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Decomposing tournaments into paths

Allan Lo, Viresh Patel, Jozef Skokan and John Talbot

ABSTRACT

We consider a generalisation of Kelly’s conjecture which is due to Alspach, Mason, and Pullman
from 1976. Kelly’s conjecture states that every regular tournament has an edge decomposition
into Hamilton cycles, and this was proved by Kiihn and Osthus for large tournaments. The
conjecture of Alspach, Mason, and Pullman asks for the minimum number of paths needed
in a path decomposition of a general tournament T'. There is a natural lower bound for this
number in terms of the degree sequence of T and it is conjectured that this bound is correct
for tournaments of even order. Almost all cases of the conjecture are open and we prove many
of them.

1. Introduction

There has been a great deal of recent activity in the study of decompositions of graphs and
hypergraphs. The prototypical question in this area asks whether, for some given class C of
graphs, hypergraphs or directed graphs, the edge set of each H € C can be decomposed into
parts satisfying some given property. The development of the robust expanders technique by
Kiihn and Osthus [9] was a major breakthrough leading to the resolution of several conjectures
concerning decompositions of (directed) graphs into spanning structures such as matchings and
Hamilton cycles (see, for example, [4, 10]).

The problem we address in this paper is that of decomposing tournaments into directed paths.
A tournament is an orientation of the complete graph, that is, one obtains a tournament by
assigning a direction to each edge of the (undirected) complete graph. Let us begin, however,
in the more general setting of directed graphs.

Let D be a directed graph with vertex set V(D) and edge set E(D). When referring to paths
and cycles in directed graphs, we always mean directed paths and directed cycles. A path
decomposition of D is a collection of paths P, ..., Py of D whose edge sets E(Py),...,E(Py)
partition E(D). Given any directed graph D, it is natural to ask what the minimum number
of paths is in a path decomposition of D. This is called the path number of D and is denoted
pn(D). A natural lower bound on pn(D) is obtained by examining the degree sequence of D.
For each vertex v € V(D), write d;(v) (respectively, d,,(v)) for the number of edges exiting
(respectively, entering) v. Define the excess at v to be ex(v) := df(v) — d(v) and similarly
define the positive and negative excess at v to be, respectively, ex™ (v) := max{ex(v),0}
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and ex” (v) := max{—ex(v),0}. It is easy to see that the excesses of all vertices sum
to zero.

We note that in any path decomposition of D, at least ex™ (v) paths must start at v and at
least ex™ (v) paths must end at v. Therefore, we have

pn(D) > ex(D) = Z ext(v) = Z eX_(U):% Z lex(v)],

veV (D) veV(D) veV(D)

where ex(D) is called the excess of D. Any digraph for which equality holds above is called
consistent. Clearly, not every digraph is consistent; in particular, any nonempty digraph D of
excess 0 cannot be consistent. However, Alspach, Mason, and Pullman [1] conjectured that
every even tournament is consistent.

CONJECTURE 1.1 (Alspach, Mason, and Pullman [1]). Every tournament T with an even
number of vertices satisfies pn(7') = ex(T).

It is almost immediate to see that this conjecture is a considerable generalisation of Kelly’s
conjecture stated below. We give the easy argument after Theorem 1.3.

CONJECTURE 1.2 (Kelly; see, for example, [3]). The edge set of every regular tournament
can be decomposed into Hamilton cycles.

Almost 50 years after it was stated, Kiithn and Osthus [9] finally proved Kelly’s conjecture
for large tournaments using their powerful robust expanders technique, which was subse-
quently used to prove several other conjectures on edge decompositions of (directed) graphs
4, 10].

THEOREM 1.3 (Kiihn and Osthus [9]). Every sufficiently large regular tournament has a
Hamilton decomposition.

To see that Conjecture 1.1 implies Conjecture 1.2, take any regular (n + 1)-vertex tour-
nament T (so n must be even) and any v € V(T), and note that ex(T'—v)=n/2. If
Conjecture 1.1 holds, then T'—v can be decomposed into n/2 paths, so they must be
Hamilton paths. Adding v back to T — v, it is easy to see that each path can be completed
to a Hamilton cycle, giving a Hamilton decomposition of 7. The converse is also easy to
see. Thus, the special case of Conjecture 1.1 in which ex(T) =n/2 is equivalent to Kelly’s
Conjecture. In general, however, ex(T') can take a large range of values as the proposition below
shows.

PROPOSITION 1.4. IfT is an n-vertex tournament with n even, then n/2 < ex(T) < n?/4.
Furthermore, each value in the range occurs.

As we saw, the lower bound occurs for any almost-regular tournament and it is easy to verify
that the upper bound occurs for the transitive tournament (in fact it occurs for any tournament
with a vertex partition into two equal size parts A and B where all edges are directed from A to
B). Alspach and Pullman [2] showed that for any tournament T, pn(7") < n?/4 thus verifying
Conjecture 1.1 for the special case ex(T) = n?/4 (and this was generalised to digraphs [13]).
Thus, the conjecture has been solved for the two extreme values of excess, namely, n/2 and
n?/4: for every other value of ex(T') between n/2 and n?/4 the conjecture remains open. Our
main contribution is to solve many more cases of the conjecture.
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THEOREM 1.5. There exists C > 0 and ng € N such that if T is an n-vertex tournament
with n > ng even and ex(T') > Cn, then pn(T) = ex(T).

We make no attempt to optimise or even compute the value of C', but we note that it is not
a tower-type constant that one associates with the use of the Szemerédi Regularity Lemma (a
powerful tool used in extremal combinatorics and elsewhere). We prove this theorem in two
steps. We will first prove the following weakening of the Theorem 1.5.

THEOREM 1.6. There exists € > 0 (we can take ¢ = 1/18) and ng € N such that if T is a
tournament on n > ng vertices with n even and ex(T') = n?~¢, then pn(T) = ex(T).

The proof of this result is short and self-contained, relying on a novel application of the
absorption technique due to Rodl, Rucinski, and Szemerédi [14] (with special forms appearing
in earlier work, for example, [7]).

In the next step, we consider tournaments of excess smaller than n2~¢ but bigger than Cn.
Such tournaments are almost regular and are therefore amenable to the techniques used by
Kiithn and Osthus [9]. For tournaments of small excess, we will ultimately reduce the problem of
showing that pn(T") = ex(T') to the problem of showing that a regular oriented graph D of very
high degree has an edge decomposition into Hamilton cycles; such a Hamilton decomposition
of D is known to exist by the main result from [9].

1.1. Outline

In the next section, we give the basic notation we will use as well as some preliminary results
needed in Section 3. In Section 3, we give the short proof of Theorem 1.6, which requires only
Hall’s Theorem and Menger’s Theorem. In Section 4, we give further preliminaries needed for
the remaining sections; in particular, we state the results related to robust expansion that
we will need. At the end of Section 4, we give an overview of the arguments in Section 5 and
Section 6 that allow us to extend Theorem 1.6 to Theorem 1.5. Section 5 contains a preliminary
result, Lemma 5.1, that helps us to deal with certain problematic vertices that we encounter in
Section 6. In Section 6, we prove Theorem 1.5 in a three-step reduction via Theorems 6.1, 6.7,
and 6.12.

2. Notation and preliminaries

2.1. Notation

In this paper, a digraph refers to a directed graph without loops where we allow up to two
edges between any pair x, y of distinct vertices, at most one in each direction. Occasionally we
work with directed multigraphs which again have no loops, but where we permit more than
two directed edges between any pair of distinct vertices. An oriented graph is a directed graph
where we permit only one edge between any pair of distinct vertices. Given a digraph D, we
write V(D) for its vertex set and E(D) for its edge set. We write xy for an edge directed from
T to y.

We write H C D to mean that H is a subdigraph of D, that is, V(H) C V(D) and E(H) C
E(D). Given X C V(D), we write D — X for the digraph obtained from D by deleting all
vertices in X, and D[X] for the subdigraph of D induced by X. Given F' C E(D), we write
D — F for the digraph obtained from D by deleting all edges in F. If H is a subdigraph of
D, we write D — H for D — E(H). For two subdigraphs H; and Hs of D, we write H; U Ho
for the subdigraph with vertex set V(H;) UV (Hz) and edge set E(H;) U E(Hs). For a set of
edges F' C E(D), we sometimes write V(F) to denote the set of vertices incident to some edge
in F.
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If x is a vertex of a digraph D, then N}, (z) denotes the out-neighbourhood of z, that
is, the set of all those vertices y for which zy € E(D). Similarly, N (z) denotes the in-
neighbourhood of x, that is, the set of all those vertices y for which yx € E(D). For S C V(D),
we write N} (z,S) for all those vertices y € S such that zy € F(D) and correspondingly for
Np(x,5). We write df(x) := [N} (x)| for the outdegree of z and dj(z) :=|N(z)| for its
indegree. Similarly, we write d,(z,S) := |N3(x,S)|. We denote the minimum outdegree of
D by (D) := min{d}(z) : € V(D)} and the minimum indegree §~ (D) := min{d,(z) : z €
V(D)}. The minimum semi-degree of D is 6°(D) := min{§*(D),d (D)} and the minimum
degree is §(D) := min{d* (z) + d~(z) : € V(D)}. We use A*(D), A°(D) and A(D) for the
corresponding maximum degrees.

Whenever X,Y C V(D) are disjoint, we write Ep(X) for the set of edges of D having both
endvertices in X, and Fp(X,Y) for the set of edges of D that start in X and end in Y.

Unless stated otherwise, when we refer to paths and cycles in digraphs, we mean directed
paths and cycles, that is, the edges on these paths and cycles are oriented consistently. We
write P = x1x5---x; to indicate that P is a path with edges zix2, x2x3,...,2;_12;, Where
x1,...,2; are distinct vertices. We occasionally denote such a path P by z;Px; to indicate
that it starts at x; and ends at x;. For two paths P =a---band Q =b---¢, we write aPbQc
for the concatenation of the paths P and @ and this notation generalises to cycles in the
obvious ways. In particular, for a cycle C' and vertices a, b on the cycle, aCb denotes the paths
from a to b along the cycle. We often use calligraphic letters, for example, P for a set of paths
P ={Py,...,P.}. In that case UP refers to the digraph that is the union of the paths and
V(P) and E(P) refer to the vertex and edge set of the union.

For a set X and U C X, we will write Iy : X — {0, 1} for the indicator function of U.

For z,y € (0, 1], we often use the notation x < y to mean that z is sufficiently small as a
function of y, that is, z < f(y) for some implicitly given non-decreasing function f : (0,1] —
(0, 1].

Throughout, we omit floors and ceilings and treat large numbers as integers whenever this
does not affect the argument.

2.2. Basic graph theory

We will very occasionally work with undirected graphs for which we use standard notation
similar to that used for directed graphs (see, for example, [5]).

THEOREM 2.1 (variant of Hall’s Theorem). Suppose G is a bipartite graph with vertex
classes A and B and k € N. If k|Ng(X)| > |X| for every X C A, then each a € A can be
matched with some b € B such that each b € B is matched with at most k elements of A, that
is, there exists a subgraph G' C G in which every vertex in A has degree 1 and every vertex in
B has degree at most k.

COROLLARY 2.2. Suppose G is a bipartite graph with vertex classes A and B both of size
n and suppose §(G) = n/2. Then G has a perfect matching.

For a directed graph D and A, B C V(D), an A, B-path of D is a path of D that starts in
A and ends in B. An A, B-separator of D is a vertex subset S C V(D) such that there are no
A, B-paths in D — S.

THEOREM 2.3 (Menger’s Theorem). Suppose D is a directed graph and A, B C V(D). If the
smallest A, B-separator in D has size t, then there exist t internally vertex-disjoint A, B-paths
in D.
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2.3. Excess and partial decompositions

We recall definitions from the introduction. Let D be a directed graph. For a vertex v € V(D),
recall that exp(v) :=d},(v) —dp(v). We define ex},(v) :== max{0,exp(v)} and ex,(v):=
max{0, —exp(v)}. Let

ex(D) ;:% S len@l= Y e = Y exp).

veEV (D) veV(D) veEV(D)

For x€{+,—}, let U*(D):={veV(D):exh(v) >0} and let U°D):={veV(D):
exp(v) = 0}.
We state the following very simple observation, so that we can refer to it later.

PROPOSITION 2.4. Suppose D is a directed graph and H C D is a subdigraph in which
exj;(v) < exhy(v) for all v € V(D) and % € {+, —} (here we define exj;(v) =0 for v € V(D) \
V(H)). Then ex(D) = ex(H) + ex(D — H).

Proof. To see this, note that either exp(v), exy(v), and exp_pg(v) are all at least zero or
all at most zero for each v € V(D). Hence, exp(v) = exg(v) + exp_p(v) for all v € V(D). We
sum over all vertices to obtain the result. ]

The following definitions are convenient.

DEFINITION 2.5. A perfect decomposition of a digraph D is a set P = {P,..., P,} of edge-
disjoint paths of D that together cover E(D) with r = ex(D). (Thus, Conjecture 1.1 states
that every even tournament has a perfect decomposition.)

A partial decomposition of a digraph D is a set P = {P,..., Py} of edge-disjoint paths of
D such that for every v € V(D) at most ex},(v) of the paths start at v and at most ex},(v) of
the paths end at v.

It is easy to see that any subset of a perfect decomposition of G is a partial decomposition
of G. We will need the following straightforward fact about perfect decompositions.

ProposITION 2.6. If D is an acyclic digraph, then it has a perfect decomposition.

Proof. Tteratively remove paths of maximum length. Note that removing such a path from
an acyclic digraph reduces the excess by one (since such a path must begin at a vertex v,
where d~(v) =0 (and hence, ex(v) > 0), and must end at a vertex, where d*(v) =0 (and
hence, ex(v) < 0). So, the proposition holds by induction on ex(D).

3. Exact Decomposition for tournaments with high excess

In this section, we prove Theorem 1.6. We start by showing that any Eulerian oriented graph
can be decomposed into a small number of cycles. We will also need an extra technical condition
on this cycle decomposition. We use the following result of Huang, Ma, Shapira, Sudakov, and
Yuster [6, Proposition 1.5].

LEMMA 3.1. Every Eulerian digraph D with n vertices and m edges has a cycle of length

1+ max(m?/24n3, | \/m/n]).
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LEMMA 3.2. Let n € N. Let D be an Eulerian oriented graph with n vertices. Then we can
decompose D into t < 50n*/3logn cycles C1, ..., Cy and for each cycle C; we can find distinct
representatives x,xh, ...,z € V(C;) (indexed in order) with the following properties.

(i) Every cycle has at least two representatives, that is, r; > 2 for all i.
(ii) The interval between consecutive representative vertices on a cycle x;C;x ,; has length
at most n?/3.

(iii) Every vertex v € V occurs as a representative at most 24n?/? log'/? n times.

Proof. We first show that D can be decomposed into at most 50n*/? logn cycles. Note that
D has m < n?/2 edges. We iteratively remove the longest cycle and let m; be the number of
edges remaining at step ¢. From Lemma 3.1, we have that m;1 < m; — g(my), where

g(r) = max {r2/24n3, L\/r/inj} > Mn%/:*'

To see the inequality note that if » > n®/3, then r2/24n® > r/24n*/3, and if r < n°/?3, then
\/r/n > r/nt/?t5/6 = ¢ /nd/3 . Thus, we see that

me o 1 1 < 1
Ml < ppnars = ML gy ) S e T )

Hence, m; < exp(—t/24n*/3)n? from which we see that m, < 1 after at most 50n*/3 logn steps,
giving at most as many cycles in the greedy decomposition of D.

Next, we show how to obtain the representatives. Assume we have a decomposition of D
into a minimum number of cycles C1, ..., Cy, where we know ¢t < 50n*/3logn.

First we treat the long cycles. Assume without loss of generality that Ci,...,C} are
the cycles in our decomposition of length larger than n?/3. Divide each such cycle C; into
intervals I,...,I! each of length between n?/?/4 and n?/3/2 with r; minimal. Note that
r; < 4|E(C;)|n=2/3 for all i € [k]. Thus, in total we have at most Zie[k]4\E(Ci)|n_2/3 <
4|E(D)|n=2/3 < 2n*/3 intervals each of length at least n?/3 /4. Therefore, we can greedily pick
a’ € I} such that no vertex in V(D) appears as a representative more than 8n2/3 times.

Consider the remaining (short) cycles Ciy1,...,Cy, for which we need only find two
representatives each. Let C = {Cy41,...C:}. First, we will find one representative in each cycle
of C such that no vertex is chosen more than 8n2/? logl/2 n times. Let H be the bipartite graph
with vertex partitions C and V(D), where for C' € C and v € V(D) are joined if and only if
v € V(C). We now apply (a version of) Hall’s theorem (Theorem 2.1) to find one representative
in each C such that no vertex is chosen more than 8n?/3 logl/ % n times. If such a collection of
representatives does not exist, then Theorem 2.1 implies that there exists a subset C’ of C such
that 8n2/31log'/? n| Ny (C')| < |C'|. On the other hand, we have

V@) = v (Je)l = 1B(Je)17 > e,

This implies that ¢ > |C’| > 64n*/3 logn, a contradiction. Thus, we have found one representa-
tive 21 € V(C;) for each k + 1 < i < t such that each vertex v € V occurs as a representative at
most 8n2/3log'/? n times. Next, let P; := C; \ @ for each k + 1 < i < t. Note that |E(P;)| > 1.
By a similar argument as above, we can find one representative z € V(P;) for each k + 1 <
i <t such that each vertex v € V occurs as a representative at most 8n2/3 1og1/ 2 n times. In
summary, we have found two distinct representatives for each C' € C such that each v € V'
occurs as a representative at most 16n2/3 log"/? n times.

Now, combining the representatives of the long cycles and the short cycles, we see that each
vertex is represented at most 8n2/? + 16n2/3 logl/2 n < 24n?/3 logl/2 n times. O
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For the remainder of the section, assume T = (V, E) is a tournament with ex(7") > 8n!7/9+7,
where 1/n < 7. In the next two lemmas, we will construct paths in T that will form a partial
decomposition of 7" when combined in the right way. Moreover, it will turn out that these paths
can also be used to ‘absorb’ cycles; this is the crucial idea of the proof of Theorem 1.6.

For any digraph D, any s € R, and * € {+, —}, we define W} (D) := {v € V(D) : ex},(v) >
s}

LEMMA 3.3. Letn € Nand 1/n < 7. Suppose that T = (V, E) is a tournament on n vertices
with ex(T) > 8n'7/9t7. Set s = n®/*t7. Let H C T with A(H) < s and S C 'V with |S| < s.
For any v € V' \ S, there exist n?/3t7 paths in T — H — S that start in W (T'), end at v, have
length at most 4n'/?, and are vertex-disjoint except at their end point v.

In the statement above, a path could be a single vertex v, and moreover this single vertex
path could occur many times. Such a collection of paths should be thought of as being ‘vertex
disjoint with each other except at their end point v’.

Note that, by symmetry, the same result as above holds if we wish to find paths from v to
W (T).

Proof. We write W' for W (T) and note that ex(T)<|WTt|n+ns, so that
|[WH| > mn8/°t7 . If v € W, then we are done (by the remark above), so assume not. Write
T :=T—H-S8. Let A* := W*\ S. Suppose that all (AT, v)-separators in 7" have size at
least s. Thus, by Menger’s Theorem we can find at least s paths in 7" that start in A", end
at v and are vertex disjoint except for their common end point v. If we pick the shortest
n?/3+7 of these paths, they all have length at most 4n'/9 since otherwise we have at least
s —n?/37 > In®9 paths of length at least 4n'/® that are vertex-disjoint except for one
common vertex; such paths cover at least %n8/ 9. (4n1/ 9 —1) > n vertices, a contradiction.
Therefore, to prove the lemma, it suffices to show that all (AT, v)-separators X in T” satisfy
| X| > n8/9+7'

Let X be a (A*,v)-separator in T’ and let T:=T' — X =T — H — (S U X). Define

B = {x e V(T): 3 a path from z to v in T}.

Then AT™N B =1 (since otherwise X is not a (A", v)-separator) and so W+ nNB = .
Furthermore, by the definition of B there are no directed edges in T' from B :=V(T)\ B
to B. Using this and the fact that every vertex in a tournament is adjacent (in some direction)
to every other vertex, we have for all x € B that

IN7(2) \ Bl =2 V(T) — | B| — |X| = |S| = A(H)
> (W = |X] —[S| - A(H),
and
IN7 (2) \ B < [ X[+ [S] + A(H).

Pick a vertex z* € B with exp(p)(z*) > 0 (note that every directed graph has a vertex with
non-negative excess). Then we have

exy(z”) > expip(¢”) + [Nf (2%) \ B] = [Np (z7) \ B
>0+ [WT| —2|X| —2|S| - 2A(H) > [WT| —4s — 2| X]|.

We know that exy(2*) < s (otherwise z* € W, a contradiction) and that [W*| > Tn®/9t7 =
7s. Hence, | X| > s = n®/%"7 as required. (]
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By inductively applying the previous lemma, we obtain the following.

LEMMA 3.4. Letn € Nand1/n < v. Suppose that T = (V, E) is a tournament on n vertices
with ex(T) > 8n'7/9%7. Let £ :=n?/3t7 and m := 4n'/? and s := n®/9+7. Then we can find
edge-disjoint paths P}, Q}, where v € V, j =1,...,{ with the following properties.

(i) P} is a path of length at most m from W (T) to v and QY is a path of length at most
m from v to W, (T).
(ii) For each fixed v € V, the paths Py, ..., P} are vertex-disjoint except that they all meet
at v and the paths QY,...,Q} are vertex-disjoint except that they all meet at v.
(iii) AU, (PyUQY)) <nB/o% =

Proof. Fix an ordering vy, ..., v, of the vertices of T" and inductively construct the desired
paths as follows. Suppose at the kth step, we have constructed the P;-“ and Q; foralli <k—1
and all j < ¢ satisfying the first two conditions of the lemma. Furthermore, we assume that
the oriented graph Hy_; on V', which is union of the paths constructed so far, satisfies

dy, (0;) <20+5/2 VI<i<k—1 (3.1)

and dg, _, (v;) <s/2 Vk<i<n. (3.2)
By our choice of parameters, we have
A(Hpo1) <20+ s/2 < s. (3.3)

Let S* be the set of vertices v € V such that dy,_, (v) > s/4. Note that 1s|S*| < 2|E(H_1)| <
dnml = 1609947 so |S*| < 64n®/? < s.

Now, applying Lemma 3.3 (where (Hg_1,S5*) play the role of (H,S)), we obtain vertex-
disjoint (except at vy) paths P;* for all j < £ from W (T) to vy each of length at most m.
Applying Lemma 3.3 again (where (Hy_1 U Uj E(P;”“)), S*) play the roles of (H, S) and noting
A(U; E(P/*)) <€), we obtain vertex-disjoint (except at vy) paths Q}* for all j < ¢ from v to
W, (T), each of length at most m. Note that all the new paths are edge-disjoint from each
other and from the old ones and satisfy properties (i) and (ii) of the lemma.

Letting Hj be the union of all the paths constructed so far, note that compared to Hy_1,
the degree of vy, goes up by at most 2¢ and the degree of every vertex v € V '\ (§* Uvy) goes
up by at most 4. Thus, (3.1) and (3.2) hold. At the nth step, we are able to construct all the
paths satisfying properties (i) and (ii), and property (iii) also holds by (3.3). O

We now prove the following theorem which immediately implies Theorem 1.6 by taking
e=1/18.

THEOREM 3.5. Let n € N and 1/n < ~. Suppose that T = (V, E) is a tournament on n
vertices with ex(T) > 8n'"/°+7. Then T has a perfect decomposition.

Proof. Let ¢ :=n?/**7 and m := 4n'/? and s := n®/ 7. Apply Lemma 3.4 to T, so that we
obtain edge-disjoint paths P}, Q7, where v € V and j = 1,..., ¢ with the following properties.

(i) Py is a path of length at most m from W (T') to v and QY is a path of length at most
m from v to W (T).

(ii) For each fixed v € V, the paths Py, ..., P/ are vertex-disjoint except that they all meet
at v and the paths Q7,...,Q} are vertex-disjoint except that they all meet at v.

(iii) AU, (P! UQY) < s.
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Call a path of the form P} a v-in-path and a path of the form QY a v-out-path. Write
H for the graph that is the union of these paths and let 7/ =T — H. For each v € V and
J < ¢, each walk P/ UQY starts in WH(T) and ends in W (T) and no vertex occurs as a
start or end point more than s times. Therefore, we have that ext (v) < s < exz(v) for all
v € WH(T) and exg(v) = 0 for all other v € V' \ (W (T) U W, (T)). This means in particular
that ex(T) = ex(H) + ex(T") (by Proposition 2.4). (In fact, ex(H) = ¢n = n®/3%7.) Let Tg be
a maximal Eulerian subgraph of T” and let T = T’ — T, where Tg is necessarily acyclic.
Thus, we have that T= HUTr UTE and ex(T) = ex(H) + ex(Tr) + ex(Tg) (and of course
ex(Tg) =0).

Finally, we show how to decompose Tr U H into ex(H) paths. Apply Lemma 3.2 to Tg.
Thus, we can decompose T into t < 50n*/3logn cycles Ci,...,C; and for each cycle C; we
can find distinct representatives i, 25,..., 2. € V(C;) (indexed in order) with the following
properties.

(i) Every cycle has at least two representatives, that is, r; > 2 for all 1.
(ii") The interval between consecutive vertices on a cycle z;C;x} ; has length at most n?/3.

1/2

(iii’) Every vertex v € V occurs as a representative at most 24n2/3log'/? n times.

Jj+1-

Write C% for the interval z/Ciz?, . By (i), (i), (ii'), and (iii’), for each 7 <t and j <7y, we
can greedily find distinct Pf,]" such that each Pf,f C’J’ is a path from W (T) to xé 41+ (Given C]li,

since the paths P, 7, ..., P;j are vertex disjoint (except at z), at least £ — |C| of these paths
avoid Cj and since we never use more than 24n2/3 logl/ 2 n of these paths, there is always one
available.) Hence, we have shown that UD’ j P UTEg can be edge-decomposed into ¢n paths
Py, ..., Py, each of length at most n2/3 4+ m. Note crucially that each vertex v is an end point
of exactly £ paths and at least £ — 24n2/3log!/? n of such paths belong to {Py:j <t}

We now extend P, ..., Py, using the paths {Q} :v € V,j < (} as follows. Consider any
v e V. Let P, be the set of P; with end point v and let Q, = {Q;’ : j < 4}, Clearly, |P,| =
£=19,|. Let P, (and Q) be the largest set of vertex-disjoint (except at v) paths of P,
(and Q,, respectively). Thus, |P}| = £ — 24n?/?log'/? n and |Q)| = £. Let B be the auxiliary
bipartite graph with vertex partition P, and Q,,, where P € P, is joined to Q) € Q,, if and only if
V(P)NV(Q) = {v}. Foreach Q € Q,, [Ns(Q)| = |P.| — [V(Q)| = £ — (24n2?/310g"* n) —m >
£/2. Similarly, we have |[Np(P)| > ¢/2 for each P € P,. By Corollary 2.2, B has a perfect
matching, which implies | JP, UJ Q, can be decomposed into ¢ paths. Therefore, Ty U H =
U,ev (UP, U Qo) can be decomposed into fn = ex(H) paths.

Thus, we can now write T =HUT' = (HUTg)UTg, where ex(T) = ex(H) + ex(T") =
ex(H) + ex(Tr) = ¢n + ex(Tr) and where H UTg can be decomposed into ¢n paths and Tr
can be decomposed into ex(Tr) paths (by Proposition 2.6). Hence, T' can be decomposed into
ex(T') paths. O

4. Further preliminaries and overview
In this section, we provide further preliminaries used in Sections 5 and 6 as well as an overview
of the proof of Theorem 1.5.
4.1. Partial decompositions

We will use the following easy facts about partial decompositions repeatedly. The proofs are
straightforward, but we give them for completeness.
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ProOPOSITION 4.1. Let D be a directed graph and let P ={Py,...,P.} be a partial
decomposition of D where P; is a path from x; to y;. Then the following hold.

(a) Any Q C P is a partial decomposition of D and a partial decomposition of D — E(P\
Q).

(b) If Q is a partial decomposition of D — E(P), then P U Q is a partial decomposition of
D (and so is Q).

(¢) If w is a permutation of [k] and Q = {Q1,...,Q.,} is a set of edge-disjoint paths with
r < k and Q; is a path from x; to yr(;), then Q is a partial decomposition of D.

(d) If D’ C D is an Eulerian subdigraph of D and Q is a partial decomposition of D — D',
then Q is a partial decomposition of D.

Proof. For any collection of paths A = {A4,..., A;} where A; is a path in a digraph D and
z € V(D), write py (z) for the number of paths in A that start at = and p 4 (z) for the number
of paths in A that end at z.

(a) The fact that Q (and P\ Q) is a partial decomposition of D is immediate. For the second
part note that for any « € V(D), if exp(z) > 0, then

engE(P\Q)(x) = eXE(m) - p;\g(x) +p7;\g($)
= p;’;(w) - p;\g('r) +0= p—é(.r),

where the inequality holds since P is a partial decomposition of D. A similar statement holds
if exp(x) < 0.
(b) Note that for any = € V (D), if exp(z) > 0, then

exp(z) — p$(x) +pp(r) = exB_E(P)(x) > pJé(a:)

and a similar statement holds if exp(z) < 0. Rearranging gives exp(x) > pj(z) +ps(z) =
p}gug(x)-

(c) Here we note that pf(z) > p5(x) and pp(z) > pg(x) for all z € V(D).

(d) Here we note that exp(z) = exp_g(p(z) for all z € V(D). O

PROPOSITION 4.2. Let D be a directed graph and suppose there is a partition of V(D) into
sets AT, A~, R such that Ep(R,A") = Ep(A~,R) = E(D[A* U A™]) = 0. Then the following
holds.

(a) If P={Py,...,P.} is a partial decomposition of D[R], then there is a partial
decomposition P’ = {Pj,..., P/} of D such that V(P/)NR=V(P,) for alli=1,...,r.

(b) If there is a perfect decomposition of D[R], then there is a perfect decomposition of D.

(¢) If in addition we assume exp(v) > 0 for every v € N, (A") and exp(v) <0 for every
v € N (A7) and Ny (AY) NN, (A7) =0, then ex(D[R]) = ex(D).

Proof. (a) This is easily proved by induction on the number of paths; we give the details
for completeness. By induction, we will find paths Pj ..., P/ such that each path {P/} is a
partial decomposition of D; := D — (P{U---UP/_}) fori=1,...,r and V(P;) = V(P/)NR.
By r applications of Proposition 4.1(b), {P] ..., P/} is a partial decomposition of D with the
desired properties.

Suppose we have found the paths P] ..., P|_, as described above. Then {P;} is a partial
decomposition of D[R] — (PyU---U P,_1) = Dy[R]. Write P;, = xPyy. If there is some edge
atxz € E(Dy) with a™ € A", then append it to P, and if there is some edge ya~ € E(Dy) with
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a” € A™, then append it to P, and write P}, for the resulting path. Let P| = 2’ P,y’; we show
that exp, (') > 0 > exp, (v') proving that { P/} is a partial decomposition of Dj,.

By symmetry, it is sufficient to show exp, (z') > 0. If ' = a* € A™, then this is certainly
the case. If 2’ = z, then

exp, (r) > exp, [r)(x) > 0.

The first inequality holds because there is no edge in Dy, from A™ to z (nor from A~ to x from
the statement of the lemma). The second inequality holds because Py starts at 2 and {Py} is
a partial decomposition of Dy[R)].

(b) From (a) we can extend our perfect decomposition of D[R] to a partial decomposition
Q, of D that uses every edge of D[R]. The remaining digraph D — E(Q,) C D — E(D[R)) is
acyclic so has a perfect decomposition Qs by Proposition 2.6. Therefore, Q1 U Qs is a perfect
decomposition of D by Proposition 4.1(b).

(c) This is proved by induction on the number of edges between AT U A~ and R. If D has
no edges between AT U A~ and R, then we are done. For any edge e = a™r with a™ € AT and
7 € R, exp_.(r) > exp(r) = 0. Furthermore, r ¢ N;,__(A™) because Njj (AT) N Ny (A~) = 0.
It is easy to check that the conditions in (c) are satisfied for D — e so we can assume by induction
that ex(D — e) = ex(D[R]). Also, we see that adding the edge e back to D — e reduces ex(r) by
1 and increases ex(a™) by 1, so that ex(D) = ex(D — ¢) = ex(D[R]). The case when e = ra~
for some r € R and some a~ € A~ holds similarly. |

4.2. Robust expanders

The notation of robust expanders was first introduced by Kiihn, Osthus, and Treglown [11].
Here we introduce the basic notions of robust expansion and their consequences, which we will
use in Sections 5 and 6. Most of this can be found in [9, 10]

We give the definition of robust expander here for completeness. We will not use the definition
directly, but only use some of the consequences given below.

DEFINITION 4.3. An n-vertex digraph D is a robust (v, 7)-outexpander if for every S C V(D)
with 7n < |S] < (1 — 7)n there is some set T'C V(D) with |T| > |S| + vn such that every
vertex in T has at least vn in-neighbours in |S].

It turns out that sufficiently dense oriented graphs are robust expanders.

LEMMA 4.4 [9, Lemma 13.1]. Let 0 < 1/n < v < 7 < ¢. Suppose that D is an oriented
graph on n vertices with §°(D) > (3/8 4+ &)n. Then D is a robust (v, T)-outexpander.

The notion of robust expansion was developed to help solve problems on Hamilton cycles.
Here are two of the main results.

THEOREM 4.5 [8, Corollary 6.9]. Let 0 < 1/n < v < 7 < §. Suppose that D is a robust
(v, 7)-outexpander on n vertices with §°(D) > én. Let a,b € V(D). Then D contains a Hamilton
path from a to b.

THEOREM 4.6 [9]. Let0 < 1/n < v < 7 < 4. Suppose that D is an r-regular oriented graph
with r > én and a robust (v, 7)-outexpander. Then E(D) can be decomposed into r edge-
disjoint Hamilton cycles.

An immediate consequence of the above is the following path decomposition result, which
we use right at the end of the paper.
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THEOREM 4.7. Let 0 < 1/n < 1 and let D be an oriented graph with a vertex partition
V(D)=X"UX" UX° with |X*|=|X"|=d>3n/7 such that

1 ifveXT; 2d -1 ifveXT,
exp(v) =<0 ifve X’ and dp(v)=<2d ifve XY
-1 ifve X—; 2d—1 ifve X™.

Then D has a perfect decomposition.

Proof. Fix v,7 such that 1/n < v < 7 < 1. We form D’ by adding a vertex y such
that N}, (y) = Xt and N, (y) = X . Then D’ is a regular oriented graph with in- and
outdegree d > 3/7n and so is a robust (v,7)-outexpander by Lemma 4.4. Thus, it has an
edge decomposition into Hamilton cycles Hi,..., H; by Theorem 4.6. Taking P; to be the
path H; —y, P ={Py,..., Py} gives a perfect decomposition of D. O

Robust expanders are highly connected as one would expect and so we can find (many) short
paths between any pair of vertices. This is made precise in the following three lemmas.

LEMMA 4.8 (see, for example, [12, Lemma 9]). Let n€ N and 0 < 1l/n<rv <7< d <1
Suppose that D is a robust (v, T)-outexpander on n vertices with §°(D) > én. Then, given any
distinct vertices x,y € V (D), there exists a path P in D from x to y such that |V (P)| < v~!.

The following lemma and its corollary will be used many times in our proof.

LEMMA 4.9. Let n € N and 0 < 1/n < v < 1. Suppose that D is an oriented graph on n
vertices with 6°(D) > 3n/7. Let Hy, ..., H,, be directed multigraphs on V(D) with A(H;) < 2,
|E(H;)| < yn and m < yn. Let S1,...,S, C V(D) with \S | <n/25 and S; NV (E(H;)) = 0.
Then there exists a set of edge-disjoint paths P = {P;.: i € [m] and e € E(H;)} in D such
that:

P; . has the same starting and ending points as e;
(i) the paths in P; :={P,.: e € E(H;)} are internally vertex-disjoint;

i)
i)
(iii) V(UPi) = V(D) \ Si;
(iv) A(UP) < 2m.

Proof. We proceed by induction on m, the number of multigraphs. Suppose that we have
already found P’ := {P,;.: i € [m — 1] and e € E(H;)} with the desired properties.

Let v,7,e be such that v < v <« 7 < ¢ < 1. Pick an arbitrary ordering ey, ...,e,. of the
edges in F(H,,). Further, assume that for some j € [r], we have already constructed paths
Py,...,Pj_q such that, for each j' € [j — 1],

(i) Pj has the same starting and ending points as e;; and has length at most v
(ii) V(E(H,)),Si, V(P1)\V(e1),...,V(Pj—1)\ V(ej_1) are disjoint.

We now find P; as follows. Let e; = zy. Let D' := D — E(UP") —S; — (V(PLU---UPj_1)\
{z,y}). Since [S;UV(PLU---UP;_1)| < (5 +v '9)n, then |D'|>(1—- 5 —v 'y)n and
§%D") =2 6°(D) — (5 + v 'y)n > (3/8+¢)|D'|. By Lemma 4.4, D' is a robust (v,7)-
outexpander. If j < r, then D’ has a path P; from x to y of length at most v~! by Lemma 4.8.
If j = r, then D’ has a Hamilton path P; from z to y by Theorem 4.5. We are done by setting
Pe; = Pj for all j € [r]. O

Let H be a directed multigraph on n vertices with A(H) < yn. Note that H can be
decomposed into digraphs Hi, ..., H,, with m <2,/4n and A(H;) <1 and |E(H;)| < 2,/yn.
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(By Vizing’s theorem, H can be partitioned into yn + 1 matchings and each matching can then
be further split into 4~ /2 almost equal parts to give us the H;.) Applying the previous lemma
to these H; (taking the S; to be empty), we obtain the following corollary.

COROLLARY 4.10. Let n € N and 0 < 1/n < v < 1. Suppose that D is an oriented graph
on n vertices with 6°(D) > 3n/7. Let H be a directed multigraph on V(D) with A(H) < yn.
Then there exists a set of edge-disjoint paths P = {P.: e € E(H)} in D such that:

(i) P. has the same starting and ending points as e;

(ii) A(UP) < 4,/7n.

4.3. Overview

In this subsection, we give an overview of the proof of Theorem 1.5 (which is proved in Sections 5
and 6). We wish to show that every even n-vertex tournament 7T satisfying ex(T') > Cn and
n sufficiently large has a perfect decomposition (that is, is consistent). Let us fix such a
tournament 7'; we may further assume by Theorem 1.6 that ex(T") < n?~¢. We will accomplish
this in three steps. In each step, we reduce the problem of finding a perfect decomposition of
T to the problem of finding a perfect decomposition of a digraph that looks more and more
like the digraph described in Theorem 4.7.

Step 1: Remove vertices of high excess. Let W = {v € V(T') : |ex(v)| > an} for some suitable
a. Note that since ex(T) is small, W is also small. Let W= be, respectively, the vertices
of W with positive / negative excess and let R =V (T)\ W. We will construct a partial
decomposition Py of T with a small number of paths that uses all edges in Er(R, W)U
Er(W~,R)U Er(W) but does not interfere much with Er(R). Set Dy =T — UPy — W. Now,
we can apply Proposition 4.2(b) to T' — UPy to conclude that if D; has a perfect decomposition,
then so does T'— UPy and hence, so does T'. Thus, we have reduced the problem of finding a
perfect decomposition of T' to that of finding one for Dy, but where D; has no vertices of high
excess and

ex(D1) = ex(T — UPy) = ex(T) — |Po| = C'n.

Since there are no vertices of high excess, D; is close to regular and so one can apply the
methods of robust expansion. This step takes place in Theorem 6.1 and the key tool for finding
Py is Lemma 5.1 from Section 5.

Step 2: Equalise the number of vertices of positive and negative excess. Given Dy from the
previous step, it may be the case that almost all vertices of D have say negative excess that is
U~ (D) is significantly larger than U*(D;), where U* (D) denote the set of vertices of positive
/ negative excess in D.

For some fixed z € U~ (D), consider how we might change the sign of its excess. The idea
would be to find z € UT(D;) with 2z € E(D;) and a partial decomposition Q that:

e has a path Q* that starts at z, uses the edge xzz but does not end at z;
e uses all edges incident with x;
e has exactly ex, (2) paths ending at z.

If we can find such a Q, then consider D} = D; — E(Q\ {Q"}) — z. We have exp, (2) = 1 and
moreover if D] has a perfect decomposition, so does D; (the path that starts at z in a perfect
decomposition of D} would be extended by the edge zz in D).

We refine this idea to switch the sign of the excess for many vertices in U~ (D;) in
Theorem 6.7. We carefully choose a small set of vertices X C U (D;) and a suitably larger set
Z C U~ (Dy) and a partial decomposition P; of D; such that writing Do = D1 — E(Py) — X,
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D; has a perfect decomposition if Dy does, and U (Dy) =U " (D2)U Z \ X and U~ (D3) =
U~ (D) \ Z. Again we use Lemma 5.1 from Section 5 as a tool.

Step 3: Control the degrees. In this final step (Theorem 6.12), starting with Dy we carefully
construct a partial decomposition Ps of Do such that D3 = Dy — E(Ps) is a digraph satisfying
the properties of Theorem 4.7. Hence, D3 has a perfect decomposition, and thus so do Ds, Dy,
and 7.

We make use of the robust expansion properties of Dy to construct Po; this is why we need
step 1. Also, essentially by definition, the excess of a vertex can never change sign when we
remove a partial decomposition from a digraph; this is why we need step 2. Each of steps 1
and 2 will require us to remove a partial decomposition of size linear in n, and this is why we
must start with ex(7") > Cn for a suitably large C.

5. Removing small vertex subsets

In Section 3, we showed how to find a perfect decomposition of n-vertex tournaments 7' (n even)
whenever ex(T) > n?~¢. For the remaining cases of Thoerem 1.5, we will require a preliminary
result which we prove in this section. For almost complete oriented graphs D satisfying
Cn < ex(D) < n?~¢, we show in Lemma 5.1 that for certain choices of small W C V (D), we
can find a partial decomposition P of D that uses all the edges incident with W going in the
‘wrong’ direction. We will also guarantee that P uses only a small number of edges from D — W
and that |P| is small. This will be useful later as, in combination with Proposition 4.2, it allows
us to remove a small number of problematic vertices from our digraph D at the expense of a
small reduction in ex(D). This is the content of Lemma 5.1 and our goal in this section is to
prove it.

LeMMA 5.1. LetneNand 0<1l/n<a,f<Ky<land 0<1l/n<e<k1 and C > 32
Let D be an oriented graph on n vertices such that §(D) > (1 —e)n and ex(D) > Cn. Let
W C V(D) of size |W| < pn. Suppose that |exp(v)| < an for all v e V(D) \ W. Then there
exists a partial decomposition P of D such that writing H = UP we have:

(i) for allv € V(D)\ W, dg(v) = 2d for some d < (188 + 4~)n;

(ii) H[W] = D[W];
(ili) for all w € W, if texp(w) > 0, then df, ,(w) = 0;
(iv) ex(D — H) = ex(D) —ex(H) > Cn/4.

Note that (iii) guarantees that for every w € W with ex(w) > 0 (respectively, ex(w) < 0),
every edge of the form vw (respectively, wv) is in H and we informally refer to such edges as
going in the ‘wrong’ direction. The proof of Lemma 5.1 is split into two lemmas, Lemmas 5.4
and 5.7. In Lemma 5.4, we deal with all edges inside W and in Lemma 5.7, we deal with the
edges between W and V(D) \ W going in the ‘wrong’ direction. The basic idea in each case is
as follows. Write F' for the set of edges incident with W which we wish to remove from D (and
thus to add to H). Each of these edges can be thought of as a path and we start by extending
these paths (if necessary), so that their end points lie in V(D) \ W to give a set of paths Q.
The reason for doing this is that D — W is a robust expander and so has good connectivity
properties; this allows us to connect the large number of paths in Q into a small number of long
paths Q' (see Corollary 5.3). At the same time, we can ensure the paths in @' have suitable
start and end points, so that Q' is a partial decomposition with a small number of paths that
contains all edges in F'. While this is conceptually quite simple, the process of extending the
paths into V(D) \ W and choosing appropriate start and end points becomes technical if we
wish to ensure that the paths we create do not interfere with each other.
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Before we can prove these two lemmas, we will need a technical definition and one
preliminary result.

Consider a digraph D and a vertex subset W C V(D). Let V = V(D) \ W. Suppose we have
two internally vertex-disjoint paths P, P’ that both start at some € V(D) and end at some
different vertex y € V(D). Now, starting with P U P’ delete any edges of P U P’ that occur
inside V; this is essentially what we refer to as a (W, V)-path system, which is formally defined
below.

DEFINITION 5.2. Let W and V' be disjoint vertex sets and let X, Y, and J be sets of paths
on WUV’ We write, for example, V(J) to mean the set of all vertices of all paths in J.

We say that (X,Y,J) is a (W, V’)-path system if there exist distinct vertices x and y such
that:

(P1) X ={z} if x € V'; otherwise X is a set of two edge-disjoint paths that both start at
z and end in V’;

(P2) Y ={y} if y € V’; otherwise Y is a set of two edge-disjoint paths that both start in
V' and end at y;

(P3) J is a set of vertex-disjoint paths such that each path in J has both end points in V';

(P4) dXUYUJ(’U) <lforallve V/;

(P5) V(X), V(Y), and V(J) are disjoint.

We will often take X = {za’, zz"} for some z',z"” € V' if x € W and similarly for Y. We will
interchangeably think of X, Y, and J both as a set of paths and as the graph which is the
union of those paths, but it will always be clear from the context.

We say that the two paths P, and P; extend (X,Y,J),if XUY UJ C P, UP, and each P;
starts at = and ends at y. We refer to z and y as the source and sink, respectively.

The following corollary (of Lemma 4.9) shows how to simultaneously extend a collection of
vertex-disjoint (W, V’)-path systems, so that the resulting paths are internally vertex-disjoint.

COROLLARY 5.3. Letn,s € Nand0 < 1/n < e,¢’ < 1 and1/n < 1/s. Let D be an oriented
graph with vertex partition V(D) =W UV’ such that |V'| =n and §°(D[V']) > (1/2 — e)n.
For i€ [s], let (X;,Y;,J;) be (W,V')-path systems. Suppose that the sets V; :=V(X; U
YU Ji) NV’ for i € [s] are disjoint and that [;c(,) Vil < €'n. Then DUJ;¢(Xi UYi U J)
contains paths Py, Py, ..., Ps, P, such that:

(a) for each i € [s], P; and P! extend (X;,Y;,J;);
(b) dUie[s](PiUPil)(’U) =2forallveV'.

Proof. Let V = Uiels) Vi, so that s < V| < &'n. Let E be the set of edges used in all the
paths in all the path systems (X;,Y;,J;) for all i € [s]. Write D’ = D[V'] — E.

For each i € [s] let Pii,..., Py(;) be the paths of J;. We will apply Lemma 4.9 to join the
paths of our path systems together. Let a;; and b;; be starting and ending points of P,
respectively, so a;j,b;; € V. Also, let z;, x} be the two end points in V' of the paths in X and
let y;, y} be the two end points in V”’ of the paths in Y (where possibly x; = z} and/or y; = y}).

Let H := Uie[s} T; be a multigraph on V C V', where

T; := {ziai, biraio, binis, - - -, bi(e(i)—1) Gt (i) bit (i) Yi» TiY; -

By property (P4) of path systems T; is a matching and since the V; are disjoint, then H is
a matching on V so |[E(H)| < |V| < &'n < |D'|. Note that §°(D’) > 6°(D[V']) — [V| > (1/2 —



DECOMPOSING TOURNAMENTS INTO PATHS 441

e —¢&)n > 3n/7. We apply Lemma 4.9 with D', H, (), 2¢’ playing the roles of D, Hy,S1,~v and
obtain a set of edge-disjoint paths Q := {Q.: e € E(H)} such that:

e for each e = xy € E(H), Q. is a path from x to y;

e the paths Q. : e € E(H) are vertex-disjoint (since H is a matching);
e V(UQ)=V and A(UQ) < 2.

For each ¢ € [¢], set
P, = (X;UY;UJ;)U U Q. and P/ =Q,,.
e€T\{zjy;}

Note that P; forms a path by our choice of T; and that P;, P/ extends (X;,Y;, J;); thus conditions
(a) and (b) of the corollary are satisfied. O

Our first step towards proving Lemma 5.1 is Lemma 5.4 where we construct a partial
decomposition that uses all the edges inside W.

LEMMA 5.4. Letn € Nand0< 1/n < «,8,e < 1. Let C > 32. Let D be an oriented graph
on n vertices such that 6(D) > (1 —e)n and ex(D) > Cn. Let W C V(D) of size |W| < fn.
Suppose that |exp(v)| < an for all v € V(D) \ W. Then there exists a partial decomposition
P of D such that writing H = UP we have:

(i) HW]= D[W];
(ii) A(H) < 21|W| and dg(v) = 18|W]| for all v € V(D) \ W;
(i) ex(D — H) = Cn/2.

Proof. Let v > 0 be such that o, 8,6 < v < 1. Let £ := |W| and let V' := V(D) \ W. Note
that

S°(DV']) = (1/2 —e — a — B)n. (5.1)

Let VVi ={we W :ext(w) = (1 —v)n} and Wy := W \ (W+ U W ). By Vizing’s theorem
D[W] ¢can be decomposed into S ¢ (p0s51bly empty) matchings My, Mg For each i € [(], w

partition M; into matchings

M} :={abe M;: a € W},be W},

Fi={abe M;:ae WS, bg W},

M; :={abe M;: a g W;,be W},

M :={abe Mi:a g W b @ W} =M\ (M) UM UM, ).
Let m} := |M}| for all x € {0,/,4, —}. Note that for each i

m) +mi +m; < |WH+ W], (5.2)

since M U M;" UM, is a matching in which all edges are incident with W7 U W, .

Suppose that we have found partial decompositions P;, ..., P, such that writing H; = UP;,
we have for each j € [¢],

(i") Pj is a partial decomposition of D; 1 := D — (HyU---U H;_;) (and hence, UjcyP;
is a partial decomposition of D by Proposition 4.1(b));
') H;[W] = Mj;
'i’) A(Hj) <21 and dp; (v) = 18 for all v € V',
V) P = ) =i+ 2l
v') Hi,...,Hj,Mj1,..., M, are edge-disjoint.
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Set P := UjcgPj and H := U H;. Clearly, (i) and (ii) hold by (ii’) and (iii’), respectively.
To see (iii), note that (iv’) and (') imply

ex(D — H) =ex(D) —ex(H) (5;) ex(D) = 2(|W | + [W |+ 2)¢.

If (W[4 W |<2C, then ex(D—H)>Cn—4(C+1)f>Cn/2. If W} |+ |W,|>2C,
then

ex(D — H) > ex(D) = 3(|W.| + W, |)¢
1

=3 Z lexp (v)] = 3(|W| + W [)¢
veV (D)
1—9)n _ _
> W™ sy 4wy - w4 e

2
> (1=~ = 68)n(WH| + W, [)/2 > Cn/2.

Therefore, to prove the lemma, it suffices to show that such Py, ..., P, exist.
Suppose for some i € [¢], we have already found partial decompositions Py, ..., P;_; satisfy-
ing (i')—(v'). We now construct P; = P/ UP;" UP; UP’, where P} is a partial decomposition

containing the edges of M} for * € {+,—,,0}. We immediately define P? = M?. We will

write H;, H!,H;", H;, H?, respectively, for the union of paths in P;, P!/, P, P;,PY. Let
DY | :=D; ;- H?— (M;;1U---UDM,). Note that by (5.1) and (iii’),

(D) V') =8 (DV']) =21(i = 1) = £ > (1/2 = v)n (5.3)

and (by a similar argument as used to bound ex(D — H)) we have
ex(DY_|) = Cn/2. (5.4)
We first construct the partial decomposition P/ of DY_; containing M/ in the following claim.

CLAIM 5.5. There exists a partial decomposition P, of DY_, such that, recalling H = UP},
we have:

(a1) |P}| =4 (and there exist vertices x1,x2,y1,Yy2 such that two of the paths start at
and end at y, and the other two start at xo and end at y2);

(a2) H{[W]= M, A(H]) <4 and dy/(v) =2 for allv € V'

Proof of Claim. Let x1,z2,¥y1,y2 be any four distinct vertices such that exzr)&1 (z;) > 2 and

o (yj) =2 forall j € [2]. Note that such vertices exist by (5.4). Consider j € [2]. Ifz; € V',

then set X; = {a;}; if 2; € W, then a; ¢ W since expo  (x;) > 0. So,

ex

dD;L1 (z5)
2

(iii') (1 — _ 1) —
D Ao 215 1) — 2|W|

dfo (2,V') > > 9|W|+4

and we can set X; = {z;z},x;27} for some distinct z’,z7 ENIJDF,?,l(mj)mV/' Similarly,

if y; € V', then set Y; ={y;}; if y; € W, then set Y; = {y}y;,y/y;} for some distinct

Y;,y7 € Ny (y;) NV'. Moreover, we may further assume that Xi,Xs,Y1,Y>2 are vertex-
i—1

disjoint. Let U := V(X1) UV(X2) UV (Y1) UV (Ys). Partition M/ into M* and M? such that
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(by relabelling X1, X2, Y1, Ys if necessary) V(M?) N (X; UY;) =0 for j € [2]. Let
M*' = {a;b;: j € [r]} and M? := {a,4jb.+;: j € [s]}.

For each j € [r + s, note that a; € W\ W and so

_ (i) drfas) — exct(a
Ao (@) ' 2 dpla) — W) — 21w = 224 2 blay)

— 22|W|

l—-en—(1—-7n

. —228n > 26n+4 > 2|W| + 4.

=

By a similar argument, we have df, (b;,V’)>2[W|+4. So, there exist distinct
i—1

alyeees Uy by b € VINU such that af € Ngg_l(aj) and b € Ngg_l(bj) for all

j € [r+s]. Let

Jy = {djazbbl: g elr]}y,  Jai={anjarybrysbly g € [s]}.

Observe that (X1,Y7,J1) and (Xo,Ys,Js) are (W,V')-path systems. Note further that
X1,Y1,J1, Xo,Ys, Jo are vertex-disjoint and their union has size at most 2|W|+ 4 < 38n. By
considering (X1,Y1, 1), (X2, Y2, Jo) and (5.3), Corollary 5.3 implies that DY | [V/]U J; U Jo
contains paths Py, P, P2, Py such that, for j € [2], P; and P; extend (X;,Yj;,J;) and
dp,upup,upy(v) =2 for all v € V', Let P} := {P1, P, P2, P;}. It is easy to check that P] has
the desired properties. O

In the next claim, we construct the partial decompositions P;" and P;” of D!_, := DY | — H!
containing MLJr and M, , respectively, as follows.

CLAIM 5.6. There is a partial decomposition Pj' UP; of D,_, such that, recalling
HjE = UPF, we have:

7 7

(b1) [P;| = 2m;

() Hf[W] Mi A(H) =8 and dyy+ (v) =8 forallv € V.

Proof of Claim. First we arbitrarily partition MLJr into four matchings, which we denote by
Ni, Na, N3, Ny, each of size [m; /4] or [m;/4]. Let m :=|Ny| and Ny = {w;w}: j € [m]}.

We show that there exist distinct vertices z1,..., 2z, € V(D) \ V(N1) such that, for all
j € mj, eXB;,l(ZJ) > 2. Indeed, if m < C/8, then ex(D!_,) > ex(DY ) —4 > 3Cn/8 > 3mn =
(IV(N1)| + m)n by (5.4), so we can find such z; in this case. On the other hand, if m > C/8 > 4
then

ex(D)_,) > ZeXD,l > W A=ym— Y AH; H)) -1

weEW; jeli—1]

(iii’ ) (a2)
U M1 29)n > (4m - 3)(1 - 29)n > 3mn = ([V(NL)] + m)n,
so again we can find the desired z;.

By a similar argument as used in the proof of Claim 5.5, there exist (W, V')-path systems
(W;, Z;,0) for j € [m] such that, for all j € [m],

o ] a1 : "o, /.
° ij{w]ijj,ijj}Wlthw-,w- eV’
2 eV,

e if z; € V', then Z; = {2;}; otherwise Z; = {2}2;, 2] z;} for some 2}, z]
e the 2m graphs W;, Z; with j € [m] are vertex-disjoint and are subgraphs of D]_;.
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By considering (W, V’)-path systems (W;, Z;,0) (and using (5.3) and (a)), Corollary 5.3
implies that D}_,[V’] contains paths P1, P{,..., Py, P}, such that:

e for all j € [m], P; and P; extend (W}, Z;,0);
o dy, . pup)(v) =2forallve V.

Let Pifl :={Pj, P} :j €[m]} and Hi+,1 = UPifl. Note that |P; 1| = 2m (where two paths start
at w; and end at z; for every j € [m]). Moreover, Hjl[W] = Ny, A(Hfl) =2, del(”) =2
for all v €V’ and P;; is a partial decomposition D) ; by the choice of z;, wj By a
similar argument, D, _, — H Z+ 1 has edge-disjoint partial decompositions Pﬂ' 2 P;: 3 77;' , such that
Pl = Usep ’P;fk satisfies (bl) and (bg). By a similar argument, we can construct a partial
decomposition P;” of D; — H! — H; satisfying (b;) and (bs). O

K2

Finally, we let P; = P/ U 772-+ UP; UPY Our sequential construction of partial decompo-
sitions in the digraphs with earlier partial decompositions removed means that (i’) holds by
Proposition 4.1(b). Clearly, (ii’) holds. Also (v/) holds by our definition of DY ;. Note that
(iv’) is implied by (a1), (b1). Finally, (iii’) holds by (ag) and (bs). This completes the proof of
the lemma. (]

In the next lemma, we show how to construct a partial decomposition with few paths that
uses all those edges incident with W in the ‘wrong’ direction; this will help us to isolate the
vertices of W in later sections.

LEMMA 5.7. LetneNand0<1l/n<a,f<vy<1land1l/n<e<1. Let C > 5. Let D
be an oriented graph on n vertices such that §(D) > (1 — e)n and ex(D) > Cn. Let W C V(D)
of size |W| < fn such that D[W] is empty. Suppose that |exp(v)| < an for allv € V(D) \ W.
Then there exists a partial decomposition P of D such that writing H = UP we have:

(1) |P] € 2(2+ 358)n (equivalently ex(H) < 2(2+ 38)n);
(ii) if w e W with texp(w) > 0, then N}, (w) = 0;
(iii) for allv € V(D)\ W, dg(v) = 2d for some d < 4vyn.

Proof. Let ¢ € N be such that o, § < 1/q < . Let £ := [yn] and p := [n/q] > an, fn. Let
V' :=V(D)\ W. Note that

S°(DIV']) = (1/2 — e — a— B)n. (5.5)
Let
W= {weW:exi(w) >0},
W= {we W :ex (w) > (1 —7)n},
Wi = W=\ Wi

Let Dy := D[V, WT]UD[W~,V']. We start by showing that if we can find a family S of
edge-disjoint (W, V')-path systems satisfying the following properties, then the lemma holds:

s .
(i) Uie[,,]de[q} Jij U Ui/e[p+1,p+3e] Ji» contains Dy;
(iii") each J; ; and J;s consists of vertex-disjoint paths of length 2 of the form awb for some
a,be V' and w e W;
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(iv") for all v € V' we have 2f(v) < ex'(v) and 2g(v) < ex™ (v), where f(v) (respectively,
g(v)) denotes the number of times v appears as a source (respectively, a sink) in S
(recall the definition of source and sink for a (W, V’)-path system);

(V') foralli € [p], {V' NV (X;; UY;; UJi;): j € [q]} are disjoint and [V N, ¢, V(Xi; U
YijUdig)| <28n+4;

(vi') foralli e [p+1,p+34, V' NV(X;UY;UJ;)| <26n+4.

Let S; := {(Xi,jaY;l,j; Ji’j)i j € [q]} fori € [p] and ;s 1= {(Xi/,Y;;/, Jl/)} for ¢ € [p+ 1,p+ 38]
It is easy to verify that by repeated application of Corollary 5.3 (once for each S;), there exists
a set P of edge-disjoint paths of D with P =P, U---UP,43, and H; := UP; such that:

(a) for all i € [p], we have |P;| = 2q with P; = {P;1, P/ 1,..., P4, P/ };

(b) for each i € [p] and j € [q], P”- and P ; extend (X”,Y”,J”)
(c) for each i’ € [p+1,p+ 3(], Py = { Py ,P }, where P and P}, extends (X, Yy, Jir);
(d) for alli € [p+ 3¢ and all v € V', dy, (v) = 2.

Now, we check that the conclusion of the lemma holds for P as defined above. Note that by the
choice of sources and sinks for the path systems, that is, (iv'), P is a partial decomposition of
D. Note also that (i) holds since [P| = ;34 [Pil = 2pg + 6¢ < 2(2 4 38)n. Also (ii) holds
by (ii’). Finally, (iii) holds by (d) as p + 3¢ < 4yn. Thus, to prove the lemma, it suffices to
show that such S exists.

Here we give a brief outline of the remainder of the proof. First, we will find all sources and
sinks that are required. We split Dy into

Dy = D[V, W UD[W, V'] and D,:= D[V, WU D[W;,V].
The edges of Dy will be covered by S,4; for i’ € [3¢] and the edges of Dy will be covered by
S; for i € [p].

Finding sources and sinks

First, we define the sources and sinks for the (W, V’)-path systems. Choose a multiset X :=
{acw. i€ [pl,j € lql} U{xpri: i’ € [3€]} of vertices such that ex},(v) = 2f(v) for all v € V(D),
where f(v) denotes the number of times v appears in X. Note that such X exists since

ex(D) = Cn = 2(pq + 3() +n.

Similarly, choose a multiset Y := {y; j: i € [p],j € [¢]} U{ypts: i’ € [3€]} of vertices such that
exp,(v) = 2¢g(v) for all v € V(D), where g(v) denotes the number of times v appears in Y. Note
that for all v € V(D),

f(w) +9(v) < lexp(v)[/2. (5.6)

Since exp(v) < anfor allv € V' and an < p, £, we may assume that, by relabelling if necessary,

o for all i € [p], the multiset V' N {x;1,...,%iq,Yi1,---,Yiq contains no repeated vertices;
o for all 7/ € [¢], the multiset

!
Vin {xp+3i’—27 Tp+3i'—15 Tp+3i’ s Yp+3i’ —25 Yp+3i’'—1, yp-‘r?)i}

contains no repeated vertices.

Note that z; ; and y; ; will be the source and sink for (X; ;,Y; ;, J; ;) and xp,; and y,, will be
the source and sink for (X4, Yptir, Jptiv). For i € [p], let f;, g; : W — [0, ¢] be functions such
that f;(w) (and g;(w)) is the number of j € [q] satisfying w = x; ; (and w = y; ;, respectively).
Our choices here guarantee that (iv’) holds.
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Covering edges in D,

Consider any i’ € [3(]. If z,,1+ € V', then set X, = {xp4 }. If 2,1 € W, then (by our choice
of 2p1) we have ex(x,4) >0 and so df(zp4i, V') = dh(xpsir) = n/4. We can set X,y =
{zprial g, xpyoa], ) for some distinet a ;27 € N (2pp0) C V. Similarly, if y,, €
V', then set Yy, = {ypyi }. If ypiir € W, then we can set Yy, ir = {y,,, yYp+irs Yy i Yptir } for
some distinct v, /.y . € Np (ypti) € V. Furthermore, we can assume that all X, i, Yy
are edge-disjoint and

-/ / i li / / /
o forall &' € [f], X) 3 o, X 50 1, X Y, a0 Yyisi_ 1> Youai

p+3it
where X; =X, NV and Yj’ =Yy,nV".

, are vertex-disjoint,

Let X := Uirezg Xp+i and Y = Uirezg Yp+ir- Note that D, X,Y are edge-disjoint and

A(XUY) <6 (5.7)
For all w € Wj,

w —eX+ w
dp, () = dp () = 22— D)

and, similarly, djgl (w) < ¢ for all we W . Since [W| < Sn <{, we deduce A(D;) < {. By
Vizing’s theorem, Dy can be decomposed into ¢ matchings M7, ..., M;. Consider any ¢ € [¢].
Partition M/ into three matchings M, 32, My 3i—1, Mpi3; such that for each j € [3],

V(Xpt3i-3+5 U Ypt3i—3+5) NV (Mpy3i-s4;) = 0.
For each i’ € [3(] and each vertex w € V(M) "W, if w € W, then by (5.7)

+
de)”(fff

<yn/2 <Y

(w) > d5(w) — 60 = n/4.

Hence, by a simple greedy argument, we can extend each M, (with i’ € [3/]) into a graph
Jp+ir such that:

o J,.; consists of precisely |M,;/| vertex-disjoint paths of length 2 with starting points
and end points in V’ (and midpoint in W) and J,1; is vertex-disjoint from X,;, and
Yp+i/;

o the 9¢ different graphs X1, Yp+1, Jp+1s -+ s Xp+3¢, Yp+30, Jp+-3¢ are edge-disjoint.

Note that each (X;,Y: J;) is a (W,V')-path system satisfying (iii’) and (vi’). Let
S = Ui/em] (Xptir UY,pi U Jpyir) and note that S” covers all the edges in D;.

Covering edges in Do

We now construct (X, ;,Y;;,J; ), which cover all the edges in D,. Initially, set X;; =
{zi;}, Yij ={yij} and let J;; be empty for all i€ [p] and j € [q]. If z;; € W, then
df_g/(zij) =n/4 and we can set X;; = {z; x} ;2 a};} for some distinct ]z, €
Np_ (@) € V'. Similarly, if y; ; € W, then set Y; j = 1Y jYi.5,vi ;vi;} for some distinct
Yi i»¥i; € Np_s(yij) € V' (Later, in Claim 5.8 we will modify those X;; (respectively,
Y; ;) for which x; ; € Wi (respectively, y;; € W, ). ) We can furthermore assume that all
X j,Yi; are edge-disjoint and, for all i € [p], X} ,,...,X] ,Y/,,..., Y/, are vertex-disjoint,
where X ;. :=V'NV(X;;) and Y/, := V' NV (Y ;).

Instead of constructing (X; ;,Y; ;,J; ;) one at a time, we build them up in rounds, in each
round simultaneously adding a little extra to every (X, ;,Y;,J; ;). Before proving this, we
describe somewhat informally how to construct the J; ;. Let wi,...,ws be an enumeration
of W~ U W, . For simplicity, we further assume that none of the w; is a source or sink, that
is, f(w;) =0 = g(w;). For each ¢ € [p] and k € [s], we will construct sets A;, C Np_ o (wi)
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and B;j C Nﬁs' (wy,) of suitable size (with |A4; x| = |Bix| < ¢) such that for each i the sets
Aiq,...,Ais,Bi1,...,Bis C V' are disjoint. We further guarantee that

U Air =Ny s (wi) if wy € W (5.8)
i€[p]
and | J Bip=Nj_g(wi) if w, € Wy . (5.9)
i€[p]

These sets will be built up in rounds using matchings, but assuming we have these sets, for
each i, we define F; to be the graph with edges

E(F) := U {awg, wib: a € A; 1, b € B; 1},

ke([s)
so that (J;c,) Fi 2 D2 by (5.8) and (5.9). Note that F; is the union of vertex-disjoint oriented
stars with centres wy, ..., ws, where the star at w; has an equal number of edges (at most ¢)
entering and exiting w;. So, it is easy to see that each F; can be decomposed into J; 1,...,Ji 4

where each J; ; satisfies (iii’). Let us prove all of this formally noting that the fact that some
of the w; are sources or sinks will mean we will have to be more careful about the sizes of our
A/m‘ and B7J

Let h: W," UW; — [n/2] be the function such that if w € W, then

h(w) = df(w) = df_g (w) < n/2.
So, h(w) will correspond to the number of {J; ;: i € [p],j € [¢]} that will contain w. Let
hi,... h, : Wim UW; — [0, g] be functions such that, for each w € W™ U W, , Yiepp hilw) =
h(w) and

fi(w) + gi(w) + hi(w) < q. (5.10)
Indeed, this is possible by considering hl(w) := ¢ — fi(w) — g;(w) > 0, so that

(5.6)
> hi(w) = pg— f(w) —g(w) > n— %\eXD(w)‘ >n/2 > h(w)
i€[p]

and making a suitable choice of h;(w) < h}(w). Here h;(w) will help determine the number of
{Ji;: 7 € [q]} that will contain w.

Recall wy,...,ws is an enumeration of W, UW, . For i € [p], let X, := Uje[q] X;,; and
Y; = Uje[q] Y; ;. Suppose for some k € [0,s], we have already found {A; ', Bix }ic[p),ielk]
such that:

(') foreach i€ p], V' NV(X,), V' NV(Y;),Ai1,...,Aik,Bi1...,B;y are disjoint;
(b’) for each i€ [p] and K € [k], |Aiw|=hi(wr)+2g;(wr) and |B; x| = hi(wy) +

2fi(wi);
(¢') for each k" € [k], A1 ..., Apr € Np_g (wyir) are disjoint;
(d') for each k' € [k], Bigs,...,Bpr C Nj) o (wy) are disjoint.

CLAM 5.8. Ifk = s, then we can construct S satisfying (i')—(vi’) (so completing the proof
of the lemma).

Proof of Claim. Define F; to be the graph with edge set
E(FL) = U {awk/,wk/b: [AS Ai,k’ab S Bi,k’}-
k' €[s]

Note that by (a’)—(d’) and our choice of h, h; we have that Fy U---UF, D Ds.
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By (¢/) and (d'), we know that F; can be decomposed into (W, V’)-path systems
(Xi;,Yi;,Ji;) (one for each j € [¢q]) such that (X;;,Y; ;,J; ;) has source z; ; and sink y; ;.
To see this we colour the edges of F; with colours from [q] as follows. For each j € [q] if
z; j € Wy assign colour j to any two out-edges v jx; ; and x; jz; in F; at x; ; and (re)set
Xij =iz} ;,xi o]} My j € Wy assign colour j to any two in-edges y; ;yi ; and y;',;y; j in
Fi at y; ; and (re)set Y; ; = {y; ;yij, i ;¥i;}- Such edges exist by (b’). Given w € Wi uw,
write ¢(w) for the colour assigned (if any) to edges at w. Let F! be the remaining (that is,
uncoloured) edges of F;, noting that there are precisely h;(w) < ¢ — f;(w) — ¢;(w) in-edges and
the same number of out-edges at w in F. For each w, pick any set of colours S,, C [¢] \ {c(w)}
with |S,,| = h;(w). Assign distinct colours of S, first to the in-edges of F] at w and then to
the out-edges of F at w. Now, take J; ; to be the edges of F coloured j. In particular,

U U&i,uyiug;) =] F 2D (5.11)
i€[p] j€lq] i€[p]

Now, taking S = {(X; ;,Yi;,Jij): 1 € [pl,j € [ql} U{(X;,Y5, Ji): i € [p+ 1,p+ 3(]}, we see
that (i")—(vi’) hold. Indeed, (i) and (iii’) hold by construction. (ii’) holds because we showed
S’ covers all edges in Dy and (5.11) shows all edges in Dy are covered. We showed (iv’) holds
when choosing sources and sinks. The disjointness condition in (v') and the edge-disjointness
of S hold by construction. The bounds in (v') and (vi’) hold by (iii’). O

Therefore, we may assume k € [0,5 —1]. We show how to find {A4;xi1}icp); finding
{Bi k+1}ie[p is similar. Without loss of generality, assume wy41 € W . We have

dp(wg11) — exp(wg1)

h(wi+1) = dp(wit1) = 5

> (y—¢e)n/2 = yn/4. (5.12)
For each i € [p], set
U= (V' NnV(X;UY;)) U U (Ai g U By ).
k'ek]

Note that U; is the set of ‘forbidden’ vertices for A; 41 and B; y+1 (in order to maintain (a'),

(c), and (d")).
Define an auxiliary bipartite graph Fa with vertex classes A and I as follows. Let
AC Np_g/(wig1) be of size h(wy41) + 2 Zie[p] gi(wg+1); this is possible since

h(wign) +2 ) gi(wirn) = dp g (wip1) +0 = dpy g (wipa)-
i€[p]

(Note that in the case when we try to find {B; k11 }ic[p We use a slightly different calculation.)
Let I be a multiset consisting of exactly h;(wgi1) + 2g;(wgy1) copies of i € [p]. Clearly,

Ch(wig) +2 Y filwrg) = dp_g (wipn) + 2f(wig) =2 Y for(wegn)
i€[p) i'e[p+1,p+34]

<dp_ g (wry1) +exh(wry1) — exd, (wyp)
=d o/(weg1) +ex), o (wrt1)

=df_ g (wpi1).
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|A] = |I]. A vertex v € A is joined to ¢ € I in Fy if and only if v ¢ U;. Note that, for all
ve ACV/, visin at most,

(5.12)
f)+9@) +dp(v,W) < (a/2+ B)n <yn/8q¢ < |I]/4q,
many of the U;. Since each ¢ € I has multiplicity at most ¢, we deduce
dp, (v) 2 [I| = q-[1]/4q = |1]/2.
For each ¢ € I, note that

(5.10)
Uil <2+ Y (hi(wpr) + 2fi(wi) + 2g:(wi)) < 2q(1+ 3)
k' €[s]

(5.12)
<2¢(1+Bn) <yn/8 < |A]/2
implying
dr, (i) = [A| = [Al/2 = [A]/2.

Therefore, F4 contains a perfect matching M by Hall’'s Theorem. For each i€ [p],
define A; p41 :={v € A:vie M}. By a similar argument, there exist B gy1,...,Bprt1 C
N} s/(wi41) and by construction the sets satisfy (a’)—(d’). Indeed, (a’) holds by the choice
of U;, (b) holds by the choice of I, and (¢’) and (d’) hold because M is a matching. This
completes the proof of the lemma. O

We now prove Lemma 5.1 using Lemmas 5.4 and 5.7.

Proof of Lemma 5.1. By Lemma 5.4, there exists a partial decomposition P; of D such that
writing H; = UP; we have:

(") Hi[W] = D[W];
(ii") A(Hy) < 21|W| and dg, (v) = 18|W| for all v € V(D) \ W;
(iii") ex(D — Hy) > Cn/2.

Let Dy :=D — H;. Note that §(D1) > (1 —¢e)n —21|{W| > (1 —e—218)n and |exp, (v)| <
lexp(v)| < an for all v € V(D) \ W. By Lemma 5.7, there exists a partial decomposition Pz
of Dq such that writing Hy, = UP, we have:

(i"”) |P2] = ex(H2) € 2(2+38)n < Cn/4 ;
(ii”) if w € W with exj;(w) > 0, then N, (w) = 0;
(iii”) for all v € V(D) \ W, dp,(v) = 2d for some d < 4yn.

The lemma holds by setting P = P; U P, which is a partial decomposition of D by
Proposition 4.1(b). O

6. The final decomposition

In this section, we prove Theorem 1.5. We prove it in three main steps as discussed in
the overview (Section 4.3). We begin with a tournament T that satisfies the hypothesis of
Theorem 1.5 but assume that it does not have a perfect decomposition. Gradually, we show
that certain subdigraphs of 7" with various additional properties also do not have a perfect
decomposition. Finally, we show that these additional properties are in fact sufficient to
guarantee a perfect decomposition, giving the desired contradiction.
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6.1. Removing vertices with high excess

The following theorem allows us to remove vertices of high excess from our tournament to leave
an almost complete oriented graph D with slightly smaller excess and with the property that
a perfect decomposition of D would give a perfect decomposition of T'.

THEOREM 6.1. Let 1/n < f < a < ¢ with n even and let C > 32. Let T be an n-vertex
tournament with ex(T') > Cn. Suppose that T does not have a perfect decomposition. Then
there exists a subdigraph D of T with the following properties:

) D does not have a perfect decomposition;
) |D| = (1 = B)n is even;
(iii) dp(v) = (1 —¢)|D| for allv € V(D);

) 1< |exp(v)| < 3a|D| for all v € V(D);

)

We will need the following three relatively straightforward results before we can prove
Theorem 6.1. The first proposition says that any almost regular, almost complete oriented
graph has an Eulerian subgraph that uses most of the edges at every vertex and whose removal
leaves an acyclic subgraph.

PROPOSITION 6.2. Let 1/n < e < ¢’ < 1. Suppose that D is an n-vertex digraph with
§°(D) = £(1 — &)n. Then there is an Eulerian digraph D' C D with §°(D’) > $(1 — €’)n and
such that D — D’ is acyclic.

Proof. Note that |exp(v)| < 2en for every v € V(D). Let KT be the multiset of vertices such
that each vertex occurs exactly ex™(v) times and let K~ be the multiset of vertices such that
each vertex occurs exactly ex (v) times. Thus, |K*| = |K~| and write K™ = {k{",... k]
and K~ ={ky,...,k; }, where d = ex(D). Let H be the directed multigraph on V(D) with
E(H) = {kk; :i € [d]}. Note that A(H) < 2en. We apply Corollary 4.10 and obtain a set of
edge-disjoint paths P = {P.: e € E(H)} in D such that P, has the same starting and ending
points as e and A(UP) < 4v2en. By our choice of K, K~, we have that P is a partial
decomposition of D and that D’ := D — UP is Eulerian. Also 6°(D’) > §°(D) — A(UP) >
1(1 = €')n. To ensure that D — D' is acyclic, any cycle in D — D' is added to D' O

Given an oriented graph D for which the underlying undirected graph is slightly irregular,
the proposition below will be useful in trying to find a small partial decomposition P of D
such that the underlying undirected graph of D — UP is regular. The function f will record
the irregularities in the underlying undirected graph of D and the sets T, ..., T, obtained
will identify the vertex sets of the paths in P. Some further technical conditions are present
that will be useful later.

Recall that, for U C X, we write Iy : X — {0, 1} for the indicator function of U.

PRrROPOSITION 6.3. Let n,t,m € N with tm,2t < n. Let V be a set with n elements. Let f :
V' — [m] be a function with m := max,cv f(v). Suppose 1, ..., Tatm, Y1, - - - , Yorm are elements
of V (with repetitions) such that ©;,Y;, Ttm+i, Yem+i are distinct for each i € [tm]. Then we can
find a collection of sets Ty, ..., To,, €V such that:

(i) for allv € V, 32, c oy I, (v) = f(v) + (20 = 1)m;
(ii) |T3| = (1 —1/t)n for all i € [2tm];
(iii) @4,y; € T; for all i € [2tm)].
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Proof. Given any U, take an arbitrary partition of V' \ U into sets A,...,A; with
|A;] < n/t for all i € [t] (we allow empty sets in the partition). Then writing B; := V' \ A;, set
Sy :={B4,...,B:}. Note that for each v € V,

Z Is(v) =Iy(v)+t—1.

SeSu
Since f(v) < mfor allv € V, we can find sets Uy, ..., U, such that f = I, + --- + Iy, . Taking
S =U;em) Su., we have |S| = tm and

Y Is() =Y (Iy,(v) +t—1) = f(v) + (t — L)m.

Ses i€[m]
Write Sy, ... Sy for the sets in S. For ¢ € [tm], let
T, =S, U{zi,yi} and Tyyi :=V \ ({2, 43} \ Si)-
Let T := {T;: i € [2tm]}. Note |T;| > (1 — 1/t)n and x;,y; € T; for all i € [2¢tm]. For allv € V,

S Inw) = > (Inw)+1Ir,,,.(v)

1€[2tm] i€ [tm]

= 3 Us,(0) +1) = f(v) + (2t — Dm. 0
i€ [tm]
The following Lemma shows how to decompose any almost complete Eulerian oriented graph
into a small number of cycles. Some extra technical conditions are placed on the cycles that
will be useful later.

LEMMA 6.4. Let n € N with 1/n < e < 1. Suppose D is an n-vertex Eulerian oriented
graph with 6°(D) > (1 — e)n. Suppose ¢ : V(D) — [n] satisfies >,y ¢(v) = 4n. Then
we can decompose D into t < n cycles C1,...,C; where each cycle is assigned two distinct
representatives ;,y; € V(C;) such that no vertex v € V(D) occurs as a representative more
than ¢(v) times.

Proof. We assume i(1—¢)n is an integer. For z € V(D), write f(z) = 2(dp(z) — (1 —
e)n) =2 0. Let t = (5_1/21 and m = max,cy (p) f(z), so m < en and tm < 2y/en < n.

Let M be the multiset of vertices in which v € V(D) occurs ¢(v) times, so that |M| > 4n
and no vertex occurs more than n times. Let mq,mo,... be an ordering of the elements
of M (with multiplicity) from most frequent to least frequent. For each ¢ € [tm], write
(T4, Yis Temtis Yemi) = (Miy My, Man i, M3ng4). Note that, as vertices, i, Yi, Temis Yem i are
distinct (because no vertex v occurs more than n times in M).

By Proposition 6.3, we can find sets Ti,...,Ton CV(D) and vertices
Tlyeee s Totmy Y1y -+ Yorm € V(D) such that:

(i") for all v € V', 37ic 14y L1 (v) = f(v) + (2t — 1)m;

(i) |T;| = (1 —1/t)n = (1 — \/e)n for all i € [2tm];

(iii") each T; is assigned two distinct representatives z;,y; € Tj;

(iv') no vertex v € V(D) occurs as a representative more than ¢(v) times.

For i € [2tm], let S; :=V(D)\T; and H; be the multidigraph on V(D) with E(H;) =
{ziyi,yiwi}. Let H = ;g (o, Hi- Note that A(H) < 4tm < 8y/en and |S;| < v/en. Apply
Lemma 4.9 with (D, H;, S;, 41/€) playing the role of (D, H;, S;,7) to obtain edge-disjoint cycles
Cy, ..., Coyy such that V(C;) = T; for each .

Now, by our choices of T1,..., oy, we have that C := Cy U--- U Cyyy, satisfies do(z) =
2f(x) +2(2t —1)m by (I') and so D —C is a regular Eulerian digraph with 6(D — C) >



452 ALLAN LO, VIRESH PATEL, JOZEF SKOKAN AND JOHN TALBOT

(1 —-¢)n—4tm > 3n/7. By Lemma 4.4 and Theorem 4.6, D — C can be decomposed into
s < n/2 Hamilton cycles. Each of these cycles is assigned two distinct representatives from
M =M\ {x1,...,Z2tm, Y1, - -, Yarm } arbitrarily (this is possible since |M’| > 2n and no vertex
occurs more than n times in M’). Thus, altogether we obtain a decomposition of D into
t < n/2+ 2tm < n cycles with representatives as desired. O

We now prove Theorem 6.1.

Proof of Theorem 6.1. Fix parameters eg,eq,c5,e3 such that f < o K g9 € g2 € &) K
e3 K €. Let

Fi={ve V(D) exT(w) = an}, W:=WTUW ™ and W :=V(T)\ W.

We further guarantee |[WW| and hence, |W| is even by moving an arbitrary vertex v € W to W
if [W] is odd; in this case v is added to W if ex(v) > 0 and to W~ if ex(v) < 0. Since T does
not have a perfect decomposition, Theorem 3.5 implies ex(T") < n'9/10 In particular,

W] <1+ 2ex(T)/an < fn.

So, we can apply Lemma 5.1 where (a, 8,£0/10,£0/10,C) play the role of («,3,7,e,C) to
obtain a partial decomposition Py of T" such that, writing Dy := T — UPy, we have:

(a1) Dy does not have a perfect decomposition;

(ag) dp,(v) =d for all v € Wand some odd d > (1 — go)n;
(aS) (DU[ ]) Ep, (W7 WJr) O(W 7W) =0;
(ag) ex(Dg) = Cn/4;
(as)

lexp, (v)| < an for all v € W.
Since T' does not have a perfect decomposition, (a;) holds. Note that (as), (as), and (a4) follow
from Lemma 5.1(i), (ii) and (iii), and (iv), respectively. Finally, (a5) follows by our choice of
W and the fact that P is a partial decomposition of 7.

Let P be a partial decomposition of Dy such that every path in P is of the form wtv, vw™,
or whvw™ for some wt € W, w™ € W, v € W. We further assume that first the number of
paths in P of type wTvw™ is maximal and, subject to this, that P has maximal size.

Let

Dy :=Dy—-UP, Dy:=Dy—W =Dy—-W.

Note that:
(b) 8(D2) > d—|W| > (1— 20— A)n > (1—=)m;
(ba) for every v € W, |exp,(v)| < |exp, (v)| + |[W]| < 2an;
(bs) 0°(D2) > $[6(D2) — max, |exp, (v)[] > §(1 —eb)n

CLAIM 6.5. |P] < 4n.

Proof of Claim. Suppose the contrary that |P| > 4n. By Proposition 6.2, we can find
an Eulerian subgraph D3 of D such that 6°(D3) > %(1 —e3)n and Dy — Ds is acyclic. Let
R:= D; — Ds. By (a3), any cycle in R lies in R[W] = Dy — D3. Hence, R is acyclic. By
Proposition 2.6, R has a perfect decomposition P;, which is a partial decomposition of D
by Proposition 4.1(d) and (b).

We now show that Dy — R = UP U D3 has a perfect decomposition P’, which will contradict
(a1) (since then Py UP’ is a partial decomposition of Dy by Proposition 4.1(b)). Note that
each path in P has a unique vertex in W. For each v € W, write ¢(v) for the number of paths
in P that contain v. Then Y ¢(v) = [P| >
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By Lemma 6.4 (with e3 playing the role of €), we can decompose Ds into t < n cycles
C1,...,C} such that each cycle is assigned two distinct representative vertices z;,y; € C; such
that each vertex v occurs as a representative at most ¢(v) times. In particular, we can assign
two distinet paths P;,@Q; € P to C; such that V(P,)NV(C;) =x; and V(Q;) NV (C;) =y;
and Pi,...,P,Q1,...,Q; are distinct paths of P. Now, construct P’ from P by replacing for
each i =1,...,t the paths P; and ); by the paths P;z;C;y;Q; and Q;y;C;x; P;. Now, we see
|P’| = |P| and that the paths in P’ have the same start and end points as those in P, so that
P’ is a partial decomposition of Dy by Proposition 4.1(c). Finally, by construction

UP' =uUPUC|U---UC, =UPUD; =Dy — R,

as required. O

It turns out that if exp, (v) # 0 for all v € W, then one can relatively easily prove the theorem
by taking D = Ds. However, in order to fulfil condition (iv), we must deal with vertices for
which exp,(v) = 0: this is not hard but is technically cumbersome. We will modify P by
extending some of its paths. Let

Fi={veW:exp (v) >0}, U =W\ (UTUU"),
UL :=U"N{veW:exj (v) >0}

Note that U and U? partition U? (since exp, (u) # 0 by (az)). For each u € UY (and u € U?),
let P, € P be a path ending (and starting) at u (such a path exists since exp, (u) # 0 by (az)).
Let P, :={P, :u€ UL} C P and let P’ := P’ UP,. Our aim is to extend each path in P’,
so that its starting and ending points avoid U°.

We show for later that ex(Ds) is large. By the maximality of P, we have

Ni (W#) CcU*uUl. (6.1)
Together with Proposition 4.2(c), we have

ex(Dy) = ex(Di[I7]) = ex(Dy) = ex(Do) — [P| 2 (Cnja)—an > an. (6.2)

Our aim is to extend each path in P’, so that its starting and ending points avoid U°. In
fact, we replace P’ by Q' using the following claim.

CLAIM 6.6. There exists a partial decomposition Q' of UP' U Dy = Dy — U(P \ P’) such
that:

(c1) ex(UQ' — W) < |U° < n;

(Cg) U / C UQ/

(c3) A(UQ’ W) < 2e3n;

(ca) 1<exp, o (u) <2am ifw e ULUU®.

Proof of Claim. We will show how to extend the paths in P/ to obtain sets of paths
Q.+ and we will take Q@ = Q@ U Q_. We show how to construct Q. ; the construction of Q_
follows similarly.

For each u € UY, pick a vertex b, € U~ such that nov € U~ is chosen more than exp, (v) — 1
times (which is possible as [U}| < n <ex(Dy) —n by (6.2)) and let e, = ub,. Define a
digraph H on V(D) with edge set {e,: u € U}}. Note that A(H) < 2an by (bs). We apply
Corollary 4.10 with D5, H, 2« playing the roles of D, H,y to obtain a set of edge-disjoint paths
P :={P,:ue U} in D, such that each P starts at u and ends at b, and A(UP’) < e3n.
Recalling that for u € UJ, the path P, is a single edge starting at W™ and ending at u, we
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see that the path P, P! starts at W+ and ends at b,. Let D} := UP’. U D;. By our choices of
P!, b, and (6.1), Q4 :={P,P,: ue Ufi} is a partial decomposition of D" — W~. Moreover,
we have

(ba)
€ [min{exp, (w), —1},~1] € [~2an,—1] ifwe U VU,

exp,—uo, (W)
o = exp, (w) ifweU’UUT,

where the first case follows since ex o, (u) = eXyp, (u) =1 for all uw € UY, and by our choice
of b, € U~. By (a3) and Proposition 4.2(a) (with (D,0,W~,V(D)\ W) playing the role
of (D, AT, A, R)), we can extend Q. to a partial decomposition Q" = {Q/,: u € U}} of Dy
such that for all u € U} we have:

(d1) @, =W~ = P,Pj;
) Q. is a path from W+ to U~ UW ~;
) @, — QV(D)\WT] = Py;

d4) A(UQ; — W) < esn;
)

for all w € W,

€ [-2an,-1] fweUUU;
= exp, (w) ifweUUUT.

exp,-ug, (w) {

By a similar argument, we can find a corresponding partial decomposition Q' = {Q’ : u € U°}
of UP” U D; edge disjoint from UQ/, . By setting Q' := Q. U Q" , our claim follows. Note that
(c2), (c3), and (cq) follow from (d3), (dg), and (ds), respectively, while (c1) follows from (d;)
and the fact that |Q/,| = |UY|. O

Let
Dg = UP/ U D1 - UQ/ - -D() - U(P \ 7)/) - UQ,?
DZ:Dg—W:DQ—UQ/.

We show that D satisfies the conclusion of the theorem. In order to prove (i), if D has a
perfect decomposition, then so does D3 by (a3) and Proposition 4.2(b), and hence, so does Dy
since (P \ P') U Q' is a partial decomposition of Dy. This contradicts (a1), so D has no perfect
decomposition and so, (i) holds. Our choice of W implies (ii). Note that (iii) follows from (b;)
and (c3), and (iv) follows from (c4). Finally, to see (v),

(6.2),(c1)
ex(D) > ex(Dg) —ex(UQ' = W) > Cn/4—5n

as required. 0

6.2. Balancing the number of positive and negative excess vertices

Given the oriented graph D produced by Theorem 6.1, the following theorem produces a
digraph D’ that has the same properties as D (with slightly weaker parameters) but with the
additional property that the number of vertices of positive excess is almost the same as the
number of vertices with negative excess. Recall that for a digraph D, UT(D) (respectively,
U~ (D)) denotes the set of vertices of D with positive (respectively, negative) excess.

THEOREM 6.7. Let 1/n < 1/C < o, 8 K e < A\, ¢/ < 1 with n even. Suppose that D is an
n-vertex oriented graph, where ex(D) > Cn, 6(D) > (1 —¢)n, and 1 < |exp(v)| < an for all
v € V(D). Suppose that D does not have a perfect decomposition. Then there exists a subgraph
D' of D with the following properties:
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i) D’ does not have a perfect decomposition;
(ii) |D'| = (1 — B)n with |D’| even;
(iii) (DY =2 (1 —-¢/2)n > (1 -¢")|D'|;
(iv) 1< |exp(v)] < an < 2a|D’| for allv € V(D');
(v) ex(D") =2 ACn/32 = A\C|D’|/32;
(vi) U (D")| — [U*(D')]| < 2AID'].

Proof. We introduce a parameter ¢, satisfying ¢ < ¢, < ¢/ < 1. Let us write UT := U*(D).
If |[U~| = |U"|| € An then we can take D’ = D and we are done, so assume without loss of
generality that |[U~| > |U™"| + An. We make the following claim.

CLAIM 6.8. There exist sets X C UV and Z C U~ satisfying the following.

(a1) |X| < fn and | X]| is even.

(a2) Z can be partitioned into sets Z,: x € X with |Z,| < exp(z) and Z, C N}, (z).

(ag) n< Y exexp(@) <(1+2a)n< (1 —=A/4)ex(D) and )., exp(2) <(1—A/4)ex(D).
(aq) |UT|— |U+| —2|Z|| < An or equivalently [|[U~ \ Z| — Ut U Z|| < An.

Proof of Claim. Assume fn is an even integer and let X’ be the set of Bn vertices of U™ of
highest excess. Then

> exp(a) = fnex(D)/|UF| > Cfn®/(n/2) = 2Cfn > n.

zeX’

Now, we remove suitable vertices from X’ to obtain a set X such that

n < Z exp(x (I1+2a)n and |X]| even.
reX
This is possible as |exp(v)| < an for all v € V(D). For each x € X, we have
1 1
N @) VU] > Sdb(e) — (U] > 51— <)n U]
+ 1 1 +
(|U | =0T = gen = 5(UT| = U |)—*/\ﬂ

Thus, for each x € X, we can greedily pick disjoint Z, C N} (z) NU~ with |Z}| < exp(z)
and |Ugex Z4| = 3(JU| — [UT|) — 2An. Let Y be the LAn vertices of lowest excess (that
is, of highest negative excess) in Z':=U,ecxZ.. Set Z, :=Z,\Y and Z:=Z'\'Y. Hence,
Z :=UgexZy and |Z| = $|[UT| = U~ || — $An. Also

Z ex (z2) = Z CXf(Z/) - Z ex (y)

2€Z z'ez’ yey

S(1=M4) Y ex (2) < (1 - A/4)ex(D). O
PRV
We will construct the final graph D’ such that V(D') = V(D) \ X, where UT(D") = (U \
X)UZand U (D) =U" \ Z, and where exp/(z) =1 for all z € Z.
For each z € Z, we write x, for the vertex x such that z € Z,. Note that x,z € E(D).

CLAIM 6.9. There exists a partial decomposition Py := {x.Q, : z € Z} of D such that each
Q. is a non-empty path in D — X starting at z and ending in U~ \ Z. Moreover, exp_p,(v) #
0 for allv € V(D) \ X and A(UPz) < e1n.
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Proof of Claim. For each z € Z, pick a vertex b, € U~ \ Z such that no v € U~ is chosen
more than ex),(v) — 1 times (which is possible as [ Z]| < n < Xex(D)/4 < ex(D) — > ., exp(2)
by (a3)) and let e, = zb,. Define a digraph H on V(D) \ X with edge set {e.: z € Z}. Note
that A(H) < an < 2a|D — X|. We apply Corollary 4.10 with D — X, H, 2« playing the roles
of D, H,~ and obtain a set of edge-disjoint paths Q := {Q.: z € Z} such that each @, starts
at z and ends at b, and A(UQ) < e1n/2. Our claim follows by our choice of Q. O

Let Dy := D —UPy and write Q7 :={Q.: z € Z}.

CLAIM 6.10. There exists a partial decomposition Py of Dy such that UP; C D; — X,
ex(UP1) < m, A(UP;) < e1n and exyp, (v) # 0 if v ¢ X U Z and exyp, (v) = 0 otherwise.

Proof of Claim. Let H be any digraph on V(D) \ (X U Z) with edges from U™ to U~ such
that 1 < dg(v) < |exp, (v)| for all v € V(D) \ (X U Z). Note that A(H) < an < 2a|D — X|.
By deleting edges of H if necessary, we may assume that H has at most n edges. We apply
Corollary 4.10 with D1 — X, H, 2« playing the roles of D, H,~v and obtain the desired partial
decomposition P;. a

Let Dy := Dy — UP;. Note that 6(D3) > (1 — 3e1)n.

CrLamM 6.11.  There exists a partial decomposition P, of Dy such that, writing
D3 := Dy —UP,, we have dp,(z) =0 for all x € X, dp,(v) > (1 —¢'/2)n for all v¢ X,
exp,(z) =0 for all z € Z, and ex(D3) > A\Cn/32

Proof of Claim. Let

m = max { Z exp(z), Z exD(z)}.

reX z€Z

Recall that §(Ds2) > (1 — 3e1)n and

(a3)
ex(Dz2) Z ex(D) —2n = (1 — A/8)ex(D) = Aex(D)/8+m = ACn/8 +m.

Let H be a digraph on V(D) with m edges from UT to U~ such that dy(v) = |exp, (v)]| for
all v € X UZ and dy(v) < |exp, (v)| otherwise. (Such an H exists by the calculation above.)
Note that A(H) < an. We apply Corollary 4.10 with Do, H, a playing the roles of D, H,~ and
obtain a partial decomposition P} of Dy such that, writing D) := Dy — UPS, we have

expy(v) =0 for all v € X U Z, ex(Dj3) > A\Cn/8 and A(UP)) < e1n.

We now apply Lemma 5.1 with (D}, X, «,8,¢e1,4¢1,AC/8) playing the roles of
(D, W,a,8,7,e,C). We obtain a partial decomposition P§ of D) such that, writing
D3 := D}, — UPY, we have

dp,(x) =0 for all x € X, ex(D3) > ACn/32 and A(UP) — X) < 5eyn.
The claim holds by setting Ps := P, U PY. 0O

Finally, we show how to prove the theorem using Claim 6.11. Note that P, is a partial
decomposition of D by Proposition 4.1(b). Let

D" :=D —UPy =U(PzUP;)U Ds,
D :=D"-X-= U(QZ UP1) U (D5 — X)
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Since vertices of X are isolated in D3, we have E(D” — D') ={x,z: z € Z}. Therefore, by
Proposition 4.2(b), (with (D", X,0,V(D)\ X) playing the roles of (D, A", A, R)) we see
that if D’ has a perfect decomposition, then so does D" and hence, so does D, a contradiction;
hence, D’ does not have a perfect decomposition, proving (i). Note that (ii) follows from
(a1). Since E(D3 — X) = E(Ds3), (iii) holds by Claim 6.11. For all z € Z, we have exp, (z) =
0 and exp,—x(z) =0, and so exp/(z) = exyg,(2) =1 by Claim 6.9. Since P; is a partial
decomposition of D, ex,, (u) < an for all u € U*. Moreover, for u € U \ (X U Z), ex$, (u) =
ex, (u) > exﬁp1 (u) > 1. Hence, (iv) holds. Furthermore, we have U (D’) = (U* \ X) U Z and
U=(D')=U~\ Z. Thus, (vi) holds by (a,). Note that Q and P; are partial decompositions’
of D', s0 ex(D’") 2 ex(D3 — X) = ex(D3) = ACn/32 implying (v). O

We now show that the digraph produced by Theorem 6.7 has a perfect decomposition.
Together with Theorems 6.1 and 6.7, this will give us all the ingredients to prove Theorem 1.5.

THEOREM 6.12. Let 1/n < a, \,e < 1. Suppose that D is an n-vertex oriented graph,
where:

ex(D) > 2n;

0(D) = (1 —e)n;

1 < lexp(v)| < an for allv € V(D);
1U=(D)| = [UT(D)I] < 2AD).

Then D has a perfect decomposition.
Proof. Fix a parameter ¢ satisfying 1/n < a, \,e < ¢’ < 1 such that ¢'n is an integer.
Let
d=(1/2 —52¢)n and t := n — 2d = 104e'n.
Arbitrarily partition V(D) into X, X, X° such that
Xt =|X"|=d, |X0 =t X+t Ut .=U*(D).

(Note that such partition exists as [U*| > d.) Our goal is to remove a partial decomposition
P of D such that the resulting digraph D’ := D — UP satisfies

1 ifve Xt 2d—1 ifve Xt
exp/(v) =¢0 ifve X% and dp(v)=<2d if v € X0 (6.3)
-1 ifveX—; 2d—1 ifve X™.

Then D’ has a perfect decomposition P’ by Theorem 4.7 and so PUP’ is a perfect
decomposition of D (by Proposition 4.1(b)). Thus, it remains to find such a P.

We will construct P as a union of three partial decompositions Pi,Ps,P3. Let Dgy := D
and write D; := D;_1 — UP; for i = 1,2, 3. First, we reserve two multisets A, and Az, which
will be sets of starting and ending points of Py and Ps, respectively. Second, we find a
partial decomposition P; such that exp, (v) has the correct value provided v ¢ As U Az (see
Claim 6.13). The partial decomposition Py will ensure that dp, (v) = 2d’ — Ix+yx- (v) for some
d’ > d. Finally, we adjust d’ to d using Ps.

Since ex(D)>2n and |exp(v)|<an, we know we can find vertices
Ty T26eins Thy oo, Theor, € UT such that z; # 2/ and no vertex v € U™ is chosen more than

TTo see this note that Pz and P; are partial decompositions of D”. We obtain, respectively, D', Qz, P1
by deleting X from D", Pz, Pi. Then noting that exp (z) = exyp,up, (2) =0 for all z € Z and that the
only edges incident to X in D’ are the initial edges of paths in Pz, we can conclude Qz and P; are partial
decomposition of D’.
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(exp(v) —1)/2 times. Similarly, we are able to pick vertices yi,...,Y26e'n, Y1 - - - Yagern € U~
such that y; # v, and no vertex v € U~ is chosen more than (Jexp(v)| — 1)/2 times. Clearly,
xi, X%, yi, yh are distinct for all i. Let

A2 - {xz; 17y17y1 [256 n]}
As = {x;, 2, yi vy i € [25e'n + 1,26€"n]}.
For j € {2,3}, let ¢;r(v) (and ¢ (v)) be the number of times that v is chosen as x; or «; (and y;

ory;)in A;. Let ¢;(v) := (bj(v) — ¢; (v). Note that 3, v (p) @;(v) = 0 and 2|¢2(v) + ¢3(v)] <
lexp(v)].

CrLamM 6.13. There exists a partial decomposition P; of D such that, writing
Dy := D — UPy, we have 6(D;1) 2 (1 — €')n and for all v € V(D),

(v) = 209 (v) + 2¢3(v) + £1  ifv € XF;
DAY 260 (0) + 265 (v) ifve X0,

Proof of Claim. Let f: V(D) — [n] be such that

F(v) = ex(v) = 2¢2(v) — 2¢3(v) F1 if v e XF;
ex(v) — 2¢9(v) — 2¢3(v) if v e X0,
(

Note that 3,y (p) f(v) = 0 and |f(v)| < an for all v € V(D). Define a directed multigraph H

on V(D) such that d+( ) = max{f(v),0} and dj; (v) = max{—f(v),0}. Note that A(H) < an.
We apply Corollary 4.10 with D, H, « playing the roles of D, H, v and obtain the desired partial
decomposition P;. (]

Let
s := max{dp, (v) + Ix+ux- (v)}.

Note that dp, (v) is even if v € X° and odd otherwise. So, s is even and (1 —&’)n < s < n. Let
d :=s/2 —50¢'n, so

d+eén=(1/2-51e)n <d < (1/2 —50")n = d + 2&'n. (6.4)

CLAIM 6.14. There exists a partial decomposition Py of Dy such that, for all v € V(D),
exup, (V) = 2¢2(v) and dp,(v) = 2d' — Ix+,x- (v), where we write Dy := D1 — UPs.

Proof of Claim. Define f : V(D) — [¢'n] to be such that

o) = - ) H e ()
Note that max,cy(pyf(v) =¢n. Recall that Ay = {x;,z},y;,y;: i€ [25¢'n]}. Write
(ZL';(, x;56’n+i7 yzf’ y;!’)s’n—&-i) = (Ii? QZ‘;—, Yi, y;)

By Proposition 6.3, where we take (V (D), 25,&'n,x},y) to play the roles of (V,t,m,z;,v;),
we can find a collection of sets T4, ..., T50ern C V(D):

(i") for all v € VI(D), 3=, cis0er I (v) = f(v) + 49"
(ii") |T3| = 24n/25 for all i € [50e'n);
(ili") z},y; € T; for all i € [50e'n).
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For i € [50e'n], let S;:=V(D)\T; and H; be the multidigraph on V(D) with E(H;) =
{aiyi 27y} Let H = U, ¢ 5001, Hi- Note that |[E(H;)| = A(H;) = 2.and |S;| < n/25. We apply

Lemma 4.9 where we take (D1, H;, S;,50¢’) to play the role of (D, H;, S;,7) and obtain edge-
disjoint paths Py, P{,. .., Psoern, Pi;.s,, such that both P; and P/ start at 2] and end at y; and
dp,up(v) = 2I7,(v) for all v € V(D).

Set Py = {P;, P! :i € [50e'n]}. Note that ex_p,(v) = 2¢2(v) for all v € V(D). For all v €
V(D),

dp,(v) = dp, () =2 Y. In,(0) ¥ dp,(v) = 2(/(v) +49:'n)
1€[50e’n]
=5—100"n — Ix+ x-(v) =2d — Ix+ux-(v),
as required. O

CLAIM 6.15. There exists a partial decomposition Ps of Do such that for all v € V(D),
exyup, (V) = 2¢3(v) and dp,(v) = 2d — Ix+_x- (v), where we write D3 := Dy — UPs.

Proof of Claim. Recall that Az := {x;,2},y;,y.: i € [25e'n + 1,26e'n]}. Let m:=d' —d —
g'n, s0 0 < m < e'n by (64).
We now define multidigraphs Hy, ..., Hpyter, on V(D) as follows. Define f(i) = 25¢'n + i.
For i € [m],
E(H;) = {xp0yra), 2rayrw s EHenti) =250 Y00 ot
For i € [m+1,¢'n], set

E(H;) := {2 50)Ys)» Tr)¥s Trolre TraYim
Note that |E(H;)| <4 and A(H;) =2. Let H :=;c(or 4, Hi- We apply Lemma 4.9 with
(Do, H;,0,2¢’) playing the roles of (D, H;,S;,v) to obtain a set of edge-disjoint paths
P3 ={P.: e € E(H)} such that dyp,(v) =2(e'n+m) = 2(d" — d) and exyp,(v) = 2¢3(v) for
all v € V(D). Note that Ps is a partial decomposition of Do by our choice of H; and that
D3 = Dy — UP5 satisfies the desired properties. O

For all v € V(D),

+1 ifve X+,

€XDs ('U) = 6Xp, ('U) — EXuP, (’U) — CXuP; (U) = {0 if v e X0

Also dp,(v) =2d — Ix+ux-(v) for all v € V(D) by Claim 6.15. We are done by setting
D = D3. [l
6.3. Final proof
Now, we can finally prove our main theorem.

Proof of Theorem 1.5. Assume 1/ny < 1/C < 1 and that T is an even tournament with

n > ng vertices and ex(T) > Cn.
We pick parameters aq, 81, €1, a2, B2, €2, A satisfying:

1/n<1l/C Kb Kaq,fe e ez, A1 and 1/C < A (6.5)

By Theorem 6.1, either T" has a perfect decomposition or there is a digraph D; satisfying
the following properties.
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(a1) If Dy has a perfect decomposition, then 7" has a perfect decomposition.
(ag) n1 :=|Dq| = (1 — B1)n with ny even.

(ag) (S(Dl) 2 (1 — 61)’111.

(a4) 1< lexp, (v)] < aing for all v € V(Dy).

(as) ex(Dq) = (C/4 —5)ny =: Ciny.

By Theorem 6.7, there exists a digraph Ds satisfying the following properties.

by) If Dy has a perfect decomposition, then D; has a perfect decomposition.
bs) 2 = |Ds| = (1 — B2)n; with nsy even.
3) ) (1 — EQ)TLQ.
1) 1< |exp,(v)] < aing < 2aqng for all v € V(D).
5)
)

i

O“O"U‘

(
(
E
( ex (Dg) > )\Cln2/32 =: C9yng = 2ns.
(bo) [IU~(Ds)] — [U(D2)]] < 2Anz.

Note that by (6.5), we have 1/ny < 2aq, A, 62 < 1 since ng > (1 — 51)(1 — S2)n = n/2. By
Theorem 6.12, Dy has a perfect decomposition; hence, so does Dy (by (b1)) and so does T' (by
(a1)) as required. O

7. Conclusion

We have proved many cases of Conjecture 1.1. The obvious open problem remaining is to fill
the remaining gap, that is to prove that pn(7) = ex(T') for all even tournaments satisfying
n/2 < ex(T) < Cn for some sufficiently large C. We believe that with a little work, one should
be able to apply the results of Kiihn and Osthus [9] to prove the conjecture when ex(7') is very
close to n/2 but that probably some new ideas are needed, say when n < ex(T') < Cn.

Another direction, which is currently work in progress, is to investigate analogues of
Conjecture 1.1 for directed graphs that are not tournaments. In forthcoming work, we consider
dense directed graphs as well as random and quasi-random directed graphs.

Acknowledgements. We are extremely grateful to Bertille Granet and the referee for their
detailed comments on a draft of this paper.
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