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Abstract

Motivation: Discovering the evolution of a tumor may help identify driver mutations and provide a
more comprehensive view on the history of the tumor. Recent studies have tackled this problem
using multiple samples sequenced from a tumor, and due to clinical implications, this has attracted
great interest. However, such samples usually mix several distinct tumor subclones, which con-
founds the discovery of the tumor phylogeny.

Results: We study a natural problem formulation requiring to decompose the tumor samples into
several subclones with the objective of forming a minimum perfect phylogeny. We propose an
Integer Linear Programming formulation for it, and implement it into a method called MIPUP. We
tested the ability of MIPUP and of four popular tools LICHeE, AncesTree, CITUP, Treeomics to re-
construct the tumor phylogeny. On simulated data, MIPUP shows up to a 34% improvement under
the ancestor-descendant relations metric. On four real datasets, MIPUP’s reconstructions proved to
be generally more faithful than those of LICHeE.

Availability and implementation: MIPUP is available at https://github.com/zhero9/MIPUP as open
source.

Contact: martin.milanic@upr.si or alexandru.tomescu@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Background

Cancer is an evolutionary disease, with new mutations accumulating
over time. Tumor genomes may carry up to thousands of mutations
and one of the major challenges in cancer research is to distinguish
between driver and passenger mutations. Furthermore, tumors are

©The Author(s) 2018. Published by Oxford University Press.

composed of several genetically distinct subpopulations, each har-
boring driver mutations. Identifying the set of mutations that belong
to each subpopulation may help pinpoint which (gene) mutations
are drivers. Moreover, understanding the order in which each driver
mutation occurs will provide us with a more comprehensive view
of tumor evolution. This can lead to a better understanding
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(Campbell et al., 2008; Nik-Zainal et al., 2012), and help in diagno-
sis and therapies (Newburger et al., 2013).

High-throughput sequencing can offer a moderately-priced, gen-
ome-wide perspective of the mutations involved in the subclones of
a tumor, as opposed to other more targeted methods such as single-
cell sequencing, fluorescence in situ hybridization (FISH), or silver
in situ hybridization (SISH) (Malikic ef al., 2015). However, the
main drawback is that, by nature, more cell subpopulations are
mixed in each sample.

Given such tumor high-throughput sequencing data, several
questions pertain to it: what are the subpopulations of the tumor, in
what proportion they occur, and what is the evolutionary relation
among them. In case there is an evolutionary relation, the cell sub-
populations are also called subclones of the tumor. Various compu-
tational methods have been proposed to address these questions,
each answering a subset (or all) of them. Some methods assume as
input a single sequencing sample from a tumor (Hajirasouliha et al.,
2014; Schwartz and Shackney, 2010; Strino et al., 2013), whereas,
as we will review in Section 1.2 below, other start the analysis with
multiple samples.

In this paper we propose a multi-sample method for finding the
tumor evolution, called MIPUP (minimum perfect unmixed phyloge-
nies). MIPUP works by solving a problem equivalent to the
Minimum-Split-Row problem proposed by Hajirasouliha and
Raphael (2014), asking to minimally decompose the samples so that
they form a perfect phylogeny. This phylogeny model is a common
one, also used by e.g. Malikic et al. (2015), Popic et al. (2015), Jiao
et al. (2014), El-Kebir et al. (2015). The method of this paper
exploits a relation between perfect phylogenies and branchings in a
directed acyclic graph from (Hujdurovi¢ et al., 2018). Based on it,
we give here a simple and efficient Integer Linear Programming
(ILP) formulation for this problem.

We tested MIPUP against four other popular tools for discovering
the tumor evolution, CITUP (Malikic ez al., 2015), LICHeE (Popic
et al., 2015), AncesTree (El-Kebir et al., 2015), and Treeomics (Reiter
et al., 2017). We also tried testing against PASTRI (Satas and
Raphael, 2017), but we could not run it (see the Supplementary
Material). Under the perfect phylogeny assumption, over a range of
scenarios (read coverage 100 1000 and 10000, a number of samples
from 5 to 20) and 100 random trees simulated for each of these scen-
arios, MIPUP proved the most accurate in reconstructing the shape of
the phylogenetic tree. This was measured as a proportion of how
many of the original ancestor-descendant relations in the original tree
were kept also in the reconstructed tree, as done also in (Popic et al.,
2015) and in (El-Kebir et al., 2015). Our experiments show that, with
respect to the overall two best performing tools among these four,
MIPUP improves this metric by up to 34% for read coverage 100, by
up to 11% for read coverage 1000, and by up to 20% for read cover-
age 10000. In some cases, MIPUP reconstructs more than 92% of all
relations, also on low coverage datasets. MIPUP also appeared resili-
ent to a low number of loss of mutation events, which violate the per-
fect phylogeny assumption.

We also tested MIPUP and LICHeE on four real datasets. We
manually inspected the output of both, and compared them to the
reconstructions given in the papers the datasets were published in.
We observe that, even though both tools output overall comparable
trees, MIPUP’s results are generally more faithful to the original
reconstructions, and require much less input parameters to fix.

1.2 Related work
In this section we review several methods that analyze multi-sample
data from tumors. A few methods, such as Salari ez al. (2013) and of

van Rens et al. (2015), are primarily focused on improving the vari-
ant calling results in each sample. Many other methods are instead
focused on reconstructing the evolutionary tree of the tumor using
multiple samples. Among these latter methods, CITUP (Malikic
et al., 2015), LICHeE (Popic et al., 2015) and AncesTree (El-Kebir
et al., 2015) assume only the variant allele frequencies (VAFs) of the
mutations. Other methods, such as PhyloWGS (Deshwar ez al.,
2015), Canopy (Jiang et al., 2016), SPRUCE (El-Kebir et al., 2016),
also explicitly take into account copy-number aberrations.

Method CITUP works by exhaustively enumerating all possible
trees with up to Np.x nodes (where Ny, is provided by the user),
and decomposing each sample into several nodes of this tree. The fit
between each sample and the tree is one minimizing a Bayesian in-
formation criterion on the VAF values. This fit is computed either
exactly, with quadratic integer programming, or with a heuristic it-
erative method. The best tree is then output, together with the
decompositions of each sample as nodes of this tree.

Method LICHEeE also tries to fit the VAF values to a phylogenet-
ic tree, but with an optimized search for such a tree. Mutations are
first assigned to clusters based on their frequencies (a mutation can
belong to more clusters). Then clusters are transformed to binary ab-
sence/presence vectors (with wildcards), based on two thresholds
below which, and above which, the value is transformed into a 0 or
a 1, respectively. Values in between are marked with a wildcard.
The containment relation between these vectors induces a directed
acyclic graph. Spanning trees of this graph are exhaustively enumer-
ated, and the ones best compatible with the mutation frequencies
are output.

Method AncesTree derives an ILP for the so-called VAF factor-
ization problem (VAFF), namely the problem of determining the
composition of each sample, including the number and proportion
of clones in each sample, and a tree that describes the ancestral
relationships between all clones. As the authors argue, this problem
generalizes several previous formulations, including the above-
mentioned (Hajirasouliha et al., 2014; Jiao et al., 2014; Malikic
et al., 2015; Strino et al., 2013). The implementation behind
AncesTree uses a more complex model than the VAFF problem, that
also accounts for errors and is solved with a Mixed ILP.

El-Kebir et al. (2015) also argue that in the case of a single input
sample, the VAFF problem generalizes the so-called Perfect
Phylogeny Mixture Problem also proposed by Hajirasouliha and
Raphael (2014), see (El-Kebir ez al., 2015, p. i64). Note that El-
Kebir et al. (2015) propose an ILP for the initial VAFF problem,
which is thus also applicable to the Perfect Phylogeny Mixture
Problem. However, this problem is not equivalent to the problem
underlying MIPUP, as it only asks for some decomposition of the
samples into a perfect phylogeny, not necessarily a minimal one.
Therefore, we cannot directly compare the efficiency of the ILP
from this paper with the ILP of El-Kebir et al. (2015). See Table 1
for an overview of the advances relative to these two problems.

2 Materials and methods

2.1 Overview of the approach
In this section we give an informal overview of our approach. We
refer the reader to Figure 1 for a visual overview.

Assume we obtained samples 7q,...,7, from a tumor. Using a
somatic point mutation caller, such as VarScan 2 (Koboldt et al.,
2012), we can detect the somatic single nucleotide variants (SSNVs)
present in each sample and derive their VAF values from the read
alignments over their positions. Denote these SSNVs by ¢y, ..., c,.
We then build a binary matrix M with rows labeled r4,...,7, and
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Table 1. Advances relative to the MCRS and the VAFF problems

NP-hardness Heuristic algorithms ILPs
Hajirasouliha and Raphael (2014) Only claimed Only claimed
Hujdurovié et al. (2015, 2016) Yes Yes
Hujdurovié ez al. (2018) Strengthened to APX-hardness Yes Proved equivalence of problems MCRS and

MUB (from Sec. 2.3)
Yes, based on MCRS equivalent to MUB
For VAFF problem, does not apply to MCRS

This paper
El-Kebir ez al. (2015) For VAFF problem, does not apply

to MCRS

(a) !
(b)
M' | ¢ | c2|cs|es|es|eo|er|es
A 1 0 0 1 0 1 0 O
B/1|/oloj1]o]of1]0 M e ol al el
c 1. 0 0 0 1 0 0 O n. 1.0 0 1 1 1
D 1 0 0 0 1 0 0 1 r1 0 o0 1 0 0
E 0 1 0 0 0 0 0 O s 1.0 0 0 1 0
F 0 1 1 0 0 0 0 0 . 1 1 1 0 1 0
Fig. 1. Overview of the approach. In (a) we illustrate a tumor with six subclones labelled A, ..., F. In (b) we illustrate a binary matrix M’ such that every row is a
tumor subclone, and every column is an SSNV found in at least one of the subclones (here the SSNVs are labeled c1, ..., cg). A 1 indicates presence and a 0 indi-

cates absence of that SSNV in a subclone. In (¢) we show the perfect phylogeny tree that gave rise to these patterns of mutations; here every subclone is a leaf of
the tree and every SSNV labels an edge (and only one) of the tree. The SSNVs present in a subclone are the ones labeling the path from the root of the tree to the
corresponding leaf. For example, the SSNVs present in subclone A are {c;, cs, cs}, which are the same as the columns containing a “1” on row A in matrix M
from (b). In practice, each sequencing sample may generally contain more than a single subclone of a tumor. In (d) we show four samples r, ..., r, sequenced
from the tumor, some combining more than one subclone. In (e) we show the binary matrix M indicating presence/absence of the SSNVs in each of these four
samples. Observe that each row r; of M is the bitwise OR of the binary rows of M’ corresponding to the subclones that are in sample r;. For example, sample ry
contains subclones A, B, C, and thus row r; of M is the bitwise OR of rows A, B, C of M. Figure 1f shows the same perfect phylogeny tree as in (c), in which we
again mark the phylogeny nodes being combined in each sample r;. Matrix M is the input to our problem, and matrix M' and the phylogeny tree corresponding to

M' are the unknowns that must be reported in output

columns labeled c¢y,...,c,, such that M;; =1 if and only if the
VAF value of SSNV ¢; in sample 7; is greater or equal to a given
threshold ¢.

Matrix M is the input to our problem. From it, we would like to
infer (i) the individual subclones of the tumor making up each sam-
ple 7; (i.e., the binary pattern of SSNVs in each such subclone) and
(ii) the evolutionary relation among these unknown subclones.

Let us now make these notions more precise. In this paper we
consider the model and problem formulation proposed by
Hajirasouliha and Raphael (2014). This considers as evolutionary
relation among the tumor subclones the so-called perfect phylogeny
model, in line with previous studies such as (El-Kebir ez al., 2015;
Jiao et al., 2014; Malikic et al., 2015; Popic et al., 2015). This
assumes that (i) all mutations in the parent cells are passed to the
descendants, and (ii) once a mutation occurs at a particular site, it
does not occur again at that site (the “infinite sites assumption”).
Being mixtures of subclones of the tumor, the rows of M may not
necessarily form a perfect phylogeny. Thus, we would like to split
each row 7; of M into a set of rows R; so that the resulting matrix M’
does correspond to a perfect phylogeny. (See Definition 2.2 for a for-
mal definition of the split operation, and Figure 2 for an example of
a matrix M and a matrix M® obtained by splitting the rows of M.)
Hajirasouliha and Raphael (2014) proposed to perform this split so
that the resulting matrix is “minimal”. Such parsimony criterion is
often employed when modeling real-life problems, and it is one of
the most basic investigations one can perform.

More specifically, Hajirasouliha and Raphael (2014) proposed
that M’ has the minimum number of rows. In terms of perfect phyl-
ogeny trees, this means that we are looking to split each sample into

a collection of subclones forming a perfect phylogeny, and the total
number of subclones from all samples is minimum. We will call this
problem MinimumConflict-FreeRowSplit (MCRS), see Section 2.2.

Hajirasouliha and Raphael (2014) claimed that the MCRS prob-
lem is NP-hard (and gave an incorrect proof), and in (Hujdurovi¢
et al., 2015, 2016) a correct hardness proof was given. Hujdurovi¢
et al. (2016) also proposed a polynomial-time heuristic algorithm
for it based on coloring co-comparability graphs and tested it on
real samples.

As opposed to the above heuristic algorithm, in this paper we
propose an exact algorithm for the MCRS problem. We obtain this
by using a recent result from (Hujdurovi¢ et al., 2018) showing that
the problem is equivalent to a problem related to finding an optimal
branching in a directed acyclic graph. A branching is a subgraph in
which every vertex has out-degree at most 1. We formally describe
this correspondence in Section 2.3. Using this branching formula-
tion, we then show in Section 2.4 that the MCRS problem can be
expressed using ILP, and solve it using the CPLEX ILP solver.

See Table 1 for a summary of these results.

2.2 Problem formulation

A binary matrix M € {0,1}"" is a matrix having 7 rows and 7 col-
umns, and all entries O or 1. Each row of such a matrix is a vector in
{0,1}"; each column is a vector in {0, 1}"". We will denote by Ry =
(1)1 <i<m and Cyu = (¢); <; <, the families of rows and columns of
M, respectively. The entry of M at row 7; and column ¢; will be
denoted by M;; or M,, ; when appropriate. For brevity, we will often
write “the number of distinct rows (resp., columns) of M” to mean
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M c1 e €3 ¢4 C5 C6
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| 000110
rs |01 1011
, \0O 0 0 0 0 1

MP

c] €2 €3 C4 C5 Cg
(r1,v1) 101 0 0 1
(r1,v4) 000110
(r2,v4) 000110

B -—
v(B) (73, v2) 01 1 00 1
(r3,vs) 00 0010
(74, 6) 000001

D]\,j vs = {ri,r2, 13} v ={ri,rs,ra}
vy = {r1,r2} vy = {r1,73}
v = {r} vy = {rs}
lB
vs = {r1,r2,m3} v = {r1,m3,14}

vy = {r1,r2} /

U3 = {hJ"s}

vz = {rs}

o= {n)

Fig. 2. An example of a binary matrix M, its containment digraph Dy, a branching B, and the resulting B-split M® of M. The row split M? is an optimal solution to
the MCRS problem given M. Pairs (r, v) for which ris underlined as an element of vin the figure showing B are exactly the uncovered elements with respect to B.

Figure adapted from (Hujdurovi¢ et al., 2018)

Réin R2

RS,
RS, R7 LREdDmRS ;nm
R8\ BAPT —>€ R1 " BAP1

\ R4ﬂﬂm

BAP1 1Sc2

VHL —>

GL

Fig. 3. From left to right: the output of MIPUP, LICHeE and the tree reported in the original publication, for dataset RMH008 from (Gerlinger et al., 2014). The last
row of square gray nodes in the trees of MIPUP are the original samples. The oval nodes are the rows in which the input matrix is split. Notice that, due to our
tree building algorithm, they are drawn as leaves of the phylogeny. However, if their in-coming edge has no label (i.e., no mutations occurring on that edge) then
they are actually internal nodes of the evolution, recall Remark 2.1. For example, node R1 is internal to the evolution. Arrows indicate the composition of the ori-
ginal samples in terms of split rows. The legend contains the equalities among split rows; only one split row in each equality class is a node of the tree

“the maximum number of pairwise distinct rows (resp., columns) of
M”. Two rows (resp., columns) are considered distinct if they differ
as binary vectors. All binary matrices in this paper will be assumed
to contain no row in which all entries are 0.

DeriNiTION 2.1. Given a matrix M, three distinct rows 7, 7, 7/ of M and
two distinct columns 7 and j of M, we denote by M[(r,7,7"), (i,f)] the
3 x 2 submatrix of M formed by rows r, 7, 7/ and columns 4, j (in this
order). Two columns i and j of a binary matrix M are said to be in con-
flict if there exist rows 7,7 ,7” of M such that

1 1
MI(r# 7). Gj)) = (10
0 1

We say a binary matrix M is conflict-free if there exist no two
columns of M that are in conflict.

The rows of a binary matrix M are the leaves of a perfect phylo-
genetic tree if and only if M is conflict-free, see (Estabrook et al.,
1975; Gusfield, 1997). Moreover, if this is the case, then the corre-
sponding phylogenetic tree can be retrieved from M in time linear in
the size of M (Gusfield, 1991). As such, we formulate our problems
just in terms of finding optimal conflict-free matrices.

REMARK 2.1. We are following here the formalism on perfect phylogenies
from (Gusfield, 1991). Namely, each row of a matrix is a leaf of the
phylogenetic tree, and columns label edges. However, a leaf whose

in-coming edge has no label is in fact an internal node of the evolution,
that is, it has no “private” mutations. See for example Figure 1c where
leaves C and E have no labels on the in-coming edges. We follow the
same formalism in the trees output by MIPUP, see Figure 3.

DerNITioN 2.2. Let M € {0, 1}"*". Label the rows of M as 71,72, ..., 7. A
binary matrix M’ € {0, 1}"*" is a row split of M if there exist a partition of
the set of rows of M’ into m sets R{,R3,...R,, such that for all
i€ {1,...,m},r is the bitwise OR of the binary vectors in R;. The set R; of
rows of M is said to be the set of split rows of row ; (with respect to M’).

For simplicity, we defined a row split as a binary matrix M’ for
which a suitable partition of rows exists. However, throughout the
paper we will make a slight technical abuse of this terminology by
considering any row split M’ of M as already equipped with an arbi-
trary (but fixed) partition of its rows Ry, ..., R,, satisfying the above
condition.

We denote by y(M) the minimum number of rows in a conflict-
free row split M’ of M. Formally, the minimum conflict-free row
split problem is defined as follows:

MinimumConflict-FreeRowSplit (MCRS):

Input: A binary matrix M.

Task: Compute 7(M) and find a conflict-free row split M’ of M
with y(M) rows.
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2.3 The branching formulation

In this section we review the formulation from (Hujdurovi¢ et al.,
2018) of the MCRS problem in terms of branchings in a directed
acyclic graph (DAG). We refer the reader to (Hujdurovi¢ et al.,
2018) for the proof of this equivalence. In Section 2.4 we will use
this formulation to write an ILP for the problem.

DerNTION 2.3. Let D = (V, A) be a DAG. A branching of D is a subset
B of A such that (V, B) is a directed graph in which for each vertex v
there is at most one arc leaving v.

The following construction can be performed on any given binary
matrix M and results in a DAG. Given a column ¢; € Cy, the sup-
port of ¢; is the set defined as {r; € Ry : M;; = 1} and denoted by
suppy(¢;). Given a binary matrix M € {0,1}""", the containment
digraph Dy of M is the DAG with vertex set V = {suppy(c) : c €
Cum}andarcset A= {(v,V/) :v,v/ € VAv C '} where C is the rela-
tion of proper inclusion of sets.

Let M € {0,1}™" be a binary matrix, let Dy = (V,A) be the
containment digraph of M, and let B be a branching of Dy,. For a
vertex v € V, we denote by Ny (v) the set of all vertices v/ € V such
that (v/,v) € B. A source of B is a vertex not entered by any arc of B.
For a vertex v € V, an element 7 € v (that is, a row of M) is said to
be covered in v with respect to B (or just B-covered) if r € UNj (v).
Analogously, we say that 7 € v is uncovered in v with respect to B if
r is not covered in v. A B-uncovered pair is a pair (r, v) such that r
is a row of M, v is a vertex of Dy, (that is, the support of a column of
M), r € v, and 7 is uncovered in v with respect to B. For a row 7 of
M, we will denote by Ug(r) the set of all B-uncovered pairs with first
coordinate 7, and by U(B) the set of all B-uncovered pairs. We illus-
trate these notions in Figure 2, where two branchings B; and B, of
the arc set of D, are depicted, together with uncovered pairs (7, v)
with respect to each of the two branchings.

We denote with (M) the minimum number of elements in U(B)
over all branchings B of Dy,. The corresponding optimization prob-
lem is the following:

MinimumUncoveringBranching (MUB):
Input:A binary matrix M.
Task: Compute (M) and find a branching B of Dy, with |[U(B)| = f(M).

The announced equivalence between the MCRS and the MUB
problems is captured in the following result.

TueoREM 2.1: Hujdurovi¢ et al. (2018). For every binary matrix M €
{0,1}"™" with exactly k distinct columns, we have (M) = f(M).
Moreover, for any branching B of Dy can be transformed in time
O(mkn) to a conflict-free row split of M with exactly |U(B)| rows.

The following notion of B-split specifies how each branching B cor-
responds to a row split of M.

DEerINITION 2.4. Let M be a binary matrix with rows 71, ..., 7,, and columns
C1,---,¢y. For a branching B of D), we define the B-split of M, denoted by
M®, as the matrix with rows indexed by the elements of the set U(B), and
columns ¢}, ..., ¢, as follows. Let V = V(Dy) and for all j € {1,...,n},
let v; = suppy,(¢;) (so v; € V). For a vertex v € V, we denote by B* (v) the
set of all vertices in V reachable by a directed path from v in (V, B) [note

thatv € B (v)]. For all (r,v) € U(B) and allj € {1,...,n}, set:

ME 1, ify; € BT (v);
(rv)i 0, otherwise.

See Figure 2 for an example of a binary matrix M with two
branchings B; and B, of its containment digraph and the corre-
sponding row splits.

The proof of Theorem 2.1 from (Hujdurovi¢ et al., 2018) shows
that the B-split of M is conflict-free and has |U(B)| rows. This means
that if we have a branching minimizing |U(B)|, then the B-split of
this branching is an optimal solution for the MCRS problem.

2.4 ILP formulation

The notion of B-split can be used to transform an optimal solution
to the problem of computing one of the parameters {f, 7} to an opti-
mal solution for the other parameter. The problem formulation in
terms of f is directly expressible in terms of packing and covering
constraints, and thus leads to a natural integer programming formu-
lation of the MUB problem. We will express the ILP only in terms of
finding the value f(M). However, the optimal branching attaining
this value can be trivially retrieved from the values of the variables
in an optimal solution of the ILP.

RemARK 2.2. It is easy to check that the decision version of the MCRS
problem is in NP and thus admits a polynomially-sized certificate.
Furthermore, since Integer Linear Programming is NP-hard, it follows
that there exists a polynomially sized ILP formulation of the MCRS
problem. However, applying Theorem 2.1 allows to obtain a direct and
simple polynomially-sized ILP formulation for it, which will also turn
out to be efficient in practice.

Let M be the input binary matrix to the problem, and let Dy =
(V,A) be its containment digraph. Our goal is to find a branching B
of Dj; minimizing the number of elements in U(B). We introduce
the following binary variables:

* for every edge (u,v) € A, we introduce a variable x,, with the
intended meaning that x,,, = 1 if and only if («,v) € B;

* forallv € Vand for all 7 € v, we introduce a variable y,,, mean-
ing y,, = 1 if and only if 7 is uncovered in v with respect to B.

Consider the following integer program: min_, .y >, Vro
subject to

D oxw <1 VueV (1)

Yrw + Z Xup>1 VreveV

ueN; (v):reu
Xuw; Yro binary
THEOREM 2.2. The optimal value of the above integer program is f(M).

PROOF. Let OPT denote the optimal value of the above ILP.

First, we prove that OPT < f(M). Let B be a branching of Dy,
such that |U(B)| = B(M). Define a binary vector x € {0,1}* by
setting

P 1, if(u,v) € B;
"Y1 0,  otherwise.

For every v € V and every r € v set y,, = 1 if and only if 7 is
uncovered in v with respect to B. The objective function value at
(x, y) equals to the sum, over all v, of the number of uncovered
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elements in v with respect to B, that is, the size of U(B). The defin-
ition of a branching implies that constraints (1) are satisfied.
Consider now a constraint of type (1). Let v € V and rev. If
¥ry = 1, then the constraint holds due to the non-negativity of the
x-variables. If y,, = 0, then 7 is covered in v with respect to B.
This implies that there exists an arc (#,v) € B such that r € u.
Since (u,v) € B, it holds x,, = 1 and thus the constraint is satisfied
in this case. It follows that (x, y) is a feasible solution of the ILP with
objective function value |U(B)|, therefore OPT < |U(B)| = S(M).

The proof of the other inequality is similar. Let (x, y) be an opti-
mal solution to the ILP and let B be the set of arcs (u#,v) € A such
that x,,, = 1. Constraints (1) guarantee that B is a branching of D,.
Constraints (2) and the optimality of (x, y) imply that for allv € V
and all » € v, we have y,, = 1 if and only if Z%Ng(y):reu Xup = 0.
Indeed, if the above sum is at least 1, then setting y,, to 0 would re-
sult in a feasible solution with strictly smaller objective function
value. Therefore, y,, = 1 if and only if (#,v) & B for all u € N (v)
such that 7 € u, which is in turn equivalent to the condition
7 & Uyen- )V, that is, 7 is uncovered in v (with respect to B). It fol-
lows that the objective function value at (x, y) equals the total num-
ber of uncovered pairs, that is, the size of U(B). We conclude that B
is a branching such that |U(B)|= OPT, which implies
B(M) < OPT. O

The above integer program has p = [A| 4+ 3",y [v] binary varia-
bles and g = [V|+ Y.y [v| constraints. In terms of the binary ma-
trix M, the numbers of variables and constraints can be described as:
p=/{+o0and g =k+ o, where k, £, and o denote the number of
columns, the number of comparable pairs of columns (with respect
to the containment relation), and the number of ones in the matrix
obtained by taking from M exactly one copy from each set of identi-
cal columns, respectively. If M is m x n, then the number of varia-
bles is O(n(m + n)) and the number of constraints is O(mn).

2.5 Implementation

MIPUP is implemented in Java and uses the CPLEX ILP solver.
MIPUP can report all optimal solutions, or at most a user-provided
number of optimal solutions.

The input format is the same as for LICHeE, namely a matrix
with VAF values of each SSNV in each sample. As input we also as-
sume a threshold # to transform VAF values into binary ones.
LICHeE applies a further filtering to the input matrix, namely
removing those weak SSNVs whose binary presence/absence pattern
in the samples appears strictly less than k times (option
minClusterSize) in the entire matrix (default £ =2). We also provide
a Python script that, given # and k, filters the matrix in this manner.

Apart from an optimal conflict-free row split binary matrix,
MIPUP also outputs the perfect phylogeny tree corresponding to it.
We label each edge of the tree with the set of mutations that occurred
along the edge. The label format is S|n|mean=+std, where S is an in-
ternal name for the group of mutations (the mutations corresponding
to each group are output in a separate file), 7 is the cardinality of S,
mean is the mean value of their VAF values, in all samples, and szd is
the standard deviation of their VAF values. See the caption of Figure 3
for further details on the layout of the phylogenetic trees.

3 Experiments

3.1 Simulated data

We performed an evaluation of simulated data as done in (El-Kebir
et al., 2015) and in (Popic ez al., 2015). Our evaluation pipeline is
freely available at https://github.com/huanyannizu/Data-simulation-

and-evaluation-in-MIPUP. We created uniformly at random a tree
with ¢ nodes (i.e., clones), and randomly chosen a node as root.
This was done using an algorithm based on Priifer’s encoding of a
labeled tree (Priifer, 1918). We randomly assigned » mutations to
the nodes of this tree, making sure each node gets at least one muta-
tion. Our main experiments are with ¢=10 and #=100, as in
(El-Kebir et al., 2015). In order to see how the tools scale, we also
tested MIPUP, LICHeE, and Treeomics with ¢=20, =200 and
c=30,n=300.

Note that, under the perfect phylogeny assumption, the muta-
tions in a node must be iteratively propagated to all descendants of a
node. To test also loss of mutation events, we added a further par-
ameter d € {0,1,...,9} that denotes the number of times one of
these propagation events of a mutation in some node v (that may
have originated in v or in an ancestor of v) is 7ot propagated to a
child # of v (and thus to none of the descendants of u). Note that
d=0 corresponds to the perfect phylogeny assumption. We then
assigned to each node a random cell population size between 100
and 200.

We created a number of m samples from the tree as follows.
Each sample randomly selects 2—4 nodes of the tree, and will include
all cells and mutations in those nodes. As in (El-Kebir et al., 2015),
we then created three matrices, U, B, F: usage matrix U € R"*° is
such that an entry (r;, ¢;) contains the fraction of cells of clone ¢; out
all the cells in sample 7;; clonal matrix B € {0,1}¢
entry (c;, ¢;) equals 1 iff ¢; = ¢;, or ¢; is a descendant of ¢; in the tree;
VAF value matrix F € R”*¢ equals  UB and contains the true VAF
values of all mutations in each clone. See (El-Kebir et al., 2015,
Fig. 1) for details. We then unpack matrix F into F,,,.. € R™",
which has a column for each mutation, so that the column corre-
sponding to mutation #z; from clone ¢, is the same as column ¢; of F.

Note that tools MIPUP, LICHeE and CITUP accept in input
VAF values. However, tools AncesTree and Treeomics require reads

is such that an

counts. For this reason, we simulated reads counts as in done in (EI-
Kebir ez al., 2015). Given a read coverage a € {100, 1000, 10000},
we draw the number of reads containing mutation #; in sample 7; as
Yr.m; ~ Poiss(a). We then draw the number of reads containing the
variant allele as x, ,,, ~ Bionomial(y,, s, Fr,m). The number of
reads containing the reference allele is y;,,, — %y, . The values
Xr,.m; [Vr.m; are thus noisy VAF values that are used as input also for
MIPUP, LICHeE, CITUP.

For each m and each read coverage a € {100, 1000, 10000}, we
simulated 100 trees and ran the tools on the above noisy read counts
and VAF values. For the main scenario (c¢,7) = (10,100) [as in
(El-Kebir et al., 2015)], we chose m € {5,10,15,20}. For
(¢,m) € {(20,200), (30,300)}, where we were interested mainly in
the running times, we ran MIPUP, LICHeE, and Treeomics only for
m =35 samples.

We evaluated how well the tools are able to reconstruct the ori-
ginal tree, as done in (Popic et al., 2015) and (El-Kebir et al., 2015).
Given the original tree, and given two mutations 72; and m; in clones
¢; and ¢;, we say that m; is an ancestor (resp. descendant) of m; if ¢; is
an ancestor (resp. descendant) of ¢;. An AD pair is an ordered pair
(m;, m;) of mutations such that m; is an ancestor of m;. Note that
two mutations in the same node are not an AD pair. Given an out-
put tree reported by each tool, we computed the fraction of AD pairs
in the original tree that were present in the output tree.

Note that MIPUP, CITUP, and Treeomics can report more out-
put “best” trees. (In MIPUP’s case, unless otherwise stated, we out-
put all optimal trees.) In this case, we report three results for them,
“Best”—the tree achieving the best results under our metric;
“Avg”—the average metric over all reported trees, and “Std”—their
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Table 2. The fraction of original AD pairs kept in the output trees by each method, for (¢, n) = (10,100) and a number of d € {0, 1,2,9} of

loss of mutation events

d=0 MIPUP LICHeE Treeomics CITUP Ances
Tree
m cov. Best Avg Std Best Avg Std Best Avg Std
d=0
5 100 0.734 0.718 0.04 0.672 0.702 0.681 0.02 0.111
1000 0.691 0.665 0.06 0.669 0.642 0.611 0.03 0.402 0.390 0.08 0.076
10000 0.720 0.702 0.04 0.680 0.654 0.614 0.04 0.383 0.368 0.09 0.084
10 100 0.871 0.855 0.04 0.734 0.825 0.810 0.01 0.017
1000 0.896 0.881 0.06 0.878 0.829 0.789 0.04 0.431 0.431 0.00 0.016
10000 0.878 0.856 0.06 0.843 0.758 0.710 0.05 0.397 0.392 0.14 0.018
15 100 0.897 0.888 0.03 0.732
1000 0.908 0.902 0.04 0.893
10000 0.924 0.918 0.04 0.909
20 100 0.934 0.918 0.05 0.684
1000 0.932 0.929 0.04 0.909
10000 0.949 0.945 0.04 0.928
d=1
5 100 0.650 0.621 0.07 0.541 0.637 0.619 0.02 0.095
1000 0.699 0.680 0.04 0.647 0.671 0.631 0.04 0.433 0.413 0.14 0.078
10000 0.663 0.644 0.04 0.594 0.619 0.593 0.03 0.412 0.396 0.11 0.089
10 100 0.773 0.757 0.03 0.633 0.756 0.737 0.02 0.016
1000 0.738 0.720 0.05 0.689 0.718 0.674 0.04 0.435 0.433 0.12 0.015
10000 0.792 0.775 0.05 0.715 0.730 0.650 0.07 0.459 0.458 0.20 0.015
15 100 0.799 0.785 0.03 0.630
1000 0.812 0.801 0.04 0.764
10000 0.832 0.827 0.02 0.787
20 100 0.826 0.819 0.02 0.645
1000 0.845 0.842 0.03 0.797
10000 0.828 0.825 0.03 0.774
d=2
5 100 0.555 0.537 0.03 0.443 0.556 0.525 0.03 0.095
1000 0.603 0.577 0.05 0.507 0.581 0.551 0.02 0.368 0.343 0.11 0.050
10000 0.619 0.585 0.06 0.520 0.618 0.573 0.04 0.412 0.390 0.14 0.047
10 100 0.691 0.671 0.04 0.577 0.720 0.687 0.03 0.017
1000 0.651 0.633 0.04 0.576 0.663 0.610 0.05 0.400 0.399 0.10 0.014
10000 0.684 0.665 0.05 0.594 0.661 0.589 0.07 0.434 0.426 0.13 0.014
15 100 0.692 0.679 0.04 0.555
1000 0.700 0.693 0.03 0.651
10000 0.735 0.722 0.06 0.677
20 100 0.670 0.660 0.03 0.534
1000 0.733 0.729 0.02 0.686
10000 0.683 0.681 0.01 0.645
d=9
5 100 0.223 0.197 0.20 0.158 0.307 0.277 0.03 0.019
1000 0.196 0.170 0.17 0.133 0.310 0.274 0.03 0.101 0.089 0.04 0.008
10000 0.228 0.199 0.20 0.164 0.344 0.323 0.02 0.127 0.112 0.05 0.012
10 100 0.178 0.165 0.16 0.139 0.336 0.308 0.03 0.005
1000 0.201 0.182 0.18 0.167 0.416 0.376 0.04 0.073 0.071 0.00 0.003
10000 0.255 0.237 0.24 0.216 0.530 0.461 0.06 0.099 0.099 0.00 0.004
15 100 0.187 0.182 0.18 0.160
1000 0.219 0.210 0.21 0.192
10000 0.195 0.190 0.19 0.173
20 100 0.204 0.201 0.20 0.174
1000 0.186 0.183 0.18 0.173
10000 0.215 0.213 0.21 0.198

Notes: Empty cells correspond to scenarios where the tools could not run (see the Supplementary Material for details). The best average results are in bold.

standard deviation. Note that results “Best” are usually unattainable
in practice.

The results for (c,n) = (10,100) are in Table 2. For none, or
very few, losses of mutation (d < 2) MIPUP is generally the best
performing tool. As d increases, Treeomics becomes the best

performing tool. However, for large values of d, the results of all
tools are significantly worse than under the perfect phylogeny as-
sumption (d=0). See Table 2 for results for d=9 and the
Supplementary Material for all other values of d. While it appear
that Treeomics produces better results as we increase the number of
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Table 3. Top: The running time (in seconds) of MIPUP, MIPUP limited to outputting only one optimal solution (MIPUP - one), LICHeE,
Treeomics, CITUP and AncesTree, for (¢, n) = (10, 100). Bottom: The running time of MIPUP, MIPUP — one, LICHeE, Treeomics for (c,n) €
{(20,200), (30,300)} and m=5 samples

MIPUP MIPUP - one LICHeE Treeomics CITUP AncesTree
m coverage Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
N 100 0.22 0.06 0.17 0.02 1.30 0.09 5.0 0.53 9.85 59.48
1000 0.21 0.03 0.17 0.02 1.32 0.09 5.05 0.48 111.74 51.20 14.16 44.71
10000 0.21 0.03 0.17 0.02 1.31 0.09 5.33 0.60 118.15 63.62 12.93 10.56
10 100 0.23 0.0 0.17 0.02 1.36 0.09 37.77 1.97 125.58 221.44
1000 0.23 0.05 0.18 0.05 1.39 0.12 49.77 18.81 601.58 307.60 182.54 282.59
10000 0.22 0.03 0.17 0.02 1.36 0.09 56.88 20.02 693.58 377.32 143.07 258.04
15 100 0.29 0.20 0.16 0.02 1.36 0.09
1000 0.24 0.09 0.17 0.02 1.39 0.09
10000 0.23 0.02 0.17 0.02 1.38 0.09
20 100 0.27 0.11 0.18 0.02 1.39 0.09
1000 0.24 0.03 0.17 0.02 1.42 0.11
10000 0.24 0.04 0.17 0.03 1.40 0.11
MIPUP MIPUP - one LICHeE Treeomics
Avg Std Avg Std Avg Std Avg Std
20 nodes, 200 mutations 0.29 0.17 0.18 0.02 1.40 0.11 6.32 0.86
30 nodes, 300 mutations 0.36 0.21 0.18 0.02 1.46 0.14 7.21 0.95

loss mutation events, it is worth noting that all models (MIPUP,
CITUP, Treeomics and LICHeE) do assume the perfect phylogeny
model.

Manually checking the outputs, we observe that one reason why
MIPUP performs better is that other tools (especially CITUP and
AncesTree) combine more parent-child nodes of the initial tree into
a single node, and thus are not able to recover the initial AD pairs
from these nodes (for example, in a few cases, AncesTree outputs a
tree made up of a single node).

As seen from Table 3, MIPUP (even when outputting all optimal
solutions) and LICHEeE generally run in less than two seconds, and
Treeomics generally runs in less than one minute. The running time
of CITUP and AncesTree is an order of magnitude higher and more
variable.

3.2 Real data

We experimented on four real datasets: ultra-deep-sequencing of
clear cell renal cell carcinoma (ccRCC) (Gerlinger et al., 2014) (also
analysed by LICHeE), high-grade serous ovarian cancer (HGSC) by
(Bashashati et al., 2013), breast cancer xenoengraftment in immuno-
deficient mice (Eirew et al., 2015) and (four) clonally related uterine
leiomyomas (Mehine et al., 2015). The first three datasets are public
and were also considered by Popic et al. (2015). The public datasets
can also be found in the MIPUP repository, together with the experi-
ment results, and the scripts and parameters used to run them. We
ran only MIPUP and LICHeE on these real datasets.

In Supplementary Table S1 we show an overview of the sizes of
the input matrices. In Figure 3 we show the results on the RMH008
samples from the ccRCC study of Gerlinger er al. (2014). The results
on other samples are shown and discussed in the Supplementary
Material.

Even though the results of LICHeE and MIPUP generally agree,
in many instances there are many slight differences among them,
and MIPUP is generally closer to the original phylogenies proposed
in the papers analyzing the datasets. For example, on sample
RMHO008 from Figure 3, MIPUP reports that samples R6 and R4

are combinations of two phylogeny nodes, which lie on a tree
branch together with R1, R2, and R3, and on a tree branch together
with RS, R7, and R8. This is in line with LICHeE’s prediction and
with (Gerlinger et al., 2014). However, there are some differences:
in line with (Gerlinger et al., 2014) (right branch), MIPUP reports
that R6 is made up of some SSNVs common only to R3, as opposed
to all of R1, R2, R3 in LICHeE’s case. It also reports that R6 is
made up of SSNVs common to R4, RS, R7 (node R6_2), in line with
(Gerlinger et al., 2014) (left branch), as opposed to all of R4, RS,
R7,R8 in LICHeE’s case.

Moreover, in order to run LICHeE accurately, the user must
guess many input parameters, while in MIPUP’s case the user must
fix only one, the threshold for converting a VAF value into a binary
one. In fact, for many of the samples in the ccRCC dataset analyzed
by LICHEeE, the input parameters were chosen by LICHeE’s authors
as different from the default values.

4 Conclusion

MIPUP solves exactly and efficiently a natural problem related to
minimally unmixing sequencing samples so that they fit a perfect
phylogeny. We tested MIPUP against a large number of competing
tools, and shown that MIPUP reconstructs the original tree (under
the ancestor-descendant metric) significantly better. On real data,
MIPUP generally has more faithful reconstructions than LICHEeE,
with much less input parameters to guess correctly. On the meth-
odological side, MIPUP’s novelty is in the reduction of a phylogeny
problem to a branching problem and in the search for the optimum
phylogeny embedded in the ILP formulation itself.

We believe that MIPUP’s performance stems from two ingre-
dients. First, from a much simpler problem formulation. Second,
MIPUP’s most significant increase in performance is for low read
coverage, where noisy data can have greater effects on methods
using VAF values explicitly. MIPUP transforms VAF values to bin-
ary ones. Since MIPUP does not try to reconstruct the proportion of
each clone in each sample, but only their ancestral relation, this
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suggests that transforming VAF values into binary ones is actually a
more resilient choice for this scenario and thus an advantage for
MIPUP.
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