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Abstract

Complex problem-solving (CPS) ability has been recognized as a central 21st cen-

tury skill. Individuals’ processes of solving crucial complex problems may contain

substantial information about their CPS ability. In this paper, we consider the predic-

tion of duration and final outcome (i.e., success/failure) of solving a complex problem

during task completion process, by making use of process data recorded in computer

log files. Solving this problem may help answer questions like “how much informa-

tion about an individual’s CPS ability is contained in the process data?”,“what CPS

patterns will yield a higher chance of success?”, and “what CPS patterns predict the

remaining time for task completion?”. We propose an event history analysis model

for this prediction problem. The trained prediction model may provide us a better

understanding of individuals’ problem-solving patterns, which may eventually lead to

a good design of automated interventions (e.g., providing hints) for the training of

CPS ability. A real data example from the 2012 Programme for International Student

Assessment (PISA) is provided for illustration.

KEY WORDS: Process data, complex problem solving, PISA data, response time
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1 Introduction

Complex problem-solving (CPS) ability has been recognized as a central 21st century skil-

l of high importance for several outcomes including academic achievement (Wüstenberg,

Greiff, & Funke, 2012) and workplace performance (Danner, Hagemann, Schankin, Hager,

& Funke, 2011). It encompasses a set of higher-order thinking skills that require strategic

planning, carrying out multi-step sequences of actions, reacting to a dynamically changing

system, testing hypotheses, and, if necessary, adaptively coming up with new hypotheses.

Thus, there is almost no doubt that an individual’s problem-solving process data contain

substantial amount of information about his/her CPS ability and thus are worth analyzing.

Meaningful information extracted from CPS process data may lead to better understanding,

measurement, and even training of individuals’ CPS ability.

Problem-solving process data typically have a more complex structure than that of panel

data which are traditionally more commonly encountered in statistics. Specifically, individu-

als may take different strategies towards solving the same problem. Even for individuals who

take the same strategy, their actions and time-stamps of the actions may be very different.

Due to such heterogeneity and complexity, classical regression and multivariate data analysis

methods cannot be straightforwardly applied to CPS process data.

Possibly due to the lack of suitable analytic tools, research on CPS process data is

limited. Among the existing works, none took a prediction perspective. Specifically, Greiff,

Wüstenberg, and Avvisati (2015) presented a case study, showcasing the strong association

between a specfic strategic behavior (identified by expert knowledge) in a CPS task from

the 2012 Programme for International Student Assessment (PISA) and performance both in

this specific task and in the overall PISA problem-solving score. He and von Davier (2015,

2016) proposed an N-gram method from natural language processing for analyzing problem-

solving items in technology-rich environments, focusing on identifying feature sequences that

are important to task completion. Vista, Care, and Awwal (2017) developed methods for

the visualization and exploratory analysis of students’ behavioral pathways, aiming to detect
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action sequences that are potentially relevant for establishing particular paths as meaningful

markers of complex behaviours. Halpin and De Boeck (2013) and Halpin, von Davier, Hao,

and Liu (2017) adopted a Hawkes process approach to analyzing collaborative problem-

solving items, focusing on the psychological measurement of collaboration. Xu, Fang, Chen,

Liu, and Ying (2018) proposed a latent class model that analyzes CPS patterns by classifying

individuals into latent classes based on their problem-solving processes.

In this paper, we propose to analyze CPS process data from a prediction perspective. As

suggested in Yarkoni and Westfall (2017), an increased focus on prediction can ultimately

lead us to greater understanding of human behavior. Specifically, we consider the simul-

taneous prediction of the duration and the final outcome (i.e., success/failure) of solving

a complex problem based on CPS process data. Instead of a single prediction, we hope to

predict at any time during the problem-solving process. Such a data-driven prediction model

may bring us insights about individuals’ CPS behavioral patterns. First, features that con-

tribute most to the prediction may correspond to important strategic behaviors that are key

to succeeding in a task. In this sense, the proposed method can be used as an exploratory da-

ta analysis tool for extracting important features from process data. Second, the prediction

accuracy may also serve as a measure of the strength of the signal contained in process data

that reflects one’s CPS ability, which reflects the reliability of CPS tasks from a prediction

perspective. Third, for low stake assessments, the predicted chance of success may be used

to give partial credits when scoring task takers. Fourth, speed is another important dimen-

sion of complex problem solving that is closely associated with the final outcome of task

completion (MacKay, 1982). The prediction of the duration throughout the problem-solving

process may provide us insights on the relationship between the CPS behavioral patterns

and the CPS speed. Finally, the prediction model also enables us to design suitable inter-

ventions during their problem-solving processes. For example, a hint may be provided when

a student is predicted having a high chance to fail after sufficient efforts.

More precisely, we model the conditional distribution of duration time and final outcome
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given the event history up to any time point. This model can be viewed as a special event

history analysis model, a general statistical framework for analyzing the expected duration

of time until one or more events happen (see e.g., Allison, 2014). The proposed model can

be regarded as an extension to the classical regression approach. The major difference is

that the current model is specified over a continuous-time domain. It consists of a family

of conditional models indexed by time, while the classical regression approach does not deal

with continuous-time information. As a result, the proposed model supports prediction at

any time during one’s problem-solving process, while the classical regression approach does

not. The proposed model is also related to, but substantially different from response time

models (e.g., van der Linden, 2007) which have received much attention in psychometrics in

recent years. Specifically, response time models model the joint distribution of response time

and responses to test items, while the proposed model focuses on the conditional distribution

of CPS duration and final outcome given the event history.

Although the proposed method learns regression-type models from data, it is worth em-

phasizing that we do not try to make statistical inference, such as testing whether a specific

regression coefficient is significantly different from zero. Rather, the selection and inter-

pretation of the model are mainly justified from a prediction perspective. This is because

statistical inference tends to draw strong conclusions based on strong assumptions on the

data generation mechanism. Due to the complexity of CPS process data, a statistical model

may be severely misspecified, making valid statistical inference a big challenge. On the other

hand, the prediction framework requires less assumptions and thus is more suitable for ex-

ploratory analysis. More precisely, the prediction framework admits the discrepancy between

the underlying complex data generation mechanism and the prediction model (Yarkoni &

Westfall, 2017). A prediction model aims at achieving a balance between the bias due to

this discrepancy and the variance due to a limited sample size. As a price, findings from the

predictive framework are preliminary and only suggest hypotheses for future confirmatory

studies.
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The rest of the paper is organized as follows. In Section 2, we describe the structure

of complex problem-solving process data and then motivate our research questions, using a

CPS item from PISA 2012 as an example. In Section 3, we formulate the research questions

under a statistical framework, propose a model, and then provide details of estimation and

prediction. The introduced model is illustrated through an application to an example item

from PISA 2012 in Section 4. We discuss limitations and future directions in Section 5.

2 Complex Problem-solving Process Data

2.1 A Motivating Example

We use a specific CPS item, CLIMATE CONTROL (CC)1, to demonstrate the data structure

and to motivate our research questions. It is part of a CPS unit in PISA 2012 that was de-

signed under the “MicroDYN” framework (Greiff, Wüstenberg, & Funke, 2012; Wüstenberg

et al., 2012), a framework for the development of small dynamic systems of causal relation-

ships for assessing CPS.

In this item, students are instructed to manipulate the panel (i.e., to move the top,

central, and bottom control sliders; left side of Figure 1 (a)) and to answer how the input

variables (control sliders) are related to the output variables (temperature and humidity).

Specifically, the initial position of each control slider is indicated by a triangle “N”. The

students can change the top, central and bottom controls on the left of Figure 1 by using

the sliders. By clicking “APPLY”, they will see the corresponding changes in temperature

and humidity. After exploration, the students are asked to draw lines in a diagram (Figure 1

(b)) to answer what each slider controls. The item is considered correctly answered if the

diagram is correctly completed. The problem-solving process for this item is that the students

must experiment to determine which controls have an impact on temperature and which on

1The item can be found on the OECD website (http://www.oecd.org/pisa/test-
2012/testquestions/question3/)
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(a) (b)

Figure 1: (a) Simulation environment of CC item. (b) Answer diagram of CC item.

humidity, and then represent the causal relations by drawing arrows between the three inputs

(top, central, and bottom control sliders) and the two outputs (temperature and humidity).

PISA 2012 collected students’ problem-solving process data in computer log files, in the

form of a sequence of time-stamped events. We illustrate the structure of data in Table 1

and Figure 2, where Table 1 tabulates a sequence of time-stamped events from a student

and Figure 2 visualizes the corresponding event time points on a time line. According to

the data, 14 events were recorded between time 0 (start) and 61.5 seconds (success). The

first event happened at 29.5 seconds that was clicking “APPLY” after the top, central, and

bottom controls were set at 2, 0, and 0, respectively. A sequence of actions followed the first

event and finally at 58, 59.1, and 59.6 seconds, a final answer was correctly given using the

diagram. It is worth clarifying that this log file does not collect all the interactions between a

student and the simulated system. That is, the status of the control sliders is only recorded

in the log file, when the “APPLY” button is clicked.

The process data for solving a CPS item typically have two components, knowledge

acquisition and knowledge application, respectively. This CC item mainly focuses the former,

which includes learning the causal relationships between the inputs and the outputs and

representing such relationships by drawing the diagram. Since data on representing the

causal relationship is relatively straightforward, in the rest of the paper, we focus on the

process data related to knowledge acquisition and only refer a student’s problem-solving

process to his/her process of exploring the air conditioner, excluding the actions involving
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Time Event

0 Start.

29.5 Set top, central, and bottom controls at 2, 0, and 0, respectively, and click APPLY.

32.4 Set top, central, and bottom controls at 0, 0, and 0, respectively, and click APPLY.

35.2 Click RESET.

36.2 Set all three controls at 0, and click APPLY.
...

...

58 Connecting ”top control” with ”temperature”.

59.1 Connecting ”central control” with ”humidity”.

59.6 Connecting ”bottom control” with ”humidity”.

61.5 Success.

Table 1: An example of computer log file data from CC item in PISA 2012.

Figure 2: Visualization of the structure of process data from CC item in PISA 2012.

the answer diagram.

Intuitively, students’ problem-solving processes contain information about their complex

problem-solving ability, whether in the context of the CC item or in a more general sense of

dealing with complex tasks in practice. However, it remains a challenge to extract meaningful

information from their process data, due to the complex data structure. In particular, the

occurrences of events are heterogeneous (i.e., different people can have very different event

histories) and unstructured (i.e., there is little restriction on the order and time of the

occurrences). Different students tend to have different problem-solving trajectories, with

different actions taken at different time points. Consequently, time series models, which are

standard statistical tools for analyzing dynamic systems, are not suitable here.

2.2 Research Questions

We focus on two specific research questions. Consider an individual solving a complex

problem. Given that the individual has spent t units of time and has not yet completed the
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task, we would like to ask the following two questions based on the information at time t:

How much additional time does the individual need? And will the individual succeed or fail

upon the time of task completion?

Suppose we index the individual by i and let Ti be the total time of task completion

and Yi be the final outcome. Moreover, we denote Hi(t) = (hi1(t), ..., hip(t))
> as a p-vector

function of time t, summarizing the event history of individual i from the beginning of task

to time t. Each component of Hi(t) is a feature constructed from the event history up to

time t. Taking the above CC item as an example, components of Hi(t) may be, the number

of actions a student has taken, whether all three control sliders have been explored, the

frequency of using the reset button, etc., up to time t. We refer to Hi(t) as the event history

process of individual i. The dimension p may be high, depending on the complexity of the

log file.

With the above notation, the two questions become to simultaneously predict Ti and

Yi based on Hi(t). Throughout this paper, we focus on the analysis of data from a single

CPS item. Extensions of the current framework to multiple-item analysis are discussed in

Section 5.

3 Proposed Method

3.1 A Regression Model

We now propose a regression model to answer the two questions raised in Section 2.2. We

specify the marginal conditional models of Yi and Ti given Hi(t) and Ti > t, respectively.

Specifically, we assume

P (Yi = 1|Hi(t), Ti > t) = Φ(b11hi1(t) + · · ·+ b1phip(t)), (1)

E(log(Ti − t)|Hi(t), Ti > t) = b21hi1(t) + · · ·+ b2phip(t), (2)
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and

V ar(log(Ti − t)|Hi(t), Ti > t) = σ2, (3)

where Φ is the cumulative distribution function of a standard normal distribution. That is, Yi

is assumed to marginally follow a probit regression model. In addition, only the conditional

mean and variance are assumed for log(Ti− t). Our model parameters include the regression

coefficientsB = (bjk)2×p and conditional variance σ2. Based on the above model specification,

a pseudo-likelihood function will be devived in Section 3.3 for parameter estimation.

Although only marginal models are specified, we point out that the model specifications

(1) through (3) impose quite strong assumptions. As a result, the model may not most

closely approximate the data-generating process and thus a bias is likely to exist. On the

other hand, however, it is a working model that leads to reasonable prediction and can be

used as a benchmark model for this prediction problem in future investigations.

We further remark that the conditional variance of log(Ti− t) is time-invariant under the

current specification, which can be further relaxed to be time-dependent. In addition, the

regression model for response time is closely related to the log-normal model for response

time analysis in psychometrics (e.g., van der Linden, 2007). The major difference is that the

proposed model is not a measurement model disentangling item and person effects on Ti and

Yi.

3.2 Prediction

Under the model in Section 3.1, given the event history, we predict the final outcome based

on the success probability Φ(b11hi1(t)+ · · ·+b1phip(t)). In addition, based on the conditional

mean of log(Ti− t), we predict the total time at time t by t+ exp(b21hi1(t) + · · ·+ b2phip(t)).

Given estimates of B from training data, we can predict the problem-solving duration and

final outcome at any t for an individual in the testing sample, throughout his/her entire

problem-solving process.
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3.3 Parameter Estimation

It remains to estimate the model parameters based on a training dataset. Let our data be

(τi, yi) and {Hi(t) : t ≥ 0}, i = 1, ..., N , where τi and yi are realizations of Ti and Yi, and

{Hi(t) : t ≥ 0} is the entire event history.

We develop estimating equations based on a pseudo likelihood function. Specifically, the

conditional distribution of Yi given Hi(t) and Ti > t can be written as

f1(y|Hi(t), τ > t;b1) = Φ(b>1 Hi(t))
y(1− Φ(b>1 Hi(t)))

1−y,

where b1 = (b11, ..., b1p)
>. In addition, using the log-normal model as a working model for

Ti − t, the corresponding conditional distribution of Ti can be written as

f2(τ |Hi(t), τ > t;b2, σ) =
1

(τ − t)σ
√

2π
exp

(
−(log(τ − t)− (b>2 Hi(t)))

2

2σ2

)
,

where b2 = (b21, ..., b2p)
>. The pseudo-likelihood is then written as

L(B, σ) =
N∏
i=1

J∏
j=1

(
f1(yi|Hi(tj), τi > tj;b1)f2(τi|Hi(tj), τi > tj;b2, σ)

)1{τi>tj} , (4)

where t1, ..., tJ are J pre-specified grid points that spread out over the entire time spectrum.

The choice of the grid points will be discussed in the sequel. By specifying the pseudo-

likelihood based on the sequence of time points, the prediction at different time is taken

into accounting in the estimation. We estimate the model parameters by maximizing the

pseudo-likelihood function L(B, σ).

In fact, (4) can be factorized into

L(B, σ) = L1(b1)L2(b2, σ),
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where

L1(b1) =
N∏
i=1

J∏
j=1

(f1(yi|Hi(tj), τi > tj;b1))
1{τi>tj} , (5)

and

L2(b2, σ) =
N∏
i=1

J∏
j=1

(f2(τi|Hi(tj), τi > tj;b2, σ))
1{τi>tj} . (6)

Therefore, b1 is estimated by maximizing L1(b1), which takes the form of a likelihood func-

tion for probit regression. Similarly, b2 and σ are estimated by maximizing L2(b2, σ), which

is equivalent to solving the following estimation equations,

N∑
i=1

J∑
j=1

1{τi>tj}
(

log(τi − tj)− b>2 Hi(tj)
)
hik(tj) = 0, k = 1, ..., p, (7)

and
N∑
i=1

J∑
j=1

1{τi>tj}
(
σ2 − (log(τi − tj)− b>2 Hi(tj))

2
)

= 0. (8)

The estimating equations (7) and (8) can also be derived directly based on the conditional

mean and variance specification of log(Ti−t). Solving these equations is equivalent to solving

a linear regression problem, and thus is computationally easy.

3.4 Some Remarks

We provide a few remarks. First, choosing suitable features into Hi(t) is important. The

inclusion of suitable features not only improves the prediction accuracy, but also facilitates

the exploratory analysis and interpretation of how behavioral patterns affect CPS result. If

substantive knowledge about a CPS task is available from cognition theory, one may choose

features that indicate different strategies towards solving the task. Otherwise, a data-driven

approach may be taken. That is, one may select a model from a candidate list based on

certain cross-validation criteria, where, if possible, all reasonable features should be consider

as candidates. Even when a set of features has been suggested by cognition theory, one
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can still take the data-driven approach to find additional features, which may lead to new

findings.

Second, one possible extension of the proposed model is to allow the regression coefficients

to be a function of time t, whereas they are independent of time under the current model.

In that case, the regression coefficients become functions of time, bjk(t). The current model

can be regarded as a special case of this more general model. In particular, if bjk(t) has

high variation along time in the best predictive model, then simply applying the current

model may yield a high bias. Specifically, in the current estimation procedure, a larger

grid point tends to have a smaller sample size and thus contributes less to the pseudo-

likelihood function. As a result, a larger bias may occur in the prediction at a larger time

point. However, the estimation of the time-dependent coefficient is non-trivial. In particular,

constraints should be imposed on the functional form of bjk(t) to ensure a certain level of

smoothness over time. As a result, bjk(t) can be accurately estimated using information from

a finite number of time points. Otherwise, without any smoothness assumptions, to predict at

any time during one’s problem-solving process, there are an infinite number of parameters

to estimate. Moreover, when a regression coefficient is time-dependent, its interpretation

becomes more difficult, especially if the sign changes over time.

Third, we remark on the selection of grid points in the estimation procedure. Our model

is specified in a continuous time domain that supports prediction at any time point in a

continuum during an individual’s problem-solving process. The use of discretized grid points

is a way to approximate the continuous-time system, so that estimation equations can be

written down. In practice, we suggest to place the grid points based on the quantiles of the

empirical distribution of duration based on the training set. See the analysis in Section 4 for

an illustration. The number of grid points may be further selected by cross validation. We

also point out that prediction can be made at any time point on the continuum, not limited

to the grid points for parameter estimation.

12



Duration (Unit: Seconds)

F
re

qu
en

cy

0 100 200 300 400 500

0
20

00
40

00
60

00

(a)

Number of Events

F
re

qu
en

cy

0 50 100 150

0
20

00
40

00
60

00
80

00

(b)

Figure 3: (a) Histogram of problem-solving duration of the CC item. (b) Histogram of the
number of actions for solving the CC item.

4 An Example from PISA 2012

4.1 Background

In what follows, we illustrate the proposed method via an application to the above CC

item2. This item was also analyzed in Greiff et al. (2015) and Xu et al. (2018). The

dataset was cleaned from the entire released dataset of PISA 2012. It contains 16,872 15-

year-old students’ problem-solving processes, where the students were from 42 countries and

economies. Among these students, 54.5% answered correctly. On average, each student took

129.9 seconds and 17 actions solving the problem. Histograms of the students’ problem-

solving duration and number of actions are presented in Figure 3.

4.2 Analyses

The entire dataset was randomly split into training and testing sets, where the training set

contains data from 13,498 students and the testing set contains data from 3,374 students.

A predictive model was built solely based on the training set and then its performance

2The log file data and code book for the CC item can be found online: http://www.oecd.org/pisa/

pisaproducts/database-cbapisa2012.htm.
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was evaluated based on the testing set. We used J = 9 grid points for the parameter

estimation, with t1 through t9 specified to be 64, 81, 94, 106, 118, 132, 149, 170, and 208

seconds, respectively, which are the 10% through 90% quantiles of the empirical distribution

of duration. As discussed earlier, the number of grid points and their locations may be

further engineered by cross validation.

Model selection. We first build a model based on the training data, using a data-driven

stepwise forward selection procedure. In each step, we add one feature into Hi(t) that leads

to maximum increase in a cross-validated log-pseudo-likelihood, which is calculated based

on a five-fold cross validation. We stop adding features into Hi(t) when the cross-validated

log-pseudo-likelihood stops increasing. The order in which the features are added may serve

as a measure of their contribution to predicting the CPS duration and final outcome.

The candidate features being considered for model selection are listed in Table 2. These

candidate features were chosen to reflect students’ CPS behavioral patterns from different

aspects. In what follows, we discuss some of them. For example, the feature Ii(t) indicates

whether or not all three control sliders have been explored by simple actions (i.e., moving

one control slider at a time) up to time t. That is, Ii(t) = 1 means that the vary-one-

thing-at-a-time (VOTAT) strategy (Greiff et al., 2015) has been taken. According to the

design of the CC item, the VOTAT strategy is expected to be a strong predictor of task

success. In addition, the feature Ni(t)/t records a student’s average number of actions per

unit time. It may serve as a measure of the student’s speed of taking actions. In experimental

psychology, response time or equivalently speed has been a central source for inferences about

the organization and structure of cognitive processes (e.g., Luce, 1986), and in educational

psychology, joint analysis of speed and accuracy of item response has also received much

attention in recent years (e.g., Klein Entink, Kuhn, Hornke, & Fox, 2009; van der Linden,

2007). However, little is known about the role of speed in CPS tasks. The current analysis

may provide some initial result on the relation between a student’s speed and his/her CPS
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Feature Explanation

1. Ni(t) Number of actions taken up to time t.

2. Ni(t)/t Frequency of actions up to time t.

3. 1{Ni(t)>0} Indicator of whether an action has been taken before time t.

4. Si(t) Number of simple actions (i.e., moving one control slider at a time)

taken up to time t.

5. Si(t)/t Frequency of simple actions up to time t.

6. 1{Si(t)>0} Indicator of whether a simple action has been taken before time t.

7. Ii(t) An indicator function, Ii(t) = 1 if all three control sliders

have been explored via simple actions up to time t and Ii(t) = 0, otherwise.

8. Ri(t) Number of RESET used up to time t.

9. Ri(t)/t Frequency of RESET up to time t.

10. 1{Ri(t)>0} Indicator of whether RESET has been used before time t.

11. RPi(t) Number of times that previously taken actions (excluding RESET)

are repeated.

12. RPi(t)/t Frequency of repeating previously taken actions (excluding RESET).

13. 1{RPi(t)>0} Indicator of repeating previously taken actions (excluding RESET).

Table 2: The list of candidate features to be incorporated into the model.

performance. Moreover, the features defined by the repeating of previously taken actions

may reflect students’ need of verifying the derived hypothesis on the relation based on the

previous action or may be related to students’ attention if the same actions are repeated

many times. We also include 1, t, t2, and t3 in Hi(t) as the initial set of features to capture

the time effect. For simplicity, country information is not taken into account in the current

analysis.

Our results on model selection are summarized in Figure 4 and Table 3. The pseudo-

likelihood stopped increasing after 11 steps, resulting a final model with 15 components in

Hi(t). As we can see from Figure 4, the increase in the cross-validated log-pseudo-likelihood

is mainly contributed by the inclusion of features in the first six steps, after which the

increment is quite marginal. As we can see, the first, second, and sixth features entering

into the model are all related to taking simple actions, a strategy known to be important

to this task (e.g., Greiff et al., 2015). In particular, the first feature being selected is Ii(t),

which confirms the strong effect of the VOTAT strategy. In addition, the third and fourth
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Step Var.add Lik Lik.out Lik.dur

0. 1, t, t2, t3 -72241.7 -63867.9 -8373.7

1. Ii(t) -70663.0 -62856.1 -7806.9

2. 1{Si(t)>0} -70058.3 -62617.0 -7441.4

3. 1{Ni(t)>0} -69744.9 -62315.2 -7429.7

4. Ni(t)/t -69672.7 -62237.6 -7435.1

5. 1{Ri(t)>0} -69601.3 -62239.9 -7361.4

6. Si(t)/t -69547.6 -62226.8 -7320.8

7. RPi(t)/t -69522.5 -62205.1 -7317.4

8. 1{RPi(t)>0} -69507.0 -62190.0 -7317.0

9. Ri(t) -69500.8 -62191.9 -7308.9

10. Ni(t) -69499.4 -62192.6 -7306.8

11. RPi(t) -69498.5 -62191.8 -7306.7

Table 3: Results on model selection based on a stepwise forward selection procedure. The
columns “Lik”, “Lik.out”, and “Lik.dur” give the value of the cross-validated log-pseudo-
likelihood, corresponding to L(B, σ), L1(b1), L2(b2, σ), respectively.

features are both based on Ni(t), the number of actions taken before time t. Roughly,

the feature 1{Ni(t)>0} reflects the initial planning behavior (Eichmann, Goldhammer, Greiff,

Pucite, & Naumann, 2019). Thus, this feature tends to measure students’ speed of reading

the instruction of the item. As discussed earlier, the feature Ni(t)/t measures students’ speed

of taking actions. Finally, the fifth feature is related to the use of the RESET button.

Prediction performance on testing set. We now look at the prediction performance

of the above model on the testing set. The prediction performance was evaluated at a larger

set of time points from 19 seconds to 281 seconds. Instead of reporting based on the pseudo-

likelihood function, we adopted two measures that are more straightforward. Specifically,

we measured the prediction of final outcome by the Area Under the Curve (AUC) of the

predicted Receiver Operating Characteristic (ROC) curve. The value of AUC is between

0 and 1. A larger AUC value indicates better prediction of the binary final outcome, with

AUC = 1 indicating perfect prediction. In addition, at each time point t, we measured the
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Figure 4: The increase in the cross-validated log-pseudo-likelihood based on a stepwise
forward selection procedure. Panels (a), (b), and (c) plot the cross-validated log-pseudo-
likelihood, corresponding to L(B, σ), L1(b1), L2(b2, σ), respectively.

prediction of duration based on the root mean squared error (RMSE), defined as

√√√√∑N+n
i=N+1 1{τi>t}(τi − τ̂i(t))2∑N+n

i=N+1 1{τi>t}
,

where τi, i = N + 1, ..., N + n, denotes the duration of students in the testing set, and τ̂i(t)

denotes the prediction based on information up to time t according to the trained model.

Results are presented in Figure 5, where the testing AUC and RMSE for the final outcome

and duration are presented. In particular, results based on the model selected by cross

validation (p = 15) and the initial model (p = 4, containing the initial covariates 1, t,

t2, and t3) are compared. First, based on the selected model, the AUC is never above

0.8 and the RMSE is between 53 and 64 seconds, indicating a low signal-to-noise ratio.

Second, the students’ event history does improve the prediction of final outcome and duration

upon the initial model. Specifically, since the initial model does not take into account the

event history, it predicts the students with duration longer than t to have the same success

probability. Consequently, the test AUC is 0.5 at each value of t, which is always worse than

the performance of the selected model. Moreover, the selected model always outperforms

the initial model in terms of the prediction of duration. Third, the AUC for the prediction
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Figure 5: A comparison of prediction accuracy between the model selected by cross validation
and a baseline model without using individual specific event history.

of the final outcome is low when t is small. It keeps increasing as time goes on and fluctuates

around 0.72 after about 120 seconds.

Interpretation of parameter estimates. To gain more insights into how the event

history affects the final outcome and duration, we further look at the results of parameter

estimation. We focus on a model whose event history Hi(t) includes the initial features and

the top six features selected by cross validation. This model has similar prediction accuracy

as the selected model according to the cross-validation result in Figure 4, but contains

less features in the event history and thus is easier to interpret. Moreover, the parameter

estimates under this model are close to those under the cross-validation selected model, and

the signs of the regression coefficients remain the same.

The estimated regression coefficients are presented in Table 4. First, the first selected

feature Ii(t), which indicates whether all three control sliders have been explored via simple

actions, has a positive regression coefficient on final outcome and a negative coefficient on

duration. It means that, controlling the rest of the parameters, a student who has taken

the VOTAT strategy tends to be more likely to give a correct answer and to complete in a
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shorter period of time. This confirms the strong effect of VOTAT strategy in solving the

current task.

Second, besides Ii(t), there are two features related to taking simple actions, 1{Si(t)>0}

and Si(t)/t, which are the indicator of taking at least one simple action and the frequency of

taking simple actions. Both features have positive regression coefficients on the final outcome,

implying larger values of both features lead to a higher success rate. In addition, 1{Si(t)>0}

has a negative coefficient on duration and Si(t)/t has a positive one. Under this estimated

model, the overall simple action effect on duration is b̂25Ii(t) + b̂261{Si(t)>0} + b̂2,10Si(t)/t,

which is negative for most students. It implies that, overall, taking simple actions leads to a

shorter predicted duration. However, once all three types of simple actions have been taken,

a higher frequency of taking simple actions leads to a weaker but sill negative simple action

effect on the duration.

Third, as discussed earlier, 1{Ni(t)>0} tends to measure the student’s speed of reading the

instruction of the task and Ni(t)/t can be regarded as a measure of students’ speed of taking

actions. According to the estimated regression coefficients, the data suggest that a student

who reads and acts faster tends to complete the task in a shorter period of time with a

lower accuracy. Similar results have been seen in the literature of response time analysis

in educational psychology (e.g., Fox & Marianti, 2016; Klein Entink et al., 2009; Zhan,

Jiao, & Liao, 2018), where speed of item response was found to negatively correlated with

accuracy. In particular, Zhan et al. (2018) found a moderate negative correlation between

students’ general mathematics ability and speed under a psychometric model for PISA 2012

computer-based mathematics data.

Finally, 1{Ri(t)>0}, the use of the RESET button, has positive regression coefficients on

both final outcome and duration. It implies that the use of RESET button leads to a higher

predicted success probability and a longer duration time, given the other features controlled.

The connection between the use of the RESET button and the underlying cognitive process

of complex problem solving, if it exists, still remains to be investigated.
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Feature b̂1 b̂2

1. 1 3.1× 10−1 4.8

2. t −5.9× 10−3 −2.7× 10−3

3. t2 3.1× 10−6 −4.5× 10−7

4. t3 1.7× 10−8 3.5× 10−8

5. Ii(t) 5.2× 10−1 −8.4× 10−1

6. 1{Si(t)>0} 6.8× 10−1 −2.1× 10−1

7. 1{Ni(t)>0} −3.1× 10−1 −6.6× 10−1

8. Ni(t)/t −1.1 −1.4

9. 1{Ri(t)>0} 3.7× 10−1 3.8× 10−2

10. Si(t)/t 3.0 7.9× 10−1

Table 4: Estimated regression coefficients for a model for which the event history process
contains the initial features based on polynomials of t and the top six features selected by
cross validation.

5 Discussions

Summary. As an early step towards understanding individuals’ complex problem-solving

processes, we proposed an event history analysis method for the prediction of the duration

and the final outcome of solving a complex problem based on process data. This approach is

able to predict at any time t during an individual’s problem-solving process, which may be

useful in dynamic assessment/learning systems (e.g., in a game-based assessment system).

An illustrative example is provided that is based on a CPS item from PISA 2012.

Inference, prediction, and interpretability. As articulated previously, this paper fo-

cuses on a prediction problem, rather than a statistical inference problem. Comparing with a

prediction framework, statistical inference tends to draw stronger conclusions under stronger

assumptions on the data generation mechanism. Unfortunately, due to the complexity of

CPS process data, such assumptions are not only hardly satisfied, but also difficult to veri-

fy. On the other hand, a prediction framework requires less assumptions and thus is more

suitable for exploratory analysis. As a price, the findings from the predictive framework are

preliminary and can only be used to generate hypotheses for future studies.
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It may be useful to provide uncertainty measures for the prediction performance and for

the parameter estimates, where the former indicates the replicability of the prediction per-

formance and the later reflects the stability of the prediction model. In particular, patterns

from a prediction model with low replicability and low stability should not be overly inter-

preted. Such uncertainty measures may be obtained from cross validation and bootstrapping

(see Chapter 7, Friedman, Hastie, & Tibshirani, 2001).

It is also worth distinguishing prediction methods based on a simple model like the one

proposed above and those based on black-box machine learning algorithms (e.g., random

forest). Decisions based on black-box algorithms can be very difficult to understood by

human and thus do not provide us insights about the data, even though they may have a high

prediction accuracy. On the other hand, a simple model can be regarded as a data dimension

reduction tool that extracts interpretable information from data, which may facilitate our

understanding of complex problem solving.

Extending the current model. The proposed model can be extended along multiple

directions. First, as discussed earlier, we may extend the model by allowing the regression

coefficients bjk to be time-dependent. In that case, nonparametric estimation methods (e.g.,

splines) need to be developed for parameter estimation. In fact, the idea of time-varying

coefficients has been intensively investigated in the event history analysis literature (e.g.,

Fan, Gijbels, & King, 1997). This extension will be useful if the effects of the features in

Hi(t) change substantially over time.

Second, when the dimension p of Hi(t) is high, better interpretability and higher pre-

diction power may be achieved by using Lasso-type sparse estimators (see e.g., Chapter 3

Friedman et al., 2001). These estimators perform simultaneous feature selection and regu-

larization in order to enhance the prediction accuracy and interpretability.

Finally, outliers are likely to occur in the data due to the abnormal behavioral patterns

of a small proportion of people. A better treatment of outliers will lead to better predic-
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tion performance. Thus, a more robust objective function will be developed for parameter

estimation, by borrowing ideas from the literature of robust statistics (see e.g., Huber &

Ronchetti, 2009).

Multiple-task analysis. The current analysis focuses on analyzing data from a single

task. To study individuals’ CPS ability, it may be of more interest to analyze multiple CPS

tasks simultaneously and to investigate how an individual’s process data from one or multiple

tasks predict his/her performance on the other tasks. Generally speaking, one’s CPS ability

may be better measured by the information in the process data that is generalizable across

a representative set of CPS tasks than only his/her final outcomes on these tasks. In this

sense, this cross-task prediction problem is closely related to the measurement of CPS ability.

This problem is also worth future investigation.
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