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2. We obtain densities for the last passage times and meanders of the processes. Using these

results, we prove a variation of the Azéma martingale for the Bessel and CIR processes based on

excursion theory. Furthermore, we study their Parisian excursions, and generalise previous results

on the Parisian stopping time of Brownian motion to that of the Bessel and CIR processes. We

obtain explicit formulas and asymptotic results for the densities of the Parisian stopping times,

and develop exact simulation algorithms to sample the Parisian stopping times of Bessel and CIR

processes. We introduce a new type of bond, the zero coupon Parisian bond. The buyer of such a
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where interest rates fluctuate around 0. Using our results, we propose two methods for pricing

these bonds and provide numerical examples.
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1 Introduction

Bessel processes are a class of diffusion processes introduced by McKean et al. (1960). The Squared

Bessel process Yt satisfies the following SDE

dYt = 2(1− α)dt + 2
√

YtdWt, Y0 = y, (1.1)

where we reparameterised with α := 1− δ
2 , which corresponds to the index. For dimensions δ > 2,

the process is transient and never reaches 0. We consider in particular dimensions 0 < δ < 2, which

corresponds to 0 < α < 1. In this case, the process reaches 0 in finite time and is instantaneously

reflecting at 0. Several papers have studied excursions of Bessel processes of dimensions 0 < δ < 2.

Bertoin (1990) developed an excursion theory for Bessel processes of dimensions 0 < δ < 1, while

Perman et al. (1992) and Pitman and Yor (1992) gave extensions of the arcsine law for the fraction of

time spent positive by Brownian motion. Göing-Jaeschke and Yor (2003) derived Laplace transforms

of the hitting times of Bessel processes and considered Bessel processes with negative dimensions.

In mathematical finance, Bessel processes are often used to derive results for the Constant Elasticity

of Variance (CEV) model, as they are related through a deterministic time change, see Delbaen and

Shirakawa (2002) and Carr and Linetsky (2006).

We consider also the Cox-Ingersoll-Ross (CIR) process as a generalisation of the Bessel process. We

denote it by Rt, and it satisfies the following SDE

dRt = ζ(θ − Rt)dt + σ
√

RtdWt, ζ ∈ R, θ, σ ∈ R+. (1.2)

Without loss of generality, a simple time change A(t) := 4t/σ2 and setting α = 1− 2ζθ
σ2 , k = 2ζ

σ2 reduces

the study of (1.2) to the following SDE

dRt = 2((1− α)− kRt)dt + 2
√

RtdWt, R0 = r. (1.3)

The CIR process was first considered by Cox et al. (1985) as an extension to the Vasicek model for

interest rates. Its mean-reverting property and positivity makes it an attractive model for interest

rates (Delsaen, 1993; Chen and Scott, 1992), stochastic volatility (Ball, 1993; Heston, 1993), and default

intensity models (Jarrow et al., 2005; Brigo and Alfonsi, 2005). Similarly to the corresponding Bessel
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process, it hits 0 almost surely and is instantaneously reflecting at 0 for 0 < α < 1, and k ≥ 0. The

density of the first hitting time of level 0 for this process can be found in Elworthy et al. (1999); Pitman

and Yor (1997) derived some results on the zero set of a CIR process using Girsanov transformation

from a Bessel process. However, since interest rates have previously only been assumed to remain

strictly positive, thus the excursions of the CIR process for 0 < α < 1 have not been widely studied.

In recent years, it has become more likely for interest rates to reach 0 or stay around 0 for a period

of time. It thus makes practical sense to study the excursions of the CIR process as a model for interest

rates. We introduce a new type of Parisian-type bond, called the zero coupon Parisian bond, which

pays off an amount depending on the final interest rate, when the interest rate remains strictly positive

for a consecutive length of time longer than a fixed window length D, if this happens before maturity

time T. If the interest rate fluctuates around 0 until maturity, the bond expires worthless. The buyer

of the bond is thus betting against zero interest rates. Likewise, the seller of the Parisian bond is

effectively hedging against a period where interest rates fluctuate around 0. Alternatively, we can

consider the shifted process r∗ + Rt as a model for interest rates, such that the minimum rate is set at

r∗ instead of 0. This can be useful when considering interest rates which are bounded by a floor rate

away from 0. Let Ut := t − sup{s < t|Rs = 0} be the time elapsed since the last time Rt hits 0 for

R0 = 0. Then the Parisian stopping time of Rt starting at 0 is τ = inf{t > 0|Ut = D}. This is the

first time the duration of an excursion exceeds a certain threshold D > 0. The payoff of the bond will

thus be h(Rτ)1{τ<T} at time τ, where τ is the Parisian stopping time, and h : R+ → R+ is the payoff

function. If we consider interest rates which follow a CIR process with dynamics given by (1.3) under

the risk neutral measure Q, then denoting by P(r, T) the no-arbitrage price of the bond, we have

P(r, T) = Er
Q

ï
exp
Å
−
∫ τ

0
Rsds

ã
h(Rτ)1{τ<T}

ò
, (1.4)

where Er
Q denotes the expectation under the measure Q, for a process starting at R0 = r. By applying

a Girsanov transformation, we show how our results can be used to compute the price of this option.

We provide two pricing methods, one based on an explicit formula for the density of the Parisian

stopping time, and the other based on Monte Carlo simulation.

To price these options, we need to study the excursions of the CIR and Squared Bessel processes.

First, we derive the densities of the last passage time and meanders of the processes, which play an
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important part in our studies. The corresponding results for the Bessel process can also be easily

obtained from that of the Squared Bessel process. We then look at the filtration generated by the

zeroes of the process. Azéma martingales for the Brownian motion were discovered by Azéma (1985),

and can be obtained by projecting martingales onto the slow filtration. A variation of the Azéma

martingale are used to price Parisian options by Chesney et al. (1997), and an extension of it involving

the local time is derived by Dassios and Lim (2016). Here, we use excursion theory to prove a variation

of the Azéma martingale for the CIR and Bessel processes. Our martingale reduces to the two-sided

version of the martingale used in Chesney et al. (1997) when α = 1
2 .

The Azéma martingale enables us to study Parisian excursions of the CIR and Squared Bessel pro-

cesses. Parisian stopping times are the first time that the process makes an excursion away from 0 that

is of period longer than a fixed length D, and Parisian stopping times for Brownian motion has been

studied extensively. Laplace transforms of the stopping times are obtained in Chesney et al. (1997);

Dassios and Wu (2010). Analytical expressions and asymptotic behaviour of the density are derived

in Dassios and Lim (2013, 2015). Here, using our Azéma martingale, we find the Laplace transform of

the Parisian stopping time for the CIR and Squared Bessel processes, and obtain explicit recursive and

asymptotic expressions for its density. One contribution of this paper is to generalise various results

obtained for the Parisian stopping time of Brownian motion to the CIR and Squared Bessel processes,

thus providing a detailed analysis of the law of the Parisian stopping times for CIR and Squared Bessel

processes.

In addition, we obtain compound Geometric representations of the Laplace transforms of the Parisian

stopping time for the CIR and Squared Bessel processes. From this, we develop exact simulation al-

gorithms to sample from the stopping time distribution. This is a generalisation of the result for

Brownian motion in Dassios and Lim (2017). Through the Laplace transform, we also observe that the

Parisian stopping time of the Bessel process with index α is distributed according to a truncated stable

process with index α taken at an exponential time, and the Parisian stopping time of the CIR process

is distributed according to a truncated Lamperti stable process taken at exponential time. This distri-

butional identity was observed in Dassios et al. (2017) for the Brownian motion, and in this paper, we

show that it holds in a more general setting.
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In the rest of this paper, we provide derivation of the results for the CIR process, and state the cor-

responding results for the Squared Bessel process. The paper will be structured as follows. Section 2

presents some preliminary results on the excursions of the Squared Bessel and CIR processes, which

form an important part of our study. In Section 3, we prove the Azéma martingale for the Squared

Bessel and CIR processes. Section 4 studies the Parisian stopping times of the processes. Explicit ana-

lytical formulas and the asymptotic distribution of the Parisian stopping time densities are obtained,

as well as a compound Geometric representation for its Laplace transform. In Section 5, we present

exact simulation algorithms for sampling from the Parisian stopping time distributions of the CIR

process and the Squared Bessel process. We also establish several numerical comparisons with the

analytical recursive densities of the Parisian stopping times. In Section 6, we provide details on the

pricing of a zero coupon Parisian bond and present some numerical analysis of the results. Finally,

Section 7 concludes the paper.

2 Excursions of the Squared Bessel and CIR processes

In this section, we prove some preliminary results on the last passage time densities and meanders of

the Squared Bessel and CIR processes.

2.1 First Hitting Time and Transition Densities

The hitting time and transition densities of the Squared Bessel and CIR processes have been well-

studied, and we state here the results which will be used in our computations. We denote by Tr→0 :=

inf{t > 0|R0 = r} the first hitting time of level 0 of the CIR process Rt, and TY
y→0 := inf{t > 0|Y0 = y}

the first hitting time of level 0 of the Squared Bessel process Yt.

Proposition 2.1 The densities of the first hitting times of level 0 for the Squared Bessel and CIR processes

starting at Y0 = y and R0 = r respectively, are given as

P
Ä

TY
y→0 ∈ du

ä
=

1
Γ(α)

Åy
2

ãα

u−α−1e−
y

2u du, (2.1)

P (Tr→0 ∈ du) =
(2k)1+α

Ä
r
2

äα

Γ(α)
e−

kr
e2ku−1

+2ku
(e2ku − 1)−α−1du. (2.2)

Proof. The first hitting time of the Squared Bessel process Yt has a reciprocal gamma distribution,

and its density satisfies (2.1), according to Jeanblanc et al. (2009). The corresponding first hitting time
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density for the CIR can be obtained using a time-reversal argument suggested in Elworthy et al. (1999)

.

Proposition 2.2 The transition density for Yt, going from 0 to y, is

P (Yt+s ∈ dy|Ys = 0) =
(2t)−(1−α)

Γ(1− α)
y−αe−

y
2t dy, (2.3)

and for Rt, going from 0 to r, is given by

P (Rt+s ∈ dr|Rs = 0) =
(2e−2ktc(t))−(1−α)

Γ(1− α)
r−αe−

re2kt
2c(t) dr, (2.4)

where c(t) = 1
2k (e

2kt − 1).

Proof. From Jeanblanc et al. (2009), we have that

P (Yt+s ∈ dy|Ys = x) =
1
2t

Åy
x

ã− α
2

e−
x+y
2t I−α

Ç√
xy
t

å
dy,

and

P (Rt+s ∈ dr|Rs = x) =
e2kt

2c(t)

Ç
re2kt

x

å− α
2

e−
x+re2kt

2c(t) I−α

(√
xre2kt

c(t)

)
dr, (2.5)

where I−α is the usual modified Bessel function with index −α. For x = 0, the transition densities of

Yt and Rt directly follow (2.3), and (2.4).

2.2 Last Passage Time Densities and Meanders

We study the last passage time densities of the processes. Let Ut := t− sup{s < t|Rs = 0}, the time

elapsed since the last time Rt hits 0, for R0 = 0, and UY
t := t− sup{s < t|Ys = 0} be the time elapsed

since the last time the Squared Bessel process Yt hits 0, Y0 = 0.

Proposition 2.3 The probability density function of Ut is

P(Ut ∈ du) =
2k sin(απ)

π(1− e−2k(t−u))1−α(e2ku − 1)α
du, 0 < u < t, (2.6)

and the joint distribution of (Ut, Rt) is given as

P(Ut ∈ du, Rt ∈ dr) =
2k2 sin(απ)e2kte−2k(t−u)

π(1− e−2k(t−u))1−α(e2ku − 1)1+α
e−

kr
1−e−2ku dudr, (2.7)
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for 0 < u < t,and 0 < r < ∞. The conditional density of Rt|Ut = u is

P(Rt ∈ dr|Ut = u) =
k

1− e−2ku e−
kr

1−e−2ku dr, 0 < r < ∞. (2.8)

Proof. The Squared Bessel process Yt starting at 0, satisfies the following time inversion property

(Borodin and Salminen, 2012),

Yt = t2Z1/t, t > 0, (2.9)

where Zt
D∼ {Yt : t ≥ 0} is a BESQ process with index α. Furthermore, the CIR process Rt satisfying

the SDE (1.3) can be obtained from the Squared Bessel process Yt via the following space-time change

(Jeanblanc et al., 2009):

Rt = e−ktY 1
2k (e

2kt−1). (2.10)

Setting c(t) := 1
2k (e

2kt − 1), we thus have

P (Ut > u)

= P

Å
inf

t−u<s<t
Rs > 0

ã
=

∞∫
0

P(Z1/c(t) ∈ dr)P
Ç

TY
r→0 >

1
c(t− u)

− 1
c(t)

å
=

∞∫
1

c(t−u)−
1

c(t)

s−αc(t)1−α

Γ(1− α)Γ(α)
1

c(t)s + 1
ds, (2.11)

where we have also used the Markov property of Zt. Differentiating (2.11) with respect to u, we have

P(Ut ∈ du) =
sin(απ)e2k(t−u)

πc(t− u)1−α(c(t)− c(t− u))α
du

=
2k sin(απ)

π(1− e−2k(t−u))1−α(e2ku − 1)α
du.

For the joint distribution of (Ut, Rt), we have

P (Ut > u, Rt < r)

= P

Å
inf

t−u<s<t
Rs > 0, Rt < r

ã
7



= P

Ñ
inf

1
c(t)<v< 1

c(t−u)

Zv > 0, c2(t)Z1/c(t) < e2ktr

é
=

∞∫
1

c(t−u)−
1

c(t)

s−αc(t)1−α

Γ(1− α)Γ(α)
1

c(t)s + 1

Ç
1− e

− (c(t)s+1)
2s

e2ktr
c2(t)

å
ds, (2.12)

Differentiating (2.12) with respect to r and then u respectively, we have

P(Ut ∈ du, Rt ∈ dr) =
sin(απ)e2kte2k(t−u)

2πc(t− u)1−α(c(t)− c(t− u))1+α
e−

e2ktr
2(c(t)−c(t−u)) dudr

=
2k2 sin(απ)e2kte−2k(t−u)

π(1− e−2k(t−u))1−α(e2ku − 1)1+α
e−

kr
1−e−2ku dudr.

Then, the density of Rt|Ut immediately follows (2.8).

Corollary 2.4 For the Squared Bessel process Yt starting at 0, the distribution of the time elapsed since its last

0, is UY
t ∼ Beta(α, 1− α), and its probability density function is

P(UY
t ∈ du) =

sin(απ)

π(t− u)1−αuα
du, 0 < u < t. (2.13)

The joint distribution of (UY
t , Yt) is

P
Ä
UY

t ∈ du, Yt ∈ dy
ä
=

sin(απ)

2πu1+α(t− u)1−α
e−

y
2u dudy, (2.14)

for 0 < u < t, 0 < y < ∞. The conditional distribution of Yt given UY
t is

P(Yt ∈ dy|UY
t = u) =

1
2u

e−
y

2u dy, 0 < y < ∞. (2.15)

Proof. According to the time inversion property (2.9), we apply similar techniques to derive (2.13),

(2.14), and (2.15) and replacing c(t) by t. They can also be obtained by letting k → 0 in (2.6), (2.7) and

(2.8).

Remark 2.5 Since the zeroes of the Squared Bessel process are the same as those of the corresponding Bessel

process, (2.13) is the last passage time density of a Bessel process. Furthermore, from (2.15), we note that

the Bessel meander, which is the Bessel process starting at 0 and conditioned not to hit 0 before time u, has a

distribution independent of α, namely the Rayleigh distribution with parameter
√

u.

The following gives results for the first hitting times of the meander processes starting at Rt, given
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only information about Ut, the time elapsed since the last 0. Let TRt→0 denote the first time a CIR

process starting at Rt hits 0, and TYt→0 the first time a squared Bessel process starting at Yt hits 0.

Proposition 2.6 We have the following results for the CIR process Rt,

P (TRt→0 ∈ ds|Ut = u) =
2αke2ks(1− e−2ku)α

(e2ks − e−2ku)α+1 ds, (2.16)

and

P (TRt→0 > h|Ut = u) =
(1− e−2ku)α

(e2kh − e−2ku)α
. (2.17)

Similarly, for the squared Bessel process Yt, we have

P(TYt→0 ∈ ds|UY
t = u) =

αuα

(u + s)α+1 ds, (2.18)

and

P(TYt→0 > h|UY
t = u) =

uα

(u + h)α
. (2.19)

Proof. According to Proposition 2.1 and Proposition 2.3, and using the Markov property of Rt, we

have

P (TRt→0 ∈ ds|Ut = u)

=

∞∫
0

k
1− e−2ku e−

kr
1−e−2ku

2k1+αrα

Γ(α)
e−

kr
e2ks−1 e2ks(e2ks − 1)−α−1dsdr

=
2αke2ks(1− e−2ku)α

(e2ks − e−2ku)α+1 ds.

Then, the associated survival function is given as

P
Ä

TRt→0 > h|UR
t = u

ä
=

∞∫
h

2αke2ks(1− e−2ku)α

(e2ks − e−2ku)α+1 ds

=
(1− e−2ku)α

(e2kh − e−2ku)α
.

And similarly, based on the distribution of the hitting time of Yt in (2.1) and the conditional distribu-

tion of Yt|UY
t in (2.15), we obtain (2.18) and (2.19).
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We now consider a CIR process Rt with index α and parameter k, starting at initial point R0 = r.

Then we have the following transition density of Rt conditioned to stay strictly positive.

Proposition 2.7 The transition density of a CIR process Rt starting at R0 = r conditioned to stay positive is

Pr (Rt ∈ dx; Tr→0 > t) =
e2kt

2c(t)

Ç
xe2kt

r

å− α
2

e−
r+xe2kt

2c(t) Iα

(√
xre2kt

c(t)

)
dx, (2.20)

where c(t) := 1
2k (e

2kt − 1) and Iα is the modified Bessel function of the first kind.

Proof. Denote by P−α
r the probability measure for a CIR process R−α

t starting at R−α
0 = r. Then using

a change of measure result from Elworthy et al. (1999) Lemma 3.11, we have

Pr(Rt ∈ dx; Tr→0 > t) =

Ç
xekt

r

å−α

P−α
r (R−α

t ∈ dx). (2.21)

Then the result follows by using the transition density (2.5) with index −α.

3 Azéma Martingale for the Squared Bessel and CIR processes

Let FU := (FUt)t≥0 be the filtration generated by Ut containing the zeroes of the CIR process Rt, and

FUY :=
(
FUY

t

)
t≥0

be the filtration containing the zeroes of the Squared Bessel process Yt. We consider

martingales for this filtration, which in the Brownian setting, are the celebrated Azéma martingales.

Using the last passsage time results in the previous section, we prove an extension of the Azéma

martingales to the Squared Bessel and CIR processes.

Theorem 3.1 For the CIR process Rt, we have the following martingale. Let Mt be defined by

Mt := e−βt

Ö
1 + (e2kUt − 1)αβeβUt

Ut∫
0

e−βs(e2ks − 1)−αds

è
, (3.1)

then Mt is an FU-martingale.

Proof. It is easy to see that Mt is integrable and adapted since Ut ≤ t always. The martingale property

of Mt can be proved by directly applying the last passage time results from the previous section.

However, we take another approach to give more insights into how the martingale is obtained. We
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start by considering a martingale of the form

e−βt f (Ut),

and aim to find an integrable function f , with f (0) = 1 (without loss of generality), such that

E
î
e−β(t+h) f (Ut+h)|Ut = u

ó
= e−βt f (u), (3.2)

for all t ≥ 0 and h > 0. In particular, the following should hold

E
î
e−βt f (Ut)|U0 = 0

ó
= 1. (3.3)

Using the density of Ut in (2.6), this is equivalent to finding f such that

t∫
0

f (u)2ke2k(t−u)

Γ(α)Γ(1− α)(e2k(t−u) − 1)1−α(e2kt − e2k(t−u))α
du

=
2k

Γ(α)Γ(1− α)

t∫
0

f (u)
(1− e−2k(t−u))1−α(e2ku − 1)α

du = eβt. (3.4)

Set g(t) = f (t)
(e2kt−1)α , and taking Laplace transform over t with γ < β, the LHS of (3.4) becomes

∞∫
0

e−γt 2k
Γ(α)Γ(1− α)

t∫
0

f (u)
(1− e−2k(t−u))1−α(1− e−2ku)α

dudt

=
2k

Γ(α)Γ(1− α)

Ñ ∞∫
0

e−γt f (t)
(e2kt − 1)α

dt

éÑ ∞∫
0

e−γt(1− e−2kt)α−1dt

é
=

ĝ(γ)
Γ(1− α)

2kΓ
Ä
1 + γ

2k

ä
γΓ
Ä
α + γ

2k

ä .

As the Laplace transform of the RHS of (3.4) is 1
γ−β , we then have

ĝ(γ) = γ×
Γ(1− α)Γ

Ä
α + γ

2k

ä
2kΓ
Ä
1 + γ

2k

ä × 1
γ− β

.
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Hence

g(u) =
d

du

Ñ
L−1

 1
γ− β

Γ(1− α)Γ
Ä
α + γ

2k

ä
2kΓ
Ä
1 + γ

2k

ä 
é

=
d

du

Ñ u∫
0

eβ(u−s)(1− e−2ks)−αe−2kαsds

é
= (e2ku − 1)α + βeβu

u∫
0

e−βs(e2ks − 1)−αds.

Thus

f (u) = 1 + (e2ku − 1)αβeβu
u∫

0

e−βs(e2ks − 1)−αds, (3.5)

satisfies (3.3). We now have a candidate for the martingale, and we now need to verify that (3.2) holds.

More precisely, we need to prove

E
î
e−βh f (Ut+h)|Ut = u

ó
= f (u).

According to Corollary 2.6, Eq. (3.3), and the Markov property of Rt so that the process starts over

again whenever it returns to 0, we have

E
î
e−βh f (Ut+h)|Ut = u

ó
= P (TRt→0 > h|Ut = u) e−βh f (u + h) +

h∫
0

e−βsP (TRt→0 ∈ ds|Ut = u)ds

= (e2ku − 1)αe−βh f (u + h)
(e2k(u+h) − 1)α

+

h∫
0

e−βs 2αke2k(s+u)(e2ku − 1)α

(e2k(s+u) − 1)1+α
ds

= (e2ku − 1)αe−βh f (u + h)− 1
(e2k(u+h) − 1)α

+ 1− βeβu
u+h∫
u

(e2ku − 1)α

(e2kz − 1)α
dz

= 1 + βeβu
u∫

0

(e2ku − 1)α

(e2kz − 1)α
dz = f (u). (3.6)

Hence, Mt = e−βt f (Ut) with f defined in (3.5) is an FU-martingale.
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Lemma 3.2 The equivalent martingale for the Squared Bessel process Yt is MY
t , defined by

MY
t = e−βt

Ö
1 + (UY

t )
αβeβUY

t

UY
t∫

0

e−βss−αds

è
.

Then MY
t is an FY

U-martingale.

Proof. The proof follows in a similar way as in Theorem 3.1.

Remark 3.3 When α = 1
2 , Yt becomes the squared Brownian motion and MY

t becomes the two-sided version of

the Azéma martingale used in Chesney et al. (1997).

4 Parisian Excursions of Squared Bessel and CIR Processes

In this section, we study the Parisian excursions of the CIR and Squared Bessel processes. Define the

Parisian stopping times of Rt for a CIR process starting at 0, and correspondingly Yt with Y0 = 0 by

τ = inf{t > 0|Ut = D}, (4.1)

τY = inf{t > 0|UY
t = D}. (4.2)

This is the first time the duration of an excursion exceeds a certain threshold D > 0. Without loss

of generality we set D = 1. We obtain the Laplace transforms of the Parisian stopping time of both

processes, and derive from it an explicit analytical expression for its density. Further, we study the

asymptotic behaviour of the Parisian stopping times, and prove that they have exponential tails. We

also present a compound geometric representation for the Laplace transforms, which we will use in

the next section to develop efficient simulation algorithms for the stopping times.

4.1 Laplace transform of the Parisian stopping times

We apply optional stopping theorem on the martingale Mt to obtain the Laplace transform of the

Parisian stopping times τ and τY.
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Lemma 4.1 The Laplace transform of τ is

E
î
e−βτ

ó
=

e−β

1 + 2αk(e2k − 1)α

1∫
0

(1− e−βx)e2kx(e2kx − 1)−α−1dx

, (4.3)

and the Laplace transform of τY is

E
î
e−βτY

ó
=

e−β

1 + α

1∫
0

(1− e−βu)u−α−1du

, (4.4)

for β ∈ R+.

Proof. Since Ut∧τ ≤ 1, we have |Mt∧τ| ≤ K for some constant K for all t. Thus optional stopping

theorem and dominated convergence theorem applies, and we have

E
î
e−βτ f (Uτ)

ó
= E

ï
lim
t→∞

e−β(τ∧t) f (Uτ∧t)
ò

= E

e−βτ

Ñ
1 + (e2k − 1)αβeβ

1∫
0

e−βs(e2ks − 1)−αds

é = 1, (4.5)

where we have used the function f as defined in (3.5) to ease notation. Hence, we have

E
î
e−βτ

ó
=

1

1 + (e2k − 1)αβeβ

1∫
0

e−βs(e2ks − 1)−αds

=
e−β

1 + (e−β − 1) + (e2k − 1)αβ

1∫
0

e−βs(e2ks − 1)−αds

=
e−β

1 + 2αk(e2k − 1)α

1∫
0

(1− e−βu)e2ku(e2ku − 1)−α−1du

.

The Laplace transform of τY can be derived in a similar way. It can also be obtained by letting k → 0

in (4.3).

Remark 4.2 It can be seen from its Laplace transform that τY is distributed as 1 + XT̃, where X is a trun-

cated stable process (Dassios et al., 2017) with Lévy measure ν(dy) = αy−α−11{y<1} and T̃ ∼ Exp(1).
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Likewise, τ is distributed as 1 + XT̃, where X is a truncated Lamperti stable process with Lévy measure

ν(dy) = Ce2ky

(e2ky−1)α+1 1{y<1}, for some constant C, and T̃ ∼ Exp(1).

4.2 Densities of the Parisian stopping time

We obtain explicit analytical expressions for the densities of the Parisian stopping time. Just like in

the case of the Brownian motion (Dassios and Lim, 2013), these expressions involve only a finite sum

and thus can be computed easily.

Theorem 4.3 For the CIR process Rt, let fτ(t) be the density function of the Parisian stopping time of τ, we

have

fτ(t) =
n−1∑
i=0

(−1)iLi(t− 1), for n < t ≤ n + 1, n = 1, 2, ...,

for t > 1, where Li(t) is defined recursively as follows:

L0(t) =
2k sin(απ)

π(e2k − 1)α
(1− e−2kt)α−1, for t > 0, (4.6)

Li+1(t) =

t−i∫
1

Li(t− s)
2k sin(απ)(1− e−2k(s−1))α

π(e2k − 1)α(1− e−2ks)
ds, for t > i + 1. (4.7)

For the squared Bessel process Yt, let fτY(t) be the density function of the Parisian stopping time of τY, we have

fτY(t) =
n−1∑
i=0

(−1)i Hi(t− 1), for n < t ≤ n + 1, n = 1, 2, ...,

for t > 1, where Hi(t) is defined recursively as follows:

H0(t) =
sin(απ)

π
tα−1, for t > 0, (4.8)

Hi+1(t) =

t−i∫
1

Hi(t− s)
sin(απ)(s− 1)α

πs
ds, for t > i + 1. (4.9)

Proof. The Laplace transform (4.3) can be written as

E
î
e−βτ

ó
=

e−β

1 + 2αk(e2k − 1)α

1∫
0

(1− e−βx)e2kx(e2kx − 1)−α−1dx
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=
e−β

(e2k − 1)αβ

∞∫
0

e−βx(e2kx − 1)−αdx +

∞∫
1

e−βx 2αke2kx(e2k − 1)α

(e2kx − 1)α+1 dx

=
e−β

(e2k − 1)α β

2k
Γ(1− α)Γ(α + β

2k )

Γ(1 + β
2k )

+

∞∫
1

e−βx 2αke2kx(e2k − 1)α

(e2kx − 1)α+1 dx

=
e−β

(e2k − 1)α

Γ( β
2k )

Γ(1− α)Γ(α + β
2k )

×
∞∑

i=0

(−1)i

Ñ
Γ( β

2k )

Γ(1− α)Γ(α + β
2k )

∞∫
1

e−βx 2αke2kx

(e2kx − 1)α+1 dx

éi

,

(4.10)

We denote

L̂i(β) =
Γ( β

2k )

Γ(1− α)Γ(α + β
2k )

Ñ
Γ( β

2k )

Γ(1− α)Γ(α + β
2k )

∞∫
1

e−βx 2αke2kx

(e2kx − 1)α+1 dx

éi

,

Then since L̂1(β)→ 0 as β→ ∞, and L̂1(β) is continuous and decreasing in β, there exists some β∗ > 0

such that the infinite series summation is valid for all β > β∗. Furthermore, we have the following

Laplace inversions

L−1
t

{
Γ( β

2k )

Γ(1− α)Γ(α + β
2k )

}
=

2k sin(απ)

π
(1− e−2kt)α−1,

and

L−1
t

 Γ( β
2k )

Γ(1− α)Γ(α + β
2k )

∞∫
1

e−βx 2αke2kx

(e2kx − 1)α+1 dx


=

4k2α

Γ(1− α)Γ(α)

t∫
1

e2ks1{t>1}

(1− e−2k(t−s))1−α(e2ks − 1)1+α
ds

=
2kα1{t>1}

Γ(1− α)Γ(α)

e2kt∫
e2k

1
(1− e−2ktx)1−α(x− 1)1+α

dx

=
2k sin(απ)(1− e−2k(t−1))α

π(e2k − 1)α(1− e−2kt)
1{t>1}.

Hence, inverting the Laplace transform in each term of (4.10), we have that fτ(t) is the sum of Li(t− 1),
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where L0 and Li are as defined in (4.6) and (4.7). For the Squared Bessel process Yt, recursions for the

density fτY(t) are obtained in a similar way, or by letting k→ 0 in (4.6) and (4.7).

We state the following corollary for a CIR process starting at R0 = r. We consider only the case

when Tr→0 < 1 since otherwise τ = 1 and it is trivial.

Corollary 4.4 Let f r
τ(t; Tr→0 < 1) denote the density of the Parisian stopping time for Rt starting at R0 =

r > 0, on the set {Tr→0 < 1}. Then for t > 1, we have

f r
τ(t; Tr→0 < 1) =

∫ 1

0

(2k)1+α
Ä

r
2

äα

Γ(α)
e−

kr
e2ku−1

+2ku
(e2ku − 1)−α−1 fτ(t− u)du. (4.11)

Proof. Since by the strong Markov property,

Er
î
e−βτr

ó
= Er

î
e−βTr→0

ó
E
î
e−βτ

ó
, (4.12)

it follows immediately that the density f r
τ(t; Tr→0 < 1) is the convolution of (2.2) and fτ(t).

4.3 Tail distribution of the Parisian stopping time

We derive the asymptotic distribution of the Parisian stopping times τ and τY. In particular, they have

exponential tails, and we find the associated constants and rates of decay.

Theorem 4.5 Let F̄τ(t) be the tail of the distribution of the Parisian stopping time τ. As t→ ∞, we have

F̄τ(t) ∼ CRe−β∗t, (4.13)

where the constant CR is

CR =
eβ∗

β∗(e2k − 1)α
∫ 1

0
eβ∗v 2kαe2kvv

(e2kv − 1)α+1 dv
, (4.14)

and β∗ > 0 such that −β∗ is the unique negative solution of the equation

1 + (e2k − 1)α

1∫
0

(1− e−βv)
2kαe2kv

(e2kv − 1)α+1 dv = 0.
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Similarly, let F̄τY(t) be the tail of the distribution of Parisian stopping time τY. As t→ ∞, we have

F̄τY(t) ∼
1
α

e−γ∗t, (4.15)

with γ∗ > 0 such that −γ∗ is the unique negative solution of the equation

1∫
0

e−γs

sα
ds +

e−γ

γ
= 0.

Proof. The results are generalisations of the asymptotic distribution of the two-sided Parisian stop-

ping time with barrier 0. The details of its proof can be seen in Theorem 4.1 in Dassios and Lim (2015).

The constants β∗, CR and γ∗ can be easily computed numerically.

4.4 Compound Geometric representations for the Laplace transforms

Here, we provide compound Geometric representations1 of the Laplace transforms of the Parisian

stopping times of the CIR process Rt and squared Bessel Yt, which immediately leads to the simulation

algorithm.

Theorem 4.6 The Laplace transform of the Parisian stopping time for Rt, namely τ, can be written as

E
î
e−βτ

ó
=

pe−β

1∫
0

e−βt fT0(t)dt

1− (1− p)e−β

1∫
0

e−βt fTi(t)dt

, (4.16)

where we have defined

p =
2kM

π csc(πα)(e2k − 1)α
, (4.17)

fT0(t) =
(1− e−2kt)α−1

M
, (4.18)

fT(t) =
1
E

∫ 1

t

2αke2k(t+1−s)(1− e−2ks)α−1(e2k − 1)α

(e2k(t+1−s) − 1)α+1
ds, (4.19)

1A random variable X has a compound Geometric representation if X can be expressed as X =
N∑

i=1
Ji, with N ∼

Geometric(p) for 0 < p < 1, and {Ji}i=1,2,...,N being i.i.d random variables.
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and

M =
∫ 1

0
(1− e−2kt)α−1dt, (4.20)

E =

1∫
0

Ç
(e2k − 1)α

(e2k(1−s) − 1)α
− 1
å
(1− e−2ks)α−1ds. (4.21)

Furthermore, fT0(t) and fT(t) are proper density functions over t ∈ (0, 1).

Proof. The Laplace transform of the Parisian stopping times are given in Lemma 4.1. Multiplying

both the numerator and denominator of (4.6) with

1∫
0

e−βu(1− e−2ku)α−1du,

we have

E
î
e−βτ

ó
=

e−β

1∫
0

e−βu

(1− e−2ku)1−α
du

1∫
0

e−βu

(1− e−2ku)1−α
du +

1∫
0

(1− e−βs)e2ks

(e2ks − 1)α+1 ds
1∫

0

2αk(e2k − 1)αe−βu

(1− e−2ku)1−α
du

.

(4.22)

For the denominator of (4.22), we have

1∫
0

e−βu

(1− e−2ku)1−α
du +

1∫
0

(1− e−βs)
2αke2ks

(e2ks − 1)α+1 ds
1∫

0

e−βu(e2k − 1)α

(1− e−2ku)1−α
du

=

1∫
0

e−βu

(1− e−2ku)1−α
du

Ñ
1 + (e2k − 1)α

Ñ
− 1− e−β

(e2k − 1)α
+ β

1∫
0

e−βs

(e2ks − 1)α
ds

éé
= e−β

1∫
0

e−βu

(1− e−2ku)1−α
du + (e2k − 1)αβ

1∫
0

e−βs

(e2ks − 1)α
ds

1∫
0

e−βu

(1− e−2ku)1−α
du.

(4.23)
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In the second term of (4.23), we have

β

1∫
0

e−βu

(e2ku − 1)α
du

1∫
0

e−βu(1− e−2ku)α−1du

= β

1∫
0

e−βt
t∫

0

(1− e−2ks)α−1

(e2k(t−s) − 1)α
dsdt + β

2∫
1

e−βt
1∫

t−1

(1− e−2ks)α−1

(e2k(t−s) − 1)α
dsdt

=
π csc(πα)(1− e−β)

2k
+ e−β π csc(πα)

2k
+

2∫
1

e−βt ∂

∂t


1∫

t−1

(1− e−2ks)α−1

(e2k(t−s) − 1)α
ds

dt

=
π csc(πα)

2k
− e−β

1∫
0

e−βt(1− e−2kt)α−1

(e2k − 1)α
dt

−e−β

1∫
0

e−βt
1∫

t

2kαe2k(t+1−s)(1− e−2ks)α−1

(e2k(t+1−s) − 1)α+1
dsdt,

Hence, the Laplace transform of τ can be expressed as the Laplace transform of a compound Geomet-

ric distribution as follows

E
î
e−βτ

ó
=

e−β

1 + 2αk(e2k − 1)α

1∫
0

(1− e−βx)e2kx(e2kx − 1)−α−1dx

=

pe−β

1∫
0

(1− e−2kt)α−1

M
dt

1− (1− p)e−β

1∫
0

e−βt 1
E

1∫
t

2αke2k(t+1−s)(1− e−2ks)α−1(e2k − 1)α

(e2k(t+1−s) − 1)α+1
dsdt

,

where p, M and E are given as (4.17), (4.20) and (4.21). It is then easy to check that

fT0(t) =
(1− e−2kt)α−1

M
,

fT(t) =
1
E

1∫
t

2αke2k(t+1−s)(1− e−2ks)α−1(e2k − 1)α

(e2k(t+1−s) − 1)α+1
ds,

are proper density functions over t ∈ (0, 1).
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Lemma 4.7 The Laplace transform of the Parisian stopping time of Yt, namely τY, can be written as

E
î
e−βτY

ó
=

p′e−β

1∫
0

e−βtgT0(t)dt

1−
(
1− p′

)
e−β

1∫
0

e−βtgT(t)dt

, (4.24)

where we defined

p′ =
sin(απ)

απ
, (4.25)

gT0(t) = αtα−1, (4.26)

gT(t) =
t−α − tα

( π
sin(απ) −

1
α )(t + 1)

, (4.27)

and gT0(t) and gT(t) are proper density functions over t ∈ (0, 1).

Proof. We can obtain the result using a similar argument as above, this time multiplying both the

numerator and denominator of (4.4) by

1∫
0

e−βss−(1−α)ds.

Setting k→ 0 in each term of (4.16) will also produce the desired result.

Since the zeros of Squared Bessel process and Bessel are the same, the distributions of the Parisian

stopping times for these two processes are the same. Hence, the compound Geometric representation

for the Laplace transform of the Parisian stopping time for Bessel process also satisfies (4.24).

5 Simulation

In this section, we develop exact simulation schemes for the Parisian stopping times based on the com-

pound Geometric Laplace transforms we obtained in Theorem 4.6 and Lemma 4.7. We also propose a

modified simulation algorithm to improve the simulation speed. In addition, we present several nu-

merical experiments to illustrate the performance and effectiveness of our exact simulation schemes

in Section 5.2.
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5.1 Simulation Algorithms

Algorithm 5.1 The simulation algorithm for the Parisian stopping time of the CIR process τ is given as follows:

1. Generate a Geometric random variable N with

P(N = n) =
2kM

Γ(1− α)Γ(α)(e2k − 1)α

Ç
1− 2kM

Γ(1− α)Γ(α)(e2k − 1)α

ån

,

where n = 0, 1, 2, ..., and M is given in (4.20).

2. Generate a random variable T0 using an A/R scheme2 via the following steps

(I) Generate T0 by setting

T0 = U
1
α
1 , U1 ∼ U [0, 1];

(II) Generate a standard uniform random variable V1 ∼ U [0, 1], if

V1 ≤
(1− e−2kT0)α−1T1−α

0

(1− e−2k)α−1 , (5.1)

then, return T0 ← T0 and set τ0 = T0 + 1; Otherwise, reject this candidate and go back to step (I).

3. For N = n, generate the sequence of independent and identical distributed random variables {Ti}i=1,2,...,n

via the following steps,

(1) Numerically maximising

C(s) =
Ç

(e2k − 1)α

(e2k(1−s) − 1)α
− 1
å
(1− e−2ks)α−1(1− s)α,

record the optimal s∗ and set C = C(s∗).

(2) Generate Si by setting

Si = 1−U
1

1−α

2 , U2 ∼ U [0, 1].

(3) Generate a standard uniform random variable V2 ∼ U [0, 1], if

V2 ≤
1
C

(
(e2k − 1)α

(e2k(1−Si) − 1)α
− 1

)
(1− e−2kSi)α−1

(1− Si)−α
, (5.2)

2The acceptance and rejection scheme is a type of exact simulation method, see Glasserman (2013) for further information
on the A/R scheme.
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then, accept and set Si ← Si; Otherwise, reject this candidate and go back to step (1).

(4) With the accepted Si, we generate Ti by setting

Ti = Si − 1 +
1
2k

ln

Ü (e2k − 1)α

(e2k−1)α

(e2k(1−S)−1)α −
(

(e2k−1)α

(e2k(1−S)−1)α − 1
)

U3


1
α

+ 1

ê
, (5.3)

with U3 ∼ U [0, 1], and then set τi = Ti + 1.

4. Return τ = τ0 + ... + τn.

Proof. From Theorem 4.6, we know that τ follows a compound Geometric distribution. In particular,

we have

τ
D
= τ0 +

N∑
i=1

τi,

where

• N is a Geometric distributed random variable with parameter p given in (4.17);

• τ0 = T0 + 1, the density of T0 is given in (4.18);

• τi = Ti + 1, the density of independent and identically distributed random variables {Ti}i=1,2,...N

is given in (4.19).

The probability mass function of the Geometric random variable N follows from Theorem 4.6 and the

identity

π csc(πα) = Γ(1− α)Γ(α).

To generate T0, we choose an envelop T0 with density

fT0
(t) =

α

t1−α
, 0 < t < 1.

The associated A/R decision directly follows (5.1). To generate Ti for i 6= 0, we develop a two-

dimensional simulation scheme. Since the density Ti is given as (4.19), and

s∫
0

2αke2k(t+1−s)(e2k − 1)α

(e2k(t+1−s) − 1)α+1
dt =

ñ
− (e2k − 1)α

(e2k(t+1−s) − 1)α

ôs

0
=

(e2k − 1)α

(e2k(1−s) − 1)α
− 1,
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then the integrand in (4.19) can simulated as the joint density of (Ti, Si),

fT,S(t, s)

=
1
E

2αke2k(t+1−s)(e2k − 1)α

(e2k(t+1−s) − 1)α+1
(1− e−2ks)α−1

=

2αke2k(t+1−s)(e2k − 1)α

(e2k(t+1−s) − 1)α+1

(e2k − 1)α

(e2k(1−s) − 1)α
− 1

1
E

Ç
(e2k − 1)α

(e2k(1−s) − 1)α
− 1
å
(1− e−2ks)α−1,

with 0 < t < s < 1. We use an A/R scheme to sample Si by choosing an envelop Si with the following

density

fS(s) = (1− α)(1− s)−α,

and

fS(s)
fS(s)

=
1

E(1− α)

(
(e2k−1)α

(e2k(1−s)−1)α − 1
)
(1− e−2ks)α−1

(1− s)−α
≤ C

E(1− α)
,

where C can be found via numerical optimisation. Given Si, the CDF of Ti is given as

FT|S(t|s) =

(e2k − 1)α

(e2k(1−s) − 1)α
− (e2k − 1)α

(e2k(t+1−s) − 1)α

(e2k − 1)α

(e2k(1−s) − 1)α
− 1

,

which can be inverted explicitly by

F−1
T|S(t|s) = s− 1 +

1
2k

ln

Ü (e2k − 1)α

(e2k−1)α

(e2k(1−S)−1)α −
(

(e2k−1)α

(e2k(1−S)−1)α − 1
)

t


1
α

+ 1

ê
.

Hence, Ti can be exactly simulated via (5.3).

Although the Parisian stopping time for the Squared Bessel/Bessel process is the limit of the Parisian

stopping time for the CIR process with k→ 0, we cannot directly simulate the Parisian stopping time

for the Squared Bessel/Bessel process using Algorithm 5.1 as we can only set k close to 0 but not equal

to 0. Hence we develop a separate Algorithm 5.2 to generate the associated Parisian stopping time.

Algorithm 5.2 The simulation algorithm for the Parisian stopping time of the squared Bessel process τY is

given as follow:
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1. Generate a Geometric random variable N with

P(N = n) =
sin(απ)

απ

Ç
1− sin(απ)

απ

ån

, n = 0, 1, 2, ...

2. Generate a random variable T0 with density via inverse transformation by setting

T0 = α
√

U1, U1 ∼ U [0, 1],

and set τ0 = T0 + 1.

3. For N = n, generate the sequence of {Ti}i=1,2,...,n using an A/R scheme via the following steps,

(1) Numerically maximising

C(t) =
1

π
sin(απ) −

1
α

t−α − tα

1 + t
B(θ, 2)

tθ−1(1− t)
,

where θ = 0.59− 0.01α− 0.60α2 and B(·, ·) is the standard Beta function, record the optimal t∗

and set C = C(t∗, θ).

(2) Generate Ti by setting

Ti = Beta(θ, 2),

(3) Generate a standard uniform random variable V ∼ U [0, 1], if

V ≤ 1
C

1
π

sin(απ) −
1
α

Ti
−α − Ti

α

1 + Ti

B(θ, 2)

Ti
θ−1

(1− Ti)
,

then, accept and set Ti = Ti; Otherwise, reject this candidate and go back to Step (2).

with the accepted Ti, set τi = Ti + 1.

4. Return τY = τ0 + ... + τn.

Proof. As before, from Lemma 4.7, we can see that τY has a compound Geometric distribution τY
D
=

τ0 +
∑N

i=1 τi, but this time with parameters N ∼ Geometric (p′), and the density of Ti is given in (4.26)

for i = 0 and (4.27) for i ≥ 1. For T0, it can be simulated directly via inverse transformation. And for

the i.i.d Ti with i ≥ 1, it can be simulated via an A/R scheme. We choose an envelop Ti which follows
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a Beta distribution with density

gT(t) =
tθ−1(1− t)

B(θ, 2)
, (5.4)

where B(θ, 2) = Γ(θ)Γ(2)
Γ(θ+2) . We have

gT(t)
gT(t)

=
1

π
sin(απ) −

1
α

t−α − tα

1 + t
B(θ, 2)

tθ−1(1− t)
= C(t) ≤ C (5.5)

In order to find the optimal parameter θ, we numerically approximate θ which minimises the A/R

constant. This is different for each α, but since α is given, each time we only need to do the numerical

optimisation once. Hence, the entire simulation efficiency will not be affected.

We know that it takes longer to generate the Parisian stopping time when α increases, as the mean

of N increases with respect to α. Furthermore, the main computation cost comes from applying the

A/R schemes to generate Ti. Hence, we design a modified approach, by changing the distribution of

Ti slightly, so that we still have a compound Geometric representation with different parameters, but

this allows us to vectorise the sampling of Ti. This might not help much for low level languages, but it

is extremely helpful in high level programming which is very much in use these days. The modified

framework is illustrated in Algorithm 5.3.

Algorithm 5.3 The modified simulation algorithm for the Parisian stopping time is given as follow:

1. Generate a Geometric random variable N ∼ Geometric(q), where

q =
p

1 + (C− 1) (1− p)
.

2. Generate a random variable τ0 by setting

τ0 = T0 + 1,

where T0 can be simulated via step 2 in Algorithm 5.1 and Algorithm 5.2.

3. For N = n, generate Ti and Vi ∼ U [0, 1] for i = 1, 2, ..., n. Set

τ̄i = (Ti + 1)1®
Vi≤ 1

C
fT(Ti)
fT(Ti)

´, (5.6)
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where C is the A/R constant to generate Ti.

4. Return τ = τ0 +
n∑

i=1
τ̄i.

Proof. We can modify the distribution of Ti slightly and design a more efficient simulation algorithm

based on the Laplace transform of the compound Geometric distribution. We start from the compound

Geometric representation for the Laplace transform (4.16) of the Parisian stopping time for the CIR.

Its denominator can be written as

1− (1− p)e−β
∫ 1

0
e−βt fT(t)dt (5.7)

= 1− (1− p)Ce−β

1∫
0

e−βt fT(t)
fT(t)

C fT(t)
dt

= 1 + (1− p) (C− 1)− C(1− p)

×

Ñ
e−β

1∫
0

e−βt fT(t)
fT(t)

C fT(t)
dt +

1∫
0

fT(t)
Ç

1− fT(t)
C fT(t)

å
dt

é
,

where C is the same A/R constant used in (5.2). Then we have the modified compound Geometric

representation

E
î
e−βτ

ó
=

pe−β

1∫
0

e−βt fT0(t)dt

1− (1− p)e−β

1∫
0

e−βt fT(t)dt

=

qe−β

1∫
0

e−βt fT0(t)dt

1− (1− q)

Ñ
e−β

1∫
0

e−βt fT(t)
fT(t)

C fT(t)
dt +

1∫
0

fT(t)
Ç

1− fT(t)
C fT(t)

å
dt

é ,

(5.8)

where q = p
1+(1−p)(C−1) . In fact, (5.8) is the Laplace transform of a compound Geometric distribution,

τ
D
= τ0 +

∑N
i=1 τ̄i, where N is Geometric with parameter q, the density of τ0 is fT0(t) and {τ̄i}i=1,2,...,N

can be simulated as in (5.6). Likewise, we can modify the simulation scheme for the Parisian stopping

time for the Squared Bessel/Bessel process by replacing p, fT, fT by p′, gT,gT, respectively.
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Table 1: CPU Time under Algorithm 5.2 v.s Algorithm 5.3 based on parameter setting α =
{0.1, 0.2, ..., 0.8, 0.9}; each point of values is produced from 100, 000 replications.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Algorithm 5.2 0.88 1.14 1.39 1.59 2.55 2.92 3.89 5.41 9.72

Algorithm 5.3 1.44 1.34 1.27 1.37 1.59 1.75 1.68 1.95 2.16

5.2 Numerical Verification

In this section, we illustrate the performance and effectiveness of our simulation schemes via various

numerical analysis. The simulation experiments are all implemented on a common laptop with Intel

Core i7-6500 CPU@2.50GHz processor, 8.00GB RAM,Windows 10, 64-bit Operating System and per-

formed in R 3.4.0. To verify the accuracy of our algorithms, we compare the estimated densities of

the Parisian stopping times for Squared Bessel/Bessel and CIR processes based on 100, 000 samples

generated from Algorithm 5.1 and 5.2 with the recursive form densities derived in Theorem 4.3. In

particular, we carry out the comparison for the Parisian stopping time of the CIR process under the

parameter settings α = 0.4, 0.6 and k = 0.5, 1. The associated density plot is illustrated in Figure 1.

The comparison of the simulated and recursive density for the Parisian stopping time of the Squared

Bessel/Bessel process under the parameter settings α = 0.4, 0.6 is illustrated in Figure 2. Since for

α = 0.5, results were obtained for the Brownian motion in Dassios and Lim (2015), we also establish

a comparison of the simulation results for Algorithm 5.1 with k close to 0, and Algorithm 5.2 against

the simulation algorithm for the drawdown stopping time of Brownian motion described in Dassios

and Lim (2017). The density plot is given in Figure 3. In general, these algorithms produce the same

sample means and the simulated densities are more or less the same. The slight difference between

Algorithm 5.1 and the other two is only due to the fact that k is only close to 0 but not equal to 0.

In addition, we carry out separate numerical experiments for Algorithm 5.2 and 5.3. Table 1 reports

the simulation times for these two algorithms under various α with 100, 000 replications. We see

that the time needed for the two algorithms are more or less the same for small α. However, when α is

large, Algorithm 5.3 outperforms Algorithm 5.2. The out-performance becomes even more substantial

when α is close to 1. In particular, it is nearly 4 times faster when α = 0.8, 0.9.

We also plot histograms of the Parisian stopping time for a CIR process with different values of

α and k in Figure 4. The first three histograms are based on parameter settings k = 1 and α =

0.25, 0.5, 0.75, and the last three histograms are based on parameter settings α = 0.25 and k = 0.5, 2, 3.5.
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Figure 1: Comparison of simulated and analytical densities with recursive form of Parisian stopping
time for CIR process with parameter settings α = 0.4, k = 0.5 and α = 0.6, k = 1, respectively.

It is clear that as we increase α and k, the mean for the Parisian hitting time also increases.

6 Application: Pricing a zero-coupon Parisian bond

In this section, we use our results to price a zero-coupon Parisian bond. We assume that the dynamics

of the interest rate follows a CIR process under the risk neutral probability measure Q, given in (1.2).

Following a simple time change, the model reduces to one following the dynamics given in (1.3),

which is a CIR process with index α and parameter k > 0. We define the zero-coupon Parisian bond

as the bond which pays off h(Rτ) at time τ for some function h, if this happens before maturity time

T. We also use Er
Q to denote the expectation under a measure Q, for a process with initial value r.

Proposition 6.1 Denote by P(r, T) the price of a bond with payoff h(Rτ) at time τ, if this happens before

maturity time T, with interest rate following dynamics (1.3), starting at R0 = r. Then the risk neutral price of

the bond is

P(r, T) = Er
Q

h(Rτ) exp

Ñ
−

τ∫
0

Rtdt

é
1{τ<T}


= e−ηrEr

Q∗
î
h(Rτ)e−2(1−α)ητeηRτ 1{τ<T}

ó
, (6.1)
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Figure 2: Comparison of simulated and analytical densities with recursive form of Parisian stopping
time for Squared Bessel/Bessel process with parameter settings α = 0.4 and α = 0.6, respectively.
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Figure 3: Comparison of simulated density of the Parisian stopping time of Squared Bessel/Bessel
process with α = 0.5 v.s. the simulated density of the Drawdown stopping time of Brownian motion
derived in Dassios and Lim (2017).

where we have η :=
√

k2+2−k
2 , and Q∗ denotes the probability measure defined by

dQ∗

dQ
|Fτ = e−2(1−α)ητeη(Rτ−R0) exp

Ñ
τ∫

0

Rtdt

é
. (6.2)
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Figure 4: Histograms of Parisian Stopping time of CIR process with α = 0.25, 0.5, 0.75, and k =
0.5, 1, 2, 3.5, respectively.

Furthermore, under Q∗, Rt is a CIR process with index α and parameter k∗ = k + 2η.

Proof. First, note that

Zt = e−2(1−α)ητeη(Rτ−R0) exp

Ñ
τ∫

0

Rtdt

é
, (6.3)

for η =
√

k2+2−k
2 is a martingale with expectation 1. We can then define the change of measure up to the

stopping time τ by the Radon-Nikodym derivative dQ∗

dQ
|Fτ = Zτ. Also let Xt =

t∫
0

Rsds. We consider

a function g : R+ → R, and let f (t, r, x) = e−x+γt−ηrg(r). Then f (t, Rt, Xt) is a local martingale if it

satisfies the following PDE

∂ f
∂t

+ r
∂ f
∂x

+ 2((1− α)− kr)
∂ f
∂r

+ 2r
∂2 f
∂x2 = 0. (6.4)
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This is equivalent to solving the following PDE

2((1− α)− k∗r)g′(r) + 2rg′′(r) = 0, (6.5)

which is the infinitesimal generator of g(R∗t ), where R∗t is a CIR process with index α and parameter

k∗ = k + 2η. We also have that f (t, Rt, Xt) =
1
Zt

g(Rt) is a Q-local martingale if and only if g(Rt) is a

Q∗-local martingale, which implies that under Q∗, Rt is a CIR process with index α and parameter k∗.

Thus, we propose two methods to price the zero coupon Parisian bond with a certain payoff h(Rτ).

The first is using Monte Carlo simulation based on (6.1), which we can write as

P(r, T)

= e−ηrEr
Q∗
î
h(R1)e−2(1−α)ηeηR11{Tr→0>1}

ó
(6.6)

+e−ηrEr
Q∗
î
e−2(1−α)ηTr→01{Tr→0<1}E

0
Q∗
î
h(Rτ)e−2(1−α)ητeηRτ 1{τ<T−Tr→0}

óó
(6.7)

For a interest rate process starting at r, we first simulate the first hitting time Tr→0 with density (2.2).

If this is greater than 1, τ is hit and we approximate (6.6) using the density for R1|Tr→0 given in

(2.20). This R1|Tr→0 can be simulated via an A/R scheme. If it is less than 1, we obtain the Monte

Carlo estimate of (6.7) by simulating τ using Algorithm 5.3, and in which case Rτ is an exponentially

distributed random variable based on (2.8). In Table 2, we present numerical examples of the digital

zero coupon Parisian bond (h(x) = 1) and the zero coupon Parisian call (h(x) = (x−K)+), for a range

of parameters α and k. In general, the price for the zero coupon Parisian bond is higher than the zero

coupon Parisian call for all α and k. We observe that the price decreases when the dimension of the

CIR process decreases, i.e. α increases. We also compare the preformance of the prices under different

α and k, with details provided in Figure 5.

Alternatively, we can use explicit expressions for the expectation (6.1) to obtain numerical prices for

the zero coupon Parisian bond. We have

P(r, T)
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Table 2: Price of zero coupon Parisian bond and zero coupon Parisian call with K = 0.15 under
parameter setting r0 = 0.05, 0.2, α = 0.4, 0.6 and k = 0.5, 1.

Payoff h(x) = 1

T α = 0.4, k = 0.5 α = 0.4, k = 1 α = 0.6, k = 0.5 α = 0.6, k = 1
r0 = 0.05 r0 = 0.05

2 0.3318 0.3141 0.1797 0.1501
3 0.4139 0.4150 0.2563 0.2255
4 0.4414 0.4568 0.3018 0.2760
5 0.4493 0.4718 0.3269 0.3071
6 0.4550 0.4800 0.3393 0.3244
7 0.4560 0.4824 0.3458 0.3407
8 0.4566 0.4826 0.3513 0.3470

r0 = 0.2 r0 = 0.2
2 0.3430 0.3282 0.1937 0.1635
3 0.4241 0.4288 0.2670 0.2370
4 0.4525 0.4691 0.3100 0.2849
5 0.4621 0.4858 0.3328 0.3160
6 0.4627 0.4939 0.3440 0.3336
7 0.4647 0.4970 0.3518 0.3449
8 0.4658 0.4982 0.3565 0.3538

Payoff h(x) = (x− K)+

T α = 0.4, k = 0.5 α = 0.4, k = 1 α = 0.6, k = 0.5 α = 0.6, k = 1
r0 = 0.05 r0 = 0.05

2 0.2675 0.1780 0.1421 0.0836
3 0.3240 0.2348 0.2098 0.1296
4 0.3500 0.2578 0.2330 0.1554
5 0.3536 0.2694 0.2518 0.1742
6 0.3624 0.2704 0.2685 0.1851
7 0.3615 0.2778 0.2699 0.1913
8 0.3658 0.2815 0.2713 0.1963

r0 = 0.2 r0 = 0.2
2 0.2712 0.1852 0.1519 0.0904
3 0.3405 0.2433 0.2116 0.1343
4 0.3583 0.2693 0.2435 0.1634
5 0.3645 0.2744 0.2605 0.1812
6 0.3658 0.2791 0.2734 0.1878
7 0.3670 0.2583 0.2871 0.1953
8 0.3639 0.2837 0.2824 0.1996

= e−ηr
∞∫

0

h(x)
k∗eηx

1− e−2k∗ e−
k∗x

1−e−2k∗ dx
T∫

0

e−2(1−α)ηt f r∗
τ (t; Tr→0 < 1)dt

+e−ηr
∫ ∞

0
h(x)eηx k∗e2k∗

e2k∗ − 1

Ç
xe2k∗

r

å− α
2

e−
k∗(r+xe2k∗ )

e2k∗−1 Iα

(
2k∗
√

xre2k∗

e2k∗ − 1

)
dx,

where f r∗
τ denotes the probability and Parisian stopping time density for a CIR process under the

measure Q∗. As before, we split into the cases when Tr→0 < 1 and Tr→0 > 1. In the first case, observe

that τ and Rτ are independent, and Rτ is the CIR meander starting at 0, with density given by (2.8).

For Tr→0 > 1, we have τ = 1 and the density of Rτ is the transition density of R1, conditioned to stay

positive throughout, and is given by the transition density in (2.20).
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Figure 5: Price of zero coupon Parisian bond and call with respect to α and k under the parameter
setting r0 = 0.05, T = 8, and K = 0.15.

.

7 Conclusion

In this paper, we derive various results that extend excursion theories of the CIR and Squared Bessel/Bessel

processes. We also obtain Azéma martingales for these processes. Furthermore, we study the law

of the Parisian stopping times based on these Azéma martingales. We develop exact simulation al-

gorithms to sample these Parisian times based on a compound Geometric representation. Extensive

numerical experiments and tests are established in order to demonstrate the accuracy of our results.

Finally, we introduce the zero coupon Parisian bond and propose two approaches for its pricing. We

give numerical examples of the prices for bonds with different payoff structures.
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