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The use of two-way fixed-effect models is widespread. The presence of in-
cidental parameter bias, however, invalidates statistical inference based
on the likelihood. In this paper we consider modifications to the (pro-
file) likelihood that yield asymptotically unbiased estimators as well as
likelihood-ratio and score tests with correct size. The modifications are
widely applicable and easy to implement. Our examples illustrate that
the modifications can lead to dramatic improvements relative to the
maximum likelihood method both in terms of point estimation and in-
ference.

1. Introduction. Two-way fixed-effect models arise in many areas of
applied economics. Many models for panel data, in addition to the usual
individual-specific effects, routinely include time dummies to account for
aggregate time effects (see, e.g., Hahn and Moon 2006). Models for linked
data sets, too, typically feature different fixed effects for each type of agent.
Two well-known examples are models for employer-employee data (Abowd,
Kramarz and Margolis 1999) and gravity models for trade data on import
and export behaviors of firms or countries (Anderson and van Wincoop 2003;
Helpman, Melitz and Rubinstein 2008).

It is known since the work of Neyman and Scott [1948] that models with
fixed effects pose a serious theoretical challenge. The incidental parameter
problem has received substantial attention for one-way fixed-effect models;
see Arellano and Honoré [2001], Arellano and Hahn [2007], and Arellano and
Bonhomme [2011] for overviews with different emphases and for references.
A main conclusion of this literature is that bias correction is needed to justify

inference based on maximum likelihood. This recommendation is based on
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the rectangular-array asymptotics (Li, Lindsay and Waterman 2003; Sartori
2003) where both the number of strata and the number of observations per
stratum grow large. Such an asymptotic approximation is suitable for data
sets where none of the dimensions is negligibly small compared to the other,
which are in increased supply.

In spite of their popularity in applied work, the pursuit of estimators of
two-way models that enjoy sound theoretical properties has taken off only
recently. Charbonneau [2017] and Jochmans [2017a;b] have invoked suffi-
ciency arguments for binary-choice and multiplicative-error models. Such
an approach is attractive as it yields estimating equations that are free of
fixed effects but its applicability is inherently limited in scope. Taking the
rectangular-array perspective, Ferndndez-Val and Weidner [2016] and Chen,
Ferndndez-Val and Weidner [2014] have characterized the leading bias terms
in the maximum likelihood estimator of quite general two-way models with
additive and interactive fixed effects, respectively. These results enable bias
correction of the maximum likelihood estimator by subtracting from it a
plug-in estimator of the bias. Such an approach is a natural extension of the
ones taken in Hahn and Newey [2004] and Dhaene and Jochmans [2015] for
one-way models.

In this paper we present likelihood corrections for two-way models that
lead to asymptotically valid inference under rectangular-array asymptotics.
Inference by modified likelihoods has a long history in statistics; see, e.g.,
Barndorff-Nielsen [1983], Cox and Reid [1987], DiCiccio et al. [1996], and
Severini [1998a;b]. In the econometric literature on one-way panels, their use
has been advocated by Arellano and Hahn [2006; 2007]. While the resulting
point estimator enjoys similar theoretical properties as the bias-corrected
estimators of Ferndndez-Val and Weidner [2016], modifying the likelihood
has several implications that may lead researchers to prefer it over correcting
the bias in the maximum-likelihood estimator.

First, the correction term has a simple generic form, depending only on
the score and Hessian matrix for the nuisance parameters. As such we do not
need to know the precise functional form of the bias, which is model specific,
and implementation does not depend on whether the nuisance parameters
are scalars or vectors. Second, correcting the likelihood leads to estimators

that are invariant with respect to interest-preserving reparametrizations.
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Third, correcting the likelihood function not only leads to point estimators
with reduced bias, but also directly improves the likelihood-ratio and score
statistics. Finally, our modified likelihoods can be combined with Markov
chain Monte Carlo techniques to obtain point estimators and confidence
regions with attractive frequentist properties by simulation. This avoids
numerical optimization and estimation of the asymptotic variance, where
calculations of higher-order derivatives of the profile likelihood are required.

The rest of the paper is organized as follows. Section 2 introduces the
problem at hand and derive the leading bias term in the profile likelihood.
In Section 3 we use these findings to set up the likelihood corrections that
lead to superior inference methods. In Section 4 we discuss examples with
some numerical evidences.

2. Models with two-way fixed effects. Consider an n x m sample
of independent observations {z;; : i =1,...,n,5 =1,...,m}. Suppose that
the density of z;; (relative to some dominating measure) is specified to be

The function f is known up to the finite-dimensional parameters 6 and
the fixed effects a; and 7;, which may be vectors. The goal is to perform
inference on 6. The vectors a = (af,...,a),) and v = (71,...,7,,) are

nuisance parameters.

2.1. Profile log-likelihood. Let A = (o/,~"). The log-likelihood function
for all parameters is

i=1 j=1

The maximum likelihood estimator of 6 is given by 6 = arg maxy £(0), where
{(0) is the profile log-likelihood,

((0) = (0, A(0)),
and 5\(0) is the maximum likelihood estimator of the nuisance parameters
for a given 0, i.e.,

A(0) = arg m):\;LXE(@, A).
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In many cases this optimization needs to be performed under a normalization
constraint on the fixed effects. For example, if the density depends on (a, ;)
only through a;+;, then we cannot hope to learn the mean of each effect, so
we would impose, for example, >, a; = ;75 We leave this normalization
implicit for most of the paper.

It is well-known that inference based on the profile likelihood performs
poorly when the dimension of the nuisance parameters is large relative to
the sample size. In general, profiling out the nuisance parameters o and -y
introduces bias in the profile score function, which are of order O(n) and
O(m), respectively. The sources of these bias terms are estimation errors in
&(0) and (), respectively. Under the asymptotics where m remains fixed
while n — o0, the dimension of a grows with the sample size, and this
leads to the incidental parameter problem as studied in the seminal work of
Neyman and Scott [1948]. Under the asymptotics where both n,m — oo,
the dimensions of both a and v grow with the sample size. In this case
the behavior of v/nm(0 — 0) depends on the relative magnitude of n and
m. Moreover, its bias is of order O(n/m) + O(m/n), which diverges unless
n and m grow at the same rate, and this motivates the rectangular-array
asymptotics, i.e., an asymptotic embedding in which n/m — p? for some
p € (0,00).

Under rectangular-array asymptotics, the maximum-likelihood estimator
is asymptotically biased. This implies that confidence intervals based on
the asymptotic distribution are incorrectly centered, and that likelihood-
ratio and score tests suffer from size distortion. In what follows we consider
modifications to the profile log-likelihood that yields correct inference under
the rectangular-array asymptotics.

2.2. Information bias. The profile log-likelihood can be seen as a plug-in
version of the (infeasible) target log-likelihood

(0) = £(6,A(9)),

where

A(0) = arg max E (£(6,))).



Replacing A\(#) = (a(#),v(0)")" with the estimator A(0) = (&(8),5(0))
introduces bias. To see this, let

vig) = 210N 020(0, )\)>

2O)=-E (=22

A=A(0)

and define the covariance matrix

Under certain regularity conditions (see, e.g., Fernandez-Val and Weidner
2016 and Chen, Fernandez-Val and Weidner 2014) we have

AO) = A(0) = Z(0) TV (0) + Op(n~t vm™h).

Together with an expansion of £(6) = £(,A\(9)) around A(0) = A(6), the
difference between the profile log-likelihood and its target takes the form of
0(6) — () = %V(e)’x(erlvw) + 0, (n Y2 v m 12,

Therefore,
B(6) = E (i(8) — £(60)) = %trace (2(0)712(0)) + O~ v m~1/2),

Here, the leading bias term arises from the estimation noise in the fixed
effects. Typically, it will be of order

B(0) = O(n) + O(m),

where the first term arises from the estimation noise in &(#) and the second
term stems from imprecision in 4(#). Under the usual regularity conditions
that allow for integration and differentiation to be interchanged, the above
bias in the profile log-likelihood function implies that the bias in the score
equation takes the form (’(6), which leads to the asymptotic bias in the
maximum likelihood estimator.

3. Modified log-likelihood. A plug-in estimator of the bias term ()
based on the maximum likelihood estimator is

5(6) = %trace (50 20)
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where the matrices X(0) and 2(f) are sample counterparts to X(6) and
2(0), respectively, obtained by using the plug-in estimator 5\(9) Subtracting
this estimator of the bias term from the profile log-likelihood yields the
modified profile log-likelihood function

0(6) = £(6) — B(0),

which yields a superior approximation to the target likelihood ¢(0) as n,m —

oo with n/m — p?.

3.1. Asymptotically-unbiased estimation. Now we consider the maximum

modified likelihood estimator

0 = arg max 0(0).

920(0)
To= _E<aeaef> ’

be the Fisher information. Under standard regularity conditions we obtain

Let

(3.1) 0—0~N(©O,I,71,

as m,m — oo so that n/m — p?. This conclusion is to be contrasted with

the corresponding result for the maximum likelihood estimator, which reads
-6~ N(I,'B0),1;),

as n,m — oo so that n/m — p?.

The distributional result in (3.1) permits valid inference based on the
Wald principle. However, given the lack of invariance of the Wald statistic
to formulation of the null hypothesis, we may equally consider the likelihood-
ratio statistic. For testing Hy : 6 = 0y against the alternative Hy : 6 # 6,
for example, the modified likelihood-ratio statistic is

—2 (£(60) — £(0)).

By virtue of the correction term 3 (0), under the null, this statistic will be
well-approximated by a x? random variable. This modified likelihood-ratio
statistic has usual benefits. It is invariant to how the null is formulated and
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does not require a plug-in estimator of the information matrix. Likewise, the

correction term implies

o)  0i(0)

I TR

which constitutes an improved approximation to the infeasible score 0¢(6)/06.
Hence, letting 6 denote the constrained maximizer of £(#) under the null,

and writing I, for an estimator of the information under the null, the score
statistic 5
< 00(6)

" 000)
90 g—s) ° 90 lg—g)’

leads to size-correct inference in large samples.
3.2. Local correction term. The estimator 3(6) of the bias term does

not use the likelihood structure. As such, it is equally applicable to quasi-
likelihood or more general M-estimation problems. In the likelihood setting,
under correct specification, we can use the fact that the information equality
holds at the true parameter value to construct the alternative correction
term

= 1 - 1 A
B(6) = — logdet £(0) + 7 log det £2(6),

and corresponding modified log-likelihood
0(0) = £(0) — 5 (0).

The derivation of 5(6) from 3(0) follows in a similar fashion as discussed
in Arellano and Hahn [2006]. The function 3(f) can be understood as an
extension of DiCiccio et al. [1996] to two-way models. Following Pace and
Salvan [2006], it can also be seen as a generalization of the approximate
conditional log-likelihood developed by Cox and Reid [1987] which, in our

context, would be
. 1 .
00) + 3 log det X(6),

to situations where 8 and A need not be information orthogonal.
3.3. Estimation and inference via MCMC. Numerical optimization of

() (and £(0)) and estimation of the information Iy may prove to be quite
cumbersome in complicated models. Fortunately, we may resort to the use
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of conventional Markov chain Monte Carlo methods and draw from the

‘posterior’
p(6) o '@,

By the argument of Chernozhukov and Hong [2003], draws {6.} from the
above posterior will be approximately

0.~ N, 1,1,

where the mean parameter 6 is a consistent estimator of §. Thus, aside from
the mean, median and mode of the posterior being point estimators with
bias-reduced properties, the variance of the posterior draws is a valid point
estimator for the information. Furthermore, valid (frequentist) confidence
sets can be constructed directly from the posterior. Therefore, if desired,
both numerical optimization of the modified likelihood and direct estimation

of the information can be avoided.

4. Examples. We now set up the modified log-likelihood function for
some specific problems and provide simulation evidences.

4.1. Linear model. Our first example is a simple extension of the classic

Neyman and Scott [1948] problem, where outcomes are generated as
Zij ~ N(Ozl + Y5> 9)

The likelihood is

D e (2ij — @i = 5)?

00, = —%105;9— 2

This model is overparametrized because adding a constant to all «; and
subtracting the same constant from all «y; leaves the likelihood unchanged.
We thus normalize the fixed effects by setting a; = 0. So, the dimension of
the nuisance parameters is n +m — 1.

A calculation shows that
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for Z; = m™! Sy gy Zp =T YL 2y, and 7 = (nm)~t3°0 Doy Zije
In large samples,
- 0 0 6 26°
(4.1) e—er‘iN<——+,>.
n m nm nm
Thus, here, the maximum likelihood estimator underestimates the variance
on average.
Note that the log-likelihood is symmetric in the nuisance parameters.

Moreover,

Olog f(zij; 0, i, v;) _ 9log f(zij;0, ciyvy) _ zig — o — 5 €ij(ai, )

80[2‘ 8’)/]‘ 0 0 ’

say. The plug-in estimator of €;;(c;, ;) based on the maximum-likelihood

estimator is
gij=(2;—2) —(zi—2) — (z; — 2),
which is independent of §. Thus, if we partition the (n+m—1) X (n+m—1)

covariance matrix of the score vector as

then we have

. L Xy, =7 - g ifg=4
(Qaa)lﬂl - { 0 if 4 7& i ’ (“Q’Y'Y)],]/ - 0 lfj 7&]/ )
and

(Qar)ig = (Por)ji = Efiayso
where i ranges over 1,...,n — 1 and j over 1,...,m. Also we have
0% log f(zij;0, i) _ 0 log f(2i:0, i, yy) _ 9% log f(ziji0,0iyyy) _ 1

da? 7 Da;0; 0

7

It follows that the information matrix for the nuisance parameters does not

depend on A. Its plug-in estimator is

R !/
20) =+ ( bt )

tmly_1 1y
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where I, is the n X n identity matrix and ¢,, denotes an n-vector of ones. By

standard formulae for partitioned matrix inversion, it holds
0 n= I, m \ —lmlh,_q ”T_leLgn

A small calculation then yields

8(9) = %traoe(ﬁ’(@)_lﬁ(e)) — 219 Zl 1 %:1] 1 lJ + 219 Zz 1 Zn:] 1 z],

which is of order O(n) 4+ O(m). The modified log-likelihood has the simple

form

§ nm nm +n4m iy 21 ((zif —2)— (% — 2)— (% —7))?
00) = ———log 60— .
2 nm 20
The intuition of the modification in this example follows from the usual
degrees-of-freedom argument. Moreover,
nm+n+m . ~ 0 6

0= ——0=0+ 4,
nm m

which, together with (4.1), shows that the modified log-likelihood removes
the leading bias from 6. In this example, the estimator obtained coincides
with the bias-corrected maximum likelihood estimator.

Alternatively, a calculation shows that the local correction term that uses
the likelihood setting, up to a constant, equals

~ n+m-—1

0) =—
3(0) :
Hence, an alternative modified log-likelihood here is

(n-1)(m-1), , S gy (215 —2) = (7 — 2) — (77 — 2))°
I R Y -

log 0,

00) = —

Its maximizer is

((2i;—%)— (z:—72)—(z;-72))°,

1

n m

- nm ~ 1
0= 0=
(n—Dm—1)"  (n=1)m—1) 2
which is exactly unbiased.
To further illustrate we present simulation results for the Neyman-Scott
problem in Table 1. We fix § = 1 and present results for n = m = 10 and
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n = m = 20, which suffice to make our point for this model. All results
are obtained over 10,000 Monte Carlo replications and are invariant to the
distributions of the a;’s and ~;’s.

Table 1 provides the bias and standard deviation (obtained over the
Monte Carlo replications) of the maximum-likelihood estimator 0 and of
the modified-likelihood estimators 6 and . The table also contains the same
statistics for the mean of the respective posteriors computed via MCMC,
6, and 6,. Additionally we report (the average of) the standard error for
each estimator, as well as the ratio of the standard error to the standard
deviation. For maximum likelihood, the standard error is estimated by the
plug-in estimator v/20 /+/nm. The standard errors for § and 0 are obtained
similarly. For 6, and é*, the standard errors are obtained as the standard
deviation of the respective Markov chains. Finally, the table also reports the
empirical size of two-sided tests for the null hypothesis that § = 1 with the-
oretical size equal to 7 = .01,.05,.10. We consider the Wald statistic for all
estimators, the likelihood-ratio statistic, and (Bayesian) credible intervals
based on the posterior quantiles.

The results show that the bias in the maximum likelihood estimator is
of the same order as its standard deviation. Consequently, both the Wald
and likelihood-ratio statistic are heavily size distorted. This is so for all the
significance levels and for all the sample sizes considered. The bias is clearly
seen to be O(n~1)+O(m~1). All the modified estimators have much less bias.
Moreover, the numerical results confirm our calculation that 6 is unbiased.
Further, the bias is consistently small relative to the standard deviation. As
a result, the performance of all test statistics improves dramatically relative

to maximum likelihood.

4.2. Factor model. Our second illustration is a stripped-down version of
the model in Bai [2009]. Here,

Zz‘j ~ N(ai'yj, 0)

This differs from the classic Neyman and Scott [1948] example in that, now,
the fixed effects enter in a multiplicative manner as opposed to additive.
This is a non-trivial complication. The model can be interpreted as a factor

model with heterogeneous factor loadings.
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TABLE 1
Simulation results for the Neyman-Scott problem

n=m=10
6 6 0. 0 0.

bias -0.189 -0.027 0.017 0.001 0.068
std. dev.  0.128  0.1563 0.160 0.158 0.167
std. err. 0.115 0.138 0.148 0.142 0.174
ratio 0.897  0.897 0.925 0.897 1.039
Wald

0.01 0.281 0.049 0.030 0.037 0.009

0.05 0431 0.107 0.072 0.086 0.041

0.10 0.524 0.166 0.128 0.143 0.086
LR

0.01 0.148 0.025 0.010 —

0.05 0.322  0.083 0.052 —

0.10 0.440 0.152 0.104 —
Bayes

0.01 — — 0.028 — 0.017

0.05 — —  0.084 — 0.063

0.10 — — 0.142 — 0.115

n=m =20
0 0 0. 0 0.

bias -0.098 -0.008 0.003 0.000 0.014
std. dev.  0.067 0.074 0.075 0.075 0.076
std. err. 0.064 0.070 0.071 0.071 0.075
ratio 0.947  0.947 0.942 0.947 0.990
Wald

0.01 0.202 0.021 0.021 0.018 0.013

0.05 0.372 0.072 0.071 0.066 0.055

0.10 0473 0.126 0.125 0.119 0.103
LR

0.01  0.137 0.015 0.010 —

0.05 0.312 0.065 0.050 —

0.10 0428 0.121 0.099 —
Bayes

0.01 — — 0.027 — 0.022

0.05 — — 0.076 — 0.063

0.10 — —  0.132 — 0.113
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The likelihood function is
Dy e (2 — i)
20 '

The scale of the effects is not identified. One possible normalization is to set

Zia?:zj'%?-

The score vector for has entries

00,2 = —%logﬁ—

oLo, A _ i (2ij — @i ;)

aal — 9 ) 7’:17‘ 7n7
00,)) <= (215 — i
8(,):Z(Zg Z%)a, J=1....m

07 i=1

The estimator ;\(9) does not depend on # and can be found by iterating on
the first-order conditions for a and «. Given the estimators &;,%; we find
the estimator of 8 to be

n m

— S
— Zii — Qy 7
nm J (i

=1 j=1

The plug-in estimator of the (n 4+ m) X (n + m) covariance matrix of the

score for the incidental parameters is
o= ( % B,
62\ 2y 2,
for n x n and m x m diagonal matrices 2,4(6) and (AZW(Q) whose entries are
(Gaa)i = { Zimalz = a7 ifi =7
’ 0 ifi #£4
and . g e
(0.0 = 4 2i=i(Fi — @767 if j =
7). 0 it £
respectively, and n x m and m x n submatrices Qow and f)w whose entries
are
(Qar)ig = (ya)ji = (255 — Gi%))* airy.
The Hessian matrix is now estimated by

. 1/ %,., %
20 I AOZO( AO&’Y
=550 5.
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where, with § = Y"1 42 = >t %2, we have
Yoo = $1n, Yyy =81, (Zan)ig = @iy — (zij — i) = (Zya)ji-

Combining these expressions lead to the bias estimator B (0), which we omit
here for brevity. Note that here, again, the local correction term is very

simple and equals N
~ n+m

BO) = -

log 0,

up to a constant.

Table 2, which has the same layout as Table 1, provides numerical results
for the factor model. The conclusions are essentially the same as those drawn
in the previous subsection. Inference based on maximum likelihood performs
poorly. The modified likelihoods provide estimators with negligible bias and
test statistics with good size properties.

4.3. Binary-choice model. Our third example is a regression model for
a binary outcome y;;. Here, z;; = (yij,:E;j)/ and we condition on z;j; so,
f(zij5 0, c4,7v5) = f(yijlxij; 0, c4,7;) is the probability mass function of a
Bernoulli random variable. A logistic version has

1

P(yij = Uwij, ai,75) = R pij (05 ciy ;) (say).
The mean of the fixed effects is again not identified, and so we normalize
a1 = 0.
Let

i (0, i, v5) = yij — 1ij (05 s, 5),

and write its maximum likelihood estimator (which is not available in closed

form) as
€ij(0) = €i;(0,64(0),7;(9)).
Then
o0, \) 000, \)
8(11 ) ZEU 9 057,,"}’3 ({9’}/] ZEZJ 9 Oéz,’)/]
where 4 ranges over 2,...,n and j ranges over 1,...,m. The components of

the matrix



Stmulation results for the Bai problem

TABLE 2

n=m=10
6 6 0. 0 0.

bias -0.187 -0.020 0.033 0.017 0.086
std. dev.  0.127  0.157 0.165 0.159 0.169
std. err. 0.115 0.139 0.150 0.144 0.178
ratio 0.907 0.885 0.913 0.907 1.056
Wald

0.01 0.272 0.046 0.024 0.026 0.007

0.05 0422 0.105 0.071 0.077 0.036

0.10 0,517 0.162 0.130 0.133 0.086
LR

0.01 0.139 0.024 — 0.011 —

0.05 0.311  0.087 — 0.048 —

0.10 0.430 0.149 — 0.100 —
Bayes

0.01 — — 0.030 — 0.019

0.05 — — 0.086 — 0.068

0.10 — — 0.145 — 0.120

n=m =20
0 0 0. 0 0.

bias -0.098 -0.006 0.007 0.003 0.017
std. dev.  0.067 0.074 0.075 0.074 0.076
std. err. 0.064 0.070 0.071 0.071 0.076
ratio 0.959 0.953 0.945 0.959 1.004
Wald

0.01 0.199 0.023 0.022 0.019 0.012

0.05 0.361 0.071 0.068 0.064 0.054

0.10 0471 0.120 0.122 0.114 0.102
LR

0.01  0.131  0.015 — 0.010 —

0.05 0.303 0.067 — 0.053 —

0.10 0426 0.119 — 0.100 —
Bayes

0.01 — — 0.029 — 0.022

0.05 — — 0.075 — 0.065

0.10 — — 0.128 — 0.114

15
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are of the form

. 3 :{ Z;@léﬁm)j(e) ifi=1

0 if i 4
- e =y
( 77(9))]7]/ - { 0 lf] ?é j/ )

and

N N

(£207(0))i; = (21a(0)) ;.6 = é%i—l—l)j(g)'

To state the plug-in estimator of the information matrix, let
03 (0, i, i) = paij (0, iy i) (1 — i (0, 0, 7%)),

which is the logistic density function at observation z;; for given parameter
values, and let 5’13(9) = aij(ﬁ, @1(9),’%(9)) Then

where

and > ) )

) R ie1 03 (0) ifj=j

[277(0)]373 - { 0 ifj 75]/
are (n — 1) x (n — 1) and m x m diagonal matrices of order m and n,
respectively, and the (n—1) xm submatrices Y, () and 3, (6) have entries

(Lo (0))ig = (£3a(0)) i = 61415 (0),
each of which is of order one.

Simulation results for designs where 6 = 1, x;; is univariate logistic, and
all fixed effects are set to zero are reported in Table 3. We provide results,
based on 1, 000 replications, for samples of size n = m = 20 and n = m = 40.
For the estimators é, 0, and é, the standard error is estimated as the inverse
of the empirical information. Experimentation with the outer product of
the score vector gave very similar results. In contrast, inference based on
the quasi-Bayesian estimators does not require an expression for the asymp-
totic variance. Here, again, the bias in 0 is clearly visible and the associated



Simulation results for the Holland and Leinhardt problem

TABLE 3

n=m =20

0 0 0. 0 0.

bias 0.151 0.031 0.014 0.046 0.029
std. dev. 0.142 0.123 0.118 0.126 0.120
std. err.  0.129 0.118 0.107 0.119 0.111
ratio 0.903 0.953 0.906 0.945 0.920
Wald

0.01 0.057 0.009 0.023 0.012 0.013

0.05 0.188 0.060 0.080 0.062 0.080

0.10 0.300 0.113 0.134 0.123 0.132
LR

0.01 0.085 0.020 — 0.025 —

0.05 0.228 0.077 — 0.079 —

0.10 0.333 0.138 — 0.154 —
Bayes

0.01 — — 0.037 — 0.036

0.05 — — 0.085 — 0.091

0.10 — — 0.137 —  0.137

n=m =40
0 0 0. 0 0.

bias 0.065 0.006 0.003 0.010 0.007
std. dev. 0.062 0.058 0.058 0.058 0.059
std. err.  0.058 0.056 0.055 0.056 0.055
ratio 0.938 0.969 0.957 0.967 0.938
Wald

0.01 0.071 0.013 0.022 0.014 0.032

0.05 0.192 0.052 0.078 0.053 0.084

0.10 0.282 0.109 0.132 0.108 0.149
LR

0.01 0.080 0.016 — 0.015 —

0.05 0.210 0.061 — 0.061 —

0.10 0.299 0.120 — 0.114 —
Bayes

0.01 — — 0.056 — 0.061

0.05 — — 0.095 — 0.100

0.10 — — 0.150 — 0.152

17
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test statistics substantially overreject. Basing inference on the modified like-
lihood largely removes the bias and takes care of the overrejection problem
in the test statistics.

The argument here does not depend on the logistic distribution. Other
link functions, such as a probit or a log-log are equally admissible. Indeed,
more generally, generic nonlinear regression models are amenable to our
approach, and there is no reason to presume that the performance of the
correction would not be as good as it is found to perform here.
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