Azéma martingales for Bessel and CIR processes and the

pricing of Parisian zero-coupon bonds

Angelos Dassios* Jia Wei Lim! Yan Qu*
London School of Economics Brunel University London University of Warwick
28th September 2019
Abstract

In this paper, we study the excursions of Bessel and CIR processes with dimensions 0 < 6 <
2. We obtain densities for the last passage times and meanders of the processes. Using these
results, we prove a variation of the Azéma martingale for the Bessel and CIR processes based on
excursion theory. Furthermore, we study their Parisian excursions, and generalise previous results
on the Parisian stopping time of Brownian motion to that of the Bessel and CIR processes. We
obtain explicit formulas and asymptotic results for the densities of the Parisian stopping times,
and develop exact simulation algorithms to sample the Parisian stopping times of Bessel and CIR
processes. We introduce a new type of bond, the zero coupon Parisian bond. The buyer of such a
bond is betting against zero interest rates, while the seller is effectively hedging against a period
where interest rates fluctuate around 0. Using our results, we propose two methods for pricing

these bonds and provide numerical examples.

Keywords: Azéma martingale, Parisian stopping time, Cox-Ingersoll-Ross process, Bessel process,
Monte Carlo simulation .

Mathematics Subject Classification (2010): 60G17, 60]J60, 65C50 .

*Department of Statistics, London School of Economics, London, WC2A 2AE, United Kingdom. Email:
a.dassios@lse.ac.uk

TDepartment of Mathematics, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom. Email:
jlawei.lim@brunel.ac.uk

fDepartment of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom. Email: y.qu3@lse.ac.uk



1 Introduction

Bessel processes are a class of diffusion processes introduced by McKean et al. (1960). The Squared

Bessel process Y; satisfies the following SDE
dY; =2(1 —a)dt + 2/ Y, dW;, Yo =y, (1.1)

where we reparameterised with « := 1 — 4, which corresponds to the index. For dimensions 6 > 2,
the process is transient and never reaches 0. We consider in particular dimensions 0 < é < 2, which
corresponds to 0 < a < 1. In this case, the process reaches 0 in finite time and is instantaneously
reflecting at 0. Several papers have studied excursions of Bessel processes of dimensions 0 < § < 2.
Bertoin (1990) developed an excursion theory for Bessel processes of dimensions 0 < ¢ < 1, while
Perman et al. (1992) and Pitman and Yor (1992) gave extensions of the arcsine law for the fraction of
time spent positive by Brownian motion. Going-Jaeschke and Yor (2003) derived Laplace transforms
of the hitting times of Bessel processes and considered Bessel processes with negative dimensions.
In mathematical finance, Bessel processes are often used to derive results for the Constant Elasticity
of Variance (CEV) model, as they are related through a deterministic time change, see Delbaen and

Shirakawa (2002) and Carr and Linetsky (2006).

We consider also the Cox-Ingersoll-Ross (CIR) process as a generalisation of the Bessel process. We

denote it by R;, and it satisfies the following SDE

dR; = (0 — Ry)dt + o/ R, dW, eER, 6,0eR". (1.2)

Without loss of generality, a simple time change A(t) := 4t/0? and settinga = 1 — 2‘%9’ k= ﬁ—% reduces

the study of (1.2) to the following SDE
dR; = 2((1 — &) — kR;)dt + 2+/R;dW;, Ro=r. (1.3)

The CIR process was first considered by Cox et al. (1985) as an extension to the Vasicek model for
interest rates. Its mean-reverting property and positivity makes it an attractive model for interest
rates (Delsaen, 1993; Chen and Scott, 1992), stochastic volatility (Ball, 1993; Heston, 1993), and default

intensity models (Jarrow et al., 2005; Brigo and Alfonsi, 2005). Similarly to the corresponding Bessel



process, it hits 0 almost surely and is instantaneously reflecting at 0 for 0 < a < 1, and k > 0. The
density of the first hitting time of level 0 for this process can be found in Elworthy et al. (1999); Pitman
and Yor (1997) derived some results on the zero set of a CIR process using Girsanov transformation
from a Bessel process. However, since interest rates have previously only been assumed to remain

strictly positive, thus the excursions of the CIR process for 0 < & < 1 have not been widely studied.

In recent years, it has become more likely for interest rates to reach 0 or stay around 0 for a period
of time. It thus makes practical sense to study the excursions of the CIR process as a model for interest
rates. We introduce a new type of Parisian-type bond, called the zero coupon Parisian bond, which
pays off an amount depending on the final interest rate, when the interest rate remains strictly positive
for a consecutive length of time longer than a fixed window length D, if this happens before maturity
time T. If the interest rate fluctuates around 0 until maturity, the bond expires worthless. The buyer
of the bond is thus betting against zero interest rates. Likewise, the seller of the Parisian bond is
effectively hedging against a period where interest rates fluctuate around 0. Alternatively, we can
consider the shifted process r* + R; as a model for interest rates, such that the minimum rate is set at
r* instead of 0. This can be useful when considering interest rates which are bounded by a floor rate
away from 0. Let U; := t — sup{s < t|Rs = 0} be the time elapsed since the last time R; hits 0 for
Ry = 0. Then the Parisian stopping time of R; starting at 0 is T = inf{t > 0|U; = D}. This is the
first time the duration of an excursion exceeds a certain threshold D > 0. The payoff of the bond will
thus be h(R:)1(r.7} at time 7, where 7 is the Parisian stopping time, and / : R* — R™ is the payoff
function. If we consider interest rates which follow a CIR process with dynamics given by (1.3) under

the risk neutral measure Q, then denoting by P(r, T) the no-arbitrage price of the bond, we have

P(r,T) = Eqg {exp (— /OT des) h(Re)Lgrery |, (1.4)

where Eg, denotes the expectation under the measure Q, for a process starting at Ry = r. By applying
a Girsanov transformation, we show how our results can be used to compute the price of this option.
We provide two pricing methods, one based on an explicit formula for the density of the Parisian

stopping time, and the other based on Monte Carlo simulation.

To price these options, we need to study the excursions of the CIR and Squared Bessel processes.

First, we derive the densities of the last passage time and meanders of the processes, which play an



important part in our studies. The corresponding results for the Bessel process can also be easily
obtained from that of the Squared Bessel process. We then look at the filtration generated by the
zeroes of the process. Azéma martingales for the Brownian motion were discovered by Azéma (1985),
and can be obtained by projecting martingales onto the slow filtration. A variation of the Azéma
martingale are used to price Parisian options by Chesney et al. (1997), and an extension of it involving
the local time is derived by Dassios and Lim (2016). Here, we use excursion theory to prove a variation
of the Azéma martingale for the CIR and Bessel processes. Our martingale reduces to the two-sided

version of the martingale used in Chesney et al. (1997) when a = 1.

The Azéma martingale enables us to study Parisian excursions of the CIR and Squared Bessel pro-
cesses. Parisian stopping times are the first time that the process makes an excursion away from 0 that
is of period longer than a fixed length D, and Parisian stopping times for Brownian motion has been
studied extensively. Laplace transforms of the stopping times are obtained in Chesney et al. (1997);
Dassios and Wu (2010). Analytical expressions and asymptotic behaviour of the density are derived
in Dassios and Lim (2013, 2015). Here, using our Azéma martingale, we find the Laplace transform of
the Parisian stopping time for the CIR and Squared Bessel processes, and obtain explicit recursive and
asymptotic expressions for its density. One contribution of this paper is to generalise various results
obtained for the Parisian stopping time of Brownian motion to the CIR and Squared Bessel processes,
thus providing a detailed analysis of the law of the Parisian stopping times for CIR and Squared Bessel

processes.

In addition, we obtain compound Geometric representations of the Laplace transforms of the Parisian
stopping time for the CIR and Squared Bessel processes. From this, we develop exact simulation al-
gorithms to sample from the stopping time distribution. This is a generalisation of the result for
Brownian motion in Dassios and Lim (2017). Through the Laplace transform, we also observe that the
Parisian stopping time of the Bessel process with index « is distributed according to a truncated stable
process with index a taken at an exponential time, and the Parisian stopping time of the CIR process
is distributed according to a truncated Lamperti stable process taken at exponential time. This distri-
butional identity was observed in Dassios et al. (2017) for the Brownian motion, and in this paper, we

show that it holds in a more general setting.



In the rest of this paper, we provide derivation of the results for the CIR process, and state the cor-
responding results for the Squared Bessel process. The paper will be structured as follows. Section 2
presents some preliminary results on the excursions of the Squared Bessel and CIR processes, which
form an important part of our study. In Section 3, we prove the Azéma martingale for the Squared
Bessel and CIR processes. Section 4 studies the Parisian stopping times of the processes. Explicit ana-
lytical formulas and the asymptotic distribution of the Parisian stopping time densities are obtained,
as well as a compound Geometric representation for its Laplace transform. In Section 5, we present
exact simulation algorithms for sampling from the Parisian stopping time distributions of the CIR
process and the Squared Bessel process. We also establish several numerical comparisons with the
analytical recursive densities of the Parisian stopping times. In Section 6, we provide details on the
pricing of a zero coupon Parisian bond and present some numerical analysis of the results. Finally,

Section 7 concludes the paper.

2 Excursions of the Squared Bessel and CIR processes

In this section, we prove some preliminary results on the last passage time densities and meanders of

the Squared Bessel and CIR processes.

2.1 First Hitting Time and Transition Densities

The hitting time and transition densities of the Squared Bessel and CIR processes have been well-
studied, and we state here the results which will be used in our computations. We denote by T,_,o :=
inf{t > O|Ro = r} the first hitting time of level 0 of the CIR process R;, and TyY Lo =Inf{t > 0|Yy =y}

the first hitting time of level 0 of the Squared Bessel process Y;.

Proposition 2.1 The densities of the first hitting times of level 0 for the Squared Bessel and CIR processes

starting at Yo = y and Ry = r respectively, are given as

P (T) 0 €du) = r(la) (%) u e didy, @2.1)
2k T+a (r\* b "
P (Typo € du) = ()FW@e A PR 2y ey 2.2)

Proof. The first hitting time of the Squared Bessel process Y; has a reciprocal gamma distribution,

and its density satisfies (2.1), according to Jeanblanc et al. (2009). The corresponding first hitting time



density for the CIR can be obtained using a time-reversal argument suggested in Elworthy et al. (1999)

Proposition 2.2 The transition density for Y;, going from 0 to y, is

(2t)~(1-%)

P (Yiys € dy|Y, = 0) = my‘“e‘%dy, (2.3)
and for Ry, going from 0 to v, is given by
(e He(t) 170 gt
= = c(t)
P (Rt4s € dr|Rs = 0) T = a) r~%e 2Mdr, (2.4)

where c(t) = ~ (e —1).

Proof. From Jeanblanc et al. (2009), we have that

1 -3 x X
P(Yies € dylYe = x) = o (%) Lo L, (ty> dy,

and

P (RH—S S d7’|Rs = X) =

2kt 2hEN T2 2k 2kt
e (re ) _xt (\/xre )dr, 2.5)

2c(t) \ «x c(t)
where I_, is the usual modified Bessel function with index —a«. For x = 0, the transition densities of

Y; and Ry directly follow (2.3), and (2.4). m

2.2 Last Passage Time Densities and Meanders

We study the last passage time densities of the processes. Let U; := t — sup{s < t|R; = 0}, the time
elapsed since the last time R; hits 0, for Ry = 0, and U}’ := t — sup{s < t|Y; = 0} be the time elapsed

since the last time the Squared Bessel process Y; hits 0, Yo = 0.
Proposition 2.3 The probability density function of Uy is

2k sin(a7r)

P(U; € du) = 72(1 — e 2K(—u) ) T—a (p2ku _ 1)

du, O<u<t, (2.6)

and the joint distribution of (Uy, Ry) is given as

2k? sin(a7r) 2kt e—2k(t—1)
7-5(1 _ e—2k(t—u))1fpc(62ku _ 1)1+

_ kr
P(U; € du,R; € dr) = e 1-eZududr, (2.7)
14
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for0 < u < tand 0 < r < oo. The conditional density of Ry|Uy = u is

k

_ kr
lP(Rt S d7’|Ut = u) = me 1—¢2ku dr, 0<r<oo. (28)

Proof. The Squared Bessel process Y; starting at 0, satisfies the following time inversion property

(Borodin and Salminen, 2012),
Y = 271, t>0, (2.9)

where Z; R {Y; : t > 0} is a BESQ process with index a. Furthermore, the CIR process R; satisfying
the SDE (1.3) can be obtained from the Squared Bessel process Y; via the following space-time change

(Jeanblanc et al., 2009):

Ri= MYy, (2.10)
Setting c(t) := 4 (¢? — 1), we thus have

]P(Ut > M)

= P{ inf RS>O)

t—u<s<t

- le Zy ey € dr)P <Te0 - c(tl—u) N C(1t)>

t & 1
- / 1 — (@) c(B)s 11 @11

where we have also used the Markov property of Z;. Differentiating (2.11) with respect to u, we have

B sin(a7r)e?k(t-—+)
P du) = (el — c(t —u)

2k sin(a )
7-[(1 _ e—Zk(t—u))l—zx(eZku _ 1)a

du.

For the joint distribution of (U}, R;), we have

IP(Ut >u, R < 1")

= IP< inf R5>0,Rt<r>

t—u<s<t



= P < inf Z,>0, cz(t)Zl/C(t) < eZktr>

1 1
oty <v< c(t—u)

< —aq(p)l-a 1 (c(t)s+1) o2kt
- / rs () (1—e = c2<r>)ds, (2.12)

Differentiating (2.12) with respect to r and then u respectively, we have

)ezktezk(t—u) o2kt

in Y
S (DCT[ 2(c(t)—c(t—u)) dudr

27te(t — u) = (c(t) — c(t — u))i+e’
2k? sin(a7r)ekte—2K(t—u)
7-[(1 _ eka(tfu))l—tx(eZku _ 1)1+0c

P(U; € du, Ry € dr) =

__kr
e 1-eZudydr.

Then, the density of R;|U; immediately follows (2.8). m

Corollary 2.4 For the Squared Bessel process Y; starting at 0, the distribution of the time elapsed since its last

0,is U ~ Beta(«,1 — ), and its probability density function is

sin(a7t)

Y —

du, O<u<t (2.13)

The joint distribution of (UY,Y;) is

sin(ar v
P (LItY edu,Y; € dy) = 27'cu1+“((t —)u)l“e 2edudy, (2.14)

for0 < u <t,0<y < oo. The conditional distribution of Y; given U} is
Y [t
P(Y: e dy|U, =u) = 5,8 dy, 0<y < oo (2.15)

Proof. According to the time inversion property (2.9), we apply similar techniques to derive (2.13),
(2.14), and (2.15) and replacing c(t) by t. They can also be obtained by letting k — 0 in (2.6), (2.7) and
(2.8). m

Remark 2.5 Since the zeroes of the Squared Bessel process are the same as those of the corresponding Bessel
process, (2.13) is the last passage time density of a Bessel process. Furthermore, from (2.15), we note that
the Bessel meander, which is the Bessel process starting at 0 and conditioned not to hit 0 before time u, has a

distribution independent of «, namely the Rayleigh distribution with parameter \/u.

The following gives results for the first hitting times of the meander processes starting at Ry, given



only information about U;, the time elapsed since the last 0. Let Tg,—,o denote the first time a CIR

process starting at R; hits 0, and Ty,_,( the first time a squared Bessel process starting at Y; hits 0.
Proposition 2.6 We have the following results for the CIR process Ry,

_ 2(Xk€2ks(1 _ ekau)oc

P (TRt—>O S dS‘Ut = u) = (est — ekau)tx+1 ds, (2.16)
and
1— e—Zku o
IP (TRt*)() > h‘u)f = u) = (E(Zkh_e—Zk?l)D(. (217)
Similarly, for the squared Bessel process Y;, we have
Y au®
IP(TYtA)O S dS]Ut = 1/[) = st, (218)
and
Y ut

Proof. According to Proposition 2.1 and Proposition 2.3, and using the Markov property of R;, we

have

P (TRt—>0 € ds|Ut = 1/[)

7 k K 2k1+zx a g

= /me 1_¢—2ku I‘(,x)r e szS,leZkS(Est —1)*“’1dsdr
0
20k 2ks 1— —2ku\«

_ 2wke (1 —e=) ds.

2ks _ ,—2ku\a+1
(e2ks — e~ k)

Then, the associated survival function is given as

P (Tx,—0 > AU = u)

° 20(k€2ks(1 o e—Zku)oc
- / (e2ks — ¢~ 2ku)at1

ds
h

(1 o e—Zku)uc
(EZkh _ e—2ku>u¢ :

And similarly, based on the distribution of the hitting time of Y; in (2.1) and the conditional distribu-
tion of Y;|U} in (2.15), we obtain (2.18) and (2.19). m



We now consider a CIR process R; with index « and parameter k, starting at initial point Ry = r.

Then we have the following transition density of R; conditioned to stay strictly positive.

Proposition 2.7 The transition density of a CIR process R; starting at Ry = r conditioned to stay positive is

2kt 2hEN T2 2k p o2kt
¢ <xe) o Ia< rre )dx, (2.20)

]PT (Rt € dx, TI’—)O > t) = T(t) . W

where c(t) := 5 (¢! — 1) and 1, is the modified Bessel function of the first kind.

Proof. Denote by IP,* the probability measure for a CIR process R; * starting at R, " = r. Then using

a change of measure result from Elworthy et al. (1999) Lemma 3.11, we have

kt\ —%
P,(Ry €dx; o0 > ) = <xi> P;*(R;™ € dx). (2.21)

Then the result follows by using the transition density (2.5) with index —«. m

3 Azéma Martingale for the Squared Bessel and CIR processes

Let Fi; := (Fu,) >0 be the filtration generated by U; containing the zeroes of the CIR process R;, and
Fur = (}—Uf’) 0 be the filtration containing the zeroes of the Squared Bessel process Y;. We consider
martingales for this filtration, which in the Brownian setting, are the celebrated Azéma martingales.
Using the last passsage time results in the previous section, we prove an extension of the Azéma

martingales to the Squared Bessel and CIR processes.

Theorem 3.1 For the CIR process Ry, we have the following martingale. Let M; be defined by
Uy
M; = e P 14 (XU — 1) gePth /e‘ﬁs (e —1)7"ds |, (3.1)
0

then M, is an Fy-martingale.

Proof. It is easy to see that M; is integrable and adapted since U; < t always. The martingale property
of M; can be proved by directly applying the last passage time results from the previous section.

However, we take another approach to give more insights into how the martingale is obtained. We

10



start by considering a martingale of the form
e Pf(),
and aim to find an integrable function f, with f(0) = 1 (without loss of generality), such that
E [e P £(Uy ) U = u] = e P f(u), (3.2)
forall t > 0 and /& > 0. In particular, the following should hold
E [e Pf(Uy)|Up = 0] = 1. (3.3)

Using the density of U, in (2.6), this is equivalent to finding f such that

/t f(u)ZkEZk(tfu) q
) 1" 1 _ (X eZk(t—u) _ 1)1704 (eZkt _ eZk(t—u))tx u

t

_ u) B ,
N 1 — a / 1 — g—2k(t 1 a(EZku _ 1)p¢du - eﬁ . (34)
0

Set g(t) = %, and taking Laplace transform over ¢ with y < 8, the LHS of (3.4) becomes

[e9) t

"t f(u)
/e 1—zx / 1 — e 2k(t-u))1- “(1—6—2k)dudt

o
o

As the Laplace transform of the RHS of (3.4) is %—ﬁ' we then have

. Ta-woT(atk) 1
8(y) =7 x 2 (11 3) oy

11



Hence

cq
8
Il
M

) 1 TO-ar(a+)
Y=B 2kT(1+ %)
(/u eﬁ(ufs)(l _ est)terkust>

0

&l

u
— (EZku _ 1)1x + ﬁeﬁu /efﬁs(Est _ 1)7ad5.
0

Thus

u

flu) =14 (e —1)*Bebr /e_ﬁs(eZkS —1)7"ds, (3.5)
0

satisfies (3.3). We now have a candidate for the martingale, and we now need to verify that (3.2) holds.

More precisely, we need to prove

E [e " f(Upes) U = u] = £(u).

According to Corollary 2.6, Eq. (3.3), and the Markov property of R; so that the process starts over

again whenever it returns to 0, we have

B o P (Uy ) |U; = u]

h
— P (Trso > h|Us = w)e P F(u+ 1) + /e*ﬂﬂp (Tr,0 € ds|Us = ) ds
0

h
(e — 1)%*5}1M 4 [ obs Quke?k(s+u) (p2ku _ 1)a
(e2K(uth) — 1)« (e2k(s+u) —1)1+a

0
u+h
y W +h) -1 ; 2ku 1\«
= (P —1)% 5hm+l—ﬁeﬁ E;kz_l))adz
u (ezku . )tx
~ 1 —|—ﬁe5”/(62k2_1)adz — f(u). (3.6)

0

Hence, M; = e~P!f(U;) with f defined in (3.5) is an JF{;-martingale. m

12



Lemma 3.2 The equivalent martingale for the Squared Bessel process Y; is MY, defined by
uy

MY =e Pt 14 (u))*peft /e’ﬁss’”‘ds
0

Then MY is an F-martingale.
Proof. The proof follows in a similar way as in Theorem 3.1. m

Remark 3.3 When o« = %, Y; becomes the squared Brownian motion and M}/ becomes the two-sided version of

the Azéma martingale used in Chesney et al. (1997).

4 Parisian Excursions of Squared Bessel and CIR Processes

In this section, we study the Parisian excursions of the CIR and Squared Bessel processes. Define the

Parisian stopping times of R; for a CIR process starting at 0, and correspondingly Y; with Yy = 0 by

T = inf{t>0|U; = D}, (4.1)

1ty = inf{t>0|U} = D}. (4.2)

This is the first time the duration of an excursion exceeds a certain threshold D > 0. Without loss
of generality we set D = 1. We obtain the Laplace transforms of the Parisian stopping time of both
processes, and derive from it an explicit analytical expression for its density. Further, we study the
asymptotic behaviour of the Parisian stopping times, and prove that they have exponential tails. We
also present a compound geometric representation for the Laplace transforms, which we will use in

the next section to develop efficient simulation algorithms for the stopping times.

4.1 Laplace transform of the Parisian stopping times

We apply optional stopping theorem on the martingale M; to obtain the Laplace transform of the

Parisian stopping times T and Ty.

13



Lemma 4.1 The Laplace transform of T is

gf.B

E [e_ﬁf] = , 4.3)

1
1—{—26(]( / —ﬁx 2kx 2kx_1)—uc—1dx
0

and the Laplace transform of Ty is

E [e_lm] = (4.4)

for B € RY.

Proof. Since Ujrnr < 1, we have |Mip¢| < K for some constant K for all t. Thus optional stopping

theorem and dominated convergence theorem applies, and we have

Ele Ff(l,)] = E {lirn e P(TAY) f(uw)}

t—o0

e Pt <1+ “BeP / PP —1 "‘ds)] =1, (4.5)

where we have used the function f as defined in (3.5) to ease notation. Hence, we have

E

E {e_ﬁf]

1
1
14+ ﬁe'B/ 2ks . leS
0

e_ﬁ

1
14+ (e P —1) + (& — 1)“5/6’&“’(62]‘5 —1)%ds
0
e_/g

1
1+ 2uck(€2k _ 1)04 /(1 . e—ﬁu)ezku(EZku - 1)_“_1du
0

The Laplace transform of Ty can be derived in a similar way. It can also be obtained by letting k — 0

in (4.3). =

Remark 4.2 It can be seen from its Laplace transform that Ty is distributed as 1 + X, where X is a trun-

cated stable process (Dassios et al., 2017) with Lévy measure v(dy) = ay~* 1,4y and T ~ Exp(1).

14



Likewise, T is distributed as 1 + Xy, where X is a truncated Lamperti stable process with Lévy measure

v(dy) = Ceizkyl{yd},for some constant C,and T ~ Exp(1).

(eZkyfl)zx-f—l

4.2 Densities of the Parisian stopping time

We obtain explicit analytical expressions for the densities of the Parisian stopping time. Just like in
the case of the Brownian motion (Dassios and Lim, 2013), these expressions involve only a finite sum

and thus can be computed easily.

Theorem 4.3 For the CIR process Ry, let fr(t) be the density function of the Parisian stopping time of T, we
have

n—1

fot) =D (-1)Li(t—=1), forn<t<n+1l,n=12,.,
i=0

for t > 1, where L;(t) is defined recursively as follows:

2k sin(a7t)

Lo(t) = mu —e Il fHrt >0, (4.6)
2ksm arr)(1 — e 2k(s=1)a .
Li1(t) = /L ez(k _)1()a(1 — e—st)) ds, fort >i+1. 4.7)

For the squared Bessel process Yy, let fr, (t) be the density function of the Parisian stopping time of Ty, we have

|
_

n .
fro () = (—1)' H;i(t—1), forn<t<n+1,n=12,.,

i

Il
o

for t > 1, where H;(t) is defined recursively as follows:

Ho(t) = - o1, fort >0, (4.8)
t—i . .
H;i 1(t) = / H;(t —s) s1n(ac7‘t7)_[is —1) ds, fort >i+1. (4.9)

1

Proof. The Laplace transform (4.3) can be written as

E [e_ﬁf]
efﬁ

1
1+ 2ak(e / — e Px)ePkr (p2kx _1)ma-1dy
0

15



ef.B

iyt ka k «
(EZk_l)zx’B/efﬁx( 2kx adx+/ ﬁxzwke 1) dx
0

(e2kx —1)atT

dx

B iyt 2kx ( ,2k o
2% BI(—a)l(a+5) ~px 20ke™ (e™ — 1)
(e —1)* +/e o (2 — 1)t

< TE)F o amken Y
Xg( Y (F(l—zx)r 0c+2€<)1/e (e — 1)1 |
(4.10)

We denote

. r(£) r(£) we_ﬁx 2ok "
Li(B) = I(1— (et L) <F(1—tx)1“ DC+'B)‘1/ (ezkx_l)aﬂ'd ) ,

Then since L1 (8) — 0as B — oo, and L (B) is continuous and decreasing in §, there exists some g* > 0
such that the infinite series summation is valid for all § > pB*. Furthermore, we have the following

Laplace inversions

7

) } — ZkSiI;IT(DCﬂ) (1 _ e—Zkt)zx—l

and

o T(%) Jpe 20k
" lr1-a)T(a+ £) (e2x — 1)t
1

2k
t
_ 4k / 10y ds
1"(1 _ DC)I‘(OQ (1 _ e—2k(t—s))lfa(82ks _ 1)l+v¢
1
o2kt
_ 2k0‘1{t>1} / 1 dx
T —a)T(a) ) (T—ePx)ia(x—_1)i+
k

e
2k sin(arr) (1 — e~ k(1))
(e —1)a(1 — ¢~ 2kt) L=y

Hence, inverting the Laplace transform in each term of (4.10), we have that f-(f) is the sum of L;(t — 1),
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where Ly and L; are as defined in (4.6) and (4.7). For the Squared Bessel process Y}, recursions for the

density f, (f) are obtained in a similar way, or by letting k — 0in (4.6) and (4.7). m

We state the following corollary for a CIR process starting at Rg = r. We consider only the case

when T,_,9 < 1 since otherwise T = 1 and it is trivial.

Corollary 4.4 Let fI(t; T,—o < 1) denote the density of the Parisian stopping time for R; starting at Ry =

r >0, on the set {T,_,o < 1}. Then for t > 1, we have

Tta (r)* kr
filt; Trmo < 1) = /01 We‘ﬂkw+2k”(ez"“ — 1) o (t— u)du. (4.11)

Proof. Since by the strong Markov property,
E [eP7] =" [e FT0| B [e F7], (4.12)
it follows immediately that the density f7(t; T,—0 < 1) is the convolution of (2.2) and f(¢). =

4.3 Tail distribution of the Parisian stopping time

We derive the asymptotic distribution of the Parisian stopping times T and 7y. In particular, they have

exponential tails, and we find the associated constants and rates of decay.

Theorem 4.5 Let F;(t) be the tail of the distribution of the Parisian stopping time T. As t — oo, we have

F.(t) ~ Cge P, (4.13)
where the constant Cg is
ﬁ*
e
Cr = , (4.14)
Lo, 2kaeZkoy
x ¢ 2k
B*(e™ — 1)a/0 P (eZko —1)at1 do

and B* > 0 such that —B* is the unique negative solution of the equation

1
2kae2kv
2k - _
1+ (e —1)“/(1—e ﬁ”)wdz}—o.
0
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Similarly, let Fr, (t) be the tail of the distribution of Parisian stopping time Ty. As t — oo, we have

Fr(t) ~ —e77, (4.15)

with v* > 0 such that —~* is the unique negative solution of the equation

1
s 0
/e ds—l—e— 0.

Y
0

Proof. The results are generalisations of the asymptotic distribution of the two-sided Parisian stop-
ping time with barrier 0. The details of its proof can be seen in Theorem 4.1 in Dassios and Lim (2015).

The constants 8%, Cr and 7* can be easily computed numerically. m

44 Compound Geometric representations for the Laplace transforms

Here, we provide compound Geometric representations! of the Laplace transforms of the Parisian
stopping times of the CIR process R; and squared Bessel Y;, which immediately leads to the simulation

algorithm.
Theorem 4.6 The Laplace transform of the Parisian stopping time for Ry, namely T, can be written as

1
pe_ﬁ/e_ﬁtﬁ (t)dt
E [ #7] = (4.16)

1-(1—p /3/ ﬁffT

where we have defined

2kM
= , 4.17
P mesc(ra) (e2k — 1) (417)
1— e—Zkt a—1
fr(t) = —( ) , (4.18)
1 lekezk (t+1-s (1 72ks)0¢71 (eZk - 1)¢x
frt) = ¢ / (2K 1-s) _ 1)at1 ds, (4.19)
N
LA random variable X has a compound Geometric representation if X can be expressed as X = > Ji, with N ~

i=1
Geometric(p) for 0 < p < 1,and {J;}i—1,. n being ii.d random variables.
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and

M = /01(1 - e_Zkt)ﬂt—ldt’ (420)
1
(EZk _ 1)a e
E = !(W_1> (1—e2)*"1ds. (4.21)

Furthermore, fr,(t) and fr(t) are proper density functions over t € (0,1).

Proof. The Laplace transform of the Parisian stopping times are given in Lemma 4.1. Multiplying

both the numerator and denominator of (4.6) with

1
/eﬁBu(l . 872ku)afldu’
0

we have

1
e—Bu
¢ ﬁ/ 1 — e~2ku)l A= e
O

: :
—Bu _ »—PBs) p2ks 2k _ 1\a,—Pu

/ e _adu+/ (1—eP)e dS/Z(xk(e 1)%e du

0 0 0

(1 _ e—Zku)l (62ks _ 1)lx+1 (1 _ e—2ku>1—zx
(4.22)
For the denominator of (4.22), we have
1 e —Bu szkest 1 e—ﬁu(eZk o 1)04
S
/ (1 — ey A T e +/ est e ds/ 1- ekau)lfucdu
0
1 —pu , 1
_ € 2k —e
= /(1_62ku)1zxdu <1+(€ - 1)° < @ 1) +ﬂ/ est >>
0 0
1 1 1
3 e Bu e Ps e Bu
N eﬁ/(l—eﬂfu)d”+ aﬁ/ (% — ds/ — zhry i 4
0 0 0
(4.23)
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In the second term of (4.23), we have

1 —Bu 1
€ —pu —ZKU\X—

/(e%l_l)lxdu/eﬁ(l—e Zk) 1d1/l
0 0

1 t 2

B (1_672ks

/e ﬁt/(@k(ts)_det*ﬁ/E g
0 0 1

1
B —2ks
rese(n)(1—eP) | prresc(ma) /—ﬁf / e g b ar
2k
1

1 72ks)
/ (=) _ 1y dsdt
t—1

eZkt s) _
t—

1
—Bt(1 _ ,—2kt\a—1
7t esc( ) —e_ﬁ/e (1—e=) dr
2k / (eZk — 1)«

1
Dkpe2k(t+1— s)(1 —2ks)uc—1
t
—¢ ﬁ/e f / (e2k(t+1=s) — 1)at1 dsdt,
0

t

Hence, the Laplace transform of T can be expressed as the Laplace transform of a compound Geomet-

ric distribution as follows

E [e_ﬁﬂ
o 1

1 —|—206k / —e ﬁx 2kx 2kx 1)—&—1dx

0
5 1 (1 _ E—Zkt)ac—l
Pt
pe / M

- 5 1 fﬁtl 1 k(t+1—s) —2ks)a—1( 2k 1)uc ’

1-(1-p)e /e E/ 32’< t+1 =s) — 1)+l dsdt

0 t

where p, M and E are given as (4.17), (4.20) and (4.21). It is then easy to check that

f(t) = LZH)H,

/1 DakeH(EH1-5) (1 — p-2ks)a-1 (2 _ 1)
t

eZk t+1 =) — 1)+l ds,

fr(t) =

| =

are proper density functions over t € (0,1). m
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Lemma 4.7 The Laplace transform of the Parisian stopping time of Y, namely Ty, can be written as

1
ple P / e Plor (t)dt
0

E[e ] = - , (4.24)
1—(1—p)e® /e_ﬁth(t)dt
0
where we defined

, _ sin(am)
po= (4.25)
gn(t) = at", (4.26)

t*DL _ toc

t , 4.27
R e Y 427

and g, (t) and gr(t) are proper density functions over t € (0,1).

Proof. We can obtain the result using a similar argument as above, this time multiplying both the

numerator and denominator of (4.4) by
1
/e’ﬁss’(l’”‘)ds.
0

Setting k — 0 in each term of (4.16) will also produce the desired result. m

Since the zeros of Squared Bessel process and Bessel are the same, the distributions of the Parisian
stopping times for these two processes are the same. Hence, the compound Geometric representation

for the Laplace transform of the Parisian stopping time for Bessel process also satisfies (4.24).

5 Simulation

In this section, we develop exact simulation schemes for the Parisian stopping times based on the com-
pound Geometric Laplace transforms we obtained in Theorem 4.6 and Lemma 4.7. We also propose a
modified simulation algorithm to improve the simulation speed. In addition, we present several nu-
merical experiments to illustrate the performance and effectiveness of our exact simulation schemes

in Section 5.2.
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5.1 Simulation Algorithms
Algorithm 5.1 The simulation algorithm for the Parisian stopping time of the CIR process T is given as follows:

1. Generate a Geometric random variable N with

2kM 2kM n
PN =) = T () (& = 1) (1 - T(1— )T (w) (e — 1>“> '

wheren = 0,1,2, ..., and M is given in (4.20).
2. Generate a random variable Ty using an A/R scheme? via the following steps

(I) Generate Ty by setting

1
ToIUf, ulNZ/{[O,l];
(II) Generate a standard uniform random variable V; ~ U[0,1], if

(1- e—ZkTO)a—lfé—“
(1 _ eka)txfl 4

< (6.1)

then, return To < Ty and set 19 = Ty + 1; Otherwise, reject this candidate and go back to step (I).

3. For N = n, generate the sequence of independent and identical distributed random variables {T;}i—12, . n

via the following steps,

(1) Numerically maximising

(ezk - 1)4x

C(s) = (<62k(15)_1>’x — 1) (1— e*ZkS)afl(l —s),

record the optimal s* and set C = C(s*).

(2) Generate S; by setting

1
Si:1—U2]7“, UzNZx[[O,l].

(3) Generate a standard uniform random variable V, ~ U|0, 1], if

(X —1)" —2kS\a—1
- 7 1 1 _ i
sl ) a-em)

VZ S E (1 —gl‘)_“ s (52)

2The acceptance and rejection scheme is a type of exact simulation method, see Glasserman (2013) for further information
on the A/R scheme.
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then, accept and set S; < S;; Otherwise, reject this candidate and go back to step (1).

(4) With the accepted S;, we generate T; by setting

1 (€2k _ 1)04
Ti = Si -1+ ﬁ In (32]‘—1)”‘ B ( (EZk—l)"‘ B 1) U +1 ’ (53)
(T=S) 1)« (TS _1)x 3

with Uz ~ U[0,1], and then set T, = T; + 1.

4. Return t =19+ ... + Ty1.

Proof. From Theorem 4.6, we know that T follows a compound Geometric distribution. In particular,

we have

N
t25+Y 1,
i=1
where
e N is a Geometric distributed random variable with parameter p given in (4.17);
e 1) = Ip + 1, the density of Tj is given in (4.18);

e 7; = T; + 1, the density of independent and identically distributed random variables {T; }i—12 N

is given in (4.19).

The probability mass function of the Geometric random variable N follows from Theorem 4.6 and the
identity
mese(rta) =T(1 — a)T(a).

To generate Ty, we choose an envelop T with density

o
The associated A/R decision directly follows (5.1). To generate T; for i # 0, we develop a two-

dimensional simulation scheme. Since the density T; is given as (4.19), and

y 2k(t+1—s) (,2k __ 1\ 2k _ 1\« § 2k 1\«
/2ocke (e —1) d = |- (e —1) _ (1) 1

(eZk(tJrl*S) _ 1)¢x+1 (eZk(tJrlfs) _ 1)¢x 0 <€2k(175) _ 1)04

0
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then the integrand in (4.19) can simulated as the joint density of (T;, S;),

fT,S(t/S)
1 20(k€2k(t+1_s) (EZk _ 1)0(
E (ezk(t-‘rl—s) _ 1)04—0—1
2(Xk€2k(t+l_s)(€2k _ 1)uc
B (e2K(tH1=5) —)at1 ] (e —1)% ka1
= 1) E @Mrﬂ_na_l(l_esy '

( o ekaS)afl

-1

with 0 < t < s < 1. We use an A/R scheme to sample S; by choosing an envelop S; with the following

density
fs(s) = (1—a)(1—5)7",
and o
fs(s) 1 (ﬁ — 1) (1 — ¢~2ksya-t1 B
fss) — E(—a) 1—s)* S E(1-a)

where C can be found via numerical optimisation. Given S;, the CDF of T; is given as

(eZk _ 1)0& B (eZk _ 1)0&
B (82k(17s) _ 1)zx (eZk(tJrlfs) _ 1)¢x
FT|S(t|S) = (ezk_l)oc ) !
(e2(1=5) —1)a -
which can be inverted explicitly by
1
B 1 (ezk - 1)zx
1 _
FT|S(t\s) =s—1+ % In I ( F ) 1) t +1
(e20=8) 1)« - (215 1)« o

Hence, T; can be exactly simulated via (5.3). m

Although the Parisian stopping time for the Squared Bessel /Bessel process is the limit of the Parisian
stopping time for the CIR process with k — 0, we cannot directly simulate the Parisian stopping time
for the Squared Bessel/Bessel process using Algorithm 5.1 as we can only set k close to 0 but not equal

to 0. Hence we develop a separate Algorithm 5.2 to generate the associated Parisian stopping time.

Algorithm 5.2 The simulation algorithm for the Parisian stopping time of the squared Bessel process Ty is

given as follow:

24



1. Generate a Geometric random variable N with

sin(a7t) sin(ar)\"
P(N=m) =222 (1-2222 ) n=0,12,..

2. Generate a random variable Ty with density via inverse transformation by setting
To = VU, u; ~U[o,1],

and set 19 = Ty + 1.
3. For N = n, generate the sequence of {T;}i=12,. n using an A/R scheme via the following steps,
(1) Numerically maximising

1 t%—t B(§,2)
T T 14t 01— t)
14

where 0 = 0.59 — 0.01a — 0.60a2 and B(-, ) is the standard Beta function, record the optimal t*
and set C = C(t*,0).
(2) Generate T; by setting
T; = Beta(6,2),

(3) Generate a standard uniform random variable V ~ U[0,1], if

o

1 1 T, "-T" B2
Cafm—: 1+ T'0-Ty)

then, accept and set T; = T;; Otherwise, reject this candidate and go back to Step (2).
with the accepted T;, set T; = T; + 1.
4. Return oy = 19+ ... + Tys.

Proof. As before, from Lemma 4.7, we can see that 7y has a compound Geometric distribution 7y 2
T + 2N, 7, but this time with parameters N ~ Geometric (p'), and the density of T; is given in (4.26)
fori = 0 and (4.27) for i > 1. For Ty, it can be simulated directly via inverse transformation. And for

thei.i.d T; with i > 1, it can be simulated via an A /R scheme. We choose an envelop T; which follows
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a Beta distribution with density

=11 —t)
g7(t) B6,2) (5.4)
where B(6,2) = rr((ee)Jrr(zz)) We have
ar(t) 1 - B(6,2)
— —C(H)<C 5.5
8t(t) it —L 1+t 9711 -1) (5 < 55

In order to find the optimal parameter 6, we numerically approximate 6 which minimises the A/R
constant. This is different for each «, but since « is given, each time we only need to do the numerical

optimisation once. Hence, the entire simulation efficiency will not be affected. m

We know that it takes longer to generate the Parisian stopping time when « increases, as the mean
of N increases with respect to a. Furthermore, the main computation cost comes from applying the
A/R schemes to generate T;. Hence, we design a modified approach, by changing the distribution of
T; slightly, so that we still have a compound Geometric representation with different parameters, but
this allows us to vectorise the sampling of T;. This might not help much for low level languages, but it
is extremely helpful in high level programming which is very much in use these days. The modified

framework is illustrated in Algorithm 5.3.
Algorithm 5.3 The modified simulation algorithm for the Parisian stopping time is given as follow:

1. Generate a Geometric random variable N ~ Geometric(q), where

_ p
1=1rcCc-1Da-p)

2. Generate a random variable Ty by setting

T =1To+1,

where Ty can be simulated via step 2 in Algorithm 5.1 and Algorithm 5.2.

3. For N = n, generate T; and V; ~ U[0,1] fori = 1,2,...,n. Set

Fr(T5) } , (5.6)



where C is the A/R constant to generate T;.
n
4. Returnt =1+ > T
i=1

Proof. We can modify the distribution of T; slightly and design a more efficient simulation algorithm
based on the Laplace transform of the compound Geometric distribution. We start from the compound
Geometric representation for the Laplace transform (4.16) of the Parisian stopping time for the CIR.

Its denominator can be written as

1
1—(1—p)eF /O P fr(D)dt (5.7)

Cfz(t)
= 14+(1-p)(C—1)—C(1—p)

1 1
" <e—/5 0/ e P (1) CfJf;éz)dtJr O/ fz(t) (1 - g}j&) dt)’

where C is the same A/R constant used in (5.2). Then we have the modified compound Geometric

1
= 1-(1—p)Ce P / e PH(t) fr(t) g
0

representation

4

1 1
(g <e/3 0/ P f (1) g}T(EZ)dH O/ fr(t) (1— g}T(ZJ dt>

(5.8)

where g = 3 P

A==t In fact, (5.8) is the Laplace transform of a compound Geometric distribution,

2 T + SN, T, where N is Geometric with parameter g, the density of Ty is fr,(t) and {%}i=12.N
can be simulated as in (5.6). Likewise, we can modify the simulation scheme for the Parisian stopping

time for the Squared Bessel/Bessel process by replacing p, fr,f7 by p’, 1,87, respectively. m
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Table 1: CPU Time under Algorithm 5.2 v.s Algorithm 5.3 based on parameter setting a =
{0.1,0.2, ...,0.8,0.9}; each point of values is produced from 100, 000 replications.

o [ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Algorithm 5,2[ 0.88 1.14 1.39 1.59 2.55 2.92 3.89 541 9.72
Algorithm 5.3[ 1.44 1.34 1.27 1.37 1.59 1.75 1.68 1.95 2.16

5.2 Numerical Verification

In this section, we illustrate the performance and effectiveness of our simulation schemes via various
numerical analysis. The simulation experiments are all implemented on a common laptop with Intel
Core i7-6500 CPU@2.50GHz processor, 8.00GB RAM,Windows 10, 64-bit Operating System and per-
formed in R 3.4.0. To verify the accuracy of our algorithms, we compare the estimated densities of
the Parisian stopping times for Squared Bessel/Bessel and CIR processes based on 100,000 samples
generated from Algorithm 5.1 and 5.2 with the recursive form densities derived in Theorem 4.3. In
particular, we carry out the comparison for the Parisian stopping time of the CIR process under the
parameter settings & = 0.4,0.6 and k = 0.5,1. The associated density plot is illustrated in Figure 1.
The comparison of the simulated and recursive density for the Parisian stopping time of the Squared
Bessel /Bessel process under the parameter settings & = 0.4,0.6 is illustrated in Figure 2. Since for
« = 0.5, results were obtained for the Brownian motion in Dassios and Lim (2015), we also establish
a comparison of the simulation results for Algorithm 5.1 with k close to 0, and Algorithm 5.2 against
the simulation algorithm for the drawdown stopping time of Brownian motion described in Dassios
and Lim (2017). The density plot is given in Figure 3. In general, these algorithms produce the same
sample means and the simulated densities are more or less the same. The slight difference between

Algorithm 5.1 and the other two is only due to the fact that k is only close to 0 but not equal to 0.

In addition, we carry out separate numerical experiments for Algorithm 5.2 and 5.3. Table 1 reports
the simulation times for these two algorithms under various a with 100,000 replications. We see
that the time needed for the two algorithms are more or less the same for small . However, when « is
large, Algorithm 5.3 outperforms Algorithm 5.2. The out-performance becomes even more substantial

when « is close to 1. In particular, it is nearly 4 times faster when a = 0.8,0.9.

We also plot histograms of the Parisian stopping time for a CIR process with different values of
« and k in Figure 4. The first three histograms are based on parameter settings k = 1 and &« =

0.25,0.5,0.75, and the last three histograms are based on parameter settings « = 0.25and k = 0.5,2,3.5.
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Figure 1: Comparison of simulated and analytical densities with recursive form of Parisian stopping
time for CIR process with parameter settings « = 0.4, k = 0.5 and « = 0.6, k = 1, respectively.

It is clear that as we increase a and k, the mean for the Parisian hitting time also increases.

6 Application: Pricing a zero-coupon Parisian bond

In this section, we use our results to price a zero-coupon Parisian bond. We assume that the dynamics
of the interest rate follows a CIR process under the risk neutral probability measure Q, given in (1.2).
Following a simple time change, the model reduces to one following the dynamics given in (1.3),
which is a CIR process with index a and parameter k > 0. We define the zero-coupon Parisian bond
as the bond which pays off 1(R;) at time T for some function 4, if this happens before maturity time

T. We also use IEE2 to denote the expectation under a measure Q, for a process with initial value r.

Proposition 6.1 Denote by P(r,T) the price of a bond with payoff h(R+) at time T, if this happens before
maturity time T, with interest rate following dynamics (1.3), starting at Ry = r. Then the risk neutral price of

the bond is

P(r,T) = IEj

h(R:) exp (—/tht) 1{T<T}]
0

= Vg [h(Re)e 2R ], ¢
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Figure 2: Comparison of simulated and analytical densities with recursive form of Parisian stopping
time for Squared Bessel/Bessel process with parameter settings « = 0.4 and « = 0.6, respectively.
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Figure 3: Comparison of simulated density of the Parisian stopping time of Squared Bessel/Bessel
process with & = 0.5 v.s. the simulated density of the Drawdown stopping time of Brownian motion
derived in Dassios and Lim (2017).

where we have 1 := 7”‘2JZFH‘, and Q* denotes the probability measure defined by

T
(i;%zLFT _ efZ(Ifa)qTeﬂ(RT*Ro) exp /tht X (62)
0
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Figure 4: Histograms of Parisian Stopping time of CIR process with « = 0.25,0.5,0.75, and k =

0.5,1,2,3.5, respectiv

ely.

Furthermore, under Q*, Ry is a CIR process with index « and parameter k* = k + 21.

Proof. First, note that

fory = Yki2-k 12 =k is a martingale with expectation 1. We can then define the change of measure up to the
stopping time T by the Radon-Nikodym derivative ‘f]% |Fr = Z¢. Also let X; = / Rsds. We consider

a function ¢ : R™ — R, and let f(t,r,x) = e *T"""1¢(r). Then f(t,Rs, X;) is a local martingale if it

T
Z; = e 2007, (Re=Ro) exp (/ tht> ,
0

satisfies the following PDE

of |
at

of
"ox

or
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This is equivalent to solving the following PDE
2((1—wa) —k'r)g'(r) +2r¢" (r) =0, (6.5)

which is the infinitesimal generator of g(R}), where R} is a CIR process with index « and parameter
k* = k + 25. We also have that f(t, Ry, X;) = Z%g(Rt) is a Q-local martingale if and only if g(R;) is a
Q*-local martingale, which implies that under Q*, R; is a CIR process with index « and parameter k*.

Thus, we propose two methods to price the zero coupon Parisian bond with a certain payoff 7 (R.).

The first is using Monte Carlo simulation based on (6.1), which we can write as

P(r,T)
— VB [(R)e 20y ] o
+e T"Eg- {6_2(1_“)’7TH°1{TH0<1}1E9Q* [h(RT)e_z(l_a)meURT1{T<T—TH0}]}

6.7)

For a interest rate process starting at », we first simulate the first hitting time T,_,o with density (2.2).
If this is greater than 1, T is hit and we approximate (6.6) using the density for R;|T,—,o given in
(2.20). This Rq|T,—o can be simulated via an A/R scheme. If it is less than 1, we obtain the Monte
Carlo estimate of (6.7) by simulating T using Algorithm 5.3, and in which case R; is an exponentially
distributed random variable based on (2.8). In Table 2, we present numerical examples of the digital
zero coupon Parisian bond (h(x) = 1) and the zero coupon Parisian call (h(x) = (x — K) "), for arange
of parameters « and k. In general, the price for the zero coupon Parisian bond is higher than the zero
coupon Parisian call for all x and k. We observe that the price decreases when the dimension of the
CIR process decreases, i.e. a increases. We also compare the preformance of the prices under different

« and k, with details provided in Figure 5.

Alternatively, we can use explicit expressions for the expectation (6.1) to obtain numerical prices for

the zero coupon Parisian bond. We have
P(r,T)
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Table 2: Price of zero coupon Parisian bond and zero coupon Parisian call with K = 0.15 under
parameter setting o = 0.05,0.2, « = 0.4,0.6 and k = 0.5, 1.

Payoff] h(x) =1

T a=04,k=05 a=04,k=1 a=0.6,k=05 a=06k=1

7o =005 70 =005
2 0.3318 0.3141 0.1797 0.1501
3 0.4139 0.4150 0.2563 0.2255
4 0.4414 0.4568 0.3018 0.2760
5 0.4493 0.4718 0.3269 0.3071
6 0.4550 0.4800 0.3393 0.3244
7 0.4560 0.4824 0.3458 0.3407
8 0.4566 0.4826 0.3513 0.3470

ro = 0.2 ro = 0.2
2 0.3430 0.3282 0.1937 0.1635
3 0.4241 0.4288 0.2670 0.2370
4 0.4525 0.4691 0.3100 0.2849
5 0.4621 0.4858 0.3328 0.3160
6 0.4627 0.4939 0.3440 0.3336
7 0.4647 0.4970 0.3518 0.3449
8 0.4658 0.4982 0.3565 0.3538

Payoff h(x)=(x—K)F

T X =04k=05 =04 k=1 X=06k=05 =06k=1

7o = 0.05 7o = 005
2 0.2675 0.1780 0.1421 0.0836
3 0.3240 0.2348 0.2098 0.1296
4 0.3500 0.2578 0.2330 0.1554
5 0.3536 0.2694 0.2518 0.1742
6 0.3624 0.2704 0.2685 0.1851
7 0.3615 0.2778 0.2699 0.1913
8 0.3658 0.2815 0.2713 0.1963

ro = 0.2 ro = 0.2
2 0.2712 0.1852 0.1519 0.0904
3 0.3405 0.2433 0.2116 0.1343
4 0.3583 0.2693 0.2435 0.1634
5 0.3645 0.2744 0.2605 0.1812
6 0.3658 0.2791 0.2734 0.1878
7 0.3670 0.2583 0.2871 0.1953
8 0.3639 0.2837 0.2824 0.1996

7 k*ell* k*x B o1 g

- - —2(1— T
— ¢ ”’/h e dx/e A=)t " (1T, < 1)dt
0 0
(o) k* EZk* 2k % _ k*(r+xf2k*) 2k* \ /xr62k*
+e " / h(x)e™ —— | —— e &1 [ | —————|dx,
0 ek —1\ r ek —1

where fI denotes the probability and Parisian stopping time density for a CIR process under the
measure Q. As before, we split into the cases when T, o < 1 and T,_,o > 1. In the first case, observe
that T and R; are independent, and R is the CIR meander starting at 0, with density given by (2.8).
For T,_,o > 1, we have T = 1 and the density of R; is the transition density of R, conditioned to stay

positive throughout, and is given by the transition density in (2.20).
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Figure 5: Price of zero coupon Parisian bond and call with respect to « and k under the parameter
setting rp = 0.05, T = 8, and K = 0.15.

7 Conclusion

In this paper, we derive various results that extend excursion theories of the CIR and Squared Bessel / Bessel
processes. We also obtain Azéma martingales for these processes. Furthermore, we study the law
of the Parisian stopping times based on these Azéma martingales. We develop exact simulation al-
gorithms to sample these Parisian times based on a compound Geometric representation. Extensive
numerical experiments and tests are established in order to demonstrate the accuracy of our results.
Finally, we introduce the zero coupon Parisian bond and propose two approaches for its pricing. We

give numerical examples of the prices for bonds with different payoff structures.
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