by (a2) and (b2). This completes the proof of
the lemma. �

In the next lemma, we show how to construct a partial decomposition with few paths that
uses all those edges incident with W in the ‘wrong’ direction; this will help us to isolate the
vertices of W in later sections.

Lemma 5.7. Let n ∈ N and 0 < 1/n � α, β � γ � 1 and 1/n � ε � 1. Let C � 5. Let D
be an oriented graph on n vertices such that δ(D) � (1 − ε)n and ex(D) � Cn. Let W ⊆ V (D)
of size |W | � βn such that D[W ] is empty. Suppose that |exD(v)| � αn for all v ∈ V (D) \W .
Then there exists a partial decomposition P of D such that writing H = ∪P we have:

(i) |P| � 2(2 + 3β)n (equivalently ex(H) � 2(2 + 3β)n);
(ii) if w ∈ W with ±exD(w) � 0, then N∓

D−H(w) = ∅;
(iii) for all v ∈ V (D) \W , dH(v) = 2d for some d � 4γn.

Proof. Let q ∈ N be such that α, β � 1/q � γ. Let � := �γn� and p := �n/q� � αn, βn. Let
V ′ := V (D) \W . Note that

δ0(D[V ′]) � (1/2 − ε− α− β)n. (5.5)

Let

W± := {w ∈ W : ex±
D(w) � 0},

W±
γ := {w ∈ W : ex±(w) � (1 − γ)n},

W±
0 := W± \W±

γ .

Let D0 := D[V ′,W+] ∪D[W−, V ′]. We start by showing that if we can find a family S of
edge-disjoint (W,V ′)-path systems satisfying the following properties, then the lemma holds:

(i′) S = {(Xi,j , Yi,j , Ji,j) : i ∈ [p], j ∈ [q]} ∪ {(Xi, Yi, Ji) : i ∈ [p + 1, p + 3�]};
(ii′)

⋃
i∈[p],j∈[q] Ji,j ∪

⋃
i′∈[p+1,p+3�] Ji′ contains D0;

(iii′) each Ji,j and Ji′ consists of vertex-disjoint paths of length 2 of the form awb for some
a, b ∈ V ′ and w ∈ W ;
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(iv′) for all v ∈ V ′ we have 2f(v) � ex+(v) and 2g(v) � ex−(v), where f(v) (respectively,
g(v)) denotes the number of times v appears as a source (respectively, a sink) in S
(recall the definition of source and sink for a (W,V ′)-path system);

(v′) for all i ∈ [p], {V ′ ∩ V (Xi,j ∪ Yi,j ∪ Ji,j) : j ∈ [q]} are disjoint and |V ′ ∩
⋃

j∈[q] V (Xi,j ∪
Yi,j ∪ Ji,j)| � 2βn + 4;

(vi′) for all i ∈ [p + 1, p + 3�], |V ′ ∩ V (Xi ∪ Yi ∪ Ji)| � 2βn + 4.

Let Si := {(Xi,j , Yi,j , Ji,j) : j ∈ [q]} for i ∈ [p] and Si′ := {(Xi′ , Yi′ , Ji′)} for i′ ∈ [p + 1, p + 3�].
It is easy to verify that by repeated application of Corollary 5.3 (once for each Si), there exists
a set P of edge-disjoint paths of D with P = P1 ∪ · · · ∪ Pp+3� and Hi := ∪Pi such that:

(a) for all i ∈ [p], we have |Pi| = 2q with Pi = {Pi,1, P
′
i,1, . . . , Pi,q, P

′
i,q};

(b) for each i ∈ [p] and j ∈ [q], Pi,j and P ′
i,j extend (Xi,j , Yi,j , Ji,j);

(c) for each i′ ∈ [p + 1, p + 3�], Pi′ = {Pi′ , P
′
i′}, where Pi′ and P ′

i′ extends (Xi′ , Yi′ , Ji′);
(d) for all i ∈ [p + 3�] and all v ∈ V ′, dHi

(v) = 2.

Now, we check that the conclusion of the lemma holds for P as defined above. Note that by the
choice of sources and sinks for the path systems, that is, (iv′), P is a partial decomposition of
D. Note also that (i) holds since |P| =

∑
i∈[p+3�] |Pi| = 2pq + 6� � 2(2 + 3β)n. Also (ii) holds

by (ii′). Finally, (iii) holds by (d) as p + 3� � 4γn. Thus, to prove the lemma, it suffices to
show that such S exists.

Here we give a brief outline of the remainder of the proof. First, we will find all sources and
sinks that are required. We split D0 into

D1 := D[V ′,W+
γ ] ∪D[W−

γ , V ′] and D2 := D[V ′,W+
0 ] ∪D[W−

0 , V ′].

The edges of D1 will be covered by Sp+i′ for i′ ∈ [3�] and the edges of D2 will be covered by
Si for i ∈ [p].

Finding sources and sinks
First, we define the sources and sinks for the (W,V ′)-path systems. Choose a multiset X :=
{xi,j : i ∈ [p], j ∈ [q]} ∪ {xp+i′ : i′ ∈ [3�]} of vertices such that ex+

D(v) � 2f(v) for all v ∈ V (D),
where f(v) denotes the number of times v appears in X. Note that such X exists since

ex(D) � Cn � 2(pq + 3�) + n.

Similarly, choose a multiset Y := {yi,j : i ∈ [p], j ∈ [q]} ∪ {yp+i′ : i′ ∈ [3�]} of vertices such that
ex−

D(v) � 2g(v) for all v ∈ V (D), where g(v) denotes the number of times v appears in Y . Note
that for all v ∈ V (D),

f(v) + g(v) � |exD(v)|/2. (5.6)

Since exD(v) � αn for all v ∈ V ′ and αn � p, �, we may assume that, by relabelling if necessary,

• for all i ∈ [p], the multiset V ′ ∩ {xi,1, . . . , xi,q, yi,1, . . . , yi,q} contains no repeated vertices;
• for all i′ ∈ [�], the multiset

V ′ ∩ {xp+3i′−2, xp+3i′−1, xp+3i′ , yp+3i′−2, yp+3i′−1, yp+3i}

contains no repeated vertices.

Note that xi,j and yi,j will be the source and sink for (Xi,j , Yi,j , Ji,j) and xp+i′ and yp+i′ will be
the source and sink for (Xp+i′ , Yp+i′ , Jp+i′). For i ∈ [p], let fi, gi : W → [0, q] be functions such
that fi(w) (and gi(w)) is the number of j ∈ [q] satisfying w = xi,j (and w = yi,j , respectively).
Our choices here guarantee that (iv′) holds.
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Covering edges in D1

Consider any i′ ∈ [3�]. If xp+i′ ∈ V ′, then set Xp+i′ = {xp+i′}. If xp+i′ ∈ W , then (by our choice
of xp+i′) we have ex(xp+i′) > 0 and so d+

D(xp+i′ , V
′) = d+

D(xp+i′) � n/4. We can set Xp+i′ =
{xp+i′x

′
p+i′ , xp+i′x

′′
p+i′} for some distinct x′

p+i′ , x
′′
p+i′ ∈ N+

D (xp+i′) ⊆ V ′. Similarly, if yp+i′ ∈
V ′, then set Yp+i′ = {yp+i′}. If yp+i′ ∈ W , then we can set Yp+i′ = {y′p+i′yp+i′ , y

′′
p+i′yp+i′} for

some distinct y′p+i′ , y
′′
p+i′ ∈ N−

D (yp+i′) ⊆ V ′. Furthermore, we can assume that all Xp+i′ , Yp+i′

are edge-disjoint and

• for all i′ ∈ [�], X ′
p+3i′−2, X

′
p+3i′−1, X

′
p+3i′ , Y

′
p+3i′−2, Y

′
p+3i′−1, Y

′
p+3i′ are vertex-disjoint,

where X ′
j = Xj ∩ V ′ and Y ′

j = Yj ∩ V ′.

Let X̂ :=
⋃

i′∈[3�] Xp+i′ and Ŷ :=
⋃

i′∈[3�] Yp+i′ . Note that D0, X̂, Ŷ are edge-disjoint and

Δ(X̂ ∪ Ŷ ) � 6�. (5.7)

For all w ∈ W+
γ ,

d−D1
(w) = d−D(w) =

dD(w) − ex+
D(w)

2
� γn/2 � �

and, similarly, d+
D1

(w) � � for all w ∈ W−
γ . Since |W | � βn < �, we deduce Δ(D1) < �. By

Vizing’s theorem, D1 can be decomposed into � matchings M ′
1, . . . ,M

′
�. Consider any i ∈ [�].

Partition M ′
i into three matchings Mp+3i−2,Mp+3i−1,Mp+3i such that for each j ∈ [3],

V (Xp+3i−3+j ∪ Yp+3i−3+j) ∩ V (Mp+3i−3+j) = ∅.

For each i′ ∈ [3�] and each vertex w ∈ V (Mp+i′) ∩W , if w ∈ W±
γ , then by (5.7)

d±
D−X̂−Ŷ

(w) � d±D(w) − 6� � n/4.

Hence, by a simple greedy argument, we can extend each Mp+i′ (with i′ ∈ [3�]) into a graph
Jp+i′ such that:

• Jp+i′ consists of precisely |Mp+i′ | vertex-disjoint paths of length 2 with starting points
and end points in V ′ (and midpoint in W ) and Jp+i′ is vertex-disjoint from Xp+i′ and
Yp+i′ ;

• the 9� different graphs Xp+1, Yp+1, Jp+1, . . . , Xp+3�, Yp+3�, Jp+3� are edge-disjoint.

Note that each (Xi, Yi, Ji) is a (W,V ′)-path system satisfying (iii′) and (vi′). Let
S ′ :=

⋃
i′∈[3�](Xp+i′ ∪ Yp+i′ ∪ Jp+i′) and note that S ′ covers all the edges in D1.

Covering edges in D2

We now construct (Xi,j , Yi,j , Ji,j), which cover all the edges in D2. Initially, set Xi,j =
{xi,j}, Yi,j = {yi,j} and let Ji,j be empty for all i ∈ [p] and j ∈ [q]. If xi,j ∈ W+

γ , then
d+
D−S′(xi,j) � n/4 and we can set Xi,j = {xi,jx

′
i,j , xi,jx

′′
i,j} for some distinct x′

i,j , x
′′
i,j ∈

N+
D−S′(xi,j) ⊆ V ′. Similarly, if yi,j ∈ W−

γ , then set Yi,j = {y′i,jyi,j , y′′i,jyi,j} for some distinct
y′i,j , y

′′
i,j ∈ N−

D−S′(yi,j) ⊆ V ′. (Later, in Claim 5.8 we will modify those Xi,j (respectively,
Yi,j) for which xi,j ∈ W+

0 (respectively, yi,j ∈ W−
0 ). ) We can furthermore assume that all

Xi,j , Yi,j are edge-disjoint and, for all i ∈ [p], X ′
i,1, . . . , X

′
i,q, Y

′
i,1, . . . , Y

′
i,q are vertex-disjoint,

where X ′
i,j := V ′ ∩ V (Xi,j) and Y ′

i,j := V ′ ∩ V (Yi,j).
Instead of constructing (Xi,j , Yi,j , Ji,j) one at a time, we build them up in rounds, in each

round simultaneously adding a little extra to every (Xi,j , Yi,j , Ji,j). Before proving this, we
describe somewhat informally how to construct the Ji,j . Let w1, . . . , ws be an enumeration
of W+

0 ∪W−
0 . For simplicity, we further assume that none of the wi is a source or sink, that

is, f(wi) = 0 = g(wi). For each i ∈ [p] and k ∈ [s], we will construct sets Ai,k ⊆ N−
D−S′(wk)
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and Bi,k ⊆ N+
D−S′(wk) of suitable size (with |Ai,k| = |Bi,k| � q) such that for each i the sets

Ai,1, . . . , Ai,s, Bi,1, . . . , Bi,s ⊆ V ′ are disjoint. We further guarantee that⋃
i∈[p]

Ai,k = N−
D−S′(wk) if wk ∈ W+

0 (5.8)

and
⋃
i∈[p]

Bi,k = N+
D−S′(wk) if wk ∈ W−

0 . (5.9)

These sets will be built up in rounds using matchings, but assuming we have these sets, for
each i, we define Fi to be the graph with edges

E(Fi) :=
⋃

k∈[s]

{awk, wkb : a ∈ Ai,k, b ∈ Bi,k},

so that
⋃

i∈[p] Fi ⊇ D2 by (5.8) and (5.9). Note that Fi is the union of vertex-disjoint oriented
stars with centres w1, . . . , ws, where the star at wi has an equal number of edges (at most q)
entering and exiting wi. So, it is easy to see that each Fi can be decomposed into Ji,1, . . . , Ji,q
where each Ji,j satisfies (iii′). Let us prove all of this formally noting that the fact that some
of the wi are sources or sinks will mean we will have to be more careful about the sizes of our
Ai,j and Bi,j .

Let h : W+
0 ∪W−

0 → [n/2] be the function such that if w ∈ W±
0 , then

h(w) = d∓D(w) = d∓D−S′(w) � n/2.

So, h(w) will correspond to the number of {Ji,j : i ∈ [p], j ∈ [q]} that will contain w. Let
h1, . . . , hp : W+

0 ∪W−
0 → [0, q] be functions such that, for each w ∈ W+

0 ∪W−
0 ,

∑
i∈[p] hi(w) =

h(w) and

fi(w) + gi(w) + hi(w) � q. (5.10)

Indeed, this is possible by considering h′
i(w) := q − fi(w) − gi(w) � 0, so that

∑
i∈[p]

h′
i(w) � pq − f(w) − g(w)

(5.6)

� n− 1
2
|exD(w)| � n/2 � h(w)

and making a suitable choice of hi(w) � h′
i(w). Here hi(w) will help determine the number of

{Ji,j : j ∈ [q]} that will contain w.
Recall w1, . . . , ws is an enumeration of W+

0 ∪W−
0 . For i ∈ [p], let Xi :=

⋃
j∈[q] Xi,j and

Yi :=
⋃

j∈[q] Yi,j . Suppose for some k ∈ [0, s], we have already found {Ai,k′ , Bi,k′}i∈[p],k′∈[k]

such that:

(a′) for each i ∈ [p], V ′ ∩ V (Xi), V ′ ∩ V (Yi), Ai,1, . . . , Ai,k, Bi,1 . . . , Bi,k are disjoint;
(b′) for each i ∈ [p] and k′ ∈ [k], |Ai,k′ | = hi(wk′) + 2gi(wk′) and |Bi,k′ | = hi(wk′) +

2fi(wk′);
(c′) for each k′ ∈ [k], A1,k′ , . . . , Ap,k′ ⊆ N−

D−S′(wk′) are disjoint;
(d′) for each k′ ∈ [k], B1,k′ , . . . , Bp,k′ ⊆ N+

D−S′(wk′) are disjoint.

Claim 5.8. If k = s, then we can construct S satisfying (i′)–(vi′) (so completing the proof
of the lemma).

Proof of Claim. Define Fi to be the graph with edge set

E(Fi) :=
⋃

k′∈[s]

{awk′ , wk′b : a ∈ Ai,k′ , b ∈ Bi,k′}.

Note that by (a′)–(d′) and our choice of h, hi we have that F1 ∪ · · · ∪ Fp ⊇ D2.
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By (c′) and (d′), we know that Fi can be decomposed into (W,V ′)-path systems
(Xi,j , Yi,j , Ji,j) (one for each j ∈ [q]) such that (Xi,j , Yi,j , Ji,j) has source xi,j and sink yi,j .
To see this we colour the edges of Fi with colours from [q] as follows. For each j ∈ [q] if
xi,j ∈ W+

0 assign colour j to any two out-edges xi,jx
′
i,j and xi,jx

′′
i,j in Fi at xi,j and (re)set

Xi,j = {xi,jx
′
i,j , xi,jx

′′
i,j}. If yi,j ∈ W−

0 assign colour j to any two in-edges y′i,jyi,j and y′′i,jyi,j in
Fi at yi,j and (re)set Yi,j = {y′i,jyi,j , y′′i,jyi,j}. Such edges exist by (b′). Given w ∈ W+

0 ∪W−
0

write c(w) for the colour assigned (if any) to edges at w. Let F ′
i be the remaining (that is,

uncoloured) edges of Fi, noting that there are precisely hi(w) � q − fi(w) − gi(w) in-edges and
the same number of out-edges at w in F ′

i . For each w, pick any set of colours Sw ⊆ [q] \ {c(w)}
with |Sw| = hi(w). Assign distinct colours of Sw first to the in-edges of F ′

i at w and then to
the out-edges of F ′

i at w. Now, take Ji,j to be the edges of F ′
i coloured j. In particular,⋃

i∈[p]

⋃
j∈[q]

(Xi,j ∪ Yi,j ∪ Ji,j) =
⋃
i∈[p]

Fi ⊇ D2. (5.11)

Now, taking S = {(Xi,j , Yi,j , Ji,j) : i ∈ [p], j ∈ [q]} ∪ {(Xi, Yi, Ji) : i ∈ [p + 1, p + 3�]}, we see
that (i′)–(vi′) hold. Indeed, (i′) and (iii′) hold by construction. (ii′) holds because we showed
S ′ covers all edges in D1 and (5.11) shows all edges in D2 are covered. We showed (iv′) holds
when choosing sources and sinks. The disjointness condition in (v′) and the edge-disjointness
of S hold by construction. The bounds in (v′) and (vi′) hold by (iii′). �

Therefore, we may assume k ∈ [0, s− 1]. We show how to find {Ai,k+1}i∈[p]; finding
{Bi,k+1}i∈[p] is similar. Without loss of generality, assume wk+1 ∈ W+

0 . We have

h(wk+1) = d−D(wk+1) �
dD(wk+1) − exD(wk+1)

2
� (γ − ε)n/2 � γn/4. (5.12)

For each i ∈ [p], set

Ui := (V ′ ∩ V (Xi ∪ Yi)) ∪
⋃

k′∈[k]

(Ai,k′ ∪Bi,k′).

Note that Ui is the set of ‘forbidden’ vertices for Ai,k+1 and Bi,k+1 (in order to maintain (a′),
(c′), and (d′)).

Define an auxiliary bipartite graph FA with vertex classes A and I as follows. Let
A ⊆ N−

D−S′(wk+1) be of size h(wk+1) + 2
∑

i∈[p] gi(wk+1); this is possible since

h(wk+1) + 2
∑
i∈[p]

gi(wk+1) = d−D−S′(wk+1) + 0 = d−D−S′(wk+1).

(Note that in the case when we try to find {Bi,k+1}i∈[p] we use a slightly different calculation†.)
Let I be a multiset consisting of exactly hi(wk+1) + 2gi(wk+1) copies of i ∈ [p]. Clearly,

†
h(wk+1) + 2

∑

i∈[p]

fi(wk+1) = d−
D−S′ (wk+1) + 2f(wk+1) − 2

∑

i′∈[p+1,p+3�]

fi′ (wk+1)

� d−
D−S′ (wk+1) + ex+

D(wk+1) − ex+
S′ (wk+1)

= d−
D−S′ (wk+1) + ex+

D−S′ (wk+1)

= d+
D−S′ (wk+1).
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|A| = |I|. A vertex v ∈ A is joined to i ∈ I in FA if and only if v /∈ Ui. Note that, for all
v ∈ A ⊆ V ′, v is in at most,

f(v) + g(v) + dD(v,W ) � (α/2 + β)n � γn/8q
(5.12)

� |I|/4q,

many of the Ui. Since each i ∈ I has multiplicity at most q, we deduce

dFA
(v) � |I| − q · |I|/4q = |I|/2.

For each i ∈ I, note that

|Ui| � 2q +
∑
k′∈[s]

(2hi(wk′) + 2fi(wk′) + 2gi(wk′))
(5.10)

� 2q(1 + s)

� 2q(1 + βn) � γn/8
(5.12)

� |A|/2

implying

dFA
(i) � |A| − |A|/2 = |A|/2.

Therefore, FA contains a perfect matching M by Hall’s Theorem. For each i ∈ [p],
define Ai,k+1 := {v ∈ A : vi ∈ M}. By a similar argument, there exist B1,k+1, . . . , Bp,k+1 ⊆
N+

D−S′(wk+1) and by construction the sets satisfy (a′)–(d′). Indeed, (a′) holds by the choice
of Ui, (b′) holds by the choice of I, and (c′) and (d′) hold because M is a matching. This
completes the proof of the lemma. �

We now prove Lemma 5.1 using Lemmas 5.4 and 5.7.

Proof of Lemma 5.1. By Lemma 5.4, there exists a partial decomposition P1 of D such that
writing H1 = ∪P1 we have:

(i′) H1[W ] = D[W ];
(ii′) Δ(H1) � 21|W | and dH1(v) = 18|W | for all v ∈ V (D) \W ;
(iii′) ex(D −H1) � Cn/2.

Let D1 := D −H1. Note that δ(D1) � (1 − ε)n− 21|W | � (1 − ε− 21β)n and |exD1(v)| �
|exD(v)| � αn for all v ∈ V (D) \W . By Lemma 5.7, there exists a partial decomposition P2

of D1 such that writing H2 = ∪P2 we have:

(i′′) |P2| = ex(H2) � 2(2 + 3β)n � Cn/4 ;
(ii′′) if w ∈ W with ex±

D(w) � 0, then N∓
D1−H2

(w) = ∅;
(iii′′) for all v ∈ V (D) \W , dH2(v) = 2d for some d � 4γn.

The lemma holds by setting P = P1 ∪ P2, which is a partial decomposition of D by
Proposition 4.1(b). �

6. The final decomposition

In this section, we prove Theorem 1.5. We prove it in three main steps as discussed in
the overview (Section 4.3). We begin with a tournament T that satisfies the hypothesis of
Theorem 1.5 but assume that it does not have a perfect decomposition. Gradually, we show
that certain subdigraphs of T with various additional properties also do not have a perfect
decomposition. Finally, we show that these additional properties are in fact sufficient to
guarantee a perfect decomposition, giving the desired contradiction.
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6.1. Removing vertices with high excess

The following theorem allows us to remove vertices of high excess from our tournament to leave
an almost complete oriented graph D with slightly smaller excess and with the property that
a perfect decomposition of D would give a perfect decomposition of T .

Theorem 6.1. Let 1/n � β � α � ε with n even and let C > 32. Let T be an n-vertex
tournament with ex(T ) � Cn. Suppose that T does not have a perfect decomposition. Then
there exists a subdigraph D of T with the following properties:

(i) D does not have a perfect decomposition;
(ii) |D| � (1 − β)n is even;
(iii) dD(v) � (1 − ε)|D| for all v ∈ V (D);
(iv) 1 � |exD(v)| � 3α|D| for all v ∈ V (D);
(v) ex(D) � (C/4 − 5)n.

We will need the following three relatively straightforward results before we can prove
Theorem 6.1. The first proposition says that any almost regular, almost complete oriented
graph has an Eulerian subgraph that uses most of the edges at every vertex and whose removal
leaves an acyclic subgraph.

Proposition 6.2. Let 1/n � ε � ε′ � 1. Suppose that D is an n-vertex digraph with
δ0(D) � 1

2 (1 − ε)n. Then there is an Eulerian digraph D′ ⊆ D with δ0(D′) � 1
2 (1 − ε′)n and

such that D −D′ is acyclic.

Proof. Note that |exD(v)| � 2εn for every v ∈ V (D). Let K+ be the multiset of vertices such
that each vertex occurs exactly ex+(v) times and let K− be the multiset of vertices such that
each vertex occurs exactly ex−(v) times. Thus, |K+| = |K−| and write K+ = {k+

1 , . . . , k+
d }

and K− = {k−1 , . . . , k−d }, where d = ex(D). Let H be the directed multigraph on V (D) with
E(H) = {k+

i k
−
i : i ∈ [d]}. Note that Δ(H) � 2εn. We apply Corollary 4.10 and obtain a set of

edge-disjoint paths P = {Pe : e ∈ E(H)} in D such that Pe has the same starting and ending
points as e and Δ(∪P) � 4

√
2εn. By our choice of K+,K−, we have that P is a partial

decomposition of D and that D′ := D − ∪P is Eulerian. Also δ0(D′) � δ0(D) − Δ(∪P) �
1
2 (1 − ε′)n. To ensure that D −D′ is acyclic, any cycle in D −D′ is added to D′. �

Given an oriented graph D for which the underlying undirected graph is slightly irregular,
the proposition below will be useful in trying to find a small partial decomposition P of D
such that the underlying undirected graph of D − ∪P is regular. The function f will record
the irregularities in the underlying undirected graph of D and the sets T1, . . . , T2tm obtained
will identify the vertex sets of the paths in P. Some further technical conditions are present
that will be useful later.

Recall that, for U ⊆ X, we write IU : X → {0, 1} for the indicator function of U .

Proposition 6.3. Let n, t,m ∈ N with tm, 2t � n. Let V be a set with n elements. Let f :
V → [m] be a function with m := maxv∈V f(v). Suppose x1, . . . , x2tm, y1, . . . , y2tm are elements
of V (with repetitions) such that xi, yi, xtm+i, ytm+i are distinct for each i ∈ [tm]. Then we can
find a collection of sets T1, . . . , T2tm ⊆ V such that:

(i) for all v ∈ V ,
∑

i∈[2tm] ITi
(v) = f(v) + (2t− 1)m;

(ii) |Ti| � (1 − 1/t)n for all i ∈ [2tm];
(iii) xi, yi ∈ Ti for all i ∈ [2tm].
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Proof. Given any U , take an arbitrary partition of V \ U into sets A1, . . . , At with
|Ai| � n/t for all i ∈ [t] (we allow empty sets in the partition). Then writing Bi := V \Ai, set
SU := {B1, . . . , Bt}. Note that for each v ∈ V ,∑

S∈SU

IS(v) = IU (v) + t− 1.

Since f(v) � m for all v ∈ V , we can find sets U1, . . . , Um such that f ≡ IU1 + · · · + IUm
. Taking

S =
⋃

i∈[m] SUi
, we have |S| = tm and∑

S∈S
IS(v) =

∑
i∈[m]

(IUi
(v) + t− 1) = f(v) + (t− 1)m.

Write S1, . . . Stm for the sets in S. For i ∈ [tm], let

Ti := Si ∪ {xi, yi} and Ttm+i := V \ ({xi, yi} \ Si).

Let T := {Ti : i ∈ [2tm]}. Note |Ti| � (1 − 1/t)n and xi, yi ∈ Ti for all i ∈ [2tm]. For all v ∈ V ,∑
i∈[2tm]

ITi
(v) =

∑
i∈[tm]

(ITi
(v) + ITtm+i

(v))

=
∑

i∈[tm]

(ISi
(v) + 1) = f(v) + (2t− 1)m. �

The following Lemma shows how to decompose any almost complete Eulerian oriented graph
into a small number of cycles. Some extra technical conditions are placed on the cycles that
will be useful later.

Lemma 6.4. Let n ∈ N with 1/n � ε � 1. Suppose D is an n-vertex Eulerian oriented
graph with δ0(D) � 1

2 (1 − ε)n. Suppose φ : V (D) → [n] satisfies
∑

v∈V (D) φ(v) � 4n. Then
we can decompose D into t � n cycles C1, . . . , Ct where each cycle is assigned two distinct
representatives xi, yi ∈ V (Ci) such that no vertex v ∈ V (D) occurs as a representative more
than φ(v) times.

Proof. We assume 1
2 (1 − ε)n is an integer. For x ∈ V (D), write f(x) = 1

2 (dD(x) − (1 −
ε)n) � 0. Let t = �ε−1/2� and m = maxx∈V (D) f(x), so m � εn and tm � 2

√
εn � n.

Let M be the multiset of vertices in which v ∈ V (D) occurs φ(v) times, so that |M | � 4n
and no vertex occurs more than n times. Let m1,m2, . . . be an ordering of the elements
of M (with multiplicity) from most frequent to least frequent. For each i ∈ [tm], write
(xi, yi, xtm+i, ytm+i) = (mi,mn+i,m2n+i,m3n+i). Note that, as vertices, xi, yi, xtm+i, ytm+i are
distinct (because no vertex v occurs more than n times in M).

By Proposition 6.3, we can find sets T1, . . . , T2tm ⊆ V (D) and vertices
x1, . . . , x2tm, y1, . . . , y2tm ∈ V (D) such that:

(i′) for all v ∈ V ,
∑

i∈[2tm] ITi
(v) = f(v) + (2t− 1)m;

(ii′) |Ti| � (1 − 1/t)n � (1 −√
ε)n for all i ∈ [2tm];

(iii′) each Ti is assigned two distinct representatives xi, yi ∈ Ti;
(iv′) no vertex v ∈ V (D) occurs as a representative more than φ(v) times.

For i ∈ [2tm], let Si := V (D) \ Ti and Hi be the multidigraph on V (D) with E(Hi) =
{xiyi, yixi}. Let H =

⋃
i∈[2tm] Hi. Note that Δ(H) � 4tm � 8

√
εn and |Si| �

√
εn. Apply

Lemma 4.9 with (D,Hi, Si, 4
√
ε) playing the role of (D,Hi, Si, γ) to obtain edge-disjoint cycles

C1, . . . , C2tm such that V (Ci) = Ti for each i.
Now, by our choices of T1, . . . , T2tm, we have that C := C1 ∪ · · · ∪ C2tm satisfies dC(x) =

2f(x) + 2(2t− 1)m by (i′) and so D − C is a regular Eulerian digraph with δ(D − C) �
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(1 − ε)n− 4tm � 3n/7. By Lemma 4.4 and Theorem 4.6, D − C can be decomposed into
s � n/2 Hamilton cycles. Each of these cycles is assigned two distinct representatives from
M ′ = M \ {x1, . . . , x2tm, y1, . . . , y2tm} arbitrarily (this is possible since |M ′| � 2n and no vertex
occurs more than n times in M ′). Thus, altogether we obtain a decomposition of D into
t � n/2 + 2tm � n cycles with representatives as desired. �

We now prove Theorem 6.1.

Proof of Theorem 6.1. Fix parameters ε0, ε2, ε
′
2, ε3 such that β � α � ε0 � ε2 � ε′2 �

ε3 � ε. Let

W± := {v ∈ V (T ) : ex±(w) � αn}, W := W+ ∪W− and W := V (T ) \W.

We further guarantee |W | and hence, |W | is even by moving an arbitrary vertex v ∈ W to W
if |W | is odd; in this case v is added to W+ if ex(v) > 0 and to W− if ex(v) < 0. Since T does
not have a perfect decomposition, Theorem 3.5 implies ex(T ) < n19/10. In particular,

|W | � 1 + 2ex(T )/αn � βn.

So, we can apply Lemma 5.1 where (α, β, ε0/10, ε0/10, C) play the role of (α, β, γ, ε, C) to
obtain a partial decomposition P0 of T such that, writing D0 := T − ∪P0, we have:

(a1) D0 does not have a perfect decomposition;
(a2) dD0(v) = d for all v ∈ Wand some odd d � (1 − ε0)n;
(a3) E(D0[W ]) = ED0(W,W+) = ED0(W

−,W ) = ∅;
(a4) ex(D0) � Cn/4;
(a5) |exD0(v)| � αn for all v ∈ W .

Since T does not have a perfect decomposition, (a1) holds. Note that (a2), (a3), and (a4) follow
from Lemma 5.1(i), (ii) and (iii), and (iv), respectively. Finally, (a5) follows by our choice of
W and the fact that P is a partial decomposition of T .

Let P be a partial decomposition of D0 such that every path in P is of the form w+v, vw−,
or w+vw− for some w+ ∈ W+, w− ∈ W−, v ∈ W . We further assume that first the number of
paths in P of type w+vw− is maximal and, subject to this, that P has maximal size.

Let

D1 := D0 − ∪P, D2 := D1 −W = D0 −W.

Note that:

(b1) δ(D2) � d− |W | � (1 − ε0 − β)n � (1 − ε2)n;
(b2) for every v ∈ W , |exD2(v)| � |exD1(v)| + |W | � 2αn;
(b3) δ0(D2) � 1

2 [δ(D2) − maxv |exD2(v)|] � 1
2 (1 − ε′2)n.

Claim 6.5. |P| < 4n.

Proof of Claim. Suppose the contrary that |P| � 4n. By Proposition 6.2, we can find
an Eulerian subgraph D3 of D2 such that δ0(D3) � 1

2 (1 − ε3)n and D2 −D3 is acyclic. Let
R := D1 −D3. By (a3), any cycle in R lies in R[W ] = D2 −D3. Hence, R is acyclic. By
Proposition 2.6, R has a perfect decomposition P1, which is a partial decomposition of D0

by Proposition 4.1(d) and (b).
We now show that D0 −R = ∪P ∪D3 has a perfect decomposition P ′, which will contradict

(a1) (since then P1 ∪ P ′ is a partial decomposition of D0 by Proposition 4.1(b)). Note that
each path in P has a unique vertex in W . For each v ∈ W , write φ(v) for the number of paths
in P that contain v. Then

∑
v∈W φ(v) = |P| � 4n.
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By Lemma 6.4 (with ε3 playing the role of ε), we can decompose D3 into t � n cycles
C ′

1, . . . , C
′
t such that each cycle is assigned two distinct representative vertices xi, yi ∈ Ci such

that each vertex v occurs as a representative at most φ(v) times. In particular, we can assign
two distinct paths Pi, Qi ∈ P to Ci such that V (Pi) ∩ V (Ci) = xi and V (Qi) ∩ V (Ci) = yi
and P1, . . . , Pt, Q1, . . . , Qt are distinct paths of P. Now, construct P ′ from P by replacing for
each i = 1, . . . , t the paths Pi and Qi by the paths PixiCiyiQi and QiyiCixiPi. Now, we see
|P ′| = |P| and that the paths in P ′ have the same start and end points as those in P, so that
P ′ is a partial decomposition of D0 by Proposition 4.1(c). Finally, by construction

∪P ′ = ∪P ∪ C ′
1 ∪ · · · ∪ C ′

t = ∪P ∪D3 = D0 −R,

as required. �

It turns out that if exD2(v) �= 0 for all v ∈ W , then one can relatively easily prove the theorem
by taking D = D2. However, in order to fulfil condition (iv), we must deal with vertices for
which exD2(v) = 0: this is not hard but is technically cumbersome. We will modify P by
extending some of its paths. Let

U± := {v ∈ W : ex±
D2

(v) > 0}, U0 := W \ (U+ ∪ U−),

U0
± := U0 ∩ {v ∈ W : ex∓

D0
(v) > 0}.

Note that U0
+ and U0

− partition U0 (since exD0(u) �= 0 by (a2)). For each u ∈ U0
+ (and u ∈ U0

−),
let Pu ∈ P be a path ending (and starting) at u (such a path exists since exD0(u) �= 0 by (a2)).
Let P ′

± := {Pu : u ∈ U0
±} ⊆ P and let P ′ := P ′

− ∪ P ′
+. Our aim is to extend each path in P ′,

so that its starting and ending points avoid U0.
We show for later that ex(D2) is large. By the maximality of P, we have

N±
D1

(W±) ⊆ U± ∪ U0
±. (6.1)

Together with Proposition 4.2(c), we have

ex(D2) = ex(D1[W ]) = ex(D1) = ex(D0) − |P|
(a4),Claim 6.5

> (Cn/4) − 4n > 4n. (6.2)

Our aim is to extend each path in P ′, so that its starting and ending points avoid U0. In
fact, we replace P ′ by Q′ using the following claim.

Claim 6.6. There exists a partial decomposition Q′ of ∪P ′ ∪D1 = D0 − ∪(P \ P ′) such
that:

(c1) ex(∪Q′ −W ) � |U0| � n;
(c2) ∪P ′ ⊆ ∪Q′;
(c3) Δ(∪Q′ −W ) � 2ε3n;
(c4) 1 � ex±

D2−∪Q′(u) � 2αn if w ∈ U0
∓ ∪ U±.

Proof of Claim. We will show how to extend the paths in P ′
± to obtain sets of paths

Q± and we will take Q = Q+ ∪ Q−. We show how to construct Q+; the construction of Q−
follows similarly.

For each u ∈ U0
+, pick a vertex bu ∈ U− such that no v ∈ U− is chosen more than exD2(v) − 1

times (which is possible as |U0
+| � n � ex(D2) − n by (6.2)) and let eu = ubu. Define a

digraph H on V (D) with edge set {eu : u ∈ U0
+}. Note that Δ(H) � 2αn by (b2). We apply

Corollary 4.10 with D2, H, 2α playing the roles of D,H, γ to obtain a set of edge-disjoint paths
P ′′

+ := {P ′
u : u ∈ U0

+} in D2 such that each P ′
u starts at u and ends at bu and Δ(∪P ′) � ε3n.

Recalling that for u ∈ U+
0 , the path Pu is a single edge starting at W+ and ending at u, we
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see that the path PuP
′
u starts at W+ and ends at bu. Let D+

1 := ∪P ′
+ ∪D1. By our choices of

P ′
+, bu and (6.1), Q+ := {PuP

′
u : u ∈ U0

+} is a partial decomposition of D+
1 −W−. Moreover,

we have

exD2−∪Q+(w)

⎧⎨
⎩∈ [min{exD2(w),−1},−1]

(b2)

⊆ [−2αn,−1] if w ∈ U0
+ ∪ U−;

= exD2(w) if w ∈ U0
− ∪ U+,

where the first case follows since ex∪Q+(u) = ex∪P′
+
(u) = 1 for all u ∈ U0

+, and by our choice
of bu ∈ U−. By (a3) and Proposition 4.2(a) (with (D+

1 , ∅,W−, V (D) \W−) playing the role
of (D,A+, A−, R)), we can extend Q+ to a partial decomposition Q′

+ = {Q′
u : u ∈ U0

+} of D+
1

such that for all u ∈ U0
+ we have:

(d1) Q′
u −W− = PuP

′
u;

(d2) Q′
u is a path from W+ to U− ∪W−;

(d3) Q′
u −Q′

u[V (D) \W+] = Pu;
(d4) Δ(∪Q′

+ −W ) � ε3n;
(d5) for all w ∈ W ,

exD2−∪Q′
+
(w)

{
∈ [−2αn,−1] if w ∈ U0

+ ∪ U−;
= exD2(w) if w ∈ U0

− ∪ U+.

By a similar argument, we can find a corresponding partial decomposition Q′
− = {Q′

u : u ∈ U0
−}

of ∪P ′
− ∪D1 edge disjoint from ∪Q′

+. By setting Q′ := Q′
+ ∪ Q′

−, our claim follows. Note that
(c2), (c3), and (c4) follow from (d3), (d4), and (d5), respectively, while (c1) follows from (d1)
and the fact that |Q′

±| = |U0
±|. �

Let

D3 := ∪P ′ ∪D1 − ∪Q′ = D0 − ∪(P \ P ′) − ∪Q′,

D := D3 −W = D2 − ∪Q′.

We show that D satisfies the conclusion of the theorem. In order to prove (i), if D has a
perfect decomposition, then so does D3 by (a3) and Proposition 4.2(b), and hence, so does D0

since (P \ P ′) ∪ Q′ is a partial decomposition of D0. This contradicts (a1), so D has no perfect
decomposition and so, (i) holds. Our choice of W implies (ii). Note that (iii) follows from (b1)
and (c3), and (iv) follows from (c4). Finally, to see (v),

ex(D) � ex(D2) − ex(∪Q′ −W )
(6.2),(c1)

� Cn/4 − 5n

as required. �

6.2. Balancing the number of positive and negative excess vertices

Given the oriented graph D produced by Theorem 6.1, the following theorem produces a
digraph D′ that has the same properties as D (with slightly weaker parameters) but with the
additional property that the number of vertices of positive excess is almost the same as the
number of vertices with negative excess. Recall that for a digraph D, U+(D) (respectively,
U−(D)) denotes the set of vertices of D with positive (respectively, negative) excess.

Theorem 6.7. Let 1/n � 1/C � α, β � ε � λ, ε′ � 1 with n even. Suppose that D is an
n-vertex oriented graph, where ex(D) � Cn, δ(D) � (1 − ε)n, and 1 � |exD(v)| � αn for all
v ∈ V (D). Suppose that D does not have a perfect decomposition. Then there exists a subgraph
D′ of D with the following properties:
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(i) D′ does not have a perfect decomposition;
(ii) |D′| � (1 − β)n with |D′| even;
(iii) δ(D′) � (1 − ε′/2)n � (1 − ε′)|D′|;
(iv) 1 � |exD′(v)| � αn � 2α|D′| for all v ∈ V (D′);
(v) ex(D′) � λCn/32 � λC|D′|/32;
(vi) ||U−(D′)| − |U+(D′)|| � 2λ|D′|.

Proof. We introduce a parameter ε1 satisfying ε � ε1 � ε′ � 1. Let us write U± := U±(D).
If ||U−| − |U+|| � λn then we can take D′ = D and we are done, so assume without loss of
generality that |U−| > |U+| + λn. We make the following claim.

Claim 6.8. There exist sets X ⊆ U+ and Z ⊆ U− satisfying the following.

(a1) |X| � βn and |X| is even.
(a2) Z can be partitioned into sets Zx : x ∈ X with |Zx| � exD(x) and Zx ⊆ N+

D (x).
(a3) n<

∑
x∈X exD(x)� (1+ 2α)n� (1−λ/4)ex(D) and

∑
z∈Z ex−

D(z)� (1−λ/4)ex(D).
(a4) ||U−| − |U+| − 2|Z|| � λn or equivalently ||U− \ Z| − |U+ ∪ Z|| � λn.

Proof of Claim. Assume βn is an even integer and let X ′ be the set of βn vertices of U+ of
highest excess. Then∑

x∈X′
exD(x) � βnex(D)/|U+| > Cβn2/(n/2) = 2Cβn > n.

Now, we remove suitable vertices from X ′ to obtain a set X such that

n <
∑
x∈X

exD(x) � (1 + 2α)n and |X| even.

This is possible as |exD(v)| � αn for all v ∈ V (D). For each x ∈ X, we have

|N+
D (x) ∩ U−| � 1

2
d+
D(x) − |U+| � 1

2
(1 − ε)n− |U+|

=
1
2
(|U−| − |U+|) − 1

2
εn � 1

2
(|U−| − |U+|) − 1

4
λn.

Thus, for each x ∈ X, we can greedily pick disjoint Z ′
x ⊆ N+

D (x) ∩ U− with |Z ′
x| � exD(x)

and | ∪x∈X Z ′
x| = 1

2 (|U−| − |U+|) − 1
4λn. Let Y be the 1

4λn vertices of lowest excess (that
is, of highest negative excess) in Z ′ := ∪x∈XZ ′

x. Set Zx := Z ′
x \ Y and Z := Z ′ \ Y . Hence,

Z := ∪x∈XZx and |Z| = 1
2 ||U+| − |U−|| − 1

2λn. Also∑
z∈Z

ex−(z) =
∑
z′∈Z′

ex−(z′) −
∑
y∈Y

ex−(y)

� (1 − λ/4)
∑
z′∈Z′

ex−(z′) � (1 − λ/4)ex(D). �

We will construct the final graph D′ such that V (D′) = V (D) \X, where U+(D′) = (U+ \
X) ∪ Z and U−(D′) = U− \ Z, and where exD′(z) = 1 for all z ∈ Z.

For each z ∈ Z, we write xz for the vertex x such that z ∈ Zx. Note that xzz ∈ E(D).

Claim 6.9. There exists a partial decomposition PZ := {xzQz : z ∈ Z} of D such that each
Qz is a non-empty path in D −X starting at z and ending in U− \ Z. Moreover, exD−∪PZ

(v) �=
0 for all v ∈ V (D) \X and Δ(∪PZ) � ε1n.
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Proof of Claim. For each z ∈ Z, pick a vertex bz ∈ U− \ Z such that no v ∈ U− is chosen
more than ex−

D(v) − 1 times (which is possible as |Z| � n � λex(D)/4 � ex(D) −
∑

z∈Z ex−
D(z)

by (a3)) and let ez = zbz. Define a digraph H on V (D) \X with edge set {ez : z ∈ Z}. Note
that Δ(H) � αn � 2α|D −X|. We apply Corollary 4.10 with D −X,H, 2α playing the roles
of D,H, γ and obtain a set of edge-disjoint paths Q := {Qz : z ∈ Z} such that each Qz starts
at z and ends at bz and Δ(∪Q) � ε1n/2. Our claim follows by our choice of Q. �

Let D1 := D − ∪PZ and write QZ := {Qz : z ∈ Z}.

Claim 6.10. There exists a partial decomposition P1 of D1 such that ∪P1 ⊆ D1 −X,
ex(∪P1) � n, Δ(∪P1) � ε1n and ex∪P1(v) �= 0 if v /∈ X ∪ Z and ex∪P1(v) = 0 otherwise.

Proof of Claim. Let H be any digraph on V (D) \ (X ∪ Z) with edges from U+ to U− such
that 1 � dH(v) � |exD1(v)| for all v ∈ V (D) \ (X ∪ Z). Note that Δ(H) � αn � 2α|D −X|.
By deleting edges of H if necessary, we may assume that H has at most n edges. We apply
Corollary 4.10 with D1 −X,H, 2α playing the roles of D,H, γ and obtain the desired partial
decomposition P1. �

Let D2 := D1 − ∪P1. Note that δ(D2) � (1 − 3ε1)n.

Claim 6.11. There exists a partial decomposition P2 of D2 such that, writing
D3 := D2 − ∪P2, we have dD3(x) = 0 for all x ∈ X, dD3(v) � (1 − ε′/2)n for all v /∈ X,
exD3(z) = 0 for all z ∈ Z, and ex(D3) � λCn/32

Proof of Claim. Let

m := max

{∑
x∈X

exD(x),
∑
z∈Z

ex−
D(z)

}
.

Recall that δ(D2) � (1 − 3ε1)n and

ex(D2) � ex(D) − 2n � (1 − λ/8)ex(D)
(a3)

� λex(D)/8 + m � λCn/8 + m.

Let H be a digraph on V (D) with m edges from U+ to U− such that dH(v) = |exD2(v)| for
all v ∈ X ∪ Z and dH(v) � |exD2(v)| otherwise. (Such an H exists by the calculation above.)
Note that Δ(H) � αn. We apply Corollary 4.10 with D2, H, α playing the roles of D,H, γ and
obtain a partial decomposition P ′

2 of D2 such that, writing D′
2 := D2 − ∪P ′

2, we have

exD′
2
(v) = 0 for all v ∈ X ∪ Z, ex(D′

2) � λCn/8 and Δ(∪P ′
2) � ε1n.

We now apply Lemma 5.1 with (D′
2, X, α, β, ε1, 4ε1, λC/8) playing the roles of

(D,W,α, β, γ, ε, C). We obtain a partial decomposition P ′′
2 of D′

2 such that, writing
D3 := D′

2 − ∪P ′′
2 , we have

dD3(x) = 0 for all x ∈ X, ex(D3) � λCn/32 and Δ(∪P ′′
2 −X) � 5ε1n.

The claim holds by setting P2 := P ′
2 ∪ P ′′

2 . �

Finally, we show how to prove the theorem using Claim 6.11. Note that P2 is a partial
decomposition of D by Proposition 4.1(b). Let

D′′ := D − ∪P2 = ∪(PZ ∪ P1) ∪D3,

D′ := D′′ −X = ∪(QZ ∪ P1) ∪ (D3 −X).
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Since vertices of X are isolated in D3, we have E(D′′ −D′) = {xzz : z ∈ Z}. Therefore, by
Proposition 4.2(b), (with (D′′, X, ∅, V (D) \X) playing the roles of (D,A+, A−, R)) we see
that if D′ has a perfect decomposition, then so does D′′ and hence, so does D, a contradiction;
hence, D′ does not have a perfect decomposition, proving (i). Note that (ii) follows from
(a1). Since E(D3 −X) = E(D3), (iii) holds by Claim 6.11. For all z ∈ Z, we have exP1(z) =
0 and exD3−X(z) = 0, and so exD′(z) = ex∪QZ

(z) = 1 by Claim 6.9. Since P2 is a partial
decomposition of D, ex±

D′′(u) � αn for all u ∈ U±. Moreover, for u ∈ U± \ (X ∪ Z), ex±
D′(u) =

ex±
D′′(u) � ex±

∪P1
(u) � 1. Hence, (iv) holds. Furthermore, we have U+(D′) = (U+ \X) ∪ Z and

U−(D′) = U− \ Z. Thus, (vi) holds by (a4). Note that QZ and P1 are partial decompositions†

of D′, so ex(D′) � ex(D3 −X) = ex(D3) � λCn/32 implying (v). �

We now show that the digraph produced by Theorem 6.7 has a perfect decomposition.
Together with Theorems 6.1 and 6.7, this will give us all the ingredients to prove Theorem 1.5.

Theorem 6.12. Let 1/n � α, λ, ε � 1. Suppose that D is an n-vertex oriented graph,
where:

• ex(D) � 2n;
• δ(D) � (1 − ε)n;
• 1 � |exD(v)| � αn for all v ∈ V (D);
• ||U−(D)| − |U+(D)|| � 2λ|D|.
Then D has a perfect decomposition.

Proof. Fix a parameter ε′ satisfying 1/n � α, λ, ε � ε′ � 1 such that ε′n is an integer.
Let

d = (1/2 − 52ε′)n and t := n− 2d = 104ε′n.

Arbitrarily partition V (D) into X+, X−, X0 such that

|X+| = |X−| = d, |X0| = t, X± ⊆ U± := U±(D).

(Note that such partition exists as |U±| � d.) Our goal is to remove a partial decomposition
P of D such that the resulting digraph D′ := D − ∪P satisfies

exD′(v) =

⎧⎪⎨
⎪⎩

1 if v ∈ X+;
0 if v ∈ X0;
−1 if v ∈ X−;

and dD′(v) =

⎧⎪⎨
⎪⎩

2d− 1 if v ∈ X+;
2d if v ∈ X0;
2d− 1 if v ∈ X−.

(6.3)

Then D′ has a perfect decomposition P ′ by Theorem 4.7 and so P ∪ P ′ is a perfect
decomposition of D (by Proposition 4.1(b)). Thus, it remains to find such a P.

We will construct P as a union of three partial decompositions P1,P2,P3. Let D0 := D
and write Di := Di−1 − ∪Pi for i = 1, 2, 3. First, we reserve two multisets A2 and A3, which
will be sets of starting and ending points of P2 and P3, respectively. Second, we find a
partial decomposition P1 such that exD1(v) has the correct value provided v /∈ A2 ∪A3 (see
Claim 6.13). The partial decomposition P2 will ensure that dD2(v) = 2d′ − IX+∪X−(v) for some
d′ > d. Finally, we adjust d′ to d using P3.

Since ex(D) � 2n and |exD(v)| � αn, we know we can find vertices
x1, . . . , x26ε′n, x

′
1, . . . , x

′
26ε′n ∈ U+ such that xi �= x′

i and no vertex v ∈ U+ is chosen more than

†To see this note that PZ and P1 are partial decompositions of D′′. We obtain, respectively, D′, QZ , P1

by deleting X from D′′, PZ , P1. Then noting that exD′′ (z) = ex∪PZ∪P1 (z) = 0 for all z ∈ Z and that the
only edges incident to X in D′′ are the initial edges of paths in PZ , we can conclude QZ and P1 are partial
decomposition of D′.
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(exD(v) − 1)/2 times. Similarly, we are able to pick vertices y1, . . . , y26ε′n, y
′
1, . . . , y

′
26ε′n ∈ U−

such that yi �= y′i and no vertex v ∈ U− is chosen more than (|exD(v)| − 1)/2 times. Clearly,
xi, x

′
i, yi, y

′
i are distinct for all i. Let

A2 := {xi, x
′
i, yi, y

′
i : i ∈ [25ε′n]},

A3 := {xi, x
′
i, yi, y

′
i : i ∈ [25ε′n + 1, 26ε′n]}.

For j ∈ {2, 3}, let φ+
j (v) (and φ−

j (v)) be the number of times that v is chosen as xi or x′
i (and yi

or y′i) in Aj . Let φj(v) := φ+
j (v) − φ−

j (v). Note that
∑

v∈V (D) φj(v) = 0 and 2|φ2(v) + φ3(v)| <
|exD(v)|.

Claim 6.13. There exists a partial decomposition P1 of D such that, writing
D1 := D − ∪P1, we have δ(D1) � (1 − ε′)n and for all v ∈ V (D),

exD1(v) =

{
2φ2(v) + 2φ3(v) + ±1 if v ∈ X±;
2φ2(v) + 2φ3(v) if v ∈ X0.

Proof of Claim. Let f : V (D) → [n] be such that

f(v) =

{
ex(v) − 2φ2(v) − 2φ3(v) ∓ 1 if v ∈ X±;
ex(v) − 2φ2(v) − 2φ3(v) if v ∈ X0.

Note that
∑

v∈V (D) f(v) = 0 and |f(v)| � αn for all v ∈ V (D). Define a directed multigraph H

on V (D) such that d+
H(v) = max{f(v), 0} and d−H(v) = max{−f(v), 0}. Note that Δ(H) � αn.

We apply Corollary 4.10 with D,H,α playing the roles of D,H, γ and obtain the desired partial
decomposition P1. �

Let

s := max
v∈V

{dD1(v) + IX+∪X−(v)}.

Note that dD1(v) is even if v ∈ X0 and odd otherwise. So, s is even and (1 − ε′)n � s � n. Let
d′ := s/2 − 50ε′n, so

d + ε′n = (1/2 − 51ε′)n � d′ � (1/2 − 50ε′)n = d + 2ε′n. (6.4)

Claim 6.14. There exists a partial decomposition P2 of D1 such that, for all v ∈ V (D),
ex∪P2(v) = 2φ2(v) and dD2(v) = 2d′ − IX+∪X−(v), where we write D2 := D1 − ∪P2.

Proof of Claim. Define f : V (D) → [ε′n] to be such that

f(v) = ε′n− s− (dD1(v) + IX+∪X−(v))
2

.

Note that maxv∈V (D) f(v) = ε′n. Recall that A2 = {xi, x
′
i, yi, y

′
i : i ∈ [25ε′n]}. Write

(x∗
i , x

∗
25ε′n+i, y

∗
i , y

∗
25ε′n+i) = (xi, x

′
i, yi, y

′
i).

By Proposition 6.3, where we take (V (D), 25, ε′n, x∗
i , y

∗
i ) to play the roles of (V, t,m, xi, yi),

we can find a collection of sets T1, . . . , T50ε′n ⊆ V (D):

(i′) for all v ∈ V (D),
∑

i∈[50ε′n] ITi
(v) = f(v) + 49ε′n;

(ii′) |Ti| � 24n/25 for all i ∈ [50ε′n];
(iii′) x∗

i , y
∗
i ∈ Ti for all i ∈ [50ε′n].
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For i ∈ [50ε′n], let Si := V (D) \ Ti and Hi be the multidigraph on V (D) with E(Hi) =
{x∗

i y
∗
i , x

∗
i y

∗
i }. Let H =

⋃
i∈[50ε′n] Hi. Note that |E(Hi)| = Δ(Hi) = 2 and |Si| � n/25. We apply

Lemma 4.9 where we take (D1, Hi, Si, 50ε′) to play the role of (D,Hi, Si, γ) and obtain edge-
disjoint paths P1, P

′
1, . . . , P50ε′n, P

′
50ε′n such that both Pi and P ′

i start at x∗
i and end at y∗i and

dPi∪P ′
i
(v) = 2ITi

(v) for all v ∈ V (D).
Set P2 = {Pi, P

′
i : i ∈ [50ε′n]}. Note that ex∪P2(v) = 2φ2(v) for all v ∈ V (D). For all v ∈

V (D),

dD2(v) = dD1(v) − 2
∑

i∈[50ε′n]

ITi
(v)

(i′)
= dD1(v) − 2(f(v) + 49ε′n)

= s− 100ε′n− IX+∪X−(v) = 2d′ − IX+∪X−(v),

as required. �

Claim 6.15. There exists a partial decomposition P3 of D2 such that for all v ∈ V (D),
ex∪P3(v) = 2φ3(v) and dD3(v) = 2d− IX+∪X−(v), where we write D3 := D2 − ∪P3.

Proof of Claim. Recall that A3 := {xi, x
′
i, yi, y

′
i : i ∈ [25ε′n + 1, 26ε′n]}. Let m := d′ − d−

ε′n, so 0 � m � ε′n by (6.4).
We now define multidigraphs H1, . . . , Hm+ε′n on V (D) as follows. Define f(i) = 25ε′n + i.

For i ∈ [m],

E(Hi) := {xf(i)yf(i), xf(i)yf(i)}, E(Hε′n+i) := {x′
f(i)y

′
f(i), x

′
f(i)y

′
f(i)}.

For i ∈ [m + 1, ε′n], set

E(Hi) := {xf(i)yf(i), xf(i)yf(i), x
′
f(i)y

′
f(i), x

′
f(i)y

′
f(i)}.

Note that |E(Hi)| � 4 and Δ(Hi) = 2. Let H :=
⋃

i∈[ε′n+m] Hi. We apply Lemma 4.9 with
(D2, Hi, ∅, 2ε′) playing the roles of (D,Hi, Si, γ) to obtain a set of edge-disjoint paths
P3 = {Pe : e ∈ E(H)} such that d∪P3(v) = 2(ε′n + m) = 2(d′ − d) and ex∪P3(v) = 2φ3(v) for
all v ∈ V (D). Note that P3 is a partial decomposition of D2 by our choice of Hi and that
D3 = D2 − ∪P3 satisfies the desired properties. �

For all v ∈ V (D),

exD3(v) = exD1(v) − ex∪P2(v) − ex∪P3(v) =

{
±1 if v ∈ X±;
0 if v ∈ X0.

Also dD3(v) = 2d− IX+∪X−(v) for all v ∈ V (D) by Claim 6.15. We are done by setting
D′ := D3. �

6.3. Final proof

Now, we can finally prove our main theorem.

Proof of Theorem 1.5. Assume 1/n0 � 1/C � 1 and that T is an even tournament with
n � n0 vertices and ex(T ) � Cn.

We pick parameters α1, β1, ε1, α2, β2, ε2, λ satisfying:

1/n � 1/C � β1 � α1, β2 � ε1 � ε2, λ � 1 and 1/C � λ. (6.5)

By Theorem 6.1, either T has a perfect decomposition or there is a digraph D1 satisfying
the following properties.
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(a1) If D1 has a perfect decomposition, then T has a perfect decomposition.
(a2) n1 := |D1| � (1 − β1)n with n1 even.
(a3) δ(D1) � (1 − ε1)n1.
(a4) 1 � |exD1(v)| � α1n1 for all v ∈ V (D1).
(a5) ex(D1) � (C/4 − 5)n1 =: C1n1.

By Theorem 6.7, there exists a digraph D2 satisfying the following properties.

(b1) If D2 has a perfect decomposition, then D1 has a perfect decomposition.
(b2) n2 := |D2| � (1 − β2)n1 with n2 even.
(b3) δ(D2) � (1 − ε2)n2.
(b4) 1 � |exD2(v)| � α1n1 � 2α1n2 for all v ∈ V (D2).
(b5) ex(D2) � λC1n2/32 =: C2n2 � 2n2.
(b6) ||U−(D2)| − |U+(D2)|| � 2λn2.

Note that by (6.5), we have 1/n2 � 2α1, λ, ε2 � 1 since n2 � (1 − β1)(1 − β2)n � n/2. By
Theorem 6.12, D2 has a perfect decomposition; hence, so does D1 (by (b1)) and so does T (by
(a1)) as required. �

7. Conclusion

We have proved many cases of Conjecture 1.1. The obvious open problem remaining is to fill
the remaining gap, that is to prove that pn(T ) = ex(T ) for all even tournaments satisfying
n/2 < ex(T ) � Cn for some sufficiently large C. We believe that with a little work, one should
be able to apply the results of Kühn and Osthus [9] to prove the conjecture when ex(T ) is very
close to n/2 but that probably some new ideas are needed, say when n � ex(T ) � Cn.

Another direction, which is currently work in progress, is to investigate analogues of
Conjecture 1.1 for directed graphs that are not tournaments. In forthcoming work, we consider
dense directed graphs as well as random and quasi-random directed graphs.

Acknowledgements. We are extremely grateful to Bertille Granet and the referee for their
detailed comments on a draft of this paper.
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