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Do low-skilled workers benefit from the growth of high-technology industries in their local economy?
Policymakers invest considerable resources in attracting and developing innovative, high-tech industries, but
there is relatively little evidence on the distribution of the benefits. This paper investigates the labour market
impact of high-tech growth on low and mid-skilled workers, using data on UK local labour markets from
2009-2015. It shows that high-tech industries — either STEM-intensive ‘high-tech’ or digital economy — have a
positive jobs multiplier, with each 10 new high-tech jobs creating around 7 local non-tradeable service jobs,

around 6 of which go to low-skilled workers. Employment rates for mid-skilled workers do not increase, but they
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benefit from higher wages. Yet while low-skilled workers gain from higher employment rates, the jobs are often
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1. Introduction

High-technology industries are seen as vital for economic develop-
ment, and policymakers invest considerable resources in attracting and
growing the sector (e.g. Youtie and Shapira, 2008; Brown and Mason,
2014). Workers in tech tend to be highly-skilled and well-paid. But
what impact do these innovative industries have on the living standards
of low-skilled workers? The literature essentially takes two positions on
the broad economic effects of tech (Lee and Rodriguez-Pose, 2016).
Studies focused on job creation have tended to be positive, based on the
idea that high-technology is a tradeable sector and so has a ‘multiplier
effect’ creating jobs in non-tradeable sectors in the same local economy
(North, 1955; Tiebout, 1956). In particular, Moretti's (2010; 2013)
work has highlighted potentially large multipliers from high-tech-
nology industries: in his research, each additional job created in high-
tech creates between 4-5 new jobs in the non-tradeable service sector.
Based, at least in part, on this evidence, policymakers often aspire to
transform their local economies into high-tech hubs. For example, in
2011, then UK Prime Minister David Cameron (2011: 1) argued that “In
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the UK, we are creating a tech hub, a Silicon Valley of our own in East
London”.

Yet others have questioned this optimistic view. A pessimistic lit-
erature investigates the extent to which economic development stra-
tegies focused on high-technology industries benefit local workers
(Bartik, 1991; Goetz et al., 2011; Breau et al.,, 2014; Kemeny and
Osman, 2018; Echeverri-Carroll et al., 2018). Studies of cities with
strong high-tech economies have highlighted the problems of inequality
and polarisation which might result. For example, Saxenian (1983)
notes the problem of low-wage service work in Silicon Valley. Similarly,
Florida (2005) highlighted growing inequality in high-technology cities
between affluent workers in advanced sectors and the low-wage
workers in personal services nearby, and more recently has expressed
concern about a ‘new urban crisis’ in the most innovative cities (Florida,
2017). Essentially, this literature suggests that while growth in skilled
tech employment may create new jobs for less skilled workers, these
jobs are not all well-paid and high housing costs will further reduce
living standards (Florida, 2017). Silicon Valley’s economic success has
come at the cost of high inequality, low wage employment, and high
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housing costs. In short, there is a dark side to high-tech growth: benefits
to skilled workers, but with low-skilled workers losing out.

Despite this potential ‘dark side’, UK policymakers have been en-
thusiastic in their support for high-tech industries (see Foord, 2013).
This was particularly the case following the financial crisis of 2009.
Concerned about the economy’s focus on finance, the UK government
attempted to rebalance the economy to other sectors (Berry and Hay,
2016). A set of ‘Catapult Centres’ were launched, modelled on the
German Fraunhofer Institutes with the aim of developing commercial
collaborations between business and scientists (Kerry and Danson,
2016). In London, the legacy of the 2012 Olympics was partly focused
on a new science campus, while a cluster of high-tech firms near
Shoreditch was branded ‘Tech-City’ (Nathan and Vandore, 2014). Other
cities benefited from investments such as Manchester’s Science Park
and new research institutes focused on commercially viable research
(Lee, 2017). Regardless of whether these efforts were successful, the
post-crisis period also provided relatively favourable conditions for
growth in the sector. New technologies such as smartphones diffused
into the regular economy and provided new opportunities at a time
when the national economy was weak. The result was a relatively
strong growth performance in much of the tech sector.

What is the impact of the growth in high-technology employment on
low skilled workers in the local economy? This is an important ques-
tion, given both government investments in the sector and its likely
future growth. Empirical work tends to be relatively polarised between
the multipliers literature, which tends to highlight job creation
(Moretti, 2010; Moretti and Thulin, 2013; Van Dijk, 2017) and the
literature on wages which focuses on the problems of inequality and
low wage work in the context of high housing costs (Echeverri-Carroll
and Ayala, 2009; Breau et al., 2014; Lee and Rodriguez-Pose, 2016;
Florida, 2017; Kemeny and Osman, 2018). Yet, to the best of our
knowledge, these studies have focused on the extreme example of the
United States and tended to either focus on jobs or wages. Moreover,
most definitions of ‘high-tech’ have tended to ignore the digital
economy firms which dominate narratives of the sector.

This paper addresses these gaps by considering the economic impact
of high-technology industries on less-well educated workers in 182
British local labour markets between 2009-2015. Our focus is on two
core parts of ‘tech’: STEM-intensive high-technology industries, which
includes a broad and diverse set of industries including some oil and gas
and pharmaceuticals (Bakhshi et al., 2015), and the digital economy
sector which is focused on new digital technologies (Office of National
Statistics, 2015). We adapt the multiplier models used by Moretti
(2010) and test the impact of these industries on employment for less
educated groups, alongside fixed effects panel models considering the
impact on wages. The results suggest a positive jobs multiplier from
high-technology sectors, but that the effect is smaller than in US evi-
dence. The jobs multiplier increases employment rates for less-well
educated workers with no ‘crowding out’ of tradeable industries.
However, there is some evidence that growth in tech is associated with
reductions in the average wage for less well-educated workers, sug-
gesting new jobs are not well paid, a problem slightly worsened by
higher housing costs in successful high-tech local economies.

Our paper makes two main contributions to the literature. Firstly,
studies are largely US-focused with less evidence from countries with
weaker high-tech economies. Moreover, they focus on the pre-crisis
period, with no evidence on multipliers in the sluggish labour markets
of most developed economies since - a significant omission given the
weak wage growth since 2007 (Machin, 2015). Secondly, studies tend
to focus on either job creation (e.g. Moretti and Thulin, 2013) or wages
(e.g. Lee and Rodriguez-Pose, 2016) with little work testing both. These
omissions are particularly important for innovation studies, given the
importance of spatially targeted investments in high-technology as an
innovation policy tool (Brown and Mason, 2014) and growing interest
in how innovation-intensive growth can be made inclusive (see Stilgoe
et al., 2013; Zehavi and Breznitz, 2017). A further contribution is the
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use of more precise definitions of high-technology than existing work.
We include one relatively broad definition, but extend this to include an
indicator of ‘digital economy’ which will capture other parts of the
high-tech economy.

The paper is structured as follows. Section 2 sets out the basic fra-
mework for analysis in the literature on multipliers and extends it to
consider the impact on the living standards of local workers. Section 3
outlines the data on both sectors and local labour markets which will be
used to test these predictions. Section 4 presents models for jobs
growth. Section 5 extends this to consider wages and the mechanisms
through which they might change. Section 6 concludes with implica-
tions for theory and policy.

2. Theoretical background
2.1. Job multipliers from high-technology industries

The idea of local multipliers from tradeable industries is one of the
most important theories in urban and regional economics. It has a long
history (see O’Sullivan, 2003 for a textbook example), but has been
popularized by recent work by Moretti (2010; 2013) and Moretti and
Thulin (2013). The basic multiplier framework divides economic ac-
tivity into two types: non-basic production, such as retail, restaurants,
personal services or construction, which services local demand; basic or
tradeable production, such as manufacturing or tradeable services, which
creates local demand. An exogenous shock to the tradeable sector —
such as the successful commercialization of a new product — has knock-
on impacts on the local economy. The initial benefit to the tradeable
sector then leads to a “multiplier effect” in the local economy, largely in
non-tradeable sectors. For example, if a high-tech firm is created in an
area, the local economy benefits from the spending of the firm and the
spending of workers, and this leads other local industries to benefit.

Several factors determine the size of the multipliers. The first is the
sector itself — its supply chain and impact on other local sectors. Some
high-technology industries may aid growth in other local sectors, for
example by employing lawyers or consultants. Others may be relatively
disengaged from local supply chains. Some advanced industries may
play a role in stimulating innovation in other sectors via input-output
linkages (Bakhshi and McVittie, 2009; Isaksson et al., 2016), and this
might happen locally. The second impact comes from the local spending
of the workers in tradeable industry. Well-paid, high-skilled workers in
industries like tech have more money to spend locally than less well-
paid workers (Moretti and Thulin, 2013).

High-technology industries are seen as having particularly large
multipliers. Moretti (2010; 2013) argues that the standard multiplier
effect ignores the potential benefits of high skilled employment on job
creation, and productive sectors with high salaries can have a dis-
proportionate local impact. His research on US cities suggests that each
additional job in high-tech industries — defined as Machinery and
Computing Equipment, Electrical Machinery and Professional
Equipment - is associated with an additional 4-5 jobs in the rest of the
local economy over the next ten years. High-technology industries have
a combination of well paid, skilled jobs, and strong supply chains,
which might mean they have a disproportionate impact on regional
economies. They are likely to produce many of the most significant
innovations in the new economy. Other studies have come to similar
conclusions. For example, Gitell et al. (2014) find that growth in the
high-tech sector is an important determinant of total employment
growth.

2.2. High-technology, wages and costs

While the literature on job creation tends to focus on the benefits of
high-tech growth, fewer studies have directly considered the distribu-
tion of the gains (Lee and Rodriguez-Pose, 2016). Yet at least three
literatures have highlighted the relationship between concentrations of
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high-skilled workers in innovative sectors and personal service jobs.
Studying global cities, Sassen (2001) notes the importance of a low-
wage service class of cleaners, security guards and other personal ser-
vice workers close to the affluent workers in finance and other ad-
vanced sectors. Similarly, the literature on skills-biased technological
change has highlighted the growth in these low wage service jobs to
fulfil functions outsourced by the affluent, but time poor, workers
whose incomes have been boosted by new technology (Autor and Dorn,
2013). Empirical studies of human capital multipliers come to similar
conclusions: Kaplanis (2010a; 2010b) shows that an increase in the
share of skilled workers in a travel-to-work area is associated with
higher wages and probabilities of employment for low skilled workers.

In the general equilibrium model of a regional economy, growth in
one sector may have knock-on impacts on the rest of the regional
economy (Moretti, 2011). Moretti (2011) describes this situation in
detail. To summarise, an exogenous shock - such as a commercially
successful innovation - will increase productivity locally. This pro-
ductivity shock will provide an incentive for workers to move to the
more productive local labour market. But in-migration causes an in-
crease in the demand for housing, which is limited in supply. Part of the
benefits of the productivity shock go to labour, part to land or property
owners. In the extreme case that land supply is perfectly fixed, all of the
benefits go to landowners. Any increase in land and labour costs will
have a second order effect in the local economy. Growth in non-
tradeables will depend on the balance of these costs against the in-
creased demand. For tradeables, which may not benefit from increased
local demand, there will be an increase in costs. Because of this, growth
in high-tech may squeeze out other tradeable sectors in the local
economy.

There is some empirical evidence to support this ‘squeezing out’
effect. Faggio and Overman (2014) consider the impact of public sector
growth on local employment, finding each additional public-sector job
creates 0.5 jobs in the non-tradeable service sector (services and con-
struction), but comes at a cost of 0.4 jobs in other tradeable employ-
ment in manufacturing. If these compositional effects do apply locally,
the impact will depend on the type of jobs which are created and de-
stroyed. Tradeable jobs tend to be better paid than non-tradeables, with
manufacturing in particular seen as offering well paid employment for
relatively less well-educated workers (Sissons et al., 2018). Growth in
tech might squeeze some of these jobs out, but replace them with re-
latively low paid personal service work.

Other theoretical work has highlighted the potential of knowledge
spillovers from high-technology industries to other parts of the urban
economy (Fallah et al., 2014). For example, Winters (2014) shows ex-
ternal wage effects from graduates in Science, Technology, Engineering
and Maths (STEM) into other parts of the local economy, and argues
that this represents a form of human capital spillover. Workers in other
sectors may learn from skilled, innovative workers with STEM skills.
Similar processes may operate from high-tech industries which often
have, almost by definition, high shares of STEM employment. In these
cases, workers will gain from higher productivity, which will then in-
crease their wages.

In short, high-technology may influence wages for other workers in
a number of ways, primarily: (1) by changing the sectoral or occupa-
tional composition of the local labour market, for example through new
job creation in personal services or by squeezing out manufacturing, (2)
by increasing labour demand more generally, or (3) by increasing
worker productivity, through learning or knowledge spillovers.

However, there is relatively little empirical work on high-tech-
nology industries and the wage distribution. One problem is that of
disentangling the impact of high-tech growth from other potential
drivers of local employment or wage changes. Studies tend to use an
instrumental variable approach to address this. For example, Echeverri-
Carroll and Ayala (2009) use a cross-section and to show that workers
in a high-tech city earn a premium of around 4.6%, but that the pre-
mium is higher for high than low skilled workers. Their instrument is
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the presence of a land-grant university. In a panel study using a Bartik
style shift-share instrument, Lee and Rodriguez-Pose (2016) consider
the impact of tech employment in US metropolitan statistical areas on
the wage distribution and poverty rates. They find that tech employ-
ment is associated with increased wages for less well-educated workers,
but that the benefits accrue to those with incomes around double the
poverty line and do not trickle down to those in poverty. Although they
do not always consider causality, studies on the relationship between
innovation and inequality tend to find a positive link between the two,
although they do not assess whether this is because of high incomes or
wages at the top of the distribution, or lower wages at the bottom (see
Lee, 2011; Lee and Rodriguez-Pose, 2013; Breau et al., 2014). In related
work, Ciarli et al. (2018) show that local Research and Development (R
&D) activity has no local multiplier effect, but does change the com-
position of employment in UK TTWAs. The effect depends, however, on
the initial structure of the local economy.

Case study evidence suggests significant problems in cities with
strong high-tech economies. The evidence is focused on the extreme
case of Silicon Valley. Saxenian (1983: 256) argued that high-tech-
nology had “transformed the local class structure” where:

“Semiconductor production generated a bifurcated class structure in
the county, one which was distinguished by a large proportion of highly
skilled engineers and managerial personnel alongside an even larger
number of minimally skilled manufacturing and assembly workers

But the division in more recent studies is more often between those
working in the sector, and those in personal service occupations which
support it. For example, Donegan and Lowe (2008) show that high-tech
cities are more unequal, and suggest that poorly paid personal service
work may be to blame. Yet while these studies suggest a relationship,
they do not test the causal impact of high-tech growth on low-wage
jobs. In the remainder of the paper, we set out to address this.

3. Data and descriptive statistics
3.1. Spatial units

Our units of analysis are Travel to Work Areas (TTWAs). Developed
by Coombes (2015) and the Office of National Statistics (2015), TTWAs
are probably the most commonly used functional economic units for the
United Kingdom. They comprise relatively self-contained local labour
market areas, with the basic definition of around 75% self-containment
with at least three quarters of the local workforce also living in the area
and a minimum economically active population of 3,500 (Office of
National Statistics, 2016). Using these commuting zones should mini-
mize ‘leakage’ of any multiplier outside the local economy (Gordon,
1999; Gordon and Turok, 2005). According to the Coombes calcula-
tions, there are 212 TTWAs in Great Britain, 160 of which had popu-
lations of greater than 60,000 in 2011. Northern Ireland is sadly ex-
cluded because the local level data we use is not published at local
authority level there.

While the TTWAs are defined using very small geographical units,
the wage and skills data used in this paper is only available for larger
Local Authority (LA) areas." To match the two geographies we con-
struct a new set of TTWAs where LA is allocated into the TTWA with
which it has the largest physical overlap. Testing shows that this pro-
vides a good approximation of Coombes’ TTWAs, with the exception of
London which has a large green belt and so loses a significant number
of outer boroughs. To address this, we use the official Greater London
Authority area as London’s TTWA. The result is that we have fewer

! More precisely: the TTWAs are defined using Lower Level Super Output
Areas (LSOAs), but the Annual Population Survey — used for the wage and in-
dividual data - is only available at the Local Authority level. To ensure these are
as detailed as possible, we use the boundaries from before the 2009 LA re-
organisation which reduced the number of LAs.
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TTWAs than Coombes with a larger average size and far fewer very
small TTWAs.”

3.2. Defining high-technology industries

The main source of data for employment is the Business Register
and Employment Survey (BRES), a local-level employment survey in
the UK and the official government source of employment estimates.
Information is collected from businesses across the UK as a whole, with
around 80,000 firms sampled each year from a population of around 2
million.” Data is for employees and business owners (such as partners in
a company, or sole proprietors). However, it misses businesses not re-
gistered for either Value Added Tax (VAT) nor Pay as You Earn (PAYE)
and so the vast majority of self-employed people. While the raw source
of the BRES data begins much earlier, our choice of relatively fine
sectoral definitions means our data begins in 2009, when the 2007
Standard Industrial Classification (SIC) code definitions were applied.

The BRES data allows analysis at the relatively fine sectoral level of
four-digit SIC codes. We use it to construct our dependent variable: non-
tradeable employment. The definition for non-tradeables is an adapta-
tion of that used by Jensen and Kletzer (2006) and Faggio and Overman
(2014)." Essentially, this methodology assumes that economic activities
which are broadly geographically dispersed are untradeable; those
which are highly concentrated are tradeable. The distinction between
tradeable and non-tradeable industries is not binary, so to ensure our
results are relatively clear we choose a relatively tightly defined set of
industries which correspond to the most geographically dispersed ca-
tegory produced by Jensen and Kletzer. This includes construction and
a set of non-tradeable services (sale and repair of motor vehicles; retail;
hotels and restaurants; some financial intermediation; some real estate,
renting and business activities, and other community activities). These
industries are all relatively geographically widespread, and so we as-
sume they cannot be easily traded over long distances. Full codes are
given in table Al in the appendix.”

There is no single definition of high-technology industries. The most
commonly used definition comes from Hecker (2005) who proposes
three potential definitions of high-technology: (1) based on share of R&
D employment, (2) use of high-technology production, or (3) produc-
tion of high-technology products. Studies focused on the United States
such as Fallah et al. (2014) and Lee and Rodriguez-Pose (2016) use a
definition based on Hecker’s (2005: 58) categorisation which was based
on the “science, engineering, and technician occupation intensity” of
the industry. However, this US-focused definition may not reflect the
UK’s industrial structure (as different industries may be tech-intensive)
and there may be problems mapping it onto SIC codes.

Our definition instead comes from the replication of Hecker con-
ducted by Bakhshi et al. (2015) who comprehensively review defini-
tions of the high-tech economy and construct a new set of indicators
based on the SIC 2007 codes for which BRES data is available. Bakhshi
et al. (2015) adapt Hecker’s approach in the following manner. They
begin by defining a similar set of Science, Technology, Engineering and
Maths (STEM) occupations to those used by Hecker.® They then select

2 Note that experimentation using 2001 TTWA boundaries leads to very si-
milar results.

3 This is roughly a 4% sample of the business stock. The source is generally
used as the best available measure of the UK business stock locally.

4 This adaptation is for 2003 SIC codes, so we adapt it for 2003 SIC codes to
use for 2007 SICs. This does not seem to involve a significant loss of detail.

5 We remove one industry — Wired telecommunications activity — from the
definition of non-tradeables because it also falls in our definition of ‘tech’.

© They note that they exclude ‘a number of technician roles’ which Hecker
includes (pp. 32) and exclude a small number of industries with small sample
sizes in occupational data. These are as follows (with SOC codes in parenthesis).
Engineering: Civil Engineers (2121), Mechanical Engineers (2122), Electrical
Engineers (2123), Electronics Engineers (2124), Design and Development
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all industries with STEM employment above a threshold of 15% of total,
on the basis that this seems to provide a justification for a set of in-
dustries which is both similar to the commonly used Eurostat high-
technology definition (but more detailed) and also similar to that given
by Hecker for the United States. The result is a set of STEM-intensive,
high-technology industries which includes much of pharmaceuticals,
high-technology manufacturing (such as consumer electronics), but also
technical industries related to resource extraction such as pipelines. We
make one minor change, excluding ‘reinsurance’ as it seems relatively
distinct in spirit from the other high-technology industries in the list.
The full list of included SIC codes is given in table A2 in the appendix.
Overall, we refer to this industry as “high-technology”.

One significant concern with this definition is that - while it is both
rigorously defined and close to the measures used in other studies - it
missed some industries which are commonly considered ‘tech’. To ad-
dress this problem, we define a second category of industries based on
the OECD definition of the digital economy which is used by the UK
government (see Office of National Statistics, 2015; Department of
Culture, Media and Sport, 2016). This includes some computer manu-
facturing, but also software development, web portals, and other ICT
intensive activity. Any digital economy firm which forms part of
Bakhshi’s definition of ‘high-tech’ becomes digital economy. Full defi-
nitions are given in Appendix A. We term this ‘digital economy’.

The analysis is focused on the aggregation of these two industries,
high-tech and digital economy. On average, just under 7 percent of em-
ployment in British cities is in these sectors, a figure which changes
little between the two periods.

3.3. Wages and employment

We use a second dataset, the Annual Population Survey (APS), to
construct variables for wages by skill group, employment rates, and
self-employment. The APS is a rolling quarterly labour market survey
(Office for National Statistics, 2017). It is focused on individual labour
market activity, and the survey contains good information on employ-
ment situation, occupation and sector, wages, education and other
personal characteristics such as age and gender. The APS aims to have a
sample of at least 510 economically active people in each Local Au-
thority, and so allows analysis of labour market characteristics at a local
level with some precision (Office for National Statistics, 2017). We use
the annual data for January to December, which gives around 190,000
observations of working age individuals.

We use the APS to calculate initial control variables and variables
for employment rates and wages. As the focus of this paper is on ben-
efits to low and mid-skilled workers, we use the APS to divide our data
into three skill groups. The UK population is seeing a long-term increase
in skill levels, which is being reflected in the labour market and may
change definitions of ‘low skill’ based solely on qualifications (for ex-
ample, apprenticeships provision expanded significantly in the period
in question, while the average quality has fallen). At the same time,
educational standards are closely associated with age meaning that
there may be biases depending on the age profile of TTWAs. To account

(footnote continued)

Engineers (2126), Production and Process Engineers (2127), Engineering
Professionals n.e.c. (2129), and Chartered Surveyors. Information Technology:
Information technology and telecommunications directors (1136), IT specialist
managers (2133), IT business analysts, architects and systems designers (2135),
Programmers and software development professionals (2136), Web design and
development professionals (2137), Information technology and tele-
communications professionals (2139). Science: Chemical scientists (2111),
Biological scientists and biochemists (2112), Physical scientists (2113), Natural
and social science professionals n.e.c. (2119), Conservation professionals
(2141), Environment professionals (2142), Research and development man-
agers (2150), Actuaries, economists and statisticians (includes mathematicians)
(2425).
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for this, we divide all those aged 18-64 into three roughly equally-sized
groups on the basis of the ranking of their qualifications: skilled
workers, most of whom are qualified to degree level or above; mid-
skilled workers, with better than General Certificate of Secondary
Education (GCSE) qualifications (a set of qualifications normally taken
at age 16, after around 11 years of education); and, low skilled workers
who have either poor GCSEs or no qualifications. Where educational
categories overlap two ‘thirds’ we randomly allocate into one or the
other. As the focus is on the external benefits of high-technology sec-
tors, we also exclude workers in high-technology and digital economy
from indicators using these skill groups.

We also use APS to construct indicators of self-employment. BRES
does not include the vast majority of self-employed workers, yet around
45% of UK employment growth between the 2008 recession and 2015
was in self-employment (Tomlinson and Corlett, 2016). Much of the
growth was in non-tradeable sectors such as driving or construction (see
Ciarli et al., 2018 for more evidence on this). To account for this, a
measure of non-tradeable self-employment is also added to the BRES
figures, giving a variable for total employment and self-employment in
non-tradeables.

In a simple descriptive analysis, the two measures of high-tech and
digital economy employment growth and non-tradeable employment
and self-employment seem closely related. Fig. 1 shows scatter plots of
the relationship between growth in overall high-technology and growth
in non-tradeable employment (local services and construction) on the
other. It shows a clear positive relationship between growth in high-
technology and digital economy and growth in non-tradeables and self-
employment.

4. Model and results
4.1. Empirical strategy

Our first models focus on changes in employment. For these, we
follow Moretti (2010) and estimate adapted models of the form:

ANonTrade, = a + B; ATradeable. + v X, + ¢ @

where, ANonTrade, is the change in the log number of non-tradeable
jobs and self-employment in TTWA ‘¢’ between 2009-2015,
/\Tradeable . is the change in the log number of tradeable high-tech
jobs in TTWA ‘¢’ in the same period, the vector X accounts for initial
TTWA characteristics which will affect future non-tradeable employ-
ment growth, and ¢ is the error term. The key figure of interest is the
coefficient 3 on high-tech industries. If § is positive, this indicates that
growth in high-technology is associated with growth in non-trade-
ables.” Essentially, we are interested in whether growth in high-tech
industries in the period lead to changes in the number of non-tradeable
jobs.®

One concern is that initial conditions may be correlated with both
growth in non-tradeables and share of tradeables so, following Faggio
and Overman (2014), we add a series of controls. First, skill levels are
an important predictor of economic success. A variable for the share of
the population qualified in the top third of the national population
(roughly degree or medical professional level or above) is used. Sec-
ondly, we control for initial economic conditions and the available la-
bour force using the unemployment rate. This should be negatively

7 Note that using the Faggio and Overman (2014) method, which uses con-
tribution to total employment growth as the dependent variable, leads to little
change in the main results.

8 Another option would have been to run a year-on-year panel model. Our
approach offers two benefits: it allows us to compare our results with other
studies of multipliers, such as the Faggio and Overman (2014) paper, and —
because the full effect of a new tech job is likely to take some time to come
through - it allows us to identify medium term effects.
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Fig. 1. High-technology industries non-tradeables
ment.2009-2015.
Source: BRES, APS, and authors’ adaptation. Each dot represents one of 182

travel-to-work areas.

versus employ-

associated with subsequent employment growth. Third, to control for
potential agglomeration economies we use the log of total employment.
If larger areas produced more jobs in the period, we expect this to be
positive. In addition, we include regional dummies for the 11 Govern-
ment Office Regions. These should control for unobserved region-spe-
cific factors and differential policy in Wales and Scotland, it also allows
us to partially filter out initial regional differences in high-tech em-
ployment. Summary statistics on the variables used are given in
Table 1.

4.2. Instrumental variables

The key problem with this model is endogeneity. Some sort of
idiosyncratic shock may affect both growth in high-tech employment
and non-tradeables. This is quite plausible in the time period we in-
vestigate. For example, the UK government launched a series of re-
search centres in the early 2010’s which were designed to stimulate
growth in high-technology or digital economy industries, but which
were likely also to impact on non-tradeable employment. This would
result in a positive correlation between high-tech and non-tradeables,
biasing upwards the size of the coefficient.

To address this problem, we use two instrumental variables (IVs).
The first is a shift-share instrument which builds on Bartik’s (1991)
seminal book and has become relatively standard in the literature (for
example, Moretti, 2010; Faggio and Overman, 2014; Lee and
Rodriguez-Pose, 2016; Van Dijk, 2017). Our instrument is calculated
using predicted employment growth in each sub-sector based on initial
local shares in each industry we focus on (in 2009) and national growth
rates over the subsequent period.’ Simply, we take initial employment
in the digital economy sector and assume that the sector grows at the
same level as national level employment in that sector. More formally,
developing Overman and Faggio (2014: 96) our instrument is calcu-
lated as:

Techy,
Emps, c

Tech; ,, — Techs
Tech,, (2)

where s is 2009 and t is 2015, for TTWA ‘c’ or Great Britain ‘n’. Tech ./
Emp; . is the share of local employment in either digital economy or
tech in 2009, and we multiply it by the growth rate of either tech or
digital economy in Britain overall. Following Faggio and Overman
(2014) and Van Dijk (2015) national growth rates are calculated to

9 We use growth in digital economy overall as the instrument rather than that
in each 4 digit-SIC code within digital economy or high-technology. This is
because our definitions of tech include lots of smaller sub-sectors with lots of
zeros in 2009, but also because the sector is relatively finely defined.
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Table 1

Summary statistics.
Variable Source N Mean SD Min Max
All high-tech, 2009-2015 BRES 182 0.028 0.087 -0.199 0.405
Digital sector growth, 2009-2015 BRES 182 —0.016 0.281 —0.964 0.965
High-technology growth, 2009-2015 BRES 182 0.056 0.253 —0.696 1.026
Non-tradeable growth, 2009-2015 BRES + APS 182 0.020 0.070 -0.179 0.314
Real low skilled hourly pay growth, 2009-2015 APS 182 —0.045 0.097 -0.319 0.269
Real mid-skilled hourly pay growth, 2009-2015 APS 182 0.026 0.107 —0.333 0.399
Real low skilled hourly pay growth — adjusted for local residential prices, 2009-2015 APS 160 —0.053 0.099 -0.321 0.271
Real mid-skilled hourly pay growth - adjusted for local residential prices, 2009-2015 APS 160 0.033 0.107 —0.311 0.408
High skill %, 2009 APS 182 0.259 0.063 0.069 0.458
Unemployment %, 2009 APS 182 0.068 0.025 0.000 0.148
Total employment (natural log), 2009 BRES + APS 182 11.447 0.950 9.267 15.421

Note: BRES = Business Register and Employment Survey; APS = Annual Population Survey. Regional dummies for East Midlands (15 TTWAs), East (19), North East
(9), North West (17), Scotland (22), South East (25), South West (31), Wales (13), West Midlands (14), and Yorkshire and The Humber (17).

exclude employment growth in the TTWA in question.

The instrument helps in that it strips out any of the idiosyncratic
shocks which may bias the coefficient. To see this intuitively, consider a
case of two TTWAs, one of which has a higher initial share of high tech
and digital economy jobs but, because of this, lower employment in
non-tradeables. If government policy attempts to simulate high-tech
employment in the TTWA with more tech jobs, but in doing so increases
non-tradeable employment, it will bias upward the coefficient. But by
using an instrument based on predicted shares, these idiosyncratic
policy shocks will be stripped out of the model. Using this shift share
instrument thus helps move us closer to a causal interpretation.

However, while the shift-share is relatively standard in the litera-
ture, it has recently been criticised by Jaeger et al. (2018) in circum-
stances where there may be correlation in levels over time. This is
clearly a problem in the case of high-tech or digital economy employ-
ment, as certain TTWAs may have institutions or characteristics which
make them more likely to develop this sector. To address the problems
of shift-share instruments we draw on a similar argument to Kemeny
and Osman (2018), who argue that historic patents will have led to
current specialization in high-technology industries, but will not di-
rectly influence non-tradeable employment. We use the location of the
Schools of Art and Design of the Victorian and Edwardian period of
British history (1837-1914). The Victorian period of British history saw
a desire to celebrate science and technology alongside a concern that
the UK needed to maintain skills in the arts and new technologies such
as porcelain. A large number of Schools of Art (originally often called
Schools of Design) were established, some by private benefactors but
most by the Government’s Science and Art Department (Jarrell, 1996).
In our case, we argue that the Victorian Art Schools are likely to have an
impact on employment and wages for low skilled workers only through
their impact on the sectoral composition of the skilled economy. Places
with these schools are likely to be focused on technical knowledge
which still influences high-technology industries today, and in the
period of growth after the crisis they will have seen greater increases in
high-tech and digital economy jobs. Yet this impact is specific enough
that it impacts through its impact on non-tradeable employment via
high-technology employment rather than human capital in general
(their presence is only weakly correlated with the share of degree
educated workers in 2009, r = 0.16).

We were unable to find a single comprehensive list of these schools.
We use the Times Good University Guide 2019 (Times Higher
Education, 2019), which lists all arts courses in the UK, as our sampling
frame. We then individually research each of these art departments to
find their historic roots. We exclude any institution founded after World
War One, so exclude top-ranked art departments such as Brunel
University (founded in 1966) and the Lancaster Institute for the
Contemporary Arts (part of Lancaster University and founded in 2005).
The full list then includes some which are located in London (for ex-
ample, Camberwell College of Arts) but others are located in both ex-

industrial areas (Wolverhampton’s Municipal School of Art) and per-
ipheral rural areas (Falmouth College of Art). The resulting instrument
should capture the historic roots of technological knowledge, and ad-
dress the problem that our shift-share IV is based on relatively recent
data. However, it does have limitations. In particular, it cannot dis-
tinguish between the two sub-sectors. Because of this, we use it to
supplement our shift-share instrument in certain models only. A full list
of art schools is included in Appendix A3 and a correlation table in A4.

4.3. Jobs multiplier model

The first set of results show the impact of high-technology on jobs in
non-tradeable employment and self-employment. The results are given
in Table 2. The first three columns present the overall impact using the
OLS estimator. The first two include only region dummies (column 1)
and then also controls (column 2). While the coefficient is positive and
relatively large in magnitude, it is only statistically significant at the
10% level without controls. Following Moretti (2010) we consider the
size of the multipliers by multiplying the elasticity against the relative
size of the two sectors. However, we do so with caution, given the low
statistical significance and so imprecision in the results. These are
around 0.4 new jobs per tech job, a relatively low figure compared to
US estimates, perhaps accounting for the low level of statistical sig-
nificance. A visual inspection and Grubb test show a repeated outlier —
Darlington, where a large Hitachi plant had opened in 2015. To test if
the results stand without this, column 3 repeats the results excluding
the outlier. There is little change in the size of the coefficient.

However, in contrast to the OLS results the more robust instru-
mental variable (IV) results show a positive and statistically significant
result between overall high-tech and non-tradeable jobs, with multi-
pliers which are much larger. Columns 4 and 5 show the shift-share IV
results with and without controls. The instrument works well, and first
stage tests show no cause for concern. The coefficient is larger, and the
multiplier increases to between 0.58 and 0.71. The coefficient is higher
than that for the OLS, suggesting that endogeneity may bias down the
results. Our preferred model is given in column 6 which includes con-
trols but excludes Darlington. This gives a multiplier of 0.71, implying
that for every 10 new jobs in digital or high-tech, around 7 new jobs are
created in non-tradeables.

Columns 7 to 9 repeat these results with the alternative instrument,
the historic art and design schools. The F-statistic is lower but above
acceptable levels, and first stage test results are good. The variable for
high-technology and digital economy growth is statistically significant
in all three cases, suggesting a causal impact on non-tradeable em-
ployment. The size of the effect is much higher, however, ranging be-
tween 1.79 and 2.06. Given that the results from the shift-share seem
more precisely estimated, we interpret this figure as an upper bound on
the results.

Our preferred (IV) specification gives a multiplier of just under 0.7
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Table 2
Impact of high-technology industries on non-tradeables, 2009-2015.
(€3] ) ®3) @ ) (6) @ ®) (©)]
Dependent variable: /\Non-tradeable jobs + self-employment, 2009-2015
Estimator OLS OLS OLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
Sample Full Full No Outlier Full Full No Outlier Full Full No Outlier
Growth in high-tech and digital, 2009-15 0.0754* 0.0655 0.0687 0.110%* 0.101* 0.124+* 0.358%** 0.320%* 0.312%*
(0.0435) (0.0431) (0.0434) (0.0561) (0.0547) (0.0525) (0.129) (0.162) (0.159)
High skill %, 2009 —0.0487 —0.0257 —0.0596 —0.0423 -0.127 —0.0987
(0.141) (0.140) (0.133) (0.131) (0.142) (0.138)
Unemployment %, 2009 —0.417 —0.391 —0.385 —0.342 —0.190 -0.173
(0.340) (0.329) (0.326) (0.317) (0.359) (0.355)
Total employment (In), 2009 0.0102 0.00923 0.00961 0.00823 0.00575 0.00486
(0.00698) (0.00697) (0.00688) (0.00687) (0.00905) (0.00893)
Constant 0.0180 —0.0588 —0.0547 0.0112 —0.0584 —0.0539 —0.0378 —0.0554 —0.0511
(0.0264) (0.0790) (0.0777) (0.0270) (0.0754) (0.0739) (0.0418) (0.0809) (0.0791)
Multiplier 0.43 - - 0.63 0.58 0.71 2.06 1.84 1.79
First stage results
Bartik Shift-Share 0.745%** 0.734%%* 0.753%***
(0.0710) (0.0724) (0.0738)
0.0311%** 0.0314%*** 0.0314%**
Pre-WW1 Schools of Art & Design (0.00712) (0.00883) (0.00885)
R-squared 0.156 0.170 0.171
Kleibergen-Paap Wald F statistic 110.2 102.9 104.2 18.92 12.64 12.66
Region dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 182 182 181 182 182 181 182 182 181

Note: Robust standard errors reported in parentheses. Columns 3, 6, and 9 exclude Darlington, an outlier. Dependent variable: growth in employment in non-
tradeable employment and self-employment, 2009-2015. *p < 0.1. **p < 0.05. ***p < 0.01.

non-tradeable jobs created for each new high-tech job (column 6). This
figure is substantially below that of Moretti (4-5 jobs) but plausible and
consistent with other European evidence. It is close to Moretti and
Thulin’s (2013) estimated multiplier of around 1.1 for high-tech man-
ufacturing in Sweden. In comparison, in the most similar UK study
Faggio and Overman (2014) estimate that each public-sector job creates
0.5 non-tradeable jobs in a local economy, while crowding out 0.4
tradeable manufacturing jobs over the period 2004 — 2007. But this was
a period with a much tighter labour market than the period we study.

There are at several reasons why tech jobs in the UK might have a
lower multiplier than in US work. Firstly, we use a relatively narrower
definition of non-tradeables than other studies. Secondly, British local
economies are also ‘leaky buckets’ compared to US metropolitan areas
(Gordon, 1999), in that jobs are more likely to be taken by those in
neighbouring TTWAs. Similarly, higher rates of migration in the US
may make the response felt in migration; local growth in the UK may be
capitalised into local land values. Moreover, the results cover a period
of significant labour market weakness in the UK. While employment
remained relatively high, there was still clearly some excess slack in the
labour market after the financial crisis of 2008 and subsequent reces-
sion. A final factor might be that the state has a bigger presence in
British society than the United States, and so multiplier employment in
sectors such as healthcare might be less responsive than the US case.
Our results are similar to Moretti and Thulin’s (2013) work on Sweden,
although we need to be cautious with the comparison as their definition
is focused on manufacturing and a period of stronger economic
growth.'?

We next consider the extent to which the effect comes from the
different parts of our high-technology definition, digital economy or
high-technology more generally. Table 3 considers the full results, as

10 One possibility is that high-tech squeezes out other, tradeable industries in
the local economy. We do run some tests to see if this occurs, repeating re-
gression 6 in Table 2. We find a positive effect, with a coefficient which suggests
a multiplier of around 2 extra tradeable jobs and self-employment created for
each 10 high-tech jobs (compared to 8 non-tradeable jobs). However, un-
surprisingly given small effect, this is not statistically significant. The direct
effect of tech on non-tradeables is stronger than the impact on the tradeable
sector.

Table 3

Disaggregated impact of high-technology and digital economy on non-trade-

ables, 2009-2015.

@™ 2
Dependent variable /\Non-tradeable jobs + self-employment, 2009-
2015
Estimator 2SLS 2SLS
Sample No Outlier No Outlier
Growth in digital economy, 0.0535*
2009-15 (0.0304)
Growth in high-tech, 2009-15 0.0967***
(0.0349)
Constant —0.0388 —0.0724
(0.0777) (0.0764)
Multiplier 0.57 1.21
First stage results
Bartik Shift-Share 0.838%** 0.793%***
(0.0476) (0.0438)
Kleibergen-Paap Wald F 310.3 328.3
statistic
Region dummies Yes Yes
Controls Yes Yes
Observations 181 181

Note: Robust standard errors reported in parentheses. All models exclude
Darlington, an outlier. Dependent variable: growth in employment in non-
tradeable employment and self-employment. IV = shift share based on 2009
local industry shares and national growth rate. *p < 0.1. **p < 0.05.
*x4p < 0.01.

given in column 6 of the previous table, for the two separate sub-sec-
tors. The results are weaker for digital economy growth than high-tech,
with the coefficient only statistically significant at the 10% level. This
shows in the scale of the multipliers: each 10 digital economy jobs
create 6 jobs in non-tradeables, but each 10 high-technology jobs create
12. In short, there seems to be significant variation within the high-
technology sector.'*

1 When including both variables in a simple OLS regression only the classic
‘tech’ measure is statistically significant.
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5. High-technology industries and wages
5.1. High-technology and wages

The external effects of high-technology industries on job creation
may also be reflected in wages. The most likely effect is that new jobs
increase labour demand and the tighter labour market feeds through
into higher wages for the relatively less well-paid. However, this may
be traded off against three mechanisms which may reduce wages: (1)
the benefits may be capitalised into housing costs, (2) there may be
compositional change in the labour market as less skilled workers may
shift into non-tradeables from relatively better paid sectors, and (3) new
entrants to the labour market may enter at relatively low pay, reducing
average wages (although as employment increases this may still be
beneficial). To test these effects, we use hourly pay data from the
Annual Population Survey (APS). We exclude workers in high-tech-
nology to ensure we capture external effects, rather than a mechanical
correlation. Regressions are run with the same controls as Table 2 and
results are given in Table 5.

We use two measures of wages. The first is simple growth in hourly
pay for each skill group, adjusted for inflation.'* To avoid outliers, we
windsorise at the 5th and 95th percentiles. The second is growth in
hourly pay, adjusted for inflation using a new indicator which accounts
for increases in local housing costs. One significant concern in the lit-
erature is that growth may bid up land costs, increasing rental values
and so reducing real wages for some. This idea is central to the dis-
cussion of high-tech growth in the Bay Area (Walker, 2018), but also
important in general equilibrium models of local labour markets
(Moretti, 2011).

There are several potential approaches to adjusting for housing
costs. US studies, such as Kemeny and Osman (2018), adjust wage data
with local median rents, to produce an indicator of local real wages. We
adapt Kemeny and Osman’s method for the UK case. Unfortunately,
there is no official source of rental price data in the UK (the government
only publishes data for social housing). Instead, we use the price of
residential floorspace. This comes from UK government data taken from
Energy Performance Certificates (EPCs) which is then cross-referenced
against prices paid from the Land Registry, a UK government depart-
ment responsible for registering property. We choose to focus on
floorspace to account, in part, for differences in type of housing in
different local areas. The result is an indicator of price per square metre
for housing in each TTWA, which we assume is highly correlated to
rents. We then adjust the official UK measure of inflation so it consists
of both (1) inflation in consumer prices, which do not vary locally, and
(2) housing costs, which vary according to the TTWA. Note that this
data is not, unfortunately, available for Scotland so we limit our results
using it to England and Wales. Table 4 gives the results of the highest
and lowest local inflation data. There is a relatively familiar North-
South pattern in property prices over this period. Local housing ad-
justed price levels increased fastest in London, Slough and Heathrow,
Reading, Guildford and Aldershot, and Luton (all TTWAs close to
London). Prices increased more slowly in Sunderland, Darlington,
Swansea, Hartlepool, and Durham and Bishop Auckland, all relatively
lower income TTWAs in the North or Wales.

We estimate two related types of model. We repeat the models we
estimate for jobs in Tables 2 and 3 (and given in Eq. 1), which use the
first-difference over the period 2009-2015. These models are the
helpful for our jobs models as it is not clear from theory whether the
impact of tech on local economies will be felt immediately or several
years later. They also avoid the noise used in year-on-year data, and
provide results which are comparable with the existing literature (e.g.

12 We use Retail Price Index “J” as the best living standards deflator as it
includes a broader measure of housing costs than other indicators, including
Council Tax, mortgage interest payments, depreciation and estate agent’s fees.
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Table 4
Annual inflation rate, 2009-2015, adjusted for local house price levels.
Rank TTWA Inflation Rank TTWA Inflation
1 London 3.33 151 Burnley 2.23
2 Slough and 3.16 152 Merthyr Tydfil 2.23
Heathrow
3 Reading 3.08 153  Middlesbrough and 2.23
Stockton
4 Guildford and 3.07 154 Haverfordwest and 2.22
Aldershot Milford Haven
5 Luton 3.06 155  Blackpool 2.19
6 Brighton 3.03 156  Sunderland 2.17
7 Cambridge 3.03 157  Darlington 217
8 Worthing 2.99 158 Swansea 2.17
9 Crawley 2.97 159  Hartlepool 2.15
10 Stevenage and 2.97 160  Durham and Bishop 2.06
Welwyn Garden Auckland
City

Table presents average annual inflation rate, adjusted for housing costs, be-
tween 2009-2015. Data on housing costs comes from EPC data and land reg-
istry, provided by UK government. Data on RPI inflation calculations come from
Office for National Statistics (2018).

Faggio and Overman, 2014). However, they are less justifiable for
models focused on wages. To address this problem, we also estimate a
second model using the year-on-year panel data and a fixed effects
specification. The fixed effects will help control for city-specific factors
which are not included in our model but which may influence growth in
high-tech employment. This model is based on Eq. (3) below:

In(HourlyPay, ) = o + PyTechy, + v Xc + @ + 8, + ¢ 3

where In(HourlyPay) is the log hourly pay for either low or mid-skilled
workers in travel to work area ‘c’ in time ‘t’, using a localised inflation
measure which accounts for local house price changes. Tech is the log of
total employment in digital and high-technology industries, the vector
X is a set of time-variant city-specific controls for total TTWA em-
ployment (log), the share of skilled workers in our top educational
category, and the unemployment rate. @ is a set of TTWA specific fixed
effects which should capture time invariant factors which are likely to
influence wages, 6 is a set of year fixed effects intended to control for
changes in the national economy. The error term is e.

This specification should control for TTWA-specific time invariant
factors which may influence both the low skilled labour market and
growth in high-technology, and so address these concerns. We use the
shift-share instrument as this is time-variant and so can account for the
causality challenges considered above.

The results are given in Table 5. Overall, these show that high-tech
growth increases average wages for mid-skilled workers, but reduces
average wages for low skilled workers. Columns 1-2 and 3-4 give re-
sults for low skilled workers, using first the change over the period and
then the fixed effects models and using both RPI inflation and our
measure with local housing costs. All four models show a negative and
statistically significant effect from high-tech on wages for workers in
the bottom third of educational attainment. The effect is only slightly
larger in columns 2 and 4 which account for increases in local housing
costs, showing that wages are even further eroded once we account for
increased costs."?

Of course, the effect of this erosion would be worst for some groups
(the young, who would be more reliant on the rental market) and may
actually reflect a gain to homeowners. They are similar to the findings
of Kemeny and Osman (2018) who study the United States and find

13 One plausible argument here is that the negative effects of price inflation
for some workers are outweighed by a positive effect of stronger demand for
work in construction, a key non-tradeable sector. We are grateful to a referee
for this point.
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Table 5
Impact of high-technology industries on low and mid-skilled hourly pay, 2009-2015.
@™ 2) 3) “@ %) (6) (] [€©)]
Dependent variable Low-skilled wages Growth in medium-skilled wages, 2009-2015
Estimator 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
A 2009-2015 A\ 2009-2015 Annual Panel Annual Panel A\ 2009-2015 A\ 2009-2015 Annual Panel Annual Panel
Inflation measure RPI RPI with local RPI RPI with local RPI RPI with local
housing costs housing costs housing costs
High-tech and digital emp. —0.166** —0.185%* —0.0814** —0.0927** 0.205%** 0.210%** 0.295%* 0.284**
(0.0744) (0.0825) (0.0360) (0.0375) (0.0718) (0.0809) (0.120) (0.120)
High-skilled workers (%) 0.403*** 0.360** 0.211%%* 0.160%** —-0.350" —0.433*%* 0.0123 —0.0384
(0.153) (0.165) (0.0222) (0.0228) (0.194) (0.209) (0.147) (0.147)
Unemployment rate (%) —0.00382 0.165 —0.158" —0.160" —0.267 —0.153 0.0497 0.0472
(0.321) (0.379) (0.0896) (0.0864) (0.375) (0.454) (0.259) (0.250)
Total employment (log) —0.00711 —-0.0113 0.121 0.0418 —0.00291 —0.00773 0.0154 —0.0639
(0.00714) (0.00829) (0.0965) (0.0668) (0.00813) (0.00976) (0.118) (0.147)
Constant —-0.0213 0.0284 1.481 —2.114** 0.133 0.197" —0.398 —3.993"
(0.0907) (0.101) (1.297) (0.895) (0.0988) (0.112) (1.714) (2.126)
First stage results
Bartik Shift-Share 0.734%** 0.703%** 0.336%** 0.336%** 0.734%%* 0.703*** 0.336%** 0.336%**
(0.0724) (0. 0942) (0.0542) (0.0542) (0.0724) (0.0942) (0.0542) (0.0542)
R-squared
Kleibergen-Paap Wald F 102.9 86.4 38.5 38.5 102.9 86.4 38.5 38.5
statistic
Region dummies Yes Yes Yes Yes
TTWA Fixed effects Yes Yes Yes Yes
Year Fixed effects Yes Yes Yes Yes
Observations 182 160 1,120 1,120 182 160 1,120 1,120
Number of TTWA 160 160 160 160

Note: Standard errors reported in parentheses, clustered on region in FE models. Dependent variable: growth in hourly pay for low skilled (columns 1-4) or medium-
skilled (columns 5-8) not working in high-tech. IV = shift share based on 2009 local industry shares and national growth rate. Controls are initial year values for
columns 1, 2, 5 and 6, city/year values for models estimated with fixed effects.

p < 0.1. **p < 0.05. ***p < 0.01.

relatively little difference between nominal and real (after accounting
for housing costs) wage growth. They conclude that the “the interac-
tions in iconic tech hubs between tech and strongly inelastic housing
markets is not the universal, or even majority urban tech experience”
(pp. 1737). Our result probably has a similar explanation as, despite
strong house price increases in London and nearby TTWAs, prices in-
creased by less elsewhere. In contrast to the reduced hourly pay for low-
skilled workers, the growth of high-tech industries seems to have a
positive impact on medium-skilled hourly pay. The coefficient is only
slightly larger when including local house price changes in the measure
of inflation.

We consider mid-skilled wages in columns 5-8. In contrast to the
negative results for low-skilled average wages, we find a positive effect
for mid-skilled workers, even when controlling for housing costs. This
result is similar to that of Lee and Rodriguez-Pose (2016) for US cities:
growth in high-technology is associated with gains for middle-earners,
but does not seem to be associated with increased wages for workers on
low incomes. While there are real benefits from high-tech growth for
mid-skilled workers, the benefits for low-skilled workers are more
ambiguous.

5.2. Mechanisms

The results presented above have both positive and negative inter-
pretations: high-tech growth seems to increase the number of jobs, but
reduce wage growth. What might be driving this? There are two ob-
vious channels. The first is a worker composition effect. If growth in high-
tech sectors increases the number of jobs, the tighter labour market
could allow ‘marginal’ workers to enter — these workers would have
lower productivity than those already in employment, and so would
reduce the average wage. If this was true, new jobs would be created for
low skilled workers, but the jobs would be in non-tradeables. Overall,
this would probably be a net gain for low skilled workers as more would
be employed. A second explanation is the sector composition effect, if
high-tech industries change the structure of the low skilled labour

market, for example in leading to a shift from manufacturing to per-
sonal services. This would result in a decline in low-skilled tradeable
employment. This may indicate a net loss for low skilled workers, who
would be shifting to less well-paid employment.

To test these two mechanisms, we run the same regressions as
Table 2 (Eq. 1) but with four alternative variables: (1) low-skill non-
tradeable employment, (2) mid-skill non-tradeable employment, (3)
low-skill tradeable employment, and (4) mid-skill tradeable employ-
ment. These are calculated by first estimating total employment and
self-employment using the BRES numbers with a self-employment es-
timate from the APS. We then estimate the share of total employment
and self-employment by each skill group and tradeable category (again,
excluding high-tech employment), and then use this to come to an es-
timate of total jobs. The results are given in Table 6, which focuses on
the 2SLS results.

The first two columns show the impact of high-tech on non-trade-
able employment by skill group; columns three and four show the im-
pact on tradeable employment. If negative wage growth is driven by a
worker composition effect, with new entrants coming into the labour
market, we would expect a positive result for non-tradeables. If driven
by a sector compositional shift away from tradeable industries, for ex-
ample if well paid manufacturing employment was squeezed out, this
would be expressed in a negative result for low paid employment. The
results suggest that for low-skilled workers, it is a worker compositional
effect which seems to apply here. High-tech industries seem to increase
low skilled non-tradeable employment, but have no impact on low
skilled tradeables. In contrast, increased wage growth in the medium
skill labour market seem to be driven simply by labour market tightness
— there is no clear impact on whether jobs are tradeable or non-trade-
able. This is because the lion’s share of new jobs go to low-skilled
workers: the 2SLS delivers a multiplier of around 0.6, close to the es-
timated multiplier for all workers of 0.7 for high-technology overall. In
short, for each 10 new high-technology jobs employment increases by 7
in non-tradeables, of which 6 go to low-skilled workers.'*

Two other statistics show that wages are lower for non-tradeables,
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Table 6
Impact of advanced sectors on low-skill employment, 2009-15.
(€8] ) ®3) “@
Dependent variable: Low-skilled  Mid-skilled Low-skilled Mid-skilled
Non- Non- Tradeable Tradeable
tradeable tradeable
Estimator: 2SLS 2SLS 2SLS 2SLS
Growth in high-tech 0.427** 0.164 —0.0150 —0.0363
and digital, (0.187) (0.177) (0.175) (0.215)
2009-2015
High-skilled workers ~ —0.0990 0.245 1.357"" 0.762%**
(%), 2009 (0.480) (0.483) (0.417) (0.385)
Unemployment rate 1.183 0.139 1.049 1.781
(%), 2009 (1.197) (1.098) (0.989) (1.248)
Total employment —0.0288 0.0773™" —-0.0558"" —0.0243
(In), 2009 (0.0265) (0.0268) (0.0207) (0.0229)
Constant 0.351 -1.189™" 0.448* 0.0202
(0.307) (0.307) (0.251) (0.305)
Multiplier 0.58 - - -
First stage results
Bartik Shift-Share 0.734"" 0.734"" 0.734""" 0.734""
(.0724) (.0724) (.0724) (.0724)
Kleibergen-Paap 102.9 102.9 102.9 102.9
Wald F statistic
Region dummies Yes Yes Yes Yes
Observations 182 182 182 182

All models estimated using 2SLS. IV = shift share based on 2009 local industry
shares and national growth rate.

Dependent variable: employment and self-employment by skill group / trade-
able group (excluding high-technology). Robust standard errors in parentheses.
™p < 0.01, ** p < 0.05, *p < 0.1.

providing support for the idea that low skilled non-tradeable employ-
ment growth would reduce wage growth. A simple correlation between
change in real hourly pay between 2009-2015 has a —0.23 correlation
with change in non-traded low skilled jobs (p < 0.01). The relation-
ship between wages and traded low-skilled jobs is positive (0.10) but
not statistically significant (p = 0.1739). Second, wages are higher in
tradeables than non-tradeables. In 2015 the average hourly pay for low-
skilled workers in a tradable industry was around £0.86 higher than
those in non-tradeables (p < 0.01). There seems to be little relation-
ship between tradeables and high-technology, suggesting that there was
no ‘crowding out’ of other industries in this period. This is perhaps
unsurprising given the slack in the economy in 2009.

Overall, high-technology industries seem to have a positive impact
on jobs. While there is a positive coefficient on mid-skilled employ-
ment, most new jobs seem to be for low-skilled workers in non-trade-
able sector. This is consistent with a view that growth in high-tech leads
to new, non-tradeable jobs in personal services. Most of these jobs go to
low-skilled workers, but are poorly paid, reducing average wages, al-
though this is still a net gain to low-skilled workers.

6. Conclusions

Innovative, high-tech industries are an important component of
many economic development strategies. One important justification for
these strategies is that there will be benefits to low-skilled residents. Yet
there is relatively little evidence on this point. This paper has presented
new evidence on the impact of high-tech sectors on job creation and
wages for low-and mid-skilled workers in British local labour markets.
It has three central findings. First, there is a significant multiplier from
high-tech, with each new job creating around 0.7 non-tradeable jobs.
This finding provides an apparently strong justification for strategies
seeking to attract and grow the high-technology sector. However, there
have been many failed attempts to do so (Lerner, 2009).

14 Tests also show new jobs go British born workers, rather than non-British
workers.
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Our second finding is that high-tech growth lowers the average
wage of local low skilled workers, particularly when controlling for
increased house prices. Low-skilled tradeable employment does not fall,
so these reduced wages are caused by new entrants to the labour
market, not existing workers earning less. Employment rates for low
skilled workers vary spatially much more than those for mid or high-
skilled workers, whose labour market participation tends to be high
wherever they live (Green and Owen, 2006). In contrast, low skilled
workers are both more reliant on the strength of local labour demand
and more likely to be employed in non-tradeables. So while this result is
negative in some senses, it still indicates increased welfare for low
skilled workers: if existing workers remain in employment, presumably
at the same wages as before, but the previously unemployed enter the
labour market then there will be a net benefit both to the economy
overall and to the previously unemployed worker. But it suggests that
new jobs are not high-quality. Policy may wish to combine a focus on
growing high-tech industry with one on upgrading jobs in the non-
tradeable sector.

A third result is that there are benefits to mid-skilled workers. This
finding may seem controversial when compared to the literature on job
polarisation which has tended to stress the decline of mid-skilled jobs
(see Autor and Dorn, 2013, for US evidence, or Salvatori, 2018 for UK
evidence). Our results differ slightly as they are for skill groups, rather
than the occupational groups which are the focus of most employment
polarisation research. But they show a more positive story, we suspect
because they reveal the importance of spill-overs into the mid-skilled
labour market which are normally the focus of research on low skilled
workers (Mazzolari and Ragusa, 2013).

Our findings present a challenge for economic development policy.
Policymakers aiming to improve living standards for low skilled
workers face two basic options. The classic method of economic de-
velopment is to stimulate local demand and, in doing so, raise the
employment rates of low skilled workers. Attracting high-technology
sectors may be one good way to do this, but it needs to be accompanied
with efforts to try to upgrade skills or increase productivity.
Alternatively, policy could focus on ensuring low skilled workers are in
employment in tradeable sectors, such a manufacturing, which might
create good jobs in the first place. Yet global competition and new
technology have made these sectors hard to sustain. Clearly, economic
development is more complex than the simple model presented here. It
is important to note, of course, that creating jobs for low skilled workers
is only one goal of policy focused on high-tech industries. There might
be other benefits, such as improved production processes in other sec-
tors or the general benefits of technological change.

An important caveat to this study is the time period we focus on.
This was an unusual time for the UK economy, comprising relatively
strong employment performance but also very weak productivity. Much
of the new employment was non-standard (Green and Livanos, 2017).
An important avenue for future work would be to see if the results hold
over different time periods. Given weak wage growth after the crisis,
our wage results will have been biased downwards because of the slack
in the market. Workers may first take employment, if available, with
wages increasing only once workers had sufficient bargaining power (or
the ability to move from less well paid to better paid jobs). Moreover,
while we divide employment up by skills, we do not consider other
potential inequalities. Echeverri-Carroll et al. (2018) show complicated
patterns of gains and losses according to gender and skill-group. The
non-tradeable jobs we consider in this paper have a gender bias, and
future work may wish to investigate this further. Finally, while our data
allows us to consider the effect of two definitions of the high-technology
sector, future studies may wish to disaggregate these broad definitions
further.
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